WO2022161109A1 - 一种光学镜头、摄像头模组及电子设备 - Google Patents

一种光学镜头、摄像头模组及电子设备 Download PDF

Info

Publication number
WO2022161109A1
WO2022161109A1 PCT/CN2021/143954 CN2021143954W WO2022161109A1 WO 2022161109 A1 WO2022161109 A1 WO 2022161109A1 CN 2021143954 W CN2021143954 W CN 2021143954W WO 2022161109 A1 WO2022161109 A1 WO 2022161109A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical lens
optical
satisfy
image
Prior art date
Application number
PCT/CN2021/143954
Other languages
English (en)
French (fr)
Inventor
张凯元
徐运强
周少攀
封荣凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21922697.4A priority Critical patent/EP4273607A1/en
Publication of WO2022161109A1 publication Critical patent/WO2022161109A1/zh
Priority to US18/359,505 priority patent/US20230367101A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the present application relates to the technical field of electronic devices, and in particular, to an optical lens, a camera module and an electronic device.
  • the integration of high-performance optical lenses has become an important development trend of current mobile phones, and the zoom range, resolution, and imaging quality of mobile phone lenses need to be further improved.
  • the depth of field of the optical lens is also an important factor affecting its shooting effect. For example, in some shooting scenes, to make the distant and close-up images in the shooting screen clear at the same time, it is necessary to use a small aperture optical lens for shooting; in other shooting scenarios In the scene, to highlight the subject in the shooting picture and blur the background, you need to use an optical lens with a large aperture to shoot.
  • most of the mobile phone lenses currently released on the market are designed with a fixed aperture, which cannot take into account the needs of multi-scene shooting.
  • the present application provides an optical lens, a camera module, and an electronic device, so that the optical lens can provide different depth-of-field ranges for different shooting scenes, taking into account the shooting needs of multiple scenes.
  • the present application provides an optical lens
  • the optical lens may include a variable aperture and seven lenses, from the object side to the image side, the seven lenses are respectively a first lens, a second lens, a third lens lens, fourth lens, fifth lens, sixth lens and seventh lens.
  • the variable aperture is arranged on the object side of the first lens, and the light transmission diameter of the variable aperture can be adjusted, so that the adjustment of the aperture number of the optical lens can be realized.
  • the first lens has positive refractive power
  • the object-side surface of the first lens is convex at the near optical axis
  • the image-side surface is concave at the near optical axis
  • the focal length f1 of the first lens and the focal length EFL of the optical lens satisfy: 0 ⁇ f1/EFL ⁇ 1.1.
  • the second lens has negative refractive power
  • the object-side surface of the second lens is convex at the near-optical axis
  • the image-side surface is concave at the near-optical axis.
  • the near optical axis of the object-side surface of the third lens is concave
  • the focal length f3 of the third lens and the focal length f4 of the fourth lens satisfy: -4 ⁇ f3/f4 ⁇ -1.3.
  • the object-side surface of the seventh lens is an inverse curved surface, which helps to improve the image quality of the fringe field of view of the optical lens.
  • the optical lens provided by the present application adopts a variable aperture structure, combined with the matching design of the relevant parameters of the lens, so that the optical lens can provide different depth-of-field ranges for different scenes, so it can take into account the shooting needs of multiple scenes.
  • the radius of curvature R3 at the near-optical axis of the object-side surface of the second lens and the radius of curvature R4 at the near-optical axis of the image-side surface of the second lens satisfy: 1.8 ⁇ (R3+R4)/(R3-R4 ) ⁇ 6.3, this setting helps to balance the optical power coordination of the optical lens and shorten the total length TTL of the optical lens.
  • the total length TTL of the optical lens, the aperture number Fno. of the optical lens, and the half image height ImgH that can be formed on the imaging surface of the optical lens satisfy: TTL ⁇ Fno./ImgH ⁇ 1.9.
  • the center thickness CT5 of the fifth lens, the center thickness CT7 of the seventh lens, and the half field angle HFOV of the optical lens satisfy: 0 ⁇ CT7/(CT5 ⁇ tan(HFOV)) ⁇ 1.1.
  • the f-number Fno. of the optical lens satisfies: 1.2 ⁇ Fno. ⁇ 8.0.
  • the aperture number Fno. of the optical lens can be adjusted by changing the aperture diameter of the variable aperture. Different aperture diameters correspond to different aperture numbers Fno., that is, corresponding to different depths of field, so that the optical lens can be adapted to different shooting scenes .
  • the curvature radius R12 of the image-side surface of the sixth lens at the near optical axis and the focal length EFL of the optical lens satisfy: 0 ⁇
  • the curvature radius R13 of the object-side surface of the seventh lens and the focal length EFL of the optical lens satisfy: 0 ⁇
  • the total length TTL of the optical lens and the entrance pupil diameter EPD of the optical lens satisfy: 1.5 ⁇ TTL/EPD ⁇ 10, which can better control the amount of light entering the optical lens and keep the total length TTL of the optical lens .
  • the distance d1 between the first lens and the second lens satisfies: d1/dm ⁇ 1, where dm is the mth lens and the m+1th lens
  • the distance between lenses, m is a natural number and 2 ⁇ m ⁇ 6.
  • the central thickness CT1 of the first lens satisfies: CT1/CTn ⁇ 1, wherein CTn is the central thickness of the nth lens, n is a natural number and 2 ⁇ n ⁇ 7.
  • the specific structural forms of the optical lens can be as follows:
  • the optical lens satisfy: 1.9 ⁇ TTL ⁇ F/ImgH ⁇ 5.5; the center thickness of the fifth lens CT5, the seventh lens
  • 0.4;
  • 0.4;
  • 0.3;
  • 0.32;
  • 0.37;
  • the total length of the optical lens TTL and the entrance pupil diameter of the optical lens EPD satisfies: 1.84 ⁇ TTL/EPD ⁇ 9.80; along the optical axis of the optical lens, the distance d1 between the first lens and the second lens satisfies: 0.04 ⁇ d1/dm ⁇ 0.21; the center thickness CT1 of the
  • the optical lens satisfy: 2.33 ⁇ TTL ⁇ F/ImgH ⁇ 6.24; the center thickness of the fifth lens CT5, the seventh lens
  • 0.39;
  • 0.39;
  • 0.39;
  • the curvature radius R13 of the object-side surface of the seventh lens and the focal length EFL of the optical lens satisfy:
  • 2.19;
  • 0.46; the curvature radius R13 of the object-side surface of the seventh lens and the focal length EFL of the optical lens satisfy:
  • 2.19; the total length TTL of the optical lens and the entrance pupil diameter of the optical lens EPD satisfies: 1.96 ⁇ TTL/EPD ⁇ 5.22; along the optical axis direction of the optical lens, the distance d1 between the first lens and the second lens satisfies: 0.07 ⁇ d1/dm ⁇ 0.21; the center thickness CT1 of the
  • 0.02;
  • 0.26;
  • the total length of the optical lens TTL and the entrance pupil diameter of the optical lens EPD satisfies: 1.82 ⁇ TTL/EPD ⁇ 5.08; along the optical axis direction of the optical lens, the distance d1 between the first lens and the second lens satisfies: 0.11 ⁇ d1/dm ⁇ 0.66; the center thickness CT
  • the curvature radius R12 at the near optical axis of the image side surface of the sixth lens and the focal length of the optical lens EFL satisfies:
  • 0.11;
  • 2.10;
  • the total length of the optical lens TTL and the entrance pupil diameter of the optical lens EPD satisfies: 1.74 ⁇ TTL/EPD ⁇ 5.25; along the optical axis direction of the optical lens, the distance d1 between the first lens and the second lens satisfies: 0.05 ⁇ d1/dm ⁇ 0.16; the center
  • the present application also provides a camera module
  • the camera module may include an image sensor and an optical lens in any of the foregoing possible implementations, the image sensor is disposed on the imaging surface of the optical lens, and can be used for optical The optical signal transmitted by the lens is converted into an image signal.
  • the camera module can take into account the shooting needs of different scenes.
  • the present application also provides an electronic device, the electronic device includes a housing and the camera module in the foregoing solution, and the camera module is fixed on the housing.
  • the casing is provided with a light inlet hole, and the light outside the electronic device can pass through the light inlet hole and enter the interior of the electronic device, so as to be collected and imaged by the camera module.
  • the camera module of the electronic device can take into account the shooting requirements of different scenes, and the imaging quality is high.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is a partial exploded schematic diagram of the electronic device in Fig. 1;
  • FIG. 3 is a partial cross-sectional view of the electronic device in FIG. 1 at A-A;
  • FIG. 4 is a schematic structural diagram of a camera module provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an optical lens provided by an embodiment of the application.
  • FIG. 6a is a schematic structural diagram of the first optical lens provided by the embodiment of the application when it is in the first imaging mode
  • 6b is a schematic structural diagram of the first optical lens provided by the embodiment of the application when it is in the second imaging mode;
  • FIG. 7a is an axial chromatic aberration curve diagram of the first optical lens provided by the embodiment of the application when the first imaging mode is in the first imaging mode;
  • FIG. 7b is an axial chromatic aberration curve diagram of the first optical lens provided by the embodiment of the present application when it is in the second imaging mode;
  • FIG. 8a is a lateral chromatic aberration curve diagram of the first optical lens provided by the embodiment of the application when it is in the first imaging mode;
  • FIG. 8b is a lateral chromatic aberration curve diagram of the first optical lens provided in the embodiment of the application when it is in the second imaging mode;
  • FIG. 9a is an optical distortion curve diagram of the first optical lens provided by the embodiment of the application when it is in the first imaging mode
  • FIG. 9b is an optical distortion curve diagram of the first optical lens provided by the embodiment of the application when it is in the second imaging mode
  • 10a is a schematic structural diagram of the second optical lens provided in the embodiment of the application when it is in the first imaging mode
  • FIG. 10b is a schematic structural diagram of the second optical lens provided in the embodiment of the application when it is in the second imaging mode;
  • FIG. 11a is an axial chromatic aberration curve diagram of the second optical lens provided in the embodiment of the application when it is in the first imaging mode;
  • FIG. 11b is an axial chromatic aberration curve diagram of the second optical lens provided by the embodiment of the present application when the second imaging mode is used;
  • FIG. 12a is a lateral chromatic aberration curve diagram of the second optical lens provided in the embodiment of the application when it is in the first imaging mode;
  • FIG. 12b is a lateral chromatic aberration curve diagram of the second optical lens provided in the embodiment of the application when it is in the second imaging mode;
  • Fig. 13a is a graph of optical distortion when the second optical lens provided by the embodiment of the application is in the first imaging mode
  • FIG. 13b is an optical distortion curve diagram of the second optical lens provided by the embodiment of the application when the second imaging mode is in the second imaging mode;
  • 14a is a schematic structural diagram of a third optical lens provided in an embodiment of the application when it is in a first imaging mode
  • 14b is a schematic structural diagram of a third optical lens provided in an embodiment of the application when it is in a second imaging mode;
  • FIG. 15a is an axial chromatic aberration curve diagram of the third optical lens provided in the embodiment of the application when it is in the first imaging mode;
  • FIG. 15b is an axial chromatic aberration curve diagram of the third optical lens provided in the embodiment of the application when it is in the second imaging mode;
  • 16a is a lateral chromatic aberration curve diagram of the third optical lens provided in the embodiment of the application when it is in the first imaging mode;
  • FIG. 16b is a lateral chromatic aberration curve diagram of the third optical lens provided in the embodiment of the application when it is in the second imaging mode;
  • FIG. 17a is an optical distortion curve diagram of the third optical lens provided by the embodiment of the application when it is in the first imaging mode
  • FIG. 17b is an optical distortion curve diagram of the third optical lens provided by the embodiment of the application when it is in the second imaging mode
  • FIG. 18a is a schematic structural diagram of a fourth optical lens provided in an embodiment of the application when it is in a first imaging mode
  • 18b is a schematic structural diagram of the fourth optical lens provided by the embodiment of the application when it is in the second imaging mode;
  • 19a is an axial chromatic aberration curve diagram of the fourth optical lens provided by the embodiment of the application when it is in the first imaging mode;
  • FIG. 19b is an axial chromatic aberration curve diagram of the fourth optical lens provided by the embodiment of the application when it is in the second imaging mode;
  • Fig. 20a is a lateral chromatic aberration curve diagram of the fourth optical lens provided by the embodiment of the application when it is in the first imaging mode;
  • Fig. 20b is a lateral chromatic aberration curve diagram of the fourth optical lens provided in the embodiment of the application when it is in the second imaging mode;
  • FIG. 21a is an optical distortion curve diagram of the fourth optical lens provided by the embodiment of the application when it is in the first imaging mode
  • FIG. 21b is an optical distortion curve diagram of the fourth optical lens provided by the embodiment of the application when it is in the second imaging mode
  • 22a is a schematic structural diagram of a fifth optical lens provided in an embodiment of the application when it is in a first imaging mode
  • 22b is a schematic structural diagram of the fifth optical lens provided by the embodiment of the application when it is in the second imaging mode;
  • FIG. 23a is an axial chromatic aberration curve diagram of the fifth optical lens provided by the embodiment of the application when it is in the first imaging mode;
  • FIG. 23b is an axial chromatic aberration curve diagram of the fifth optical lens provided in the embodiment of the application when it is in the second imaging mode;
  • Fig. 24a is a lateral chromatic aberration curve diagram of the fifth optical lens provided by the embodiment of the application when it is in the first imaging mode;
  • FIG. 24b is a lateral chromatic aberration curve diagram of the fifth optical lens provided by the embodiment of the application when it is in the second imaging mode;
  • FIG. 25a is an optical distortion curve diagram of the fifth optical lens provided by the embodiment of the application when it is in the first imaging mode
  • FIG. 25b is an optical distortion curve diagram of the fifth optical lens provided by the embodiment of the application when it is in the second imaging mode
  • 26a is a schematic structural diagram of the sixth optical lens provided by the embodiment of the application when it is in the first imaging mode
  • 26b is a schematic structural diagram of the sixth optical lens provided by the embodiment of the application when it is in the second imaging mode;
  • Fig. 27a is a graph of axial chromatic aberration when the sixth optical lens provided by the embodiment of the application is in the first imaging mode
  • Figure 27b is an axial chromatic aberration curve diagram of the sixth optical lens provided in the embodiment of the application when it is in the second imaging mode;
  • Fig. 28a is a lateral chromatic aberration curve diagram of the sixth optical lens provided by the embodiment of the application when it is in the first imaging mode;
  • FIG. 28b is a lateral chromatic aberration curve diagram of the sixth optical lens provided in the embodiment of the application when it is in the second imaging mode;
  • 29a is a graph of optical distortion when the sixth optical lens provided by the embodiment of the application is in the first imaging mode
  • FIG. 29b is an optical distortion curve diagram of the sixth optical lens provided in the embodiment of the present application in the second imaging mode.
  • 1-electronic equipment 100-shell; 200-display screen; 300-circuit board; 400-camera module; 110-middle frame;
  • 120-back cover 210-display panel; 220-first cover plate; 310-avoidance space; 1201-light inlet;
  • F# F-number F-number/aperture is the relative value obtained from the focal length of the lens/the diameter of the entrance pupil of the lens (the reciprocal of the relative aperture). The larger the F value, the smaller the depth of field, and the background content of the photo will be blurred, similar to the effect of a telephoto lens;
  • TTL total track length the total length of the lens, specifically the distance from the surface of the lens closest to the subject to the imaging surface
  • FOV field of view field of view
  • EPD entry pupil diameter entrance pupil diameter
  • the optical power is equal to the difference between the convergence of the image-side beam and the convergence of the object-side beam.
  • a lens with positive refractive power has a positive focal length, which can gather light;
  • a lens with negative refractive power has a negative focal length, which can spread light;
  • the object side can be understood as the side close to the ingested object, and the image side can be understood as the side close to the imaging surface;
  • the object-side surface of the lens is the side surface of the lens close to the object to be captured, and the image-side surface of the lens is the side surface of the lens close to the imaging surface;
  • Near the optical axis can be understood as the area of the lens surface close to the optical axis.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 1 may be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA for short), a camera, a personal computer, a notebook computer, a vehicle-mounted device, a wearable device , Augmented reality (AR) glasses, AR helmets, virtual reality (VR) glasses or VR helmets, or other forms of equipment with photography and videography functions.
  • PDA personal digital assistant
  • AR Augmented reality
  • VR virtual reality
  • the electronic device of the embodiment shown in FIG. 1 is described by taking a mobile phone as an example.
  • FIG. 2 is a partial exploded schematic view of the electronic device in FIG. 1 .
  • the electronic device 1 may include a casing 100 , a display screen 200 , a circuit board 300 and a camera module 400 .
  • FIGS. 1, 2 and the following related drawings only schematically show some components included in the electronic device 1, and the actual shapes, actual sizes, actual positions and actual structures of these components are not affected by those shown in FIGS. 1 and 1. 2 and the accompanying drawings below.
  • the width direction of the electronic device 1 is defined as the x axis
  • the length direction of the electronic device is the y axis
  • the thickness direction of the electronic device 1 is the z axis, wherein the x, y, and z axes are perpendicular to each other. It can be understood that, the coordinate system setting of the electronic device 1 can be flexibly set according to specific actual needs.
  • the housing 100 may include a middle frame 110 and a back cover 120 , and the back cover 120 is fixed on one side of the middle frame 110 .
  • the back cover 120 may be fixedly connected to the middle frame 110 by adhesive.
  • the back cover 120 and the middle frame 110 may also form an integrally formed structure, that is, the back cover and the middle frame are an integral structure.
  • the housing 100 may also include a midplane (not shown).
  • the middle plate is connected to the inner side of the middle frame 110 and is opposite to the rear cover 120 and arranged at intervals.
  • the display screen 200 is fixed on the other side of the middle frame 110 opposite to the back cover 120 . At this time, the display screen 200 is disposed opposite to the back cover 120 .
  • the display screen 200 , the middle frame 110 and the back cover 120 together enclose the interior of the electronic device 1 .
  • the interior of the electronic device 1 can be used to place components of the electronic device 1 , such as a circuit board 300 , a camera module 400 , a battery, a receiver, a microphone, and the like.
  • the display screen 200 may be used to display images, texts, and the like.
  • the display screen 200 may be a flat screen or a curved screen.
  • the display screen 200 includes a display panel 210 and a first cover plate 220 , and the first cover plate 220 is stacked on a side of the display panel 210 away from the middle frame 110 .
  • the first cover plate 220 may be disposed close to the display panel 210 , and may be mainly used for protecting and dustproofing the display panel 210 .
  • the material of the first cover plate 220 is a transparent material, for example, glass or plastic.
  • the display panel 210 may adopt a liquid crystal display panel (Liquid Crystal Display, LCD for short), an organic light-emitting diode (organic light-emitting diode, OLED for short) display panel, an active matrix organic light emitting diode or an active matrix organic light emitting diode ( active-matrix organic light-emitting diode (AMOLED) display panel, quantum dot light emitting diode (QLED) display panel, or Micro Light Emitting Diode (Micro LED) display panel, etc.
  • LCD Liquid Crystal Display
  • OLED organic light-emitting diode
  • AMOLED active matrix organic light emitting diode
  • QLED quantum dot light emitting diode
  • Micro Light Emitting Diode Micro Light Emitting Diode
  • FIG. 3 is a partial cross-sectional view at A-A of the electronic device in FIG. 1 .
  • the circuit board 300 is fixed inside the electronic device 1 .
  • the circuit board 300 may be fixed to the side of the display screen 200 facing the back cover 120 .
  • the middle frame 110 includes a middle board
  • the circuit board 300 may be fixed on a side surface of the middle board facing the back cover 120 .
  • the circuit board 300 may be a rigid circuit board, a flexible circuit board, or a flexible-rigid circuit board.
  • the circuit board 300 can be used to carry electronic devices such as chips, capacitors, inductors, etc., and can realize electrical connection between the electronic devices, wherein the chip can be a central processing unit (CPU for short), a graphics processing unit (graphics processing unit) unit, referred to as GPU), digital signal processing chip (digital signal processing, referred to as DSP) and universal memory (universal flash storage, referred to as UFS) and so on.
  • the chip can be a central processing unit (CPU for short), a graphics processing unit (graphics processing unit) unit, referred to as GPU), digital signal processing chip (digital signal processing, referred to as DSP) and universal memory (universal flash storage, referred to as UFS) and so on.
  • CPU central processing unit
  • GPU graphics processing unit
  • DSP digital signal processing
  • UFS universal flash storage
  • the camera module 400 is fixed in the casing 100 for enabling the electronic device 1 to realize functions such as taking pictures or recording videos.
  • the camera module 400 may be fixed on the side of the display screen 200 facing the back cover 120 .
  • the middle frame 110 includes a middle plate
  • the camera module 400 can also be fixed on the side surface of the middle plate facing the back cover 120 .
