WO2021169576A1 - 近眼显示装置和可穿戴设备 - Google Patents

近眼显示装置和可穿戴设备 Download PDF

Info

Publication number
WO2021169576A1
WO2021169576A1 PCT/CN2020/140894 CN2020140894W WO2021169576A1 WO 2021169576 A1 WO2021169576 A1 WO 2021169576A1 CN 2020140894 W CN2020140894 W CN 2020140894W WO 2021169576 A1 WO2021169576 A1 WO 2021169576A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pixel
eye display
display device
microlens
Prior art date
Application number
PCT/CN2020/140894
Other languages
English (en)
French (fr)
Inventor
闫萌
凌秋雨
王维
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/309,834 priority Critical patent/US20220308349A1/en
Publication of WO2021169576A1 publication Critical patent/WO2021169576A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0147Head-up displays characterised by optical features comprising a device modifying the resolution of the displayed image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a near-eye display device and a wearable device.
  • near-eye display technology has been developing rapidly.
  • virtual reality virtual reality
  • AR augmented reality
  • Near-eye display technology is a technology that can project images directly into the eyes of the viewer, thereby achieving an immersive display experience.
  • the light emitted from different parts of the near-eye display device is prone to crosstalk.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art, and proposes a near-eye display device and a wearable device.
  • the present disclosure provides a near-eye display device, including: a pixel island array, a microlens array, and a filter layer, the pixel island array and the microlens array are relatively fixed and spaced apart, and the microlens array It includes a plurality of microlenses, the pixel island array includes a plurality of pixel islands, the pixel islands correspond to the microlenses one-to-one, and the pixel islands are used to emit light to the corresponding microlenses so that the The light reaches a predetermined viewing position after passing through the microlens; the plurality of pixel islands of the pixel island array emit light of multiple colors; the filter layer includes a plurality of filters corresponding to the pixel islands one-to-one Part, the filter part is located between the corresponding pixel island and the micro lens, and is arranged close to the micro lens, and the color of the filter part is the same as the light emission color of the corresponding pixel island.
  • the near-eye display device further includes a transparent substrate, and the pixel island array and the microlens array are respectively fixed on opposite sides of the transparent substrate.
  • At least two adjacent light filters have a space area between them, and the near-eye display device further includes a light shielding structure for irradiating the pixel island toward the space. The light of the area is blocked.
  • the light shielding structure includes: a first polarizer and a second polarizer, the first polarizer is located in the interval area; the second polarizer is arranged on the pixel island in a one-to-one correspondence. On the light exit surface, the polarization directions of the first polarizer and the second polarizer are perpendicular to each other.
  • the light-shielding structure includes: a light-shielding film layer located in the interval area.
  • the material of the light-shielding film layer includes: black resin.
  • the diameter of the microlens is between 30 ⁇ m and 10 mm.
  • the spacing between two adjacent microlenses in the same row and the spacing between two adjacent microlenses in the same column are both between 0 and 10 mm.
  • the distance between the pixel island and the corresponding microlens does not exceed the focal length of the microlens.
  • the pixel island includes a plurality of pixels, and each of the pixels includes an organic electroluminescent diode device or a micro light emitting diode device.
  • the near-eye display device further includes a substrate, the microlens is disposed on the substrate, and the microlens and the filter layer are respectively located on two sides of the substrate.
  • the microlens and the substrate are an integral structure.
  • the embodiments of the present disclosure also provide a wearable device, including the above-mentioned near-eye display device provided by the present disclosure.
  • FIG. 1 is a schematic structural diagram of a near-eye display device using a microlens-pixel island image plane splicing display technology in the related art.
  • FIG. 2 is a schematic diagram showing the principle of splicing and displaying images of different pixel islands of a near-eye display device.
  • FIG. 3 is a schematic diagram of superimposing the image displayed by the red pixel island and the green pixel island of the near-eye display device on the retina.
  • FIG. 4 is a schematic diagram of light crosstalk in a near-eye display device.
  • Fig. 5 is a front view of a near-eye display device provided in some embodiments of the present disclosure.
  • FIG. 6 is a cross-sectional view along the line AA′ in FIG. 5 in some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of the principle of eliminating cross-color in the near-eye display device provided by an embodiment of the disclosure.
  • FIG. 8 is a cross-sectional view along the line BB′ in FIG. 5 in some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of eliminating light leakage when the light-shielding structure includes a first polarizer and a second polarizer.
  • FIG. 10 is a cross-sectional view along the line BB′ in FIG. 5 in some other embodiments of the present disclosure.
  • FIG. 11 is a schematic diagram of eliminating light leakage when the light-shielding structure includes a light-shielding film layer.
  • the mainstream near-eye display technologies include: waveguide display technology, free-form surface display technology, integrated imaging light field display technology and microlens, pixel island image plane splicing display technology.
  • the waveguide display is sensitive to the wavelength of the incident light, it is prone to dispersion, and "ghost images" will appear during the wearing process.
  • the free-form surface display technology the overall size of the device is relatively large, and it is difficult to balance the large field of view with the device size.
  • the integrated imaging light field display is difficult to realize the transmission of external light, and the augmented reality display effect is poor.
  • the micro-lens-pixel island image plane splicing display technology can bring a broader visual manifestation, and is conducive to the realization of thinner and lighter devices, thus becoming an important display technology in the field of enhanced display/virtual display in the future.
  • Figure 1 is a structural diagram of a near-eye display device using microlens-pixel island image plane splicing display technology in the related art.
  • the near-eye display device using microlens-pixel island image plane splicing display technology includes: The microlens array on one side of the transparent substrate 10 and the pixel island array arranged on the other side of the transparent substrate, wherein the pixel island array includes a plurality of pixel islands 11, and each pixel island 11 is equivalent to a small display screen.
  • the microlens array includes a plurality of microlenses 12 for imaging.
  • the microlenses 12 correspond to the pixel islands 11 one-to-one.
  • the light emitted by the pixel islands 11 enters the human eye 13 after passing through the corresponding microlens 12, so that the human eye 13 can see Display the image.
  • the displayed image seen is a magnified virtual image, and the virtual image is located at a certain depth of field on the side of the pixel island 11 array facing away from the microlens 12.
  • the multiple pixel islands 11 in the pixel island array can emit light of multiple different colors, for example, red, blue, and green (for ease of description, the pixel islands that emit red light are referred to as “red pixel islands” below.
  • the pixel island that emits green light is called “green pixel island”, and the pixel island that emits blue light is called “blue pixel island”).
  • the target image to be displayed can be regarded as the superposition of the red component image, the green component image and the blue component image.
  • each red pixel island displays a part of the red component image
  • each green pixel The islands display a part of the green component image
  • each blue pixel island displays a part of the blue component image.
  • the images displayed by all the red pixel islands can be spliced to form the red component image
  • the images displayed by all the green pixel islands can be spliced to form the green component image
  • the images displayed by all the blue pixel islands can be spliced to form the blue component image.
  • the red component image, the blue component image and the blue component image are superimposed on the retina of the human eye 13 to form a complete target image.
  • the principle of splicing and displaying images of different pixel islands 11 is: the light beam emitted from each point on the pixel island 11 is refracted by the microlens 12 to form a parallel light beam which is directed to the lens and then converges on the retina; and, for the human eye In terms of 13, when two parallel light beams with a certain width and the same angle enter the human eye 13, they will converge at the same point on the retina; the parallel light incident at different angles will converge at different points on the retina. Therefore, by reasonably controlling the angle of light incident to the lens, the images displayed by different pixel islands 11 can be spliced on the retina. Fig.
