WO2021171704A1 - 高周波回路及び通信装置 - Google Patents

高周波回路及び通信装置 Download PDF

Info

Publication number
WO2021171704A1
WO2021171704A1 PCT/JP2020/040916 JP2020040916W WO2021171704A1 WO 2021171704 A1 WO2021171704 A1 WO 2021171704A1 JP 2020040916 W JP2020040916 W JP 2020040916W WO 2021171704 A1 WO2021171704 A1 WO 2021171704A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
frequency band
circuit
frequency
standard
Prior art date
Application number
PCT/JP2020/040916
Other languages
English (en)
French (fr)
Inventor
健二 田原
貴宏 江口
啓之 永森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080094730.6A priority Critical patent/CN115004562B/zh
Publication of WO2021171704A1 publication Critical patent/WO2021171704A1/ja
Priority to US17/805,498 priority patent/US20220311455A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present invention generally relates to high frequency circuits and communication devices, and more specifically, 2G (2nd generation mobile communication) standards and 4G (4th generation mobile communication) standards or 5G (5th generation mobile communication) standards. Regarding compatible high frequency circuits and communication devices.
  • Patent Document 1 an electronic system using carrier aggregation is known (see, for example, Patent Document 1).
  • FIG. 2B of Patent Document 1 one antenna, one diplexer, two antenna switches, eight duplexers, two band selection switches, two directional couplers, and two power amplifiers are shown.
  • Electronic systems including, are described.
  • the diplexer is connected to the antenna. Further, in the above electronic system, each of the two power amplifiers is connected to the corresponding band selection switch of the two band selection switches via the corresponding directional coupler of the two directional couplers. ..
  • An object of the present invention is that the sensitivity of a reception filter that receives a reception signal in the second frequency band corresponding to the 4G standard or the 5G standard is the third transmission in the third frequency region corresponding to the 4G standard or the 5G standard. It is an object of the present invention to provide a high frequency circuit and a communication device capable of suppressing deterioration due to signal harmonics.
  • the high-frequency circuit has communication using the first frequency band corresponding to the 2G standard and communication using the second frequency band corresponding to the 4G standard or the 5G standard, respectively. It is a high frequency circuit to be performed.
  • the high frequency circuit includes an antenna terminal, a relay terminal, a transmission filter, a reception filter, a variable low-pass filter, and a switch.
  • the first transmission signal of the first frequency band is input to the relay terminal.
  • the transmission filter passes a second transmission signal in the second frequency band.
  • the reception filter passes the reception signal in the second frequency band.
  • the variable low-pass filter can change the pass band.
  • the switch can switch between a state in which the variable low-pass filter is connected to the antenna terminal and a state in which the transmission filter is connected to the antenna terminal.
  • the variable low-pass filter passes the first transmission signal input through the relay terminal in communication using the first frequency band.
  • the variable low-pass filter is one of the harmonics of the third transmission signal generated at the time of transmission of the third transmission signal in the third frequency band when communication using the third frequency band is performed by another harmonic circuit.
  • the harmonics input through the relay terminal are attenuated.
  • the third frequency band is a frequency band that is lower than the first frequency band and corresponds to the 4G standard or the 5G standard.
  • the communication device includes the high frequency circuit and the other high frequency circuit.
  • the sensitivity of the reception filter that receives the reception signal in the second frequency band corresponding to the 4G standard or the 5G standard corresponds to the 4G standard or the 5G standard. Deterioration due to the harmonics of the third transmission signal in the third frequency region can be suppressed.
  • FIG. 1 is a circuit diagram of a high frequency circuit according to an embodiment.
  • FIG. 2 is a circuit diagram of a communication device including the same high frequency circuit.
  • FIG. 3 is a circuit diagram of a variable low-pass filter used in the high-frequency circuit of the same.
  • the high-frequency circuit 2 constitutes, for example, a high-frequency front-end circuit 250 of a mobile communication device (for example, a mobile phone) that supports multi-band and simultaneous use of two frequency bands (for example, carrier aggregation). do.
  • the high-frequency circuit 2 is a module that can be used together with the high-frequency circuit 1 to support carrier aggregation of a 4G (4th generation mobile communication) standard midband and a 4G standard lowband, but is not limited to this.
  • the high-frequency circuit 2 may be a module that can be used together with the high-frequency circuit 1 to support dual connectivity between a mid-band of a 5G (fifth generation mobile communication) standard and a low-band of a 4G standard.
  • the 2G standard is, for example, the GSM (registered trademark) standard (GSM: Global System for Mobile Communications).
  • GSM Global System for Mobile Communications
  • the 4G standard is, for example, a 3GPP LTE standard (LTE: Long Term Evolution).
  • the 5G standard is, for example, 5G NR (New Radio).
  • GSM (registered trademark) standard low bands include GSM850 and GSM900.
  • GSM (registered trademark) standard midbands include GSM1800 and GSM1900.
  • As a low band of 3GPP LTE standard for example, there is Band8.
  • the downlink frequency band of Band 8 is 925 MHz-960 MHz.
  • the uplink frequency band of Band 8 is 880 MHz-915 MHz.
  • the communication device 400 provided with the high-frequency circuit 2 can support carrier aggregation (downlink carrier aggregation) in which a plurality of (two in the embodiment) frequency bands are simultaneously used in the downlink (Downlink). Further, the communication device 400 provided with the high frequency circuit 2 can support carrier aggregation (uplink carrier aggregation) in which a plurality of (two in the embodiment) frequency bands are used simultaneously in the uplink.
  • carrier aggregation downlink carrier aggregation
  • uplink carrier aggregation in which a plurality of (two in the embodiment) frequency bands are used simultaneously in the uplink.
  • the downlink frequency band of Band 3 is 1805 MHz-1880 MHz.
  • the uplink frequency band of Band 3 is 1710 MHz-1785 MHz.
  • the communication device 400 including the high frequency circuit 2 may be capable of supporting the above-mentioned dual connectivity instead of carrier aggregation.
  • the midband of 5G NR is, for example, n3.
  • the downlink frequency band of n3 is 1805 MHz-1880 MHz.
  • the uplink frequency band of n3 is 1710 MHz-1785 MHz.
  • the high-frequency circuit 2 includes a fourth power amplifier 21 and a plurality of (three in the illustrated example) duplexers 31 and 32 for midband. 33 and a variable low-pass filter 25 are provided. Further, the high frequency circuit 2 includes a midband band changeover switch 22 and a midband antenna switch (switch) 24. Further, the high frequency circuit 2 includes a midband antenna terminal (antenna terminal) T20, a midband signal input terminal T21, and a plurality of (three in the illustrated example) midband signal output terminals T31, T32, and T33. It has. Further, the high frequency circuit 2 includes a midband transmission path MT1 and a relay terminal T25 connected to the midband signal path MT1. Further, the high frequency circuit 2 includes a control circuit 20.
  • the high frequency circuit 2 As shown in FIG. 2, the high frequency circuit 2 according to the present embodiment is connected to the midband filter 302 of the diplexer 300. Therefore, the high frequency circuit 2 is connected to the antenna 200 via the midband filter 302.
  • connection means that two connection targets are electrically connected.
  • electrically connected means that the two connection targets are directly electrically connected and the two connection targets are indirectly electrically connected. Including when and.
  • the fourth power amplifier 21 has a fourth input terminal 211 and a fourth output terminal 212.
  • the fourth power amplifier 21 amplifies the second transmission signal of the 4G standard or the 5G standard midband input to the fourth input terminal 211 and outputs it from the fourth output terminal 212.
  • the second transmission signal is a transmission signal in the second frequency band corresponding to the 4G standard or the 5G standard.
  • the fourth input terminal 211 of the fourth power amplifier 21 is connected to the midband signal input terminal T21.
  • the frequency band of the second transmission signal includes, for example, the band 3 frequency band of the LTE standard.
  • the midband antenna switch 24 is provided between the fourth output terminal 212 of the fourth power amplifier 21 and the midband antenna terminal T20. More specifically, the midband antenna switch 24 is provided between the midband antenna terminals T20 and a plurality of (three in the illustrated example) midband duplexers 31 to 33.
  • the mid-band antenna switch 24 has one common terminal 240 and multiple (four in the illustrated example) selection terminals 241 to 244.
  • the common terminal 240 is connected to the midband antenna terminal T20.
  • three of the four selection terminals 241 to 244, 241 to 243, are connected one-to-one to a plurality of midband duplexers 31 to 33, and the remaining one selection terminal. 244 is connected to the relay terminal T25 via the midband signal path MT1.
  • the midband antenna switch 24 is, for example, a switch IC (Integrated Circuit).
  • the isolation of the midband antenna switch 24 is, for example, about 20 dB to 30 dB.
  • the midband signal path MT1 is connected to the midband antenna switch 24 via the variable low-pass filter 25, and is connected to the bypass terminal T15 of the high frequency circuit 1. More specifically, the midband signal path MT1 is connected to the bypass terminal T15 of the high frequency circuit 1 via the relay terminal T25.
  • Each of the plurality of (three in the illustrated example) midband duplexers 31, 32, 33 has a transmission filter 311, 321, 331 and a reception filter 312, 322, 332. There is. Further, each of the plurality of midband duplexers 31, 32, 33 has antenna side terminals Ax4, Ax5, Ax6, transmission terminals Tx4, Tx5, Tx6, and reception terminals Rx4, Rx5, Rx6. ..
  • Each of the transmission filters 311, 321, and 331 is a filter that allows signals in the transmission frequency band to pass through and attenuates signals outside the transmission frequency band.
  • Each of the reception filters 312, 322, and 332 is a filter that allows signals in the reception frequency band to pass through and attenuates signals outside the reception frequency band.
  • Each of the transmission filter 311, 321, 331 and the reception filter 312, 322, 332 is, for example, a SAW (Surface Acoustic Wave) filter.
  • the plurality of midband duplexers 31, 32, 33 have different transmission frequency bands and different reception frequency bands from each other.
  • the duplexer 31 for midband is a duplexer corresponding to a 4G standard or a 5G standard, for example, a duplexer corresponding to the LTE standard Band3 or a duplexer corresponding to n3 of 5G NR.
  • the signal path between the midband antenna switch 24 and the midband signal output terminal T31 constitutes the midband reception path MR1. Therefore, the communication device 400 can support downlink carrier aggregation between Band 8 and Band 3 or dual connectivity between n8 and Band 3.
  • the duplexer 32 for the mid band is a duplexer corresponding to the 4G standard or the 5G standard, and is, for example, a duplexer corresponding to the LTE standard Band1.
  • the duplexer 33 for a mid band is a duplexer corresponding to a 4G standard or a 5G standard, and is, for example, a duplexer corresponding to the LTE standard Band 2.
  • the input terminals of the transmission filters 311, 321, 331 are used as transmission terminals Tx4, Tx5, Tx6, and the selection terminals 221, 222, 223 of the midband band changeover switch 22 are used. Is connected to. Further, in the plurality of midband duplexers 31, 32, 33, the output terminals of the reception filters 312, 322, and 332 are used as the reception terminals Rx4, Rx5, and Rx6, and the plurality of midband signal output terminals T31, T32, and T33 are used. Is connected to.
  • the terminals (ANT terminals) connected to the output terminals of the transmission filters 311, 321, 331 and the input terminals of the reception filters 312, 322, and 332 are antenna side terminals. It is used as Ax4, Ax5, and Ax6, and is connected to the selection terminals 241, 242, and 243 of the midband antenna switch 24.
  • variable low-pass filter 25 includes a plurality of (five in the illustrated example) inductors L1 to L5 and a plurality of (three in the illustrated example) variable capacitors C1 to C3. And, including.
  • the first end of the inductor L1 is connected to the relay terminal T25, and the second end of the inductor L1 is connected to the selection terminal 244 of the midband antenna switch 24 via the series circuit of the inductors L2 and L3.
  • variable low-pass filter 25 a series circuit of the inductor L4 and the variable capacitor C1 is connected between the connection points of the inductors L1 and L2 and the ground.
  • the inductor L4 is on the connection point side of the inductors L1 and L2, and the variable capacitor C1 is on the ground side.
  • variable low-pass filter 25 a series circuit of the inductor L5 and the variable capacitor C2 is connected between the connection points of the inductors L2 and L3 and the ground.
  • the inductor L5 is on the connection point side of the inductors L2 and L3
  • the variable capacitor C2 is on the ground side.
  • variable capacitor C3 is connected between the connection point between the inductor L4 and the variable capacitor C1 and the connection point between the inductor L5 and the variable capacitor C2.
  • Each of the variable capacitors C1 to C3 is, for example, a variable capacitor (VAC).
  • VAC variable capacitor
  • the capacitance of each of the variable capacitors C1 to C3 changes according to, for example, the magnitude of the voltage applied by the control circuit 20 described later.
  • the cutoff frequency (cutoff frequency) of the transmission signal passing through the variable low-pass filter 25 can be switched by changing the capacitance of the variable capacitors C1 to C3.
  • the midband changeover switch 22 is a combination of the fourth output terminal 212 of the fourth power amplifier 21 and the transmission terminals Tx4, Tx5, Tx6 of a plurality of midband duplexers 31, 32, 33. It is provided between them.
  • the midband band changeover switch 22 connects one of a plurality of midband duplexers 31, 32, 33 to the fourth output terminal 212 of the fourth power amplifier 21.
  • a plurality of (three in the illustrated example) midband signal output terminals T31, T32, and T33 are a plurality of (three in the illustrated example) midband duplexers 31. , 32, 33 are connected one-to-one to the receiving terminals Rx4, Rx5, Rx6.