  • an avoidance space 310 may be provided on the circuit board 300 , and the shape of the avoidance space 310 may be a shape matching the shape of the camera module 400 , such as a rectangular shape as shown in FIG. 2 .
  • the avoidance space 310 may also be a circle, an ellipse, or other irregular shapes, etc., which is not specifically limited in the present application.
  • the camera module 400 is located in the avoidance space 310 . In this way, in the z-axis direction, the camera module 400 and the circuit board 300 have an overlapping area, so as to avoid an increase in the thickness of the electronic device 1 caused by stacking the camera module 400 on the circuit board.
  • the circuit board 300 may not be provided with the avoidance space 310 . In this case, the camera module 400 may be directly stacked on the circuit board 300 , or may be spaced from the circuit board 300 by other supporting structures.
  • the camera module 400 is electrically connected to the circuit board 300 .
  • the camera module 400 is electrically connected to the CPU through the circuit board 300 .
  • the CPU receives the user's instruction, the CPU can send a signal to the camera module 400 through the circuit board 300 to control the camera module 400 to capture images or record videos.
  • the camera module 400 can also directly receive the user's instruction, and take images or video according to the user's instruction.
  • the back cover 120 is provided with a light inlet hole 1201 , and the light inlet hole 1201 can connect the inside of the electronic device 1 to the outside of the electronic device 1 .
  • the electronic device 1 further includes a camera decoration 1202 and a second cover 1203 . Part of the camera decorations 1202 may be fixed on the inner surface of the back cover 120 , and some of the camera decorations 1202 are in contact with the hole wall of the light inlet hole 1201 .
  • the second cover plate 1203 is fixedly connected to the inner wall of the camera decorative piece 1202 .
  • the camera decoration 1202 and the second cover 1203 separate the interior of the electronic device 1 from the exterior of the electronic device 1 , so as to prevent water or dust from entering the interior of the electronic device 1 through the light inlet hole 1201 .
  • the material of the second cover plate 1203 is a transparent material, for example, glass or plastic.
  • the ambient light outside the electronic device 1 can enter the interior of the electronic device 1 through the second cover plate 1203 .
  • the camera module 400 captures ambient light entering the interior of the electronic device 1 .
  • the shape of the light inlet hole 1201 is not limited to the circle as shown in FIG. 1 and FIG. 2 .
  • the shape of the light inlet hole 1201 may also be an ellipse or other irregular shapes.
  • the camera module 400 can also collect ambient light passing through the back cover 120 .
  • the material of the back cover 120 is a transparent material, such as glass or plastic.
  • the surface of the back cover 120 facing the inside of the electronic device 1 is partially coated with ink, and partially is not coated with ink. At this time, the area where the ink is not applied may form a light-transmitting area.
  • the camera module 400 can collect ambient light. That is to say, the electronic device 1 of the present embodiment does not need to open light holes, and also does not need to provide the camera decorative piece 1202 and the second cover 1203 , and the electronic device 1 has better integrity and lower cost.
  • the camera module 400 can also be fixed on the side of the back cover 120 facing the display screen 200 .
  • a hole can be provided on the display panel 210 to allow light from outside the electronic device 1 It can enter the interior of the electronic device 1 through the first cover plate 220 and the opening in sequence, so as to be captured by the camera module 400 and form an image or video.
  • the camera module 400 in this embodiment can be used as both a front-facing camera module and a rear-facing camera module, which can be set according to the functional requirements of the electronic device 1, which will not be discussed here. More to say.
  • FIG. 4 is a schematic structural diagram of a camera module provided by an embodiment of the present application.
  • the camera module 400 may include an optical lens 410 , a module circuit board 420 , an image sensor 430 and a filter 440 . It should be noted that the optical axis direction of the optical lens 410 is the same as the optical axis direction of the camera module 400 .
  • the optical lens 410 can be installed between the object (object plane) and the image sensor 430 (image plane).
  • the image of the camera ie, the light signal
  • the image of the camera is converted into an image signal and output, so as to realize the photographing or video recording function of the camera module.
  • the module circuit board 420 is fixed on the light-emitting side of the optical lens 410 , that is, the module circuit board 420 is located on the image side of the optical lens 410 .
  • the modular circuit board 420 may be electrically connected to the circuit board so that signals can be transmitted between the circuit board and the modular circuit board 420 .
  • the modular circuit board 420 may be a rigid circuit board, a flexible circuit board, or a flexible-rigid circuit board, which is not limited in this application.
  • the image sensor 430 is fixed on the side of the module circuit board 420 facing the optical lens 410 .
  • the image sensor 430 is electrically connected to the module circuit board 420 , so that after the image sensor 430 collects ambient light, the image sensor 430 generates a signal according to the ambient light, and transmits the signal to the circuit board through the module circuit board 420 .
  • the image sensor 430 may be an image sensor such as a complementary metal-oxide-semiconductor (CMOS) or a charge coupled device (CCD for short).
  • CMOS complementary metal-oxide-semiconductor
  • CCD charge coupled device
  • electronic components or other chips may also be mounted on the modular circuit board 420 .
  • Electronic components or other chips are arranged around the image sensor 430 .
  • Electronic components or other chips are used to assist the image sensor 430 to collect ambient light, and the auxiliary image sensor 430 to perform signal processing on the collected ambient light.
  • the module circuit board 420 may be partially provided with a recess 421 , and at this time, the image sensor 430 may be installed in the recess 421 . In this way, the image sensor 430 and the module circuit board 420 have an overlapping area in the z-axis direction, and at this time, the camera module 400 can be set thinner in the z-axis direction.
  • the filter 440 is located on the side of the image sensor 430 facing the optical lens 410 .
  • the filter 440 can be used to filter the stray light of the ambient light passing through the optical lens 410, and make the filtered ambient light propagate to the image sensor 430, so as to ensure that the image captured by the electronic device has better clarity.
  • the filter 440 may be, but is not limited to, a blue glass filter.
  • the filter 440 can also be a reflective infrared filter, or a double-pass filter (the double-pass filter can transmit visible light and infrared light in ambient light at the same time, or allow visible light in ambient light to pass through at the same time. It transmits light with other specific wavelengths (such as ultraviolet light) at the same time, or transmits infrared light and other specific wavelengths of light (such as ultraviolet light) at the same time).
  • the camera module 400 may further include a support member 450 disposed between the optical lens 410 and the module circuit board 420, and two sides of the support member 450 are respectively connected to the optical lens 410 and the module.
  • the circuit board 420 is fixedly connected, and the specific fixing method may be bonding.
  • the filter 440 may be disposed on one side of the support member 450 .
  • a through hole 451 is formed on the support member 450 in a region corresponding to the image sensor 430 , so that ambient light can smoothly enter the image sensor 430 .
  • the optical lens is the most critical component that affects the imaging quality of the camera module.
  • the zoom range, resolution, and depth of field of an optical lens will affect its imaging effect.
  • the depth of field refers to the distance range before and after the subject measured by the imaging of the front edge of the optical lens that can obtain a clear image, or it can be understood as the distance range of the clear image presented by the range before and after the focus when the optical lens is focused.
  • the depth of field of an optical lens is related to its aperture. The larger the aperture, the shallower the depth of field, and the smaller the aperture, the deeper the depth of field.
  • the embodiments of the present application also provide an optical lens, the optical lens adopts a variable aperture structure, and combined with the matching design of the relevant parameters of the lens, so that the optical lens can provide different depth-of-field ranges for different scenes, So as to take into account the shooting needs of multiple scenes.
  • FIG. 5 is a schematic structural diagram of an optical lens provided by an embodiment of the present application.
  • the optical lens 410 may include a plurality of lenses with optical power and a variable aperture ST, wherein the variable aperture ST may be disposed on the object side of the plurality of lenses, and its light transmission diameter can be adjusted. It can be understood that the light input amount of the optical lens 410 can be adjusted by adjusting the light transmission diameter of the variable aperture ST, and the aperture number Fno. of the optical lens 410 can be adjusted, thereby adjusting the depth of field of the optical lens 410 .
  • the variable aperture ST may adopt a "cat's-eye" aperture, an "iris-type” aperture, an instantaneous aperture, a shutter aperture, etc., which is not limited in this application.
  • the number of lenses may be seven, from the object side to the image side, the seven lenses are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the third lens Six lenses L6 and seventh lens L7.
  • these lenses can be aspherical lenses, which can eliminate aberrations and help improve the imaging quality of the optical lens 410 .
  • each lens can be made of resin material, so as to reduce the manufacturing process difficulty and manufacturing cost of the optical lens 410 .
  • each lens can also be made of glass; or some lenses are made of glass, and some of the lenses are made of resin, which can be selected according to actual applications, which is not limited in this application.
  • the first lens L1 may have positive refractive power
  • the object-side surface of the first lens L1 is convex at the entrance axis
  • the image-side surface is concave at the entrance axis
  • the first lens L1 The focal length f1 and the focal length EFL of the optical lens 410 satisfy: 0 ⁇ f1/EFL ⁇ 1.1.
  • the second lens L2 may have negative refractive power, and the object-side surface of the second lens L2 is convex at the near-optical axis, and the image-side surface is concave at the near-optical axis.
  • the radius of curvature R3 at the near-optical axis of the object-side surface of the second lens L2 and the radius of curvature R4 at the near-optical axis of the image-side surface of the second lens L2 satisfy: 1.8 ⁇ (R3+R4)/(R3-R4) ⁇ 6.3.
  • the setting helps to balance the focal power of the optical lens 410 and shorten the total length TTL of the optical lens 410 .
  • the object-side surface of the third lens L3 is concave at the near optical axis, and the focal length f3 of the third lens L3 and the focal length f4 of the fourth lens L4 satisfy: -4 ⁇ f3/f4 ⁇ -1.3.
  • the center thickness CT5 of the fifth lens L5, the center thickness CT7 of the seventh lens L7, and the half angle of view HFOV of the optical lens 410 satisfy: 0 ⁇ CT7/[CT5 ⁇ tan(HFOV)] ⁇ 1.1.
  • the curvature radius R12 of the image-side surface of the sixth lens L6 at the near optical axis and the focal length EFL of the optical lens 410 satisfy: 0 ⁇
  • the object-side surface of the seventh lens L7 is an inverse curved surface, which helps to improve the image quality of the edge field of view of the camera module.
  • the radius of curvature R13 of the object-side surface of the seventh lens L7 and the focal length EFL of the optical lens 410 satisfy: 0 ⁇
  • the total length of the optical lens 410 TTL, the half image height ImgH that the optical lens 410 can form on its imaging surface, and the f-number Fno. of the optical lens 410 satisfy: TTL ⁇ Fno./ImgH ⁇ 1.8.
  • the total length TTL of the optical lens 410 and the entrance pupil diameter EPD of the optical lens 410 satisfy: 1.5 ⁇ TTL/EPD ⁇ 10, which can better control the light input amount of the optical lens 410 and maintain the total length TTL of the optical lens 410.
  • the intervals between the lenses of the optical lens 410 also satisfy certain conditions. Specifically, define the distance between the first lens L1 and the second lens L2 as d1, the distance between the second lens L2 and the third lens L3 as d2, and the distance between the third lens L3 and the fourth lens L4 is d3, the distance between the fourth lens L4 and the fifth lens L5 is d4, the distance between the fifth lens L5 and the sixth lens L6 is d5, and the distance between the sixth lens L6 and the seventh lens L7 is d7 , dm represents any value between d2, d3, d4, d5, and d6, and d1/dm ⁇ 1 is satisfied between d1 and dm.
  • the overall mechanical strength of the optical lens 410 can be improved.
  • the distance d1 between the first lens L1 and the second lens L2 can be understood as the distance between the center of the image-side surface of the first lens L1 and the center of the object-side surface of the second lens L2 in the direction of the optical axis, Similarly, the definition of d1 may also be referred to for the interval between other adjacent lenses, which will not be repeated here.
  • the central thickness of the first lens L1 as CT1
  • the central thickness of the second lens L2 as CT1
  • the central thickness of the third lens L3 as CT3
  • the central thickness of the fourth lens L4 as CT4
  • the central thickness of the fifth lens L5 as is CT5
  • the center thickness of the sixth lens L6 is CT6
  • the center thickness of the seventh lens L7 is CT7
  • CTn represents any value between CT2, CT3, CT4, CT5, CT6, CT7, CT1 and CT7 satisfy CT1/ CTn ⁇ 1.
  • the optical lens 410 of the embodiment of the present application can adjust the aperture number Fno. by changing the light-passing diameter of the variable aperture ST, and different light-passing diameters correspond to different aperture numbers Fno., that is, corresponding to different depths of field , so that the optical lens 410 can be adapted to different shooting scenes.
  • the light-passing diameter of the variable aperture ST can be adjusted between a first light-passing diameter and a second light-passing diameter, and the first light-passing diameter is larger than the second light-passing diameter.
  • the aperture number Fno is the first light-passing diameter
  • the optical lens 410 in this state is defined as the first imaging mode
  • the aperture number Fno. of the optical lens 410 is F2
  • the optical lens 410 in this state is defined as the second imaging mode.
  • F1 ⁇ F2 exemplarily, the value of F1 may be 1.2, and the value of F2 may be 8.0, that is, the value range of the aperture number Fno. of the optical lens 410 in the embodiment of the present application may be in the range of Between 1.2 and 8.0.
  • FIG. 6a is a schematic structural diagram of the first optical lens provided by the embodiment of the application when it is in the first imaging mode
  • FIG. 6b is the first optical lens provided by the embodiment of the application in the first imaging mode.
  • the aperture number Fno. of the optical lens 410 is relatively small and has a large aperture characteristic, so the depth of field can be made shallow and the focus point can be made clear.
  • the scene will be blurred, so that the subject can be better highlighted and the picture can be simplified; in addition, the use of a large aperture also means that the light entering the optical lens per unit time will increase.
  • the shutter speed can be increased.
  • the increase in the shutter speed can reduce the impact of hand shake on the clarity of the picture, which is conducive to the camera module to take better night scene pictures.
  • the aperture number Fno. of the optical lens 410 is relatively large and has a small aperture characteristic, so a large depth of field can be obtained, so that the background or foreground other than the focused subject can also be kept clear;
  • the aperture can reduce the amount of light entering the optical lens 410, which can slow down the shutter speed, which is conducive to making moving objects leave movement traces on the screen. Therefore, the optical lens 410 can also shoot running water and vehicle tracks in the second imaging mode. , star trails, and light painting.
  • the optical lens 410 provided in the embodiment of the present application is not limited to the above two imaging modes.
  • the aperture number Fno. of the optical lens 410 is correspondingly adjusted to other values between 1.2 and 8.0.
  • the aperture number Fno. can also be 2.0, 2.8, 4, 5.6, etc. .
  • the optical lens 410 can implement a corresponding imaging mode, thereby being able to adapt to more shooting scenarios.
  • the optical lens 410 of the embodiment of the present application adopts a variable aperture structure design, which can provide different depth-of-field ranges for different scenes, so it can take into account the shooting needs of multiple scenes.
  • the optical lens 410 has The image sensor with a large target surface can achieve better optical quality, which is beneficial to improve the imaging quality of the camera module.
  • the following describes the imaging effects of the optical lens 410 in the first imaging mode and the second imaging mode in detail with reference to specific embodiments.
  • the optical lens 410 includes a variable aperture ST and seven lenses with optical power, and the seven lenses are respectively the first lens L1, the second lens L2, the third lens L3, the fourth lens The lens L4, the fifth lens L5, the sixth lens L6, and the seventh lens L7, and the variable diaphragm ST are located on the object side of the first lens L1.
  • the filter 440 of the camera module is located on the image side of the seventh lens L7
  • the image sensor 430 is located on the image side of the filter 440 .
  • the aperture number Fno. of the optical lens 410 satisfies: 1.2 ⁇ Fno. ⁇ 4.0.
  • the aperture number Fno. of the optical lens 410 is 1.2.
  • the optical lens 410 The aperture number Fno. is 4.0;
  • the total length of the optical lens 410 TTL, the half image height ImgH that the optical lens 410 can form on its imaging surface, and the aperture number Fno. of the optical lens 410 satisfy: 1.9 ⁇ TTL ⁇ F/ImgH ⁇ 5.5;
  • the curvature radius R12 at the near optical axis of the image-side surface of the sixth lens L6 and the focal length EFL of the optical lens 410 satisfy:
  • 0.4;
  • the curvature radius R13 of the object-side surface of the seventh lens L7 and the focal length EFL of the optical lens 410 satisfy:
  • 0.3;
  • the total length TTL of the optical lens 410 and the entrance pupil diameter EPD of the optical lens 410 satisfy: 1.84 ⁇ TTL/EPD ⁇ 4.8;
  • the distance d1 between the first lens L1 and the second lens L2 satisfies: 0.1 ⁇ d1/dm ⁇ 0.5, where dm is the distance between the mth lens and the m+1th lens , m is a natural number and 2 ⁇ m ⁇ 6;
  • the center thickness CT1 of the first lens L1 satisfies: 1.4 ⁇ CT1/CTn ⁇ 3.5, wherein CTn is the center thickness of the nth lens, n is a natural number and 2 ⁇ n ⁇ 7.
  • each lens of the optical lens 410 may be an aspherical lens, that is, the optical lens 410 includes 14 aspherical surfaces in total.
  • Table 2 shows the curvature radius, thickness, refractive index, and Abbe coefficient of each lens in the optical lens 410
  • Table 3 shows the aspheric coefficient of each lens.
  • S1 and S2 represent the object-side surface and image-side surface of the first lens, respectively
  • S3 and S4 represent the object-side surface and image-side surface of the second lens, respectively
  • S5 and S6 represent the third lens
  • S7 and S8 represent the object side surface and image side surface of the fourth lens, respectively
  • S9 and S10 respectively represent the object side surface and image side surface of the fifth lens
  • S11 and S12 represent the sixth
  • S13 and S14 represent the object-side surface and the image-side surface of the seventh lens, respectively.
  • all extended aspherical surface types z can be defined by, but not limited to, the following aspherical formula:
  • z is the sag of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius r 0
  • c is the spherical curvature of the vertex of the aspheric surface
  • K is two Subsurface constant
  • Ax is the aspheric coefficient
  • Px is a Jacobian polynomial.
  • FIG. 7a is an axial chromatic aberration curve diagram of the first optical lens provided in the embodiment of the present application in the first imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth of color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the first imaging mode is controlled within a very small range. ;
  • Fig. 7b is an axial chromatic aberration curve diagram of the first optical lens provided by the embodiment of the present application in the second imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the second imaging mode is controlled within a very small range. ;
  • Fig. 8a is a lateral chromatic aberration curve diagram of the first optical lens provided by the embodiment of the application when the first imaging mode is in the first imaging mode. It can be seen that the lateral chromatic aberration of the optical lens in the first imaging mode is controlled within a small range;
  • Fig. 8b is a lateral chromatic aberration curve diagram of the first optical lens provided in the embodiment of the present application when the second imaging mode is in use. It can be seen that the lateral chromatic aberration of the optical lens in the second imaging mode is controlled within a small range;
  • Fig. 9a is an optical distortion curve diagram of the first optical lens provided by the embodiment of the application when it is in the first imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than within the range of 2.5%;
  • FIG. 9b is an optical distortion curve diagram of the first optical lens provided in the embodiment of the application when it is in the second imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than within the range of 2.5%.
  • FIG. 10a is a schematic structural diagram of a second camera module provided by an embodiment of the application when it is in a first imaging mode
  • FIG. 10b is a second camera provided by an embodiment of the application.
  • the optical lens 410 includes a variable aperture ST and seven lenses with optical power, and the seven lenses are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the The six lenses L6 and the seventh lens L7, and the variable aperture ST are located on the object side of the first lens L1.
  • the filter 440 of the camera module is located on the image side of the seventh lens L7
  • the image sensor 430 is located on the image side of the filter 440 .
  • the aperture number Fno. of the optical lens 410 satisfies: 1.2 ⁇ Fno. ⁇ 4.0.
  • the aperture number Fno. of the optical lens 410 is 1.2.
  • the optical lens 410 The aperture number Fno. is 4.0;
  • the total length TTL of the optical lens 410, the half image height ImgH that the optical lens 410 can form on its imaging surface, and the aperture number Fno. of the optical lens 410 satisfy: 2.0 ⁇ TTL ⁇ Fno./ImgH ⁇ 5.6;
  • the curvature radius R12 of the image-side surface of the sixth lens L6 at the near optical axis and the focal length EFL of the optical lens 410 satisfy:
