WO2022041990A1 - 一种摄像头模组及电子设备 - Google Patents

一种摄像头模组及电子设备 Download PDF

Info

Publication number
WO2022041990A1
WO2022041990A1 PCT/CN2021/102197 CN2021102197W WO2022041990A1 WO 2022041990 A1 WO2022041990 A1 WO 2022041990A1 CN 2021102197 W CN2021102197 W CN 2021102197W WO 2022041990 A1 WO2022041990 A1 WO 2022041990A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
angle
lens
selective transmission
light
Prior art date
Application number
PCT/CN2021/102197
Other languages
English (en)
French (fr)
Inventor
於丰
徐骏
周晓松
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022041990A1 publication Critical patent/WO2022041990A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular, to a camera module and electronic equipment.
  • the appearance of stray light is generally reduced by adjusting the design of the lens structure, or by blackening the non-light-transmitting area of the lens of the lens structure.
  • the traditional processing method has a relatively large impact on the light used for imaging within the field of view (FOV) range, but has a poor effect on eliminating stray light outside the FOV range, resulting in stray light.
  • the incident into the lens affects the imaging effect.
  • the design of the lens will become complicated, such as increasing the complexity of the structure, etc.; even some other optical properties need to be sacrificed, such as reducing the aperture, etc. .
  • the present application provides a camera module and an electronic device, so as to effectively reduce the glare caused by the light in the FOV range and improve the imaging quality of the camera module.
  • the present application provides a camera module, which may include a lens group, an image sensor, and an angle selective transmission film.
  • the lens group includes a plurality of lenses arranged in sequence from the object side to the image side, and the lenses can be lenses or non-lenses.
  • the image sensor is arranged on the image side of the lens group, and is used to receive the light transmitted through the lens group and perform imaging.
  • the angle-selective transmission film is arranged on the object side of the image sensor. The angle-selective transmission film can be used to transmit incident light with an incident angle greater than or equal to 0° and less than or equal to ⁇ t, and to block incident light with an incident angle greater than or equal to ⁇ t and less than or equal to ⁇ t.
  • the incident light equal to 90° enters the camera module, and the ⁇ t is greater than or equal to 0° and less than 90°.
  • the angle-selective transmission film by arranging an angle-selective transmission film on the object side of the image sensor, light with different incident angles can be selected through the angle-selective transmission film, so that the light that meets the requirements of the incident angle can enter the camera module for participation imaging, and blocking the light that does not meet the incident requirements, so that the imaging effect of the camera module can be effectively improved.
  • the blocking of light that does not meet the incident requirements by the angle-selective transmission film may include reflection or absorption of the light, which can be realized by the material of the angle-selective transmission film.
  • the angle selective transmission film may be a black light-absorbing material, including but not limited to materials such as black resin, black metal, and black non-metal (silicon). In this way, according to the requirements of the camera module for the FOV, the appropriate angle can be selected to select the film through.
  • the transmittance of the angle-selective transmission film can also be adjusted by selecting the material of the angle-selective transmission film.
  • the transmittance of the angle-selective transmission film may be greater than or equal to 80%, exemplarily 90%, 95%, even 100%; in addition, for the light whose incident angle is greater than ⁇ t and less than or equal to 90°, the transmittance of the angle-selective film is less than or equal to 10%, exemplarily 5%, 3%, or even 1% or less.
  • the imaging quality of the camera module is effectively improved.
  • the thickness of the angle-selective transmission film is also an important factor affecting light transmission, which can be selected according to the stray light to be blocked and ⁇ t.
  • the angle selective transmission film may be formed by stacking films, which may include multiple layers of dielectric films, at least two layers of dielectric films have different optical refractive indices, and each layer of dielectric films may have a thickness of 50 ⁇ 200nm. Therefore, the angle selective transmission film can realize the selective transmission of light based on the principle that the multilayer dielectric film interferes with light.
  • the angle-selective permeable membrane may also be a single-layer membrane structure, and the single-layer membrane structure may be provided with deep holes according to the principle of randomizing deep holes, and the hole depth of the deep holes can be adjusted by adjusting the depth of the deep holes.
  • the ratio of the aperture to the aperture so that the light that does not meet the incident angle can only be projected on the side wall of the deep hole and absorbed, so that it cannot pass through the deep hole; while the light that meets the incident angle requirements can directly pass through the deep hole to realize the choice of light.
  • ⁇ t can be made smaller than or equal to the half field of view of the lens group, so that the incident light within the field of view can be selectively transmitted through the angle of view Thin films are involved in imaging.
  • the optical anti-shake function can also be integrated in the lens group.
  • the anti-shake angle OIS_angle of the lens group needs to be considered.
  • the light transmission angle ⁇ t of the angle selectively transmitted through the film may be greater than or equal to the sum of HFOV+OIS_angle.
  • the camera module has better imaging quality.
  • the angle selective transmission film when the angle selective transmission film is arranged in the camera module, the angle selective transmission film can be arranged on the object side of the lens group.
  • the angle-selective transmission film can also be disposed between the lens group and the image sensor. As long as it can realize the selection of the light for imaging projected on the image sensor.
  • the camera module can also include an infrared filter, and the infrared filter can be arranged between the lens group and the image sensor, so that the infrared light projected on the image sensor can be effectively filtered out, thereby improving the camera module. imaging effect.
  • the angle selective transmission film can be arranged between the lens group and the infrared filter, so as to select the light incident into the camera module.
  • the lens group of the camera module may be an upright lens group or a periscope lens group.
  • the angle selection lens The thin film can be disposed on the object side of the lens group, or between the lens group and the image sensor.
  • the lens group may also be a combination of an upright lens subgroup and a periscope lens subgroup.
  • the angle-selective transmission film can be one, and the angle-selective transmission film has a first area corresponding to the upright lens subgroup and a periscope lens.
  • the subgroup corresponds to the second area set.
  • This setting method can effectively simplify the structure of the camera module.
  • the angle selective transmission film can control the angle of the light of the vertical lens subgroup and the periscope lens subgroup at the same time, thereby reducing the stray light of the entire camera module.
  • the camera module can also be provided with an angle selective transmission film corresponding to the upright lens subgroup and the periscope lens subgroup respectively.
  • the angle selective transmission film corresponding to the upright lens subgroup is disposed on the object side of the upright lens subgroup, or between the upright lens subgroup and the first image sensor corresponding to the upright lens subgroup .
  • the camera module may also include a first infrared filter corresponding to the upright lens subgroup, the first infrared filter is disposed between the upright lens subgroup and the first image sensor, and corresponds to the upright lens subgroup
  • the angle selective transmission film can also be arranged between the upright lens subgroup and the first infrared filter.
  • the periscope lens subgroup may include a light component for changing the light transmission path and a horizontal lens component, and the selective transmission film corresponding to the angle of the periscope lens subgroup may further It may be disposed between the light assembly and the horizontal lens assembly, or between the horizontal lens assembly and the second image sensor corresponding to the periscope lens subgroup.
  • the camera module may further include a second infrared filter corresponding to the periscope lens subgroup, the second infrared filter may be disposed between the horizontal lens assembly and the second image sensor, and corresponds to the periscope lens
  • the angle selective transmission film of the type lens subgroup can be arranged between the horizontal lens assembly and the second infrared filter.
  • the camera module may further include a cover plate, and the cover plate may be arranged on the lens group, the angle selective transmission film 1, the infrared filter, The object side of other components such as the image sensor is used to protect the lens group, angle selective transmission film, infrared filter, image sensor, etc. from water and dust.
  • the cover plate may be, but not limited to, a plate-like structure made of a transparent material such as glass, so as to improve the transmittance of light.
  • the present application further provides an electronic device, the electronic device includes a housing and the camera module in the embodiment of the first aspect, and the camera module can be specifically arranged in the housing.
  • the camera module of the electronic device selectively transmits through the film by setting the angle, so that the light involved in imaging enters the camera module, and the stray light that does not participate in the imaging is blocked from entering, thereby effectively improving the imaging effect of the camera module, and then The user's experience of using the electronic device can be improved.
  • FIG. 1 is a schematic structural diagram of a camera module provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a camera module provided by another embodiment of the present application.
  • FIG. 3 is a light transmittance curve diagram of an angle selective transmission film provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a camera module provided by another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a camera module provided by another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a camera module provided by another embodiment of the present application.
  • 7a-7d are comparison diagrams of imaging simulation results between the camera module of the embodiment of the application and the contrast camera module;
