WO2021169823A1 - 一种镜头、摄像模组和电子设备 - Google Patents

一种镜头、摄像模组和电子设备 Download PDF

Info

Publication number
WO2021169823A1
WO2021169823A1 PCT/CN2021/076677 CN2021076677W WO2021169823A1 WO 2021169823 A1 WO2021169823 A1 WO 2021169823A1 CN 2021076677 W CN2021076677 W CN 2021076677W WO 2021169823 A1 WO2021169823 A1 WO 2021169823A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
lens
index film
film layer
low refractive
Prior art date
Application number
PCT/CN2021/076677
Other languages
English (en)
French (fr)
Inventor
元军
於丰
叶海水
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21759693.1A priority Critical patent/EP4095571A4/en
Publication of WO2021169823A1 publication Critical patent/WO2021169823A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the embodiments of the present application relate to the field of terminal technology, and in particular, to a lens, a camera module, and an electronic device.
  • the shooting function has become an indispensable function for electronic devices (such as mobile phones, tablets, etc.).
  • electronic devices In order to obtain good image quality and camera effects, electronic devices will install multiple camera modules. Provides a wide range of shooting functions.
  • the camera device mainly includes a lens, a support base, a filter, a photosensitive element, and a flexible circuit board (FPC).
  • the lens includes a lens barrel and a lens group set in the lens barrel.
  • the lens group often includes multiple lenses. That is, 3 lenses), 4P (4 lenses) developed to 6P (6 lenses), 7P (7 lenses), among which, when light passes through the lenses in the lens, the surface of the lens and the surface of the adjacent two lenses are generated Reflections eventually form ghosts and glare on the sensor. With the continuous increase in the number of lenses, the reflective surface is also increasing, which seriously affects the imaging quality of the camera module. Therefore, multilayer coatings are used on the lenses to prevent glare.
  • multiple layers are arranged alternately on the lenses.
  • the high refractive index film layer and the low refractive index film layer through the alternating arrangement of the high refractive index film layer and the low refractive index film layer, produce interference cancellation principle to achieve the purpose of reducing reflection.
  • the interference cancellation is achieved when the optical path difference meets the requirements to reduce the reflection, so that the lens can be at one of the incident angles (for example, the incident angle is 0°, when the incident light is perpendicular to the incident light, low surface reflectivity can be obtained, and low surface reflectivity under large angles cannot be obtained at the same time. Therefore, it is an urgent need to effectively reduce the reflectivity of the lens surface.
  • the present application provides a lens, camera module and electronic equipment, which reduces the reflection of incident light on the surface of the lens, realizes the low reflectivity of the lens in a large incident angle range, and ensures that the lens has a good performance in a large angle range.
  • the anti-glare effect improves the imaging quality of the camera module.
  • a first aspect of the present application provides a lens, including: a lens barrel and a plurality of lenses arranged in the lens barrel;
  • At least part of the lens includes: a substrate having a first surface facing the object side and a second surface facing the image side, and at least one of the first surface and the second surface is provided with at least A low refractive index film layer, and the refractive index of the substrate and the refractive index of the low refractive index film layer gradually decrease from the substrate to the low refractive index film layer.
  • the lens provided by the embodiment of the present application includes at least part of the lens: a substrate, the substrate has a first surface facing the object side and a second surface facing the image side, and the first surface and the second surface At least one low refractive index film layer is provided on at least one surface, and the refractive index of the substrate and the refractive index of the low refractive index film are in the direction from the substrate to the low refractive index film layer. Gradually decrease, this reduces the reflectivity of the lens surface to the incident light, does not easily form ghosts and glare, and ensures that the lens achieves the purpose of low reflection and anti-glare. Therefore, the lens provided by the embodiment of the present application reduces the surface of the lens. Reflectivity, and realizes the low reflectivity of the lens in a large incident angle range. Compared with the prior art, it ensures the good anti-glare effect of the lens in a large angle range and improves the imaging quality of the camera module.
  • a first low refractive index film layer and a second low refractive index film layer are laminated on at least one of the first surface and the second surface, and the first low refractive index film layer
  • the refractive index film layer is located between the substrate and the second low refractive index film layer, and the refractive index of the substrate, the first low refractive index film layer and the second low refractive index film layer gradually decrease small.
  • the first low refractive index film layer and the second low refractive index film layer are laminated on both the first surface and the second surface, and the first low refractive index film layer is The refractive index film layer is located between the substrate and the second low refractive index film layer, and the refractive index of the substrate, the first low refractive index film layer and the second low refractive index film layer gradually decrease small.
  • the difference between the refractive index of the first low refractive index film layer and the second low refractive index film layer is greater than the refractive index of the substrate and the first low refractive index film layer The difference in refractive index.
  • the difference between the refractive index of the substrate and the refractive index of the first low refractive index film layer is less than 0.25, and the first low refractive index film layer and the second low refractive index film layer are different from each other.
  • the difference in refractive index of the film layer is less than 0.4.
  • the refractive index of the substrate is less than or equal to 1.7.
  • the substrate is a glass substrate, a plastic substrate or a resin substrate.
  • the material of the first low refractive index film layer and the second low refractive index film layer is silicon dioxide or porous silicon oxide.
  • the thickness of each layer of the low refractive index film layer is 80-150 nm, and the total thickness of the low refractive index film layer provided on the first surface or the second surface Less than 300nm.
  • the multiple lenses include: a first lens close to the object side, a second lens close to the image side, and a lens located between the first lens and the second lens At least one intermediate lens of the first lens, the intermediate lens, and the second lens has at least two layers of the low refractive index on the first surface or the second surface of at least part of the lens Film layer, or, at least two layers of the low refractive index film are provided on the first surface and the second surface of at least part of the first lens, the intermediate lens, and the second lens Floor.
  • it further includes: a transparent protective layer, and the at least one low refractive index film layer is located between the protective layer and the substrate.
  • the refractive index of the protective layer is 1.4-1.6.
  • the thickness of the protective layer is 1-20 nm
  • the protective layer is a film layer made of silicon dioxide or magnesium fluoride.
  • a second aspect of the embodiments of the present application provides a camera module, which at least includes the above-mentioned lens, a bracket, a photosensitive element, and a flexible board, the bracket is located between the lens and the flexible board, and the photosensitive element Located on the opposite end of the flexible board and the lens.
  • the reflectance of the lens surface is reduced, the low reflectance of the lens is realized in a large incident angle range, the good anti-glare effect of the lens in a large angle range is ensured, and the imaging of the camera module is improved quality.
  • a third aspect of the embodiments of the present application provides an electronic device, a display screen, a back cover, and at least one of the aforementioned camera modules, where the camera module faces the display screen or the back cover.
  • the reflectance of the lens surface is reduced, the low reflectance of the lens in a larger incident angle range is realized, the good anti-glare effect of the lens in a large angle range is ensured, and the performance of electronic equipment is improved. Shooting effect.
  • the camera module is a front camera module, or the camera module is a rear camera module, or the number of the camera module is at least two, one of which is The camera module is a rear camera module, and the other camera module is a front camera module.
  • FIG. 1 is a schematic diagram of the structure of an electronic device provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of an exploded structure of an electronic device provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a front camera module in an electronic device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an exploded structure of a front camera module in an electronic device provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of the internal structure of the lens in the front camera module of the electronic device provided by an embodiment of the application;
  • FIG. 6 is a schematic cross-sectional view of the substrate and the low-refractive index film layer in the lens provided by an embodiment of the application after being separated;
  • FIG. 7 is a schematic diagram of a cross-sectional structure of a lens provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a cross-sectional structure of a lens provided by an embodiment of the application.
  • FIG. 9 is a schematic cross-sectional view of the substrate and the low refractive index film layer of the lens provided by an embodiment of the application after being separated;
  • FIG. 10 is a schematic diagram of a cross-sectional structure of a lens provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of a cross-sectional structure of a lens provided by an embodiment of the application.
  • FIG. 12a is a schematic cross-sectional structure diagram of each lens in the lens of the electronic device provided by an embodiment of the application;
  • 12b is a schematic cross-sectional structure diagram of each lens in the lens of the electronic device provided by an embodiment of the application;
  • 12c is a schematic cross-sectional structure diagram of each lens in the lens of the electronic device provided by an embodiment of the application;
  • FIG. 13 is a graph showing the reflectance curves of the lenses provided in Scene 1 of the application at different incident angles
  • Fig. 14 is a graph showing the reflectance curves of the lenses provided in Scene 2 of the application at different incident angles;
  • FIG. 15 is a graph of the reflectance curve of the lens provided in Scene 3 of the application at zero incident angle
  • Fig. 16 is a graph showing the reflectance curve of the lens provided in Scene 3 of the application at an incident angle of 30°;
  • FIG. 17 is a graph showing the reflectance curves of the lenses provided in Scene 4 of the application at different incident angles
  • FIG. 18 is a graph showing the reflectance curves of the lenses provided in Scene 5 of the application at different incident angles.
  • 100-mobile phone 100-mobile phone; 10-display; 11-opening; 20a-front camera module; 20b-rear camera module; 21-lens;
  • 212-lens barrel 211-lens; 2111-first lens; 2112, 2112a, 2112b, 2112c-intermediate lens;
  • 2113-second lens 22-filter; 23-bracket; 24-photosensitive element; 25-flexible board; 26-connector;
  • 30-middle frame 31-frame; 32-metal middle plate; 40-circuit board; 50-battery; 60-back cover;
  • 201-substrate 2011-first surface; 2012-second surface; 202-low refractive index film layer; 2021-first low refractive index film layer;
  • An electronic device provided by an embodiment of this application may include, but is not limited to, a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC), a handheld computer, a walkie-talkie, a netbook, a POS machine, and a personal computer.
  • UMPC ultra-mobile personal computer
  • Mobile or fixed terminals with shooting functions such as personal digital assistant (PDA), driving recorder, and security equipment.
  • the mobile phone is the above-mentioned electronic device as an example for description.
  • Figures 1 and 2 respectively show the overall and split structure of the mobile phone.
  • the display screen of the mobile phone 100 provided in the embodiment of the application may be a water drop screen, Liu Haiping, full screen or digging screen (see Figure 1), the following description takes the digging screen as an example.
  • the mobile phone 100 may include a display screen 10 and a back cover 60, and a middle frame 30, a circuit board 40 and a battery 50 may be arranged between the display screen 10 and the back cover 60.
  • the circuit board 40 and the battery 50 can be arranged on the middle frame 30.
  • the circuit board 40 and the battery 50 are arranged on the side of the middle frame 30 facing the back cover 60, or the circuit board 40 and the battery 50 can be arranged on the middle frame 30.