  • 0.32;
  • the curvature radius R13 of the object-side surface of the seventh lens L7 and the focal length EFL of the optical lens 410 satisfy:
  • 0.37;
  • the total length TTL of the optical lens 410 and the entrance pupil diameter EPD of the optical lens 410 satisfy: 1.84 ⁇ TTL/EPD ⁇ 9.80;
  • the distance d1 between the first lens L1 and the second lens L2 satisfies: 0.04 ⁇ d1/dm ⁇ 0.21, where dm is the distance between the mth lens and the m+1th lens , m is a natural number and 2 ⁇ m ⁇ 6;
  • the center thickness CT1 of the first lens L1 satisfies: 1.78 ⁇ CT1/CTn ⁇ 5.00, wherein CTn is the center thickness of the nth lens, n is a natural number and 2 ⁇ n ⁇ 7.
  • each lens of the optical lens 410 may be an aspherical lens, that is, the optical lens 410 includes 14 aspherical surfaces in total.
  • Table 5 shows the radius of curvature, thickness, refractive index, and Abbe coefficient of each lens in the optical lens 410
  • Table 6 shows the aspheric coefficient of each lens.
  • S1 and S2 represent the object-side surface and image-side surface of the first lens, respectively
  • S3 and S4 represent the object-side surface and image-side surface of the second lens, respectively
  • S5 and S6 represent the third lens
  • S7 and S8 represent the object side surface and image side surface of the fourth lens, respectively
  • S9 and S10 respectively represent the object side surface and image side surface of the fifth lens
  • S11 and S12 represent the sixth
  • S13 and S14 represent the object-side surface and the image-side surface of the seventh lens, respectively.
  • all the extended aspheric surface types z can be defined by but not limited to the following aspheric surface formula:
  • z is the sag of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius r 0
  • c is the spherical curvature of the vertex of the aspheric surface
  • K is two Subsurface constant
  • Ax is the aspheric coefficient
  • Px is a Jacobian polynomial.
  • FIG. 10a and FIG. 10b The optical lens shown in FIG. 10a and FIG. 10b is simulated, and the simulation results are described in detail below with reference to the accompanying drawings.
  • 11a is an axial chromatic aberration curve diagram of the second optical lens provided by the embodiment of the present application in the first imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth of color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the first imaging mode is controlled within a very small range. ;
  • 11b is an axial chromatic aberration curve diagram of the second optical lens provided in the embodiment of the present application in the second imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the second imaging mode is controlled within a very small range. ;
  • FIG. 12a is a lateral chromatic aberration curve diagram of the second optical lens provided in the embodiment of the present application in the first imaging mode.
  • the five solid line curves in the figure are color light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm, respectively. It can be seen that the lateral chromatic aberration of the optical lens in the first imaging mode is controlled within a small range;
  • FIG. 12b is a lateral chromatic aberration curve diagram of the second optical lens provided in the embodiment of the application when the second imaging mode is in the second imaging mode. It can be seen that the lateral chromatic aberration of the optical lens in the second imaging mode is controlled within a small range;
  • Fig. 13a is an optical distortion curve diagram of the second optical lens provided by the embodiment of the application when it is in the first imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than within the range of 2.5%;
  • Fig. 13b is an optical distortion curve diagram of the second optical lens provided in the embodiment of the application when it is in the second imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than within the range of 2.5%.
  • FIG. 14a is a schematic structural diagram of a third optical lens provided by an embodiment of the application when it is in the first imaging mode
  • FIG. 14b is a third optical lens provided by an embodiment of the application.
  • the optical lens 410 includes a variable aperture ST and seven lenses with optical power, and the seven lenses are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the The six lenses L6 and the seventh lens L7, and the variable aperture ST are located on the object side of the first lens L1.
  • the filter 440 of the camera module is located on the image side of the seventh lens L7
  • the image sensor 430 is located on the image side of the filter 440 .
  • the aperture number Fno. of the optical lens 410 satisfies: 1.2 ⁇ Fno. ⁇ 4.0.
  • the aperture number Fno. of the optical lens 410 is 1.2.
  • the optical lens 410 The aperture number Fno. is 4.0;
  • the total length TTL of the optical lens 410, the half image height ImgH that the optical lens 410 can form on its imaging surface, and the aperture number Fno. of the optical lens 410 satisfy: 2.33 ⁇ TTL ⁇ F/ImgH ⁇ 6.24;
  • the curvature radius R12 of the image-side surface of the sixth lens L6 at the near optical axis and the focal length EFL of the optical lens 410 satisfy:
  • 0.39;
  • the curvature radius R13 of the object-side surface of the seventh lens L7 and the focal length EFL of the optical lens 410 satisfy:
  • 2.19;
  • the total length TTL of the optical lens 410 and the entrance pupil diameter EPD of the optical lens 410 satisfy: 1.96 ⁇ TTL/EPD ⁇ 5.33;
  • the distance d1 between the first lens L1 and the second lens L2 satisfies: 0.07 ⁇ d1/dm ⁇ 0.22, where dm is the distance between the mth lens and the m+1th lens , m is a natural number and 2 ⁇ m ⁇ 6;
  • the center thickness CT1 of the first lens L1 satisfies: 1.25 ⁇ CT1/CTn ⁇ 5.00, wherein CTn is the center thickness of the nth lens, n is a natural number and 2 ⁇ n ⁇ 7.
  • each lens of the optical lens 410 may be an aspherical lens, that is, the optical lens 410 includes 14 aspherical surfaces in total.
  • Table 8 shows the curvature radius, thickness, refractive index, and Abbe coefficient of each lens in the optical lens 410
  • Table 9 shows the aspheric coefficient of each lens.
  • S1 and S2 represent the object-side surface and image-side surface of the first lens, respectively
  • S3 and S4 represent the object-side surface and image-side surface of the second lens, respectively
  • S5 and S6 represent the third lens
  • S7 and S8 represent the object side surface and image side surface of the fourth lens
  • S9 and S10 respectively represent the object side surface and image side surface of the fifth lens
  • S11 and S12 represent the sixth
  • S13 and S14 represent the object-side surface and the image-side surface of the seventh lens, respectively.
  • z is the sag of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the vertex of the aspheric surface
  • K is the quadratic Surface constant
  • Ax is the aspheric coefficient
  • Px is a Jacobian polynomial.
  • FIG. 14a and FIG. 14b The optical lens shown in FIG. 14a and FIG. 14b is simulated, and the simulation results are described in detail below with reference to the accompanying drawings.
  • 15a is an axial chromatic aberration curve diagram of the third optical lens provided in the embodiment of the present application in the first imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth of color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the first imaging mode is controlled within a very small range. ;
  • Fig. 15b is an axial chromatic aberration curve diagram of the third optical lens provided in the embodiment of the present application in the second imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the second imaging mode is controlled within a very small range. ;
  • 16a is a lateral chromatic aberration curve diagram of the third optical lens provided in the embodiment of the present application when it is in the first imaging mode. It can be seen that the lateral chromatic aberration of the optical lens in the first imaging mode is controlled within a small range;
  • 16b is a lateral chromatic aberration curve diagram of the third optical lens provided in the embodiment of the application when the second imaging mode is used. It can be seen that the lateral chromatic aberration of the optical lens in the second imaging mode is controlled within a small range;
  • FIG. 17a is a graph of optical distortion of the third optical lens provided in the embodiment of the application when it is in the first imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than within the range of 4%;
  • Fig. 17b is a graph of optical distortion of the third optical lens provided in the embodiment of the application when it is in the second imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than within the 4% range.
  • FIG. 18a is a schematic structural diagram of the fourth optical lens provided by the embodiment of the application when it is in the first imaging mode
  • FIG. 18b is the fourth optical lens provided by the embodiment of the application.
  • the optical lens 410 includes a variable aperture ST and seven lenses with optical power, and the seven lenses are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the The six lenses L6 and the seventh lens L7, and the variable aperture ST are located on the object side of the first lens L1.
  • the filter 440 of the camera module is located on the image side of the seventh lens L7
  • the image sensor 430 is located on the image side of the filter 440 .
  • the aperture number Fno. of the optical lens 410 satisfies: 1.2 ⁇ Fno. ⁇ 4.0.
  • the aperture number Fno. of the optical lens 410 is 1.2.
  • the optical lens 410 The aperture number Fno. is 4.0;
  • the total length TTL of the optical lens 410, the half image height ImgH that the optical lens 410 can form on its imaging surface, and the aperture number Fno. of the optical lens 410 satisfy: 2.33 ⁇ TTL ⁇ Fno./ImgH ⁇ 6.25;
  • the curvature radius R12 at the near optical axis of the image-side surface of the sixth lens L6 and the focal length EFL of the optical lens 410 satisfy:
  • 0.46;
  • the curvature radius R13 of the object-side surface of the seventh lens L7 and the focal length EFL of the optical lens 410 satisfy:
  • 2.19;
  • the total length TTL of the optical lens 410 and the entrance pupil diameter EPD of the optical lens 410 satisfy: 1.96 ⁇ TTL/EPD ⁇ 5.22;
  • the distance d1 between the first lens L1 and the second lens L2 satisfies: 0.07 ⁇ d1/dm ⁇ 0.21, where dm is the distance between the mth lens and the m+1th lens , m is a natural number and 2 ⁇ m ⁇ 6;
  • the center thickness CT1 of the first lens L1 satisfies: 1.39 ⁇ CT1/CTn ⁇ 3.41, wherein CTn is the center thickness of the nth lens, n is a natural number and 2 ⁇ n ⁇ 7.
  • each lens of the optical lens 410 may be an aspherical lens, that is, the optical lens 410 includes 14 aspherical surfaces in total.
  • Table 11 shows the curvature radius, thickness, refractive index, and Abbe coefficient of each lens in the optical lens 410
  • Table 12 shows the aspheric coefficient of each lens.
  • S1 and S2 respectively represent the object side surface and image side surface of the first lens
  • S3 and S4 respectively represent the object side surface and image side surface of the second lens
  • S5 and S6 respectively represent the third lens
  • S7 and S8 represent the object side surface and image side surface of the fourth lens
  • S9 and S10 respectively represent the object side surface and image side surface of the fifth lens
  • S11 and S12 represent the sixth
  • S13 and S14 represent the object-side surface and the image-side surface of the seventh lens, respectively.
  • all the extended aspherical surface types z can be defined by, but not limited to, the following aspherical formula:
  • z is the sag of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the vertex of the aspheric surface
  • K is the quadratic Surface constant
  • Ax is the aspheric coefficient
  • Px is a Jacobian polynomial.
  • 19a is an axial chromatic aberration curve diagram of the fourth optical lens provided by the embodiment of the present application in the first imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth of color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the first imaging mode is controlled within a very small range. ;
  • 19b is an axial chromatic aberration curve diagram of the fourth optical lens provided by the embodiment of the application in the second imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the second imaging mode is controlled within a very small range. ;
  • 20a is a lateral chromatic aberration curve diagram of the fourth optical lens provided in the embodiment of the present application when it is in the first imaging mode. It can be seen that the lateral chromatic aberration of the optical lens in the first imaging mode is controlled within a small range;
  • 20b is a lateral chromatic aberration curve diagram of the fourth optical lens provided in the embodiment of the present application when it is in the second imaging mode. It can be seen that the lateral chromatic aberration of the optical lens in the second imaging mode is controlled within a small range;
  • 21a is a graph of optical distortion of the fourth optical lens provided by the embodiment of the present application in the first imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than within the range of 4%;
  • Fig. 21b is an optical distortion curve diagram of the fourth optical lens provided by the embodiment of the application when it is in the second imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than 4% range.
  • FIG. 22a is a schematic structural diagram of a fifth optical lens provided by an embodiment of the application when it is in a first imaging mode
  • FIG. 22b is a fifth camera mode provided by an embodiment of the application.
  • the optical lens 410 includes a variable aperture ST and seven lenses with optical power, and the seven lenses are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the The six lenses L6 and the seventh lens L7, the iris is located on the object side of the first lens L1.
  • the filter 440 of the camera module is located on the image side of the seventh lens L7
  • the image sensor 430 is located on the image side of the filter 440 .
  • the aperture number Fno. of the optical lens 410 satisfies: 1.2 ⁇ Fno. ⁇ 4.0.
  • the aperture number Fno. of the optical lens 410 is 1.2.
  • the optical lens 410 The aperture number Fno. is 4.0;
  • the total length TTL of the optical lens 410, the half image height ImgH that the optical lens 410 can form on its imaging surface, and the aperture number Fno. of the optical lens satisfy: 2.07 ⁇ TTL ⁇ Fno./ImgH ⁇ 5.62;
  • the curvature radius R12 of the image-side surface of the sixth lens L6 at the near optical axis and the focal length EFL of the optical lens 410 satisfy:
  • 0.02;
  • the curvature radius R14 of the object-side surface of the seventh lens L7 and the focal length EFL of the optical lens 410 satisfy:
  • 0.26;
  • the total length TTL of the optical lens 410 and the entrance pupil diameter EPD of the optical lens 410 satisfy: 1.82 ⁇ TTL/EPD ⁇ 5.08;
  • the distance d1 between the first lens L1 and the second lens L2 satisfies: 0.11 ⁇ d1/dm ⁇ 0.66, where dm is the distance between the mth lens and the m+1th lens , m is a natural number and 2 ⁇ m ⁇ 6;
  • the center thickness CT1 of the first lens L1 satisfies: 1.41 ⁇ CT1/CTn ⁇ 3.48, wherein CTn is the center thickness of the nth lens, n is a natural number and 2 ⁇ n ⁇ 7.
  • each lens of the optical lens 410 may be an aspherical lens, that is, the optical lens 410 includes 14 aspherical surfaces in total. Referring to Table 14 and Table 15 together, Table 14 shows the curvature radius, thickness, refractive index, and Abbe coefficient of each lens in the optical lens 410 , and Table 15 shows the aspheric coefficient of each lens.
  • S1 and S2 respectively represent the object side surface and image side surface of the first lens
  • S3 and S4 respectively represent the object side surface and image side surface of the second lens
  • S5 and S6 respectively represent the third lens
  • S7 and S8 represent the object side surface and image side surface of the fourth lens
  • S9 and S10 respectively represent the object side surface and image side surface of the fifth lens
  • S11 and S12 represent the sixth
  • S13 and S14 represent the object-side surface and the image-side surface of the seventh lens, respectively.
  • all extended aspherical surface types z can be defined by, but not limited to, the following aspherical formula:
  • z is the sag of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the vertex of the aspheric surface
  • K is the quadratic Surface constant
  • Ax is the aspheric coefficient
  • Px is a Jacobian polynomial.
  • 23a is an axial chromatic aberration curve diagram of the fifth optical lens provided by the embodiment of the present application in the first imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth of color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the first imaging mode is controlled within a very small range. ;
  • 23b is an axial chromatic aberration curve diagram of the fifth optical lens provided by the embodiment of the application in the second imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the second imaging mode is controlled within a very small range. ;
  • 24a is a lateral chromatic aberration curve diagram of the fifth optical lens provided in the embodiment of the application when it is in the first imaging mode. It can be seen that the lateral chromatic aberration of the optical lens in the first imaging mode is controlled within a small range;
  • Fig. 24b is a lateral chromatic aberration curve diagram of the fifth optical lens provided in the embodiment of the application when the second imaging mode is used. It can be seen that the lateral chromatic aberration of the optical lens in the second imaging mode is controlled within a small range;
  • Fig. 25a is a graph of optical distortion of the fifth optical lens provided by the embodiment of the present application in the first imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than within the range of 2.5%;
  • Fig. 25b is an optical distortion curve diagram of the fifth optical lens provided by the embodiment of the application when it is in the second imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than within the range of 2.5%.
  • FIG. 26a is a schematic structural diagram of the sixth optical lens provided by the embodiment of the application when it is in the first imaging mode
  • FIG. 26b is the sixth optical lens provided by the embodiment of the application.
  • the optical lens 410 includes a variable aperture ST and seven lenses with optical power, and the seven lenses are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the The six lenses L6 and the seventh lens L7, and the variable aperture ST are located on the object side of the first lens L1.
  • the filter 440 of the camera module is located on the image side of the seventh lens
  • the image sensor 430 is located on the image side of the filter 440 .
  • the aperture number Fno. of the optical lens 410 satisfies: 1.2 ⁇ Fno. ⁇ 8.0.
  • the aperture number Fno. of the optical lens 410 is 1.2.
  • the optical lens 410 The aperture number Fno. is 8.0;
  • the total length TTL of the optical lens 410, the half image height ImgH that the optical lens 410 can form on its imaging surface, and the aperture number Fno. of the optical lens 410 satisfy: 1.87 ⁇ TTL ⁇ Fno./ImgH ⁇ 5.74;
  • the curvature radius R12 of the image-side surface of the sixth lens L6 at the near optical axis and the focal length EFL of the optical lens 410 satisfy:
  • 0.11;
  • the curvature radius R13 of the object-side surface of the seventh lens L7 and the focal length EFL of the optical lens 410 satisfy:
  • 2.10;
  • the total length TTL of the optical lens 410 and the entrance pupil diameter EPD of the optical lens 410 satisfy: 1.74 ⁇ TTL/EPD ⁇ 5.25;
  • the distance d1 between the first lens L1 and the second lens L2 satisfies: 0.05 ⁇ d1/dm ⁇ 0.16, where dm is the distance between the mth lens and the m+1th lens , m is a natural number and 2 ⁇ m ⁇ 6;
  • the center thickness CT1 of the first lens L1 satisfies: 1.6 ⁇ CT1/CTn ⁇ 4.89, wherein CTn is the center thickness of the nth lens, n is a natural number and 2 ⁇ n ⁇ 7.
  • each lens of the optical lens 410 may be an aspherical lens, that is, the optical lens 410 includes 14 aspherical surfaces in total.
  • Table 17 shows the curvature radius, thickness, refractive index, and Abbe coefficient of each lens in the optical lens 410
  • Table 18 shows the aspheric coefficient of each lens.
  • S1 and S2 represent the object-side surface and image-side surface of the first lens, respectively
  • S3 and S4 represent the object-side surface and image-side surface of the second lens, respectively
  • S5 and S6 represent the third lens
  • S7 and S8 represent the object side surface and image side surface of the fourth lens, respectively
  • S9 and S10 respectively represent the object side surface and image side surface of the fifth lens
  • S11 and S12 represent the sixth
  • S13 and S14 represent the object-side surface and the image-side surface of the seventh lens, respectively.
  • all extended aspherical surface types z can be defined by, but not limited to, the following aspherical formula:
  • z is the sag of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the vertex of the aspheric surface
  • K is the quadratic Surface constant
  • Ax is the aspheric coefficient
  • Px is a Jacobian polynomial.
  • FIG. 26a and FIG. 26b The optical lens shown in FIG. 26a and FIG. 26b is simulated, and the simulation results are described in detail below with reference to the accompanying drawings.
  • 27a is an axial chromatic aberration curve diagram of the sixth optical lens provided by the embodiment of the present application in the first imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the first imaging mode is controlled within a very small range. ;
  • 27b is an axial chromatic aberration curve diagram of the sixth optical lens provided in the embodiment of the present application in the second imaging mode, along the direction away from the coordinate origin, the values of each scale on the ordinate axis are 0.25, 0.50, 0.75, 1.00.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm. It can be seen that the axial chromatic aberration of the optical lens in the second imaging mode is controlled within a very small range. ;
  • FIG. 28a is a lateral chromatic aberration curve diagram of the sixth optical lens provided in the embodiment of the application when it is in the first imaging mode. It can be seen that the lateral chromatic aberration of the optical lens in the first imaging mode is controlled within a small range;
  • 28b is a lateral chromatic aberration curve diagram of the sixth optical lens provided in the embodiment of the present application when the second imaging mode is used. It can be seen that the lateral chromatic aberration of the optical lens in the second imaging mode is controlled within a small range;
  • Fig. 29a is a graph of optical distortion of the sixth optical lens provided by the embodiment of the application when it is in the first imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than within 5%;
  • Fig. 29b is an optical distortion curve diagram of the sixth optical lens provided by the embodiment of the application in the second imaging mode, which shows the difference between the imaging distortion and the ideal shape. It can be seen that in this mode, the optical distortion can be basically controlled to be less than within the 5% range.
  • the embodiments of the present application can achieve better imaging results in two different imaging modes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头(410)、摄像头模组(400)及电子设备(1),用以使光学镜头(410)能够为不同拍摄场景提供不同的景深范围,兼顾多场景的拍摄需求。光学镜头(410)包括沿物侧到像侧排列的可变光圈(ST)、第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5)、第六透镜(L6)及第七透镜(L7),第一透镜(L1)具有正光焦度,第一透镜(L1)的物侧表面近光轴处为凸面,像侧表面近光轴处为凹面;第二透镜(L2)具有负光焦度,第二透镜(L2)的物侧表面近光轴处为凸面,像侧表面近光轴处为凹面;第三透镜(L3)的物侧表面近光轴处为凹面;第七透镜(L7)的物侧表面为反曲面;第一透镜(L1)的焦距f1与光学镜头(410)的焦距EFL满足:0≤f1/EFL≤1.1;第三透镜(L3)的焦距f3与第四透镜(L4)的焦距f4满足:-4≤f3/f4≤-1.3。