  • FIG. 2 is a schematic diagram of the spliced display image of different pixel islands of the near-eye display device.
  • Fig. 2 only exemplarily shows the principle of spliced display of two pixel islands 111 and 112. It should be understood that in practical applications, Spliced display is performed by more pixel islands.
  • the light emitted by the two pixel islands 111 and 112 in FIG. 2 is represented by a solid line and a dashed line, respectively. As shown in FIG.
  • the pixel island 111 displays an inverted letter "B” and a part of an inverted letter “O”
  • the pixel island 112 displays another part of an inverted letter "O” and an inverted letter “E”.
  • the light emitted by the pixel island 111 passes through the microlens 12 and the lens 131 and then falls on the area A of the retina 132.
  • the light emitted by the pixel island 112 passes through the microlens 12 and the lens 131 and falls on the area B of the retina 132, thereby The retina 132 is spliced into an upright "BOE" pattern.
  • Fig. 1 The principle of superimposing the red component image, the blue component image, and the blue component image on the retina 132 of the human eye 13 is: all the pixel islands 11 in Fig. 1 can be divided into multiple groups, each group includes a red pixel island and a The green pixel island and one blue pixel island, the images displayed by the three pixel islands 11 in the same group fall into the same area on the retina 132, forming a superimposed effect, so that the viewer can see the superimposed image.
  • Fig. 3 is a schematic diagram of the superimposition of the image displayed on the red pixel island and the green pixel island of the near-eye display device on the retina. Fig. 3 only exemplarily shows the image superposition principle of the red pixel island 11r and the green pixel island 11g.
  • the images displayed by the three pixel islands 11 in the same group are superimposed together. 1 and 3, the light emitted by the red pixel island 11r passes through the microlens 12 and the lens 131, and then falls into the area C on the retina 132, and the light emitted by the green pixel island 11g passes through the microlens 12 and the lens After 131, it also falls into the area C on the retina 132, so that the images displayed by the red pixel island 11r and the green pixel island 11g are superimposed in the area C.
  • Fig. 4 is a schematic diagram of light crosstalk in a near-eye display device. As shown in Fig. 4, a part of the light L1 emitted by the green pixel island 11g will hit its corresponding microlens 12 and enter the human eye. This part of the light is the imaging area. The effective light needed.
  • a part of the light L2 will hit the adjacent microlens 12, and this part of the light will superimpose the cross-color of different colors in the imaged image, making the color distribution of the viewed image uneven; in addition, A part of the light L3 will hit the transparent area between the microlenses 12, causing light leakage. At this time, a bright aperture will be superimposed around the image that the user sees, which affects the user experience.
  • FIG. 5 is a front view of a near-eye display device provided in some embodiments of the present disclosure
  • FIG. 6 is a cross-sectional view along line AA' in FIG. 5 in some embodiments of the present disclosure.
  • the device includes: a pixel island array, a micro lens array, and a filter layer 23.
  • the pixel island array and the micro lens array are relatively fixed and arranged at intervals.
  • the microlens array includes a plurality of microlenses 22, and the plurality of microlenses 22 are arranged in multiple rows and multiple columns.
  • the pixel island array includes a plurality of pixel islands 21.
  • the pixel islands 21 correspond to the microlenses 22 one-to-one.
  • the viewing position refers to the position where the user's eyes are when using the near-eye display device.
  • the multiple pixel islands 21 of the pixel island array emit light of multiple colors.
  • the multiple pixel islands 21 of the pixel island array are divided into multiple groups, each group includes three pixel islands 21, and the three pixel islands 21 in the same group emit red, green, and blue light, so that the pixel island array
  • the plurality of pixel islands 21 emit light of three colors.
  • each group includes four pixel islands 21, and the four pixel islands 21 in the same group respectively emit red, green, blue, and yellow light, so that the multiple pixel islands 21 of the pixel island array emit four colors of light. Light.
  • the filter layer 23 includes a plurality of filter portions 231 corresponding to the pixel island 21 one-to-one.
  • the filter portion 231 is located between the corresponding pixel island 21 and the microlens 22 and is located close to the microlens 22.
  • the color of the filter portion 231 It is the same as the emission color of the corresponding pixel island 21. It should be noted that the filter portion 231 is used to transmit light of a certain color and remove light of other colors.
  • the color of the filter portion 231 refers to the color of the light transmitted by the filter portion 231.
  • FIG. 7 is a schematic diagram of the principle of eliminating cross-color in the near-eye display device provided by an embodiment of the present disclosure.
  • a red filter portion 231r is arranged between the corresponding microlenses 22, so the green light emitted by the green pixel island 21g can pass through the green filter portion 231g and the corresponding microlens 22, when a part of the green light is irradiated to the red filter
  • the portion 231r is formed, it is blocked by the red filter portion 231r, thereby preventing cross-color.
  • the filter portion 231 is a film layer made of resin material.
  • the near-eye display device may further include a first substrate 24 and a second substrate 25, the microlens 22 is disposed on the first substrate 24, and the microlens 22 and the filter layer 23 are respectively located on the first substrate 24 and the second substrate 25.
  • the pixel island 21 is disposed on the second substrate 25, and the second substrate 25 may also be provided with a thin film transistor, an electrode, and other devices that control the pixel island to emit light.
  • the microlens 22 and the first substrate 24 are made of transparent materials, for example, SiNx (silicon nitride), silicon oxide (SiOx) ), SiOxNy (silicon oxynitride) or PMMA (polymethyl methacrylate).
  • the microlens 22 and the first substrate 24 may be an integral structure. During production, the first substrate 24 and the microlens 22 are simultaneously formed through an integral molding process (for example, injection molding).
  • the near-eye display device further includes a transparent substrate 20.
  • the pixel island array and the micro lens array are respectively fixed on opposite sides of the transparent substrate 20, so that the micro lens array and the pixel island The arrays can be kept relatively fixed.
  • the transparent substrate 20 means that the light transmittance of the substrate is above 85%.
  • the material of the transparent substrate 20 is not specifically limited here.
  • the material of the transparent substrate 20 may be SiNx (silicon nitride), silicon oxide (SiOx), SiOxNy (silicon oxynitride) or PMMA (polymethacrylic acid). Methyl ester). Due to the low mass of PMMA, when PMMA is used as the material of the transparent substrate 20, it is beneficial to reduce the weight of the near-eye display device.
  • the embodiments of the present disclosure are not limited to the above arrangement, as long as the micro lens array and the pixel island array can be kept relatively fixed.
  • the distance between the pixel island 21 and the corresponding microlens 22 does not exceed the focal length of the microlens 22, so that only after the light emitted by the pixel island 21 hits the microlens 22 can the image displayed by the pixel island 21
  • the side of the pixel island 21 away from the microlens 22 forms an enlarged virtual image.
  • the distance between the pixel island 21 and the micro lens 22 refers to the vertical distance between the pixel island 21 and the micro lens 22.
  • the thickness of the transparent substrate 20 can be set to make the distance between the pixel island 21 and the microlens 22 reach a desired value.
  • the shape of the orthographic projection of the pixel island 21 on the transparent substrate 20 is a square.
  • the pixel island 21 includes a plurality of pixels.
  • the pixel island 21 includes 10*10 pixels, and the light-emitting color of each pixel in the same pixel island 21 may be the same.
  • Each pixel includes an OLED (Organic Light-Emitting Diode) device or a micro-LED (micro-Light-Emitting Diode) device.
  • a micro-LED can also be called a micro-LED die or a micro-LED chip, which mainly includes a p-type semiconductor layer, a light-emitting layer, and an n-type semiconductor layer stacked in sequence.
  • the micro-LED also includes a p-electrode electrically connected to the p-type semiconductor layer and an n-electrode electrically connected to the n-type semiconductor layer.
  • the OLED device may mainly include an anode, a cathode, and a light-emitting functional layer disposed between the anode and the cathode.
