WO2023051105A1 - 显示面板与显示装置 - Google Patents

显示面板与显示装置 Download PDF

Info

Publication number
WO2023051105A1
WO2023051105A1 PCT/CN2022/114341 CN2022114341W WO2023051105A1 WO 2023051105 A1 WO2023051105 A1 WO 2023051105A1 CN 2022114341 W CN2022114341 W CN 2022114341W WO 2023051105 A1 WO2023051105 A1 WO 2023051105A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
island
islands
display panel
Prior art date
Application number
PCT/CN2022/114341
Other languages
English (en)
French (fr)
Inventor
高健
马森
朱文吉
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023051105A1 publication Critical patent/WO2023051105A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present application relates to the field of display technology, in particular to a display panel and a display device.
  • Glasses-free 3D display technology is a technology that allows people to produce stereoscopic vision without the aid of auxiliary tools. Its principle is binocular parallax imaging, that is, the left and right eyes of the viewer receive images with slight differences, and the images are analyzed and integrated by the brain. , fused into a perfect scene, so that the viewer perceives the depth of the objects in the picture, and then produces a three-dimensional effect. 3D display technology improves the display effect and improves the comfort of the viewer.
  • the organic light-emitting diode is subdivided into sub-pixels in the row direction (X direction), and 3D display is realized through a specific structural design.
  • the visible space is continuous, eliminating moiré.
  • OLEDs organic light-emitting diodes
  • FMM fine metal mask
  • the present application provides a display panel to realize a continuous visual space of naked-eye 3D display.
  • a display panel includes a stacked pixel array layer and a lens array layer; wherein,
  • the lens array layer includes a plurality of microlenses arranged along a first direction
  • the pixel array layer includes a plurality of pixel islands arranged in an array, each pixel island includes a plurality of sub-pixel islands arranged along the second direction, each sub-pixel island includes a plurality of sub-pixels, and each sub-pixel island in the same sub-pixel island
  • the sub-pixels emit the same color; each sub-pixel island is divided into a plurality of sub-pixel groups arranged along the first direction, and the orthographic projection of each sub-pixel group on the lens array layer falls within the same microlens;
  • an opaque area is provided in at least one sub-pixel group adjacent to the two, and the width of the opaque area in the first direction is greater than the same the gap between adjacent subpixels in other subpixel groups within the pixel island;
  • each gap between adjacent sub-pixels in one sub-pixel group can be correspondingly complemented by each sub-pixel in the other sub-pixel groups.
  • the sum of the positions, numbers and widths of the gaps in one sub-pixel group is the same as the sum of the positions, numbers and widths of the sub-pixels in the other two sub-pixel groups. Corresponds to the same.
  • each sub-pixel island includes three sub-pixel groups arranged along the first direction: a first sub-pixel group, a second sub-pixel group and a third sub-pixel group, the second sub-pixel group is located at the between the first sub-pixel group and the third sub-pixel group, and whether there are sub-pixels in the third sub-pixel group.
  • the region of the third sub-pixel group away from the second sub-pixel group is formed with an opaque area, and the width of the opaque area is larger than that of the first sub-pixel group and the second sub-pixel group. The gap between adjacent subpixels.
  • the width of the opaque region is ⁇ 38 ⁇ m.
  • each pixel island includes said first sub-pixel island for emitting red light, a second sub-pixel island for emitting green light, and a third sub-pixel island for emitting blue light, so The first sub-pixel island, the second sub-pixel island and the third sub-pixel island are arranged along the second direction.
  • the first sub-pixel islands of the two are located at the same height
  • the second sub-pixel islands of the two are located at the same height
  • the second sub-pixel islands of the two are located at the same height.
  • the three sub-pixel islands are located at the same height.
  • any two adjacent pixel islands arranged along the first direction are respectively denoted as a first pixel island and a second pixel island, wherein the first pixel island and the second pixel island
  • the sub-pixel islands in the first pixel island are not located at the same height, and one sub-pixel island in the first pixel island is far away from the sub-pixel island of the same color in the second pixel island in height.
  • the gap between adjacent sub-pixels is equal to or not equal to the width of the sub-pixel.
  • the gap width between adjacent sub-pixels is > 4 ⁇ m.
  • the material of the microlens includes low-refractive index resin and high-refractive-index resin, wherein the high-refractive-index resin is closer to the pixel array layer than the low-refractive-index resin.
  • a spacer layer is further included, and the spacer layer is located between the pixel array layer and the lens array layer.
  • the sub-pixels emitting different colors in the pixel island are made of different organic light-emitting materials.
  • a display device is provided, and the display device includes the above-mentioned display panel.
  • Fig. 1 is an organic light-emitting diode (OLED) pixel arrangement diagram based on the color filter film method (WOLED+CF);
  • Figure 2a is a light path diagram of an organic light-emitting diode (OLED) based on a color filter film method (WOLED+CF), and Figure 2b is a partial enlarged view of Figure 2a;
  • OLED organic light-emitting diode
  • WOLED+CF color filter film method
  • Fig. 3 is a pixel arrangement diagram of an organic light-emitting diode (OLED) prepared by using a fine metal mask (FMM);
  • OLED organic light-emitting diode
  • FMM fine metal mask
  • Figure 4a is a light-emitting light path diagram of an organic light-emitting diode (OLED) prepared by using a fine metal mask (FMM), and Figure 4b is a partial enlarged view of Figure 4a;
  • OLED organic light-emitting diode
  • FMM fine metal mask
  • FIG. 5 is a schematic diagram of a pixel island in a display panel according to an embodiment of the present application.
  • FIG. 6 is a cross-sectional view of a display panel according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the arrangement of multiple pixel islands in the display panel of the embodiment of the present application.
  • Fig. 8a is an optical path diagram of the display panel of the embodiment of the present application, and Fig. 8b is a partial enlarged view of Fig. 8a;
  • FIG. 9 is a schematic diagram of a pixel island in a display panel according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of arrangement of multiple pixel islands in a display panel according to another embodiment of the present application.
  • FIG. 11 a is an optical path diagram of a display panel according to another embodiment of the present application, and FIG. 11 b is a partial enlarged view of FIG. 11 a.
  • the evaporation process of color filter film method (WOLED+CF) and fine metal mask (FMM) is a common process for preparing organic light-emitting diodes (OLEDs).
  • the color filter film method (WOLED+CF) is generally based on the preparation method of white light-emitting organic light-emitting diode (WOLED) combined with color filter film (CF).
  • the film (CF) obtains three primary colors, and then combines the three primary colors to realize color display.
  • the pixel structure arrangement is shown in Fig. 1 .
  • the pixel arrangement structure is composed of pixel islands 100' arranged in columns and a lens array layer 11, and the lens array layer 11 is composed of microlenses 10 arranged in columns.
  • the pixel island 100'a is the first row of pixel islands along the X direction
  • the pixel island 100'b is the second row of pixel islands along the X direction
  • the microlens 10a is the first row of cylindrical lenses along the X direction
  • the microlens 10b is the second row of microlenses along the X direction, and so on.
  • the pixel island 100' is subdivided into a plurality of sub-pixels 1 in the row direction (X direction), each sub-pixel 1 has the same width W and the same pitch G, and the pitch G is equal to the width W of the light-emitting area of the sub-pixel.
  • the width of the one pixel island 100' is equal to the width of the two microlenses 10 of the lens array layer 11, and the relative relationship between each sub-pixel 1 and the microlens 10 in the same pixel island 100' is designed not to constitute a repeating unit That is, each gap G between the adjacent subpixels 1 of the subpixel island 130R, the subpixel island 130G, and the subpixel island 130B in the plurality of subpixel islands 130 can be correspondingly complemented by each subpixel 1 in the remaining subpixel groups 150 .
  • the sub-pixel P2, sub-pixel P4, sub-pixel P6, sub-pixel P8, and sub-pixel P10 respectively fill the gap between the sub-pixel P1 and the sub-pixel P3, the gap between the sub-pixel P3 and the sub-pixel P5, and the sub-pixel
  • the final optical path diagram is shown in Fig. 2a and Fig. 2b, wherein Fig. 2b is a partially enlarged diagram of Fig. 2a.
  • the light-emitting area of the sub-pixel is interspersed and complementary to the two cylindrical lens units, so that the light-emitting direction of the sub-pixel is continuous in the visible space of the 3D display, and moiré is eliminated.
  • the organic light-emitting diode (OLED) prepared by the color filter film method (WOLED+CF) Compared with the organic light-emitting diode (OLED) prepared by the color filter film method (WOLED+CF), the organic light-emitting diode (OLED) prepared by the evaporation process of the fine metal mask (FMM) has higher luminous efficiency.
  • the use of fine metal mask (FMM) to prepare organic light-emitting diodes (OLEDs) has certain requirements.