Description

一种光学镜头、摄像头模组及电子设备
相关申请的交叉引用
本申请要求在2021年01月27日提交中国专利局、申请号为202110113726.6、申请名称为“一种光学镜头、摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及到一种光学镜头、摄像头模组及电子设备。
背景技术
为了提升手机的产品竞争力,集成高性能光学镜头已成为当前手机的重要发展趋势,手机镜头的变焦范围、解析度、成像质量等方面都需要有更进一步的提升。另外,光学镜头的景深也是影响其拍摄效果的重要因素,比如,在一些拍摄场景下,要使拍摄画面中的远景和近景同时清晰成像,需要利用小光圈的光学镜头进行拍摄;在另外一些拍摄场景下,要突出拍摄画面中的主体,使背景虚化,则需要利用大光圈的光学镜头进行拍摄。然而,目前市场上发布的手机镜头多数都是采用固定光圈的设计,不能兼顾多场景拍摄需求。
发明内容
本申请提供了一种光学镜头、摄像头模组及电子设备,用以使光学镜头能够为不同拍摄场景提供不同的景深范围,兼顾多场景的拍摄需求。
第一方面,本申请提供了一种光学镜头,该光学镜头可包括可变光圈及七片透镜,沿物侧到像侧,所述七片透镜分别为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜及第七透镜。可变光圈设置在第一透镜的物侧,可变光圈的通光直径可调节,从而可以实现对光学镜头的光圈数的调节。第一透镜具有正光焦度,第一透镜的物侧表面的近光轴处为凸面,像侧表面的近光轴处为凹面,且第一透镜的焦距f1与光学镜头的焦距EFL满足:0≤f1/EFL≤1.1。第二透镜具有负光焦度,第二透镜的物侧表面的近光轴处为凸面,像侧表面的近光轴处为凹面。第三透镜的物侧表面的近光轴处为凹面,第三透镜的焦距f3与第四透镜的焦距f4满足:-4≤f3/f4≤-1.3。第七透镜的物侧表面为反曲面,这样有助于提升光学镜头的边缘视场像质。
上述方案中,本申请提供的光学镜头采用可变光圈结构,结合对透镜的相关参数的匹配设计,使光学镜头能够为不同场景提供不同的景深范围,因此可以兼顾多场景的拍摄需求。
在一些可能的实施方案中,第二透镜的物侧表面的近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:1.8≤(R3+R4)/(R3-R4)≤6.3,这种设置有助于平衡光学镜头的光焦度配合,缩短光学镜头的总长TTL。
在一些可能的实施方案中,光学镜头的总长TTL、光学镜头的光圈数Fno.以及光学镜头其成像面上可形成的半像高ImgH满足:TTL×Fno./ImgH≥1.9。
在一些可能的实施方案中,第五透镜的中心厚度CT5、第七透镜的中心厚度CT7及光学镜头的半视场角HFOV满足:0≤CT7/(CT5×tan(HFOV))≤1.1。
在一些可能的实施方案中,光学镜头的光圈数Fno.满足:1.2≤Fno.≤8.0。光学镜头的光圈数Fno.可通过改变可变光圈的通光直径来调整,不同的通光直径对应不同的光圈数Fno.,也即对应不同的景深,从而可以使光学镜头适应不同的拍摄场景。
在一些可能的实施方案中,第六透镜的像侧表面近光轴处的曲率半径R12与光学镜头的焦距EFL满足:0≤|EFL/R12|≤0.46,从而有利于第六透镜与其它透镜形成较优的配合。
在一些可能的实施方案中,第七透镜的物侧表面的曲率半径R13与光学镜头的焦距EFL满足:0≤|EFL/R13|≤0.9。采用这种设计有利于第七透镜修正边缘视场像差,并缩短光学镜头的总长TTL。
在一些可能的实施方案中,光学镜头的总长TTL与光学镜头的入瞳直径EPD满足:1.5≤TTL/EPD≤10,这样可以较好地控制光学镜头的进光量,并保持光学镜头的总长TTL。
在一些可能的实施方案中,沿所述光学镜头的光轴方向,第一透镜与第二透镜之间的间距d1满足:d1/dm≤1,其中,dm为第m透镜与第m+1透镜之间的间距,m为自然数且2≤m≤6。采用此种间隔配合,可以提高光学镜头的整体机械强度。
在一些可能的实施方案中,第一透镜的中心厚度CT1满足:CT1/CTn≥1,其中,CTn为第n透镜的中心厚度,n为自然数且2≤n≤7。采用此种厚度组合,配合光学镜头的光焦度组合,可以使光学镜头达到更好的成像质量。
在一些可能的实施方案中,光学镜头的具体结构形式可以为如下几种:
光学镜头的光圈数Fno.满足:1.2≤Fno.≤4.0;第一透镜的焦距与光学镜头的焦距EFL满足:f1/EFL=1;第三透镜的焦距f3与第四透镜的焦距f4满足:f3/f4=-1.4;第二透镜的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=5;光学镜头的总长TTL、光学镜头在其成像面上可形成的半像高ImgH及光学镜头的光圈数Fno.满足:1.9≤TTL×F/ImgH≤5.5;第五透镜的中心厚度CT5、第七透镜的中心厚度CT7及光学镜头的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=0.8;第六透镜的像侧表面近光轴处的曲率半径R12与光学镜头的焦距EFL满足:|EFL/R12|=0.4;第七透镜的物侧表面的曲率半径R13与光学镜头的焦距EFL满足:|EFL/R13|=0.3;光学镜头的总长TTL与光学镜头的入瞳直径EPD满足:1.84≤TTL/EPD≤4.8;沿光学镜头的光轴方向,第一透镜与第二透镜之间的间距d1满足:0.1≤d1/dm≤0.5;第一透镜的中心厚度CT1满足:1.4≤CT1/CTn≤3.5;或者,
光学镜头的光圈数Fno.满足:1.2≤Fno.≤4.0;第一透镜的焦距与光学镜头的焦距EFL满足:f1/EFL=0.98;第三透镜的焦距f3与第四透镜的焦距f4满足:f3/f4=-1.64;第二透镜的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=3.68;光学镜头的总长TTL、光学镜头在其成像面上可形成的半像高ImgH及光学镜头的光圈数Fno.满足:2.0≤TTL×Fno./ImgH≤5.6;第五透镜的中心厚度CT5、第七透镜的中心厚度CT7及光学镜头的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=0.42;第六透镜的像侧表面近光轴处的曲率半径R12与光学镜头的焦距EFL满足:|EFL/R12|=0.32;第七透镜的物侧表面的曲率半径R13与光学镜头的焦距EFL满足:|EFL/R13|=0.37;光学镜头的总长TTL与光学镜头的入瞳直径EPD满足:1.84≤TTL/EPD≤9.80;沿光学镜头的光轴方向,第一透镜与第二透镜之间的间距d1满足:0.04≤d1/dm≤0.21;第一透镜的中 心厚度CT1满足:1.78≤CT1/CTn≤5.00;或者;
光学镜头的光圈数Fno.满足:1.2≤Fno.≤4.0;第一透镜的焦距与光学镜头的焦距EFL满足:f1/EFL=1.1;第三透镜的焦距f3与第四透镜的焦距f4满足:f3/f4=-4;第二透镜的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=5.73;光学镜头的总长TTL、光学镜头在其成像面上可形成的半像高ImgH及光学镜头的光圈数Fno.满足:2.33≤TTL×F/ImgH≤6.24;第五透镜的中心厚度CT5、第七透镜的中心厚度CT7及光学镜头的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=1;第六透镜的像侧表面近光轴处的曲率半径R12与光学镜头的焦距EFL满足:|EFL/R12|=0.39;第七透镜的物侧表面的曲率半径R13与光学镜头的焦距EFL满足:|EFL/R13|=2.19;光学镜头的总长TTL与光学镜头的入瞳直径EPD满足:1.96≤TTL/EPD≤5.33;沿光学镜头的光轴方向,第一透镜与第二透镜之间的间距d1满足:0.07≤d1/dm≤0.22;第一透镜的中心厚度CT1满足:1.25≤CT1/CTn≤5.00;或者;
光学镜头的光圈数Fno.满足:1.2≤Fno.≤4.0;第一透镜的焦距与光学镜头的焦距EFL满足:f1/EFL=1.09;第三透镜的焦距f3与第四透镜的焦距f4满足:f3/f4=-3.61;第二透镜的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=5.58;光学镜头的总长TTL、光学镜头在其成像面上可形成的半像高ImgH及光学镜头的光圈数Fno.满足:2.33≤TTL×Fno./ImgH≤6.25;第五透镜的中心厚度CT5、第七透镜的中心厚度CT7及光学镜头的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=1.04;第六透镜的像侧表面近光轴处的曲率半径R12与光学镜头的焦距EFL满足:|EFL/R12|=0.46;第七透镜的物侧表面的曲率半径R13与光学镜头的焦距EFL满足:|EFL/R13|=2.19;光学镜头的总长TTL与光学镜头的入瞳直径EPD满足:1.96≤TTL/EPD≤5.22;沿光学镜头的光轴方向,第一透镜与第二透镜之间的间距d1满足:0.07≤d1/dm≤0.21;第一透镜的中心厚度CT1满足:1.39≤CT1/CTn≤3.41;或者;
光学镜头的光圈数Fno.满足:1.2≤Fno.≤4.0;第一透镜的焦距与光学镜头的焦距EFL满足:f1/EFL=1.05;第三透镜的焦距f3与第四透镜的焦距f4满足:f3/f4=-1.55;第二透镜的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=5.54;光学镜头的总长TTL、光学镜头在其成像面上可形成的半像高ImgH及光学镜头的光圈数Fno.满足:2.07≤TTL×Fno./ImgH≤5.62;第五透镜的中心厚度CT5、第七透镜的中心厚度CT7及光学镜头的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=0.75;第六透镜的像侧表面近光轴处的曲率半径R12与光学镜头的焦距EFL满足:|EFL/R12|=0.02;第七透镜的物侧表面的曲率半径R13与光学镜头的焦距EFL满足:|EFL/R13|=0.26;光学镜头的总长TTL与光学镜头的入瞳直径EPD满足:1.82≤TTL/EPD≤5.08;沿光学镜头的光轴方向,第一透镜与第二透镜之间的间距d1满足:0.11≤d1/dm≤0.66;第一透镜的中心厚度CT1满足:1.41≤CT1/CTn≤3.48;或者;
光学镜头的光圈数Fno.满足:1.2≤Fno.≤8.0;第一透镜的焦距与光学镜头的焦距EFL满足:f1/EFL=1.03;第三透镜的焦距f3与第四透镜的焦距f4满足:f3/f4=-2.35;第二透镜的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=4.93;光学镜头的总长TTL、光学镜头在其成像面上可形成的半像高ImgH及光学镜头的光圈数Fno.满足:1.87≤TTL×Fno./ImgH≤5.74;第五透镜的中心厚度CT5、第七透镜的中心厚度CT7及光学镜头的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=0.46; 第六透镜的像侧表面近光轴处的曲率半径R12与光学镜头的焦距EFL满足:|EFL/R12|=0.11;第七透镜的物侧表面的曲率半径R13与光学镜头的焦距EFL满足:|EFL/R13|=2.10;光学镜头的总长TTL与光学镜头的入瞳直径EPD满足:1.74≤TTL/EPD≤5.25;沿光学镜头的光轴方向,第一透镜与第二透镜之间的间距d1满足:0.05≤d1/dm≤0.16;第一透镜的中心厚度CT1满足:1.6≤CT1/CTn≤4.89。
第二方面,本申请还提供了一种摄像头模组,该摄像头模组可包括图像传感器以及前述任一可能的实施方案中的光学镜头,图像传感器设置在光学镜头的成像面,可用于将光学镜头传递的光信号变换为图像信号。该摄像头模组可以兼顾不同场景的拍摄需求。
第三方面,本申请还提供了一种电子设备,该电子设备包括壳体以及前述方案中的摄像头模组,摄像头模组固定于壳体。壳体上设置有进光孔,电子设备外部的光线能够穿过进光孔进入电子设备的内部,从而被摄像头模组采集并成像。该电子设备的摄像头模组可以兼顾不同场景的拍摄需求,且成像质量较高。
附图说明
图1为本申请实施例提供的电子设备的结构示意图;
图2为图1中电子设备的局部分解示意图;
图3为图1中的电子设备在A-A处的局部剖视图;
图4为本申请实施例提供的摄像头模组的结构示意图;
图5为本申请实施例提供的光学镜头的结构示意图;
图6a为本申请实施例提供的第一种光学镜头处于第一成像模式时的结构示意图;
图6b为本申请实施例提供的第一种光学镜头处于第二成像模式时的结构示意图;
图7a为本申请实施例提供的第一种光学镜头处于第一成像模式时的轴向色差曲线图;
图7b为本申请实施例提供的第一种光学镜头处于第二成像模式时的轴向色差曲线图;
图8a为本申请实施例提供的第一种光学镜头处于第一成像模式时的横向色差曲线图;
图8b为本申请实施例提供的第一种光学镜头处于第二成像模式时的横向色差曲线图;
图9a为本申请实施例提供的第一种光学镜头处于第一成像模式时的光学畸变曲线图;
图9b为本申请实施例提供的第一种光学镜头处于第二成像模式时的光学畸变曲线图;
图10a为本申请实施例提供的第二种光学镜头处于第一成像模式时的结构示意图;
图10b为本申请实施例提供的第二种光学镜头处于第二成像模式时的结构示意图;
图11a为本申请实施例提供的第二种光学镜头处于第一成像模式时的轴向色差曲线图;
图11b为本申请实施例提供的第二种光学镜头处于第二成像模式时的轴向色差曲线图;
图12a为本申请实施例提供的第二种光学镜头处于第一成像模式时的横向色差曲线图;
图12b为本申请实施例提供的第二种光学镜头处于第二成像模式时的横向色差曲线图;
图13a为本申请实施例提供的第二种光学镜头处于第一成像模式时的光学畸变曲线图;
图13b为本申请实施例提供的第二种光学镜头处于第二成像模式时的光学畸变曲线图;
图14a为本申请实施例提供的第三种光学镜头处于第一成像模式时的结构示意图;
图14b为本申请实施例提供的第三种光学镜头处于第二成像模式时的结构示意图;
图15a为本申请实施例提供的第三种光学镜头处于第一成像模式时的轴向色差曲线图;
图15b为本申请实施例提供的第三种光学镜头处于第二成像模式时的轴向色差曲线图;
图16a为本申请实施例提供的第三种光学镜头处于第一成像模式时的横向色差曲线图;
图16b为本申请实施例提供的第三种光学镜头处于第二成像模式时的横向色差曲线图;
图17a为本申请实施例提供的第三种光学镜头处于第一成像模式时的光学畸变曲线图;
图17b为本申请实施例提供的第三种光学镜头处于第二成像模式时的光学畸变曲线图;
图18a为本申请实施例提供的第四种光学镜头处于第一成像模式时的结构示意图;
图18b为本申请实施例提供的第四种光学镜头处于第二成像模式时的结构示意图;
图19a为本申请实施例提供的第四种光学镜头处于第一成像模式时的轴向色差曲线图;
图19b为本申请实施例提供的第四种光学镜头处于第二成像模式时的轴向色差曲线图;
图20a为本申请实施例提供的第四种光学镜头处于第一成像模式时的横向色差曲线图;
图20b为本申请实施例提供的第四种光学镜头处于第二成像模式时的横向色差曲线图;
图21a为本申请实施例提供的第四种光学镜头处于第一成像模式时的光学畸变曲线图;
图21b为本申请实施例提供的第四种光学镜头处于第二成像模式时的光学畸变曲线图;
图22a为本申请实施例提供的第五种光学镜头处于第一成像模式时的结构示意图;
图22b为本申请实施例提供的第五种光学镜头处于第二成像模式时的结构示意图;
图23a为本申请实施例提供的第五种光学镜头处于第一成像模式时的轴向色差曲线图;
图23b为本申请实施例提供的第五种光学镜头处于第二成像模式时的轴向色差曲线图;
图24a为本申请实施例提供的第五种光学镜头处于第一成像模式时的横向色差曲线图;
图24b为本申请实施例提供的第五种光学镜头处于第二成像模式时的横向色差曲线图;
图25a为本申请实施例提供的第五种光学镜头处于第一成像模式时的光学畸变曲线图;
图25b为本申请实施例提供的第五种光学镜头处于第二成像模式时的光学畸变曲线图;
图26a为本申请实施例提供的第六种光学镜头处于第一成像模式时的结构示意图;
图26b为本申请实施例提供的第六种光学镜头处于第二成像模式时的结构示意图;
图27a为本申请实施例提供的第六种光学镜头处于第一成像模式时的轴向色差曲线图;
图27b为本申请实施例提供的第六种光学镜头处于第二成像模式时的轴向色差曲线图;
图28a为本申请实施例提供的第六种光学镜头处于第一成像模式时的横向色差曲线图;
图28b为本申请实施例提供的第六种光学镜头处于第二成像模式时的横向色差曲线图;
图29a为本申请实施例提供的第六种光学镜头处于第一成像模式时的光学畸变曲线图;
图29b为本申请实施例提供的第六种光学镜头处于第二成像模式时的光学畸变曲线图。
附图标记:
1-电子设备;100-壳体;200-显示屏;300-电路板;400-摄像头模组;110-中框;
120-后盖;210-显示面板;220-第一盖板;310-避让空间;1201-进光孔;
1202-摄像头装饰件;1203-第二盖板;410-光学镜头;420-模组电路板;
430-图像传感器;440-滤光片;421-沉槽;450-支撑件。
具体实施方式
为方便理解本申请实施例提供的光学镜头,首先对本申请中涉及到的相关英文简写以及名词概念进行简单说明:
F# F-number F数/光圈,是镜头的焦距/镜头的入瞳直径得出的相对值(相对孔径的倒数),光圈F值愈小,在同一单位时间内的进光量便愈多,光圈F值越大,景深愈小,拍照的背景内容将会虚化,类似长焦镜头的效果;
EFL effect focal length,镜头的有效焦距;
TTL total track length,镜头的总长,具体指镜头最靠近被摄体的表面至成像面的距离;
FOV field of view,视场角;
HFOV Half-FOV,半视场角;
EPD entrance pupil diameter,入瞳直径;
光焦度,等于像侧光束会聚度与物侧光束会聚度之差。正光焦度的透镜具有正的焦距,可将光线聚拢;负光焦度的透镜具有负的焦距、可将光线发散;
物侧可以理解为靠近被摄取物的一侧,像侧可以理解为靠近成像面的一侧;
透镜的物侧表面为透镜靠近被摄取物的一侧表面,透镜的像侧表面为透镜靠近成像面的一侧表面;
近光轴处可以理解为透镜表面靠近光轴的区域。