  • control circuit 20 In the control circuit 20, the control circuit 20 is connected so that one of the plurality of midband duplexers 31, 32, 33 and the midband signal path MT1 is connected to the midband filter 302 of the diplexer 300.
  • the midband antenna switch 24 is switched.
  • the control circuit 20 is, for example, an IC (Integrated Circuit).
  • the communication device 400 includes a high frequency circuit 1 (hereinafter, also referred to as “first high frequency circuit 1”) and a high frequency circuit 2 (hereinafter, also referred to as “first high frequency circuit 1”). Also referred to as “second high frequency circuit 2"). Further, in the present embodiment, the communication device 400 further includes a diplexer 300 and a signal processing circuit 401. Further, in the present embodiment, the communication device 400 further includes a bypass path 180.
  • the high frequency circuit 2 (second high frequency circuit 2) is described in the column of "(2) Each component of the high frequency circuit", and the description thereof will be omitted here.
  • the diplexer 300 has a low band filter 301 and a mid band filter 302.
  • the diplexer 300 is connected to the antenna 200.
  • the low-band filter 301 is, for example, a low-pass filter.
  • the midband filter 302 is, for example, a high-pass filter.
  • the first high frequency circuit 1 (another high frequency circuit) is connected to the low band filter 301 of the diplexer 300. Therefore, the first high frequency circuit 1 is connected to the antenna 200 via the low band filter 301.
  • the first high-frequency circuit 1 includes a first power amplifier 11, a second power amplifier 12, a third power amplifier 13, a first matching circuit 14, a second matching circuit 15, and a second matching circuit.
  • a matching circuit 16 and 3 matching circuits 16 are provided.
  • the first high frequency circuit 1 includes a plurality of (three in the illustrated example) duplexers 81, 82, 83, a low band changeover switch 17, and a low band antenna switch 19.
  • the first high frequency circuit 1 includes a low band antenna terminal T10, a low band first signal input terminal T11, a midband signal input terminal T12, and a low band second signal input terminal T13.
  • the first high frequency circuit 1 includes a bypass terminal T15 and a plurality of (three in the illustrated example) low band signal output terminals T81, T82, and T83.
  • the first high frequency circuit 1 includes a control circuit 100.
  • the first power amplifier 11 has a first input terminal 111 and a first output terminal 112.
  • the first power amplifier 11 amplifies the 2G standard low-band fourth transmission signal input to the first input terminal 111 and outputs it from the first output terminal 112.
  • the fourth transmission signal is a transmission signal in the fourth frequency band corresponding to the 2G standard.
  • the first input terminal 111 is connected to the low band first signal input terminal T11.
  • the first output terminal 112 is connected to the first matching circuit 14.
  • the second power amplifier 12 has a second input terminal 121 and a second output terminal 122.
  • the second power amplifier 12 amplifies the first transmission signal of the 2G standard midband input to the second input terminal 121 and outputs it from the second output terminal 122.
  • the first transmission signal is a transmission signal in the first frequency band corresponding to the 2G standard.
  • the lower limit frequency of the first frequency band is higher than the upper limit frequency of the fourth frequency band.
  • the second input terminal 121 is connected to the midband signal input terminal T12.
  • the second output terminal 122 is connected to the second matching circuit 15.
  • the third power amplifier 13 has a third input terminal 131 and a third output terminal 132.
  • the third power amplifier 13 amplifies the 4G standard or 5G standard low band third transmission signal input to the third input terminal 131 and outputs it from the third output terminal 132.
  • the third transmission signal is a transmission signal in the third frequency band corresponding to the 4G standard or the 5G standard.
  • the third input terminal 131 is connected to the low band second signal input terminal T13.
  • the third output terminal 132 is connected to the third matching circuit 16.
  • the frequency band of the first transmission signal includes, for example, the frequency band of GSM1800 and the frequency band of GSM1900.
  • the frequency band of the third transmission signal includes, for example, the band 8 frequency band of the LTE standard.
  • the frequency band of the fourth transmission signal includes, for example, the frequency band of GSM850 and the frequency band of GSM900.
  • the first matching circuit 14 is provided between the first output terminal 112 of the first power amplifier 11 and the selection terminal 191 of the low band antenna switch 19.
  • the first matching circuit 14 is an impedance matching circuit for matching the output impedance of the circuit provided in the front stage of the first matching circuit 14 with the input impedance of the circuit provided in the subsequent stage of the first matching circuit 14. More specifically, the first matching circuit 14 sets the impedance at the fundamental frequency of the fourth transmission signal (output impedance of the first power amplifier 11) on the antenna terminal T10 side as seen from the first power amplifier 11, for example. Adjust to 50 ⁇ .
  • the second matching circuit 15 is provided between the second output terminal 122 of the second power amplifier 12 and the bypass terminal T15.
  • the second matching circuit 15 is an impedance matching circuit for matching the output impedance of the circuit provided in the front stage of the second matching circuit 15 with the input impedance of the circuit provided in the subsequent stage of the second matching circuit 15. More specifically, the second matching circuit 15 sets the impedance at the fundamental frequency of the first transmission signal (output impedance of the second power amplifier 12) on the bypass terminal T15 side as seen from the second power amplifier 12, for example. Adjust to 50 ⁇ .
  • the third matching circuit 16 is provided between the third output terminal 132 of the third power amplifier 13 and the selection terminals 192 to 194 of the low band antenna switch 19.
  • the first high-frequency circuit 1 has a low-band band changeover switch 17 and a plurality of (three in the illustrated example) low-band duplexers 81 and 82 between the third matching circuit 16 and the low-band antenna switch 19. It has 83 and. Therefore, in detail, the third matching circuit 16 is provided between the third output terminal 132 of the third power amplifier 13 and the low band band changeover switch 17.
  • the third matching circuit 16 is an impedance matching circuit for matching the output impedance of the circuit provided in the front stage of the third matching circuit 16 with the input impedance of the circuit provided in the subsequent stage of the third matching circuit 16. More specifically, the third matching circuit 16 sets the impedance at the fundamental frequency of the second transmission signal (output impedance of the third power amplifier 13) on the antenna terminal T10 side as seen from the third power amplifier 13, for example. Adjust to 50 ⁇ .
  • the low band antenna switch 19 is provided between the first output terminal 112 of the first power amplifier 11 and the third output terminal 132 of the third power amplifier 13 and the low band antenna terminal T10. Has been done. As shown in FIG. 2, the low-band antenna switch 19 has one common terminal 190 and multiple selection terminals 191 to 194 (four in the illustrated example). The common terminal 190 of the low band antenna switch 19 is connected to the low band antenna terminal T10.
  • the low-band antenna switch 19 is provided between the antenna terminal T10 and a plurality of (three in the illustrated example) low-band duplexers 81 to 83.
  • one of the four selection terminals 191 to 194 is connected to the first matching circuit 14, and the remaining three selection terminals 192 to 194 are a plurality of low band duplexers 81. It is connected to ⁇ 83 on a one-to-one basis.
  • the low band antenna switch 19 is, for example, a switch IC (Integrated Circuit).
  • Each of the plurality of (three in the illustrated example) low band duplexers 81, 82, 83 has a transmission filter 811, 821, 831 and a reception filter 812, 822, 832. ing. Further, each of the plurality of low-band duplexers 81, 82, and 83 has antenna-side terminals Ax1, Ax2, and Ax3, transmission terminals Tx1, Tx2, and Tx3, and reception terminals Rx1, Rx2, and Rx3.
  • Each of the transmission filters 811, 821, and 831 is a filter that allows signals in the transmission frequency band to pass through and attenuates signals outside the transmission frequency band.
  • Each of the reception filters 812, 822, and 832 is a filter that allows signals in the reception frequency band to pass through and attenuates signals outside the reception frequency band.
  • Each of the transmit filters 811, 821, 831 and the receive filters 812, 822, 832 is, for example, a SAW filter.
  • the plurality of low-band duplexers 81, 82, and 83 have different transmission frequency bands and different reception frequency bands.
  • the input terminals of the transmission filters 811, 821, and 831 are used as transmission terminals Tx1, Tx2, and Tx3, and are connected to the selection terminals 171, 172, and 173 of the low-band band selector switch 17. Has been done. Further, in the plurality of low-band duplexers 81, 82, 83, the output terminals of the reception filters 812, 822, and 832 are used as the reception terminals Rx1, Rx2, and Rx3, and are connected to the plurality of low-band signal output terminals T81, T82, and T83. Has been done.
  • the terminals (ANT terminals) connected to the output terminals of the transmission filters 811, 821, 831 and the input terminals of the reception filters 812, 822, 832 are antenna side terminals Ax1. , Ax2, Ax3, and are connected to the selection terminals 192, 193, 194 of the low band antenna switch 19.
  • the low band changeover switch 17 is provided between the third output terminal 132 of the third power amplifier 13 and the transmission terminals Tx1 to Tx3 of a plurality of low band duplexers 81 to 83. ing.
  • the low-band band changeover switch 17 connects one of a plurality of low-band duplexers 81 to 83 to the third output terminal 132 of the third power amplifier 13.
  • the low band antenna terminal T10 is connected to the antenna 200.
  • the bypass terminal T15 is connected to the second output terminal 122 of the second power amplifier 12. More specifically, the bypass terminal T15 is connected to the second output terminal 122 of the second power amplifier 12 via the second matching circuit 15.
  • the low-band first signal input terminal T11, the mid-band signal input terminal T12, the low-band second signal input terminal T13, and the plurality of low-band signal output terminals T81, T82, and T83 are used for RF signal processing of the signal processing circuit 401 described later. It is connected to the circuit 402.
  • Control circuit 100 receives a control signal from, for example, the baseband signal processing circuit 403 (see FIG. 2), and based on the control signal, the first power amplifier 11, the second power amplifier 12, and the like. It controls each of the third power amplifier 13, the low band antenna switch 19, and the low band changeover switch 17.
  • the control circuit 100 is, for example, an IC.
  • the signal processing circuit 401 includes an RF signal processing circuit 402 and a baseband signal processing circuit 403.
  • the RF signal processing circuit 402 is connected to the first high frequency circuit 1 and the second high frequency circuit 2. More specifically, the RF signal processing circuit 402 includes a low-band first signal input terminal T11, a mid-band signal input terminal T12, a low-band second signal input terminal T13, and a plurality of low-band signal outputs of the first high-frequency circuit 1. It is connected to terminals T81, T82, and T83. Further, the RF signal processing circuit 402 is connected to the midband signal input terminal T21 of the second high frequency circuit 2 and the plurality of midband signal output terminals T31, T32, and T33.
  • the RF signal processing circuit 402 is, for example, an RFIC (Radio Frequency Integrated Circuit).
  • the RF signal processing circuit 402 performs signal processing on the high frequency signals (received signals) output from the plurality of low band signal output terminals T81, T82, T83, and the plurality of midband signal output terminals T31, T32, T33. ..
  • the RF signal processing circuit 402 performs signal processing such as down-conversion on a high-frequency signal (received signal) input from the antenna 200 via the first high-frequency circuit 1 or the second high-frequency circuit 2, and is generated by this signal processing.
  • the received signal is output to the baseband signal processing circuit 403.
  • the RF signal processing circuit 402 performs signal processing such as up-conversion on the transmission signal output from the baseband signal processing circuit 403, for example, and the signal-processed transmission signal (high frequency signal) is first. Output to the high frequency circuit 1 or the second high frequency circuit 2.
  • the baseband signal processing circuit 403 is, for example, a BBIC (Baseband Integrated Circuit).
  • the received signal processed by the baseband signal processing circuit 403 is used, for example, for displaying an image as an image signal or for a telephone call as an audio signal. Further, the baseband signal processing circuit 403 performs predetermined signal processing on a transmission signal from the outside of the communication device 400, for example.
  • the bypass path 180 connects the bypass terminal T15 and the midband transmission path MT1. More specifically, the bypass path 180 connects the bypass terminal T15 and the relay terminal T25 connected to the midband transmission path MT1. In other words, the bypass path 180 connects the bypass terminal T15 as the output terminal of the second transmission signal and the relay terminal T25.
  • the bypass path 180 includes, for example, a wiring conductor of a printed wiring board on which a first high frequency circuit 1 and a second high frequency circuit 2 are mounted.
  • the communication device 400 includes a printed wiring board as a component thereof.
  • the high frequency circuit 2 according to the present embodiment has a first transmission mode and a second transmission mode.
  • the first transmission mode is a mode for transmitting a mid-band (first frequency band) first transmission signal corresponding to the 2G standard. That is, in the first transmission mode, the high frequency circuit 2 performs communication using the first frequency band corresponding to the 2G standard.
  • the second transmission mode is a mode for transmitting a second transmission signal in the midband (second frequency band) corresponding to the 4G standard or the 5G standard. That is, in the second transmission mode, the high frequency circuit 2 performs communication using the second frequency band corresponding to the 4G standard or the 5G standard.
  • the first transmission mode and the second transmission mode will be described.
  • the high frequency circuit 2 transmits the first transmission signal as described above.