  • FMM fine metal mask
  • the pixel structure arrangement As shown in FIG. 3 , it can be seen that the width of one pixel island 100 ′ is equal to the width of the two microlenses 10 of the lens array layer 11, and the sub-pixel island 130R, the sub-pixel island 130G, and the sub-pixel island in the plurality of sub-pixel islands 130
  • the sub-pixel 1 of 130B cannot achieve spatial complementarity of light emission in the area corresponding to the lens array layer 11 .
  • sub-pixel P2, sub-pixel P4, and sub-pixel P6 respectively fill the gap between sub-pixel P1 and sub-pixel P3, the gap between sub-pixel P3 and sub-pixel P5, and the gap between sub-pixel P5 and sub-pixel P7 , but the gap between the sub-pixel P7 and the sub-pixel P9, and the gap between the sub-pixel P9 and the sub-pixel P11 are not filled.
  • its optical path is shown in Fig. 4a and Fig. 4b, wherein Fig. 4b is a partially enlarged view of Fig. 4a.
  • OLEDs organic light-emitting diodes
  • WOLED+CF color filter film method
  • an embodiment of the present application provides a display panel, as shown in FIG. 5 , FIG. 6 and FIG. 7 , the display panel includes a pixel array layer 13 and a lens array layer 11 arranged in layers.
  • the pixel array layer 13 and the lens array layer 11 are stacked in the third direction Z (film layer deposition direction), and are located at different depths.
  • the lens array layer 11 includes a plurality of microlenses 10 arranged along the first direction X (row direction).
  • the pixel array layer 13 includes a plurality of pixel islands 100 arranged in an array, each pixel island 100 includes a plurality of sub-pixel islands 130 arranged along the second direction Y (column direction), and each sub-pixel island includes a plurality of sub-pixels 1.
  • the sub-pixels 1 in the same sub-pixel island 130 emit the same color.
  • Each sub-pixel island 130 is divided into a plurality of sub-pixel groups 150 arranged along the first direction X, and each sub-pixel in the sub-pixel island 130 is correspondingly divided into each sub-pixel group 150, and each sub-pixel group 150 is
  • the orthographic projection on the lens array layer 11 falls within the same microlens 10.
  • each gap G between adjacent sub-pixels 1 in one sub-pixel group 150 can be correspondingly complemented by each sub-pixel 1 in the remaining sub-pixel groups 150 .
  • each sub-pixel group 150 cannot emit light continuously.
  • the sub-pixels 1 of other sub-pixel groups 150 in the same sub-pixel island 130 are used to fill the light-emitting gaps in the sub-pixel group 150, so that the sub-pixel group 150 that emits discontinuous light is equivalent to a continuous light-emitting pixel structure. . Therefore, the pixel array layer 13 arranged above can realize a 3D continuous display effect through a plurality of microlenses 10 in the lens array layer 11 .
  • Fig. 5 schematically shows two adjacent pixel islands 100 located in the same row: a pixel island 100a and a pixel island 100b.
  • the structure of each pixel island 100 is the same, and the structure of the pixel island 100a will be described below as an example.
  • the pixel island 100a includes three sub-pixel islands 130: a first sub-pixel island 130R, a second sub-pixel island 130G, and a third sub-pixel island 130B.
  • the first sub-pixel island 130R, the second sub-pixel island 130G and the third sub-pixel island 130B are arranged in sequence along the column direction Y.
  • the first sub-pixel island 130R is used to emit red light
  • the second sub-pixel island 130G is used to emit green light
  • the third sub-pixel island 130B is used to emit blue light.
  • the light-emitting materials of the sub-pixels 1 included in the first sub-pixel island 130R, the second sub-pixel island 130G and the third sub-pixel island 130B are different.
  • the sub-pixel 1a of the first sub-pixel island 130R has an organic light-emitting material for emitting red light
  • the sub-pixel 1b of the second sub-pixel island 130G has an organic light-emitting material for emitting green light
  • the sub-pixel 1b of the third sub-pixel island 130B has an organic light-emitting material for emitting red light.
  • the pixel 1c has an organic light-emitting material for emitting blue light. Therefore, when the organic luminescent material is evaporated by the fine metal mask (FMM) evaporation process, it needs to be fabricated in three steps, each time evaporating the organic luminescent material of one luminous color.
  • FMM fine metal mask
  • the sub-pixel islands 130 that emit light of the same color are located at the same height in the column direction Y.
  • the first sub-pixel island 130R for emitting red light in the pixel island 100a and the first sub-pixel island 130R for emitting red light in the pixel island 100b are located at the same height in the column direction;
  • the pixel island 100a The second sub-pixel island 130G for emitting green light in pixel island b and the second sub-pixel island 130G for emitting green light in pixel island b are located at the same height in the column direction;
  • the pixel island 130B is located at the same height in the column direction as the third sub-pixel island 130B for emitting blue light in the pixel island 100b.
  • the first sub-pixel island 130R, the second sub-pixel island 130G and the third sub-pixel island 130B are all the same except for the different light emitting colors.
  • the structure of any sub-pixel island 130 will be described below as an example.
  • Each sub-pixel island 130 includes three sub-pixel groups 150 arranged along the row direction X: a first sub-pixel group 150a, a second sub-pixel group 150b and a third sub-pixel group 150c.
  • the second sub-pixel group 150b is located between the first sub-pixel group 150a and the third sub-pixel group 150c.
  • the number of sub-pixels 1 included in the respective sub-pixel groups 150a, 150b, and 150c may not be equal. Even some sub-pixel groups 150 may not be provided with sub-pixel 1 .
  • FIG. 5 there are 7 sub-pixels 1 and 6 gaps (each gap is located between two adjacent sub-pixels) in the first sub-pixel group 150a; 6 sub-pixels 1 are set in the second sub-pixel group 150b. 7 gaps; sub-pixel 1 is not set in the third sub-pixel group 150c.
  • the "gap” mentioned in this article does not mean that the space between two sub-pixels is not filled with any solid or liquid, it only means that the two sub-pixels are not connected together, and the “gap” only refers to the space between them space.
  • the “gap” between the sub-pixels is usually filled with opaque materials such as a pixel defining layer and a black matrix.
  • the positions and widths W of the six sub-pixels 1 in the second sub-pixel group 150b are respectively corresponding to the positions and widths G of the six gaps in the first sub-pixel group 150a.
  • the sum of the widths W of the six sub-pixels 1 in the second sub-pixel group 150b is equal to the sum of the widths G of the six gaps in the first sub-pixel group 150a.
  • the positions and widths W of the seven sub-pixels 1 in the first sub-pixel group 150a are respectively corresponding to the positions and widths G of the seven gaps in the second sub-pixel group 150b.
  • the sum of the widths W of the seven sub-pixels 1 in the first sub-pixel group 150a is equal to the sum of the widths G of the seven gaps in the second sub-pixel group 150b.
  • the 7 sub-pixels 1 in the first sub-pixel group 150a can well correspond to the 7 gaps in the complementary second sub-pixel group 150b.
  • the 7 sub-pixels 1 in the first sub-pixel group 150a and the 6 sub-pixels 1 in the second sub-pixel group 150b can well correspond to the entire area of the complementary third sub-pixel group 150c.
  • sub-pixels 1 are formed by vapor deposition using a fine metal mask (FMM)
  • FMM fine metal mask
  • the larger distance corresponds to
  • the position and space of the space are usually filled with opaque materials (for example, pixel defining layer material or black matrix material). Therefore, the position and area corresponding to the larger pitch designed in response to the FMM process are also referred to as " opaque zone".
  • no sub-pixel 1 is disposed in the third sub-pixel group 150c, so it can be regarded as the opaque region or a part of the opaque region as a whole.
  • the width of the opaque area is much larger than the width G of the gap between adjacent sub-pixels 1 in the same sub-pixel island 130 .
  • the width of the opaque region is generally greater than or equal to 38 ⁇ m (micrometer) to obtain a better process effect.
  • all sub-pixels 1 may have the same shape and size.
  • the width G of the gap between adjacent sub-pixels 1 may also be equal, and the width G of the gap may be equal to the width W of each sub-pixel 1 .
  • the width G of the gap between adjacent sub-pixels 1 is generally greater than or equal to 4 ⁇ m.
  • each microlens 10 in the lens array layer 11 The role of each microlens 10 in the lens array layer 11 is to shrink the light emitting angle of each sub-pixel 1 so that the light emitting direction of each sub-pixel 1 does not overlap and crosstalk spatially.
  • Each microlens 10 can be a cylindrical lens, and the column direction Y is the length direction of the cylindrical lens. In the column direction, each microlens 10 can cover a plurality of pixel islands 100, or even cover a whole column of pixel islands. 100.
  • the manufacturing process of the lens array layer 11 may include: using polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) or a resin material as a base material, on the base material by UV curing, embossing and so on to obtain the desired lens array layer 11 structure.
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • resin material a resin material as a base material
  • the lens array layer 11 can be made of a high refractive index resin and a low refractive index resin, wherein the high refractive index resin is located on the side close to the pixel array layer 13, and the low refractive index resin is The refractive index resin is located on the side away from the pixel array layer 13 .
  • the display panel may further include a spacer layer 12 , and the spacer layer 12 is located between the pixel array layer 13 and the lens array layer 11 for realizing the placement height of the lens array layer 11 .
  • the spacer layer 12 is preferably light and thin resin glass.
  • FIG. 7 shows more arrangements of pixel islands 100 .
  • three pixel islands 100 are arranged: a first pixel island 100a, a second pixel island 100b and a third pixel island 100c.
  • the structure of each pixel island 100 and the positional relationship between adjacent pixel islands 100 are the same as in FIG. 5 .
  • Fig. 8a and Fig. 8b are light path diagrams of the display panels in Fig. 5 and Fig. 7, wherein Fig. 8b is a partial enlarged view of Fig. 8a. As shown in Fig. 8a and Fig. 8b, and in combination with Fig. 5 and Fig.
  • the six sub-pixels 1 respectively sequentially fill the six gaps in the first sub-pixel group 150a (the gap between sub-pixel P1 and sub-pixel P3, the gap between sub-pixel P3 and sub-pixel P5, the gap between sub-pixel P5 and sub-pixel P7 gap, gap between sub-pixel P7 and sub-pixel P9, gap between sub-pixel P9 and sub-pixel P11, gap between sub-pixel P11 and sub-pixel P13).
  • the equivalent continuous lighting effect as shown in Fig. 8a and Fig. 8b is realized.
  • the pixel island structure design can increase the area covered by light at the edge of the pixel island 100, so as to realize continuous light emission, effectively eliminate moiré, and ensure display effect.
  • the width M of the gap between the sub-pixel islands 130 of different colors in different rows is equal and larger than the width G of the gap between adjacent sub-pixels 1 .
  • each pixel island 100 can be designed to be 156 ⁇ m. This is determined by the final display resolution of the display panel, and the number of resolutions is the number of pixel islands.
  • the width of the microlens 10 is 52 ⁇ m, and the width of each sub-pixel group 150 is also 52 ⁇ m.
  • the width G of the gap between adjacent sub-pixels 1 in the sub-pixel island 130 is 4 ⁇ m, which is due to the requirement of the sub-pixel spacing in the island by using a fine metal mask (FMM) to prepare an organic light-emitting diode (OLED) process. ⁇ 4 ⁇ m decision.
  • the width W of each sub-pixel 1 is 4 ⁇ m, which is equal to the width G of the gap between adjacent sub-pixels.
  • the distance N between the sub-pixels of adjacent pixel islands 100 is 56 ⁇ m, and the size of the distance N is the width of the microlens 10 plus the width G of a sub-pixel gap.
  • the width M of the gap between the different-color sub-pixel islands 130 in different rows is 20 ⁇ m. This is determined by the fact that the fine metal mask (FMM) is used to prepare the organic light-emitting diode (OLED) process, which requires that the island pitch of different-color sub-pixels is ⁇ 20 ⁇ m.
  • FMM fine metal mask
  • OLED organic light-emitting diode
  • FIG. 9 is a schematic structural diagram of a pixel island 100 in a display panel according to another embodiment of the present application. Other structures except the pixel island 100 can be the same as the above embodiments.
  • each pixel island 100 includes a plurality of sub-pixel islands 130 arranged along the second direction Y (column direction), and in the embodiment in the figure, there are three: a first sub-pixel island 130R, a second sub-pixel island 130G and The third sub-pixel island 130B.
  • the first sub-pixel island 130R, the second sub-pixel island 130G and the third sub-pixel island 130B are arranged in sequence along the column direction Y.
  • each sub-pixel 1a in the first sub-pixel island 130R is used to emit red light
  • each sub-pixel 1b in the second sub-pixel island 130G is used to emit green light
  • each sub-pixel 1b in the third sub-pixel island 130B is used to emit red light.
  • Sub-pixel 1c is used to emit blue light.
  • the light-emitting materials of the sub-pixels 1 included in the first sub-pixel island 130R, the second sub-pixel island 130G and the third sub-pixel island 130B are different.
  • the sub-pixel 1a of the first sub-pixel island 130R has an organic light-emitting material for emitting red light
  • the sub-pixel 1b of the second sub-pixel island 130G has an organic light-emitting material for emitting green light
  • the sub-pixel 1b of the third sub-pixel island 130B has an organic light-emitting material for emitting red light
  • the pixel 1c has an organic light-emitting material for emitting blue light. Therefore, when the organic luminescent material is evaporated by the fine metal mask (FMM) evaporation process, it needs to be fabricated in three steps, each time evaporating the organic luminescent material of one luminous color.
  • FMM fine metal mask
  • the distribution and arrangement of the sub-pixels inside the first sub-pixel island 130R, the second sub-pixel island 130G and the third sub-pixel island 130B are the same.
  • FIG. 10 shows the arrangement of more pixel islands 100 .
  • each sub-pixel island 130 includes a plurality of sub-pixel groups 150 arranged along the row direction X, and there are three embodiments in the figure: the first sub-pixel group 150a, the second sub-pixel group 150b and the second sub-pixel group 150b. Three sub-pixel groups 150c.
  • the second sub-pixel group 150b is located between the first sub-pixel group 150a and the third sub-pixel group 150c.
  • the number of sub-pixels 1 included in each sub-pixel group 150a, 150b, and 150c may not be equal.
  • the number of sub-pixel groups 150 is equal to the number of microlenses 10 .
  • the orthographic projection of each sub-pixel group 150 on the lens array layer 11 falls within the same microlens 10 .
  • the first sub-pixel group 150 a , the second sub-pixel group 150 b and the third sub-pixel group 150 c are all provided with sub-pixels 1 . Because an opaque region corresponding to the FMM process is to be set, the number of sub-pixels 1 in the third sub-pixel group 150c is relatively small. The opaque area is disposed in the third sub-pixel group 150c in an area away from the first sub-pixel group 150a and the second sub-pixel group 150b.
  • 6 sub-pixels 1 and 5 gaps are arranged in the first sub-pixel group 150a (each gap is located between two adjacent sub-pixels); 5 sub-pixels 1 are arranged in the second sub-pixel group 150b. , 6 gaps; 2 sub-pixels 1 and 3 gaps (2 inter-pixel gaps and 1 opaque area) are set in the third sub-pixel group 150c.
  • the position and width W of the five sub-pixels 1 in the second sub-pixel group 150b, and the positions and width W of the two sub-pixels 1 in the third sub-pixel group 150c are respectively different from the five gaps in the first sub-pixel group 150a. corresponding to the position and width G respectively.
  • the first sub-pixel 1 in the second sub-pixel group 150b and the first sub-pixel 1 in the third sub-pixel group 150c correspond to two different regions of the first gap in the first sub-pixel group 150a, and After superimposition, the entire area of the first gap is filled.
  • the second sub-pixel 1 in the second sub-pixel group 150b and the second sub-pixel 1 in the third sub-pixel group 150c correspond to two different areas of the second gap in the first sub-pixel group 150a, and are superimposed Then fill the entire area of the second gap.
  • the third sub-pixel 1 in the second sub-pixel group 150b corresponds to the third gap in the first sub-pixel group 150a, the positions of the two are corresponding, and the width is the same.
  • the fourth sub-pixel 1 in the second sub-pixel group 150b corresponds to the fourth gap in the first sub-pixel group 150a, the positions of the two are corresponding, and the widths are the same.
  • the fifth sub-pixel 1 in the second sub-pixel group 150b corresponds to the fifth gap in the first sub-pixel group 150a, the positions of the two are corresponding, and the widths are the same.
  • the sum of the width W of the five sub-pixels 1 in the second sub-pixel group 150b and the two sub-pixels 1 in the third sub-pixel group 150c is equal to the sum of the width G of the five gaps in the first sub-pixel group 150a. This enables the light-emitting lines of the sub-pixels 1 of the second sub-pixel group 150b and the third sub-pixel group 150c to fill the area corresponding to the 5 gaps in the first sub-pixel group 150a after passing through the microlens 10, realizing the 3D in this area. displayed continuously.
  • the positions and width W of the six sub-pixels 1 in the first sub-pixel group 150a, and the positions and width W of the two sub-pixels 1 in the third sub-pixel group 150c are respectively the same as those in the second sub-pixel group 150b.
  • the positions and widths G of the six gaps are correspondingly equal.
  • the first sub-pixel 1 in the first sub-pixel group 150a and the first sub-pixel 1 in the third sub-pixel group 150c correspond to two different regions of the first gap in the second sub-pixel group 150b, and After superimposition, the entire area of the first gap is filled.
  • the second sub-pixel 1 in the first sub-pixel group 150a and the second sub-pixel 1 in the third sub-pixel group 150c correspond to two different regions of the second gap in the second sub-pixel group 150b, and are superimposed Then fill the entire area of the second gap.
  • the positions and width W of the six sub-pixels 1 in the first sub-pixel group 150a, and the positions and width W of the five sub-pixels 1 in the second sub-pixel group 150b are respectively the same as those in the third sub-pixel group 150c.
  • the positions and widths G of the three gaps are correspondingly equal.
  • the first sub-pixel 1 in the first sub-pixel group 150a and the first sub-pixel 1 in the second sub-pixel group 150b correspond to two different regions of the first gap in the third sub-pixel group 150c, and After superimposition, the entire area of the first gap is filled.
  • the second sub-pixel 1 in the first sub-pixel group 150a and the second sub-pixel 1 in the second sub-pixel group 150b correspond to two different regions of the second gap in the third sub-pixel group 150c, and are superimposed Then fill the entire area of the second gap.
  • the 3rd to 6th subpixels 1 in the first subpixel group 150a and the 3rd to 5th subpixels 1 in the second subpixel group 150b correspond to two of the 3rd gap in the third subpixel group 150c. different areas, and fill the entire area of the third gap after being superimposed.
  • each sub-pixel group 150 cannot emit light continuously.
  • the above-mentioned embodiments of the present application use the sub-pixels 1 of other sub-pixel groups 150 in the same sub-pixel island 130 to fill the light-emitting gaps in the sub-pixel group 150, so that the sub-pixel groups 150 that emit light continuously are equivalent to pixels that emit light continuously. structure. Therefore, a 3D continuous display effect can be realized.
  • Two adjacent pixel islands 100 in the same row may not be at the same height in the column direction.
  • the above height difference can bring advantages in display effect.
  • the first pixel island 100 a and the second pixel island 100 b are not located at the same height, and the height difference between the two may be about half of the length of a single sub-pixel 1 .
  • the length of the sub-pixel 1 refers to the length of the sub-pixel 1 extending in the second direction.
  • the third sub-pixel island 130B of the second pixel island 100b is lower than the first sub-pixel island 130R of the first pixel island 100a, but higher than the second sub-pixel of the first pixel island 100a island 130G, and the third sub-pixel island 130B farthest from the first pixel island 100a. That is, for two adjacent pixel islands 100 in the same row, the sub-pixel islands 130 of the same color are farther apart in the above-mentioned height direction.
  • a plurality of first pixel islands 100a are arranged in odd columns, and a plurality of second pixel islands 100b are arranged in even columns.
  • Each first pixel island 100 a includes a first sub-pixel island 130R, a second sub-pixel island 130G and a third sub-pixel island 130B arranged in sequence along the column direction.
  • Each second pixel island 100b includes a third sub-pixel island 130B, a first sub-pixel island 130R and a second sub-pixel island 130G arranged in sequence along the column direction.
  • the second pixel islands 100b of even columns are lower than the first pixel islands 100a of odd columns in the column direction by half the length of a single sub-pixel.
  • each sub-pixel island overlaps with two different-color sub-pixel islands of the adjacent pixel island in the height direction, and is far away from the same-color sub-pixel island of the adjacent pixel island.
  • the distance between the sub-pixel islands of the same color in adjacent pixel islands is obviously beneficial to the FMM evaporation process.
  • the third sub-pixel island 130B located in the even-numbered column overlaps the first sub-pixel island 130R and the second sub-pixel island 130G located in the odd-numbered column in the column direction, and is far away from the third sub-pixel island 130B of the same color located in the odd-numbered column.
  • Pixel Island 130B The first sub-pixel island 130R in the even column overlaps the second sub-pixel island 130G and the third sub-pixel island 130B in the odd column in the column direction, and is far away from the same-color first sub-pixel island 130R in the odd column.
  • the second sub-pixel island 130G in the even column overlaps the third sub-pixel island 130B and the first sub-pixel island 130R in the odd column in the column direction, and is far away from the same-color second sub-pixel island 130G in the odd column.
  • Fig. 11a and Fig. 11b are optical path diagrams of the display panels in Fig. 9 and Fig. 10, wherein Fig. 11b is a partial enlarged view of Fig. 11a.
  • the five sub-pixels P2, P5, P8, P10 and P12 in the second sub-pixel group 150b, and the two sub-pixels P3 and P12 in the third sub-pixel group 150c P6 corresponds to filling the 5 gaps in the first sub-pixel group 150a respectively (the gap between sub-pixel P1 and sub-pixel P4, the gap between sub-pixel P4 and sub-pixel P7, the gap between sub-pixel P7 and sub-pixel P9 , the gap between the sub-pixel P9 and the sub-pixel P11, and the gap between the sub-pixel P11 and the sub-pixel P13).
  • the pixel island structure design can increase the area covered by light at the edge of the pixel island 100, so as to realize continuous light emission, effectively eliminate moiré, and ensure display effect.
  • the width of each pixel island 100 is designed to be 156 ⁇ m, correspondingly, the microlens
  • the width of 10 is 52 ⁇ m
  • the width of each sub-pixel group 150 is 52 ⁇ m.
  • the width M of the gap between the different-color sub-pixel islands 130 in different rows is 20 ⁇ m. This is determined by the fact that the fine metal mask (FMM) is used to prepare the organic light-emitting diode (OLED) process, which requires that the island pitch of different-color sub-pixels is ⁇ 20 ⁇ m.
  • FMM fine metal mask
  • OLED organic light-emitting diode
  • the width G of the gap between adjacent sub-pixels 1 corresponding to the area 200 of the sub-pixel island 130 is 4 ⁇ m, and the area 200 of the sub-pixel island 130 corresponds to the area outside the gap between adjacent sub-pixels 1
  • the width G is 4 ⁇ m (the sub-pixel pitch width is the sub-pixel width) or 8 ⁇ m (the sub-pixel pitch width is twice the sub-pixel width). This is determined by the fact that the organic light-emitting diode (OLED) process using a fine metal mask (FMM) requires the sub-pixel pitch in the island to be ⁇ 4 ⁇ m.
  • the width W of each sub-pixel 1 is 4 ⁇ m.
  • the spacing N between the same-color sub-pixels of adjacent pixel islands 100 is 53.85 ⁇ m, and the size of the spacing N is half of the sub-pixel height that differs between two adjacent pixel islands 100 in the same row in the column direction. to decide.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种显示面板与显示装置。其中,显示面板包括像素阵列层和透镜阵列层。透镜阵列层包括沿第一方向排列的多个微透镜。像素阵列层包括多个像素岛,每一像素岛包括沿第二方向排列的多个子像素岛;每一子像素岛划分为沿第一方向排列的多个子像素组,每一子像素组在所述透镜阵列层上的正投影落在同一微透镜内。对于在第一方向上相邻的两个像素岛,在两者邻接处的至少一个子像素组内设置有不透光区,所述不透光区的宽度大于同一像素岛内其它子像素组中相邻子像素之间的间隙的宽度。在同一个子像素岛内,一个子像素组内相邻子像素之间的各个间隙能被其余子像素组内的各个子像素对应互补。

Description

显示面板与显示装置 技术领域
本申请涉及显示技术领域,特别涉及一种显示面板与显示装置。
背景技术
裸眼3D显示技术是让人无需借助辅助工具即可产生立体视觉感受的技术,其原理为两眼视差成像,即观看者的左眼和右眼分别接收具有微小区别的图像,经过大脑的分析整合,融合成一个完美场景,使观者感知画面物体的深度,进而产生立体感。3D显示技术提升了显示效果,也提升了观看者的舒适度。
相关技术中,基于彩色滤光薄膜法(WOLED+CF)制备的有机发光二极管(OLED),在行方向(X方向)进行了子像素的细分,并通过特定的结构设计,实现了3D显示的可视空间连续,消除摩尔纹。
然而,对于发光效率更高的精细金属掩膜版(FMM)工艺制备的有机发光二极管(OLED),由于制作工艺的限制,在相同的光学设计下,采用同样的像素结构,会导致部分视角出现空洞,造成摩尔纹,影响显示效果。
发明内容
本申请提供一种显示面板,以实现裸眼3D显示的连续可视空间。
根据本申请实施例,提供一种显示面板,所述显示面板包括层叠设置的像素阵列层和透镜阵列层;其中,
所述透镜阵列层包括沿第一方向排列的多个微透镜;
所述像素阵列层包括呈阵列排布的多个像素岛,每一像素岛包括沿第二方向排列的多个子像素岛,每一子像素岛包括多个子像素,且同一子像素 岛内的各个子像素发光颜色相同;每一子像素岛划分为沿第一方向排列的多个子像素组,每一子像素组在所述透镜阵列层上的正投影落在同一微透镜内;
对于在第一方向上相邻的两个像素岛,在两者邻接处的至少一个子像素组内设置有不透光区,所述不透光区在所述第一方向上的宽度大于同一像素岛内其它子像素组中相邻子像素之间的间隙;
在同一个子像素岛内,一个子像素组内相邻子像素之间的各个间隙能被其余子像素组内的各个子像素对应互补。
在一个实施例中,在同一个子像素岛内,一个子像素组中各个所述间隙的位置、数量以及宽度之和,分别与另外两个子像素组中各个子像素的位置、数量以及宽度之和对应相同。
在一个实施例中,每一子像素岛包括沿第一方向排列的三个子像素组:第一子像素组、第二子像素组和第三子像素组,所述第二子像素组位于所述第一子像素组和所述第三子像素组之间,并且,所述第三子像素组内存在或不存在子像素。
在一个实施例中,所述第三子像素组远离所述第二子像素组的区域形成有不透光区,所述不透光区的宽度大于第一子像素组和第二子像素组内相邻子像素之间的间隙。
在一个实施例中,所述不透光区的宽度≥38μm。
在一个实施例中,每一像素岛包括用于发射红光的所述第一子像素岛、用于发射绿光的第二子像素岛,以及用于发射蓝光的第三子像素岛,所述第一子像素岛、所述第二子像素岛和所述第三子像素岛沿第二方向排列。
在一个实施例中,对于沿第一方向排列的任意两个相邻的像素岛,两者的第一子像素岛位于同一高度,两者的第二子像素岛位于同一高度,两者的第三子像素岛位于同一高度。
在一个实施例中,对于沿第一方向排列的任意两个相邻的像素岛,分 别记为第一像素岛和第二像素岛,其中,所述第一像素岛与所述第二像素岛内的各个子像素岛均不位于同一高度,并且,所述第一像素岛内的一个子像素岛在高度上远离所述第二像素岛内同种颜色的子像素岛。
在一个实施例中,在同一子像素岛内,相邻子像素之间的间隙与子像素的宽度相等或不相等。
在一个实施例中,相邻子像素之间的间隙宽度≥4μm。
在一个实施例中,所述微透镜的材质包括低折射率树脂和高折射率树脂,其中,所述高折射率树脂比所述低折射率树脂更靠近像素阵列层。
在一个实施例中,还包括隔垫层,所述隔垫层位于像素阵列层和透镜阵列层之间。
在一个实施例中,所述像素岛内发射不同颜色的子像素由不同的有机发光材料制得。
根据本申请实施例的第二方面,提供了一种显示装置,所述显示装置包括如前面所述的显示面板。
附图说明
图1为基于彩色滤光薄膜法(WOLED+CF)的有机发光二极管(OLED)像素排布图;
图2a为基于彩色滤光薄膜法(WOLED+CF)的有机发光二极管(OLED)发光光路图,图2b为图2a的局部放大图;
图3为采用精细金属掩膜版(FMM)制备的有机发光二极管(OLED)的像素排布图;
图4a为采用精细金属掩膜版(FMM)制备的有机发光二极管(OLED)的发光光路图,图4b为图4a的局部放大图;
图5为本申请实施例显示面板中的像素岛的示意图;
图6为本申请实施例显示面板的一个剖面图;
图7为本申请实施例显示面板中的多个像素岛排列示意图;
图8a为本申请实施例显示面板的光路图,图8b是图8a的局部放大图;
图9为本申请另一实施例显示面板中的像素岛的示意图;
图10为本申请另一实施例显示面板中的多个像素岛排列示意图;
图11a为本申请另一实施例显示面板的光路图,图11b是图11a的局部放大图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施例并不代表与本申请相一致的所有实施例。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
彩色滤光薄膜法(WOLED+CF)和精细金属掩膜版(FMM)的蒸镀工艺是常见的制备有机发光二极管(OLED)的工艺。彩色滤光薄膜法(WOLED+CF)一般是基于白光有机发光二极管(WOLED)结合彩色滤光膜(CF)的制备方法,首先通过制备白光发光有机发光二极管(WOLED)器件,然后通过彩色滤光膜(CF)得到三基色,再结合三基色实现彩色显示。
彩色滤光薄膜法(WOLED+CF)制备工艺中,其像素结构排布如图1所示。所述像素排布结构由列状排布的像素岛100’和透镜阵列层11组成,所述透镜阵列层11由列状排布的微透镜10组成。其中,像素岛100’a为沿X方向的第一列像素岛,像素岛100’b为沿X方向的第二列像素岛,依次类推;微透镜10a为沿X方向的第一列柱透镜,微透镜10b为沿X方向的第二列微透镜,依次类推。所述像素岛100’在行方向(X方向)细分为多个子像素1,各子像素1宽度W相同,间距G相等,且间距G与子像素的发光区域宽度W相等。所述一个像素岛100’的宽度与所述透镜阵列层11的两个微透镜10的宽度相等,并且设计同一个像素岛100’内各个子像素1与微透镜10的相对关系不构成重复单元,即多个子像素岛130中的子像素岛130R、子像素岛130G和子像素岛130B的相邻子像素1之间的各个间隙G能被其余子像素组150内的各个子像素1对应互补。即,子像素P2、子像素P4、子像素P6、子像素P8、子像素P10分别依次填充子像素P1与子像素P3之间的间隙、子像素P3与子像素P5之间的间隙、子像素P5与子像素P7之间的间隙、子像素P7与子像素P9之间的间隙、子像素P9与子像素P11之间的间隙。最终光路图如图2a、图2b所示,其中,图2b是图2a的局部放大图。可知该像素排布下,子像素发光区域相对两个柱透镜单元彼此穿插互补,使子像素出光方向在3D显示可视空间连续,摩尔纹消除。
相对于彩色滤光薄膜法(WOLED+CF)制备的有机发光二极管(OLED),运用精细金属掩膜版(FMM)的蒸镀工艺制备的有机发光二极管(OLED)发光效率更高。
然而,采用精细金属掩膜版(FMM)制备有机发光二极管(OLED)工艺有一定要求,若采用与彩色滤光薄膜法(WOLED+CF)工艺相同的光学设计与像素结构,其像素结构排布如图3所示,可知一个像素岛100’的宽度与所述透镜阵列层11的两个微透镜10的宽度相等,多个子像素岛130中的子像素岛130R、子像素岛130G和子像素岛130B的子像素1在透镜阵列层 11对应的区域内无法实现发光空间互补。虽然子像素P2、子像素P4、子像素P6分别依次填充子像素P1与子像素P3之间的间隙、子像素P3与子像素P5之间的间隙、子像素P5与子像素P7之间的间隙,但是子像素P7与子像素P9之间的间隙、子像素P9与子像素P11之间的间隙没有得到填充。对应的,其光路如图4a、图4b所示,其中,图4b是图4a的局部放大图。部分视角光路出现空洞,会导致摩尔纹的出现,无法实现与彩色滤光薄膜法(WOLED+CF)制备的有机发光二极管(OLED)同样的裸眼3D显示连续可视空间的效果。
针对上述问题,本申请实施例提供一种显示面板,如图5、图6和图7,所述显示面板包括层叠设置的像素阵列层13和透镜阵列层11。像素阵列层13和透镜阵列层11在第三方向Z(膜层沉积方向)层叠设置,位于不同的深度。其中,所述透镜阵列层11包括沿第一方向X(行方向)排列的多个微透镜10。
所述像素阵列层13包括呈阵列排布的多个像素岛100,每一像素岛100包括沿第二方向Y(列方向)排列的多个子像素岛130,每一子像素岛包括多个子像素1。同一子像素岛130内的子像素1发光颜色相同。每一子像素岛130划分为沿第一方向X排列的多个子像素组150,所述子像素岛130内的各个子像素对应划入各个子像素组150内,每一子像素组150在所述透镜阵列层11上的正投影落在同一微透镜10内。
在同一个子像素岛130内,一个子像素组150内相邻子像素1之间的各个间隙G能被其余子像素组150内的各个子像素1对应互补。
由于工艺的限制,每一子像素组150无法做到连续发光。本申请实施例利用同一子像素岛130内其它子像素组150的子像素1来填充该子像素组150内的发光空隙,从而使不连续发光的子像素组150等效为连续发光的像素结构。因而,上述设置的像素阵列层13在经过透镜阵列层11内多个微透镜10可实现3D连续显示效果。
图5示意性地示出了位于同一行的相邻两个像素岛100:像素岛100a和像素岛100b。每一像素岛100的结构相同,下面以像素岛100a为例说明其结构。像素岛100a包括三个子像素岛130:第一子像素岛130R、第二子像素岛130G和第三子像素岛130B。所述第一子像素岛130R、所述第二子像素岛130G和所述第三子像素岛130B沿列方向Y顺次排列。其中,第一子像素岛130R用于发射红光,第二子像素岛130G用于发射绿光,第三子像素岛130B用于发射蓝光。对应的,第一子像素岛130R、第二子像素岛130G和第三子像素岛130B所包含子像素1的发光材料不同。第一子像素岛130R的子像素1a具有用于发射红光的有机发光材料,第二子像素岛130G的子像素1b具有用于发射绿光的有机发光材料,第三子像素岛130B的子像素1c具有用于发射蓝光的有机发光材料。因而,在以精细金属掩膜版(FMM)蒸镀工艺进行有机发光材料蒸镀时,要分三次制作,每次蒸镀一种发光颜色的有机发光材料。
对于位于同一行的任意两个相邻的像素岛100而言,发射同种颜色光线的子像素岛130在列方向Y上位于同一高度。以图5为例,像素岛100a中用于发射红光的第一子像素岛130R与像素岛100b中用于发射红光的第一子像素岛130R在列方向上位于同一高度;像素岛100a中用于发射绿光的第二子像素岛130G与像素岛b中用于发射绿光的第二子像素岛130G在列方向上位于同一高度;像素岛100a中用于发射蓝光的第三子像素岛130B与像素岛100b中用于发射蓝光的第三子像素岛130B在列方向上位于同一高度。
第一子像素岛130R、第二子像素岛130G和第三子像素岛130B除了发光颜色不同外,其它设置均相同。下面以任一个子像素岛130为例对其结构进行说明。
每一子像素岛130包括沿行方向X排列的三个子像素组150:第一子像素组150a、第二子像素组150b和第三子像素组150c。其中,所述第二子像素组150b位于所述第一子像素组150a和所述第三子像素组150c之间。各个 子像素组150a、150b和150c中所包含的子像素1的数目可以不相等。甚至部分子像素组150内可以不设置子像素1。图5中,第一子像素组150a内设置有7个子像素1,6个间隙(每一个间隙均位于相邻两个子像素之间);第二子像素组150b内设置有6个子像素1,7个间隙;第三子像素组150c内未设置子像素1。
说明一点,文中所述的“间隙”并不表示两个子像素之间的空间未被任何固体或液体所填充,其仅在表示两个子像素未连接在一起,“间隙”仅指它们之间的空间。实际上,子像素之间的所述“间隙”通常都会被像素限定层、黑矩阵等不透光材料所填充。
第二子像素组150b内的6个子像素1的位置、宽度W,分别与第一子像素组150a内的6个间隙的位置、宽度G分别对应相等。第二子像素组150b内的6个子像素1的宽度W之和,与第一子像素组150a内的6个间隙的宽度G之和相等。这使得经过微透镜10后,第二子像素组150b内的6个子像素1所发光线能够很好填充第一子像素组150a内6个间隙对应的区域,实现此区域3D显示的连续。
类似的,第一子像素组150a内的7个子像素1的位置、宽度W,分别与第二子像素组150b内的7个间隙的位置、宽度G分别对应相等。第一子像素组150a内的7个子像素1的宽度W之和,与第二子像素组150b内的7个间隙的宽度G之和相等。第一子像素组150a内的7个子像素1能够很好地对应互补第二子像素组150b内的7个间隙。
类似的,第一子像素组150a内的7个子像素1和第二子像素组150b内的6个子像素1能够很好地对应互补第三子像素组150c的整个区域。
如前面所描述,利用精细金属掩膜版(FMM)蒸镀形成子像素1时,需在相邻像素岛的发射同种颜色的子像素1之间设置较大间距,该较大间距所对应的位置、空间通常会被不透光材料(比如,像素限定层材料或黑矩阵 材料)填充,因而,本文中也将因应FMM工艺所设计的该较大间距所对应的位置、区域称作“不透光区”。图5中,第三子像素组150c内未设置任何子像素1,因而可被整体看作是所述不透光区或所述不透光区的一部分。所述不透光区的宽度要远大于同一子像素岛130内相邻子像素1之间的间隙的宽度G。所述不透光区的宽度通常要大于或等于38μm(微米),以获得较好的工艺效果。
在所述显示面板内,所有的子像素1的形状、大小等均可相同。同一子像素岛130内,相邻子像素1之间间隙的宽度G也可相等,并且所述间隙的宽度G可与每一子像素1的宽度W相等。相邻子像素1之间间隙的宽度G通常大于等于4μm。
透镜阵列层11中各个微透镜10的作用是对各个子像素1的出光角进行收缩,使各个子像素1的出光方向在空间上不出现重叠串扰。每个微透镜10可以是柱透镜,列方向Y是所述柱透镜的长度方向,在所述列方向上,每个微透镜10可以覆盖多个像素岛100,甚至可以覆盖一整列的像素岛100。
透镜阵列层11的制作过程可包括:采用聚乙烯对苯二甲酸脂(PET)、聚甲基丙烯酸甲酯(PMMA)或树脂材料作为基材,在所述基材上通过紫外固化、压印等方式获得所需的透镜阵列层11结构。
以基材为树脂材料为例,所述透镜阵列层11可由高折射率树脂和低折射率树脂制作而成,其中,所述高折射率树脂位于靠近像素阵列层13的一侧,所述低折射率树脂位于远离像素阵列层13的一侧。
所述显示面板还可以包括隔垫层12,所述隔垫层12位于像素阵列层13和透镜阵列层11之间,用于实现透镜阵列层11的放置高度。所述隔垫层12优选为轻薄的树脂玻璃。
图7中显示了更多的像素岛100排布情况。每行中,排布有三个像素岛100:第一像素岛100a、第二像素岛100b和第三像素岛100c。每个像素岛 100的结构和相邻像素岛100之间的位置关系均与图5中相同。
图8a和图8b是图5、图7显示面板的光路图,其中图8b是图8a的局部放大图。如图8a和图8b,并结合图5、图7,第二子像素组150b中的6个子像素1(子像素P2、子像素P4、子像素P6、子像素P8、子像素P10和子像素P12)分别依次填充第一子像素组150a中的6个间隙(子像素P1与子像素P3之间的间隙、子像素P3与子像素P5之间的间隙、子像素P5与子像素P7之间的间隙、子像素P7与子像素P9之间的间隙、子像素P9与子像素P11之间的间隙、子像素P11与子像素P13之间的间隙)。最终实现如图8a和图8b所示的等效连续发光效果。该像素岛结构设计可以增加像素岛100边缘部分光覆盖的面积,从而实现连续发光,有效地消除摩尔纹,保证显示效果。
在上述实施例中,位于不同行的异色子像素岛130之间的间隙的宽度M均相等,并且大于相邻子像素1之间的间隙的宽度G。
在将上述像素岛阵列排布方式应用在27寸、分辨率为4K的显示面板上时,每一像素岛100的宽度可被设计为156μm。这是由显示面板的最终显示分辨率决定的,分辨率数即为像素岛数。
相应的,微透镜10的宽度为52μm,每一子像素组150的宽度也为52μm。
与此对应,子像素岛130内相邻子像素1之间的间隙的宽度G为4μm,这是由采用精细金属掩膜版(FMM)制备有机发光二极管(OLED)工艺要求岛内子像素间距≥4μm决定的。
相应的,在所述子像素岛130内,每一子像素1的宽度W为4μm,与相邻子像素之间间隙的宽度G相等。
同一行中,相邻像素岛100的子像素之间的间距N为56μm,所述间距N的大小为微透镜10的宽度加上一个子像素间隙的宽度G。
相应的,位于不同行的异色子像素岛130之间的间隙的宽度M为20μ m。这是由采用精细金属掩膜版(FMM)制备有机发光二极管(OLED)工艺要求异色子像素岛间距≥20μm决定。
图9是本申请另一实施例显示面板中像素岛100的结构示意图。除像素岛100外的其它结构均可与上述实施例相同。
如图9,每一像素岛100包括沿第二方向Y(列方向)排列的多个子像素岛130,图中实施例中为三个:第一子像素岛130R、第二子像素岛130G和第三子像素岛130B。所述第一子像素岛130R、所述第二子像素岛130G和所述第三子像素岛130B沿列方向Y顺次排列。其中,第一子像素岛130R中的每一子像素1a用于发射红光,第二子像素岛130G中的每一子像素1b用于发射绿光,第三子像素岛130B中的每一子像素1c用于发射蓝光。
对应的,第一子像素岛130R、第二子像素岛130G和第三子像素岛130B所包含子像素1的发光材料不同。第一子像素岛130R的子像素1a具有用于发射红光的有机发光材料,第二子像素岛130G的子像素1b具有用于发射绿光的有机发光材料,第三子像素岛130B的子像素1c具有用于发射蓝光的有机发光材料。因而,在以精细金属掩膜版(FMM)蒸镀工艺进行有机发光材料蒸镀时,要分三次制作,每次蒸镀一种发光颜色的有机发光材料。
第一子像素岛130R、第二子像素岛130G和第三子像素岛130B内部子像素的分布、排列情形相同。
图10为更多像素岛100的排布情况。请参图9和图10,每一子像素岛130包括沿行方向X排列的多个子像素组150,图中实施例为三个:第一子像素组150a、第二子像素组150b和第三子像素组150c。所述第二子像素组150b位于所述第一子像素组150a和所述第三子像素组150c之间。各个子像素组150a、150b和150c中所包含的子像素1的数目可以不相等。子像素组150的数量与微透镜10的数量相等。每一子像素组150在所述透镜阵列层11上的正投影落在同一微透镜10内。
与前面实施例中不同,第一子像素组150a、第二子像素组150b和第三子像素组150c均设置有子像素1。因为要设置对应于FMM工艺的不透光区,第三子像素组150c内的子像素1的数量较少。所述不透光区设置在第三子像素组150c内远离第一子像素组150a、第二子像素组150b的区域。
在图9中,第一子像素组150a内设置有6个子像素1,5个间隙(每一个间隙均位于相邻两个子像素之间);第二子像素组150b内设置有5个子像素1,6个间隙;第三子像素组150c内设置有2个子像素1,3个间隙(2个像素间间隙和1个不透光区)。
第二子像素组150b内的5个子像素1的位置、宽度W,以及第三子像素组150c内的2个子像素1的位置、宽度W,分别与第一子像素组150a内的5个间隙的位置、宽度G分别对应。其中,第二子像素组150b内的第1个子像素1和第三子像素组150c内的第1个子像素1,对应第一子像素组150a内的第1个间隙的两个不同区域,并在叠加后填充满所述第1个间隙的整个区域。第二子像素组150b内的第2个子像素1和第三子像素组150c内的第2个子像素1,对应第一子像素组150a内的第2个间隙的两个不同区域,并在叠加后填充满所述第2个间隙的整个区域。第二子像素组150b内的第3个子像素1,对应第一子像素组150a内的第3个间隙,两者位置对应,且宽度相同。第二子像素组150b内的第4个子像素1,对应第一子像素组150a内的第4个间隙,两者位置对应,且宽度相同。第二子像素组150b内的第5个子像素1,对应第一子像素组150a内的第5个间隙,两者位置对应,且宽度相同。
第二子像素组150b内的5个子像素1和第三子像素组150c内的2个子像素1的宽度W之和,与第一子像素组150a内的5个间隙的宽度G之和相等。这使得经过微透镜10后,第二子像素组150b和第三子像素组150c的子像素1所发光线能够很好填充第一子像素组150a内5个间隙对应的区域,实现此区域3D显示的连续。
类似的,第一子像素组150a内的6个子像素1的位置、宽度W,以及 第三子像素组150c内的2个子像素1的位置、宽度W,分别与第二子像素组150b内的6个间隙的位置、宽度G分别对应相等。其中,第一子像素组150a内的第1个子像素1和第三子像素组150c内的第1个子像素1,对应第二子像素组150b内的第1个间隙的两个不同区域,并在叠加后填充满所述第1个间隙的整个区域。第一子像素组150a内的第2个子像素1和第三子像素组150c内的第2个子像素1,对应第二子像素组150b内的第2个间隙的两个不同区域,并在叠加后填充满所述第2个间隙的整个区域。
类似的,第一子像素组150a内的6个子像素1的位置、宽度W,以及第二子像素组150b内的5个子像素1的位置、宽度W,分别与第三子像素组150c内的3个间隙的位置、宽度G分别对应相等。其中,第一子像素组150a内的第1个子像素1和第二子像素组150b内的第1个子像素1,对应第三子像素组150c内的第1个间隙的两个不同区域,并在叠加后填充满所述第1个间隙的整个区域。第一子像素组150a内的第2个子像素1和第二子像素组150b内的第2个子像素1,对应第三子像素组150c内的第2个间隙的两个不同区域,并在叠加后填充满所述第2个间隙的整个区域。第一子像素组150a内的第3至第6个子像素1和第二子像素组150b内的第3至第5个子像素1,对应第三子像素组150c内的第3个间隙的两个不同区域,并在叠加后填充满所述第3个间隙的整个区域。
由于工艺的限制,每一子像素组150无法做到连续发光。本申请上述实施例利用同一子像素岛130内其它子像素组150的子像素1来填充该子像素组150内的发光空隙,从而使不连续发光的子像素组150等效为连续发光的像素结构。因而,可实现3D连续显示效果。
位于同一行的相邻两个像素岛100在列方向上均可不处于同一高度。上述高度差可在显示效果上带来优点。如图10,第一像素岛100a与第二像素岛100b不位于同一高度,两者的高度差可以约为单个子像素1长度的一半。所述子像素1的长度指的是子像素1在第二方向上延伸的长度。
在列方向所对应的高度方向上,第二像素岛100b的第三子像素岛130B低于第一像素岛100a的第一子像素岛130R,但高于第一像素岛100a的第二子像素岛130G,并且离第一像素岛100a的第三子像素岛130B最远。即,对于同行相邻的两个像素岛100而言,同色子像素岛130在上述高度方向上离得较远。
多个第一像素岛100a排成奇数列,多个第二像素岛100b排成偶数列。每一第一像素岛100a包括沿列方向顺次排列的第一子像素岛130R、第二子像素岛130G和第三子像素岛130B。每一第二像素岛100b包括沿列方向顺次排列的第三子像素岛130B、第一子像素岛130R和第二子像素岛130G。并且,偶数列的第二像素岛100b在列方向上比奇数列的第一像素岛100a低单个子像素长度的一半。这使得:每个子像素岛都在高度方向上与相邻像素岛的两个异色子像素岛有交叠,而远离相邻像素岛的同色子像素岛。相邻像素岛中同色子像素岛设置得较远,明显对FMM蒸镀工艺有益。
举例而言,位于偶数列的第三子像素岛130B与位于奇数列的第一子像素岛130R、第二子像素岛130G在列方向上存在交叠,而远离位于奇数列的同色第三子像素岛130B。位于偶数列的第一子像素岛130R与位于奇数列的第二子像素岛130G和第三子像素岛130B在列方向上存在交叠,而远离位于奇数列的同色第一子像素岛130R。位于偶数列的第二子像素岛130G与位于奇数列的第三子像素岛130B和第一子像素岛130R在列方向上存在交叠,而远离位于奇数列的同色第二子像素岛130G。
图11a和图11b是图9、图10显示面板的光路图,其中图11b是图11a的局部放大图。如图11a和图11b,并结合图9、图10,第二子像素组150b内的5个子像素P2、P5、P8、P10与P12,以及第三子像素组150c内的2个子像素P3与P6,分别对应填充第一子像素组150a内的5个间隙(子像素P1与子像素P4之间的间隙、子像素P4与子像素P7之间的间隙、子像素P7与子像素P9之间的间隙、子像素P9与子像素P11之间的间隙,以及子像素P11 与子像素P13之间的间隙)。最终实现如图11a和图11b所示的等效连续发光效果。该像素岛结构设计可以增加像素岛100边缘部分光覆盖的面积,从而实现连续发光,有效地消除摩尔纹,保证显示效果。
在将上述像素岛阵列排布方式应用在27寸、分辨率为4K的显示面板上时,与上一实施例相同的是,每一像素岛100的宽度被设计为156μm,相应的,微透镜10的宽度为52μm,每一子像素组150的宽度为52μm。
相应的,位于不同行的异色子像素岛130之间的间隙的宽度M为20μm。这是由采用精细金属掩膜版(FMM)制备有机发光二极管(OLED)工艺要求异色子像素岛间距≥20μm决定。
与此对应,子像素岛130的区域200对应的相邻子像素1之间的间隙的宽度G为4μm,而子像素岛130的区域200对应区域之外,相邻子像素1之间的间隙的宽度G为4μm(子像素间距宽度为子像素宽度)或8μm(子像素间距宽度为子像素宽度的2倍)。这是由采用精细金属掩膜版(FMM)制备有机发光二极管(OLED)工艺要求岛内子像素间距≥4μm决定的。
相应的,在所述子像素岛130内,每一子像素1的宽度W为4μm。
相应的,相邻像素岛100的同色子像素之间的间距N为53.85μm,所述间距N的大小由位于同一行的相邻两个像素岛100在列方向上相差的子像素高度的一半来决定。
本领域技术人员在考虑说明书及实施例的公开后,很容易想到其它实施方案。本实施例能够以多种形式实施,且不应限于阐述范围,所描述的特征、结构或特性可以以任何合适的防止结合在一个或多个实施方式中。本申请的真正范围和精神由权利要求指出。

Claims (15)

  1. 一种显示面板,其特征在于,所述显示面板包括层叠设置的像素阵列层和透镜阵列层;其中,
    所述透镜阵列层包括沿第一方向排列的多个微透镜;
    所述像素阵列层包括呈阵列排布的多个像素岛,每一所述像素岛包括沿第二方向排列的多个子像素岛,每一所述子像素岛包括多个子像素,且同一子像素岛内的各个子像素发光颜色相同;每一子像素岛划分为沿第一方向排列的多个子像素组,每一子像素组在所述透镜阵列层上的正投影落在同一微透镜内;
    对于在第一方向上相邻的两个像素岛,在两者邻接处的至少一个子像素组内设置有不透光区,所述不透光区在所述第一方向上的宽度大于同一像素岛内其它子像素组中相邻子像素之间的间隙的宽度;
    在同一个子像素岛内,一个子像素组内相邻子像素之间的各个间隙能被其余子像素组内的各个子像素对应互补。
  2. 如权利要求1所述的显示面板,其特征在于,在同一个子像素岛内,一个子像素组中各个所述间隙的位置、数量以及宽度之和,分别与另外两个子像素组中各个子像素的位置、数量以及宽度之和对应相同。
  3. 如权利要求1所述的显示面板,其特征在于,每一子像素岛包括沿第一方向排列的三个子像素组:第一子像素组、第二子像素组和第三子像素组,所述第二子像素组位于所述第一子像素组和所述第三子像素组之间,并且,所述第三子像素组内存在或不存在子像素。
  4. 如权利要求3所述的显示面板,其特征在于,所述第三子像素组远离所述第二子像素组的区域形成有所述不透光区。
  5. 如权利要求1或4所述的显示面板,其特征在于,所述不透光区的宽度≥38μm。
  6. 如权利要求1所述的显示面板,其特征在于,每一像素岛包括用 于发射红光的所述第一子像素岛、用于发射绿光的第二子像素岛,以及用于发射蓝光的第三子像素岛,所述第一子像素岛、所述第二子像素岛和所述第三子像素岛沿第二方向排列。
  7. 如权利要求6所述的显示面板,其特征在于,对于沿第一方向排列的任意两个相邻的像素岛,两者的第一子像素岛位于同一高度,两者的第二子像素岛位于同一高度,两者的第三子像素岛位于同一高度。
  8. 如权利要求6所述的显示面板,其特征在于,对于沿第一方向排列的任意两个相邻的像素岛,分别记为第一像素岛和第二像素岛,其中,所述第一像素岛与所述第二像素岛内的各个子像素岛均不位于同一高度,并且,所述第一像素岛内的一个子像素岛在高度上远离所述第二像素岛内同种颜色的子像素岛。
  9. 如权利要求8所述的显示面板,其特征在于,多个所述第一像素岛排成奇数列,多个所述第二像素岛排成偶数列;
    每一所述第一像素岛包括沿列方向顺次排列的第一子像素岛、第二子像素岛和第三子像素岛,每一所述第二像素岛包括沿列方向顺次排列的第三子像素岛、第一子像素岛和第二子像素岛;
    位于偶数列的所述第二像素岛在列方向上比奇数列的第一像素岛低单个子像素长度的一半。
  10. 如权利要求1所述的显示面板,其特征在于,在同一子像素岛内,相邻子像素之间的间隙与子像素的宽度相等或不相等。
  11. 如权利要求10所述的显示面板,其特征在于,相邻子像素之间的间隙宽度≥4μm。
  12. 如权利要求1所述的显示面板,其特征在于,所述微透镜的材质包括低折射率树脂和高折射率树脂,其中,所述高折射率树脂比所述低折射率树脂更靠近像素阵列层。
  13. 如权利要求1所述的显示面板,其特征在于,还包括隔垫层,所述隔垫层位于像素阵列层和透镜阵列层之间。
  14. 如权利要求1所述的显示面板,其特征在于,所述像素岛内发射不同颜色的子像素由不同的有机发光材料制得。
  15. 一种显示装置,其特征在于,所述显示装置包括如权利要求1至14任一项所述的显示面板。
PCT/CN2022/114341 2021-09-30 2022-08-23 显示面板与显示装置 WO2023051105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111162175.9A CN113903785A (zh) 2021-09-30 2021-09-30 显示面板与显示装置
CN202111162175.9 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023051105A1 true WO2023051105A1 (zh) 2023-04-06

Family

ID=79190007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114341 WO2023051105A1 (zh) 2021-09-30 2022-08-23 显示面板与显示装置

Country Status (2)

Country Link
CN (1) CN113903785A (zh)
WO (1) WO2023051105A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903785A (zh) * 2021-09-30 2022-01-07 京东方科技集团股份有限公司 显示面板与显示装置
CN117501168A (zh) * 2022-05-12 2024-02-02 京东方科技集团股份有限公司 显示装置及其驱动方法
WO2023245551A1 (zh) * 2022-06-23 2023-12-28 京东方科技集团股份有限公司 显示装置及其驱动方法
CN115220241A (zh) * 2022-08-10 2022-10-21 京东方科技集团股份有限公司 3d显示装置和3d显示驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210057493A1 (en) * 2019-08-21 2021-02-25 Boe Technology Group Co., Ltd. Display panel and manufacturing method thereof, and display device
WO2021082765A1 (zh) * 2019-10-30 2021-05-06 京东方科技集团股份有限公司 显示装置及其显示方法
CN113311594A (zh) * 2021-05-28 2021-08-27 京东方科技集团股份有限公司 显示面板及显示设备
WO2021169576A1 (zh) * 2020-02-24 2021-09-02 京东方科技集团股份有限公司 近眼显示装置和可穿戴设备
WO2021175046A1 (zh) * 2020-03-06 2021-09-10 京东方科技集团股份有限公司 三维显示装置及其驱动方法、制作方法
CN113903785A (zh) * 2021-09-30 2022-01-07 京东方科技集团股份有限公司 显示面板与显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210057493A1 (en) * 2019-08-21 2021-02-25 Boe Technology Group Co., Ltd. Display panel and manufacturing method thereof, and display device
WO2021082765A1 (zh) * 2019-10-30 2021-05-06 京东方科技集团股份有限公司 显示装置及其显示方法
WO2021169576A1 (zh) * 2020-02-24 2021-09-02 京东方科技集团股份有限公司 近眼显示装置和可穿戴设备
WO2021175046A1 (zh) * 2020-03-06 2021-09-10 京东方科技集团股份有限公司 三维显示装置及其驱动方法、制作方法
CN113311594A (zh) * 2021-05-28 2021-08-27 京东方科技集团股份有限公司 显示面板及显示设备
CN113903785A (zh) * 2021-09-30 2022-01-07 京东方科技集团股份有限公司 显示面板与显示装置

Also Published As

Publication number Publication date
CN113903785A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2023051105A1 (zh) 显示面板与显示装置
CN111552093B (zh) 一种显示面板及其显示方法和显示装置
JP7104998B2 (ja) 3dライトフィールドledウォールディスプレイ
KR102602248B1 (ko) 광 필드 표시 장치
US20110080473A1 (en) Display panel for 3-dimensional display device and 3-dimensional display device comprising the same
WO2017092708A1 (zh) 三维显示装置及其驱动方法
US8553074B2 (en) Auto stereoscopic display improving brightness
US11164910B2 (en) Pixel structures with at least two sub-pixels having a same color
JP2009139947A (ja) 3次元映像表示装置及びその駆動方法
KR20110096086A (ko) 오토스테레오스코픽 디스플레이 디바이스
CN105492959B (zh) 多视图显示设备
CN113692547B (zh) 显示装置及其显示方法
KR102449093B1 (ko) 표시 장치
US20070236619A1 (en) Image display device
KR20080098788A (ko) 입체영상 표시장치
US20050024590A1 (en) Autostereoscopic 3-D display
CN216249824U (zh) 显示装置
CN108271013B (zh) 显示装置及显示方法
JP6951636B2 (ja) 表示装置及び表示方法
JP2012212079A (ja) 表示装置
US9549170B2 (en) Three-dimensional image display device
JP4098612B2 (ja) 三次元画像表示装置
JP2005234198A (ja) 立体視映像表示装置
JP6924586B2 (ja) 立体像表示装置
JP2006330744A (ja) 三次元画像表示装置