请参考图1所示,图1为本申请实施例提供的电子设备的结构示意图。电子设备1可以为手机、平板电脑(tablet personal computer)、膝上型电脑(laptop computer)、个人数码助理(personal digital assistant,简称PDA)、照相机、个人计算机、笔记本电脑、车载设备、可穿戴设备、增强现实(augmented reality,简称AR)眼镜、AR头盔、虚拟现实(virtual reality,简称VR)眼镜或者VR头盔、或者具有拍照及摄像功能的其它形态的设备。图1所示实施例的电子设备以手机为例进行阐述。
图2为图1中电子设备的局部分解示意图。请一并参考图1和图2,电子设备1可以包括壳体100、显示屏200、电路板300及摄像头模组400。需要说明的是,图1、图2以及下文相关附图仅示意性的示出了电子设备1包括的一些部件,这些部件的实际形状、实际大小、实际位置和实际构造不受图1、图2以及下文各附图限定。
为了便于描述,定义电子设备1的宽度方向为x轴,电子设备的长度方向为y轴,电子设备1的厚度方向为z轴,其中,x轴、y轴、z轴两两垂直。可以理解的是,电子设备1的坐标系设置可以根据具体实际需要灵活设置。
其中,壳体100可以包括中框110以及后盖120,后盖120固定于中框110的一侧。在一种实施方式中,后盖120可以通过粘胶固定连接于中框110。在另一种实施方式中,后盖120与中框110也可以形成一体成型结构,即后盖与中框为一个整体结构。
在其它实施例中,壳体100也可以包括中板(图中未示出)。中板连接于中框110的内侧,与后盖120相对且间隔设置。
请再次参考图2,显示屏200固定于中框110上与后盖120相对的另一侧,此时,显示屏200与后盖120相对设置。显示屏200、中框110与后盖120共同围出电子设备1的内部。电子设备1的内部可用于放置电子设备1的器件,例如电路板300、摄像头模组400、电池、受话器以及麦克风等。
在本实施例中,显示屏200可用于显示图像、文字等。显示屏200可以为平面屏,也可以为曲面屏。显示屏200包括显示面板210与第一盖板220,第一盖板220叠置于显示面板210背离中框110的一侧。第一盖板220可以紧贴显示面板210设置,可主要用于对显示面板210起到保护以及防尘作用。第一盖板220的材质为透明材料,例如,可以为玻璃或者塑料。显示面板210可以采用液晶显示面板(Liquid Crystal Display,简称LCD),有机发光二极管(organic light-emitting diode,简称OLED)显示面板,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,简称 AMOLED)显示面板,量子点发光二极管(quantum dot light emitting diodes,简称QLED)显示面板,或者微发光二极管(Micro Light Emitting Diode,简称Micro LED)显示面板等。
图3为图1中的电子设备在A-A处的局部剖视图。一并参考图2和图3,电路板300固定于电子设备1的内部。具体地,电路板300可以固定于显示屏200朝向后盖120的一侧。在其它实施例中,当中框110包括中板时,电路板300可以固定在中板朝向后盖120的一侧表面。可以理解的,电路板300可以为硬质电路板,也可以为柔性电路板,也可以为软硬结合电路板。电路板300可以用于承载芯片、电容、电感等电子器件,并可以实现电子器件之间的电连接,其中,芯片可以为中央处理器(central processing unit,简称CPU)、图形处理器(graphics processing unit,简称GPU)、数字信号处理芯片(digital signal processing,简称DSP)以及通用存储器(universal flash storage,简称UFS)等。
请继续参考图2和图3,摄像头模组400固定在壳体100内,用于使电子设备1实现拍照或者录像等功能。具体地,摄像头模组400可以固定于显示屏200朝向后盖120的一侧。在其它实施例中,当中框110包括中板时,摄像头模组400也可以固定在中板朝向后盖120的一侧表面。
另外,电路板300上可设置有避让空间310,避让空间310的形状可以为与摄像头模组400的形状相匹配的形状,例如图2所示意的矩形形状。当然,在其它实施方式中,避让空间310还可以为圆形、椭圆形或者其它不规则形状等,本申请对此不做具体限制。摄像头模组400位于避让空间310内。这样,在z轴方向上,摄像头模组400与电路板300具有重叠区域,从而避免了因摄像头模组400堆叠于电路板而导致电子设备1的厚度增大。在其它实施例中,电路板300也可以未设置避让空间310,此时,摄像头模组400可以直接堆叠于电路板300,或者通过其它支撑结构与电路板300间隔设置。
在本实施例中,摄像头模组400电连接于电路板300。具体的,摄像头模组400通过电路板300电连接于CPU。当CPU接收到用户的指令时,CPU能够通过电路板300向摄像头模组400发送信号,以控制摄像头模组400拍摄图像或者录像。在其它实施例中,当电子设备1未设置电路板300时,摄像头模组400也可以直接接收用户的指令,并根据用户的指令进行拍摄图像或者录像。
请再次参考图3,后盖120开设有进光孔1201,进光孔1201可将电子设备1的内部连通至电子设备1的外部。电子设备1还包括摄像头装饰件1202和第二盖板1203。部分摄像头装饰件1202可以固定于后盖120的内表面,部分摄像头装饰件1202接触于进光孔1201的孔壁。第二盖板1203固定连接在摄像头装饰件1202的内壁。摄像头装饰件1202与第二盖板1203将电子设备1的内部与电子设备1的外部隔开,从而避免外界的水或者灰尘经进光孔1201进入电子设备1的内部。第二盖板1203的材质为透明材料,例如,可以为玻璃或者塑料。电子设备1外部的环境光线能够穿过第二盖板1203进入电子设备1的内部。摄像头模组400采集进入电子设备1内部的环境光线。
可以理解的是,进光孔1201的形状不仅限于附图1及附图2所示意的圆形。例如,进光孔1201的形状也可以为椭圆形或者其它不规则形状等。
在其它实施例中,摄像头模组400也可以采集穿过后盖120的环境光线。具体的,后盖120的材质为透明材料,例如,玻璃或者塑料。后盖120朝向电子设备1内部的表面部分涂覆油墨,部分未涂覆油墨。此时,未涂覆油墨的区域可形成透光区域。当环境光线经该透光区域进入电子设备1的内部时,摄像头模组400即可采集到环境光线。也就是说, 本实施例的电子设备1可以无需开设进光孔,也无需设置摄像头装饰件1202和第二盖板1203,电子设备1的整体性较佳,成本较低。
值得一提的是,在其它一些实施例中,摄像头模组400还可以固定于后盖120朝向显示屏200的一侧,此时,显示面板210上可设置开孔,电子设备1外部的光线能够依次穿过第一盖板220和开孔进入电子设备1的内部,从而被摄像头模组400采集并形成图像或视频。也就是说,本实施例中的摄像头模组400既可以用作为前置摄像头模组,也可以用作为后置摄像头模组,具体可以根据电子设备1的功能需求进行设置,此处不再过多赘述。
请参考图4所示,图4为本申请实施例提供的摄像头模组的结构示意图。摄像头模组400可以包括光学镜头410、模组电路板420、图像传感器430及滤光片440。需要说明的是,光学镜头410的光轴方向与摄像头模组400的光轴方向相同。
其中,该光学镜头410可安装被摄体(物面)与图像传感器430(像面)之间,光学镜头410用于形成被摄体的像(即光信号),图像传感器430用于将被摄体的像(即光信号)转换为图像信号并输出,以便于实现摄像头模组的拍照或录像功能。
模组电路板420固定于光学镜头410的出光侧,也即模组电路板420位于光学镜头410的像侧。模组电路板420可以电连接于电路板,以使信号能够在电路板与模组电路板420之间传输。可以理解的,模组电路板420可以为硬质电路板,也可以为柔性电路板,也可以为软硬结合电路板,本申请对此不做限制。
请继续参考图4,图像传感器430固定于模组电路板420朝向光学镜头410的一侧。图像传感器430与模组电路板420电连接,这样,当图像传感器430采集环境光线之后,图像传感器430根据环境光线产生信号,并将信号经模组电路板420传输至电路板。具体实施时,图像传感器430可以是金属氧化物半导体元件(complementary metal-oxide-semiconductor,简称CMOS)或者电荷耦合元件(charge coupled device,简称CCD)等图像传感器。
在其它实施方式中,模组电路板420上还可安装有电子元器件或者其它芯片(例如驱动芯片)。电子元器件或者其它芯片设于图像传感器430的周边。电子元器件或者其它芯片用于辅助图像传感器430采集环境光线,以及辅助图像传感器430对所采集的环境光线进行信号处理。
在其它实施方式中,模组电路板420可以在局部设置沉槽421,此时,图像传感器430可安装于沉槽421内。这样,图像传感器430与模组电路板420在z轴方向上具有重叠区域,此时,摄像头模组400在z轴方向上可以设置得较薄。
请继续参考图4,滤光片440位于图像传感器430朝向光学镜头410的一侧。滤光片440可以用于过滤穿过光学镜头410的环境光线的杂光,并使过滤后的环境光线传播至图像传感器430,从而保证电子设备拍摄图像具有较佳的清晰度。滤光片440可以为但不仅限于为蓝色玻璃滤光片。例如,滤光片440还可以为反射式红外滤光片,或者是双通滤光片(双通滤光片可使环境光线中的可见光和红外光同时透过,或者使环境光线中的可见光和其它特定波长的光线(例如紫外光)同时透过,或者使红外光和其它特定波长的光线(例如紫外光)同时透过)。
为了将滤光片440的位置进行固定,摄像头模组400还可包括设置于光学镜头410与模组电路板420之间的支撑件450,支撑件450的两侧分别与光学镜头410和模组电路板420固定连接,具体固定方式可以为粘接。滤光片440可设置于支撑件450的其中一侧。 支撑件450上对应图像传感器430的区域开设有通孔451,以使环境光线能够顺利射入图像传感器430。
在摄像头模组中,光学镜头是影响摄像头模组的成像质量的最关键部件。光学镜头的变焦范围、解析度、景深等都会影响其成像效果。其中,景深是指光学镜头前沿能够取得清晰图像的成像所测定的被摄体前后距离范围,或者可以理解为,当光学镜头聚焦完成后,焦点前后的范围所呈现的清晰图像的距离范围。光学镜头的景深与其光圈相关,光圈越大,景深越浅,光圈越小,景深越深。因此,在一些拍摄场景下,如果要使拍摄画面中的远景和近景能够同时清晰成像,就需要利用小光圈的光学镜头进行拍摄;在另外一些场景下,如果想要突出拍摄画面中的主体,则需要利用大光圈的光学镜头进行拍摄。然而,目前应用于手机等电子设备中的光学镜头多数都是采用固定光圈的设计,不能兼顾多场景的拍摄需求,因此对电子设备在拍照方面的性能形成了制约,影响电子设备整体性能的进一步提升。
针对上述问题,在本申请实施例还提供了一种光学镜头,该光学镜头采用可变光圈结构,并结合对透镜的相关参数的匹配设计,使光学镜头能够为不同场景提供不同的景深范围,从而兼顾多场景的拍摄需求。
参考图5所示,图5为本申请实施例提供的光学镜头的结构示意图。该光学镜头410可包括多片具有光焦度的透镜以及可变光圈ST,其中,可变光圈ST可设置于多片透镜的物侧,其通光直径可调节。可以理解的,通过调节可变光圈ST的通光直径即可调整光学镜头410的进光量,并调节光学镜头410的光圈数Fno.,进而实现对光学镜头410的景深的调节。具体实施时,可变光圈ST可以采用“猫眼式”光圈、“虹膜型”光圈、瞬时光圈、兼快门光圈等等,本申请对此不作限制。
示例性地,透镜的数量可以七片,沿物侧到像侧,该七片透镜分别为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7。具体实施时,这些透镜可以为非球面透镜,这样可以消除像差,有利于提高光学镜头410的成像质量。此时,各片透镜均可以采用树脂材质,以降低光学镜头410的制作工艺难度以及制作成本。当然,在其它一些实施例中,各片透镜也可以采用玻璃材质;或者部分透镜采用玻璃材质,部分透镜采用树脂材质,具体可以根据实际应用进行选择,本申请对此不作限制。
在光学镜头410的各片透镜中,第一透镜L1可具有正光焦度,第一透镜L1的物侧表面进光轴处为凸面,像侧表面进光轴处为凹面,且第一透镜L1的焦距f1与光学镜头410的焦距EFL满足:0≤f1/EFL≤1.1。
第二透镜L2可具有负光焦度,第二透镜L2的物侧表面近光轴处为凸面,像侧表面近光轴处为凹面。另外,第二透镜L2的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:1.8≤(R3+R4)/(R3-R4)≤6.3,这种设置有助于平衡光学镜头410的光焦度配合,缩短光学镜头410的总长TTL。
第三透镜L3的物侧表面近光轴处为凹面,第三透镜L3的焦距f3与第四透镜L4的焦距f4满足:-4≤f3/f4≤-1.3。
第五透镜L5的中心厚度CT5、第七透镜L7的中心厚度CT7及光学镜头410的半视场角HFOV满足:0≤CT7/[CT5×tan(HFOV)]≤1.1。
第六透镜L6的像侧表面近光轴处的曲率半径R12与光学镜头410的焦距EFL满足: 0≤|EFL/R12|≤0.46,从而有利于第六透镜L6与其它透镜形成较优的配合。
第七透镜L7的物侧表面为反曲面,这样有助于提升摄像头模组的边缘视场像质。另外,第七透镜L7的物侧表面的曲率半径R13与光学镜头410的焦距EFL满足:0≤|EFL/R13|≤2.2。采用这种设计有利于第七透镜修正边缘视场像差,并缩短光学镜头410的总长TTL。
光学镜头410的总长TTL、光学镜头410在其成像面上可形成的半像高ImgH及光学镜头410的光圈数Fno.满足:TTL×Fno./ImgH≥1.8。
光学镜头410的总长TTL与光学镜头410的入瞳直径EPD满足:1.5≤TTL/EPD≤10,这样可以较好地控制光学镜头410的进光量,并保持光学镜头410的总长TTL。
沿光学镜头410的光轴方向,光学镜头410的各片透镜之间的间隔也满足一定的条件。具体来说,定义第一透镜L1与第二透镜L2之间的间距为d1,第二透镜L2与第三透镜L3之间的间距为d2,第三透镜L3与第四透镜L4之间的间距为d3,第四透镜L4与第五透镜L5之间的间距为d4,第五透镜L5与第六透镜L6之间的间距为d5,第六透镜L6与第七透镜L7之间的间距为d7,dm表示d2,d3,d4,d5,d6之间的任意值,d1与dm之间满足d1/dm≤1。采用此种间隔配合,可以提高光学镜头410的整体机械强度。需要说明的是,第一透镜L1与第二透镜L2之间的间距d1可以理解为第一透镜L1的像侧表面的中心与第二透镜L2的物侧表面的中心在光轴方向的距离,类似地,其它相邻的透镜之间的间隔也可参照d1的定义,此处不再进行赘述。
此外,定义第一透镜L1的中心厚度为CT1,第二透镜L2的中心厚度为CT1,第三透镜L3的中心厚度为CT3,第四透镜L4的中心厚度为CT4,第五透镜L5的中心厚度为CT5,第六透镜L6的中心厚度为CT6,第七透镜L7的中心厚度为CT7,CTn表示CT2,CT3,CT4,CT5,CT6,CT7之间的任意值,CT1与CT7之间满足CT1/CTn≥1。采用此种厚度组合,配合光学镜头410的光焦度组合,可以使光学镜头410达到更好的成像质量。其中,透镜的中心厚度可以理解为透镜中心位置的厚度,也即光轴穿过透镜的位置的厚度。
如前所述,本申请实施例的光学镜头410可通过改变可变光圈ST的通光直径来调整光圈数Fno.,不同的通光直径对应不同的光圈数Fno.,也即对应不同的景深,从而可以使光学镜头410适应不同的拍摄场景。可变光圈ST的通光直径可在第一通光直径与第二通光直径之间调节,第一通光直径大于第二通光直径。当可变光圈ST的通光直径为第一通光直径时,光学镜头410的光圈数Fno.为F1,定义此状态下的光学镜头410为第一成像模式;当可变光圈ST的通光直径为第二通光直径时,光学镜头410的光圈数Fno.为F2,定义此状态下的光学镜头410为第二成像模式。可以理解的,F1<F2,示例性地,F1的取值可以为1.2,F2的取值可以为8.0,也即,本申请实施例的光学镜头410的光圈数Fno.的取值范围可在1.2~8.0之间。
一并参考图6a和图6b所示,图6a为本申请实施例提供的第一种光学镜头处于第一成像模式时的结构示意图,图6b为本申请实施例提供的第一种光学镜头处于第二成像模式时的结构示意图。当光学镜头410处于第一成像模式时,光学镜头410的光圈数Fno.相对较小,具有大光圈特性,因此可以使景深变浅,并使对焦点清晰,而其它处在非景深范围内的景物会被虚化,从而能够更好地突出主体、精简画面;另外,采用大光圈也意味着单位时间内进入光学镜头的光线将增加,当画面曝光量不变时,第一成像模式下就可以提高快门速度,在光线不足或者黑暗的环境中手持拍摄时,快门速度的提高能够减轻手的抖动对画面清晰度的影响,从而有利于使摄像头模组拍摄出效果更好的夜景图片。当光学镜头 410处于第二成像模式时,光学镜头410的光圈数Fno.相对较大,具有小光圈特性,因此能够获得大景深,使对焦主体以外的背景或者前景也能够保持清晰;另外,小光圈可以减小光学镜头410的进光量,这样可以放慢快门速度,从而有利于使运动的物体在画面上留下运动痕迹,因此光学镜头410在第二成像模式下还可以拍摄流水、车轨、星轨以及光绘等景象。
应当理解的是,本申请实施例提供的光学镜头410并不限于上述的两种成像模式,例如,当可变光圈ST的通光直径调整为第一通光直径与第二通光直径之间的其它值时,光学镜头410的光圈数Fno.也相应地调整为1.2~8.0之间的其它数值,示例性地,光圈数Fno.还可以取值为2.0,2.8,4,5.6,等等。对应每一个光圈数Fno.,光学镜头410均可以实现与之相对应的成像模式,从而能够适应更多的拍摄场景。
通过以上描述可以看出,本申请实施例的光学镜头410采用可变光圈的结构设计,能够为不同场景提供不同的景深范围,因此可以兼顾多场景的拍摄需求,另外,该光学镜头410配合具有大靶面的图像传感器,可以实现更好的光学品质,从而有利于提高摄像头模组的成像质量。
为方便理解本申请实施例提供的光学镜头410在不同场景下的拍摄效果,下面结合具体的实施例对光学镜头410在第一成像模式和第二成像模式下的成像效果进行详细的说明。
请再次参考图6a和图6b,该光学镜头410包括可变光圈ST和七片具有光焦度的透镜,七片透镜分别为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7,可变光圈ST位于第一透镜L1的物侧。另外,摄像头模组的滤光片440位于第七透镜L7的像侧,图像传感器430位于滤光片440的像侧。