  • the first transmission signal is output from the high frequency circuit 1 to the high frequency circuit 2 via the bypass terminal T15, the bypass path 180, and the relay terminal T25.
  • the first frequency band of the first transmission signal includes the frequency band of GSM1800 and the frequency band of GSM1900.
  • the control circuit 20 changes the cutoff frequency of the variable low-pass filter 25 so that the first transmission signal passes through the variable low-pass filter 25 in the first transmission mode. More specifically, the control circuit 20 changes the capacitance of the variable capacitors C1 to C3 by changing the magnitude of the voltage applied to the variable capacitors C1 to C3. As a result, the cutoff frequency of the variable low-pass filter 25 is changed to, for example, 2000 MHz. Therefore, in this case, the variable low-pass filter 25 can be passed through the first transmission signal.
  • the first transmission signal that has passed through the variable low-pass filter 25 passes through the midband antenna switch 24 and is output from the midband antenna terminal T20.
  • the high frequency circuit 2 transmits the second transmission signal as described above.
  • the high frequency circuit 1 transmits the third transmission signal. That is, in the second transmission mode, the second transmission signal and the third transmission signal are simultaneously transmitted (carrier aggregation) by the high frequency circuits 1 and 2.
  • the third transmission signal is a low band (third frequency band) transmission signal corresponding to the 4G standard or the 5G standard
  • the second transmission signal is a midband (second) transmission signal corresponding to the 4G standard or the 5G standard. It is a transmission signal of (frequency band).
  • the frequency band of the third transmission signal includes the frequency band of Band 8 of the LTE standard
  • the frequency band of the second transmission signal includes the frequency band of Band 3 of the LTE standard.
  • the first frequency band includes the frequency band of GSM1800 and the frequency band of GSM1900. Therefore, the harmonics of the third transmission signal are included in the first frequency band.
  • the third transmission signal passes through the transmission filter 811 of the low-band duplexer 81 and is output from the low-band antenna terminal T10.
  • the second transmission signal passes through the transmission filter 311 of the midband duplexer 31 and is output from the midband antenna terminal T20.
  • the frequency of the harmonic of the third transmission signal is included in the first frequency band as described above. Therefore, the harmonics of the third transmission signal may jump to the transmission path of the 2G standard midband, which is the transmission path of the first transmission signal. Then, the harmonic of the third transmission signal jumped to the midband transmission path of the 2G standard is input to the high frequency circuit 2 from the relay terminal T25 through the bypass path 180.
  • the cutoff frequency of the variable low-pass filter 25 is 2000 MHz
  • the second harmonic (1800 MHz) which is one of the harmonics of the third transmission signal, passes through the variable low-pass filter 25 and receives the midband duplexer 31. It may leak to the filter 312. As a result, there arises a problem that the sensitivity of the reception filter 312 deteriorates.
  • the high frequency circuit 2 is configured so that the cutoff frequency of the variable low-pass filter 25 can be changed in order to solve the above-mentioned problem. More specifically, the control circuit 20 of the high frequency circuit 2 changes the cutoff frequency of the variable low-pass filter 25 so as to attenuate the harmonics of the third transmission signal. Specifically, the control circuit 20 changes the capacitance of the variable capacitors C1 to C3 by changing the magnitude of the voltage applied to the variable capacitors C1 to C3. As a result, the cutoff frequency of the variable low-pass filter 25 is changed to, for example, 1200 MHz. Therefore, in this case, the harmonics of the third transmission signal can be attenuated by the variable low-pass filter 25.
  • the control circuit 20 sets the variable capacitors C1 to C3 so that the cutoff frequency of the variable low-pass filter 25 becomes 2100 MHz. Change the magnitude of the applied voltage. As a result, it is possible to suppress leakage of the third harmonic of the third transmission signal to the reception filter 312 through which the reception signal of the Band 4 is passed, and as a result, it is possible to suppress deterioration in the sensitivity of the reception filter 312.
  • a low-band high-frequency circuit (other high frequencies) that transmits a low-band transmission signal of 2G standard and a low-band (third frequency band) transmission signal (third transmission signal) of 4G standard or 5G standard.
  • a communication device including a circuit) and a mid-band high-frequency circuit corresponding to a 4G standard or 5G standard midband (second frequency band) may be required.
  • the transmission circuit for transmitting the 2G standard midband (first frequency band) transmission signal is a lowband high frequency circuit having a size smaller than that of the midband high frequency circuit. It was sometimes required to be installed in.
  • the third frequency band of the low-band high-frequency circuit is set to Band 8
  • the mid-band high-frequency circuit is provided with a receiving circuit (reception filter) corresponding to Band 3, so that the Band 8 transmission signal is transmitted from the low-band high-frequency circuit.
  • the frequency of the second harmonic as the harmonic of the Band 8 transmission signal overlaps with the frequency band of the midband of the 2G standard, so this harmonic (unwanted radiation) is the transmission circuit for the midband of the 2G standard. It jumps to.
  • the harmonics of the Band 8 transmission signal may be transmitted to the reception circuit via the bypass path to deteriorate the reception performance of the reception circuit.
  • the high-frequency circuit 2 according to the present embodiment adopts the configuration shown below.
  • the high frequency circuit 2 can perform communication using the first frequency band corresponding to the 2G standard and communication using the second frequency band corresponding to the 4G standard or the 5G standard. It is a high frequency circuit 2 performed respectively.
  • the high frequency circuit 2 includes an antenna terminal T20, a relay terminal T25, a transmission filter 311 and a reception filter 312, a variable low-pass filter 25, and a switch 24.
  • the first transmission signal in the first frequency band is input to the relay terminal T25.
  • the transmission filter 311 passes the second transmission signal in the second frequency band.
  • the reception filter 312 passes the reception signal in the second frequency band.
  • the variable low-pass filter 25 can change the pass band.
  • the switch 24 can switch between a state in which the variable low-pass filter 25 is connected to the antenna terminal T20 and a state in which the transmission filter 311 is connected to the antenna terminal T20.
  • the variable low-pass filter 25 passes the first transmission signal input through the relay terminal T25 in the communication using the first frequency band.
  • the variable low-pass filter 25 relays among the harmonics of the third transmission signal generated when the third transmission signal of the third frequency band is transmitted when the communication using the third frequency band is performed by the other harmonic circuit 1. Attenuates the harmonics input through the terminal T25.
  • the third frequency band is a frequency band that is lower than the first frequency band and corresponds to the 4G standard or the 5G standard.
  • the variable low-pass filter 25 passes the first transmission signal in the communication using the first frequency band.
  • the variable low-pass filter 25 attenuates the harmonics of the third transmission signal in the third frequency band when the communication using the third frequency band is performed by the other high frequency circuit 1.
  • the second frequency band is Band 3 and the third frequency band is Band 8, and the harmonics of Band 8 are included in the first frequency band.
  • the harmonics of Band 8 can be attenuated by the variable low-pass filter 25.
  • the sensitivity of the reception filter 312 that receives the reception signal in the second frequency band corresponding to the 4G standard or the 5G standard corresponds to the 4G standard or the 5G standard. It is possible to suppress deterioration due to the harmonics of the third transmission signal in the third frequency region.
  • the transmission filters 811, 821, 831 and the reception filters 812, 822, and 832 included in each of the plurality of low-band duplexers 81, 82, and 83 are SAW filters, but the present invention is not limited to the SAW filter.
  • the SAW filter may be a BAW (Bulk Acoustic Wave) filter or a dielectric filter.
  • the transmission filters 311, 321, 331 and the reception filters 312, 322, and 332 provided in each of the plurality of midband duplexers 31, 32, and 33 are SAW filters, but the SAW filter is used.
  • the present invention is not limited to this, and may be, for example, a BAW filter or a dielectric filter.
  • control circuit 100 is included in the high-frequency circuit 1, but the control circuit 100 does not have to be included in the high-frequency circuit 1.
  • control circuit 20 is included in the high-frequency circuit 2, but the control circuit 20 does not have to be included in the high-frequency circuit 2. That is, the control circuit 100 and the control circuit 20 may be included in the communication device 400, and may not be included in the high frequency circuits 1 and 2.
  • the high-frequency circuit 2 is a mid-band high-frequency circuit, but the present invention is not limited to this.
  • the high-frequency circuit 2 may be, for example, a high-band high-frequency circuit, an ultra-high-band high-frequency circuit, or a combination of these (including a mid-band high-frequency circuit). May be good.
  • control circuit 20 changes the cutoff frequency of the variable low-pass filter 25, but the present invention is not limited to this.
  • the power amplifier controller for controlling the fourth power amplifier 21 may change the cutoff frequency of the variable low-pass filter 25.
  • the signal processing circuit 401 described above may change the cutoff frequency of the variable low-pass filter 25.
  • the capacitance of each of the variable capacitors C1 to C3 is changed by changing the voltage applied to each of the variable capacitors C1 to C3, whereby the cutoff frequency of the variable low-pass filter 25 is switched.
  • a plurality of series circuits of a capacitor and a switch may be connected between the transmission path MT1 and the ground, and the total capacitance may be changed by switching the connection state of each switch.
  • Each switch may be connected between the transmission path MT1 and each capacitor, or may be connected between each capacitor and ground. Even in this case, the cutoff frequency of the variable low-pass filter 25 can be switched by changing the total capacitance.
  • the high frequency circuit (2) includes communication using the first frequency band corresponding to the 2G standard, communication using the second frequency band corresponding to the 4G standard or the 5G standard, and communication using the second frequency band corresponding to the 4G standard or the 5G standard. It is a high frequency circuit (2) which performs each of these.
  • the high-frequency circuit (2) includes an antenna terminal (T20), a relay terminal (T25), a transmission filter (311), a reception filter (312), a variable low-pass filter (25), and a switch (24). Be prepared.
  • the first transmission signal in the first frequency band is input to the relay terminal (T25).
  • the transmission filter (311) passes the second transmission signal in the second frequency band.
  • the reception filter (312) passes the reception signal in the second frequency band.
  • the variable low-pass filter (25) can change the pass band.
  • the switch (24) can switch between a state in which the variable low-pass filter () 25 is connected to the antenna terminal (T20) and a state in which the transmission filter (311) is connected to the antenna terminal (T20).
  • the variable low-pass filter (25) passes the first transmission signal input through the relay terminal (T25) in the communication using the first frequency band.
  • the variable low-pass filter (25) is a harmonic of the third transmission signal generated when the third transmission signal of the third frequency band is transmitted when the communication using the third frequency band is performed by another harmonic circuit (1). Of the waves, the harmonics input through the relay terminal (T25) are attenuated.
  • the third frequency band is a frequency band that is lower than the first frequency band and corresponds to the 4G standard or the 5G standard.
  • the sensitivity of the reception filter (312) for receiving the reception signal in the second frequency band corresponding to the 4G standard or the 5G standard is in the third frequency region corresponding to the 4G standard or the 5G standard. Deterioration due to the harmonics of the third transmission signal can be suppressed.
  • the output terminal (T15) and the relay terminal (T25) of the first transmission signal are connected.
  • the first transmission signal can be input to the high frequency circuit (2).
  • the cutoff frequency of the variable low-pass filter (25) uses the communication using the first frequency band and the third frequency band. It can be switched by communication.
  • the first transmission signal input to the high frequency circuit (2) can be passed in the communication using the first frequency band. Further, in communication using the third frequency band, the harmonics of the third transmission signal input to the high frequency circuit (2) can be attenuated by the variable low-pass filter (25).
  • the transmission filter (311) and the reception filter (312) are made of a duplexer (31).
  • the first frequency band includes the frequency band of GSM1800 and the frequency band of GSM1900.
  • the second frequency band includes the band 3 frequency band of the LTE standard or the n3 frequency band of 5G NR.
  • the third frequency band includes the band 8 frequency band of the LTE standard or the n8 frequency band of 5G NR.
  • the sensitivity of the reception filter (312) for receiving the reception signal in the second frequency band corresponding to the 4G standard or the 5G standard is in the third frequency region corresponding to the 4G standard or the 5G standard. Deterioration due to the harmonics of the third transmission signal can be suppressed.
  • the communication device (400) according to the sixth aspect includes a high frequency circuit (2) of any one of the first to fifth aspects and another high frequency circuit (1).
  • the sensitivity of the reception filter (312) for receiving the reception signal in the second frequency band corresponding to the 4G standard or the 5G standard is in the third frequency region corresponding to the 4G standard or the 5G standard. Deterioration due to the harmonics of the third transmission signal can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