  • the battery 50 can be connected to the charging management module and the circuit board 40 through the power management module.
  • the power management module receives input from the battery 50 and/or the charging management module, and is a processor, internal memory, external memory, display screen 10, and camera module. And power supply such as communication module.
  • the power management module can also be used to monitor the capacity of the battery 50, the number of cycles of the battery 50, and the health status of the battery 50 (leakage, impedance) and other parameters.
  • the power management module may also be provided in the processor of the circuit board 40.
  • the power management module and the charging management module may also be provided in the same device.
  • the display screen 10 may be an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display or a liquid crystal display (Liquid Crystal Display, LCD).
  • OLED Organic Light-Emitting Diode
  • LCD Liquid Crystal Display
  • the back cover 60 may be a metal back cover, a glass back cover, a plastic back cover, or a ceramic back cover.
  • the material of the back cover 60 is not limited.
  • the middle frame 30 may include a metal middle plate 32 and a frame 31.
  • the frame 31 is arranged one round around the outer circumference of the metal middle plate 32.
  • the frame 31 may include a top frame, a bottom frame, a left frame, and a right frame.
  • the top frame, the bottom frame, the left frame, and the right frame enclose the frame 31 in a square ring structure.
  • the metal middle plate 32 may be an aluminum plate, an aluminum alloy, or a magnesium alloy.
  • the frame 31 may be a metal frame or a ceramic frame.
  • the metal middle frame 30 and the frame 31 can be clamped, welded, glued or integrally formed, or the metal middle frame 30 and the frame 31 are fixedly connected by injection molding.
  • the back cover 60 of the mobile phone 100 may be connected with the frame 31 to form a unibody back cover.
  • the mobile phone 100 may include: a display screen 10, a metal middle plate 32, and a battery cover. It may be a back cover formed by a unibody formed by the frame 31 and the back cover 60. In this way, the circuit board 40 and the battery 50 are located in the space enclosed by the metal middle frame 30 and the battery cover.
  • the mobile phone 100 may further include a camera module, and the camera module may include a front camera module 20a and a rear camera module 20b.
  • the rear camera module 20b can be disposed on the side of the metal middle plate 32 facing the rear cover 60, the display screen 10 is provided with an opening 11, and the lens of the rear camera module 20b corresponds to the opening 11.
  • the rear cover 60 is provided with mounting holes for installing a part of the rear camera module 20b.
  • the rear camera module 20b can also be installed on the side of the rear cover 60 facing the metal middle plate 32.
  • the front camera module 20a may be arranged on the side of the metal middle plate 32 facing the display screen 10, or the front camera module 20a may be arranged on the side of the metal middle plate 32 facing the rear cover 60, or the front camera module 20a can also be arranged on the side of the back cover 60 facing the display screen 10, and the metal middle plate 32 is provided with an opening for the lens end of the front camera module 20a to be exposed.
  • the installation positions of the front camera module 20a and the rear camera module 20b include but are not limited to the above description. Among them, in some embodiments, the number of the front camera module 20a and the rear camera module 20b provided in the mobile phone 100 may be 1 or N, and N is a positive integer greater than 1.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the mobile phone 100.
  • the mobile phone 100 may include more or fewer components than those shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the front camera module 20a is taken as an example for description.
  • the front camera module 20a may include: a lens 21, a filter 22 (Filter), a holder 23 (Holder), a photosensitive element 24, a flexible printed circuit 25 (FPC) and
  • the connector 26, the lens 21 is connected to one end of the bracket 23, the other end of the bracket 23 is fixed on one end of the flexible board 25, the connector 26 is fixed on the other end of the flexible board 25, and the connector 26 connects the flexible board 25 with the circuit board.
  • 40 is electrically connected.
  • the bracket 23 and the bottom end of the lens 21 can be connected by welding, clamping, gluing or screwing.
  • the bracket 23 and the flexible circuit board 40 are fixedly connected by bonding, clamping or welding.
  • the material of the bracket 23 can be plastic or metal.
  • the front camera module 20a shown in FIG. 3 is a camera module with a fixed focal length, and when the front camera module 20a is a camera module with a variable focal length, the front camera module 20a may also include a focus module. A group (not shown), a focus module such as a focus motor, and the focus motor can be set on the bracket 23.
  • the rear camera module 20b may also include a lens 21, a filter 22 (Filter), a holder 23 (Holder), a photosensitive element 24, a flexible printed circuit (FPC) 25 and a connector 26 And other structures.
  • the filter 22 may be located between the lens 21 and the bracket 23.
  • the filter 22 may be installed in the hollow area of the bracket 23.
  • the photosensitive element 24 is provided on one end of the flexible board 25. They are electrically connected to each other, and the bracket 23 is arranged around the outer edge of the photosensitive element 24.
  • the filter 22 may be an infrared cut filter (IRcut Filter, IRCF), and the filter 22 may filter infrared light to prevent the infrared light from entering the lens 21 and affecting imaging.
  • IRcut Filter IRcut Filter
  • the photosensitive element 24 may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • the connector 26 is used to electrically connect the flexible board 25 with an image processing unit (ISP) on the circuit board 40, and the image processing unit (ISP) electrically connects with a digital processing unit (DSP).
  • ISP image processing unit
  • DSP digital processing unit
  • the image processing unit (ISP) and the digital processing unit (DSP) can be separately provided on the circuit board 40, or the image processing unit (ISP) and the digital processing unit (DSP) can be integrated together and provided on the circuit board 40.
  • the shutter when taking a picture, the shutter is opened, the light passes through the lens 21 and passes through the filter 22 to the photosensitive element 24, the optical signal is converted into an electrical signal, and the photosensitive element 24 transmits the electrical signal to the ISP through the flexible board 25 and the connector 26.
  • ISP converts electrical signals into digital image signals
  • ISP outputs digital image signals to DSP for processing
  • DSP converts digital image signals into standard RGB, YUV and other format image signals.
  • the lens 21 may include a lens barrel 212 and a plurality of lenses 211 provided in the lens barrel 212.
  • the number of lenses 211 can be 5 (ie 5P), or the number of lenses 211 can also be 6 (ie 6P), or the number of lenses 211 can also be 7 (eg, rear The number of lenses 211 of the camera module 20b may be 7).
  • the lens 21 includes five lenses 211 as an example for description.
  • the number of lenses 211 is five, and the five lenses 211 from the object side to the image side can be: a first lens 2111, three intermediate lenses 2112, and a second lens 2113, for example,
  • the first lens 2111 is close to the object side
  • the second lens 2113 is close to the image side
  • the object side is the side of the subject
  • the image side is the imaging side.
  • the three middle lenses 2112 are located in the first lens 2111 and the second lens.
  • the three lenses 211 can be the middle lens 2112a, the middle lens 2112b, and the middle lens 2112c, respectively.
  • each lens 211 may be a plastic lens (Plastic) or a glass lens (Glass), or some of the lenses 211 may be a plastic lens, and some of the lenses 211 may be a glass lens.
  • a spacer (not shown) can also be arranged between some adjacent lenses 211 to separate two adjacent lenses by a predetermined distance.
  • the outer edge of each lens 211 may be provided with a light-shielding sheet or the outer edge of each lens 211 may be blacked out to shield the stray light in the lens barrel 212.
  • each lens 211 has a side facing the object side and a side facing the image side, that is, the lens 211 has two surfaces, so that light rays entering the lens barrel 212 are likely to be on the surface of the lens 211 and between the two adjacent lenses 211.
  • the more reflective surfaces will increase the reflection scene, and the more stray light ghosts will be formed, which greatly affects the imaging quality of the camera module.
  • at least part of the lens 211 may be as shown in FIG.
  • At least part of the first lens 2111, the second lens 2113, and the intermediate lens 2112 may include a base 201, and the base 201 has two surfaces, a front and a back.
  • at least one low-refractive-index film 202 is provided on at least one of the first surface 2011 and the second surface 2012.
  • at least one low-refractive-index film 202 can be provided on the first surface 2011, or At least one low-refractive-index film layer 202 may be provided on the second surface 2012, or at least one low-refractive-index film 202 may be provided on both the first surface 2011 and the second surface 2012.
  • the number of layers of the low refractive index film 202 may be one layer or multiple layers. For example, as shown in FIG.
  • the low refractive index film layer 202 is a first low refractive index film layer 2021 and a second low refractive index film layer 2022, respectively.
  • the first low refractive index film layer 2021 and the second low refractive index film layer 2022 are stacked, for example, the first The low refractive index film layer 2021 may be located between the second low refractive index film layer 2022 and the substrate 201.
  • the refractive index of the substrate 201 and the refractive index of the low refractive index film 202 are in the direction from the substrate 201 to the low refractive index film 202 (shown by the arrow in FIG. 7).
  • the refractive index of the second low refractive index film layer 2022 is lower than the refractive index of the first low refractive index film layer 2021, and the refractive index of the first low refractive index film layer 2021 is lower than that of the substrate 201.
  • Refractive index is provided by the arrow in FIG. 7
  • the refractive index of the substrate 201 in the lens 211 is the largest, and the refractive index of at least one low refractive index film 202 gradually decreases from the substrate 201 outward.
  • the refractive index of each film layer in the lens 211 is gradually reduced from the inside to the outside of the lens 211, so that when the light irradiates the low refractive index film 202 of the lens 211, it will first contact the outermost low refractive index film.
  • the refractive index of the outermost low-refractive-index film 202 is the lowest, for example, it can be close to the refractive index of air, so that the difference between the refractive index of the outermost low-refractive
  • the reflectivity of the interface is related to the difference in refractive index on both sides of the interface. The larger the difference, the higher the reflectivity, and the smaller the difference, the lower the reflectivity. Therefore, in this embodiment, the outermost low-refractive index film The lower the reflection of light by the layer 202, the lower the reflectivity of the lens 211 to the incident light and the anti-glare effect to ensure that the lens 211 achieves the purpose of low reflection and anti-glare, and reduces the ghost image formed by stray light. .
  • the lens 211 provided in the embodiment of the present application has a low reflectance on the surface of the lens 211 in a larger incident angle range. Therefore, in the embodiment of the present application, the incident light When the angle is larger, the lens still reduces the reflection of incident light.
  • the interference method is used when the high refractive index film layer and the low refractive index film layer are alternately stacked, which is designed for a certain incident angle, and the high refractive index film layer and the low refractive index film layer are alternately stacked to achieve
  • the interference method it is very sensitive to the thickness of the film, so when the incident light is incident obliquely, the thickness of the film changes, so that the reflectivity of the incident light changes greatly at other angles. Therefore, it is impossible to obtain a large angle at the same time in the prior art.
  • this embodiment achieves the purpose of having low reflectivity on the surface of the lens 211 in a larger incident angle range, and ensures that the lens 211 has a good surface reflectivity in a large angle range.
  • the anti-glare effect improves the imaging quality of the camera module.
  • the number of layers of the low refractive index film 202 provided on the first surface 2011 and the second surface 2012 includes but is not limited to the two layers shown in FIG. 6.
  • Three or four low refractive index film layers 202 are provided on at least one of the first surface 2011 and the second surface 2012, and the refractive index of the low refractive index film 202 gradually decreases from the substrate 201 outward.
  • the lens provided by the embodiment of the present application includes a substrate 201 through each lens 211.
  • the substrate 201 has a first surface 2011 facing the object side and a second surface 2012 facing the image side, and the first surface 2011 and the second surface 2012 are At least one low-refractive-index film 202 is provided on at least one surface, and the refractive index of the substrate 201 and the refractive index of the low-refractive-index film 202 gradually decrease from the substrate 201 to the low-refractive-index film 202, In this way, the reflectance of the lens 211 to light is reduced, ghosts and glare are not easily formed, and the lens 211 is guaranteed to achieve the purpose of low reflection and anti-glare.
  • the lens provided by the embodiment of the present application reduces the reflectance of the surface of the lens 211.
  • the low reflectivity of the lens 211 in a large incident angle range is realized, a good anti-glare effect of the lens 211 in a large angle range is ensured, and the imaging quality of the camera module is improved.
  • this embodiment further includes: a transparent protective layer 203, at least one low refractive index film layer 202 is located between the protective layer 203 and the substrate 201, for example, as shown in FIG. 8, A protective layer 203 is provided on the second low refractive index film layer 2022.
  • the second low refractive index film layer 2022 is located between the protective layer 203 and the first low refractive index film layer 2021.
  • the film 202 plays a protective role to prevent the low refractive index film 202 from being damaged.
  • the refractive index of the protective layer 203 may be 1.4 to 1.6.
  • the refractive index of the protective layer 203 may be 1.5, or the refractive index of the protective layer 203 may also be 1.45. Therefore, in this embodiment, the protective layer 203 is also a low refractive index film layer, so that the difference between the second low refractive index film layer 2022 and the refractive index of air is less than 0.6.
  • the protective layer is set When the surface of the lens 201 is incident at 0°, the average surface reflectance of the visible light waveband is less than 0.3%, and when the incident light is 30°, the average surface reflectance of the visible light waveband is less than 0.5%.
  • the protective layer 203 since the thickness of the protective layer 203 is too large, for example, when the protective layer 203 exceeds 20 nm, the protective layer 203 will have a greater impact on the reflection spectrum. Therefore, in the embodiment of the present application, the protective layer 203 The thickness can be 1-20 nm, that is, the thickness of the protective layer 203 should not exceed 20 nm.
  • the thickness of the protective layer 203 can be 10 nm, or the thickness of the protective layer 203 can also be 12 nm.
  • the protective layer 203 may be a transparent film layer made of silicon dioxide.
  • the material of the protective layer 203 includes but is not limited to silicon dioxide, and may also be other transparent low-refractive materials.
  • At least one of the first surface 2011 and the second surface 2012 is laminated with a first low refractive index film layer 2021 and a second low refractive index film layer 2022.
  • a first low refractive index film layer 2021 and a second low refractive index film layer 2022 are laminated on the first surface 2011, and the first low refractive index film layer 2021 is located on the substrate 201 and the second low refractive index film layer 2021.
  • the refractive index of the substrate 201 is greater than that of the first low refractive index film
  • the refractive index of the layer 2021, the refractive index of the first low refractive index film 2021 is greater than the refractive index of the second low refractive index film 2022.
  • a first low refractive index film layer 2021 and a second low refractive index film layer 2022 are laminated on both the first surface 2011 and the second surface 2012.
  • a first low refractive index film layer 2021 and a second low refractive index film layer 2022 are laminated on the first surface 2011, and the substrate 201, the first low refractive index film layer 2021 and the second low refractive index film layer 2021 are laminated.
  • the refractive index of the high-speed film layer 2022 gradually decreases along the direction of the solid arrow in FIG. 10.
  • a first low refractive index film layer 2021 and a second low refractive index film layer 2022 are laminated on the second surface 2012.
  • the first low refractive index film layer 2021 is located between the substrate 201 and the second low refractive index film layer 2022, and The refractive index of the substrate 201, the first low refractive index film layer 2021, and the second low refractive index film layer 2022 gradually decrease along the direction of the dashed arrow in FIG. 10.
  • the two second low refractive index film layers 2022 in order to protect the two second low refractive index film layers 2022, as shown in FIG. 11, there are protective layers 203 on the two second low refractive index film layers 2022, respectively.
  • the thickness, refractive index, and material of, can be referred to above.
  • the refractive index of the substrate 201 is less than or equal to 1.7, for example, the refractive index of the substrate 201 may be 1.5, or the refractive index of the substrate 201 may be 1.6.
  • the refractive index difference between the two low refractive index film layers 202 is greater than the refractive index difference between the substrate 201 and the first low refractive index film layer 2021, for example, the two low refractive index film layers 202
  • the refractive index difference between the substrate 201 and the first low refractive index film 2021 may be 0.3, and the refractive index difference between the substrate 201 and the first low refractive index film 2021 may be 0.2.
  • the refractive index difference between the two low refractive index film layers 202 may also be equal to or smaller than the refractive index difference between the substrate 201 and the first low refractive index film layer 2021.
  • the difference between the refractive index of the substrate 201 and the refractive index of the first low refractive index film 2021 is less than 0.25.
  • the refractive index of the substrate 201 may be 1.5
  • the first low refractive index film The refractive index of the layer 2021 can be 1.4, which can ensure that when the refractive index of the substrate 201 and the first low refractive index film layer 2021 are gradually reduced, the difference in refractive index between the two is small, so that the light passes through the substrate 201 and the first low refractive index When the rate of the film layer 2021, the refraction of the light changes less.
  • the refractive index difference between the first low refractive index film layer 2021 and the second low refractive index film layer 2022 is less than 0.4, for example, when the refractive index of the first low refractive index film layer 2021 is 1.4
  • the refractive index of the second low refractive index film layer 2022 is close to the refractive index of air, which ensures that when light passes through the second low refractive index film layer 2022, the refraction is small.
  • the reflection is also small, so as to achieve the purpose of low reflection of the second low refractive index film layer 2022.
  • the substrate 201 may be a glass substrate, a plastic substrate, or a resin substrate, so that the formed lens 211 may be a glass lens (Glass), or may also be a plastic lens (Plastic lens). ), or it can be a resin lens.
  • the formed lens 211 may be a glass lens (Glass), or may also be a plastic lens (Plastic lens). ), or it can be a resin lens.
  • the material of the first low refractive index film layer 2021 and the second low refractive index film layer 2022 is silicon dioxide or porous silicon oxide.
  • the first low refractive index film layer 2021 may be a low refractive index film layer 202 made of silicon dioxide, or the first low refractive index film layer 2021 may be a low refractive index film layer 202 made of porous silicon oxide;
  • the second low refractive index film layer 2022 may be a low refractive index film layer 202 made of silicon dioxide, or the second low refractive index film layer 2022 may be a low refractive index film layer 202 made of porous silicon oxide.
  • the materials of the first low refractive index film layer 2021 and the second low refractive index film layer 2022 include but are not limited to silicon dioxide or porous silicon oxide, and may also be other low refractive index layers. Film layer made of different materials.
  • each low-refractive-index film 202 is 80-150 nm.
  • the thickness of the first low-refractive-index film 2021 may be 90 nm, and the thickness of the second low-refractive-index film 2022 is 90 nm. H (see FIG. 9 and FIG.
  • the thickness H of the second low refractive index film layer 2022 may be 100 nm, and the thickness H of the second low refractive index film layer 2022 is greater than the thickness of the first low refractive index film layer 2021, or the first low refractive index film layer 2021
  • the thickness H of the second low refractive index film layer 2022 may be 140 nm, and the thickness H of the second low refractive index film layer 2022 may be 120 nm, so that the thickness H of the second low refractive index film layer 2022 is smaller than the thickness of the first low refractive index film layer 2021, or the first low refractive index film layer 2021
  • the thickness of the refractive index film layer 2021 may be 100 nm, and the thickness H of the second low refractive index film layer 2022 may also be 100 nm, so that the thickness H of the second low refractive index film layer 2022 is equal to the thickness of the first low refractive index film layer 2021 .
  • the total thickness of the low refractive index film 202 disposed on the first surface 2011 or the second surface 2012 is less than 300 nm.
  • the total thickness of the first low refractive index film layer 2021 and the second low refractive index film layer 2022 is less than 300 nm, for example, the first low refractive index film layer 2021 and the second low refractive index film layer
  • the total thickness of 2022 may be 260 nm or 280 nm.
  • the total thickness of the three low refractive index film layers 202 is less than 300 nm.
  • the plurality of lenses 211 include: a first lens 2111 close to the object side, a second lens 2113 close to the image side, and at least one intermediate lens located between the first lens 2111 and the second lens 2113 2112, for example, the number of intermediate lenses 2112 may be one, or three (as shown in FIG. 5), or there may be more than four. In this embodiment, the number of the intermediate lenses 2112 is taken as an example.
  • the three intermediate lenses 2112 are the middle lens 2112a, the middle lens 2112b, and the middle lens 2112c.
  • the first surface 2011 and the second surface 2012 of the first lens 2111, the first surface 2011 of the second lens 2113, and the first surface 2011 and the second surface 2012 of each intermediate lens 2112 are provided with at least two layers
  • the first surface 2011 and the second surface 2012 of the lens 2112a, the middle lens 2112b, and the middle lens 2112c are laminated with a first low refractive index film layer 2021 and a second low refractive index film layer 2022, the first surface of the second lens 2113
  • the first low-refractive index film layer 2021 and the second low-refractive index film layer 2022 are laminated in 2011.
  • the first surface 2011 of the first lens 2111 and the adjacent lens 211 are provided with a low refractive index film 202. , So that the reflectance of each surface of the lens 211 is reduced, so that multiple reflections are unlikely to occur between two adjacent lenses, thereby playing an anti-glare effect.
  • the second surface 2012 of the first lens 2111, the first surface 2011 and the second surface 2012 of the middle lens 2112a, the middle lens 2112b and the middle lens 2112c and the second surface 2012 of the middle lens 2112c The first surface 2011 of the lens 2113 is laminated with a first low refractive index film layer 2021 and a second low refractive index film layer 2022. In this way, the reflection between the surfaces of adjacent lenses 211 is reduced.
  • the first surface 2011, the middle lens 2112a, the middle lens 2112b, and the middle lens 2112c of the first lens 2111, the first surface 2011 and the second surface 2012, and the first surface 2011 of the second lens 2113 may be laminated with a second lens.
  • the low-refractive film layer provided on each surface of the multiple lenses 211 in the lens 21 includes but is not limited to those shown in FIGS. 12a and 12b.
  • the first surface 2011 and the first surface of each lens Both surfaces 2022 are provided with a low refractive index film 202.
  • the stray light of one or several lenses will be more obvious due to the lens surface (such as convex surface or concave surface) among the multiple lenses 211, so at this time, considering the cost and efficiency, it can be used in multiple lenses.
  • the low-refractive index film 202 is provided on the lens with obvious stray light in 211 to achieve the effect of optimizing the surface of the lens.
  • the low-refractive index film 202 is not provided on the middle lens 2112c, and the other four lenses Low-refractive index film 202 is provided on both the front and back of the lens.
  • the high- and low-refractive-index coating process is relatively mature, other lenses without low-refractive-index film 202 can be provided with high and low-refractive
  • a low refractive index film 202 is provided on the surface of one or several lenses.
  • the substrate 201 can be a glass substrate, and the glass substrate can be BK7 glass.
  • BK7 is a common borosilicate crown glass (Borosilicate Crown Glass), that is, BK7 glass is used as the substrate 201 in this scenario.
  • a first low-refractive index film 2021 and a second low-refractive index film 2022 are laminated on the first surface 2011 of the substrate 201 to form a lens 211 as shown in FIG. 7. Among them, the parameters of each film layer of the lens 211 are shown in Table 1:
  • the material of the first low refractive index film layer 2021 is porous silicon oxide, and the material of the first low refractive index film layer 2021 is porous silicon oxide.
  • the refractive index (587 nm) of the substrate 201 is 1.52.
  • the refractive index of a low refractive index film 2021 is 1.43
  • the refractive index of the second low refractive index film 2022 is 1.19
  • the thickness of the first low refractive index film 2021 is 90 nm
  • the thickness of the second low refractive index film 2022 It is 112nm.
  • the reflectivity of the lens 211 was tested at an incident angle of 0° and an incident angle of 30°. The test results are shown in Figure 13.
  • the lens 211 provided in this scene 1 is within the visible light wavelength range of 380 to 780 nm, while achieving an average surface reflectance of ⁇ 0.3% at 0° incidence and an average surface reflectance of ⁇ 0.5% at 30° incidence. Therefore, when the first low refractive index film layer 2021 and the second low refractive index film layer 2022 are stacked on the substrate 201, a good low reflection and anti-glare effect can be achieved in the visible light waveband and a ⁇ 30° field of view.
  • the surface of the lens 211 has a low reflectivity in a larger incident angle range. The purpose is to ensure the good anti-glare effect of the lens 211 in a large angle range and improve the imaging quality of the camera module.
  • the substrate 201 may be a plastic substrate, for example, a plastic substrate made of cyclic olefin copolymer (APEL), and a first low refractive index film 2021 is laminated on the first surface 2011 of the substrate 201 And the second low refractive index film layer 2022 to form a lens 211 as shown in FIG. 7.
  • APEL cyclic olefin copolymer
  • Table 2 the parameters of each layer of the lens 211 are shown in Table 2:
  • the material of the first low refractive index film layer 2021 is porous silicon oxide
  • the material of the second low refractive index film layer 2022 is porous silicon oxide.
  • the refractive index (587 nm) of the substrate 201 is 1.54.
  • the refractive index of a low refractive index film 2021 is 1.43
  • the refractive index of the second low refractive index film 2022 is 1.19
  • the thickness of the first low refractive index film 2021 is 90 nm
  • the thickness of the second low refractive index film 2022 It is 112nm.
  • the reflectance of the lens 211 was tested at the incident angle of 0° and 30° respectively. The test results are shown in Figure 14.
  • the lens 211 provided in this scene 1 is within the visible light wavelength range of 380 to 780 nm, while achieving an average surface reflectance of ⁇ 0.3% at 0° incidence and an average surface reflectance of ⁇ 0.5% at 30° incidence. Therefore, when the first low refractive index film layer 2021 and the second low refractive index film layer 2022 are stacked on the substrate 201, a good low reflection and anti-glare effect can be achieved in the visible light waveband and a ⁇ 30° field of view.
  • the reflectivity of the lens 211 at an incident angle of 0° and an incident angle of 30° is less than that of scene 1 at an incident angle of 0° and an incident angle. It is the reflectivity at 30°. Therefore, when the refractive index of the substrate 201 increases, the reflectance of the lens 211 in the field of view of ⁇ 30° decreases with the substrate 201 material of different refractive index.
  • the thickness of the first low refractive index film layer 2021 and the second low refractive index film layer 2022 are increased and decreased by 5 nm, respectively, as shown in Table 3. Show:
  • the material of the first low refractive index film layer 2021 is porous silicon oxide
  • the material of the second low refractive index film layer 2022 is porous silicon oxide.
  • the refractive index (587 nm) of the substrate 201 is 1.54.
  • the refractive index of a low refractive index film 2021 is 1.43
  • the refractive index of the second low refractive index film 2022 is 1.19
  • the thickness of the first low refractive index film 2021 is 85 nm
  • the thickness of the second low refractive index film 2022 Or, the thickness of the first low refractive index film 2021 is 95 nm
  • the thickness of the second low refractive index film 2022 is 117 nm.
  • the reflectivity of the lens 211 of different thicknesses was tested under the incident angle of 0° and the incident angle of 30°. When the incident angle was 0°, the test results are shown in Figure 15.
  • the visible light band is 380 ⁇ 780nm
  • the average reflectivity within is 0.131%; based on the thickness of the first low-refractive-index film 2021 and the second low-refractive-index film 2022 in scene two, the first low-refractive-index film 2021 and the second low-refractive index When the thickness of the film layer 2022 is reduced by 5 nm, the average reflectance in the visible light band from 380 to 780 nm is 0.124%; the original reflectance curve in Fig.
  • the original reflectance curve in scene 2 is the reflectance curve of the lens in scene 2 when the incident angle is 0°.
  • the first low refractive index film layer 2021 and the second low refractive index film layer 2022 When the thickness is not increased or decreased by 5 nm, and the incident angle is 0°, the average reflectance in the visible light band from 380 to 780 nm is 0.117%.
  • the incident angle is 30°, as shown in FIG. 16, on the basis of the thickness of the first low-refractive-index film 2021 and the second low-refractive-index film 2022 in the second scene, the first low-refractive-index film 2021 and When the second low refractive index film layer 2022 is increased by 5 nm each, the average reflectance in the visible light band from 380 to 780 nm is 0.146%.
  • the first low refractive index film layer 2021 and the second low refractive index film layer 2022 are Based on the thickness, when the first low refractive index film layer 2021 and the second low refractive index film layer 2022 are each reduced by 5 nm, the average reflectance of the visible light band from 380 to 780 nm is 0.207%; the original reflectance curve in Fig. 16 is Fig. 14 The reflectance curve when the incident angle is 30°, that is, the original reflectance curve in Figure 16 is the reflectance curve of the lens in scene 2 when the incident angle is 30°.
  • the lens 211 provided in the third scenario has an average surface reflectance of less than 0.3% at 0° incidence and an average surface reflectance of less than 0.5% at 30° incidence within the visible light wavelength range of 380 to 780 nm. Therefore, when the first low refractive index film layer 2021 and the second low refractive index film layer 2022 are stacked on the substrate 201, the first low refractive index film layer 2021 and the second low refractive index film layer 2022 are within a tolerance of ⁇ 5 nm. , It can still achieve a good anti-glare effect within the visual field of ⁇ 30° in the visible light waveband.
  • the average surface reflectance of the lens 211 at 0° incidence is greater than that of the scenario Second, the average surface reflectance at 0° incidence.
  • the average surface reflectance of the lens 211 at 30° incidence is lower than scene two
  • the average surface reflectance of the lens 211 at 30° incidence is greater than the scene Second, the average surface reflectance at 30° incidence.
  • the thickness of the low refractive index film 202 increases, the reflectivity for large angles of incidence decreases.
  • the thickness of the low refractive index film 202 decreases, the The reflectivity of the angular incidence angle increases, and the thickness of the low-refractive index film 202 increases or decreases, and the average surface reflectivity of the lens 211 at 0° incidence increases.
  • the substrate 201 may be polystyrene (Polystyrene, PS for short), and a first low refractive index film layer 2021 and a second low refractive index film layer 2022 are laminated on the first surface 2011 of the substrate 201, as shown in FIG. 7 shown in the lens 211.
  • the parameters of each layer of the lens 211 are shown in Table 4:
  • the material of the first low refractive index film layer 2021 is SiO2, and the material of the second low refractive index film layer 2022 is porous silicon oxide.
  • the refractive index of the refractive index film 2021 is 1.47
  • the refractive index of the second low refractive index film 2022 is 1.19
  • the thickness of the first low refractive index film 2021 is 88 nm
  • the thickness of the second low refractive index film 2022 is 112 nm .
  • the reflectivity of the lens 211 was tested at an incident angle of 0° and an incident angle of 30°.
  • the test results are shown in Fig. 17.
  • the incident angle is 0°
  • the average reflection in the visible light band from 380 to 780 nm The rate is 0.119%
  • the incident angle is 30°
  • the average reflectance in the visible light band from 380 to 780 nm is 0.181%. Therefore, in the visible light wavelength range of 380 to 780 nm, the average surface reflectance at 0° incidence is less than 0.3%, and the average surface reflectance at 30° incidence is less than 0.5%.
  • the substrate 201 materials with different refractive indexes achieve good low reflection in the visible light waveband ⁇ 30° field of view. Anti-glare effect.
  • a first low-refractive-index film layer 2021 and a second low-refractive-index film layer 2022 are laminated on the first surface 2011 of the substrate 201, and at the same time, a protective layer 203 is provided on the second low-refractive index film layer 2022.
  • the lens 211 shown in FIG. 8 is formed, and the parameters of each film layer of the lens 211 are shown in Table 5:
  • the substrate 201 is polystyrene (PS), the material of the first low refractive index film 2021 is SiO2, the material of the second low refractive index film 2022 is porous silicon oxide, and the material of the protective layer 203 is SiO2, wherein the refractive index (587nm) of the substrate 201 is 1.59, the refractive index of the first low refractive index film 2021 is 1.47, the refractive index of the second low refractive index film 2022 is 1.19, and the refractive index of the protective layer 203 is 1.43, the thickness of the first low refractive index film 2021 is 88 nm, the thickness of the second low refractive index film 2022 is 112 nm, and the thickness of the protective layer 203 is 10 nm.
  • PS polystyrene
  • the material of the first low refractive index film 2021 is SiO2
  • the material of the second low refractive index film 2022 is porous silicon oxide
  • the material of the protective layer 203 is
  • the reflectivity of the lens 211 was tested at an incident angle of 0° and an incident angle of 30°.
  • the test results are shown in Fig. 18.
  • the incident angle is 0°
  • the average reflection in the visible light band from 380 to 780 nm The rate is 0.161%
  • the incident angle is 30°
  • the average reflectance in the visible light band from 380 to 780 nm is 0.218%. Therefore, when the protective layer 203 is added, the average surface reflectance at 0° incidence is less than 0.3%, and the average surface reflectance at 30° incidence is less than 0.5% in the visible light wavelength range of 380 to 780 nm. Therefore, a good low-reflection and anti-glare effect is still achieved within the visual field of ⁇ 30° in the visible light waveband.
  • the average reflectivity of the lens 211 at an incident angle of 0° is greater than that in scene four at an incident angle of The average reflectivity at 0° (0.119%)
  • the average reflectivity of the lens 211 at an incident angle of 30° is greater than the average reflectivity of scene 4 at an incident angle of 0° (0.181%)
  • the protective layer 203 is added, the low refractive index film 202 is protected, but the refractive index of the protective layer 203 is greater than the refractive index of the second low refractive index film 2022, so when the light enters the lens 211, at this time
  • the light first irradiates the protective layer 203, and the refractive index of the protective layer 203 is greater than the refractive index of the second low refractive index film layer 2022, so the reflection of the protective layer 203 is greater than the reflection of the second low
  • the protective layer 203 when the protective layer 203 is added, it can still ensure that the average surface reflectance at 0° incidence is ⁇ 0.3%, and the average surface reflectance at 30° incidence is ⁇ 0.5%. Therefore, a good low-reflection and anti-glare effect is still achieved within the visual field of ⁇ 30° in the visible light waveband.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or Indirect connection through an intermediate medium can be the internal communication between two elements or the interaction between two elements.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or Indirect connection through an intermediate medium can be the internal communication between two elements or the interaction between two elements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例提供一种镜头、摄像模组和电子设备,电子设备可以包括手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、对讲机、上网本、POS机、个人数字助理(personal digital assistant,PDA)、可穿戴设备、虚拟现实设备、无线U盘、蓝牙音响/耳机、或车载前装等拍摄的移动或固定终端,通过将镜片的基底上设有折射率逐渐减小的低折射率膜层,这样降低了镜片表面对入射光的反射,实现了镜片在较大的入射角范围内的低反射率,确保了镜片在大角度范围内良好的防眩光效果,提高了摄像模组的成像质量。

Description

一种镜头、摄像模组和电子设备
本申请要求于2020年02月25日提交中国专利局、申请号为202010117747.0、申请名称为“一种镜头、摄像模组和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及终端技术领域,特别涉及一种镜头、摄像模组和电子设备。
背景技术
随着智能手机的不断发展,拍摄功能对于电子设备(例如手机、平板等)来说已经是不可或缺的功能,为了得到良好的影像品质及摄像效果,电子设备会安装多个摄像模组来提供广泛的拍摄功能。
目前,摄像装置主要包括镜头、支撑座、滤光片、感光元件和柔性电路板(FPC)。其中,镜头包括镜筒和设置在镜筒内的透镜组,透镜组往往包括多个镜片,例如,随着对摄像模组画质的要求不断提高,镜头中的镜片数目不断增加,从3P(即3个镜片)、4P(4个镜片)发展到6P(6个镜片),7P(7个镜片),其中,从光经过镜头中的镜片时,镜片表面以及相邻两片镜片的表面产生反射,最终在传感器上形成鬼影和眩光。而随着镜片数目的不断增加,反射面也在不断增加,严重影响摄像模组的成像质量,所以,会在镜片上采用多层镀膜来防止眩光,具体的,在镜片上设置多层交替排列的高折射率膜层和低折射率膜层,通过高折射率膜层和低折射率膜层的交替排列产生干涉相消的原理达到减小反射的目的。
然后,采用高折射率膜层和低折射率膜层交替排列时,是通过光程差满足要求时才达到干涉相消以减小反射,这样使得镜片可以在其中一个入射角(例如入射角为0°,入射光垂直入射)下获得较低的表面反射率,无法同时获得大角度下低的表面反射率,所以有效降低镜片表面的反射率成为迫切需求。
发明内容
本申请提供一种镜头、摄像模组和电子设备,降低了镜片表面对入射光的反射,实现了镜片在较大的入射角范围内的低反射率,确保了镜片在大角度范围内良好的防眩光效果,提高了摄像模组的成像质量。
本申请第一方面提供一种镜头,包括:镜筒以及设在所述镜筒内的多个镜片;
至少部分所述镜片包括:基底,所述基底具有朝向物方的第一表面和朝向像方的第二表面,且所述第一表面和所述第二表面中的至少一个表面上设有至少一层低折射率膜层,且所述基底的折射率和所述低折射率膜层的折射率从所述基底到所述低折射率膜层的方向上逐渐减小。
本申请实施例提供的镜头,通过至少部分所述镜片包括:基底,所述基底具有朝向物方的第一表面和朝向像方的第二表面,且所述第一表面和所述第二表面中的至少一个表面 上设有至少一层低折射率膜层,且所述基底的折射率和所述低折射率膜层的折射率从所述基底到所述低折射率膜层的方向上逐渐减小,这样降低了镜片表面对入射光的反射率,不易形成鬼影和眩光,确保了镜片达到低反射且防眩光的目的,因此,本申请实施例提供的镜头,降低了镜片表面的反射率,而且实现了镜片在较大的入射角范围内的低反射率,与现有技术相比,确保了镜片在大角度范围内良好的防眩光效果,提高了摄像模组的成像质量。
在一种可能的实现方式中,所述第一表面和所述第二表面中的至少一个表面上层叠设有第一低折射率膜层和第二低折射率膜层,所述第一低折射率膜层位于所述基底和所述第二低折射率膜层之间,且所述基底、所述第一低折射率膜层和所述第二低折射率膜层的折射率逐渐减小。
在一种可能的实现方式中,所述第一表面和所述第二表面上均层叠设有所述第一低折射率膜层和所述第二低折射率膜层,所述第一低折射率膜层位于所述基底和所述第二低折射率膜层之间,且所述基底、所述第一低折射率膜层和所述第二低折射率膜层的折射率逐渐减小。
在一种可能的实现方式中,所述第一低折射率膜层与所述第二低折射率膜层的折射率之差大于所述基底的折射率与所述第一低折射率膜层的折射率的差值。
在一种可能的实现方式中,所述基底的折射率与所述第一低折射率膜层的折射率的差值小于0.25,所述第一低折射率膜层与所述第二低折射率膜层的折射率之差小于0.4。
在一种可能的实现方式中,所述基底的折射率小于等于1.7。
在一种可能的实现方式中,所述基底为玻璃基板、塑料基板或树脂基板。
在一种可能的实现方式中,所述第一低折射率膜层和所述第二低折射率膜层的材料为二氧化硅或多孔氧化硅。
在一种可能的实现方式中,每层所述低折射率膜层的厚度为80~150nm,且所述第一表面或所述第二表面上设置的所述低折射率膜层的总厚度小于300nm。
在一种可能的实现方式中,所述多个镜片包括:靠近所述物方的第一镜片、靠近所述像方的第二镜片以及位于所述第一镜片和所述第二镜片之间的至少一个中间镜片,且所述第一镜片、所述中间镜片、所述第二镜片中的至少部分镜片的所述第一表面或所述第二表面设有至少两层所述低折射率膜层,或者,所述第一镜片、所述中间镜片、所述第二镜片中的至少部分镜片的所述第一表面和所述第二表面均设有至少两层所述低折射率膜层。
在一种可能的实现方式中,还包括:透明的保护层,所述至少一层低折射率膜层位于所述保护层和所述基底之间。
在一种可能的实现方式中,所述保护层的折射率为1.4~1.6。
在一种可能的实现方式中,所述保护层的厚度为1~20nm,且所述保护层为二氧化硅或氟化镁制成的膜层。
本申请实施例第二方面提供一种摄像模组,至少包括:上述所述的镜头、支架、感光元件和柔性板,所述支架位于所述镜头和所述柔性板之间,所述感光元件位于所述柔性板与所述镜头相对的一端上。
通过包括上述镜头,降低了镜片表面的反射率,实现了镜片在较大的入射角范围内的低反射率,确保了镜片在大角度范围内良好的防眩光效果,提高了摄像模组的成像质量。
本申请实施例第三方面提供一种电子设备,显示屏、后盖和至少一个上述所述的摄像模组,所述摄像模组朝向所述显示屏或者朝向所述后盖。
通过包括上述摄像模组,降低了镜片表面的反射率,实现了镜片在较大的入射角范围内的低反射率,确保了镜片在大角度范围内良好的防眩光效果,提高了电子设备的拍摄效果。
在一种可能的实现方式中,所述摄像模组为前置摄像模组,或者所述摄像模组为后置摄像模组,或者,所述摄像模组的数量为至少两个,其中一个所述摄像模组为后置摄像模组,另一个所述摄像模组为前置摄像模组。
附图说明
图1为本申请一实施例提供的电子设备的结构示意图;
图2为本申请一实施例提供的电子设备的爆炸结构示意图;
图3为本申请一实施例提供的电子设备中前置摄像模组的结构示意图;
图4为本申请一实施例提供的电子设备中前置摄像模组的爆炸结构示意图;
图5为本申请一实施例提供的电子设备中前置摄像模组中镜头的内部结构示意图;
图6为本申请一实施例提供的镜片中基底与低折射率膜层拆分后的剖面示意图;
图7为本申请一实施例提供的镜片的剖面结构示意图;
图8为本申请一实施例提供的镜片的剖面结构示意图;
图9为本申请一实施例提供的镜片中基底与低折射率膜层拆分后的剖面示意图;
图10为本申请一实施例提供的镜片的剖面结构示意图;
图11为本申请一实施例提供的镜片的剖面结构示意图;
图12a为本申请一实施例提供的电子设备中镜头内各个镜片的剖面结构示意图;
图12b为本申请一实施例提供的电子设备中镜头内各个镜片的剖面结构示意图;
图12c为本申请一实施例提供的电子设备中镜头内各个镜片的剖面结构示意图;
图13为本申请场景一提供的镜片在不同入射角下的反射率曲线图;
图14为本申请场景二提供的镜片在不同入射角下的反射率曲线图;
图15为本申请场景三提供的镜片在零入射角下的反射率曲线图;
图16为本申请场景三提供的镜片在30°入射角下的反射率曲线图;
图17为本申请场景四提供的镜片在不同入射角下的反射率曲线图;
图18为本申请场景五提供的镜片在不同入射角下的反射率曲线图。
附图标记说明:
100-手机;10-显示屏;11-开孔;20a-前置摄像模组;20b-后置摄像模组;21-镜头;
212-镜筒;211-镜片;2111-第一镜片;2112、2112a、2112b、2112c-中间镜片;
2113-第二镜片;22-滤光片;23-支架;24-感光元件;25-柔性板;26-连接器;
30-中框;31-边框;32-金属中板;40-电路板;50-电池;60-后盖;
201-基底;2011-第一表面;2012-第二表面;202-低折射率膜层;2021-第一低折射率膜层;
2022-第二低折射率膜层;203-保护层。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请,下面将结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供的一种电子设备,可以包括但不限于为手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、对讲机、上网本、POS机、个人数字助理(personal digital assistant,PDA)、行车记录仪、安防设备等具有拍摄功能的移动或固定终端。
本申请实施例中,以手机为上述电子设备为例进行说明,图1和图2分别示出了手机的整体和拆分结构,本申请实施例提供的手机100的显示屏可以为水滴屏、刘海屏、全面屏或者挖孔屏(参见图1所示),下述描述以挖孔屏为例进行说明。参见图2所示,手机100可以包括:显示屏10和后盖60,显示屏10与后盖60之间可以设置中框30、电路板40和电池50。其中,电路板40和电池50可以设置在中框30上,例如,电路板40与电池50设置在中框30朝向后盖60的一面上,或者电路板40与电池50可以设置在中框30朝向显示屏10的一面上。
电池50可以通过电源管理模块与充电管理模块和电路板40相连,电源管理模块接收电池50和/或充电管理模块的输入,并为处理器、内部存储器、外部存储器、显示屏10、摄像模组以及通信模块等供电。电源管理模块还可以用于监测电池50容量,电池50循环次数,电池50健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块也可以设置于电路板40的处理器中。在另一些实施例中,电源管理模块和充电管理模块也可以设置于同一个器件中。
显示屏10可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏,也可以为液晶显示屏(Liquid Crystal Display,LCD)。
后盖60可以为金属后盖,也可以为玻璃后盖,还可以为塑料后盖,或者,还可以为陶瓷后盖,本申请实施例中,对后盖60材质不作限定。
中框30可以包括金属中板32和边框31。边框31围绕金属中板32的外周设置一周。一般常说,边框31可以包括顶边框、底边框、左侧边框和右侧边框,顶边框、底边框、左侧边框和右侧边框围成方环结构的边框31。其中,金属中板32可以为铝板,也可以为铝合金,还可以为镁合金。边框31可以为金属边框,也可以为陶瓷边框。其中,金属中框30和边框31之间可以卡接、焊接、粘合或一体成型,或者金属中框30与边框31之间通过注塑固定相连。
需要说明的是,在一些示例中,手机100的后盖60可以与边框31相连形成一体成型(Unibody)后盖,例如手机100可以包括:显示屏10、金属中板32和电池盖,电池盖可以为边框31和后盖60一体成型(Unibody)形成的后盖。这样电路板40和电池50位于金属中框30和电池盖围成的空间中。
其中,为了实现拍摄功能,手机100还可以包括:摄像模组,摄像模组可以包括前置摄像模组20a和后置摄像模组20b。其中,后置摄像模组20b可以设置在金属中板32朝向后盖60的一面上,显示屏10上开设开孔11,后置摄像模组20b的镜头与开孔11相对应。后盖60上开设可供后置摄像模组20b的部分区域安装的安装孔,当然,后置摄像模组20b也可以安装在后盖60朝向金属中板32的一面上。前置摄像模组20a可以设在金属中板32 朝向显示屏10的一面上,或者前置摄像模组20a可以设在金属中板32朝向后盖60的一面上,或者,前置摄像模组20a还可以设在后盖60朝向显示屏10的一面上,金属中板32上开设可供前置摄像模组20a的镜头端裸露的开口。本申请实施例中,前置摄像模组20a和后置摄像模组20b的设置位置包括但不限于上述描述。其中,在一些实施例中,手机100内设置的前置摄像模组20a和后置摄像模组20b的数量可以为1个或N个,N为大于1的正整数。
可以理解的是,本申请实施例示意的结构并不构成对手机100的具体限定。在本申请另一些实施例中,手机100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
基于上述描述,本申请实施例中,以前置摄像模组20a为例进行说明。
参见图3和图4所示,前置摄像模组20a可以包括:镜头21、滤光片22(Filter)、支架23(Holder)、感光元件24、柔性板25(Flexible Printed Circuit,FPC)和连接器26,镜头21与支架23的一端相连,支架23的另一端固定在柔性板25的一端上,连接器26固定在柔性板25的另一端上,连接器26将柔性板25与电路板40电性相连。支架23与镜头21的底端可以通过焊接、卡接、粘合或螺纹连接。支架23和柔性电路板40之间通过粘合、卡接或焊接方式固定相连。支架23的材料可以为塑胶或者金属材料。需要说明是,图3示出的前置摄像模组20a为焦距固定的摄像模组,当前置摄像模组20a为焦距可变的摄像模组时,前置摄像模组20a还可以包括对焦模组(未示出),对焦模组例如对焦马达,对焦马达可以设在支架23上。在一些其他示例中,后置摄像模组20b也可以包括镜头21、滤光片22(Filter)、支架23(Holder)、感光元件24、柔性板25(Flexible Printed Circuit,FPC)和连接器26等结构。
其中,滤光片22可以位于镜头21与支架23之间,例如滤光片22可以安装在支架23的镂空区域,感光元件24设在柔性板25的一端上,感光元件24与柔性板25之间电性相连,支架23围设在感光元件24的外边缘。
本申请实施例中,滤光片22可以为红外截止滤光片(IR cut Filter,IRCF),滤光片22可以将红外光线进行滤除,防止红外光线进入镜头21对成像造成影响。
感光元件24可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。连接器26用于将柔性板25与电路板40上的图像处理单元(Image Signal Processing,ISP)电连接,图像处理单元(ISP)与数字处理单元(Digital Signal Processing,DSP)电连接。其中,图像处理单元(ISP)和数字处理单元(DSP)可以单独设置在电路板40上,或者,图像处理单元(ISP)和数字处理单元(DSP)可以集成在一起设在电路板40上。例如,拍照时,打开快门,光线通过镜头21并经过滤光片22传递到感光元件24上,光信号转换为电信号,感光元件24将电信号通过柔性板25和连接器26传递给ISP处理,ISP将电信号转换成数字图像信号,ISP将数字图像信号输出到DSP加工处理,DSP将数字图像信号转换成标准的RGB、YUV等格式的图像信号。
本申请实施例中,如图4所示,镜头21可以包括:镜筒212和设在镜筒212内的多个镜片211。例如,如图4所示,镜片211的数量可以为5个(即5P),或镜片211的数量 还可以6个(即6P),或者,镜片211的数量还可以为7个(例如,后置摄像模组20b的镜片211数量可以为7个)。本实施例中,具体以镜头21中包括5个镜片211为例进行说明。
示例性的,如图5所示,镜片211的数量为5个,5个镜片211从物方到像方可以依次为:第一镜片2111、3个中间镜片2112和第二镜片2113,例如,第一镜片2111靠近物方,第二镜片2113靠近像方,物方侧为被拍摄对象的一侧,像方侧为成像的一侧,3个中间镜片2112位于第一镜片2111和第二镜片2113之间,其中,3个镜片211可以分别为中间镜片2112a、中间镜片2112b和中间镜片2112c。其中,各个镜片211可以为塑胶透镜(Plastic),也可以为玻璃透镜(Glass),或者,多个镜片211中部分镜片211可以为塑胶透镜,部分镜片211可以为玻璃透镜。部分相邻镜片211之间还可以设置隔片(未示出)以将相邻两个透镜隔开预设距离。各个镜片211的外边缘可以设置遮光片或者各个镜片211的外边缘涂黑处理,以对镜筒212内的杂散光进行遮挡。
其中,由于每个镜片211具有朝向物方的一面和朝向像方的一面,即镜片211具有两个表面,这样光线进入镜筒212后易在镜片211的表面以及相邻两个镜片211之间的表面上进行反射,由于当镜片211较多,这样反射面越多,增加了形成反射的场景,形成的杂光鬼影越多,极大影响摄像模组的成像质量。为此,本申请实施例中,为了降低镜片211表面的反射,至少部分镜片211可以如图6所示,可以包括:基底201,基底201具有朝向物方的第一表面2011和朝向像方的第二表面2012,例如,第一镜片2111、第二镜片2113和中间镜片2112中的至少部分镜片可以包括基底201,且基底201具有正反两个表面。且第一表面2011和第二表面2012中的至少一个表面上设有至少一层低折射率膜层202,例如,可以在第一表面2011上设置至少一层低折射率膜层202,或者也可以在第二表面2012上设置至少一层低折射率膜层202,或者可以在第一表面2011和第二表面2012上均设置至少一层低折射率膜层202。其中,低折射率膜层202的层数可以为一层或者也可以为多层,例如,如图6所示,镜片211的第一表面2011上设置两层低折射率膜层202,两层低折射率膜层202分别为第一低折射率膜层2021和第二低折射率膜层2022,第一低折射率膜层2021和第二低折射率膜层2022层叠设置,例如,第一低折射率膜层2021可以位于第二低折射率膜层2022和基底201之间。
其中,本申请实施例中,如图7所示,基底201的折射率和低折射率膜层202的折射率从基底201到低折射率膜层202的方向(图7中的箭头所示的方向)上逐渐减小,例如,第二低折射率膜层2022的折射率低于第一低折射率膜层2021的折射率,第一低折射率膜层2021的折射率低于基底201的折射率。
所以,本申请实施例中,镜片211中基底201的折射率最大,至少一层低折射率膜层202的折射率从基底201开始向外逐渐减小。本实施例中,通过将镜片211中的各个膜层的折射率从镜片211内向外逐渐减小,这样光线照射到镜片211的低折射率膜层202时,首先与最外侧的低折射率膜层202接触,而最外侧的低折射率膜层202的折射率最低,例如可以接近空气的折射率,这样最外侧的低折射率膜层202与空气的折射率之差较小,而光在界面的反射率的高低与界面两侧的折射率差值相关,差值越大,反射率越高,差值越小,反射率越低,所以本实施例中,最外侧的低折射率膜层202对光线的反射越小,这样降低了镜片211对入射光的反射率,起到了防眩光的作用,确保了镜片211达到低反射且 防眩光的目的,减小杂散光线形成的鬼影。
同时,本申请实施例中,由于入射光在斜入射时,镜片的各个膜层的折射率仍然保持逐渐减小的渐变,所以入射光斜入射时,镜片仍然可以保持低的反射率,而且本实施例中,经测试(详见场景一至场景五),本申请实施例提供的镜片211在较大的入射角范围内镜片211表面具有低反射率,所以本申请实施例中,入射光的入射角较大时镜片仍对入射光的反射起到降低的作用。
而现有技术中高折射率膜层和低折射率膜层交替叠加时采用的是干涉方法,是针对某一入射角进行的设计,而采用高折射率膜层和低折射率膜层交替叠加实现干涉方法时,对膜层的厚度很敏感,这样当入射光斜入射时膜层厚度发生变化,这样入射光在其他角度下反射率产生较大变化,所以,现有技术中无法同时获得大角度下低的表面反射率,所以与现有技术相比,本实施例中,实现了在较大的入射角范围内镜片211表面具有低反射率的目的,确保了镜片211在大角度范围内良好的防眩光效果,提高了摄像模组的成像质量。
其中,本申请实施例中,第一表面2011和第二表面2012上设置的低折射率膜层202的层数包括但不限于为图6所示的两层,在一些其他示例中,也可以在第一表面2011和第二表面2012中的至少一面上设有3层或4层低折射率膜层202,且低折射率膜层202的折射率从基底201开始向外逐渐减小。
本申请实施例提供的镜头,通过每个镜片211包括:基底201,基底201具有朝向物方的第一表面2011和朝向像方的第二表面2012,且第一表面2011和第二表面2012中的至少一个表面上设有至少一层低折射率膜层202,且基底201的折射率和低折射率膜层202的折射率从基底201到低折射率膜层202的方向上逐渐减小,这样降低了镜片211对光线的反射率,不易形成鬼影和眩光,确保了镜片211达到低反射且防眩光的目的,因此,本申请实施例提供的镜头,降低了镜片211表面的反射率,实现了镜片211在较大的入射角范围内的低反射率,确保了镜片211在大角度范围内良好的防眩光效果,提高了摄像模组的成像质量。
在一种可能的实现方式中,本实施例中,还包括:透明的保护层203,至少一层低折射率膜层202位于保护层203和基底201之间,例如,如图8所示,第二低折射率膜层2022上设置保护层203,第二低折射率膜层2022位于保护层203和第一低折射率膜层2021之间,通过该保护层203对最外侧的低折射率膜层202起到保护作用,防止低折射率膜层202受到损坏。
本申请实施例中,保护层203的折射率可以为1.4~1.6,例如,保护层203的折射率可以为1.5,或者保护层203的折射率还可以为1.45。所以,本实施例中,保护层203也为低折射率膜层,这样与第二低折射率膜层2022以及空气折射率之差小于0.6,经测试(参见下述场景五),设置保护层时,镜片201表面对入射光在0°入射时可见光波段的平均表面反射率<0.3%,30°入射时可见光波段的平均表面反射率<0.5%。本实施例中,由于保护层203的厚度过大时,例如,该保护层203超过20nm时,保护层203会对反射光谱产生较大的影响,所以,本申请实施例中,保护层203的厚度可以为1~20nm,即保护层203的厚度不宜超过20nm,例如,保护层203的厚度可以为10nm,或者保护层203的厚度还可以为12nm。本申请实施例中,保护层203可以为二氧化硅制成的透明膜层,当然,保护层203的材料包括但不限于为二氧化硅,还可以为其他透明的低折射材料。
在一种可能的实现方式中,本申请实施例中,第一表面2011和第二表面2012中的至少一个表面上层叠设有第一低折射率膜层2021和第二低折射率膜层2022,例如,如图8所示,第一表面2011上层叠设有第一低折射率膜层2021和第二低折射率膜层2022,第一低折射率膜层2021位于基底201和第二低折射率膜层2022之间,且基底201、第一低折射率膜层2021和第二低折射率膜层2022的折射率逐渐减小,例如,基底201的折射率大于第一低折射率膜层2021的折射率,第一低折射率膜层2021的折射率大于第二低折射率膜层2022的折射率。
或者,如图9所示,第一表面2011和第二表面2012上均层叠设有第一低折射率膜层2021和第二低折射率膜层2022。例如,如图10所示,第一表面2011上层叠设有第一低折射率膜层2021和第二低折射率膜层2022,基底201、第一低折射率膜层2021和第二低折射率膜层2022的折射率沿着图10中的实线箭头的方向逐渐减小。第二表面2012上层叠设有第一低折射率膜层2021和第二低折射率膜层2022,第一低折射率膜层2021位于基底201和第二低折射率膜层2022之间,且基底201、第一低折射率膜层2021和第二低折射率膜层2022的折射率沿着图10中的虚线箭头的方向逐渐减小。
本申请实施例中,为了对两个第二低折射率膜层2022起到保护作用,如图11所示,在两个第二低折射率膜层2022上分别有保护层203,保护层203的厚度、折射率以及材料可以参见上述。
本申请实施例中,基底201的折射率小于等于1.7,例如,基底201的折射率可以为1.5,或者基底201的折射率可以为1.6。
在一种可能的实现方式中,两个低折射率膜层202的折射率之差大于基底201与第一低折射率膜层2021的折射率之差,例如,两个低折射率膜层202的折射率之差可以为0.3,基底201与第一低折射率膜层2021的折射率之差可以为0.2,这样使得第二低折射率膜层2022的折射率较小,接近于空气的折射率,确保光线经过第二低折射率膜层2022时,折射较小,反射也较小,从而实现第二低折射率膜层2022低反射的目的,光线穿过第二低折射率膜层2022经过第一低折射率膜层2021时,折射增大,从而达到缩短光程的目的。当然,在一些其他示例中,两个低折射率膜层202的折射率之差也可以等于或小于基底201与第一低折射率膜层2021的折射率之差。
在一种可能的实现方式中,基底201的折射率与第一低折射率膜层2021的折射率的差值小于0.25,例如,基底201的折射率可以为1.5时,第一低折射率膜层2021的折射率可以为1.4,这样可以确保基底201与第一低折射率膜层2021的折射率逐渐减小时,两者的折射率相差较小,从而使得光线经过基底201和第一低折射率膜层2021时,光线的折射变化较小。
在一种可能的实现方式中,第一低折射率膜层2021与第二低折射率膜层2022的折射率之差小于0.4,例如,当第一低折射率膜层2021的折射率为1.4时,第二低折射率膜层2022的折射率可以为1.1,这样第二低折射率膜层2022的接近于空气的折射率,确保光线经过第二低折射率膜层2022时,折射较小,反射也较小,从而实现第二低折射率膜层2022低反射的目的。
在一种可能的实现方式中,基底201可以为玻璃基板,也可以为塑料基板,或者也可以为树脂基板,使得形成的镜片211可以为玻璃镜片(Glass),或者也可以为塑料镜片 (Plastic),或者可以为树脂镜片。
在一种可能的实现方式中,第一低折射率膜层2021和第二低折射率膜层2022的材料为二氧化硅或多孔氧化硅。例如,第一低折射率膜层2021可以为二氧化硅制成的低折射率膜层202,或者第一低折射率膜层2021可以为多孔氧化硅制成的低折射率膜层202;第二低折射率膜层2022可以为二氧化硅制成的低折射率膜层202,或者第二低折射率膜层2022可以为多孔氧化硅制成的低折射率膜层202。需要说明的是,本实施例中,第一低折射率膜层2021和第二低折射率膜层2022的材料为包括但不限于为二氧化硅或多孔氧化硅,还可以为其他低折射率的材料制成的膜层。
在一种可能的实现方式中,每层低折射率膜层202的厚度为80~150nm,例如,第一低折射率膜层2021的厚度可以为90nm,第二低折射率膜层2022的厚度H(参见图9所示和图6所示)可以为100nm,第二低折射率膜层2022的厚度H大于第一低折射率膜层2021的厚度,或者,第一低折射率膜层2021的厚度可以为140nm,第二低折射率膜层2022的厚度H可以为120nm,这样第二低折射率膜层2022的厚度H小于第一低折射率膜层2021的厚度,或者,第一低折射率膜层2021的厚度可以为100nm,第二低折射率膜层2022的厚度H也可以为100nm,这样第二低折射率膜层2022的厚度H等于第一低折射率膜层2021的厚度。
本申请实施例中,第一表面2011或第二表面2012上设置的低折射率膜层202的总厚度小于300nm,例如,当第一表面2011上设置第一低折射率膜层2021和第二低折射率膜层2022时,第一低折射率膜层2021和第二低折射率膜层2022的厚度之和小于300nm,例如,第一低折射率膜层2021和第二低折射率膜层2022的厚度之和可以为260nm或者280nm,当第一表面2011上设置三层低折射率膜层202时,则三层低折射率膜层202的厚度之和小于300nm。
在一种可能的实现方式中,多个镜片211包括:靠近物方的第一镜片2111、靠近像方的第二镜片2113以及位于第一镜片2111和第二镜片2113之间的至少一个中间镜片2112,例如,中间镜片2112可以为一个,也可以为三个(如图5所示),或者也可以四个以上。本实施例中,以中间镜片2112的数量为三个为例,例如,三个中间镜片2112分别为中间镜片2112a、中间镜片2112b和中间镜片2112c。
本申请实施例中,为了减少相邻镜片211相对的两个表面之间发生多次反射,例如,第一镜片2111的第二表面2012与中间镜片2112a的第一表面2011之间发生多次反射,所以,第一镜片2111的第一表面2011和第二表面2012、第二镜片2113的第一表面2011以及每个中间镜片2112的第一表面2011和第二表面2012均设有至少两层低折射率膜层202,例如如图12a所示,第一镜片2111的第一表面2011和第二表面2012均层叠设有第一低折射率膜层2021和第二低折射率膜层2022,中间镜片2112a、中间镜片2112b和中间镜片2112c的第一表面2011和第二表面2012均层叠设有第一低折射率膜层2021和第二低折射率膜层2022,第二镜片2113的第一表面2011层叠设有第一低折射率膜层2021和第二低折射率膜层2022,这样镜头中,第一镜片2111的第一表面2011以及相邻镜片211之间由于设置低折射率膜层202,使得镜片211的各个表面反射率降低,所以相邻两个镜片之间不易发生多次反射的现象,从而起到防眩光的作用。
当然,在一些其他示例中,如图12b所示,可以在第一镜片2111的第二表面2012、 中间镜片2112a、中间镜片2112b和中间镜片2112c的第一表面2011和第二表面2012以及第二镜片2113的第一表面2011均层叠设有第一低折射率膜层2021和第二低折射率膜层2022。这样相邻镜片211的表面之间的反射降低。
或者,可以在第一镜片2111的第一表面2011、中间镜片2112a、中间镜片2112b和中间镜片2112c的第一表面2011和第二表面2012以及第二镜片2113的第一表面2011均层叠设有第一低折射率膜层2021和第二低折射率膜层2022。这样镜片211朝向物方的表面均为低反射的面,光线经过该些表面时,对光线的反射降低。
需要说明的是,镜头21内的多个镜片211中各个面上设置低折射膜层的情况包括但不限于图12a和12b所示的,例如还可以在每个镜片的第一表面2011和第二表面2022均设置低折射率膜层202。或者因为多个镜片211中由于镜片面型(例如凸面或凹面)的原因,导致一片或几片镜片的杂光会较为明显,所以此时,考虑到成本和效率的原因,可以在多个镜片211中的发生杂光明显的镜片上设置低折射率膜层202,达到优化镜片表面的作用,例如图12c所示,在中间镜片2112c上不设置低折射率膜层202,在其他四个镜片的正反两面均设置低折射率膜层202,其中,本实施例中,由于高低折射率镀膜工艺较为成熟,所以其他未设置低折射率膜层202的镜片可以设置高低折射率膜层,其他一片或几个片镜片的表面上设置低折射率膜层202。
基于上述描述,下述场景对形成的镜片211在光线以不同入射角入射时产生的反射率进行测试,具体如下:
场景一
本场景中,基底201可以为玻璃基板,玻璃基板可以选用玻璃规格为BK7的玻璃,BK7为一种常见的硼硅酸盐冕玻璃(Borosilicate Crown Glass),即本场景中用BK7玻璃作为基底201,在基底201的第一表面2011层叠设有第一低折射率膜层2021和第二低折射率膜层2022,形成如图7所示的镜片211。其中,该镜片211的各个膜层的参数如表1所示:
  材料 折射率 厚度
基底 BK7玻璃 1.52 -
第一低折射率膜层 多孔氧化硅 1.43 90nm
第二低折射率膜层 多孔氧化硅 1.19 112nm
如表1所示,第一低折射率膜层2021的材料为多孔氧化硅,第一低折射率膜层2021的材料为多孔氧化硅,其中,基底201的折射率(587nm)为1.52,第一低折射率膜层2021的折射率为1.43,第二低折射率膜层2022的折射率为1.19,第一低折射率膜层2021的厚度为90nm,第二低折射率膜层2022的厚度为112nm。分别在光线的入射角为0°和入射角为30°下对该镜片211的反射率测试,测试结果如图13所示,当入射角度为0°时,可见光波段380~780nm的平均反射率为0.143%;当入射角度为30°时,可见光波段380~780nm的平均反射率为0.201%。所以,该场景一提供的镜片211,在380~780nm的可见光波长范围内,同时获得0°入射时的平均表面反射率<0.3%,30°入射时的平均表面反射率<0.5%。所以,基底201上层叠设置第一低折射率膜层2021和第二低折射率膜层2022时,在可见光波段内,±30°的视场范围内均达到了良好的低反射防眩光效果。而现有技 术中无法同时获得大角度下低的表面反射率,所以与现有技术相比,本申请实施例中,实现了在在较大的入射角范围内镜片211表面具有低反射率的目的,确保了镜片211在大角度范围内良好的防眩光效果,提高了摄像模组的成像质量。
场景二
本场景中,本场景中,基底201可以为塑胶基板,例如可以为环烯烃共聚合体(APEL)制成的塑胶基底,在基底201的第一表面2011层叠设有第一低折射率膜层2021和第二低折射率膜层2022,形成如图7所示的镜片211。其中,该镜片211的各个膜层的参数如表2所示:
  材料 折射率 厚度
基底 塑胶(PS) 1.54 -
第一低折射率膜层 多孔氧化硅 1.43 90nm
第二低折射率膜层 多孔氧化硅 1.19 112nm
如表2所示,第一低折射率膜层2021的材料为多孔氧化硅,第二低折射率膜层2022的材料为多孔氧化硅,其中,基底201的折射率(587nm)为1.54,第一低折射率膜层2021的折射率为1.43,第二低折射率膜层2022的折射率为1.19,第一低折射率膜层2021的厚度为90nm,第二低折射率膜层2022的厚度为112nm。分别在光线的入射角为0°和入射角为30°下对镜片211的反射率进行测试,测试结果如图14所示,当入射角度为0°时,可见光波段380~780nm的平均反射率为0.117%;当入射角度为30°时,可见光波段380~780nm的平均反射率为0.169%。所以,该场景一提供的镜片211,在380~780nm的可见光波长范围内,同时获得0°入射时的平均表面反射率<0.3%,30°入射时的平均表面反射率<0.5%。所以,基底201上层叠设置第一低折射率膜层2021和第二低折射率膜层2022时,在可见光波段内,±30°的视场范围内均达到了良好的低反射防眩光效果。同时,与上述场景一相比,当基底201的折射率增大后,镜片211在入射角为0°和入射角为30°时的反射率均小于场景一中入射角为0°和入射角为30°时的反射率,所以,不同折射率的基底201材料,当基底201的折射率增大时,镜片211在±30°的视场范围内的反射率降低。
场景三
与上述场景二相比,本场景中,在场景二的基础上,对第一低折射率膜层2021和第二低折射率膜层2022的厚度分别增加和减小5nm,具体如表3所示:
  材料 折射率 厚度
基底 塑胶(PS) 1.54 -
第一低折射率膜层 多孔氧化硅 1.43 85&95nm
第二低折射率膜层 多孔氧化硅 1.19 107&117nm
如表3所示,第一低折射率膜层2021的材料为多孔氧化硅,第二低折射率膜层2022的材料为多孔氧化硅,其中,基底201的折射率(587nm)为1.54,第一低折射率膜层2021的折射率为1.43,第二低折射率膜层2022的折射率为1.19,第一低折射率膜层2021的厚度为85nm,第二低折射率膜层2022的厚度为107nm,或者,第一低折射率膜层2021的 厚度为95nm,第二低折射率膜层2022的厚度为117nm。
分别在光线的入射角为0°和入射角为30°下对不同厚度的镜片211的反射率进行测试,当入射角度为0°时,测试结果如图15所示,在场景二中的第一低折射率膜层2021和第二低折射率膜层2022的厚度基础上,第一低折射率膜层2021和第二低折射率膜层2022的厚度各增加5nm时,可见光波段380~780nm内的平均反射率为0.131%;在场景二中的第一低折射率膜层2021和第二低折射率膜层2022的厚度基础上,第一低折射率膜层2021和第二低折射率膜层2022的厚度各减小5nm时,可见光波段380~780nm内的平均反射率为0.124%;图15中原始反射率曲线为图14中入射角度为0°时的反射率曲线,即图15中的原始反射率曲线为场景二中的镜片在入射角度为0°时的反射率曲线,根据上述场景二中记载的,第一低折射率膜层2021和第二低折射率膜层2022的厚度未增减5nm时,入射角度为0°时,可见光波段380~780nm内的平均反射率为0.117%。
当入射角度为30°时,如图16所示,在场景二中的第一低折射率膜层2021和第二低折射率膜层2022的厚度基础上,第一低折射率膜层2021和第二低折射率膜层2022各增加5nm时,可见光波段380~780nm内的平均反射率为0.146%,在场景二中的第一低折射率膜层2021和第二低折射率膜层2022的厚度基础上,第一低折射率膜层2021和第二低折射率膜层2022各减小5nm时,可见光波段380~780nm的平均反射率为0.207%;图16中原始反射率曲线为图14中入射角度为30°时的反射率曲线,即图16中的原始反射率曲线为场景二中的镜片在入射角度为30°时的反射率曲线,根据上述场景二中记载的,第一低折射率膜层2021和第二低折射率膜层2022的厚度未增减5nm时,入射角度为30°时,可见光波段380~780nm内的平均反射率为0.169%。
所以,该场景三提供的镜片211,在380~780nm的可见光波长范围内,同时获得0°入射时的平均表面反射率<0.3%,30°入射时的平均表面反射率<0.5%。所以,基底201上层叠设置第一低折射率膜层2021和第二低折射率膜层2022时,第一低折射率膜层2021和第二低折射率膜层2022在公差±5nm的情况下,在可见光波段±30°的视场范围内仍能达到良好的防眩光效果。
同时,与上述场景二相比,当第一低折射率膜层2021和第二低折射率膜层2022各增加或减小5nm时,镜片211在0°入射时的平均表面反射率均大于场景二中在0°入射时的平均表面反射率,第一低折射率膜层2021和第二低折射率膜层2022各增加5nm时,镜片211在30°入射时的平均表面反射率小于场景二中在30°入射时的平均表面反射率,但是第一低折射率膜层2021和第二低折射率膜层2022各减小5nm时,镜片211在30°入射时的平均表面反射率大于场景二中在30°入射时的平均表面反射率,所以,低折射率膜层202的厚度增大时,对于大角度入射角的反射率降低,低折射率膜层202的厚度减小时,对于大角度入射角的反射率增大,而低折射率膜层202的厚度增大或减小,镜片211在0°入射的平均表面反射率均增大。
场景四
本场景中,基底201可以为聚苯乙烯(Polystyrene,缩写PS),在基底201的第一表面2011层叠设有第一低折射率膜层2021和第二低折射率膜层2022,形成如图7所示的镜片211。其中,该镜片211的各个膜层的参数如表4所示:
  材料 折射率 厚度
基底 聚苯乙烯(PS) 1.59 -
第一低折射率膜层 SiO2 1.47 88nm
第二低折射率膜层 多孔氧化硅 1.19 112nm
如表4所示,第一低折射率膜层2021的材料为SiO2,第二低折射率膜层2022的材料为多孔氧化硅,其中,基底201的折射率(587nm)为1.59,第一低折射率膜层2021的折射率为1.47,第二低折射率膜层2022的折射率为1.19,第一低折射率膜层2021的厚度为88nm,第二低折射率膜层2022的厚度为112nm。
分别在光线的入射角为0°和入射角为30°下对镜片211的反射率进行测试,测试结果如图17所示,当入射角度为0°时,可见光波段380~780nm内的平均反射率为0.119%;当入射角度为30°时,可见光波段380~780nm内的平均反射率为0.181%。所以,在380~780nm的可见光波长范围内,同时获得0°入射时的平均表面反射率<0.3%,30°入射时的平均表面反射率<0.5%。基底201上层叠设置第一低折射率膜层2021和第二低折射率膜层2022时,不同折射率的基底201材料,在可见光波段±30°的视场范围内均达到了良好的低反射防眩光效果。
场景五
本场景中,在基底201的第一表面2011层叠设有第一低折射率膜层2021和第二低折射率膜层2022,同时,在第二低折射率膜层2022上设置保护层203,形成如图8所示的镜片211,该镜片211的各个膜层的参数如表5所示:
  材料 折射率 厚度
基底 聚苯乙烯(PS) 1.59 -
第一低折射率膜层 SiO2 1.47 91nm
第二低折射率膜层 多孔氧化硅 1.19 85nm
保护层 SiO2 1.43 10nm
如表5所示,基底201为聚苯乙烯(PS),第一低折射率膜层2021的材料为SiO2,第二低折射率膜层2022的材料为多孔氧化硅,保护层203的材料为SiO2,其中,基底201的折射率(587nm)为1.59,第一低折射率膜层2021的折射率为1.47,第二低折射率膜层2022的折射率为1.19,保护层203的折射率为1.43,第一低折射率膜层2021的厚度为88nm,第二低折射率膜层2022的厚度为112nm,保护层203的厚度为10nm。
分别在光线的入射角为0°和入射角为30°下对镜片211的反射率进行测试,测试结果如图18所示,当入射角度为0°时,可见光波段380~780nm内的平均反射率为0.161%;当入射角度为30°时,可见光波段380~780nm内的平均反射率为0.218%。所以,当增加保护层203时,在380~780nm的可见光波长范围内,同时获得0°入射时的平均表面反射率<0.3%,30°入射时的平均表面反射率<0.5%。所以,在可见光波段±30°的视场范围内仍达到了良好的低反射防眩光效果。
同时,与场景四相比,在第二低折射率膜层2022上设置保护层203时,镜片211在入射角度为0°时的平均反射率(0.161%)大于场景四中的在入射角度为0°时的平均反射率(0.119%),镜片211在入射角度为30°时的平均反射率(0.218%)大于场景四中的在 入射角度为0°时的平均反射率(0.181%),所以,增加保护层203时,对低折射率膜层202起到保护作用,但是保护层203的折射率大于第二低折射率膜层2022的折射率,所以光线入射到镜片211时,此时光线首先照射到保护层203,而保护层203的折射率大于第二低折射率膜层2022的折射率,所以保护层203的反射大于第二低折射率膜层2022的反射,所以造成本场景中的平均反射率大于场景四种的平均反射率。但是增加保护层203时,仍然可以确保0°入射时的平均表面反射率<0.3%,30°入射时的平均表面反射率<0.5%。所以,在可见光波段±30°的视场范围内仍达到了良好的低反射防眩光效果。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。

Claims (15)

  1. 一种镜头,其特征在于,包括:
    镜筒以及设在所述镜筒内的多个镜片;
    至少部分所述镜片包括:基底,所述基底具有朝向物方的第一表面和朝向像方的第二表面,且所述第一表面和所述第二表面中的至少一个表面上设有至少一层低折射率膜层,且所述基底的折射率和所述低折射率膜层的折射率从所述基底到所述低折射率膜层的方向上逐渐减小。
  2. 根据权利要求1所述的镜头,其特征在于,所述第一表面和所述第二表面中的至少一个表面上层叠设有第一低折射率膜层和第二低折射率膜层,所述第一低折射率膜层位于所述基底和所述第二低折射率膜层之间,且所述基底、所述第一低折射率膜层和所述第二低折射率膜层的折射率逐渐减小。
  3. 根据权利要求2所述的镜头,其特征在于,所述第一表面和所述第二表面上均层叠设有所述第一低折射率膜层和所述第二低折射率膜层,所述第一低折射率膜层位于所述基底和所述第二低折射率膜层之间,且所述基底、所述第一低折射率膜层和所述第二低折射率膜层的折射率逐渐减小。
  4. 根据权利要求3所述的镜头,其特征在于,所述第一低折射率膜层与所述第二低折射率膜层的折射率之差大于所述基底的折射率与所述第一低折射率膜层的折射率的差值。
  5. 根据权利要求4所述的镜头,其特征在于,
    所述基底的折射率与所述第一低折射率膜层的折射率的差值小于0.25,所述第一低折射率膜层与所述第二低折射率膜层的折射率之差小于0.4。
  6. 根据权利要求2-5任一所述的镜头,其特征在于,所述基底为玻璃基板、塑料基板或树脂基板;且所述基底的折射率小于等于1.7。
  7. 根据权利要求2-5任一所述的镜头,其特征在于,所述第一低折射率膜层和所述第二低折射率膜层的材料为二氧化硅或多孔氧化硅。
  8. 根据权利要求1-7任一所述的镜头,其特征在于,每层所述低折射率膜层的厚度为80~150nm,且所述第一表面或所述第二表面上设置的所述低折射率膜层的总厚度小于300nm。
  9. 根据权利要求1-8任一所述的镜头,其特征在于,所述多个镜片包括:靠近所述物方的第一镜片、靠近所述像方的第二镜片以及位于所述第一镜片和所述第二镜片之间的至少一个中间镜片,且所述第一镜片、所述中间镜片、所述第二镜片中的至少部分镜片的所述第一表面或所述第二表面设有至少两层所述低折射率膜层,或者,所述第一镜片、所述中间镜片、所述第二镜片中的至少部分镜片的所述第一表面和所述第二表面均设有至少两层所述低折射率膜层。
  10. 根据权利要求1-9任一所述的镜头,其特征在于,还包括:透明的保护层,所述至少一层低折射率膜层位于所述保护层和所述基底之间。
  11. 根据权利要求10所述的镜头,其特征在于,所述保护层的折射率为1.4~1.6。
  12. 根据权利要求10所述的镜头,其特征在于,所述保护层的厚度为1~20nm,且所述保护层为二氧化硅制成的膜层。
  13. 一种摄像模组,其特征在于,至少包括:上述权利要求1-12任一所述的镜头、支 架、感光元件和柔性板,所述支架位于所述镜头和所述柔性板之间,所述感光元件位于所述柔性板与所述镜头相对的一端上。
  14. 一种电子设备,其特征在于,至少包括:显示屏、后盖和至少一个上述权利要求13所述的摄像模组,所述摄像模组朝向所述显示屏或者朝向所述后盖。
  15. 根据权利要求14所述的电子设备,其特征在于,所述摄像模组为前置摄像模组,或者所述摄像模组为后置摄像模组,或者,所述摄像模组的数量为至少两个,其中一个所述摄像模组为后置摄像模组,另一个所述摄像模组为前置摄像模组。
PCT/CN2021/076677 2020-02-25 2021-02-18 一种镜头、摄像模组和电子设备 WO2021169823A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21759693.1A EP4095571A4 (en) 2020-02-25 2021-02-18 LENS, CAMERA MODULE AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010117747.0A CN113311515A (zh) 2020-02-25 2020-02-25 一种镜头、摄像模组和电子设备
CN202010117747.0 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021169823A1 true WO2021169823A1 (zh) 2021-09-02

Family

ID=77369910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076677 WO2021169823A1 (zh) 2020-02-25 2021-02-18 一种镜头、摄像模组和电子设备

Country Status (3)

Country Link
EP (1) EP4095571A4 (zh)
CN (1) CN113311515A (zh)
WO (1) WO2021169823A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195625A (ja) * 2003-12-26 2005-07-21 Pentax Corp 反射防止膜及び反射防止膜を有する光学素子
CN201096960Y (zh) * 2007-08-08 2008-08-06 联钢精密科技(苏州)有限公司 手机用非球面镜头
CN101545990A (zh) * 2008-03-25 2009-09-30 Hoya株式会社 减反射膜的形成方法及光学元件
US20110242662A1 (en) * 2010-04-01 2011-10-06 Canon Kabushiki Kaisha Anti-reflection structure and optical apparatus
CN110703364A (zh) * 2019-10-09 2020-01-17 杭州美迪凯光电科技股份有限公司 一种双面反射防止膜透镜涂布加工工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7924397B2 (en) * 2003-11-06 2011-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-corrosion layer on objective lens for liquid immersion lithography applications
CN101308218B (zh) * 2007-05-15 2011-01-05 鸿富锦精密工业(深圳)有限公司 有色镜片的制作方法
JP5437662B2 (ja) * 2008-03-03 2014-03-12 学校法人慶應義塾 反射防止膜及びその形成方法
JP5473472B2 (ja) * 2008-08-29 2014-04-16 キヤノン株式会社 光学素子及び光学機器
DE202011110173U1 (de) * 2011-07-13 2013-03-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optisches Element mit einer Antireflexionsbeschichtung
CN205420186U (zh) * 2016-03-24 2016-08-03 东莞市银建玻璃工程有限公司 一种改良型弯钢Low-E玻璃
CN108415222B (zh) * 2018-02-02 2021-07-09 明月镜片股份有限公司 一种光刻隐形网格红外吸收薄膜树脂镜片及其制备方法
CN108287379A (zh) * 2018-03-24 2018-07-17 丹阳市宏鑫光学眼镜有限公司 一种光学镜片及其制备方法
CN209132527U (zh) * 2018-12-08 2019-07-19 江苏全真光学科技股份有限公司 一种表面耐磨的变色眼镜镜片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195625A (ja) * 2003-12-26 2005-07-21 Pentax Corp 反射防止膜及び反射防止膜を有する光学素子
CN201096960Y (zh) * 2007-08-08 2008-08-06 联钢精密科技(苏州)有限公司 手机用非球面镜头
CN101545990A (zh) * 2008-03-25 2009-09-30 Hoya株式会社 减反射膜的形成方法及光学元件
US20110242662A1 (en) * 2010-04-01 2011-10-06 Canon Kabushiki Kaisha Anti-reflection structure and optical apparatus
CN110703364A (zh) * 2019-10-09 2020-01-17 杭州美迪凯光电科技股份有限公司 一种双面反射防止膜透镜涂布加工工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095571A4

Also Published As

Publication number Publication date
CN113311515A (zh) 2021-08-27
EP4095571A1 (en) 2022-11-30
EP4095571A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
KR101878013B1 (ko) 광학 필터, 고체 촬상 소자, 촬상 장치용 렌즈 및 촬상 장치
WO2014084167A1 (ja) 近赤外線カットフィルタ
TWI465761B (zh) 透鏡模組
US20100321770A1 (en) Hybrid ir cut-off filter for digital camera
WO2021004148A1 (zh) 一种镜头、摄像头和电子设备
TW202113448A (zh) 相機模組與電子裝置
WO2021083233A1 (zh) 摄像模组及电子设备
US11215809B2 (en) Periscope-type zooming camera module
WO2023050610A1 (zh) 一种镜头组件、摄像头模组及电子设备
TW202113424A (zh) 光學構件及相機模組
CN111025528A (zh) 一种成像系统、摄像模组及移动终端
US7184226B2 (en) Hybrid lens system and mobile phone employing the same
US11726301B2 (en) Lens assembly and electronic device including the same
WO2021169823A1 (zh) 一种镜头、摄像模组和电子设备
KR102599615B1 (ko) 촬상 렌즈, 이를 포함하는 카메라 모듈 및 디지털 기기
EP4102263A1 (en) Camera module and electronic device
WO2021179963A1 (zh) 光学镜头、摄像头模组和终端
TW202319796A (zh) 光學成像系統、取像裝置及電子設備
RU2790958C1 (ru) Узел объектива, камера и электронное устройство
WO2022161109A1 (zh) 一种光学镜头、摄像头模组及电子设备
CN113067971B (zh) 镜头、摄像模组及电子设备
JP2004233536A (ja) 結像光学系及びそれを用いた撮像装置
US20080285155A1 (en) Image-forming lens set
WO2022041990A1 (zh) 一种摄像头模组及电子设备
WO2023093178A1 (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021759693

Country of ref document: EP

Effective date: 20220826

NENP Non-entry into the national phase

Ref country code: DE