  • the light-emitting functional layer may specifically include: a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the embodiment of the present disclosure does not specifically limit the shape of the microlens 22, and the shape of the microlens 22 may be a circle, a square, a hexagon, or the like.
  • the shape of the microlens 22 refers to the shape of the orthographic projection of the microlens 22 on the transparent substrate 20.
  • the present disclosure is described by taking the shape of the microlens 22 as a circle as an example.
  • the diameter of the micro lens 22 is between 30 ⁇ m and 10 mm, for example, the diameter of the micro lens 22 is 500 ⁇ m or 1 mm or 2 mm.
  • the distance between two adjacent microlenses 22 in the same row and the distance between two adjacent microlenses 22 in the same column are both between 0-10 mm, for example, 500 ⁇ m or 1 mm or 2 mm.
  • At least two adjacent microlenses 22 have a spacing area between them.
  • at least two adjacent filter portions 231 also have a spacing area between them, so that ambient light can escape from the microlenses.
  • the space between 22 enters the human eye, so that the human eye can see the image displayed by the pixel island 21 and the external environment at the same time, so as to achieve an augmented reality effect.
  • the "two adjacent microlenses 22" in the present disclosure means that there is no other microlens 22 between the two microlenses 22; similarly, "two adjacent filter portions 231” This means that there is no other filter part 231 between the two filter parts 231.
  • FIG. 5 An example of the arrangement of microlenses is shown in FIG. 5, where in the even rows, there is no interval between every two adjacent microlenses 22, that is, the pitch is 0; in the odd rows, every two adjacent microlenses 22
  • the spacing between the microlenses 22 may be equal to the diameter of the microlenses 22; in the odd-numbered columns, there is no spacing between every two adjacent microlenses 22, that is, the spacing is 0; in the even-numbered columns, the spacing between every two adjacent microlenses 22 is It may be equal to the diameter of the micro lens 22.
  • the predetermined viewing position, the center of the pixel island 21 and the center of the corresponding microlens 22, and the center of the filter portion 231 are located on the same straight line, so that the light emitted from the pixel island 21 to the microlens 22 can be filtered. ⁇ 231.
  • the arrangement of the filter portion 231 is the same as the arrangement of the microlenses 22.
  • the shape of the filter portion 231 is the same as the shape of the pixel island 21, and both are square, in the filter layer 23, there is no interval between every two adjacent filter portions in the even-numbered rows, that is, the pitch is 0; the odd-numbered rows
  • the distance between every two adjacent filter parts 231 in may be the same as the width of the filter part 231; every two adjacent filter parts 231 in odd-numbered columns have no interval, that is, the distance is 0; in even-numbered columns
  • the distance between every two adjacent filter portions 231 of may be equal to the width of the filter portion 231.
  • the number and arrangement of the microlenses 22 in FIG. 5 are only exemplary. In practical applications, other numbers and arrangements can also be used.
  • the shape of the filter portion 231 is not limited to the above-mentioned square, and the same shape as the microlens 22 may be used, such as a circle; other shapes, such as a hexagon, etc., may also be used. As long as the light emitted from the pixel island 21 to the corresponding microlens 22 can be all received by the filter 231.
  • the near-eye display device further includes a light shielding structure for shielding light from the pixel island 21 to the space between the filter portions 231.
  • FIG. 8 is a cross-sectional view taken along line BB' in FIG. 5 in some embodiments of the present disclosure.
  • the light shielding structure 26 includes: a first polarizer 261 and a plurality of second polarizers 262 ,
  • the first polarizer 261 is located in the interval between the filter parts 231;
  • the second polarizer 262 is arranged on the light emitting surface of the pixel island 21 in a one-to-one correspondence, and the polarization directions of the first polarizer 261 and the second polarizer 262 Perpendicular to each other.
  • FIG. 9 is a schematic diagram of eliminating light leakage when the light shielding structure includes the first polarizer and the second polarizer.
  • the thick arrow in FIG. 9 represents light, and the thin arrow represents the polarization direction of the light.
  • the polarization direction of the second polarizer 262 is the vertical direction in FIG. 9, and the polarization direction of the first polarizer 261 is a direction perpendicular to the paper surface.
  • the polarization direction of the second polarizer 262 is the vertical direction in FIG. 9, and the polarization direction of the first polarizer 261 is a direction perpendicular to the paper surface.
  • the filter 231 Since the filter 231 has no selective effect on the polarized light, the polarized light emitted by the second polarizer 262 The light can pass through the corresponding filter 231 and the micro lens 22 and enter the human eye. The polarized light emitted by the second polarizer 262 cannot pass through the first polarizer 261, and thus is effectively blocked. At the same time, after passing through the first polarizer 261, the ambient light L0 is converted into polarized light perpendicular to the surface of the paper, and then enters the human eye. Therefore, when the light shielding structure 26 adopts the structure including the first polarizer 261 and the second polarizer 262, it will not affect the human eyes to view the external environment, thereby ensuring the augmented reality effect.
  • FIG. 10 is a cross-sectional view taken along line BB′ in FIG. 5 in some other embodiments of the present disclosure.
  • the difference from the near-eye display device shown in FIG. 8 is only the specific structure of the light shielding structure 26.
  • the light-shielding structure 26 includes a light-shielding film layer 263, and the light-shielding film layer 263 is located in an interval area between the light filters 231.
  • the material of the light-shielding film layer 263 includes black resin.
  • FIG. 11 is a schematic diagram of eliminating light leakage when the light-shielding structure includes a light-shielding film layer. As shown in FIG. 11, a part of the light emitted by the pixel island 21 passes through the corresponding filter 231 and the microlens 22 and enters the human eye, and the other A part of the light directed to the light-shielding film layer 231 is blocked.
  • the manufacturing process can be as follows: Step 1, providing a first substrate 24 and a microlens 22 on the first substrate 24. Step two, forming a filter material layer (for example, acrylic resin material) on the side of the first substrate 24 away from the microlens array; after that, the filter material layer is patterned to form one-to-one with the microlens 22 Corresponding multiple filters 231. Step 3: Paste the first polarizer 261 in the space between the filter parts 231. Step 4: Fabricate a pixel island 21 on the second substrate 25, and form a second polarizer 262 on the light-emitting surface of the pixel island 21. Step 5: The first substrate 24, the transparent substrate 20, and the second substrate 25 are fixedly connected together to form the structure shown in FIG. 8.
  • a filter material layer for example, acrylic resin material
  • the filter portion 231 and the first polarizer 261 are both formed on the first substrate 24.
  • the filter portion 231 can also be formed on the third substrate.
  • the microlens 22 will be formed.
  • the first base 24, the third base on which the filter 231 and the first polarizer 261 are formed, the transparent substrate 20, and the second base 25 on which the pixel island 21 and the second polarizer 262 are formed are fixedly connected together.
  • the filter portion 231, the first polarizer 261, and the second polarizer 262 may be formed on the transparent substrate 20.
  • the first substrate 24 on which the microlenses 22 are formed, and the second substrate on which the pixel islands 21 are formed are formed.
  • the two bases 25 and the transparent substrate 20 on which the filter portion 231 and the first polarizer 261 and the second polarizer 262 are formed are fixed together.
  • the manufacturing process is similar to that of the near-eye display device in FIG. 8. It only needs to omit the attaching process of the second polarizer 262 and attach the first polarizer 261
  • the attached process can be replaced by making the light-shielding film 263.
  • the light-shielding film layer 263 can be formed by patterning the light-shielding material, which will not be repeated here.
  • the embodiments of the present disclosure also provide a wearable device, including the near-eye display device provided in the above embodiments; in addition, the wearable device further includes a housing, and the near-eye display device is provided on the housing.
  • the shell can be a helmet.
  • the wearable device adopting the above-mentioned near-eye display device can improve user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种近眼显示装置及包括近眼显示设备的可穿戴设备,近眼显示装置包括:像素岛阵列、微透镜阵列和滤光层(23),像素岛阵列与微透镜阵列相对固定且间隔设置,微透镜阵列包括多个微透镜(22),像素岛阵列包括多个像素岛(21),像素岛(21)与微透镜(22)一一对应,像素岛(21)用于向相应的微透镜(22)发射光线,以使光线经过微透镜(22)后到达预定观看位置;像素岛阵列的多个像素岛(21)发射多种颜色的光线;滤光层(23)包括与像素岛(21)一一对应的多个滤光部(231),滤光部(231)位于相应的像素岛(21)与微透镜(22)之间,且靠近微透镜(22)设置,滤光部(231)的颜色与相应像素岛(21)的发光颜色相同。近眼显示装置能够防止不同颜色的光线之间发生串扰。

Description

近眼显示装置和可穿戴设备 技术领域
本公开涉及显示技术领域,具体涉及一种近眼显示装置和可穿戴设备。
背景技术
近年来,近眼显示技术正飞速发展,其中,虚拟现实(Virtue Reality,VR)和增强现实(Augmentde Reality,AR)技术最具代表性,为人们带来了极佳的视听体验。近眼显示技术是可将图像直接投射到观看者眼中的技术,从而实现浸入式的显示体验。在实际应用中,近眼显示装置的不同部分所发射的光线容易发生串扰。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提出了一种近眼显示装置和可穿戴设备。
为了实现上述目的,本公开提供一种近眼显示装置,包括:像素岛阵列、微透镜阵列和滤光层,所述像素岛阵列与所述微透镜阵列相对固定且间隔设置,所述微透镜阵列包括多个微透镜,所述像素岛阵列包括多个像素岛,所述像素岛与所述微透镜一一对应,所述像素岛用于向相应的所述微透镜发射光线,以使所述光线经过所述微透镜后到达预定观看位置;所述像素岛阵列的多个所述像素岛发射多种颜色的光线;所述滤光层包括与所述像素岛一一对应的多个滤光部,所述滤光部位于相应的像素岛与所述微透镜之间,且靠近所述微透镜设置,所述滤光部的颜色与相应像素岛的发光颜色相同。
在一些实施例中,所述近眼显示装置还包括:透明衬底,所述像素岛阵列和所述微透镜阵列分别固定在所述透明衬底的相对两侧。
在一些实施例中,至少两个相邻的所述滤光部之间具有间隔区域, 所述近眼显示装置还包括:遮光结构,所述遮光结构用于对所述像素岛射向所述间隔区域的光线进行遮挡。
在一些实施例中,所述遮光结构包括:第一偏振片和第二偏振片,所述第一偏振片位于所述间隔区域;所述第二偏振片一一对应地设置在所述像素岛的出光面上,所述第一偏振片与所述第二偏振片的偏振方向相互垂直。
在一些实施例中,所述遮光结构包括:位于所述间隔区域的遮光膜层。
在一些实施例中,所述遮光膜层的材料包括:黑色树脂。
在一些实施例中,所述微透镜的直径在30μm~10mm之间。
在一些实施例中,同一行中相邻两个所述微透镜之间的间距、同一列中相邻两个所述微透镜之间的间距均在0~10mm之间。
在一些实施例中,所述像素岛与相应的微透镜之间的距离不超过所述微透镜的焦距。
在一些实施例中,所述像素岛包括多个像素,每个所述像素包括有机电致发光二极管器件或微型发光二极管器件。
在一些实施例中,所述近眼显示装置还包括:基底,所述微透镜设置在所述基底上,所述微透镜和所述滤光层分别位于所述基底的两侧。
在一些实施例中,所述微透镜和所述基底为一体结构。
本公开实施例还提供一种可穿戴设备,包括本公开提供的上述近眼显示装置。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为相关技术中利用微透镜-像素岛像面拼接显示技术的近眼显示装置的结构示意图。
图2为近眼显示装置的不同像素岛拼接显示图像的原理示意图。
图3为近眼显示装置的红色像素岛和绿色像素岛所显示图像在视网膜上进行叠加的原理图。
图4为近眼显示装置出现光线串扰现象的示意图。
图5为本公开的一些实施例中提供的近眼显示装置的主视图。
图6为本公开的一些实施例中沿图5中AA'线的剖视图。
图7为本公开实施例提供的近眼显示装置消除串色的原理示意图。
图8为本公开的一些实施例中沿图5中BB'线的剖视图。
图9为遮光结构包括第一偏振片和第二偏振片时消除漏光的原理图。
图10为本公开的另一些实施例中沿图5中BB'线的剖视图。
图11为遮光结构包括遮光膜层时消除漏光的原理图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
这里用于描述本公开的实施例的术语并非旨在限制和/或限定本公开的范围。例如,除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。应该理解的是,本公开中使用的“第一”、“第二”以及类似的 词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。除非上下文另外清楚地指出,否则单数形式“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。
目前,主流的近眼显示技术包括:波导显示技术、自由曲面显示技术、集成成像光场显示技术和微透镜、像素岛像面拼接显示技术。其中,波导显示对入射光波长敏感,极易出现色散,佩戴过程中会出现“鬼像”等现象。自由曲面显示技术中,设备的整体尺寸较大,且很难平衡大视场角与设备尺寸。集成成像光场显示较难实现对外界光线的透过,增强现实显示效果较差。微透镜-像素岛像面拼接显示技术能够带来更宽广的视觉体现,且有利于实现设备的轻薄化,从而成为未来增强显示/虚拟显示领域的重要显示技术。
图1为相关技术中利用微透镜-像素岛像面拼接显示技术的近眼显示装置的结构示意图,如图1所示,利用微透镜-像素岛像面拼接显示技术的近眼显示装置包括:设置在透明衬底10一侧的微透镜阵列和设置在透明衬底另一侧的像素岛阵列,其中,像素岛阵列包括多个像素岛11,每个像素岛11相当于一小块显示屏。微透镜阵列包括多个用于成像的微透镜12,微透镜12和像素岛11一一对应,像素岛11发射的光线经过相应的微透镜12后进入人眼13,从而使人眼13看到显示图像。其中,对于人眼13而言,看到的显示图像是放大后的虚像,该虚像位于像素岛11阵列背向微透镜12一侧的某一景深处。另外,像素岛11之间具有间隔,微透镜12之间也具有间隔,外界环境光能够从像素岛11之间的间隔和微透镜12之间的间隔进入人眼13,从而使得人眼13同时看到像素岛11的显示图像和外界物体14,实现增强现实显示。
其中,像素岛阵列中的多个像素岛11可以发射多种不同颜色的光线,例如,红色、蓝色和绿色(为便于表述,下文将发射红色光线的 像素岛称为“红色像素岛”,将发射绿色光线的像素岛称为“绿色像素岛”,将发射蓝色光线的像素岛称为“蓝色像素岛”)。此时,待显示的目标图像可以看做红色分量图像、绿色分量图像和蓝色分量图像的叠加,当近眼显示装置进行显示时,每个红色像素岛显示红色分量图像的一部分,每个绿色像素岛显示上述绿色分量图像的一部分,每个蓝色像素岛显示上述蓝色分量图像的一部分。所有的红色像素岛所显示的图像可以拼接形成红色分量图像,所有的绿色像素岛所显示的图像可以拼接形成绿色分量图像,所有的蓝色像素岛所显示的图像可以拼接形成上述蓝色分量图像,红色分量图像、蓝色分量图像和蓝色分量图像在人眼13的视网膜上叠加,形成完整的目标图像。
其中,不同像素岛11拼接显示图像的原理为:像素岛11上每一点发射的光束经过微透镜12的折射后,形成一束平行光射向晶状体,进而在视网膜上汇聚;并且,对于人眼13而言,当具有一定宽度且角度相同的两束平行光进入人眼13后,将在视网膜上汇聚于同一位置点;不同角度入射的平行光在视网膜上将汇聚于不同的位置点。因此,通过合理控制入射至晶状体的光线角度,可以使不同像素岛11显示的图像在视网膜上进行拼接。图2为近眼显示装置的不同像素岛拼接显示图像的原理示意图,图2中仅示例性地表示出两个像素岛111和112的拼接显示的原理,应当理解的是,在实际应用中,可以由更多的像素岛进行拼接显示。为了更清楚地表示两个像素岛111和112发射光线的光路图,图2中两个像素岛111和112所发射的光线分别以实线和虚线进行表示。如图2所示,像素岛111显示倒置的字母“B”和倒置的字母“O”的一部分,像素岛112显示倒置的字母“O”的另一部分和倒置的字母“E”。像素岛111所发射的光线经过微透镜12和晶状体131后,落在视网膜132的A区域,像素岛112所发射的光线经过微透镜12和晶状体131后,落在视网膜132的B区域,从而在视网 膜132上拼接成正置的“BOE”图样。
红色分量图像、蓝色分量图像和蓝色分量图像在人眼13的视网膜132上叠加的实现原理为:图1中所有的像素岛11可以划分为多组,每组包括一个红色像素岛、一个绿色像素岛和一个蓝色像素岛,同一组中的三个像素岛11所显示的图像落入视网膜132上的相同区域,形成叠加效果,从而使得观看者看到叠加后的图像。图3为近眼显示装置的红色像素岛和绿色像素岛所显示图像在视网膜上进行叠加的原理图,图3中仅示例性地表示出红色像素岛11r和绿色像素岛11g的图像叠加原理,应当理解的是,在实际应用中,同一组中的三个像素岛11所显示的图像是叠加在一起的。结合图1和图3所示,红色像素岛11r所发射的光线经过微透镜12和晶状体131后,落入视网膜132上的区域C中,绿色像素岛11g所发射的光线经过微透镜12和晶状体131后,同样落入视网膜132上的区域C中,从而使得红色像素岛11r和绿色像素岛11g所显示的图像在区域C中产生叠加。
然而,在图1所示的近眼显示装置中,由于像素岛11的发光角度较大,因此,会产生不同颜色光线串扰的现象,从而造成不良的成像效果,影响用户体验。图4为近眼显示装置出现光线串扰现象的示意图,如图4所示,绿色像素岛11g发出的一部分光线L1会射到其对应的微透镜12上,从而进入人眼,该部分光线为成像所需要的有效光线。除此之外,还有一部分光线L2会射到相邻的微透镜12上,而这部分光线将在成像图像中叠加不同颜色的串色,使得观看到的图像颜色分布不均匀;另外,还有一部分光线L3会射到微透镜12之间的透明区域,产生漏光,此时,用户看到的图像周围会叠加一圈明亮的光圈,影响用户体验。
图5为本公开的一些实施例中提供的近眼显示装置的主视图,图6为本公开的一些实施例中沿图5中AA'线的剖视图,结合图5和图6 所示,近眼显示装置包括:像素岛阵列、微透镜阵列和滤光层23,像素岛阵列与微透镜阵列相对固定且间隔设置。微透镜阵列包括多个微透镜22,多个微透镜22排成多行多列。
像素岛阵列包括多个像素岛21,像素岛21与微透镜22一一对应,像素岛21用于向相应的微透镜22发射光线,以使光线经过微透镜22后到达预定观看位置,该预定观看位置是指,用户在使用近眼显示装置时,眼睛所在的位置。像素岛阵列的多个像素岛21发射多种颜色的光线。例如,像素岛阵列的多个像素岛21划分为多组,每组包括三个像素岛21,同一组中的三个像素岛21分别发射红色、绿色和蓝色的光线,从而使像素岛阵列的多个像素岛21发射三种颜色的光线。又例如,每组包括四个像素岛21,同一组中的四个像素岛21分别发射红色、绿色、蓝色和黄色的光线,从而使像素岛阵列的多个像素岛21发射四种颜色的光线。
滤光层23包括与像素岛21一一对应的多个滤光部231,滤光部231位于相应的像素岛21与微透镜22之间,且靠近微透镜22设置,滤光部231的颜色与相应像素岛21的发光颜色相同。需要说明的是,滤光部231用于使某种颜色的光线透过,而将其余颜色的光线去除,滤光部231的颜色是指该滤光部231所透过的光线的颜色。
本公开实施例通过滤光层23的设置,可以防止不同颜色的像素岛21的发光颜色发生串色。图7为本公开实施例提供的近眼显示装置消除串色的原理示意图,如图7所示,绿色像素岛21g与其对应的微透镜22之间设置有绿色滤光部231g,红色像素岛21r与其对应的微透镜22之间设置有红色滤光部231r,因此,绿色像素岛21g所发射的绿色光线可以透过绿色滤光部231g和相应的微透镜22,当一部分绿色光线照射至红色滤光部231r时,会被红色滤光部231r阻挡,从而防止串色。
在一些实施例中,滤光部231为树脂材料制成的膜层。
在一些实施例中,如图6所示,近眼显示装置还可以包括第一基底24和第二基底25,微透镜22设置在第一基底24上,微透镜22和滤光层23分别位于第一基底24的两侧。像素岛21设置在第二基底25上,第二基底25上还可以设置有薄膜晶体管、电极等控制像素岛发光的器件。可以理解的是,为了使像素岛21的光线能够透过微透镜22进入人眼,微透镜22和第一基底24均采用透明材料制成,例如,SiNx(氮化硅)、氧化硅(SiOx)、SiOxNy(氮氧化硅)或PMMA(聚甲基丙烯酸甲酯)。可选地,微透镜22可以与第一基底24为一体结构,在制作时,通过一体成型工艺(例如,注塑)同时形成第一基底24和微透镜22。
在一些实施例中,如图6所示,近眼显示装置还包括:透明衬底20,像素岛阵列和微透镜阵列分别固定在透明衬底20的相对两侧,从而使微透镜阵列和像素岛阵列之间可以保持相对固定。其中,透明衬底20是指衬底的透光率在85%以上。这里对透明衬底20的材料不作具体限定,示例性地,透明衬底20的材料可以为SiNx(氮化硅)、氧化硅(SiOx)、SiOxNy(氮氧化硅)或PMMA(聚甲基丙烯酸甲酯)。由于PMMA的质量较小,因此当透明衬底20的材料采用PMMA时,有利于减小近眼显示装置的重量。
当然,本公开实施例不限于上述设置方式,只要能够将微透镜阵列和像素岛阵列保持相对固定即可。例如,还可以在第一基底24和第二基底25周围设置夹具,利用夹具将微透镜阵列和像素岛阵列保持相对固定。
应当理解的是,像素岛21与相应的微透镜22之间的距离不超过微透镜22的焦距,这样像素岛21发射的光射到微透镜22上后,才能使像素岛21显示的图像在像素岛21远离微透镜22的一侧形成放大的 虚像。其中,像素岛21与微透镜22之间的距离是指,像素岛21到微透镜22的垂直距离。当像素岛21与微透镜22之间的距离等于微透镜22的焦距时,像素岛21的出光面位于微透镜21的焦平面上。在实际应用中,可以通过设置透明衬底20的厚度来使像素岛21与微透镜22之间的距离达到所需值。
在一些实施例中,像素岛21在透明衬底20上的正投影的形状为方形。像素岛21包括多个像素,例如,像素岛21包括10*10个像素,同一个像素岛21中的每个像素的发光颜色可以相同。每个像素包括OLED(Organic Light-Emitting Diode,有机电致发光二极管)器件或micro-LED(micro-Light-Emitting Diode,微型发光二极管)器件。
micro-LED也可以称为micro-LED晶粒或micro-LED芯片,其主要包括依次层叠设置的p型半导体层、发光层和n型半导体层。另外,micro-LED还包括与p型半导体层电连接的p电极以及与n型半导体层电连接的n电极。
OLED器件主要可以包括阳极、阴极以及设置在阳极和阴极之间的发光功能层。发光功能层具体可以包括:空穴注入层、空穴传输层、发光层、电子传输层和电子注入层。
本公开实施例对于微透镜22的形状不进行具体限定,微透镜22的形状可以为圆形、正方形、六边形等。其中,微透镜22的形状是指,微透镜22在透明衬底20上的正投影的形状。本公开以微透镜22的形状为圆形为例进行说明。其中,微透镜22的直径在30μm~10mm之间,例如,微透镜22的直径为500μm或者1mm或者2mm。同一行中相邻两个微透镜22之间的间距以及同一列中相邻两个微透镜22之间的间距均在0~10mm之间,例如,500μm或者1mm或者2mm。
在一些实施例中,至少两个相邻的微透镜22之间具有间隔区域,相应地,至少两个相邻的滤光部231之间也具有间隔区域,从而使得 外界环境光可以从微透镜22之间的间隔区域进入人眼,从而使人眼同时看到像素岛21所显示的图像和外界环境,实现增强现实效果。需要说明的是,本公开中的“两个相邻的微透镜22”是指该,两个微透镜22之间不存在其他微透镜22;同样,“两个相邻的滤光部231”是指,该两个滤光部231之间不存在其他的滤光部231。
图5中给出了微透镜排布的一种示例,其中,偶数行中,每相邻两个微透镜22无间隔,即,间距为0;奇数行中,每相邻两个微透镜22之间的间距可以与微透镜22的直径相等;奇数列中,每相邻两个微透镜22无间隔,即,间距为0;偶数列中,每相邻两个微透镜22之间的间距可以与微透镜22的直径相等。
可以理解的是,预定观看位置、像素岛21的中心及其对应的微透镜22的中心、滤光部231的中心位于同一直线上,以使像素岛21射向微透镜22的光线能够经过滤光部231。另外,滤光部231的排布方式与微透镜22的排布方式相同。当滤光部231的形状与像素岛21的形状相同,均为正方形时,在滤光层23中,偶数行中的每相邻两个滤光部无间隔,即,间距为0;奇数行中的每相邻两个滤光部231之间的间距可以与滤光部231的宽度相等;奇数列中的每相邻两个滤光部231无间隔,即,间距为0;偶数列中的每相邻两个滤光部231之间的间距可以与滤光部231的宽度相等。
需要说明的是,图5中微透镜22的数量、排布方式仅为示例性说明,在实际应用中,也可以采用其他数量和排布方式。另外,滤光部231的形状也不限于上述的正方形,也可以采用与微透镜22相同的形状,如,圆形;也可以采用其他形状,例如六边形等。只要使得像素岛21射向相应的微透镜22的光线能够被全部被滤光部231接收即可。
为了解决图4中的漏光问题,在本公开的一些实施例中,近眼显示装置还包括遮光结构,遮光结构用于对像素岛21射向滤光部231之 间的间隔区域的光线进行遮挡。
图8为本公开的一些实施例中沿图5中BB'线的剖视图,在一些实施例中,如图8所示,遮光结构26包括:第一偏振片261和多个第二偏振片262,第一偏振片261位于滤光部231之间的间隔区域;第二偏振片262一一对应地设置在像素岛21的出光面上,第一偏振片261与第二偏振片262的偏振方向相互垂直。
图9为遮光结构包括第一偏振片和第二偏振片时消除漏光的原理图,图9中的粗箭头表示光线,细箭头表示光线的偏振方向。其中,第二偏振片262的偏振方向为图9中的上下方向,第一偏振片261的偏振方向为垂直于纸面的方向。此时,像素岛21所发射的光线经过第二偏振片262的偏振作用后,形成上下方向的偏振光,由于滤光部231对偏振光无选择作用,因此,第二偏振片262出射的偏振光可以透过相应的滤光部231和微透镜22射入人眼。而第二偏振片262出射的偏振光将无法通过第一偏振片261,从而被有效遮挡。同时,外界环境光L0经过第一偏振片261后,转化为垂直于纸面的偏振光,进而射入人眼。因此,遮光结构26采用包括第一偏振片261和第二偏振片262的结构时,并不会影响人眼观看外界环境,从而保证增强现实效果。
图10为本公开的另一些实施例中沿图5中BB'线的剖视图,与图8中所示的近眼显示装置区别仅在于遮光结构26的具体结构不同。在图10中,遮光结构26包括遮光膜层263,遮光膜层263位于滤光部231之间的间隔区域。示例性地,遮光膜层263的材料包括:黑色树脂。
图11为遮光结构包括遮光膜层时消除漏光的原理图,如图11所示,像素岛21所发射的光线的一部分透过相应的滤光部231和微透镜22射入人眼,而另一部分射向遮光膜层231的光线被遮挡。
下面对上述实施例的近眼显示装置的制作过程进行介绍。
对于图8中所示的近眼显示装置,其制作过程可以为:步骤一、提供第一基底24和位于第一基底24上的微透镜22。步骤二、在第一基底24背离微透镜阵列的一侧形成形成滤光材料层(例如,丙烯酸类的树脂材料);之后,对滤光材料层进行构图工艺,从而形成与微透镜22一一对应的多个滤光部231。步骤三、在滤光部231之间的间隔区域粘贴第一偏振片261。步骤四、在第二基底25上制作像素岛21,并在像素岛21的出光面上形成第二偏振片262。步骤五、将第一基底24、透明衬底20和第二基底25固定连接在一起,形成图8中所示的结构。
在上述制作过程中,滤光部231和第一偏光片261均形成在第一基底24上,当然,也可以将滤光部231形成在第三基底上,之后,将形成有微透镜22的第一基底24、形成有滤光部231和第一偏振片261的第三基底、透明衬底20、形成有像素岛21和第二偏振片262的第二基底25固定连接在一起。或者,也可以将滤光部231、第一偏振片261和第二偏振片262形成在透明衬底20上,之后,将形成有微透镜22的第一基底24、形成有像素岛21的第二基底25、形成有滤光部231和第一偏振片261以及第二偏振片262的透明衬底20固定在一起。
对于图10中所示的近眼显示装置,其制作过程与图8中的近眼显示装置的制作过程类似,只需将第二偏光片262的贴附过程省略,并将第一偏光片261的贴附过程更换为制作遮光膜层263即可。遮光膜层263可以通过对遮光材料进行构图工艺形成,这里不再赘述。
本公开实施例还提供一种可穿戴设备,包括上述实施例中提供的近眼显示装置;另外,可穿戴设备还包括壳体,近眼显示装置设置在壳体上。该壳体可以为头盔。
由于上述实施例提供的近眼显示装置可以消除串色和漏光,提高成像效果,因此,采用上述近眼显示装置的可穿戴设备可以提高用户 体验。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (13)

  1. 一种近眼显示装置,其中,包括:像素岛阵列、微透镜阵列和滤光层,所述像素岛阵列与所述微透镜阵列相对固定且间隔设置,所述微透镜阵列包括多个微透镜,
    所述像素岛阵列包括多个像素岛,所述像素岛与所述微透镜一一对应,所述像素岛用于向相应的所述微透镜发射光线,以使所述光线经过所述微透镜后到达预定观看位置;所述像素岛阵列的多个所述像素岛发射多种颜色的光线;
    所述滤光层包括与所述像素岛一一对应的多个滤光部,所述滤光部位于相应的像素岛与所述微透镜之间,且靠近所述微透镜设置,所述滤光部的颜色与相应像素岛的发光颜色相同。
  2. 根据权利要求1所述的近眼显示装置,其中,所述近眼显示装置还包括:透明衬底,所述像素岛阵列和所述微透镜阵列分别固定在所述透明衬底的相对两侧。
  3. 根据权利要求1或2所述的近眼显示装置,其中,至少两个相邻的所述滤光部之间具有间隔区域,所述近眼显示装置还包括:遮光结构,所述遮光结构用于对所述像素岛射向所述间隔区域的光线进行遮挡。
  4. 根据权利要求3所述的近眼显示装置,其中,所述遮光结构包括:第一偏振片和第二偏振片,所述第一偏振片位于所述间隔区域;所述第二偏振片一一对应地设置在所述像素岛的出光面上,所述第一偏振片与所述第二偏振片的偏振方向相互垂直。
  5. 根据权利要求3所述的近眼显示装置,其中,所述遮光结构包括:位于所述间隔区域的遮光膜层。
  6. 根据权利要求5所述的近眼显示装置,其中,所述遮光膜层的材料包括:黑色树脂。
  7. 根据权利要求1或2所述的近眼显示装置,其中,所述微透镜的直径在30μm~10mm之间。
  8. 根据权利要求1或2所述的近眼显示装置,其中,同一行中相邻两个所述微透镜之间的间距、同一列中相邻两个所述微透镜之间的间距均在0~10mm之间。
  9. 根据权利要求1或2所述的近眼显示装置,其中,所述像素岛与相应的微透镜之间的距离不超过所述微透镜的焦距。
  10. 根据权利要求1或2所述的近眼显示装置,其中,所述像素岛包括多个像素,每个所述像素包括有机电致发光二极管器件或微型发光二极管器件。
  11. 根据权利要求1或2所述的近眼显示装置,其中,所述近眼显示装置还包括:基底,所述微透镜设置在所述基底上,所述微透镜和所述滤光层分别位于所述基底的两侧。
  12. 根据权利要求12所述的近眼显示装置,其中,所述微透镜和所述基底为一体结构。
  13. 一种可穿戴设备,其中,包括权利要求1至12中任意一项所述的近眼显示装置。
PCT/CN2020/140894 2020-02-24 2020-12-29 近眼显示装置和可穿戴设备 WO2021169576A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/309,834 US20220308349A1 (en) 2020-02-24 2020-12-29 Near-to-eye display device and wearable apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010111334.1 2020-02-24
CN202010111334.1A CN111175982B (zh) 2020-02-24 2020-02-24 近眼显示装置和可穿戴设备

Publications (1)

Publication Number Publication Date
WO2021169576A1 true WO2021169576A1 (zh) 2021-09-02

Family

ID=70625422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140894 WO2021169576A1 (zh) 2020-02-24 2020-12-29 近眼显示装置和可穿戴设备

Country Status (3)

Country Link
US (1) US20220308349A1 (zh)
CN (1) CN111175982B (zh)
WO (1) WO2021169576A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051105A1 (zh) * 2021-09-30 2023-04-06 京东方科技集团股份有限公司 显示面板与显示装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175982B (zh) * 2020-02-24 2023-01-17 京东方科技集团股份有限公司 近眼显示装置和可穿戴设备
CN111864119B (zh) * 2020-07-31 2024-01-19 京东方科技集团股份有限公司 显示器件和近眼显示设备
CN111766716B (zh) * 2020-08-03 2022-11-04 京东方科技集团股份有限公司 显示组件、显示装置和驱动方法
CN114545648A (zh) * 2020-11-18 2022-05-27 京东方科技集团股份有限公司 一种显示面板及其制作方法
CN114518660A (zh) * 2020-11-19 2022-05-20 京东方科技集团股份有限公司 一种裸眼3d器件的制备方法、裸眼3d器件
CN114518661A (zh) * 2020-11-19 2022-05-20 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN114545650A (zh) * 2020-11-24 2022-05-27 京东方科技集团股份有限公司 一种显示模组、显示装置和显示方法
WO2022133740A1 (zh) 2020-12-22 2022-06-30 京东方科技集团股份有限公司 显示装置、显示装置驱动方法
EP4120006A4 (en) * 2021-01-25 2023-06-21 BOE Technology Group Co., Ltd. DISPLAY DEVICE AND DRIVE METHOD THEREOF
CN112859347A (zh) * 2021-02-25 2021-05-28 京东方科技集团股份有限公司 近眼显示装置及可穿戴设备
CN113311594B (zh) * 2021-05-28 2022-08-09 京东方科技集团股份有限公司 显示面板及显示设备
CN114114706B (zh) * 2021-11-30 2024-03-15 京东方科技集团股份有限公司 显示面板与显示装置
CN115047632B (zh) * 2022-07-07 2024-05-24 Oppo广东移动通信有限公司 光学系统、近眼显示设备及近眼显示设备消除鬼像的方法
WO2023039617A2 (en) * 2022-11-02 2023-03-16 Futurewei Technologies, Inc. Device having combination 2d-3d display

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051143A (zh) * 2006-04-03 2007-10-10 三星电子株式会社 液晶显示器和用于其的面板及制造方法
US20150097756A1 (en) * 2013-10-07 2015-04-09 Resonance Technology, Inc. Wide angle personal displays
CN106019605A (zh) * 2016-08-04 2016-10-12 京东方科技集团股份有限公司 近眼显示装置和方法
CN106549026A (zh) * 2014-05-01 2017-03-29 采钰科技股份有限公司 固态成像装置
CN109491092A (zh) * 2019-01-10 2019-03-19 京东方科技集团股份有限公司 一种显示装置、制作方法和可穿戴设备
CN110488494A (zh) * 2019-08-30 2019-11-22 京东方科技集团股份有限公司 一种近眼显示装置、增强现实设备以及虚拟现实设备
CN110634415A (zh) * 2019-09-25 2019-12-31 京东方科技集团股份有限公司 一种显示装置
CN111175982A (zh) * 2020-02-24 2020-05-19 京东方科技集团股份有限公司 近眼显示装置和可穿戴设备

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075501B1 (en) * 1990-12-31 2006-07-11 Kopin Corporation Head mounted display system
US6381072B1 (en) * 1998-01-23 2002-04-30 Proxemics Lenslet array systems and methods
US6666556B2 (en) * 1999-07-28 2003-12-23 Moxtek, Inc Image projection system with a polarizing beam splitter
JP2001102556A (ja) * 1999-09-27 2001-04-13 Fuji Film Microdevices Co Ltd 固体撮像装置
JP2004085965A (ja) * 2002-08-28 2004-03-18 Nippon Hoso Kyokai <Nhk> 立体撮像装置および立体表示装置
US20040223071A1 (en) * 2003-05-08 2004-11-11 David Wells Multiple microlens system for image sensors or display units
US20070247573A1 (en) * 2006-04-19 2007-10-25 3M Innovative Properties Company Transflective LC Display Having Narrow Band Backlight and Spectrally Notched Transflector
JP2008026654A (ja) * 2006-07-21 2008-02-07 Hitachi Displays Ltd 立体表示装置
JP4851908B2 (ja) * 2006-10-10 2012-01-11 株式会社 日立ディスプレイズ 液晶表示装置
EP2012173A3 (en) * 2007-07-03 2009-12-09 JDS Uniphase Corporation Non-etched flat polarization-selective diffractive optical elements
US8102599B2 (en) * 2009-10-21 2012-01-24 International Business Machines Corporation Fabrication of optical filters integrated with injection molded microlenses
CN102466906B (zh) * 2010-11-09 2015-02-04 Tcl集团股份有限公司 一种可旋转显示的立体显示器
EP2667225A4 (en) * 2011-01-21 2014-07-09 Fujifilm Corp STACKING LINE ARRANGEMENT AND LENS MODULE
CN102331636B (zh) * 2011-09-27 2013-05-29 昆山龙腾光电有限公司 液晶显示面板及立体显示装置
US9177983B2 (en) * 2012-01-23 2015-11-03 Omnivision Technologies, Inc. Image sensor with optical filters having alternating polarization for 3D imaging
US20130285885A1 (en) * 2012-04-25 2013-10-31 Andreas G. Nowatzyk Head-mounted light-field display
JP6308727B2 (ja) * 2013-06-13 2018-04-11 キヤノン株式会社 電子デバイスの製造方法
JP5866516B2 (ja) * 2013-09-27 2016-02-17 パナソニックIpマネジメント株式会社 画像表示装置
CN104777613B (zh) * 2014-01-10 2017-11-28 联想(北京)有限公司 眼镜显示装置及增强现实显示方法
US20160286203A1 (en) * 2015-03-27 2016-09-29 Osterhout Group, Inc. See-through computer display systems
JP2015230383A (ja) * 2014-06-05 2015-12-21 キヤノン株式会社 画像表示装置および画像表示システム
CN104191860B (zh) * 2014-08-27 2016-06-22 苏州大学 基于微印刷的彩色动态立体莫尔图像薄膜及其制备方法
JP2016085387A (ja) * 2014-10-28 2016-05-19 矢崎総業株式会社 表示装置
CN204536659U (zh) * 2015-01-30 2015-08-05 深圳超多维光电子有限公司 立体显示装置
KR102372745B1 (ko) * 2015-05-27 2022-03-11 에스케이하이닉스 주식회사 이미지 센서 및 이를 구비하는 전자장치
US20170255020A1 (en) * 2016-03-04 2017-09-07 Sharp Kabushiki Kaisha Head mounted display with directional panel illumination unit
US10012834B2 (en) * 2016-03-08 2018-07-03 Microsoft Technology Licensing, Llc Exit pupil-forming display with reconvergent sheet
CN105842906A (zh) * 2016-05-27 2016-08-10 厦门天马微电子有限公司 显示面板、包含其的头戴式显示装置
US10890810B2 (en) * 2016-07-04 2021-01-12 Sharp Kabushiki Kaisha Display device and head-mounted display
US20180026065A1 (en) * 2016-07-21 2018-01-25 Visera Technologies Company Limited Image-sensor structures
US10121809B2 (en) * 2016-09-13 2018-11-06 Omnivision Technologies, Inc. Backside-illuminated color image sensors with crosstalk-suppressing color filter array
CN106338834B (zh) * 2016-11-24 2019-03-19 丁伟 现实增强背景黑色显示系统
CN108132559A (zh) * 2016-11-30 2018-06-08 深圳市掌网科技股份有限公司 显示屏及虚拟现实头盔
CN108345108A (zh) * 2017-01-25 2018-07-31 北京三星通信技术研究有限公司 头戴式显示设备、三维图像信息的生成方法及装置
CN106990604B (zh) * 2017-06-12 2019-12-03 京东方科技集团股份有限公司 一种液晶面板、显示模组及显示装置
CN107121832A (zh) * 2017-07-05 2017-09-01 深圳市华星光电技术有限公司 液晶显示器
CN108259882B (zh) * 2018-04-08 2019-12-10 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN108549166B (zh) * 2018-04-17 2021-11-02 京东方科技集团股份有限公司 防窥子像素单元及其制作方法以及显示装置及其驱动方法
US20200043398A1 (en) * 2018-08-01 2020-02-06 David Viveros Salazar Photoexcited Quantum Dot Based Augmented Reality Displays
CN209265076U (zh) * 2018-11-05 2019-08-16 青岛小鸟看看科技有限公司 虚拟现实设备
CN110504279A (zh) * 2019-08-30 2019-11-26 Oppo广东移动通信有限公司 一种偏振式cis、图像处理方法及存储介质和终端设备
US11405601B2 (en) * 2019-09-17 2022-08-02 Meta Platforms Technologies, Llc Polarization capture device, system, and method
CN110780447A (zh) * 2019-12-05 2020-02-11 杨建明 一种用于增强现实眼镜的光学系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051143A (zh) * 2006-04-03 2007-10-10 三星电子株式会社 液晶显示器和用于其的面板及制造方法
US20150097756A1 (en) * 2013-10-07 2015-04-09 Resonance Technology, Inc. Wide angle personal displays
CN106549026A (zh) * 2014-05-01 2017-03-29 采钰科技股份有限公司 固态成像装置
CN106019605A (zh) * 2016-08-04 2016-10-12 京东方科技集团股份有限公司 近眼显示装置和方法
CN109491092A (zh) * 2019-01-10 2019-03-19 京东方科技集团股份有限公司 一种显示装置、制作方法和可穿戴设备
CN110488494A (zh) * 2019-08-30 2019-11-22 京东方科技集团股份有限公司 一种近眼显示装置、增强现实设备以及虚拟现实设备
CN110634415A (zh) * 2019-09-25 2019-12-31 京东方科技集团股份有限公司 一种显示装置
CN111175982A (zh) * 2020-02-24 2020-05-19 京东方科技集团股份有限公司 近眼显示装置和可穿戴设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051105A1 (zh) * 2021-09-30 2023-04-06 京东方科技集团股份有限公司 显示面板与显示装置

Also Published As

Publication number Publication date
CN111175982B (zh) 2023-01-17
CN111175982A (zh) 2020-05-19
US20220308349A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2021169576A1 (zh) 近眼显示装置和可穿戴设备
WO2022028020A1 (zh) 显示组件、显示装置和驱动方法
CN106483658B (zh) 显示设备、头戴式显示设备和图像显示系统
US11404674B2 (en) Display panel configured to display images and display device
CN111682122B (zh) 一种显示面板及其制备方法、显示装置
WO2018023987A1 (zh) 近眼显示装置和方法
CN110634415B (zh) 一种显示装置
US11054661B2 (en) Near-eye display device and near-eye display method
US20220269082A1 (en) Near-eye display device and wearable equipment
WO2021184324A1 (zh) 显示装置及其显示方法
CN111638600B (zh) 一种近眼显示的方法、装置及可穿戴设备
CN112103315B (zh) 一种有机发光显示面板和显示装置
CN112103317A (zh) 一种有机发光显示面板和显示装置
CN112987295B (zh) 近眼显示装置和虚拟/增强现实设备
CN111540770A (zh) 显示装置及其制造方法
TWI717602B (zh) 頭戴式顯示裝置
WO2023231672A1 (zh) 显示装置和显示装置的控制方法
US11137619B2 (en) Display device for virtual reality, viewing device for virtual reality and head-mounted display apparatus
WO2017206543A1 (zh) 显示装置及其驱动方法
WO2022227025A1 (zh) 双栅线阵列基板、显示面板
CN112946893B (zh) 近场显示装置
WO2021168621A1 (zh) 电子设备、显示装置及其驱动方法
CN113791497A (zh) 一种近眼显示装置、增强现实眼镜和使用方法
JP3568338B2 (ja) 液晶立体表示装置
CN110928034B (zh) 一种彩膜基板、显示面板以及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921174

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20921174

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20921174

Country of ref document: EP

Kind code of ref document: A1