4G規格又は5G規格に対応している第2周波数帯域の受信信号を受信する受信フィルタの感度が、4G規格又は5G規格に対応している第3周波数領域の第3送信信号の高調波によって劣化するのを抑制する。高周波回路(2)は、アンテナ端子(T20)と、中継端子(T25)と、送信フィルタ(311)と、受信フィルタ(312)と、可変ローパスフィルタ(25)と、スイッチ(24)と、を備える。中継端子(T25)は、第1周波数帯域の第1送信信号が入力される。可変ローパスフィルタ(25)は、第1周波数帯域を使用した通信では、中継端子(T25)を通して入力された第1送信信号を通過させる。可変ローパスフィルタ(25)は、第3周波数帯域を使用した通信を他の高調波回路(2)で行う場合に、第3周波数帯域の第3送信信号の高調波のうち中継端子(T25)を通して入力された高調波を減衰させる。

Description

高周波回路及び通信装置
 本発明は、一般に高周波回路及び通信装置に関し、より詳細には、2G(第2世代移動通信)規格と、4G(第4世代移動通信)規格又は5G(第5世代移動通信)規格と、に対応可能な高周波回路及び通信装置に関する。
 従来、キャリアアグリゲーション(Carrier Aggregation)を用いる電子システムが知られている(例えば、特許文献1参照)。
 特許文献1の図2Bには、1つのアンテナと、1つのダイプレクサと、2つのアンテナスイッチと、8つのデュプレクサと、2つの帯域選択スイッチと、2つの方向性結合器と、2つの電力増幅器と、を含む電子システムが記載されている。
 上記の電子システムでは、ダイプレクサがアンテナと接続されている。また、上記の電子システムでは、2つの電力増幅器の各々が2つの方向性結合器のうち対応する方向性結合器を介して、2つの帯域選択スイッチのうち対応する帯域選択スイッチと接続されている。
特開2017-17691号公報
 本発明の目的は、4G規格又は5G規格に対応している第2周波数帯域の受信信号を受信する受信フィルタの感度が、4G規格又は5G規格に対応している第3周波数領域の第3送信信号の高調波によって劣化するのを抑制可能な高周波回路及び通信装置を提供することにある。
 本発明の一態様に係る高周波回路は、2G規格に対応している第1周波数帯域を使用した通信と、4G規格又は5G規格に対応している第2周波数帯域を使用した通信と、をそれぞれ行う高周波回路である。前記高周波回路は、アンテナ端子と、中継端子と、送信フィルタと、受信フィルタと、可変ローパスフィルタと、スイッチと、を備える。前記中継端子は、前記第1周波数帯域の第1送信信号が入力される。前記送信フィルタは、前記第2周波数帯域の第2送信信号を通過させる。前記受信フィルタは、前記第2周波数帯域の受信信号を通過させる。前記可変ローパスフィルタは、通過帯域を変更可能である。前記スイッチは、前記可変ローパスフィルタが前記アンテナ端子に接続されている状態と前記送信フィルタが前記アンテナ端子に接続されている状態とを切替可能である。前記可変ローパスフィルタは、前記第1周波数帯域を使用した通信では、前記中継端子を通して入力された前記第1送信信号を通過させる。前記可変ローパスフィルタは、第3周波数帯域を使用した通信を他の高調波回路で行う場合に、前記第3周波数帯域の第3送信信号の送信時に発生する前記第3送信信号の高調波のうち前記中継端子を通して入力された高調波を減衰させる。前記第3周波数帯域は、前記第1周波数帯域よりも低く4G規格又は5G規格に対応している周波数帯域である。
 本発明の一態様に係る通信装置は、前記高周波回路と、前記他の高周波回路と、を備える。
 本発明の一態様に係る高周波回路及び通信装置は、4G規格又は5G規格に対応している第2周波数帯域の受信信号を受信する受信フィルタの感度が、4G規格又は5G規格に対応している第3周波数領域の第3送信信号の高調波によって劣化するのを抑制可能となる。
図1は、実施形態に係る高周波回路の回路図である。 図2は、同上の高周波回路を備える通信装置の回路図である。 図3は、同上の高周波回路に用いられる可変ローパスフィルタの回路図である。
 (実施形態)
 以下、実施形態に係る高周波回路及び通信装置について、図面を参照して説明する。下記の実施形態等において参照する各図は、いずれも模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比は、必ずしも実際の寸法比を反映しているとは限らない。
 (1)高周波回路及び通信装置の構成
 まず、実施形態に係る高周波回路2及び通信装置400の構成について、図1及び図2を参照して説明する。
 本実施形態に係る高周波回路2は、例えば、マルチバンド対応及び2つの周波数帯域の同時使用(例えば、キャリアアグリゲーション)対応の移動体通信機(例えば、携帯電話等)の高周波フロントエンド回路250を構成する。高周波回路2は、高周波回路1と共に用いられることで、4G(第4世代移動通信)規格のミッドバンドと4G規格のローバンドとのキャリアアグリゲーションに対応可能なモジュールであるが、これに限らない。例えば、高周波回路2は、高周波回路1と共に用いられることで、5G(第5世代移動通信)規格のミッドバンドと4G規格のローバンドとのデュアルコネクティビィティに対応可能なモジュールであってもよい。
 2G規格は、例えば、GSM(登録商標)規格(GSM:Global System for Mobile Communications)である。4G規格は、例えば、3GPP LTE規格(LTE:Long Term Evolution)である。5G規格は、例えば、5G NR(New Radio)である。GSM(登録商標)規格のローバンドとしては、GSM850、GSM900がある。GSM(登録商標)規格のミッドバンドとしては、GSM1800、GSM1900がある。3GPP LTE規格のローバンドとしては、例えば、Band8がある。Band8のダウンリンク周波数帯域は、925MHz-960MHzである。Band8のアップリンク周波数帯域は、880MHz-915MHzである。
 高周波回路2を備える通信装置400は、ダウンリンク(Downlink)で複数(実施形態では2つ)の周波数帯域を同時に用いるキャリアアグリゲーション(ダウンリンク・キャリアアグリゲーション)に対応可能である。また、高周波回路2を備える通信装置400は、アップリンク(Uplink)で複数(実施形態では2つ)の周波数帯域を同時に用いるキャリアアグリゲーション(アップリンク・キャリアアグリゲーション)に対応可能である。3GPP LTE規格のミッドバンドとしては、例えば、Band3がある。Band3のダウンリンク周波数帯域は、1805MHz-1880MHzである。Band3のアップリンク周波数帯域は、1710MHz-1785MHzである。また、高周波回路2を備える通信装置400は、キャリアアグリゲーションではなく、上述のデュアルコネクティビティに対応可能であってもよい。この場合、5G NRのミッドバンドとしては、例えば、n3がある。n3のダウンリンク周波数帯域は、1805MHz-1880MHzである。n3のアップリンク周波数帯域は、1710MHz-1785MHzである。
 (2)高周波回路の各構成要素
 本実施形態に係る高周波回路2は、図1に示すように、第4パワーアンプ21と、複数(図示例では3つ)のミッドバンド用デュプレクサ31、32、33と、可変ローパスフィルタ25と、を備えている。また、高周波回路2は、ミッドバンド用バンド切替スイッチ22と、ミッドバンド用アンテナスイッチ(スイッチ)24と、を備えている。また、高周波回路2は、ミッドバンド用アンテナ端子(アンテナ端子)T20と、ミッドバンド用信号入力端子T21と、複数(図示例では3つ)のミッドバンド用信号出力端子T31、T32、T33と、を備えている。また、高周波回路2は、ミッドバンド用送信経路MT1と、ミッドバンド用信号経路MT1に接続された中継端子T25と、備えている。また、高周波回路2は、制御回路20を備えている。
 本実施形態に係る高周波回路2は、図2に示すように、ダイプレクサ300のミッドバンド用フィルタ302と接続されている。よって、高周波回路2は、ミッドバンド用フィルタ302を介してアンテナ200と接続されている。
 本明細書等において「接続されている」とは、2つの接続対象が電気的に接続されていることをいう。また、本明細書等において「電気的に接続されている」は、2つの接続対象が直接的に電気的に接続されている場合と、2つの接続対象が間接的に電気的に接続されている場合と、を含む。
 (2.1)パワーアンプ
 第4パワーアンプ21は、第4入力端子211及び第4出力端子212を有している。第4パワーアンプ21は、第4入力端子211に入力された4G規格又は5G規格のミッドバンドの第2送信信号を増幅して第4出力端子212から出力する。第2送信信号は、4G規格又は5G規格に対応している第2周波数帯域の送信信号である。第4パワーアンプ21の第4入力端子211は、ミッドバンド用信号入力端子T21と接続されている。
 第2送信信号の周波数帯域(第2周波数帯域)は、例えば、LTE規格のBand3の周波数帯域を含んでいる。
 (2.2)アンテナスイッチ
 ミッドバンド用アンテナスイッチ24は、第4パワーアンプ21の第4出力端子212とミッドバンド用アンテナ端子T20との間に設けられている。より詳細には、ミッドバンド用アンテナスイッチ24は、ミッドバンド用アンテナ端子T20と複数(図示例では3つ)のミッドバンド用デュプレクサ31~33との間に設けられている。
 ミッドバンド用アンテナスイッチ24は、1つの共通端子240と、複複(図示例では4つ)の選択端子241~244と、を有している。共通端子240は、ミッドバンド用アンテナ端子T20と接続されている。ミッドバンド用アンテナスイッチ24では、4つの選択端子241~244のうち3つの選択端子241~243が、複数のミッドバンド用デュプレクサ31~33に一対一に接続されており、残りの1つの選択端子244がミッドバンド用信号経路MT1を介して中継端子T25に接続されている。
 ミッドバンド用アンテナスイッチ24は、例えば、スイッチIC(Integrated Circuit)である。なお、ミッドバンド用アンテナスイッチ24のアイソレーションは、例えば、20dB~30dB程度である。
 (2.3)信号経路
 ミッドバンド用信号経路MT1は、可変ローパスフィルタ25を介してミッドバンド用アンテナスイッチ24に接続されており、高周波回路1のバイパス端子T15と接続されている。より詳細には、ミッドバンド用信号経路MT1は、中継端子T25を介して高周波回路1のバイパス端子T15と接続されている。
 (2.4)デュプレクサ
 複数(図示例では3つ)のミッドバンド用デュプレクサ31、32、33の各々は、送信フィルタ311、321、331と、受信フィルタ312、322、332と、を有している。また、複数のミッドバンド用デュプレクサ31、32、33の各々は、アンテナ側端子Ax4、Ax5、Ax6と、送信端子Tx4、Tx5、Tx6と、受信端子Rx4、Rx5、Rx6と、を有している。
 送信フィルタ311、321、331の各々は、送信周波数帯域の信号を通過させ、送信周波数帯域以外の信号を減衰させるフィルタである。受信フィルタ312、322、332の各々は、受信周波数帯域の信号を通過させ、受信周波数帯域以外の信号を減衰させるフィルタである。送信フィルタ311、321、331及び受信フィルタ312、322、332の各々は、例えば、SAW(Surface Acoustic Wave)フィルタである。複数のミッドバンド用デュプレクサ31、32、33は、互いに異なる送信周波数帯域を有し、互いに異なる受信周波数帯域を有している。