该实施例中,光学镜头410的光圈数Fno.满足:1.2≤Fno.≤4.0,在第一成像模式下,光学镜头410的光圈数Fno.为1.2,在第二成像模式下,光学镜头410的光圈数Fno.为4.0;
第一透镜L1的焦距f1与光学镜头410的焦距EFL满足:f1/EFL=1;
第三透镜L3的焦距f3与第四透镜L4的焦距f4满足:f3/f4=-1.4;
第二透镜L2的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=5;
光学镜头410的总长TTL、光学镜头410在其成像面上可形成的半像高ImgH及光学镜头410的光圈数Fno.满足:1.9≤TTL×F/ImgH≤5.5;
第五透镜L5的中心厚度CT5、第七透镜L7的中心厚度CT7及光学镜头410的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=0.8;
第六透镜L6的像侧表面近光轴处的曲率半径R12与光学镜头410的焦距EFL满足:|EFL/R12|=0.4;
第七透镜L7的物侧表面的曲率半径R13与光学镜头410的焦距EFL满足:|EFL/R13|=0.3;
光学镜头410的总长TTL与光学镜头410的入瞳直径EPD满足:1.84≤TTL/EPD≤4.8;
沿光学镜头410的光轴方向,第一透镜L1与第二透镜L2之间的间距d1满足:0.1≤d1/dm≤0.5,其中,dm为第m透镜与第m+1透镜之间的间距,m为自然数且2≤m≤6;
第一透镜L1的中心厚度CT1满足:1.4≤CT1/CTn≤3.5,其中,CTn为第n透镜的中心厚度,n为自然数且2≤n≤7。
光学镜头410的其它设计参数具体请参考表1所示。
表1
焦距EFL(mm) 5.662
F值 1.2~4.0
半视场角HFOV 42.4°
光学镜头的总长TTL(mm) 7.24
设计波长 650nm,610nm,555nm,510nm,470nm
本申请实施例中光学镜头410的各片透镜均可以为非球面透镜,即光学镜头410共包含14个非球面。一并参考表2和表3,其中,表2为光学镜头410中各片透镜的曲率半径、厚度、折射率、阿贝系数,表3为各片透镜的非球面系数。在表2与表3中,S1与S2分别表示第一透镜的物侧表面与像侧表面,S3与S4分别表示第二透镜的物侧表面与像侧表面,S5与S6分别表示第三透镜的物侧表面与像侧表面,S7与S8分别表示第四透镜的物侧表面与像侧表面,S9与S10分别表示第五透镜的物侧表面与像侧表面,S11与S12分别表示第六透镜的物侧表面与像侧表面,S13与S14分别表示第七透镜的物侧表面与像侧表面。
表2
Figure PCTCN2021143954-appb-000001
表3
Figure PCTCN2021143954-appb-000002
Figure PCTCN2021143954-appb-000003
Figure PCTCN2021143954-appb-000004
表3中所示的光学镜头410的14个非球面中,所有扩展非球面面型z可利用但不限于一下非球面公式进行限定:
Figure PCTCN2021143954-appb-000005
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径r 0,c为非球面顶点球曲率,K为二次曲面常数,Ax为非球面系数,
Figure PCTCN2021143954-appb-000006
为非球面多项式,
Figure PCTCN2021143954-appb-000007
Px为雅可比多项式。
对图6a和图6b所示的光学镜头进行仿真,下面结合附图详细说明其仿真结果。
图7a为本申请实施例提供的第一种光学镜头处于第一成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图7b为本申请实施例提供的第一种光学镜头处于第二成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图8a为本申请实施例提供的第一种光学镜头处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第一成像模式下的横向色差控制在一个很小的范围内;
图8b为本申请实施例提供的第一种光学镜头处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第二成像模式下的横向色差控制在一个很小的范围内;
图9a为本申请实施例提供的第一种光学镜头处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于2.5%的范围内;
图9b为本申请实施例提供的第一种光学镜头处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于2.5%的范围内。
请一并参考图10a和图10b所示,图10a为本申请实施例提供的第二种摄像头模组处于第一成像模式时的结构示意图,图10b为本申请实施例提供的第二种摄像头模组处于第二成像模式时的结构示意图。该光学镜头410包括可变光圈ST和七片具有光焦度的透镜,七片透镜分别为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7,可变光圈ST位于第一透镜L1的物侧。另外,摄像头模组的滤光片440位于第七透镜L7的像侧,图像传感器430位于滤光片440的像侧。
该实施例中,光学镜头410的光圈数Fno.满足:1.2≤Fno.≤4.0,在第一成像模式下,光学镜头410的光圈数Fno.为1.2,在第二成像模式下,光学镜头410的光圈数Fno.为4.0;
第一透镜L1的焦距f1与光学镜头410的焦距EFL满足:f1/EFL=0.98;
第三透镜L3的焦距f3与第四透镜L4的焦距f4满足:f3/f4=-1.64;
第二透镜L2的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=3.68;
光学镜头410的总长TTL、光学镜头410在其成像面上可形成的半像高ImgH及光学镜头410的光圈数Fno.满足:2.0≤TTL×Fno./ImgH≤5.6;
第五透镜L5的中心厚度CT5、第七透镜L7的中心厚度CT7及光学镜头410的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=0.42;
第六透镜L6的像侧表面近光轴处的曲率半径R12与光学镜头410的焦距EFL满足:|EFL/R12|=0.32;
第七透镜L7的物侧表面的曲率半径R13与光学镜头410的焦距EFL满足:|EFL/R13|=0.37;
光学镜头410的总长TTL与光学镜头410的入瞳直径EPD满足:1.84≤TTL/EPD≤9.80;
沿光学镜头410的光轴方向,第一透镜L1与第二透镜L2之间的间距d1满足:0.04≤d1/dm≤0.21,其中,dm为第m透镜与第m+1透镜之间的间距,m为自然数且2≤m≤6;
第一透镜L1的中心厚度CT1满足:1.78≤CT1/CTn≤5.00,其中,CTn为第n透镜的中心厚度,n为自然数且2≤n≤7。
光学镜头410的其它设计参数具体请参考表4所示。
表4
焦距EFL(mm) 6.009
F值 1.2~4.0
半视场角HFOV 41.4°
光学镜头的总长TTL(mm) 7.4
设计波长 650nm,610nm,555nm,510nm,470nm
本申请实施例中光学镜头410的各片透镜均可以为非球面透镜,即光学镜头410共包含14个非球面。一并参考5和表6,其中,表5为光学镜头410中各片透镜的曲率半径、厚度、折射率、阿贝系数,表6为各片透镜的非球面系数。在表5与表6中,S1与S2分别表示第一透镜的物侧表面与像侧表面,S3与S4分别表示第二透镜的物侧表面与像侧表面,S5与S6分别表示第三透镜的物侧表面与像侧表面,S7与S8分别表示第四透镜的物侧表面与像侧表面,S9与S10分别表示第五透镜的物侧表面与像侧表面,S11与S12分别表示第六透镜的物侧表面与像侧表面,S13与S14分别表示第七透镜的物侧表面与像侧表面。
表5
Figure PCTCN2021143954-appb-000008
表6
Figure PCTCN2021143954-appb-000009
Figure PCTCN2021143954-appb-000010
表6中所示的光学镜头410的14个非球面中,所有扩展非球面面型z可利用但不限于一下非球面公式进行限定:
Figure PCTCN2021143954-appb-000011
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径r 0,c为非球面顶点球曲率,K为二次曲面常数,Ax为非球面系数,
Figure PCTCN2021143954-appb-000012
为非球面多项式,
Figure PCTCN2021143954-appb-000013
Px为雅可比多项式。
对图10a和图10b所示的光学镜头进行仿真,下面结合附图详细说明其仿真结果。
图11a为本申请实施例提供的第二种光学镜头处于第一成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分 别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图11b为本申请实施例提供的第二种光学镜头处于第二成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图12a为本申请实施例提供的第二种光学镜头处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第一成像模式下的横向色差控制在一个很小的范围内;
图12b为本申请实施例提供的第二种光学镜头处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第二成像模式下的横向色差控制在一个很小的范围内;
图13a为本申请实施例提供的第二种光学镜头处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于2.5%的范围内;
图13b为本申请实施例提供的第二种光学镜头处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于2.5%的范围内。
请一并参考图14a和图14b所示,图14a为本申请实施例提供的第三种光学镜头处于第一成像模式时的结构示意图,图14b为本申请实施例提供的第三种光学镜头处于第二成像模式时的结构示意图。该光学镜头410包括可变光圈ST和七片具有光焦度的透镜,七片透镜分别为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7,可变光圈ST位于第一透镜L1的物侧。另外,摄像头模组的滤光片440位于第七透镜L7的像侧,图像传感器430位于滤光片440的像侧。
该实施例中,光学镜头410的光圈数Fno.满足:1.2≤Fno.≤4.0,在第一成像模式下,光学镜头410的光圈数Fno.为1.2,在第二成像模式下,光学镜头410的光圈数Fno.为4.0;
第一透镜L1的焦距f1与光学镜头410的焦距EFL满足:f1/EFL=1.1;
第三透镜L3的焦距f3与第四透镜L4的焦距f4满足:f3/f4=-4;
第二透镜L2的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=5.73;
光学镜头410的总长TTL、光学镜头410在其成像面上可形成的半像高ImgH及光学镜头410的光圈数Fno.满足:2.33≤TTL×F/ImgH≤6.24;
第五透镜L5的中心厚度CT5、第七透镜L7的中心厚度CT7及光学镜头410的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=1;
第六透镜L6的像侧表面近光轴处的曲率半径R12与光学镜头410的焦距EFL满足:|EFL/R12|=0.39;
第七透镜L7的物侧表面的曲率半径R13与光学镜头410的焦距EFL满足:|EFL/R13|=2.19;
光学镜头410的总长TTL与光学镜头410的入瞳直径EPD满足:1.96≤TTL/EPD≤5.33;
沿光学镜头410的光轴方向,第一透镜L1与第二透镜L2之间的间距d1满足:0.07≤d1/dm≤0.22,其中,dm为第m透镜与第m+1透镜之间的间距,m为自然数且2≤m≤6;
第一透镜L1的中心厚度CT1满足:1.25≤CT1/CTn≤5.00,其中,CTn为第n透镜的中心厚度,n为自然数且2≤n≤7。
光学镜头410的其它设计参数具体请参考表7所示。
表7
焦距EFL(mm) 6.095
F值 1.2~4.0
半视场角HFOV 39.8°
光学镜头的总长TTL(mm) 8
设计波长 650nm,610nm,555nm,510nm,470nm
本申请实施例中光学镜头410的各片透镜均可以为非球面透镜,即光学镜头410共包含14个非球面。一并参考表8和表9,其中,表8为光学镜头410中各片透镜的曲率半径、厚度、折射率、阿贝系数,表9为各片透镜的非球面系数。在表8与表9中,S1与S2分别表示第一透镜的物侧表面与像侧表面,S3与S4分别表示第二透镜的物侧表面与像侧表面,S5与S6分别表示第三透镜的物侧表面与像侧表面,S7与S8分别表示第四透镜的物侧表面与像侧表面,S9与S10分别表示第五透镜的物侧表面与像侧表面,S11与S12分别表示第六透镜的物侧表面与像侧表面,S13与S14分别表示第七透镜的物侧表面与像侧表面。
表8
Figure PCTCN2021143954-appb-000014
Figure PCTCN2021143954-appb-000015
表9
Figure PCTCN2021143954-appb-000016
Figure PCTCN2021143954-appb-000017
表9中所示的光学镜头410的14个非球面中,所有扩展非球面面型z可利用但不限于一下非球面公式进行限定:
Figure PCTCN2021143954-appb-000018
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,Ax为非球面系数,
Figure PCTCN2021143954-appb-000019
为非球面多项式,
Figure PCTCN2021143954-appb-000020
Px为雅可比多项式。
对图14a和图14b所示的光学镜头进行仿真,下面结合附图详细说明其仿真结果。
图15a为本申请实施例提供的第三种光学镜头处于第一成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图15b为本申请实施例提供的第三种光学镜头处于第二成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图16a为本申请实施例提供的第三种光学镜头处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第一成像模式下的横向色差控制在一个很小的范围内;
图16b为本申请实施例提供的第三种光学镜头处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第二成像模式下的横向色差控制在一个很小的范围内;
图17a为本申请实施例提供的第三种光学镜头处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于4%的范围内;
图17b为本申请实施例提供的第三种光学镜头处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于4% 的范围内。
请一并参考图18a和图18b所示,图18a为本申请实施例提供的第四种光学镜头处于第一成像模式时的结构示意图,图18b为本申请实施例提供的第四种光学镜头处于第二成像模式时的结构示意图。该光学镜头410包括可变光圈ST和七片具有光焦度的透镜,七片透镜分别为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7,可变光圈ST位于第一透镜L1的物侧。另外,摄像头模组的滤光片440位于第七透镜L7的像侧,图像传感器430位于滤光片440的像侧。
该实施例中,光学镜头410的光圈数Fno.满足:1.2≤Fno.≤4.0,在第一成像模式下,光学镜头410的光圈数Fno.为1.2,在第二成像模式下,光学镜头410的光圈数Fno.为4.0;
第一透镜L1的焦距f1与光学镜头410的焦距EFL满足:f1/EFL=1.09;
第三透镜L3的焦距f3与第四透镜L4的焦距f4满足:f3/f4=-3.61;
第二透镜L2的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=5.58;
光学镜头410的总长TTL、光学镜头410在其成像面上可形成的半像高ImgH及光学镜头410的光圈数Fno.满足:2.33≤TTL×Fno./ImgH≤6.25;
第五透镜L5的中心厚度CT5、第七透镜L7的中心厚度CT7及光学镜头410的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=1.04;
第六透镜L6的像侧表面近光轴处的曲率半径R12与光学镜头410的焦距EFL满足:|EFL/R12|=0.46;
第七透镜L7的物侧表面的曲率半径R13与光学镜头410的焦距EFL满足:|EFL/R13|=2.19;
光学镜头410的总长TTL与光学镜头410的入瞳直径EPD满足:1.96≤TTL/EPD≤5.22;
沿光学镜头410的光轴方向,第一透镜L1与第二透镜L2之间的间距d1满足:0.07≤d1/dm≤0.21,其中,dm为第m透镜与第m+1透镜之间的间距,m为自然数且2≤m≤6;
第一透镜L1的中心厚度CT1满足:1.39≤CT1/CTn≤3.41,其中,CTn为第n透镜的中心厚度,n为自然数且2≤n≤7。
光学镜头410的其它设计参数具体请参考表10所示。
表10
焦距EFL(mm) 6.128
F值 1.2~4.0
半视场角HFOV 39.8°
光学镜头的总长TTL(mm) 8
设计波长 650nm,610nm,555nm,510nm,470nm