  • FIG. 8 is a schematic structural diagram of a camera module provided by another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a camera module provided by another embodiment of the present application.
  • 10a-10f are the imaging simulation results comparison diagrams of the camera module of the embodiment of the application and the contrast camera module;
  • FIG. 11 is a schematic structural diagram of a camera module provided by another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an angle selective transmission film according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a camera module provided by another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the camera module can be, but is not limited to, disposed in electronic devices such as a mobile phone, a tablet computer, a notebook computer, or a PDA (personal digital assistant, PDA), so as to realize the image capturing function of the electronic device.
  • PDA personal digital assistant
  • the camera module 100 may generally include a lens group 101 , an infrared filter 102 and an image sensor 103 .
  • the infrared filter 102 is disposed between the lens group 101 and the image sensor 103 .
  • the light entering the lens group 101 can be divided into two parts, one is the light that participates in imaging (the light represented by the solid line in FIG. 1 ), and the other is the light that does not participate in the imaging (the dotted line in FIG. 1 ) represented light).
  • the light involved in imaging will converge on the surface of the image sensor 103 after passing through the lens group 101 to form an image.
  • Light that does not participate in imaging will be projected on the edge of the lens or other positions in the lens group 101 during the process of passing through the lens group 101, resulting in abnormal reflection, and will be imaged after it reaches the image sensor 103, thereby forming a flare (flare) and ghosts.
  • the lens of the optical instrument is the vertex and the angle formed by the two edges of the maximum range of the object image of the object to be measured can pass through the lens, which is called the field of view (FOV).
  • the incident angle is the angle between the incident ray and the normal to the incident surface.
  • the incident angles of the light rays involved in imaging are all less than or equal to the half field of view (HFOV) of the lens group 101 .
  • HFOV half field of view
  • Light outside the range generally does not participate in imaging, and may also form glare and ghost images to affect the imaging quality of the camera module 100 .
  • the structure design of the lens group 101 is usually adjusted, or the non-light-transmitting area of the lens of the lens group 101 is fogged or blackened to reduce the entry of stray light.
  • the design of the lens will become complicated; in other scenarios, it is even necessary to sacrifice other optical properties, such as reducing the aperture.
  • the camera module 100 provided by the embodiment of the present application aims to solve the above problems, so as to reduce the entry of stray light and improve the imaging quality of the camera module 100 .
  • the camera module 100 may include a lens group 101 , an angle selective transmission film 104 and an image sensor 103 .
  • the lens group 101 is an important element in the camera module 100 , which is mainly based on the principle of refraction and reflection of light, and converges the light reflected from the object.
  • the lens group 101 may be, but not limited to, a combination of upright lens subgroups (for example, a combination of at least two upright lens subgroups), or a combination of periscope lens subgroups (eg a combination of at least two periscope lens subgroups), or a combination of an upright lens subgroup and a periscope lens subgroup (eg at least one upright lens subgroup and at least one periscope lens subgroup) combination of subgroups).
  • a combination of upright lens subgroups for example, a combination of at least two upright lens subgroups
  • periscope lens subgroups eg a combination of at least two periscope lens subgroups
  • an upright lens subgroup and a periscope lens subgroup eg at least one upright lens subgroup and at least one periscope lens subgroup
  • the lens group 101 may generally include a plurality of lenses, which may be designed spherical mirrors or aspherical mirrors, and the plurality of lenses may be sequentially arranged in the direction from the object side to the image side of the camera module 100 .
  • the lens group 101 may include 3 to 8 lenses, which may be selected according to specific design requirements of the camera module 100 .
  • the lens can be made of, but not limited to, transparent materials such as glass or plastic, so as to facilitate the transmission of light.
  • the angle selective transmission film 104 can select light rays with different incident angles, so that the light rays meeting the incident angle requirements can pass through, and the light rays that do not meet the incident angle requirements can be blocked.
  • the blocking of light that does not meet the incident requirements by the angle-selective transmission film 104 may include reflection or absorption of the light, which may be realized by the material of the angle-selective transmission film 104 .
  • the angle selective transmission film 104 may be a black light absorbing material, including but not limited to materials such as black resin, black metal, black non-metal (silicon) and the like. In this way, according to the requirements of the camera module 100 for the FOV, an appropriate angle can be selected to select the transparent film 104 .
  • the angle selective transmission film 104 can have a light transmission angle ⁇ t, so that the incident angle is greater than or equal to 0° and less than or equal to ⁇ t. Light rays with an incident angle greater than ⁇ t and less than or equal to 90° are blocked.
  • the material of the angle-selective transmission film 104 can be selected so as to make the angle-selective transmission film 104 for light whose incident angle is greater than or equal to 0° and less than or equal to ⁇ t
  • the transmittance is greater than or equal to 80%, exemplarily 90%, 95%, or even 100%; in addition, for the light whose incident angle is greater than ⁇ t and less than or equal to 90°, the angle is selectively transmitted through the film
  • the transmittance of 104 is less than or equal to 10%, exemplarily 5%, 3%, or even 1% or less.
  • the light transmission angle ⁇ t when the light transmission angle ⁇ t is selected according to the FOV of the camera module 100, in an exemplary embodiment, the light transmission angle ⁇ t can be made greater than or equal to HFOV, so that the incident angle is All light within the FOV range of the camera module 100 can enter, so as to meet the imaging requirements of the camera module 100 .
  • Optical image stabilization refers to that in the imaging instrument, the setting of optical components, such as the setting of the lens group 101, can avoid or reduce the phenomenon of instrument shaking in the process of capturing optical signals, thereby improving imaging. quality.
  • the optical anti-shake function can also be integrated in the lens group 101.
  • OIS_angle at this time, the angle-selective light transmission angle ⁇ t of the thin film 104 may be greater than or equal to the sum of HFOV+OIS_angle.
  • the camera module has better imaging quality.
  • the angle selective transmission film 104 may adopt a film layer structure formed by stacking multiple dielectric films. Among them, through the design of the film system, the angle selective transmission film 104 can select at least two kinds of dielectric films with different refractive indices, and the thickness of each dielectric film can be 50-200 nm. The principle can realize the selective transmission of light.
  • the angle selective transmission film 104 may also be arranged by using the principle of randomized deep holes.
  • a deep hole refers to a hole in which the ratio of the hole depth to the hole diameter is greater than 5 and less than 10.
  • the principle of randomizing the deep hole is the principle of geometric optics. It can adjust the ratio of the hole depth and the aperture of the deep hole, so that the light that does not meet the incident angle can only be projected on the side wall of the deep hole and absorbed, so that it cannot pass through the deep hole. The light that meets the requirements of the incident angle can directly pass through the deep hole. Therefore, according to the principle of randomizing deep holes, deep holes can be made on the angle selective transmission film 104 to realize the selection of light.
  • the size of the angle-selective transmission film 104 also needs to be considered, and the thickness of the angle-selective transmission film 104 affects the An important factor in the size of the camera module 100 .
  • the image sensor 103 when the image sensor 103 is set, the image sensor 103 is set on the image side of the lens group 101 , and the light enters the camera module 100 through the lens group 101 and is focused on the image sensor 103 On the other hand, the image sensor 103 accumulates corresponding charges according to the intensity of light to convert the light signal into an electrical signal. After that, the image sensor 103 converts, synthesizes, compensates and corrects the electrical signal into an image output of a digital signal.
  • the image sensor 103 may include an image processing chip, and the image processing chip may be used for processing electrical signals and outputting images of digital signals. In other embodiments, the image sensor 103 may not be provided with an image processing chip, but integrate the function itself.
  • the selection of the light entering the camera module 100 by the angle selective transmission film 104 is actually the selection of the light focused on the image sensor 103. Therefore, as long as the angle selective transmission film 104 is set on the image The side of the sensor 103 facing the object side may be sufficient.
  • the lens group 101 is disposed between the angle selective transmission film 104 and the image sensor 103, so as to select the light before entering the lens group 101, so that the Light rays with an incident angle greater than or equal to 0° and less than or equal to ⁇ t enter the camera module 100 , thereby reducing stray light entering the camera module 100 at the source.
  • the angle selective transmission film 104 can also be arranged between the lens group 101 and the image sensor 103 to select the light before entering the image sensor 103 so that the incident light can be The light whose angle is greater than or equal to 0° and less than or equal to ⁇ t is focused on the image sensor 103 , thereby reducing the influence of stray light on the imaging quality of the camera module 100 .
  • the camera module 100 of the embodiment of the present application may further include an infrared filter 102 , and the infrared filter 102 may be disposed between the lens group 101 and the image sensor 103 .
  • the visible light and infrared light will be imaged on different target surfaces, while the visible light image is colored Image, the imaging of infrared light is a black and white image.
  • the infrared filter 102 on the object side of the image sensor 103 , the infrared light projected on the image sensor 103 can be effectively filtered out, thereby improving the imaging effect of the camera module 100 .
  • the camera module 100 of the embodiment of the present application may further include a cover plate 105 , and the cover plate 105 is disposed in the camera module 100 in the lens group 101 , the angle selective transmission film 104 , the infrared filter 102 , the image
  • the object side of other components such as the sensor 103 serves to protect the lens group 101 , the angle selective transmission film 104 , the infrared filter 102 , and the image sensor 103 from water and dust.
  • the cover plate 105 can be made of a transparent material with high light transmittance, for example, the cover plate 105 is a glass cover plate.
  • the camera module 100 may also generally include an accommodating case for accommodating the lens group 101 , the angle selective transmission film 104 , the infrared filter 102 , the image sensor 103 , the cover plate 105 and other devices.
  • the camera module 100 includes a cover plate 105, an angle selective transmission film 104, a lens group 101, an infrared filter 102 and Image sensor 103 .
  • the transmittance of the angle-selective transmission film 104 is greater than 90% for the light whose angle of incidence is greater than or equal to 0° and less than or equal to ⁇ t; the angle range for the angle of incidence is greater than or equal to ⁇ t, and For light rays less than or equal to 90°, the transmittance of the angle-selective film 104 is less than 1%.
  • the HFOV of the camera module 100 10°.
  • the camera module 100 of this embodiment is compared with the stray light imaging simulation of the camera module 100 without the angle selective transmission film 104 and other structural parameters are the same (hereinafter referred to as the comparison camera module 100 ).
  • the simulation results can refer to Figures 7a and 7b.
  • Figure 7a shows the imaging simulation results in the camera module 100 when the incident angle of the light is 20°.
  • Figure 7b shows that when the incident angle of the light is 20°, Imaging simulation results in the camera module 100 of this embodiment.
  • the source of the stray light is that the light outside the FOV range enters the internal reflection of the lens group 101. As a result, there is very little stray light in the camera module 100 of this embodiment, and the angle selective transmission film 104 has a good blocking effect on the stray light.
  • FIG. 7c shows the imaging simulation results in the camera module 100 when the incident angle of the light is 30°
  • FIG. 7d is when the incident angle of the light is 30°.
  • Imaging simulation results in the camera module 100 By comparison, it can be found that when the light incident angle is 30°, there is very obvious stray light in the imaging picture of the contrast camera module 100.
  • the source of the stray light is that the light outside the FOV range enters the internal reflection of the lens group 101. As a result, there is very little stray light in the camera module 100 of this embodiment, and the angle selective transmission film 104 has a good blocking effect on the stray light.
  • the stray light entering the camera module 100 can be effectively reduced by setting the angle selective transmission film 104 , thereby reducing the existence of glare, which is beneficial to improve the imaging of the camera module 100 quality.
  • the lens group 101 in the camera module 100 can be in addition to the vertical type, it can also be a periscope type. Compared with the upright type lens group 101 , the structure of the camera module 100 including the periscope type lens group 101 is relatively opposite. complex. Referring to FIG.
  • the camera module 100 when the lens group 101 is periscope type, can be specifically set as a cover plate 105 arranged in sequence from the object side to the image side, followed by The angle-selective transmission film 104, followed by the lens group 101, the lens group 101 includes a light component (such as a prism 1011) for changing the light transmission path, and a horizontal lens component composed of a plurality of lenses disposed on the image side of the prism 1011 1012, wherein the number of lenses in the horizontal lens assembly 1012 can be 3-8, which can be selected according to actual design requirements.
  • the infrared filter 102 On the image side of the horizontal lens assembly 1012 is the infrared filter 102 and finally the image sensor 103 .
  • the setting of the angle-selective transmission film 104 through the film can be set with reference to the above-mentioned embodiment, which will not be repeated here. It can be understood that, in this embodiment, if there is an optical image stabilization module, the light transmission angle ⁇ t of the angle selection film can be set to be greater than or equal to the sum of HFOV+OIS_angle, where OIS_angle is the angle of optical image stabilization. .
  • the angle selective transmission film 104 can also be placed between the prism 1011 and the horizontal lens assembly 1012, which can also prevent stray light from entering the Inside the lens group 101 .
  • the angle-selective film 104 may also be placed between the horizontal lens assembly 1012 and the image sensor 103 .
  • the camera module 100 of this embodiment is the same as the camera module 100 (hereinafter referred to as the comparison camera module) that does not have an angle selection through the film 104 and has the same other structural parameters.
  • the simulation results can refer to Figures 10a and 10b, wherein Figure 10a shows the imaging simulation results in the camera module 100 when the incident angle of the light is 20°. Figure 10b shows that when the incident angle of the light is 20°, Imaging simulation results in the camera module 100 of this embodiment.
  • FIGS. 10c and 10d wherein, when the incident angle of the light is 25° in FIG. 10c , compared with the imaging simulation results in the camera module 100 , FIG. 10d is when the incident angle of the light is 25°. Imaging simulation results in the camera module 100 .
  • the light incident angle is 25°, although the light incident angle (25°) at this time is much larger than HFOV (6°), a very obvious contrast appears in the middle of the imaging screen of the camera module 100 glare.
  • HFOV HFOV
  • FIG. 10e and 10f wherein, when the incident angle of the light is 30°, FIG. 10e compares the imaging simulation results in the camera module 100, and FIG. 10f is when the incident angle of the light is 30°. Imaging simulation results in the camera module 100 .
  • the light incident angle is 30°, although the light incident angle (30°) at this time is much larger than HFOV (6°), a very obvious contrast appears in the middle of the imaging screen of the camera module 100 glare.
  • HFOV HFOV
  • the stray light entering the camera module 100 can be effectively reduced by setting the angle selective transmission film 104 , thereby reducing the existence of glare, which is beneficial to improve the imaging quality of the camera module 100 .
  • an upright lens subgroup 101a and a periscope lens subgroup 101b may be set in the camera module 100 at the same time.
  • the camera module 100 may include a cover plate 105, an angle selective transmission film 104, a first infrared filter 102a and a first image sensor 103a disposed corresponding to the upright lens subgroup 101a, corresponding to the latent lens subgroup 101a.
  • the prism 1011, the horizontal lens assembly 1012, the second infrared filter 102b and the second image sensor 103b provided in the telescopic lens subgroup 101b.
  • the angle selective transmission film 104 is disposed on the image side of the cover plate 105, the upright lens subgroup 101a is disposed on the image side of the angle selective transmission film 104, the upright lens subgroup 101a, the first infrared filter 102a and the The first image sensors 103a are arranged in order from the object side to the image side.
  • the prism 1011 is arranged on the image side of the angle selective transmission film 104, the horizontal lens assembly 1012 is arranged on the image side of the prism 1011, and the periscope lens subgroup 101b, the second infrared filter 102b and the second image sensor 103b are arranged on the object side. Arranged in order to the image side.
  • the field of view of the upright lens subgroup 101a is FOV1
  • the field of view of the periscope lens subgroup 101b is FOV2
  • the optical image stabilization angle of the upright lens subgroup 101a is OIS_angle1
  • the periscope The optical image stabilization angle of the lens subgroup 101b is OIS_angle 2.
  • the light transmittance of the angle selective transmission film 104 can be designed in different regions. Referring to FIG.
  • an angle selective transmission film 104 is placed on the object side of the upright lens subgroup 101a and the periscope lens subgroup 101b, which can effectively simplify the structure of the camera module.
  • the angle selective transmission film 104 can control the angle of the light of the upright lens subgroup 101a and the periscope lens subgroup 101b at the same time, thereby reducing the stray light of the entire camera module 100 .
  • an angle selective transmission film may also be provided corresponding to the upright lens subgroup 101a and the periscope lens subgroup 101b, respectively.
  • the angle selective transmission film 104a corresponding to the upright lens subgroup 101a is disposed between the cover plate 105 and the upright lens subgroup 101a
  • the angle selective transmission film 104b corresponding to the periscope lens subgroup 101b is disposed on the Between the prism 1011 and the lens assembly 1012 .
  • the selective transmission for each angle can also be selected. The setting position of the film is adjusted.
  • the angle selective transmission film 104a is arranged between the upright lens subgroup 101a and the first infrared filter 102a; the angle selective transmission film 104b is arranged on the horizontal lens assembly 1012 Between the second infrared filter 102b and the image sensor 103a or the object side of the image sensor 103b, it is sufficient to reduce stray light from participating in imaging.
  • an embodiment of the present application further provides an electronic device 200 , and the electronic device 200 may be a common terminal such as a mobile phone, a tablet computer, or a notebook computer in the prior art.
  • the electronic device 200 may include a housing 201 and the camera module 100 in any of the foregoing embodiments, and the camera module 100 may be disposed in the housing 201 for realizing the photographing function of the electronic device 200 .
  • the camera module 100 of the electronic device 200 selects the permeable film by setting an angle, so that the light involved in imaging enters the camera module 100, and the stray light that does not participate in the imaging is blocked from entering, so that the camera module 100 can be effectively improved.
  • the imaging effect is improved, thereby improving the user's experience of using the electronic device 200 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Blocking Light For Cameras (AREA)
  • Cameras In General (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

本申请提供了一种摄像头模组及电子设备,涉及电子设备技术领域。该摄像头模组包括镜片组、图像传感器以及角度选择透过薄膜,其中:镜片组,包括沿物侧到像侧排列的多个镜片;图像传感器,设置于镜片组的像侧;角度选择透过薄膜,设置于图像传感器的物侧,角度选择透过薄膜用于透过入射角大于或等于0°,且小于或等于θt的入射;且用于阻挡入射角大于θt,且小于等于90°的入射光线进入摄像头模组。在本申请实施例中,角度选择透过薄膜可对不同入射角度的光线进行选择,以使满足入射角度要求的光线能够进入摄像头模组参与成像,而阻挡不满足入射要求的光线,从而可有效的提高摄像头模组的成像效果。

Description

一种摄像头模组及电子设备
相关申请的交叉引用
本申请要求在2020年08月29日提交中国专利局、申请号为202010890863.6、申请名称为“一种摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及到一种摄像头模组及电子设备。
背景技术
随着技术的发展,用户对于手机镜头的拍照质量的要求越来越高。而眩光和鬼影作为影响镜头成像质量的关键因素,是本领域技术人员在镜头开发过程中亟待克服的问题。
目前,为了克服这个问题,一般是通过调整镜头结构的设计,或者对镜头结构的镜片的非透光区域进行涂黑等工艺来减少杂散光的出现。但是,传统的处理手段对于视场角(field of view,FOV)范围内的用于成像的光线的影响比较大,但对于消除FOV范围之外的杂散光线的效果比较差,从而导致杂散光入射到镜头内影响成像效果。
在很多场景下,为了规避非FOV范围内的光线带来的眩光,会导致镜头的设计变得复杂,比如增加结构的复杂度等;甚至需要牺牲掉其它的一些光学性能,比如减小光圈等。
发明内容
本申请提供了一种摄像头模组及电子设备,以有效减少FOV范围内的光线带来的眩光,提高摄像头模组的成像质量。
第一方面,本申请提供了一种摄像头模组,该摄像头模组可包括镜片组、图像传感器以及角度选择透过薄膜。其中,镜片组包括由物侧到像侧依次排列的多个镜片,该镜片可为透镜或者非透镜。图像传感器设置于镜片组的像侧,用于接收通过镜片组透过的光线并进行成像。角度选择透过薄膜设置于图像传感器的物侧,该角度选择透过薄膜可用于透过入射角大于或等于0°且小于或等于θt的入射光线,且用于阻挡入射角大于θt且小于或等于90°的入射光线进入摄像头模组,该θt大于或等于0°,且小于90°。在本申请实施例中,通过在图像传感器的物侧设置角度选择通过薄膜,可通过角度选择透过薄膜对不同入射角度的光线进行选择,以使满足入射角度要求的光线能够进入摄像头模组参与成像,而阻挡不满足入射要求的光线,从而可有效的提高摄像头模组的成像效果。
角度选择透过薄膜对于不满足入射要求的光线的阻挡可以包括将光线进行反射或者吸收等,其可通过角度选择透过薄膜的材质来实现。在本申请一个可能的实现方式中,角度选择透过薄膜可以为黑色吸光材料,包括但是不限于为黑色树脂、黑色金属、黑色非金属(硅)等材质的材料。这样可以根据摄像头模组对于FOV的要求,来选择合适的角度选择透过薄膜。
另外,还可通过对角度选择透过薄膜的材质进行选择,来对角度选择透过薄膜的透过 率进行调整。示例性的,可针对入射角为大于或等于0°,且小于或等于θt的光线,使角度选择透过薄膜的透过率为大于或等于80%,示例性的为90%、95%,甚至为100%;另外,针对入射角为大于θt,且小于或等于90°的光线,使角度选择透过薄膜的透过率小于或等于10%,示例性的为5%、3%,甚至为1%以下。从而有效的提高摄像头模组的成像质量。
在本申请一个可能的实现方式中,在具体设置角度选择透过薄膜时,角度选择透过薄膜的厚度也是光线透过的重要影响因素,其可根据需要阻挡的杂散光以及θt进行选择。示例性的,角度选择透过薄膜的厚度可以h满足:h=0.1k/tan(θt)mm,其中,k是杂散光的品质因子,k的取值大于或等于0.5,且小于或等于1.5。从而有效的对杂散光进行阻挡。
在本申请一个可能的实现方式中,角度选择透过薄膜可为薄膜堆叠形成,其可包括多层介质薄膜,至少两层介质薄膜的光折射率不同,且每层介质薄膜的厚度可为50~200nm。从而使角度选择透过薄膜基于多层介质薄膜对光线进行干涉的原理即可实现对光线的选择透过。
在本申请一个可能的实现方式中,角度选择透过薄膜还可以为单层膜结构,且该单层膜结构可根据该随机化深孔原理开设有深孔,并通过调整深孔的孔深和孔径的比,来使得不满足入射角的光只能投射在深孔的侧壁上被吸收,从而无法透过深孔;而满足入射角度要求的光可以直接透过深孔,以实现对光线的选择。其中,角度选择透过薄膜上的深孔的半径r,与孔深H的比值可以满足:r/H=tan(θt),以使入射角为大于或等于0°,且小于或等于θt的光线能够通过该深孔进入摄像头模组。
由于镜片组的视场角决定了摄像头模组的视野范围,因此,可使θt小于或等于镜片组的半视场角,从而能够使视场角范围内的入射光线能够透过角度选择透过薄膜参与成像。
在本申请一个可能的实现方式中,镜片组中还可集成光学防抖功能,这时在对角度选择透过薄膜的光线透过角θt进行设置时,就需要考虑镜片组的防抖角度OIS_angle,此时,角度选择透过薄膜的光线透过角θt可以大于或等于HFOV+OIS_angle的和。以避免摄像模组的抖动造成对光线选择透过的影响,从而使摄像模组具有较佳的成像质量。
在本申请一个可能的实现方式中,在将角度选择透过薄膜设置于摄像头模组内时,可使该角度选择透过薄膜设置于镜片组的物侧。或者,还可以将角度选择透过薄膜设置于镜片组和图像传感器之间。只要能够实现对投射于图像传感器的用于成像的光线进行选择即可。
在本申请一个可能的实现方式中,由于从物体表面反射过来的光线包括可见光和红外光,当这些光线同时进入摄像头模组,红外光会对可见光的成像产生影响。这样,还可以使摄像头模组包括红外滤光片,该红外滤光片可以设置于镜片组与图像传感器之间,从而可有效的滤除投射于图像传感器上的红外光线,从而提高摄像头模组的成像效果。另外,在该实现方式中,可使角度选择透过薄膜设置于镜片组与红外滤光片之间,以对入射到摄像头模组内的光线进行选择。
在本申请一个可能的实现方式中,摄像头模组的镜片组可以为直立式镜片组,或潜望式镜片组,当镜片组为直立式镜片组,或潜望式镜片组时,角度选择透过薄膜可以设置于该镜片组的物侧,或者设置于镜片组与图像传感器之间。
在本申请另一个可能的实现方式中,镜片组还可以为直立式镜片子组和潜望式镜片子组的组合。此时,在具体设置角度选择透过薄膜时,该角度选择透过薄膜可为一个,该角度选择透过薄膜具有与直立式镜片子组相对应设置的第一区域,以及与潜望式镜片子组相 对应设置的第二区域。该设置方式可有效的简化该摄像头模组的结构。另外,该角度选择透过薄膜可以同时针对直立式镜片子组和潜望式镜片子组的光线进行角度控制,从而降低整个摄像头模组的杂散光。
另外,当镜片组为直立式镜片子组和潜望式镜片子组的组合时,摄像头模组中也可以分别对应直立式镜片子组和潜望式镜片子组各设置一个角度选择透过薄膜。其中,对应于直立式镜片子组的角度选择透过薄膜设置于直立式镜片子组的物侧,或者,设置于直立式镜片子组以及对应于直立式镜片子组的第一图像传感器之间。
摄像头模组还可以包括对应于直立式镜片子组的第一红外滤光片,第一红外滤光片设置于直立式镜片子组与第一图像传感器之间,且对应于直立式镜片子组的角度选择透过薄膜还可以设置于直立式镜片子组与该第一红外滤光片之间。
在本申请另一个可能的实现方式中,潜望式镜片子组可以包括用于改变光线传输路径的光组件和水平镜片组件,则对应于该潜望式镜片子组的角度选择透过薄膜还可以设置于光组件和水平镜片组件之间,或者,设置于水平镜片组件以及对应于潜望式镜片子组的第二图像传感器之间。
另外,摄像头模组还可以包括对应于所潜望式镜片子组的第二红外滤光片,第二红外滤光片可设置于水平镜片组件与第二图像传感器之间,且对应于潜望式镜片子组的角度选择透过薄膜可设置于所述水平镜片组件与第二红外滤光片之间。
除了上述结构外,在本申请一个可能的实现方式中,摄像头模组还可以包括盖板,该盖板可设置于摄像头模组内的镜片组、角度选择透过薄膜1、红外滤光片、图像传感器等其它部件的物侧,以起到对镜片组、角度选择透过薄膜、红外滤光片、图像传感器等的防水、防尘等保护的作用。另外,该盖板可以但不限于为由玻璃等透明材质制成的板状结构,以提高光线的透过率。