 本実施形態では、ミッドバンド用デュプレクサ31は、4G規格又は5G規格に対応したデュプレクサであり、例えば、LTE規格のBand3に対応したデュプレクサ又は5G NRのn3に対応したデュプレクサである。高周波回路2では、ミッドバンド用アンテナスイッチ24とミッドバンド用信号出力端子T31との間の信号経路がミッドバンド用受信経路MR1を構成している。したがって、通信装置400は、Band8とBand3とのダウンリンク・キャリアアグリゲーション又はn8とBand3とのデュアルコネクティビティに対応することが可能となる。
 また、ミッドバンド用デュプレクサ32は、4G規格又は5G規格に対応したデュプレクサであり、例えば、LTE規格のBand1に対応したデュプレクサである。また、ミッドバンド用デュプレクサ33は、4G規格又は5G規格に対応したデュプレクサであり、例えば、LTE規格のBand2に対応したデュプレクサである。
 複数のミッドバンド用デュプレクサ31、32、33では、送信フィルタ311、321、331の入力端子が送信端子Tx4、Tx5、Tx6として用いられ、ミッドバンド用バンド切替スイッチ22の選択端子221、222、223と接続されている。また、複数のミッドバンド用デュプレクサ31、32、33では、受信フィルタ312、322、332の出力端子が受信端子Rx4、Rx5、Rx6として用いられ、複数のミッドバンド用信号出力端子T31、T32、T33と接続されている。
 さらに、複数のミッドバンド用デュプレクサ31、32、33では、送信フィルタ311、321、331の出力端子と受信フィルタ312、322、332の入力端子とに接続された端子(ANT端子)がアンテナ側端子Ax4、Ax5、Ax6として用いられ、ミッドバンド用アンテナスイッチ24の選択端子241、242、243と接続されている。
 (2.5)可変ローパスフィルタ
 可変ローパスフィルタ25は、図3に示すように、複数(図示例では5つ)のインダクタL1~L5と、複数(図示例では3つ)の可変キャパシタC1~C3と、を含む。
 インダクタL1の第1端は、中継端子T25と接続され、インダクタL1の第2端は、インダクタL2、L3の直列回路を介してミッドバンド用アンテナスイッチ24の選択端子244と接続されている。
 可変ローパスフィルタ25では、インダクタL1、L2の接続点とグランドとの間に、インダクタL4と可変キャパシタC1との直列回路が接続されている。図3の例では、インダクタL4がインダクタL1、L2の接続点側で、可変キャパシタC1がグランド側である。
 また、可変ローパスフィルタ25では、インダクタL2、L3の接続点とグランドとの間に、インダクタL5と可変キャパシタC2との直列回路が接続されている。図3の例では、インダクタL5がインダクタL2、L3の接続点側で、可変キャパシタC2がグランド側である。
 また、可変ローパスフィルタ25では、インダクタL4と可変キャパシタC1との接続点と、インダクタL5と可変キャパシタC2との接続点と、の間に、可変キャパシタC3が接続されている。
 可変キャパシタC1~C3の各々は、例えば、バリアブルキャパシタ(VAC)である。可変キャパシタC1~C3の各々は、例えば、後述の制御回路20によって印加される電圧の大きさに応じて静電容量が変化する。可変ローパスフィルタ25では、可変キャパシタC1~C3の静電容量を変化させることで、可変ローパスフィルタ25を通過する送信信号のカットオフ周波数(遮断周波数)を切り替えることができる。
 (2.6)バンド切替スイッチ
 ミッドバンド用バンド切替スイッチ22は、第4パワーアンプ21の第4出力端子212と複数のミッドバンド用デュプレクサ31、32、33の送信端子Tx4、Tx5、Tx6との間に設けられている。ミッドバンド用バンド切替スイッチ22は、複数のミッドバンド用デュプレクサ31、32、33のうち1つのミッドバンド用デュプレクサを第4パワーアンプ21の第4出力端子212に接続する。
 (2.7)信号端子
 図1に示すように、複数(図示例では3つ)のミッドバンド用信号出力端子T31、T32、T33は、複数(図示例では3つ)のミッドバンド用デュプレクサ31、32、33の受信端子Rx4、Rx5、Rx6に一対一に接続されている。
 (2.8)制御回路
 制御回路20は、複数のミッドバンド用デュプレクサ31、32、33及びミッドバンド用信号経路MT1のうちの1つがダイプレクサ300のミッドバンド用フィルタ302と接続されるように、ミッドバンド用アンテナスイッチ24を切り替える。制御回路20は、例えば、IC(Integrated Circuit)である。
 (3)通信装置の各構成要素
 本実施形態に係る通信装置400は、図2に示すように、高周波回路1(以下、「第1高周波回路1」ともいう)と、高周波回路2(以下、「第2高周波回路2」ともいう)と、を備えている。また、本実施形態では、通信装置400は、ダイプレクサ300と、信号処理回路401と、を更に備えている。また、本実施形態では、通信装置400は、バイパス経路180を更に備えている。なお、高周波回路2(第2高周波回路2)については「(2)高周波回路の各構成要素」の欄で説明しており、ここでは説明を省略する。
 (3.1)ダイプレクサ
 ダイプレクサ300は、ローバンド用フィルタ301と、ミッドバンド用フィルタ302と、を有している。ダイプレクサ300は、アンテナ200に接続されている。ローバンド用フィルタ301は、例えば、ローパスフィルタである。ミッドバンド用フィルタ302は、例えば、ハイパスフィルタである。
 (3.2)第1高周波回路
 第1高周波回路1(他の高周波回路)は、ダイプレクサ300のローバンド用フィルタ301と接続されている。よって、第1高周波回路1は、ローバンド用フィルタ301を介してアンテナ200と接続されている。
 第1高周波回路1は、図2に示すように、第1パワーアンプ11と、第2パワーアンプ12と、第3パワーアンプ13と、第1整合回路14と、第2整合回路15と、第3整合回路16と、を備えている。また、第1高周波回路1は、複数(図示例では3つ)のデュプレクサ81、82、83と、ローバンド用バンド切替スイッチ17と、ローバンド用アンテナスイッチ19と、を備えている。また、第1高周波回路1は、ローバンド用アンテナ端子T10と、ローバンド用第1信号入力端子T11と、ミッドバンド用信号入力端子T12と、ローバンド用第2信号入力端子T13と、を備えている。また、第1高周波回路1は、バイパス端子T15と、複数(図示例では3つ)のローバンド用信号出力端子T81、T82、T83と、を備えている。また、第1高周波回路1は、制御回路100を備えている。
 (3.2.1)パワーアンプ
 第1パワーアンプ11は、第1入力端子111及び第1出力端子112を有している。第1パワーアンプ11は、第1入力端子111に入力された2G規格のローバンドの第4送信信号を増幅して第1出力端子112から出力する。第4送信信号は、2G規格に対応している第4周波数帯域の送信信号である。第1入力端子111は、ローバンド用第1信号入力端子T11と接続されている。第1出力端子112は、第1整合回路14と接続されている。
 第2パワーアンプ12は、第2入力端子121及び第2出力端子122を有している。第2パワーアンプ12は、第2入力端子121に入力された2G規格のミッドバンドの第1送信信号を増幅して第2出力端子122から出力する。第1送信信号は、2G規格に対応している第1周波数帯域の送信信号である。第1周波数帯域の下限周波数は、第4周波数帯域の上限周波数よりも高い。第2入力端子121は、ミッドバンド用信号入力端子T12と接続されている。第2出力端子122は、第2整合回路15と接続されている。
 第3パワーアンプ13は、第3入力端子131及び第3出力端子132を有している。第3パワーアンプ13は、第3入力端子131に入力された4G規格又は5G規格のローバンドの第3送信信号を増幅して第3出力端子132から出力する。第3送信信号は、4G規格又は5G規格に対応している第3周波数帯域の送信信号である。第3入力端子131は、ローバンド用第2信号入力端子T13と接続されている。第3出力端子132は、第3整合回路16と接続されている。
 第1送信信号の周波数帯域(第1周波数帯域)は、例えば、GSM1800の周波数帯域及びGSM1900の周波数帯域を含んでいる。第3送信信号の周波数帯域(第3周波数帯域)は、例えば、LTE規格のBand8の周波数帯域を含んでいる。第4送信信号の周波数帯域(第4周波数帯域)は、例えば、GSM850の周波数帯域及びGSM900の周波数帯域を含んでいる。
 (3.2.2)整合回路
 第1整合回路14は、第1パワーアンプ11の第1出力端子112とローバンド用アンテナスイッチ19の選択端子191との間に設けられている。第1整合回路14は、第1整合回路14の前段に設けられる回路の出力インピーダンスと第1整合回路14の後段に設けられる回路の入力インピーダンスとを整合させるためのインピーダンスマッチング回路である。より詳細には、第1整合回路14は、第1パワーアンプ11から見たアンテナ端子T10側の、第4送信信号の基本周波数でのインピーダンス(第1パワーアンプ11の出力インピーダンス)を、例えば、50Ωに調整する。
 第2整合回路15は、第2パワーアンプ12の第2出力端子122とバイパス端子T15との間に設けられている。第2整合回路15は、第2整合回路15の前段に設けられる回路の出力インピーダンスと第2整合回路15の後段に設けられる回路の入力インピーダンスとを整合させるためのインピーダンスマッチング回路である。より詳細には、第2整合回路15は、第2パワーアンプ12から見たバイパス端子T15側の、第1送信信号の基本周波数でのインピーダンス(第2パワーアンプ12の出力インピーダンス)を、例えば、50Ωに調整する。
 第3整合回路16は、第3パワーアンプ13の第3出力端子132とローバンド用アンテナスイッチ19の選択端子192~194との間に設けられている。ここにおいて、第1高周波回路1は、第3整合回路16とローバンド用アンテナスイッチ19との間に、ローバンド用バンド切替スイッチ17と、複数(図示例では3つ)のローバンド用デュプレクサ81、82、83と、を備えている。このため、第3整合回路16は、詳細には、第3パワーアンプ13の第3出力端子132とローバンド用バンド切替スイッチ17との間に設けられている。第3整合回路16は、第3整合回路16の前段に設けられる回路の出力インピーダンスと第3整合回路16の後段に設けられる回路の入力インピーダンスとを整合させるためのインピーダンスマッチング回路である。より詳細には、第3整合回路16は、第3パワーアンプ13から見たアンテナ端子T10側の、第2送信信号の基本周波数でのインピーダンス(第3パワーアンプ13の出力インピーダンス)を、例えば、50Ωに調整する。
 (3.2.3)アンテナスイッチ
 ローバンド用アンテナスイッチ19は、第1パワーアンプ11の第1出力端子112及び第3パワーアンプ13の第3出力端子132とローバンド用アンテナ端子T10との間に設けられている。ローバンド用アンテナスイッチ19は、図2に示すように、1つの共通端子190と、複複(図示例では4つ)の選択端子191~194と、を有している。ローバンド用アンテナスイッチ19の共通端子190は、ローバンド用アンテナ端子T10と接続されている。
 ローバンド用アンテナスイッチ19は、アンテナ端子T10と複数(図示例では3つ)のローバンド用デュプレクサ81~83との間に設けられている。ローバンド用アンテナスイッチ19では、4つの選択端子191~194のうち1つの選択端子191が第1整合回路14に接続されており、残りの3つの選択端子192~194が、複数のローバンド用デュプレクサ81~83に一対一に接続されている。ローバンド用アンテナスイッチ19は、例えば、スイッチIC(Integrated Circuit)である。
 (3.2.4)デュプレクサ