本申请实施例中光学镜头410的各片透镜均可以为非球面透镜,即光学镜头410共包含14个非球面。一并参考表11和表12,其中,表11为光学镜头410中各片透镜的曲率半径、厚度、折射率、阿贝系数,表12为各片透镜的非球面系数。在表11与表12中, S1与S2分别表示第一透镜的物侧表面与像侧表面,S3与S4分别表示第二透镜的物侧表面与像侧表面,S5与S6分别表示第三透镜的物侧表面与像侧表面,S7与S8分别表示第四透镜的物侧表面与像侧表面,S9与S10分别表示第五透镜的物侧表面与像侧表面,S11与S12分别表示第六透镜的物侧表面与像侧表面,S13与S14分别表示第七透镜的物侧表面与像侧表面。
表11
Figure PCTCN2021143954-appb-000021
表12
Figure PCTCN2021143954-appb-000022
Figure PCTCN2021143954-appb-000023
表12中所示的光学镜头410的14个非球面中,所有扩展非球面面型z可利用但不限于一下非球面公式进行限定:
Figure PCTCN2021143954-appb-000024
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,Ax为非球面系数,
Figure PCTCN2021143954-appb-000025
为非球面多项式,
Figure PCTCN2021143954-appb-000026
Px为雅可比多项式。
对图18a和图18b所示的光学镜头进行仿真,下面结合附图详细说明其仿真结果。
图19a为本申请实施例提供的第四种光学镜头处于第一成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图19b为本申请实施例提供的第四种光学镜头处于第二成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图20a为本申请实施例提供的第四种光学镜头处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第一成像模式下的横向色差控制在一个很小的范围内;
图20b为本申请实施例提供的第四种光学镜头处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第二成像模式下的横向色差控制在一个很小的范围内;
图21a为本申请实施例提供的第四种光学镜头处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于4%的范围内;
图21b为本申请实施例提供的第四种光学镜头处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于4%的范围内。
请一并参考图22a和图22b所示,图22a为本申请实施例提供的第五种光学镜头处于第一成像模式时的结构示意图,图22b为本申请实施例提供的第五种摄像头模组光学镜头处于第二成像模式时的结构示意图。该光学镜头410包括可变光圈ST和七片具有光焦度的透镜,七片透镜分别为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7,可变光圈位于第一透镜L1的物侧。另外,摄像头模组的滤光片440位于第七透镜L7的像侧,图像传感器430位于滤光片440的像侧。
该实施例中,光学镜头410的光圈数Fno.满足:1.2≤Fno.≤4.0,在第一成像模式下,光学镜头410的光圈数Fno.为1.2,在第二成像模式下,光学镜头410的光圈数Fno.为4.0;
第一透镜L1的焦距f1与光学镜头410的焦距EFL满足:f1/EFL=1.05;
第三透镜L3的焦距f3与第四透镜L4的焦距f4满足:f3/f4=-1.55;
第二透镜L2的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=5.54;
光学镜头410的总长TTL、光学镜头410在其成像面上可形成的半像高ImgH及光学镜头的光圈数Fno.满足:2.07≤TTL×Fno./ImgH≤5.62;
第五透镜L5的中心厚度CT5、第七透镜L7的中心厚度CT7及光学镜头410的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=0.75;
第六透镜L6的像侧表面近光轴处的曲率半径R12与光学镜头410的焦距EFL满足:|EFL/R12|=0.02;
第七透镜L7的物侧表面的曲率半径R14与光学镜头410的焦距EFL满足: |EFL/R13|=0.26;
光学镜头410的总长TTL与光学镜头410的入瞳直径EPD满足:1.82≤TTL/EPD≤5.08;
沿光学镜头410的光轴方向,第一透镜L1与第二透镜L2之间的间距d1满足:0.11≤d1/dm≤0.66,其中,dm为第m透镜与第m+1透镜之间的间距,m为自然数且2≤m≤6;
第一透镜L1的中心厚度CT1满足:1.41≤CT1/CTn≤3.48,其中,CTn为第n透镜的中心厚度,n为自然数且2≤n≤7。
光学镜头410的其它设计参数具体请参考表13所示。
表13
焦距EFL(mm) 5.745
F值 1.4~4.0
半视场角HFOV 41.8°
光学镜头的总长TTL(mm) 8
设计波长 650nm,610nm,555nm,510nm,470nm
本申请实施例中光学镜头410的各片透镜均可以为非球面透镜,即光学镜头410共包含14个非球面。一并参考表14和表15,其中,表14为光学镜头410中各片透镜的曲率半径、厚度、折射率、阿贝系数,表15为各片透镜的非球面系数。在表14与表15中,S1与S2分别表示第一透镜的物侧表面与像侧表面,S3与S4分别表示第二透镜的物侧表面与像侧表面,S5与S6分别表示第三透镜的物侧表面与像侧表面,S7与S8分别表示第四透镜的物侧表面与像侧表面,S9与S10分别表示第五透镜的物侧表面与像侧表面,S11与S12分别表示第六透镜的物侧表面与像侧表面,S13与S14分别表示第七透镜的物侧表面与像侧表面。
表14
Figure PCTCN2021143954-appb-000027
Figure PCTCN2021143954-appb-000028
表15
Figure PCTCN2021143954-appb-000029
Figure PCTCN2021143954-appb-000030
表15中所示的光学镜头410的14个非球面中,所有扩展非球面面型z可利用但不限于一下非球面公式进行限定:
Figure PCTCN2021143954-appb-000031
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,Ax为非球面系数,
Figure PCTCN2021143954-appb-000032
为非球面多项式,
Figure PCTCN2021143954-appb-000033
Px为雅可比多项式。
对图22a和图22b所示的光学镜头进行仿真,下面结合附图详细说明其仿真结果。
图23a为本申请实施例提供的第五种光学镜头处于第一成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图23b为本申请实施例提供的第五种光学镜头处于第二成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图24a为本申请实施例提供的第五种光学镜头处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第一成像模式下的横向色差控制在一个很小的范围内;
图24b为本申请实施例提供的第五种光学镜头处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第二成像模式下的横向色差控制在一个很小的范围内;
图25a为本申请实施例提供的第五种光学镜头处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于2.5%的范围内;
图25b为本申请实施例提供的第五种光学镜头处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于2.5%的范围内。
请一并参考图26a和图26b所示,图26a为本申请实施例提供的第六种光学镜头处于第一成像模式时的结构示意图,图26b为本申请实施例提供的第六种光学镜头处于第二成像模式时的结构示意图。该光学镜头410包括可变光圈ST和七片具有光焦度的透镜,七片透镜分别为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7,可变光圈ST位于第一透镜L1的物侧。另外,摄像头模组的滤光片440位于第七透镜的像侧,图像传感器430位于滤光片440的像侧。
该实施例中,光学镜头410的光圈数Fno.满足:1.2≤Fno.≤8.0,在第一成像模式下,光学镜头410的光圈数Fno.为1.2,在第二成像模式下,光学镜头410的光圈数Fno.为8.0;
第一透镜L1的焦距f1与光学镜头410的焦距EFL满足:f1/EFL=1.03;
第三透镜L3的焦距f3与第四透镜L4的焦距f4满足:f3/f4=-2.35;
第二透镜L2的物侧表面近光轴处的曲率半径R3与其像侧表面近光轴处的曲率半径R4满足:(R3+R4)/(R3-R4)=4.93;
光学镜头410的总长TTL、光学镜头410在其成像面上可形成的半像高ImgH及光学镜头410的光圈数Fno.满足:1.87≤TTL×Fno./ImgH≤5.74;
第五透镜L5的中心厚度CT5、第七透镜L7的中心厚度CT7及光学镜头410的半视场角HFOV满足:CT7/[CT5×tan(HFOV)]=0.46;
第六透镜L6的像侧表面近光轴处的曲率半径R12与光学镜头410的焦距EFL满足:|EFL/R12|=0.11;
第七透镜L7的物侧表面的曲率半径R13与光学镜头410的焦距EFL满足:|EFL/R13|=2.10;
光学镜头410的总长TTL与光学镜头410的入瞳直径EPD满足:1.74≤TTL/EPD≤5.25;
沿光学镜头410的光轴方向,第一透镜L1与第二透镜L2之间的间距d1满足:0.05≤d1/dm≤0.16,其中,dm为第m透镜与第m+1透镜之间的间距,m为自然数且2≤m≤6;
第一透镜L1的中心厚度CT1满足:1.6≤CT1/CTn≤4.89,其中,CTn为第n透镜的中心厚度,n为自然数且2≤n≤7。
光学镜头410的其它设计参数具体请参考表16所示。
表16
焦距EFL(mm) 5.638
F值 1.2~8.0
半视场角HFOV 41.2°
光学镜头的总长TTL(mm) 7.4
设计波长 650nm,610nm,555nm,510nm,470nm
本申请实施例中光学镜头410的各片透镜均可以为非球面透镜,即光学镜头410共包含14个非球面。一并参考表17和表18,其中,表17为光学镜头410中各片透镜的曲率半径、厚度、折射率、阿贝系数,表18为各片透镜的非球面系数。在表17与表18中,S1与S2分别表示第一透镜的物侧表面与像侧表面,S3与S4分别表示第二透镜的物侧表面与像侧表面,S5与S6分别表示第三透镜的物侧表面与像侧表面,S7与S8分别表示第四透镜的物侧表面与像侧表面,S9与S10分别表示第五透镜的物侧表面与像侧表面,S11与S12分别表示第六透镜的物侧表面与像侧表面,S13与S14分别表示第七透镜的物侧表面与像侧表面。
表17
Figure PCTCN2021143954-appb-000034
表18
Figure PCTCN2021143954-appb-000035
Figure PCTCN2021143954-appb-000036
表18中所示的光学镜头410的14个非球面中,所有扩展非球面面型z可利用但不限于一下非球面公式进行限定:
Figure PCTCN2021143954-appb-000037
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,Ax为非球面系数,
Figure PCTCN2021143954-appb-000038
为非球面多项式,
Figure PCTCN2021143954-appb-000039
Px为雅可比多项式。
对图26a和图26b所示的光学镜头进行仿真,下面结合附图详细说明其仿真结果。
图27a为本申请实施例提供的第六种光学镜头处于第一成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图27b为本申请实施例提供的第六种光学镜头处于第二成像模式时的轴向色差曲线图,沿远离坐标原点的方向,纵坐标轴上各个刻度的值依次为0.25、0.50、0.75、1.00。图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,光学镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图28a为本申请实施例提供的第六种光学镜头处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第一成像模式下的横向色差控制在一个很小的范围内;
图28b为本申请实施例提供的第六种光学镜头处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出,光学镜头在第二成像模式下的横向色差控制在一个很小的范围内;
图29a为本申请实施例提供的第六种光学镜头处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于5%的范围内;
图29b为本申请实施例提供的第六种光学镜头处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,可以看出在该模式下可将光学畸变基本控制在小于5%的范围内。
由上述第一种光学镜头、第二种光学镜头、第三种光学镜头、第四种光学镜头、第五种光学镜头及第六种光学镜头的结构及仿真效果可以看出,本申请实施例提供的光学镜头在两种不同的成像模式下均可获得较好的成像效果。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种光学镜头,其特征在于,包括沿物侧到像侧排列的可变光圈、第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜及第七透镜,其中:
    所述可变光圈的通光直径可调节;
    所述第一透镜具有正光焦度,所述第一透镜的物侧表面近光轴处为凸面,像侧表面近光轴处为凹面;
    所述第二透镜具有负光焦度,所述第二透镜的物侧表面近光轴处为凸面,像侧表面近光轴处为凹面;
    所述第三透镜的物侧表面近光轴处为凹面;
    所述第七透镜的物侧表面为反曲面;
    所述第一透镜的焦距f1与所述光学镜头的焦距EFL满足:0≤f1/EFL≤1.1;所述第三透镜的焦距f3与所述第四透镜的焦距f4满足:-4≤f3/f4≤-1.3。
  2. 如权利要求1所述的光学镜头,其特征在于,所述第二透镜的物侧表面近光轴处的曲率半径R3与所述第二透镜的像侧表面近光轴处的曲率半径R4满足:1.8≤(R3+R4)/(R3-R4)≤6.3。
  3. 如权利要求1或2所述的光学镜头,其特征在于,所述光学镜头的总长TTL、所述光学镜头的光圈数F以及所述光学镜头的半像高ImgH满足:TTL×F/ImgH≥1.8。
  4. 如权利要求1~3任一项所述的光学镜头,其特征在于,所述第五透镜的中心厚度CT5、所述第七透镜的中心厚度CT7及所述光学镜头的半视场角HFOV满足:0≤CT7/[CT5×tan(HFOV)]≤1.1。
  5. 如权利要求1~4任一项所述的光学镜头,其特征在于,所述光学镜头的光圈数F满足:1.2≤F≤8.0。
  6. 如权利要求1~5任一项所述的光学镜头,其特征在于,所述第六透镜的像侧表面近光轴处的曲率半径R12与所述光学镜头的焦距EFL满足:0≤|EFL/R12|≤0.46。
  7. 如权利要求1~6任一项所述的光学镜头,其特征在于,所述第七透镜的物侧表面的曲率半径R13与所述光学镜头的焦距EFL满足:0≤|EFL/R13|≤2.2。
  8. 如权利要求1~7任一项所述的光学镜头,其特征在于,所述光学镜头的总长TTL与所述光学镜头的入瞳直径EPD满足:1.5≤TTL/EPD≤10。
  9. 如权利要求1~8任一项所述的光学镜头,其特征在于,沿所述光学镜头的光轴方向,所述第一透镜与所述第二透镜之间的间距d1满足:d1/dm≤1,其中,dm为第m透镜与第m+1透镜之间的间距,m为自然数且2≤m≤6。
  10. 如权利要求1~9任一项所述的光学镜头,其特征在于,所述第一透镜的中心厚度CT1满足:CT1/CTn≥1,其中,CTn为第n透镜的中心厚度,n为自然数且2≤n≤7。
  11. 一种摄像头模组,其特征在于,包括图像传感器以及如权利要求1~10任一项所述的光学镜头,所述图像传感器设置于所述光学镜头的成像面;所述图像传感器用于将所述光学镜头传递的光信号变换为图像信号。
  12. 一种电子设备,其特征在于,包括壳体以及如权利要求11所述的摄像头模组,所述摄像头模组固定于所述壳体。
PCT/CN2021/143954 2021-01-27 2021-12-31 一种光学镜头、摄像头模组及电子设备 WO2022161109A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21922697.4A EP4273607A1 (en) 2021-01-27 2021-12-31 Optical lens, camera module, and electronic device
US18/359,505 US20230367101A1 (en) 2021-01-27 2023-07-26 Optical lens, camera module, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110113726.6 2021-01-27
CN202110113726.6A CN114815137A (zh) 2021-01-27 2021-01-27 一种光学镜头、摄像头模组及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/359,505 Continuation US20230367101A1 (en) 2021-01-27 2023-07-26 Optical lens, camera module, and electronic device