第二方面,本申请还提供了一种电子设备,该电子设备包括壳体以及第一方面实施方案中的摄像头模组,摄像头模组具体可设置于壳体内。该电子设备的摄像头模组通过设置角度选择透过薄膜,以使参与成像的光线进入摄像头模组,而阻挡不参与成像的杂散光的进入,从而可有效的提升摄像头模组的成像效果,进而可提升用户对于该电子设备的使用感受。
附图说明
图1为本申请一实施例提供的摄像头模组的结构示意图;
图2为本申请另一实施例提供的摄像头模组的结构示意图;
图3为本申请一实施例提供的角度选择透过薄膜的光线透过率曲线图;
图4为本申请另一实施例提供的摄像头模组的结构示意图;
图5为本申请另一实施例提供的摄像头模组的结构示意图;
图6为本申请另一实施例提供的摄像头模组的结构示意图;
图7a-图7d为本申请实施例的摄像头模组与对比摄像头模组的成像仿真结果对比图;
图8为本申请另一实施例提供的摄像头模组的结构示意图;
图9为本申请另一实施例提供的摄像头模组的结构示意图;
图10a-图10f为本申请实施例的摄像头模组与对比摄像头模组的成像仿真结果对比图;
图11为本申请另一实施例提供的摄像头模组的结构示意图;
图12为本申请一实施例提供的角度选择透过薄膜的结构示意图;
图13为本申请另一实施例提供的摄像头模组的结构示意图;
图14为本申请一实施例提供的电子设备的结构示意图。
具体实施方式
为方便理解本申请实施例提供的摄像头模组,首先介绍一下本申请实施例的摄像头模组的应用场景。该摄像头模组可以但不限于设置于手机、平板电脑、笔记本电脑或掌上电脑(personal digital assistant,PDA)等电子设备中,以用于实现电子设备的图像拍摄功能。
参照图1,摄像头模组100通常可包括镜片组101、红外滤光片102和图像传感器103。其中,红外滤光片102设置于镜片组101和图像传感器103之间。一般来说进入镜片组101中的光线可分为两部分,一部分为参与成像的光线(如图1中的实线所表示的光线),一部分为不参与成像的光线(如图1中虚线所表示的光线)。其中,参与成像的光线经过镜片组101之后会汇聚在图像传感器103的表面,从而形成图像。而不参与成像的光线在经过镜片组101的过程中会投射在镜片组101中镜片的边缘或者其它位置导致异常的反射,并在其到达图像传感器103之后进行成像,从而形成炫光(flare)和鬼影(ghost)。
在光学仪器中,以光学仪器的镜头为顶点,以被测目标的物像可通过镜头的最大范围的两条边缘构成的夹角,称为视场角(field of view,FOV)。入射角(incident angle)是入射光线与入射表面法线的夹角。
由于镜片组101的FOV决定了摄像头模组100的视野范围,因此,上述参与成像的光线的入射角均小于或等于镜片组101的半视场角(half field of view,HFOV),而在FOV范围之外的光线(以下称为杂散光)一般不参与成像,并且还可能形成炫光和鬼影,以影响摄像头模组100的成像质量。
为了提升摄像模组的成像质量,需要减少杂散光的进入。目前,通常采用调整镜片组101的结构设计,或对镜片组101的镜片的非透光区进行雾化或者涂黑等工艺来减少杂散光的进入。在一些场景下,为了避免FOV范围之外的光线进入带来的眩光,会导致镜头的设计变得复杂;另外一些场景下,甚至需要牺牲掉其它的一些光学性能,比如减小光圈等。
本申请实施例提供的摄像头模组100旨在解决上述问题,以减少杂散光的进入,提升摄像头模组100的成像质量。
参照图2,本申请实施例提供的摄像头模组100可以包括镜片组101、角度选择透过薄膜104和图像传感器103。其中,镜片组101作为摄像头模组100中的一个重要元件,其主要基于光的折射和反射原理,将从物体上反射过来的光线进行汇聚。可以理解的是,在本申请实施例中,镜片组101可以但不限于为直立式镜片子组的组合(例如至少两个直立式镜片子组的组合),或者潜望式镜片子组的组合(例如至少两个潜望式镜片子组的组合),又或者是直立式镜片子组和潜望式镜片子组的组合(例如至少一个直立式镜片的子组和至少一个潜望式镜片的子组的组合)。
为了实现其功能,镜片组101通常可包括多个镜片,该多个镜片可以为经过设计的球面镜或者非球面镜,该多个镜片可由摄像头模组100的物侧向像侧的方向依次排列。示例性的,镜片组101中可以包括3片~8片镜片,其可根据摄像头模组100的具体的设计要求进行选择。另外,镜片可以但不限于为玻璃或者塑料等透明的材料制成,以利于光线的透 过。
为了提高摄像头模组100的成像效果,我们通常希望增加进入镜头组101且入射角位于镜片组101的FOV范围内的光线能够进入至摄像头模组100参与成像,而减少FOV范围之外的光线的进入。
在本申请实施例中,角度选择透过薄膜104可对不同入射角度的光线进行选择,以使满足入射角度要求的光线能够透过,而阻挡不满足入射要求的光线。其中,角度选择透过薄膜104对于不满足入射要求的光线的阻挡可以包括将光线进行反射或者吸收等,其可通过角度选择透过薄膜104的材质来实现。示例性的,角度选择透过薄膜104可以为黑色吸光材料,包括但是不限于为黑色树脂、黑色金属、黑色非金属(硅)等材质的材料。这样可以根据摄像头模组100对于FOV的要求,来选择合适的角度选择透过薄膜104。
在对角度选择透过薄膜104进行设置时,参照图3,可使角度选择透过薄膜104具有一光线透过角θt,以使入射角为大于或等于0°,且小于或等于θt的光线可以透过,而入射角为大于θt,且小于或等于90°的光线被阻挡。其中,在本申请一些实施例中,可通过对角度选择透过薄膜104的材质进行选择,以针对入射角为大于或等于0°,且小于或等于θt的光线,使角度选择透过薄膜104的透过率为大于或等于80%,示例性的为90%、95%,甚至为100%;另外,针对入射角为大于θt,且小于或等于90°的光线,使角度选择透过薄膜104的透过率小于或等于10%,示例性的为5%、3%,甚至为1%以下。从而有效的提高摄像头模组100的成像质量。
另外,参照图4,光线透过角θt在根据摄像头模组100的FOV进行选择时,在一个示例性的实施例中,可使光线透过角θt大于或等于HFOV,以使入射角为落在摄像头模组100的FOV范围内的光线均能够进入,从而满足摄像头模组100的成像要求。
光学防抖(optical image stabilization),是指在成像仪器中,通过光学元器件的设置,例如对镜片组101的设置,来避免或者减少捕捉光学信号过程中出现的仪器抖动的现象,从而提高成像质量。在本申请一些实施例中,镜片组101中还可集成光学防抖功能,这时在对角度选择透过薄膜104的光线透过角θt进行设置时,就需要考虑镜片组101的防抖角度OIS_angle,此时,角度选择透过薄膜104的光线透过角θt可以大于或等于HFOV+OIS_angle的和。以避免摄像模组的抖动造成对光线选择透过的影响,从而使摄像模组具有较佳的成像质量。
在本申请一个可能的实施例中,角度选择透过薄膜104可以采用多层介质薄膜叠置形成的膜层结构。其中,通过膜系的设计,角度选择透过薄膜104可选择至少两种不同折射率的介质薄膜,每层介质薄膜的厚度可为50~200nm,这样,基于多层介质薄膜对光线进行干涉的原理即可实现对光线的选择透过。
除了上述的设置方式外,在本申请另一个可能的实施例中,角度选择透过薄膜104还可以采用随机化深孔原理进行设置。其中,深孔,是指孔深与孔直径之比大于5而小于10的孔。随机化深孔原理为几何光学原理,其可通过调整深孔的孔深和孔径的比,来使得不满足入射角的光只能投射在深孔的侧壁上被吸收,从而无法透过深孔;而满足入射角度要求的光可以直接透过深孔。因此,根据该随机化深孔原理,可以在角度选择透过薄膜104上进行开深孔,来实现对光线的选择。其中,深孔的半径r,与孔深H的比值可以满足:r/H=tan(θt),以使入射角为大于或等于0°,且小于或等于θt的光线能够通过该深孔进入摄像头模组100。
在本申请一些实施例中,为了能将角度选择透过薄膜104设置于摄像头模组100中,还需要对角度选择透过薄膜104的尺寸进行考虑,而角度选择透过薄膜104的厚度为影响摄像头模组100的尺寸的重要因素。示例性的,角度选择透过薄膜104的厚度h可根据θt来进行选择:h=0.1k/tan(θt)mm,其中,k是杂散光的品质因子,其取值可大于等于0.5,且小于等于1.5。
继续参照图4,在本申请实施例中,在对图像传感器103进行设置时,图像传感器103设置于镜片组101的像侧,光线经镜片组101进入至摄像头模组100内聚焦到图像传感器103上,图像传感器103根据光的强弱积聚相应的电荷,以把光信号转换为电信号。之后,图像传感器103对电信号进行转换、合成以及补偿修正等步骤后转换成数字信号的图像输出。
在本申请一些可能的实施例中,图像传感器103可以包括图像处理芯片,该图像处理芯片可用于对电信号进行处理,并输出数字信号的图像。另外一些实施例中,图像传感器103可以不设置图像处理芯片,而是自身集成该功能。
可以理解的是,角度选择透过薄膜104对进入摄像头模组100的光线的选择,实际上是对聚焦到图像传感器103上的光线进行选择,因此,只要将角度选择透过薄膜104设置于图像传感器103的朝向物侧的一侧即可。
示例性的,参照图4,在本申请一种可能的实施例中,镜片组101设置于角度选择透过薄膜104与图像传感器103之间,以对进入镜片组101前的光线进行选择,使入射角在大于等于0°,且小于等于θt的光线进入摄像头模组100,从而在源头上减少进入摄像头模组100的杂散光。
在本申请一种可能的实施例中,参照图5,还可以使角度选择透过薄膜104设置于镜片组101与图像传感器103之间,以对进入图像传感器103前的光线进行选择,使入射角在大于等于0°,且小于等于θt的光线聚焦于图像传感器103,从而减少杂散光对摄像头模组100成像质量的影响。
除了上述的结构之外,参照图4或图5,本申请实施例的摄像头模组100还可以包括红外滤波片102,该红外滤光片102可设置于镜片组101与图像传感器103之间。
由于从物体表面反射过来的光线包括可见光和红外光,当这些光线同时进入摄像头模组100,被镜片组101折射后,可见光和红外光就会在不同的靶面成像,而可见光的成像为彩色图像,红外光的成像为黑白图像。当将可见光缩成的图像调试好后,红外光就会在可见光的成像靶面上形成虚像,从而影响图像的成像效果。因此,通过在图像传感器103的物侧设置红外滤波片102,可有效的滤除投射于图像传感器103上的红外光线,从而提高摄像头模组100的成像效果。
参照图6,本申请实施例的摄像头模组100还可以包括盖板105,该盖板105设置于摄像头模组100内的镜片组101、角度选择透过薄膜104、红外滤光片102、图像传感器103等其它部件的物侧,以起到对镜片组101、角度选择透过薄膜104、红外滤光片102、图像传感器103等的防水、防尘等保护的作用。另外,为了提高光线的透过率,盖板105可由光透过率较高的透明材质制成,示例性的,盖板105为玻璃盖板。可以理解的是,摄像头模组100通常还可以包括一容置壳,以用于容置镜片组101、角度选择透过薄膜104、红外滤光片102、图像传感器103、盖板105等器件。
继续参照图6,在本申请一个具体的实施例中,摄像头模组100包括由物侧向像侧依 次设置的盖板105、角度选择透过薄膜104、镜片组101、红外滤光片102以及图像传感器103。其中,角度选择透过薄膜104的光线透过角θt,该光线透过角θt=HFOV。另外,针对入射角的角度范围为大于或等于0°,且小于或等于θt的光线,角度选择透过薄膜104的透过率大于90%;针对入射角的角度范围为大于或等于θt,且小于或等于90°的光线,角度选择透过薄膜104的透过率小于1%。在该实施例中摄像头模组100的HFOV为=10°。
将该实施例的摄像头模组100,与未设置角度选择透过薄膜104且其它结构参数均相同的摄像头模组100(以下简称对比摄像头模组100)的杂散光成像仿真进行对比。首先,其仿真结果可参照图7a和图7b,其中,图7a为光线的入射角为20°时,对比摄像头模组100中的成像仿真结果,图7b为光线的入射角为20°时,该实施例的摄像头模组100中的成像仿真结果。通过对比可以发现,光线入射角度为20°时,对比摄像头模组100的成像画面中存在非常明显的杂散光,该杂散光的来源就是FOV范围之外的光线进入到镜片组101内部反射导致的结果,而在该实施例的摄像头模组100中存在非常少的杂散光,则角度选择透过薄膜104对杂散光有很好的阻挡作用。
另外,参照图7c和图7d,其中,图7c为光线的入射角为30°时,对比摄像头模组100中的成像仿真结果,图7d为光线的入射角为30°时,该实施例的摄像头模组100中的成像仿真结果。通过对比可以发现,光线入射角度为30°时,对比摄像头模组100的成像画面中存在非常明显的杂散光,该杂散光的来源就是FOV范围之外的光线进入到镜片组101内部反射导致的结果,而在该实施例的摄像头模组100中存在非常少的杂散光,则角度选择透过薄膜104对杂散光有很好的阻挡作用。
因此,在本申请实施例中,通过设置角度选择透过薄膜104可以有效的降低进入到摄像头模组100中的杂散光,从而可降低炫光的存在,其有利于提升摄像头模组100的成像质量。
由于摄像头模组100中的镜片组101除了可以为直立式以外,还可以为潜望式,与直立式的镜片组101相比,包括潜望式的镜片组101的摄像头模组100的架构相对复杂。参照图8,在本申请一个可能的实施例中,当镜片组101为潜望式时,摄像头模组100具体可设置为由物侧向像侧依次排布的盖板105,紧跟着是角度选择透过薄膜104,然后是镜片组101,该镜片组101包括用于改变光线传输路径的光组件(例如棱镜1011),以及设置于棱镜1011像侧的由多个透镜组成的水平镜片组件1012,其中水平镜片组件1012中镜片的数量可以是3片-8片,其可根据实际的设计要求来选择。在水平镜片组件1012的像侧是红外滤光片102,最后是图像传感器103。在该实施例中,角度选择透过薄膜104透过薄膜可参照上述实施例进行设置,在此不进行赘述。可以理解的是,在本实施例中,若存在光学防抖模组,那么可将角度选择薄膜的光线透过角θt设置为大于或等于HFOV+OIS_angle的和,其中OIS_angle是光学防抖的角度。
另外,针对包括潜望式的镜片组101的摄像头模组100架构,参照图9,角度选择透过薄膜104也可以放置在棱镜1011与水平镜片组件1012之间,其同样能够阻止杂散光进入到镜片组101内部。除此之外,在一些实施例中,角度选择透过薄膜104还可以放置在水平镜片组件1012与图像传感器103之间。
以摄像头模组100的FOV=12°为例,将该实施例的摄像头模组100,与未设置角度选择透过薄膜104且其它结构参数均相同的摄像头模组100(以下简称对比摄像头模组100)的杂散光成像仿真进行对比。首先,其仿真结果可参照图10a和图10b,其中,图10a为 光线的入射角为20°时,对比摄像头模组100中的成像仿真结果,图10b为光线的入射角为20°时,该实施例的摄像头模组100中的成像仿真结果。通过对比可以发现,光线入射角度为20°时,虽然此时的光线入射角度(20°)远远大于HFOV(6°),但是在对比摄像头模组100的成像画面的中间出现了非常明显的炫光。而在该实施例的摄像头模组100的成像画面的中间存在非常少的炫光,甚至整个画面完全呈现黑色,则角度选择透过薄膜104对杂散光有很好的阻挡作用。
另外,参照图10c和图10d,其中,图10c为光线的入射角为25°时,对比摄像头模组100中的成像仿真结果,图10d为光线的入射角为25°时,该实施例的摄像头模组100中的成像仿真结果。通过对比可以发现,光线入射角度为25°时,虽然此时的光线入射角度(25°)远远大于HFOV(6°),但是在对比摄像头模组100的成像画面的中间出现了非常明显的炫光。而在该实施例的摄像头模组100的成像画面的中间存在非常少的炫光,甚至整个画面完全呈现黑色,则角度选择透过薄膜104对杂散光有很好的阻挡作用。
还可以参照图10e和图10f,其中,图10e为光线的入射角为30°时,对比摄像头模组100中的成像仿真结果,图10f为光线的入射角为30°时,该实施例的摄像头模组100中的成像仿真结果。通过对比可以发现,光线入射角度为30°时,虽然此时的光线入射角度(30°)远远大于HFOV(6°),但是在对比摄像头模组100的成像画面的中间出现了非常明显的炫光。而在该实施例的摄像头模组100的成像画面的中间存在非常少的炫光,甚至整个画面完全呈现黑色,则角度选择透过薄膜104对杂散光有很好的阻挡作用。
在本申请该实施例中,通过设置角度选择透过薄膜104可以有效的降低进入到摄像头模组100中的杂散光,从而可降低炫光的存在,其有利于提升摄像头模组100的成像质量。
参照图11,在本请另外一些实施例中,摄像头模组100中可以同时设置一个直立式的镜片子组101a和一个潜望式的镜片子组101b。该摄像头模组100在具体设置时,可以包括一个盖板105、一个角度选择透过薄膜104,对应直立式镜片子组101a设置的第一红外滤光片102a和第一图像传感器103a,对应潜望式镜片子组101b设置的棱镜1011、水平镜片组件1012、第二红外滤光片102b和第二图像传感器103b。其中,角度选择透过薄膜104设置于盖板105的像侧,直立式镜片子组101a设置于角度选择透过薄膜104的像侧,直立式镜片子组101a、第一红外滤光片102a和第一图像传感器103a由物侧向像侧依次排列。棱镜1011设置于角度选择透过薄膜104的像侧,水平镜片组件1012设置于棱镜1011的像侧,潜望式镜片子组101b、第二红外滤光片102b和第二图像传感器103b由物侧向像侧依次排列。
在该实施例中,直立式镜片子组101a的视场角为FOV1,潜望式镜片子组101b的视场角为FOV2,直立式镜片子组101a的光学防抖角度为OIS_angle1,潜望式镜片子组101b的光学防抖角度为OIS_angle 2。基于上述镜片组101a和镜片组101b的光学参数,角度选择透过薄膜104可以分区设计其光线透过率,参照图12,其中区域A1对应直立式镜片子组101a,其光线透过度θt_1=HFOV1+OIS_angle1;区域A2对应潜望式镜片子组101b,其光线透过度θt_2=HFOV2+OIS_angle2;这样角度透过膜可以分别对两个镜片子组的杂散光进行控制。
在该实施例中通过在直立式镜片子组101a和潜望式镜片子组101b的物侧放置一个角度选择透过薄膜104,其可有效的简化该摄像头模组的结构。另外,该角度选择透过薄膜104可以同时针对直立式镜片子组101a和潜望式镜片子组101b的光线进行角度控制,从 而降低整个摄像头模组100的杂散光。
在另外一些实施例中,参照图13,还可以对应直立式镜片子组101a和潜望式镜片子组101b分别设置一个角度选择透过薄膜。此时,对应直立式镜片子组101a的角度选择透过薄膜104a设置于盖板105与该直立式镜片子组101a之间,对应潜望式镜片子组101b的角度选择透过薄膜104b设置于棱镜1011与镜片组件1012之间。在另外一些实施例中,当对应直立式镜片子组101a和潜望式镜片子组101b分别设置一个角度选择透过薄膜104a和一个角度选择透过薄膜104b时,还可对各角度选择透过薄膜的设置位置进行调整,示例性的,将角度选择透过薄膜104a设置于直立式镜片子组101a与第一红外滤光片102a之间;将角度选择透过薄膜104b设置于水平镜片组件1012与第二红外滤光片102b之间,只要使其设置于图像传感器103a或图像传感器103b的物侧,以起到减少杂散光参与成像即可。
参考图14所示,本申请实施例还提供了一种电子设备200,该电子设备200可以为现有技术中的手机、平板电脑或者笔记本电脑等常见终端。电子设备200可以包括壳体201以及前述任一实施例中的摄像头模组100,摄像头模组100可设置于壳体201内,用于实现电子设备200的拍摄功能。
该电子设备200的摄像头模组100中通过设置角度选择透过薄膜,以使参与成像的光线进入摄像头模组100,而阻挡不参与成像的杂散光的进入,从而可有效的提升摄像头模组100的成像效果,进而提升用户对于该电子设备200的使用感受。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种摄像头模组,其特征在于,包括镜片组、图像传感器以及角度选择透过薄膜,其中:
    所述镜片组,包括沿物侧到像侧排列的多个镜片;
    所述图像传感器,设置于所述镜片组的像侧;
    所述角度选择透过薄膜,设置于所述图像传感器的物侧,所述角度选择透过薄膜用于透过入射角大于或等于0°且小于或等于θt的入射光线,且用于阻挡入射角大于θt且小于或等于90°的入射光线,所述θt大于或等于0°且小于90°。
  2. 如权利要求1所述的摄像头模组,其特征在于,所述角度选择透过薄膜的厚度h满足:h=0.1k/tan(θt)mm,其中,k是杂散光的品质因子,k的取值大于或等于0.5,且小于或等于1.5。
  3. 如权利要求1或2所述的摄像头模组,其特征在于,所述θt大于或等于所述镜片组的半视场角。
  4. 如权利要求3所述的摄像头模组,其特征在于,所述镜片组具有防抖角度,所述光线透过角θt大于或等于所述镜片组的半视场角和防抖角度的和。
  5. 如权利要求1~4任一项所述的摄像头模组,其特征在于,针对入射角为大于或等于0°,且小于或等于θt的光线,所述角度选择透过薄膜的透过率为大于或等于80%;针对入射角为大于或等于θt,且小于或等于90°的光线,所述角度选择透过薄膜的透过率为小于或等于10%。
  6. 如权利要求1~5任一项所述的摄像头模组,其特征在于,所述角度选择透过薄膜包括多层介质薄膜,至少两层所述介质薄膜的光折射率不同。
  7. 如权利要求6所述的摄像头模组,其特征在于,每层所述介质薄膜的厚度大于或等于50nm,且小于或等于200nm。
  8. 如权利要求1~5任一项所述的摄像头模组,其特征在于,所述角度选择透过薄膜设置有深孔,所述深孔的半径r,与所述深孔的孔深H的比值满足:r/H=tan(θt)。
  9. 如权利要求1~8任一项所述的摄像头模组,其特征在于,所述角度选择透过薄膜设置于所述镜片组的物侧;或者,所述角度选择透过薄膜设置于所述镜片组和所述图像传感器之间。
  10. 如权利要求1~8任一项所述的摄像头模组,其特征在于,所述摄像头模组还包括红外滤光片,所述红外滤光片设置于所述镜片组与所述图像传感器之间,且所述角度选择透过薄膜设置于所述镜片组与所述红外滤光片之间。
  11. 如权利要求1~10任一项所述的摄像头模组,其特征在于,所述镜片组为直立式镜片组,或所述镜片组为潜望式镜片组。
  12. 如权利要求1~8任一项所述的摄像头模组,其特征在于,所述镜片组为直立式镜片子组和潜望式镜片子组的组合,
    所述角度选择透过薄膜为一个,且设置于所述镜片组的物侧,所述角度选择透过薄膜具有与所述直立式镜片子组相对应设置的第一区域,以及与所述潜望式镜片子组相对应设置的第二区域。
  13. 如权利要求1~8任一项所述的摄像头模组,其特征在于,所述镜片组为直立式镜片 子组和潜望式镜片子组的组合,所述角度选择透过薄膜为两个,其中一个与所述直立式镜片子组对应,另一个与所述潜望式镜片子组对应。
  14. 如权利要求13所述的摄像头模组,其特征在于,对应于所述直立式镜片子组的角度选择透过薄膜设置于所述直立式镜片子组的物侧,或者,设置于所述直立式镜片子组以及对应于所述直立式镜片子组的第一图像传感器之间。
  15. 如权利要求14所述的摄像头模组,其特征在于,所述摄像头模组还包括对应于所述直立式镜片子组的第一红外滤光片,所述第一红外滤光片设置于所述直立式镜片子组与所述第一图像传感器之间,且对应于所述直立式镜片子组的角度选择透过薄膜设置于所述直立式镜片子组与所述第一红外滤光片之间。
  16. 如权利要求13所述的摄像头模组,其特征在于,所述潜望式镜片子组包括用于改变光线传输路径的光组件和水平镜片组件,对应于所述潜望式镜片子组的角度选择透过薄膜设置于所述光组件和所述水平镜片组件之间,或者,设置于所述水平镜片组件以及对应于所述潜望式镜片子组的第二图像传感器之间。
  17. 如权利要求16所述的摄像头模组,其特征在于,还包括对应于所述潜望式镜片子组的第二红外滤光片,所述第二红外滤光片设置于所述水平镜片组件与所述第二图像传感器之间,且对应于所述潜望式镜片子组的角度选择透过薄膜设置于所述水平镜片组件与所述第二红外滤光片之间。
  18. 如权利要求1~17任一项所述的摄像头模组,其特征在于,所述摄像头模组还包括盖板,所述盖板设置于所述摄像头模组内其它部件的物侧。
  19. 如权利要求1~18任一项所述的摄像头模组,其特征在于,所述角度选择透过薄膜由黑色树脂、黑色金属,或黑色非金属材料制成。
  20. 一种电子设备,其特征在于,包括壳体以及如权利要求1~19任一项所述的摄像头模组,所述摄像头模组设置于所述壳体内。
PCT/CN2021/102197 2020-08-29 2021-06-24 一种摄像头模组及电子设备 WO2022041990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010890863.6 2020-08-29
CN202010890863.6A CN114125407A (zh) 2020-08-29 2020-08-29 一种摄像头模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022041990A1 true WO2022041990A1 (zh) 2022-03-03

Family

ID=80354188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102197 WO2022041990A1 (zh) 2020-08-29 2021-06-24 一种摄像头模组及电子设备

Country Status (2)

Country Link
CN (1) CN114125407A (zh)
WO (1) WO2022041990A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245354A (ja) * 1984-05-21 1985-12-05 Nippon Kogaku Kk <Nikon> 接触形イメ−ジセンサ
JPS62142461A (ja) * 1985-12-17 1987-06-25 Matsushita Electric Ind Co Ltd 固体撮像装置
CN101539707A (zh) * 2008-03-21 2009-09-23 富士能株式会社 摄像滤光片
CN101794588A (zh) * 2009-01-06 2010-08-04 索尼公司 光学拍摄装置、再生装置和再生方法
CN104823086A (zh) * 2012-11-30 2015-08-05 旭硝子株式会社 近红外线截止滤波器
US20180148002A1 (en) * 2011-04-20 2018-05-31 Magna Electronics Inc. Vehicle vision system with windshield mounted camera

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245354A (ja) * 1984-05-21 1985-12-05 Nippon Kogaku Kk <Nikon> 接触形イメ−ジセンサ
JPS62142461A (ja) * 1985-12-17 1987-06-25 Matsushita Electric Ind Co Ltd 固体撮像装置
CN101539707A (zh) * 2008-03-21 2009-09-23 富士能株式会社 摄像滤光片
CN101794588A (zh) * 2009-01-06 2010-08-04 索尼公司 光学拍摄装置、再生装置和再生方法
US20180148002A1 (en) * 2011-04-20 2018-05-31 Magna Electronics Inc. Vehicle vision system with windshield mounted camera
CN104823086A (zh) * 2012-11-30 2015-08-05 旭硝子株式会社 近红外线截止滤波器

Also Published As

Publication number Publication date
CN114125407A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US20240027880A1 (en) Imaging lens assembly module, camera module and electronic device
CN105530418A (zh) 便携式电子设备,及其中的摄像结构
CN219370111U (zh) 光学成像系统、摄像模组及电子设备
TW202113448A (zh) 相機模組與電子裝置
WO2023050610A1 (zh) 一种镜头组件、摄像头模组及电子设备
WO2020216153A1 (zh) 自动聚焦驱动组件、镜头及电子设备
US11774830B2 (en) Plastic lens barrel, imaging lens module and electronic device
WO2024046056A1 (zh) 摄像头模组和电子设备
US11254098B2 (en) Composite light blocking sheet, imaging lens assembly and electronic device
JP2024504436A (ja) カメラモジュール及び電子機器
TWI783557B (zh) 遮光片、成像鏡頭及電子裝置
KR20230003582A (ko) 광학 렌즈, 렌즈 모듈 및 단말
WO2022041990A1 (zh) 一种摄像头模组及电子设备
TW202206885A (zh) 成像鏡頭、取像裝置及電子裝置
CN112904529A (zh) 光学镜头、镜头模组及电子设备
CN114647068B (zh) 光学系统
CN214586080U (zh) 成像镜头、取像装置及电子装置
CN213423578U (zh) 光学系统
KR20220136021A (ko) 렌즈 및 이동 단말기
US20210021743A1 (en) Handheld electronic device and head mounted electronic device
US10158791B2 (en) Camera device with red halo reduction
TWI742687B (zh) 塑膠透鏡與成像鏡頭
WO2021169823A1 (zh) 一种镜头、摄像模组和电子设备
CN220730514U (zh) 成像镜头模块、相机模块与电子装置
TWI784743B (zh) 相機模組及電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859832

Country of ref document: EP

Kind code of ref document: A1