 複数(図示例では3つ)のローバンド用デュプレクサ81、82、83の各々は、送信フィルタ811、821、831と、受信フィルタ812、822、832と、を有している。また、複数のローバンド用デュプレクサ81、82、83の各々は、アンテナ側端子Ax1、Ax2、Ax3と、送信端子Tx1、Tx2、Tx3と、受信端子Rx1、Rx2、Rx3と、を有している。
 送信フィルタ811、821、831の各々は、送信周波数帯域の信号を通過させ、送信周波数帯域以外の信号を減衰させるフィルタである。受信フィルタ812、822、832の各々は、受信周波数帯域の信号を通過させ、受信周波数帯域以外の信号を減衰させるフィルタである。送信フィルタ811、821、831及び受信フィルタ812、822、832の各々は、例えば、SAWフィルタである。
 複数のローバンド用デュプレクサ81、82、83は、互いに異なる送信周波数帯域を有し、互いに異なる受信周波数帯域を有している。
 複数のローバンド用デュプレクサ81、82、83では、送信フィルタ811、821、831の入力端子が送信端子Tx1、Tx2、Tx3として用いられ、ローバンド用バンド切替スイッチ17の選択端子171、172、173と接続されている。また、複数のローバンド用デュプレクサ81、82、83では、受信フィルタ812、822、832の出力端子が受信端子Rx1、Rx2、Rx3として用いられ、複数のローバンド用信号出力端子T81、T82、T83と接続されている。
 さらに、複数のローバンド用デュプレクサ81、82、83では、送信フィルタ811、821、831の出力端子と受信フィルタ812、822、832の入力端子とに接続された端子(ANT端子)がアンテナ側端子Ax1、Ax2、Ax3として用いられ、ローバンド用アンテナスイッチ19の選択端子192、193、194と接続されている。
 (3.2.5)バンド切替スイッチ
 ローバンド用バンド切替スイッチ17は、第3パワーアンプ13の第3出力端子132と複数のローバンド用デュプレクサ81~83の送信端子Tx1~Tx3との間に設けられている。ローバンド用バンド切替スイッチ17は、複数のローバンド用デュプレクサ81~83のうち1つのローバンド用デュプレクサを第3パワーアンプ13の第3出力端子132に接続する。
 (3.2.6)信号端子
 ローバンド用アンテナ端子T10は、アンテナ200に接続されている。
 バイパス端子T15は、第2パワーアンプ12の第2出力端子122と接続されている。より詳細には、バイパス端子T15は、第2整合回路15を介して第2パワーアンプ12の第2出力端子122と接続されている。
 ローバンド用第1信号入力端子T11、ミッドバンド用信号入力端子T12、ローバンド用第2信号入力端子T13及び複数のローバンド用信号出力端子T81、T82、T83は、後述の信号処理回路401のRF信号処理回路402と接続されている。
 (3.2.7)制御回路
 制御回路100は、例えば、ベースバンド信号処理回路403(図2参照)から制御信号を受け取り、制御信号に基づいて第1パワーアンプ11、第2パワーアンプ12、第3パワーアンプ13、ローバンド用アンテナスイッチ19及びローバンド用バンド切替スイッチ17の各々を制御する。制御回路100は、例えば、ICである。
 (3.3)信号処理回路
 信号処理回路401は、図2に示すように、RF信号処理回路402と、ベースバンド信号処理回路403と、を有している。
 (3.3.1)RF信号処理回路
 RF信号処理回路402は、第1高周波回路1及び第2高周波回路2と接続されている。より詳細には、RF信号処理回路402は、第1高周波回路1のローバンド用第1信号入力端子T11、ミッドバンド用信号入力端子T12、ローバンド用第2信号入力端子T13及び複数のローバンド用信号出力端子T81、T82、T83と接続されている。また、RF信号処理回路402は、第2高周波回路2のミッドバンド用信号入力端子T21及び複数のミッドバンド用信号出力端子T31、T32、T33と接続されている。
 RF信号処理回路402は、例えば、RFIC(Radio Frequency Integrated Circuit)である。RF信号処理回路402は、複数のローバンド用信号出力端子T81、T82、T83、及び、複数のミッドバンド用信号出力端子T31、T32、T33から出力された高周波信号(受信信号)に対する信号処理を行う。
 RF信号処理回路402は、アンテナ200から第1高周波回路1又は第2高周波回路2を介して入力された高周波信号(受信信号)に対してダウンコンバート等の信号処理を行い、この信号処理により生成された受信信号をベースバンド信号処理回路403へ出力する。
 また、RF信号処理回路402は、例えば、ベースバンド信号処理回路403から出力された送信信号に対してアップコンバート等の信号処理を行い、信号処理が行われた送信信号(高周波信号)を第1高周波回路1又は第2高周波回路2へ出力する。
 (3.3.2)ベースバンド信号処理回路
 ベースバンド信号処理回路403は、例えば、BBIC(Baseband Integrated Circuit)である。ベースバンド信号処理回路403で処理された受信信号は、例えば、画像信号として画像表示のために、又は、音声信号として通話のために使用される。また、ベースバンド信号処理回路403は、例えば、通信装置400の外部からの送信信号に対する所定の信号処理を行う。
 (3.4)バイパス経路
 バイパス経路180は、バイパス端子T15とミッドバンド用送信経路MT1とを接続している。より詳細には、バイパス経路180は、バイパス端子T15とミッドバンド用送信経路MT1に接続された中継端子T25とを接続している。言い換えると、バイパス経路180は、第2送信信号の出力端子としてのバイパス端子T15と中継端子T25とを接続している。バイパス経路180は、例えば、第1高周波回路1と第2高周波回路2とが実装されたプリント配線板の配線導体を含む。この場合、通信装置400は、その構成要素としてプリント配線板を含む。
 (4)高周波回路の動作
 次に、本実施形態に係る高周波回路2の動作について説明する。本実施形態に係る高周波回路2は、第1送信モードと、第2送信モードと、を有している。第1送信モードは、2G規格に対応しているミッドバンド(第1周波数帯域)の第1送信信号を送信するモードである。すなわち、第1送信モードでは、高周波回路2は、2G規格に対応している第1周波数帯域を使用した通信を行う。第2送信モードは、4G規格又は5G規格に対応しているミッドバンド(第2周波数帯域)の第2送信信号を送信するモードである。すなわち、第2送信モードでは、高周波回路2は、4G規格又は5G規格に対応している第2周波数帯域を使用した通信を行う。以下、第1送信モード及び第2送信モードについて説明する。
 (4.1)第1送信モード
 高周波回路2は、第1送信モードでは、上述したように、第1送信信号を送信する。この場合、第1送信信号は、バイパス端子T15、バイパス経路180及び中継端子T25を介して高周波回路1から高周波回路2に出力される。本実施形態では、上述したように、第1送信信号の第1周波数帯域は、GSM1800の周波数帯域及びGSM1900の周波数帯域を含んでいる。
 高周波回路2では、制御回路20は、第1送信モードにおいて第1送信信号が可変ローパスフィルタ25を通過するように、可変ローパスフィルタ25のカットオフ周波数を変更する。より詳細には、制御回路20は、可変キャパシタC1~C3に印加する電圧の大きさを変えることで、可変キャパシタC1~C3の静電容量を変化させる。これにより、可変ローパスフィルタ25のカットオフ周波数が、例えば、2000MHzに変更される。したがって、この場合には、第1送信信号については可変ローパスフィルタ25を通過させることができる。
 そして、可変ローパスフィルタ25を通過した第1送信信号は、ミッドバンド用アンテナスイッチ24を通り、ミッドバンド用アンテナ端子T20から出力される。
 (4.2)第2送信モード
 高周波回路2は、第2送信モードでは、上述したように、第2送信信号を送信する。このとき、高周波回路1は、第3送信信号を送信する。すなわち、第2送信モードでは、高周波回路1,2により第2送信信号と第3送信信号とを同時送信(キャリアアグリゲーション)する。
 第3送信信号は、4G規格又は5G規格に対応しているローバンド(第3周波数帯域)の送信信号であり、第2送信信号は、4G規格又は5G規格に対応しているミッドバンド(第2周波数帯域)の送信信号である。ここで、第3送信信号の周波数帯域は、LTE規格のBand8の周波数帯域を含んでおり、第2送信信号の周波数帯域は、LTE規格のBand3の周波数帯域を含んでいる。また、第1周波数帯域は、上述したように、GSM1800の周波数帯域及びGSM1900の周波数帯域を含んでいる。そのため、第3送信信号の高調波は、第1周波数帯域に含まれる。
 第3送信信号は、ローバンド用デュプレクサ81の送信フィルタ811を通り、ローバンド用アンテナ端子T10から出力される。第2送信信号は、ミッドバンド用デュプレクサ31の送信フィルタ311を通り、ミッドバンド用アンテナ端子T20から出力される。
 ここで、第3送信信号の高調波の周波数は、上述したように、第1周波数帯域に含まれている。そのため、第3送信信号の高調波が、第1送信信号の送信経路である2G規格のミッドバンドの送信経路に飛び移る可能性がある。そして、2G規格のミッドバンドの送信経路に飛び移った第3送信信号の高調波は、バイパス経路180を通って中継端子T25から高周波回路2に入力される。
 この場合、可変ローパスフィルタ25のカットオフ周波数が2000MHzだと、第3送信信号の高調波の1つである2倍波(1800MHz)が可変ローパスフィルタ25を通過し、ミッドバンド用デュプレクサ31の受信フィルタ312に漏れる可能性がある。その結果、受信フィルタ312の感度が劣化するという問題が発生する。
 本実施形態に係る高周波回路2は、上述の問題を解決するために、可変ローパスフィルタ25のカットオフ周波数を変更可能に構成されている。より詳細には、高周波回路2の制御回路20は、第3送信信号の高調波を減衰するように、可変ローパスフィルタ25のカットオフ周波数を変更する。具体的には、制御回路20は、可変キャパシタC1~C3に印加する電圧の大きさを変えることで、可変キャパシタC1~C3の静電容量を変化させる。これにより、可変ローパスフィルタ25のカットオフ周波数が、例えば、1200MHzに変更される。したがって、この場合には、第3送信信号の高調波を可変ローパスフィルタ25により減衰することができる。
 また、例えば、第3送信信号の第3周波数帯域がLTE規格のBand12で、第2送信信号の第2送信周波数帯域がLTE規格のBand4である場合を想定する。この場合、第3送信信号の高調波の1つである3倍波をカットしようとすると、制御回路20は、可変ローパスフィルタ25のカットオフ周波数が2100MHzとなるように、可変キャパシタC1~C3に印加する電圧の大きさを変更する。これにより、Band4の受信信号を通過させる受信フィルタ312に第3送信信号の3倍波が漏れるのを抑えることができ、その結果、受信フィルタ312の感度劣化を抑制することができる。
 (5)効果
 従来、2G規格のローバンドの送信信号、及び、4G規格又は5G規格のローバンド(第3周波数帯域)の送信信号(第3送信信号)を送信するローバンド系の高周波回路(他の高周波回路)と、4G規格又は5G規格のミッドバンド(第2周波数帯域)に対応するミッドバンド系の高周波回路と、を備える通信装置が要求される場合があった。
 また、上記通信装置において、2G規格のミッドバンド(第1周波数帯域)の送信信号(第1送信信号)を送信する送信回路を、ミッドバンド系の高周波回路よりもサイズの小さなローバンド系の高周波回路に設けることが要求されることがあった。