Publications (1)

Publication Number Publication Date
WO2022161109A1 true WO2022161109A1 (zh) 2022-08-04

Family

ID=82524836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143954 WO2022161109A1 (zh) 2021-01-27 2021-12-31 一种光学镜头、摄像头模组及电子设备

Country Status (4)

Country Link
US (1) US20230367101A1 (zh)
EP (1) EP4273607A1 (zh)
CN (1) CN114815137A (zh)
WO (1) WO2022161109A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257111A (ja) * 1989-03-30 1990-10-17 Fuji Photo Optical Co Ltd プロジェクター用投影レンズ
JPH0713078A (ja) * 1993-04-22 1995-01-17 Ricoh Co Ltd ズームレンズ
CN107664817A (zh) * 2017-10-19 2018-02-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107678135A (zh) * 2017-10-19 2018-02-09 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107678134A (zh) * 2017-10-19 2018-02-09 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107797236A (zh) * 2017-10-19 2018-03-13 瑞声科技(新加坡)有限公司 摄像光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257111A (ja) * 1989-03-30 1990-10-17 Fuji Photo Optical Co Ltd プロジェクター用投影レンズ
JPH0713078A (ja) * 1993-04-22 1995-01-17 Ricoh Co Ltd ズームレンズ
CN107664817A (zh) * 2017-10-19 2018-02-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107678135A (zh) * 2017-10-19 2018-02-09 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107678134A (zh) * 2017-10-19 2018-02-09 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107797236A (zh) * 2017-10-19 2018-03-13 瑞声科技(新加坡)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
EP4273607A1 (en) 2023-11-08
CN114815137A (zh) 2022-07-29
US20230367101A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
TWI667509B (zh) 攝影用光學鏡組、取像裝置及電子裝置
TWI626487B (zh) 光學影像鏡頭系統組、取像裝置及電子裝置
TWI616679B (zh) Camera lens, camera module and camera
TWI615627B (zh) 光學攝影鏡片系統、取像裝置及電子裝置
TWI687733B (zh) 成像鏡片系統、辨識模組及電子裝置
CN219370111U (zh) 光学成像系统、摄像模组及电子设备
WO2023050610A1 (zh) 一种镜头组件、摄像头模组及电子设备
TW202101058A (zh) 攝影透鏡系統、取像裝置及電子裝置
TW201915541A (zh) 光學成像鏡組、取像裝置及電子裝置
TW201818114A (zh) 攝像光學鏡片系統、取像裝置及電子裝置
TWI771811B (zh) 電子裝置
JP2022543383A (ja) カメラモジュールおよび端末デバイス
CN113391433A (zh) 光学镜头、摄像模组及电子设备
TWI789015B (zh) 成像透鏡組及攝像模組
WO2023066339A1 (zh) 光学镜头、摄像模组及电子设备
KR20210054768A (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
WO2022161109A1 (zh) 一种光学镜头、摄像头模组及电子设备
CN114967044B (zh) 成像透镜组及摄像模组
CN114859511A (zh) 光学镜头、摄像模组及电子设备
CN210401819U (zh) 光学系统、镜头模组和电子设备
TW202232176A (zh) 光學成像系統、取像模組及電子裝置
CN113933967A (zh) 光学镜头、摄像模组及电子设备
CN111580255A (zh) 镜头模组及电子设备
WO2023169354A1 (zh) 一种光学镜头、摄像模组及电子设备
CN112462488A (zh) 光学系统、镜头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021922697

Country of ref document: EP

Effective date: 20230803

NENP Non-entry into the national phase

Ref country code: DE