 この場合、通信装置では、2G規格のミッドバンド用の送信回路の信号経路をミッドバンド系の高周波回路のアンテナスイッチにバイパスする必要がある。
 しかしながら、例えば、ローバンド系の高周波回路の第3周波数帯域をBand8とし、ミッドバンド系の高周波回路にBand3に対応する受信回路(受信フィルタ)を設けて、ローバンド系の高周波回路からBand8の送信信号を送信する場合、Band8の送信信号の高調波としての2倍波の周波数が2G規格のミッドバンドの周波数帯域と重複するので、この高調波(の不要輻射)が2G規格のミッドバンド用の送信回路に飛び移ってしまう。そして、Band8の送信信号の高調波がバイパス経路を経由して受信回路に伝わって受信回路の受信性能を劣化させることがあった。
 上述の課題に対して、本実施形態に係る高周波回路2では、以下に示す構成を採用している。
 すなわち、本実施形態に係る高周波回路2は、2G規格に対応している第1周波数帯域を使用した通信と、4G規格又は5G規格に対応している第2周波数帯域を使用した通信と、をそれぞれ行う高周波回路2である。高周波回路2は、アンテナ端子T20と、中継端子T25と、送信フィルタ311と、受信フィルタ312と、可変ローパスフィルタ25と、スイッチ24と、を備える。中継端子T25は、第1周波数帯域の第1送信信号が入力される。送信フィルタ311は、第2周波数帯域の第2送信信号を通過させる。受信フィルタ312は、第2周波数帯域の受信信号を通過させる。可変ローパスフィルタ25は、通過帯域を変更可能である。スイッチ24は、可変ローパスフィルタ25がアンテナ端子T20に接続されている状態と送信フィルタ311がアンテナ端子T20に接続されている状態とを切替可能である。可変ローパスフィルタ25は、第1周波数帯域を使用した通信では、中継端子T25を通して入力された第1送信信号を通過させる。可変ローパスフィルタ25は、第3周波数帯域を使用した通信を他の高調波回路1で行う場合に、第3周波数帯域の第3送信信号の送信時に発生する第3送信信号の高調波のうち中継端子T25を通して入力された高調波を減衰させる。第3周波数帯域は、第1周波数帯域よりも低く4G規格又は5G規格に対応している周波数帯域である。
 本実施形態に係る高周波回路2では、可変ローパスフィルタ25は、第1周波数帯域を使用した通信において第1送信信号を通過させている。一方、可変ローパスフィルタ25は、第3周波数帯域を使用した通信を他の高周波回路1で行う場合には、第3周波数帯域の第3送信信号の高調波を減衰させている。これにより、他の高周波回路1からの第3送信信号の高調波が受信フィルタ312に漏れるのを抑制することができ、その結果、受信フィルタ312の感度劣化を抑制可能となる。
 例えば、第2周波数帯域をBand3、第3周波数帯域をBand8とし、Band8の高調波が第1周波数帯域に含まれる場合を想定する。この場合、Band8とBand3とでキャリアアグリゲーションを行ったとしても、可変ローパスフィルタ25によってBand8の高調波を減衰させることができる。その結果、Band8の高調波が受信フィルタ312に漏れるのを抑制することができるので、受信フィルタ312の感度劣化を抑制することができる。すなわち、本実施形態に係る高周波回路2によれば、4G規格又は5G規格に対応している第2周波数帯域の受信信号を受信する受信フィルタ312の感度が、4G規格又は5G規格に対応している第3周波数領域の第3送信信号の高調波によって劣化するのを抑制することができる。
 (6)変形例
 上述の実施形態は、本発明の様々な実施形態の一つに過ぎない。上述の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
 上述の実施形態では、複数のローバンド用デュプレクサ81、82、83の各々が備える送信フィルタ811、821、831及び受信フィルタ812、822、832の各々がSAWフィルタであるが、SAWフィルタに限らず、例えば、BAW(Bulk Acoustic Wave)フィルタ、誘電体フィルタであってもよい。
 また、上述の実施形態では、複数のミッドバンド用デュプレクサ31、32、33の各々が備える送信フィルタ311、321、331及び受信フィルタ312、322、332の各々がSAWフィルタであるが、SAWフィルタに限らず、例えば、BAWフィルタ、誘電体フィルタであってもよい。
 また、上述の実施形態では、制御回路100が高周波回路1に含まれているが、制御回路100は高周波回路1に含まれなくてもよい。また、上述の実施形態では、制御回路20が高周波回路2に含まれているが、制御回路20は高周波回路2に含まれなくてもよい。すなわち、制御回路100及び制御回路20は通信装置400に含まれていればよく、高周波回路1、2に含まれなくてもよい。
 また、上述の実施形態では、高周波回路2がミッドバンド系の高周波回路であるが、これに限らない。高周波回路2は、例えば、ハイバンド系の高周波回路であってもよいし、ウルトラハイバンド系の高周波回路であってもよいし、これら(ミッドバンド系の高周波回路を含む)の組み合わせであってもよい。
 また、上述の実施形態では、制御回路20が可変ローパスフィルタ25のカットオフ周波数を変更しているが、これに限らない。例えば、第4パワーアンプ21を制御するパワーアンプコントローラが高周波回路2に設けられている場合には、パワーアンプコントローラが可変ローパスフィルタ25のカットオフ周波数を変更してもよい。さらに、上述の信号処理回路401が可変ローパスフィルタ25のカットオフ周波数を変更してもよい。
 また、上述の実施形態では、可変キャパシタC1~C3の各々への印加電圧を変えることにより各可変キャパシタC1~C3の静電容量を変化させ、これにより可変ローパスフィルタ25のカットオフ周波数を切り替えているが、これに限らない。例えば、送信経路MT1とグランドとの間に、キャパシタとスイッチとの直列回路を複数個接続し、各スイッチの接続状態を切り替えることにより全体の静電容量を変更してもよい。なお、各スイッチは、送信経路MT1と各キャパシタとの間に接続されていてもよいし、各キャパシタとグランドとの間に接続されていてもよい。この場合においても、全体の静電容量を変化させることにより、可変ローパスフィルタ25のカットオフ周波数を切り替えることができる。
 (態様)
 本明細書には、以下の態様が開示されている。
 第1の態様に係る高周波回路(2)は、2G規格に対応している第1周波数帯域を使用した通信と、4G規格又は5G規格に対応している第2周波数帯域を使用した通信と、をそれぞれ行う高周波回路(2)である。高周波回路(2)は、アンテナ端子(T20)と、中継端子(T25)と、送信フィルタ(311)と、受信フィルタ(312)と、可変ローパスフィルタ(25)と、スイッチ(24)と、を備える。中継端子(T25)は、第1周波数帯域の第1送信信号が入力される。送信フィルタ(311)は、第2周波数帯域の第2送信信号を通過させる。受信フィルタ(312)は、第2周波数帯域の受信信号を通過させる。可変ローパスフィルタ(25)は、通過帯域を変更可能である。スイッチ(24)は、可変ローパスフィルタ()25がアンテナ端子(T20)に接続されている状態と送信フィルタ(311)がアンテナ端子(T20)に接続されている状態とを切替可能である。可変ローパスフィルタ(25)は、第1周波数帯域を使用した通信では、中継端子(T25)を通して入力された第1送信信号を通過させる。可変ローパスフィルタ(25)は、第3周波数帯域を使用した通信を他の高調波回路(1)で行う場合に、第3周波数帯域の第3送信信号の送信時に発生する第3送信信号の高調波のうち中継端子(T25)を通して入力された高調波を減衰させる。第3周波数帯域は、第1周波数帯域よりも低く4G規格又は5G規格に対応している周波数帯域である。
 この態様によれば、4G規格又は5G規格に対応している第2周波数帯域の受信信号を受信する受信フィルタ(312)の感度が、4G規格又は5G規格に対応している第3周波数領域の第3送信信号の高調波によって劣化するのを抑制可能となる。
 第2の態様に係る高周波回路(2)では、第1の態様において、第1送信信号の出力端子(T15)と中継端子(T25)とが接続されている。
 この態様によれば、第1送信信号を高周波回路(2)に入力することができる。
 第3の態様に係る高周波回路(2)では、第1又は第2の態様において、可変ローパスフィルタ(25)のカットオフ周波数が、第1周波数帯域を使用した通信と第3周波数帯域を使用した通信とで切り替えられる。
 この態様によれば、第1周波数帯域を使用した通信において高周波回路(2)に入力される第1送信信号を通過させることができる。また、第3周波数帯域を使用した通信において高周波回路(2)に入力される第3送信信号の高調波を可変ローパスフィルタ(25)にて減衰することができる。
 第4の態様に係る高周波回路(2)では、第1~第3の態様のいずれか1つにおいて、送信フィルタ(311)及び受信フィルタ(312)は、デュプレクサ(31)からなる。
 第5の態様に係る高周波回路(2)では、第1~第4の態様のいずれか1つにおいて、第1周波数帯域は、GSM1800の周波数帯域及びGSM1900の周波数帯域を含む。第2周波数帯域は、LTE規格のBand3の周波数帯域又は5G NRのn3の周波数帯域を含む。第3周波数帯域は、LTE規格のBand8の周波数帯域又は5G NRのn8の周波数帯域を含む。
 この態様によれば、4G規格又は5G規格に対応している第2周波数帯域の受信信号を受信する受信フィルタ(312)の感度が、4G規格又は5G規格に対応している第3周波数領域の第3送信信号の高調波によって劣化するのを抑制可能となる。
 第6の態様に係る通信装置(400)は、第1~第5の態様のいずれか1つの高周波回路(2)と、他の高周波回路(1)と、を備える。
 この態様によれば、4G規格又は5G規格に対応している第2周波数帯域の受信信号を受信する受信フィルタ(312)の感度が、4G規格又は5G規格に対応している第3周波数領域の第3送信信号の高調波によって劣化するのを抑制可能となる。
1 第1高周波回路(他の高周波回路)
2 第2高周波回路(高周波回路)
11 第1パワーアンプ
12 第2パワーアンプ
13 第3パワーアンプ
14 第1整合回路
15 第2整合回路
16 第3整合回路
17 ローバンド用バンド切替スイッチ
19 アンテナスイッチ
20 制御回路
21 第4パワーアンプ
22 バンド切替スイッチ
24 ミッドバンド用アンテナスイッチ(スイッチ)
25 可変ローパスフィルタ
31~33 デュプレクサ
81~83 デュプレクサ
100 制御回路
111 第1入力端子
121 第2入力端子
131 第3入力端子
112 第1出力端子
122 第2出力端子
132 第3出力端子
170 共通端子
171~173 選択端子
180 バイパス経路
190 共通端子
191~194 選択端子
200 アンテナ
211 第4入力端子
212 第4出力端子
220 共通端子
221~223 選択端子
240 共通端子
241~244 選択端子
250 高周波フロントエンド回路
300 ダイプレクサ
301,302 フィルタ
311,321,331 送信フィルタ
312,322,332 受信フィルタ
400 通信装置
401 信号処理回路
402 RF信号処理回路
403 ベースバンド信号処理回路
811,821,831 送信フィルタ
812,822,832 受信フィルタ
Ax1~Ax6 アンテナ側端子
C1~C3 可変キャパシタ
L1~L5 インダクタ
MR1 受信経路
MT1 送信経路
Rx1~Rx6 受信端子
T10 ローバンド用アンテナ端子
T11~T13 信号入力端子
T15 バイパス端子(出力端子)
T20 ミッドバンド用アンテナ端子
T25 中継端子
T31~T33 信号出力端子
T81~T83 信号出力端子
Tx1~Tx6 送信端子

Claims (6)

  1.  2G規格に対応している第1周波数帯域を使用した通信と、4G規格又は5G規格に対応している第2周波数帯域を使用した通信と、をそれぞれ行う高周波回路であって、
     アンテナ端子と、
     前記第1周波数帯域の第1送信信号が入力される中継端子と、
     前記第2周波数帯域の第2送信信号を通過させる送信フィルタと、
     前記第2周波数帯域の受信信号を通過させる受信フィルタと、
     通過帯域を変更可能な可変ローパスフィルタと、
     前記可変ローパスフィルタが前記アンテナ端子に接続されている状態と前記送信フィルタが前記アンテナ端子に接続されている状態とを切替可能なスイッチと、を備え、
     前記可変ローパスフィルタは、
      前記第1周波数帯域を使用した通信では、前記中継端子を通して入力された前記第1送信信号を通過させ、
      前記第1周波数帯域よりも低く4G規格又は5G規格に対応している第3周波数帯域を使用した通信を他の高調波回路で行う場合に、前記第3周波数帯域の第3送信信号の送信時に発生する前記第3送信信号の高調波のうち前記中継端子を通して入力された高調波を減衰させる、
     高周波回路。
  2.  前記第1送信信号の出力端子と前記中継端子とが接続されている、
     請求項1に記載の高周波回路。
  3.  前記可変ローパスフィルタのカットオフ周波数が、前記第1周波数帯域を使用した通信と前記第3周波数帯域を使用した通信とで切り替えられる、
     請求項1又は2に記載の高周波回路。
  4.  前記送信フィルタ及び前記受信フィルタは、デュプレクサからなる、
     請求項1~3のいずれか1項に記載の高周波回路。
  5.  前記第1周波数帯域は、GSM1800の周波数帯域及びGSM1900の周波数帯域を含み、
     前記第2周波数帯域は、LTE規格のBand3の周波数帯域又は5G NRのn3の周波数帯域を含み、
     前記第3周波数帯域は、LTE規格のBand8の周波数帯域又は5G NRのn8の周波数帯域を含む、
     請求項1~4のいずれか1項に記載の高周波回路。
  6.  請求項1~5のいずれか1項に記載の高周波回路と、
     前記他の高周波回路と、を備える、
     通信装置。
PCT/JP2020/040916 2020-02-28 2020-10-30 高周波回路及び通信装置 WO2021171704A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080094730.6A CN115004562B (zh) 2020-02-28 2020-10-30 高频电路和通信装置
US17/805,498 US20220311455A1 (en) 2020-02-28 2022-06-06 Radio-frequency circuit and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-033830 2020-02-28
JP2020033830 2020-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/805,498 Continuation US20220311455A1 (en) 2020-02-28 2022-06-06 Radio-frequency circuit and communication device

Publications (1)

Publication Number Publication Date
WO2021171704A1 true WO2021171704A1 (ja) 2021-09-02

Family

ID=77491373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040916 WO2021171704A1 (ja) 2020-02-28 2020-10-30 高周波回路及び通信装置

Country Status (3)

Country Link
US (1) US20220311455A1 (ja)
CN (1) CN115004562B (ja)
WO (1) WO2021171704A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170093442A1 (en) * 2015-09-28 2017-03-30 Skyworks Solutions, Inc. Integrated front-end architecture for carrier aggregation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075099A1 (en) * 2012-11-12 2014-05-15 Qualcomm Incorporated Antenna interface circuits with quadplexers
WO2019188968A1 (ja) * 2018-03-30 2019-10-03 株式会社村田製作所 高周波モジュール及びそれを備える通信装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003228602A1 (en) * 2002-04-22 2003-11-03 Cognio, Inc. Multiple-input multiple-output radio transceiver
JP4301401B2 (ja) * 2002-11-08 2009-07-22 Tdk株式会社 フロントエンドモジュール及び通信端末
JP4183532B2 (ja) * 2003-03-04 2008-11-19 三洋電機株式会社 高周波装置
JP2005269305A (ja) * 2004-03-19 2005-09-29 Sharp Corp 高周波フロントエンド回路および高周波通信装置
US8666328B2 (en) * 2010-07-12 2014-03-04 Apple Inc. Wireless circuitry with reduced harmonic interference
JP6439862B2 (ja) * 2015-03-30 2018-12-19 株式会社村田製作所 高周波フィルタ、フロントエンド回路、および、通信機器
CN109155639A (zh) * 2016-05-20 2019-01-04 株式会社村田制作所 高频前端电路以及通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075099A1 (en) * 2012-11-12 2014-05-15 Qualcomm Incorporated Antenna interface circuits with quadplexers
WO2019188968A1 (ja) * 2018-03-30 2019-10-03 株式会社村田製作所 高周波モジュール及びそれを備える通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "SKY78191-11 SkyOne® Low Band Tx-Rx Front-End Module for 3G / 4G / 5G Applications with Low Band/High Band 2G", SKYWORKS SOLUTIONS, INC., 2019, pages 1 - 7, XP055850300, Retrieved from the Internet <URL:https://www.skyworksinc.com/-/media/SkyWorks/Documents/Products/2901-3000/SKY7819111_AP_205498A.pdf> *
BALTEANU FLORINEL: "RF Front End Module Architectures for 5G", BICMOS AND COMPOUND SEMICONDUCTOR INTEGRATED CIRCUITS AND TECHNOLOGY SYMPOSIUM, 2019, pages 1 - 8, XP033700168, Retrieved from the Internet <URL:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8972735> *

Also Published As

Publication number Publication date
CN115004562B (zh) 2023-12-29
US20220311455A1 (en) 2022-09-29
CN115004562A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US10886951B2 (en) Front-end module
CN112005501B (zh) 高频模块以及具备该高频模块的通信装置
US10116348B2 (en) High-frequency power amplifying module and communication apparatus
US11265028B2 (en) Radio frequency module and communication device
JP6057024B2 (ja) 高周波モジュール
US10230418B2 (en) Multiplexer, high-frequency front end circuit, and communication device
US20140038531A1 (en) High-frequency front-end circuit
WO2020183985A1 (ja) マルチプレクサ、高周波モジュール及び通信装置
CN111865337B (zh) 高频模块和通信装置
WO2019049647A1 (ja) 高周波モジュール
US11658794B2 (en) Radio frequency module and communication device
US11539381B2 (en) Radio frequency circuit, antenna module, and communication device
US11336309B2 (en) Front-end module and communication device
WO2021171704A1 (ja) 高周波回路及び通信装置
JP5729640B2 (ja) 回路基板およびそれを用いた通信装置
JP6798521B2 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
JP2021048561A (ja) 高周波モジュールおよび通信装置
JP5660450B2 (ja) 回路基板およびそれを用いた通信装置
JP2016096486A (ja) 高周波フロントエンド回路、高周波モジュール
US11881844B2 (en) Multiplexer
US20240214009A1 (en) Radio frequency circuit and communication device
WO2022024642A1 (ja) 高周波モジュールおよび通信装置
CN114258636B (zh) 高频电路和通信装置
WO2022259987A1 (ja) 高周波モジュールおよび通信装置
CN117642981A (zh) 高频电路和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP