WO2021082765A1 - 显示装置及其显示方法 - Google Patents

显示装置及其显示方法 Download PDF

Info

Publication number
WO2021082765A1
WO2021082765A1 PCT/CN2020/115125 CN2020115125W WO2021082765A1 WO 2021082765 A1 WO2021082765 A1 WO 2021082765A1 CN 2020115125 W CN2020115125 W CN 2020115125W WO 2021082765 A1 WO2021082765 A1 WO 2021082765A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
display
island
pixels
Prior art date
Application number
PCT/CN2020/115125
Other languages
English (en)
French (fr)
Inventor
洪涛
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/288,586 priority Critical patent/US12003696B2/en
Publication of WO2021082765A1 publication Critical patent/WO2021082765A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • G01S7/06Cathode-ray tube displays or other two dimensional or three-dimensional displays
    • G01S7/20Stereoscopic displays; Three-dimensional displays; Pseudo-three-dimensional displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements

Definitions

  • the present disclosure relates to the field of display technology, and more particularly to a display device and a display method thereof.
  • the common naked-eye 3D display device with binocular parallax the displayed 3D object is a stereoscopic vision formed by displaying different images to the left and right eyes of the user.
  • the 3D display based on binocular stereo vision has the problem of convergence adjustment conflict, which causes eye fatigue and dizziness when the user wears it for a long time, which is an urgent problem to be solved in the stereo display device.
  • the present disclosure provides a display device and a display method thereof.
  • a display device includes a display panel and a microlens array located on the light exit side of the display panel, the display panel includes a plurality of pixel islands, and the microlens array includes a plurality of pixel islands corresponding to the plurality of pixel islands.
  • each microlens unit includes a plurality of sub-pixels arranged in an array, the sub-pixels in the same pixel island display the same color, and the plurality of pixel islands include a first pixel island that displays a first color, and a first pixel island that displays a second color.
  • Two pixel islands and a third pixel island displaying a third color, the first pixel island, the second pixel island, and the third pixel island adjacent to each other form a repeating unit; in the same repeating unit ,
  • the first sub-pixel in the first pixel island, the second sub-pixel in the second pixel island, and the third sub-pixel in the third pixel island are respectively located at three vertices of a triangle, wherein The position of the first sub-pixel relative to the micro lens unit corresponding to the first pixel island, the position of the second sub pixel relative to the micro lens unit corresponding to the second pixel island, and the The position of the third sub-pixel relative to the micro lens unit corresponding to the third pixel island is the same.
  • the first sub-pixel in the first pixel island, the second sub-pixel in the second pixel island, and the third sub-pixel in the third pixel island They are located at the three vertices of an isosceles triangle.
  • the shape of the pixel island and the micro lens unit are both rectangular.
  • the number of the sub-pixels in the length direction is 2k
  • the ratio of the number of the sub-pixels in the length direction to the number of the sub-pixels in the width direction Is 2i:1, where k is an integer greater than or equal to 2, and i is an integer greater than or equal to 1.
  • the length direction is parallel to the extending direction of the gate line.
  • the calculation formula of the pitch P of the micro lens unit is as follows:
  • the calculation formula for the thickness d of the micro lens unit is as follows:
  • the width of the sub-pixel is Px
  • the refractive index of the material of the micro lens unit is n
  • the preset viewing distance is L
  • the preset binocular pupil distance is T
  • the number of viewpoints is N.
  • the number of viewpoints is also the number of sub-pixels included in each pixel island.
  • the display device further includes a control unit and a rendering unit, the control unit is electrically connected to the rendering unit, and the control unit is configured to control the rendering unit to perform image rendering.
  • Each sub-pixel is electrically connected to the rendering unit.
  • a display method of a display device the display method being used in the above-mentioned display device, and the display method includes:
  • each of the pixels includes: a first sub-pixel in the first pixel island, a second sub-pixel in the second pixel island, and a third pixel island in the same repeating unit.
  • the third sub-pixel is the first sub-pixel in the first pixel island.
  • each display period includes a plurality of timings, any two timing-driven display pixels in the plurality of timings are different, and any two timing-driven display pixels are multiplexed in at least one of the pixel islands. Of sub-pixels.
  • each display period includes 2m, or 3m, or 6m time sequences, where m is a positive integer greater than or equal to 1; the image refresh frequency of each time sequence is greater than F, and F means that the human eye cannot perceive The refresh rate when the image is flickering.
  • each of the display periods includes a first time sequence, a second time sequence, and a third time sequence, a total of 3 time sequences;
  • the first pixel driven for display in the first time sequence and the second pixel driven for display in the second time sequence multiplex at least one sub-pixel in the pixel island, and the second pixel and the second pixel in the third time sequence
  • the third pixel driving the display multiplexes at least one sub-pixel in the pixel island, and the first pixel, the second pixel, and the third pixel are arranged in a direction parallel to the gate line.
  • each display period includes a first time sequence and a second time sequence, a total of 2 time sequences
  • the first pixel driven and displayed in the first time sequence and the second pixel driven and displayed in the second time sequence multiplex at least one sub-pixel in the pixel island, and the first pixel and the second pixel Arrange in a direction parallel to the data line.
  • each of the display periods includes a first time sequence, a second time sequence, a third time sequence, a fourth time sequence, a fifth time sequence, and a sixth time sequence, a total of 6 time sequences;
  • the first pixel driven for display in the first time sequence and the second pixel driven for display in the second time sequence multiplex at least one sub-pixel in the pixel island, and the second pixel and the second pixel in the third time sequence
  • the third pixel driving the display multiplexes at least one sub-pixel in the pixel island, and the first pixel, the second pixel, and the third pixel are arranged in a direction parallel to the gate line;
  • the fourth pixel driven for display in the fourth time sequence and the fifth pixel driven for display in the fifth time sequence multiplex at least one sub-pixel in the pixel island, and the fifth pixel and the fifth pixel in the sixth time sequence
  • the sixth pixel that drives the display multiplexes at least one sub-pixel in the pixel island, and the fourth pixel, the fifth pixel, and the sixth pixel are arranged in a direction parallel to the gate line;
  • the first pixel and the fourth pixel multiplex at least one sub-pixel in the pixel island, and the first pixel and the fourth pixel are arranged in a direction parallel to the data line;
  • the second pixel and the fifth pixel multiplex at least one sub-pixel in the pixel island, and the second pixel and the fifth pixel are arranged in a direction parallel to the data line;
  • the third pixel and the sixth pixel multiplex at least one sub-pixel in the pixel island, and the third pixel and the sixth pixel are arranged in a direction parallel to the data line.
  • another display method of a display device is provided, the display method is used for the display device as described above, and the display method includes:
  • each of the pixels includes the first pixel island, the second pixel island, and the third pixel island that are adjacent to each other, and the gray levels of the sub-pixels in each pixel island are all the same .
  • each display period includes a plurality of time sequences, any two time sequence-driven display pixels in the multiple time sequences are different, and any two time sequence-driven display pixels multiplex at least one of the pixel islands.
  • each display period includes 2m, or 3m, or 6m time sequences, where m is a positive integer greater than or equal to 1; the image refresh frequency of each time sequence is greater than F, and F means that the human eye cannot perceive The refresh rate when the image is flickering.
  • Fig. 1 is an imaging schematic diagram of a 3D display system with integrated imaging in the related art.
  • FIG. 2 is a schematic diagram of the structure of a display panel in the related art.
  • FIG. 3 is a schematic structural diagram of a display panel according to an exemplary embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another display panel according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a partial structure of a display panel according to an exemplary embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a partial display of a display panel in another 3D image display method according to an exemplary embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a partial display of a display panel in another 3D image display method according to an exemplary embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a partial display of a display panel in still another 3D image display method according to an exemplary embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram showing a partial display of a display panel in another 2D image display method according to an exemplary embodiment of the present disclosure.
  • the first micro lens unit 21 The first micro lens unit 21
  • the third micro lens unit 23 is the third micro lens unit 23
  • the light field display provides a feasible method to solve the user's eye fatigue and vertigo.
  • a natural 3D display is realized, which reduces human eye fatigue and vertigo.
  • the method of realizing the light field display mainly includes the integrated imaging display using a microlens array. As shown in Fig. 1, a layer of microlens array can be superimposed in front of the display element, and the integrated imaging display image can be rendered on the display element, and the microlens array can control light in various directions to form a natural 3D display.
  • the information carried by the pixels 11' on the display panel 10' is imaged by the microlenses in the microlens array 20' into a three-dimensional display object 30' .
  • one micro lens corresponds to multiple pixels composed of red sub-pixels (R sub-pixels), green sub-pixels (G sub-pixels), and blue sub-pixels (B sub-pixels).
  • R sub-pixels red sub-pixels
  • G sub-pixels green sub-pixels
  • B sub-pixels blue sub-pixels
  • each pixel 11' is composed of three sub-pixels of RGB, and the size of a microlens corresponds to 24 sub-pixels in the length direction and 24 sub-pixels in the width direction.
  • 8 ⁇ 8 pixels 11' constitute a 3D image unit, and each pixel 11' corresponds to a direction of light. Therefore, 8 ⁇ 8 pixels constitute 64 directions of light, that is, 64 viewpoints are provided.
  • the 3D image resolution of integrated imaging depends on the size of the microlens.
  • the size of the microlens needs to be reduced.
  • reducing the size of the microlens will not guarantee the number of viewpoints, which will affect the stereoscopic effect of the light field 3D display.
  • the size of the microlens for the integrated imaging display using the ordinary RGB pixel arrangement is large (corresponding to 24 ⁇ 24 sub-pixels as described above) and the 3D resolution is low, which cannot meet the visual requirements of the human eye. Therefore, on the basis of ensuring that there are enough viewpoints to realize the 3D display of the light field, how to improve the resolution of the 3D display imaging is a difficult problem to be solved in this field.
  • the display device includes a display panel 10 and a microlens array 20 (not labeled in FIG. 3) on the light emitting side of the display panel 10.
  • the display panel 10 is provided with a plurality of pixel islands
  • the micro lens array 20 is provided with a plurality of micro lens units corresponding to the pixel islands one-to-one.
  • the orthographic projection of each microlens unit on the display panel 10 coincides with the area where the corresponding pixel island is located, or is located in the area where the corresponding pixel island is located. That is, the size of each micro lens unit may be smaller than or equal to the size of a corresponding pixel island.
  • Each pixel island includes a plurality of sub-pixels arranged in an array, and the sub-pixels in the same pixel island display the same color.
  • the pixel island includes a first pixel island 11 displaying a first color, a second pixel island 12 displaying a second color, and a third pixel island 13 displaying a third color.
  • the micro lens array 20 includes: a first micro lens unit 21 corresponding to the first pixel island 11, a second micro lens unit 22 corresponding to the second pixel island 12, and
  • the third pixel island 13 corresponds to the third microlens unit 23.
  • the first pixel island 11, the second pixel island 12, and the third pixel island 13 adjacent to each other form a repeating unit, and in the same repeating unit, the first pixel island 11
  • the first sub-pixel of, the second sub-pixel in the second pixel island 12 and the third sub-pixel in the third pixel island 13 are respectively located at the three vertices of the triangle.
  • the position of the first sub-pixel relative to the micro lens unit corresponding to the first pixel island 11, the position of the second sub-pixel relative to the micro lens unit corresponding to the second pixel island 12, and the third The positions of the sub-pixels relative to the micro lens unit corresponding to the third pixel island 13 are the same.
  • FIG. 5 is a schematic diagram of a partial structure of a display panel according to an exemplary embodiment of the present disclosure.
  • the first color of the first pixel island 11 for display is red (red, R)
  • the second color of the second pixel island 12 for display is green (green, G)
  • the third pixel is The third color used by the island 13 for display is blue (blue, B).
  • the first sub-pixels B in the first column of the row are respectively located at the three vertices of the triangle.
  • each of the pixel islands corresponds to one of the micro lens units to control the beam direction
  • each sub-pixel in the pixel island corresponds to light in one direction
  • the display panel 10 and the micro lens array work together.
  • the first pixel island 11, the second pixel island 12, and the third pixel island 13 adjacent to each other in the repeating unit, and in the same repeating unit the first pixel The three sub-pixels in the island 11, the second pixel island 12, and the third pixel island 13 whose positions are the same relative to the respective microlens units are respectively located at the three vertices of the triangle.
  • the resolution of integrated imaging is improved.
  • the size of the microlens can be reduced, and the pairing can be improved as a 3D The influence of the display device on the 2D display resolution.
  • the number of the sub-pixels in the length direction X is 2k
  • the number of the sub-pixels in the length direction X is the same as the number of the sub-pixels in the width direction Y.
  • the ratio of the number of pixels is 2i:1.
  • k is an integer greater than or equal to 2
  • i is an integer greater than or equal to 1. That is, the number of sub-pixels in the length direction X of each pixel island is at least 4, and the number of sub-pixels in the width direction Y is at least 2, and the number of sub-pixels in each pixel island is at least greater than 8 to form at least 4 sub-pixels in the length direction.
  • a 3D image with at least 2 viewing angles in the width direction For example, in the examples shown in Figures 3 and 5, in each pixel island, the number of sub-pixels in the length direction is 8, and the number of sub-pixels in the width direction is 4, that is, each pixel island includes 8 ⁇ 4 sub-pixels.
  • the length direction X may be parallel to the extension direction of the gate line
  • the width direction Y may be parallel to the extension direction of the data line.
  • the minimum interval of the color film is the size of one sub-pixel, on this basis, if the resolution of the color film is to be increased, the color film will be increased.
  • the difficulty of production affects the yield rate.
  • the minimum interval of the color film is the size of a monochromatic pixel island.
  • the number of sub-pixels in the monochromatic pixel island is greater than 8, the color film can be produced in a larger unit size, thereby reducing the manufacturing process requirements of the color film, increasing the yield rate, and further reducing the improvement of the color film.
  • the difficulty of making the resolution is the size of a monochromatic pixel island.
  • the size and shape of the micro lens unit are consistent with the size and shape of the pixel island.
  • the shape of the pixel island and the micro lens unit are both rectangular.
  • the microlens array plays a role in controlling the direction of light. It should be understood that the shape of the pixel island and the microlens unit may also be other shapes besides a rectangle, for example, may also be a circle, a rhombus, a regular hexagon, or the like.
  • the calculation formula of the pitch P of the micro lens unit is as follows:
  • the calculation formula for the distance h between the micro lens unit and the display panel (which can also be referred to as the placement height of the micro lens unit) is as follows:
  • the calculation formula for the thickness d of the micro lens unit is as follows:
  • the width of the sub-pixel is Px
  • the refractive index of the material of the micro lens unit is n
  • L is the preset viewing distance
  • T is the preset binocular pupil distance
  • N is the sub-pixel included in each pixel island.
  • the number of pixels can also be called the number of viewpoints.
  • the width direction of the sub-pixel is parallel to the width direction of the micro lens unit and parallel to the extending direction of the gate line.
  • the ratio of the length to the width of each sub-pixel may be 3:1.
  • the distance h between the aforementioned micro lens unit and the display panel may refer to the distance between the optical center of the micro lens and the light exit surface of the display panel.
  • the optical center of the microlens can also be understood as the center of the microlens.
  • the above-mentioned preset viewing distance L may be determined according to the application scenario of the display device. For example, if the display device is a mobile phone, the value range of the preset viewing distance L may be 200 millimeters (mm) to 350 mm.
  • the value range of the preset viewing distance L may be 1 meter (m) to 3 m.
  • the preset binocular pupil distance T ranges from 55 mm to 75 mm, for example, the average value can be 65 mm.
  • the first sub-pixel in the first pixel island 11, the second sub-pixel in the second pixel island 12, and the second sub-pixel in the third pixel island 13 are respectively located at the three vertices of the isosceles triangle.
  • the first pixel island 11, the second pixel island 12, and the third pixel island 13 that are adjacent to each other in the repeating unit are distributed on adjacent upper and lower pixel islands. Two rows, and they are arranged staggered. Therefore, when the first pixel island 11 in the upper row is located in the middle of the second pixel island 12 and the third pixel island 13 in the corresponding positions of the next row, the first pixel island 11, The three sub-pixels in the second pixel island 12 and the third pixel island 13 with the same positions relative to the respective microlenses are respectively located at the three vertices of an isosceles triangle to facilitate the manufacture of the display panel.
  • the display device further includes a control unit 40 and a rendering unit 50, the control unit 40 is electrically connected to the rendering unit 50, and the control unit 40 is configured to control the rendering unit 50 to perform image rendering, Each sub-pixel in the pixel island is electrically connected to the rendering unit 50.
  • the rendering unit 50 may be a graphics processing unit (GPU) or a central processing unit (CPU).
  • the rendering unit 50 may be connected to each sub-pixel through a driving circuit (for example, a source driving circuit).
  • the control unit 40 may be a CPU.
  • the rendering unit 50 and the control unit 40 may be set independently of each other, or may be set in an integrated manner.
  • the display panel 10 adopts an 8K (7680 ⁇ 4320) RGB sub-pixel panel, and the actual number of sub-pixels in the length direction of the entire display panel 10 is (7680 ⁇ 3) .
  • the RGB three sub-pixels of the color fusion pixel forming a viewpoint are the first pixel island 11 displaying red, the second pixel island 12 displaying green, and the third pixel island 13 displaying blue.
  • the three sub-pixels of RGB are arranged at the three vertices of the triangle, and the color fusion pixels of the entire display panel 10 together form a color 3D image of each viewpoint.
  • by positioning the three sub-pixels of RGB in the color fusion pixel at the three vertices of the triangle it is possible to ensure that the size of the color fusion pixel formed in the display panel is relatively balanced in the horizontal and vertical directions.
  • the distance between two adjacent color fusion pixels 14 in the length direction X is 12 sub-pixels, and the distance in the width direction Y is 8 sub-pixels, so the length of the 3D image that can be realized
  • each microlens corresponds to 8 ⁇ 8 pixels, and has 8 viewpoints in the longitudinal direction and 8 viewpoints in the longitudinal direction.
  • the 3D image of the present disclosure has a higher resolution in the length direction when the number of viewpoints in the length direction is the same.
  • the general human eye is more sensitive to the improvement of the resolution in the length direction. Therefore, the improvement of the resolution in the length direction has a greater effect on the improvement of the overall visual resolution.
  • the embodiments of the present disclosure provide a display method of a display device.
  • the display method includes:
  • each display period multiple rows of pixels included in the display device are driven row by row for display.
  • each pixel includes: a first sub-pixel in the first pixel island, a second sub-pixel in the second pixel island, and a third sub-pixel in the third pixel island in the same repeating unit. Sub-pixels.
  • the image displayed by this display method is a 3D image.
  • the control unit controls the rendering unit to render the sub-pixels in the pixel islands of the repeating unit according to the corresponding gray scales, so as to form images in different directions and form integrated imaging 3D images.
  • the display method provided by the embodiment of the present disclosure may use time division multiplexing to multiplex the sub-pixels in the pixel island for display, so as to further improve the resolution of 3D image display.
  • each display period may include multiple timing sequences, any two timing-driven display pixels in the multiple timing sequences are different, and any two timing-driven display pixels multiplex at least one of the pixel islands. Sub-pixels.
  • each display period may include 2m, or 3m, or 6m time sequences, where m is a positive integer greater than or equal to 1.
  • the image refresh frequency of each time sequence is greater than F, and F is the refresh frequency when the human eye cannot perceive the flicker of the image. Since the refresh frequency when the human eye cannot perceive the flicker of the image is generally greater than 30 Hz, the F can be greater than or equal to 30 Hz.
  • the control unit controls the rendering unit to ensure that the 3D image is rendered at the correct timing and then displayed on the display panel.
  • each display cycle includes a first time sequence, a second time sequence, and a third time sequence, a total of 3 time sequences.
  • the first pixel driven and displayed in the first time sequence and the second pixel driven and displayed in the second time sequence multiplex the sub-pixels in at least one pixel island, and the second pixel is multiplexed with the third pixel driven and displayed in the third time sequence.
  • the sub-pixels in at least one pixel island are used, and the first pixel, the second pixel, and the third pixel are arranged in a direction parallel to the gate line (that is, the length direction X).
  • a display with a high refresh rate can be used.
  • the panel 10 further improves the 3D display resolution in the length direction X by time-division multiplexing adjacent sub-pixels by pixels arranged along the length direction X.
  • the first timing is timing 1
  • the second timing is timing 2
  • the same R, G, and B sub-pixels are multiplexed in timing 1 and timing 2.
  • the first timing the first first pixel in timing 1
  • the second timing the first second pixel in timing 2 share the R and B sub-pixels.
  • the first second pixel in time sequence 2 also shares the G sub-pixel with the second first pixel in time sequence 1. It should be understood that for two adjacent pixels, the first first pixel in timing 1 and the first second pixel in timing 2 share the R and B sub-pixels, and the two adjacent pixels G sub-pixels are not shared.
  • the two spatially adjacent pixels adopt the first sub-pixel in the first pixel island 11, the second sub-pixel in the second pixel island 12, and the third pixel island 13
  • the third sub-pixel part is shared, thereby realizing time division multiplexing and improving resolution.
  • the third timing is timing 3
  • the R, B, and G sub-pixels are multiplexed in timing 2 and timing 3
  • R, G, and B sub-pixels are multiplexed in timing 1 and timing 3.
  • Pixels For example, the first third pixel in timing 3 and the first second pixel in timing 2 share the G and B sub-pixels, and the second second pixel in timing 2 shares the R sub-pixel.
  • the first third pixel in the sequence 3 also shares the G and R sub-pixels with the second first pixel in the sequence 1. It can be seen from FIG. 6 that the above-mentioned first pixel, second pixel and third pixel are arranged along the length direction X.
  • the control unit controls the rendering unit to render the corresponding 3D images at different timings, so that after multiplexing, in the final length direction X, the corresponding The distance between two adjacent color fusion pixels is 4 sub-pixels.
  • the resolution in the length direction is increased by 3 times. Since there are 3 time sequences in one display cycle, the display panel 10 is required to have a refresh rate of at least 90 Hz at this time to ensure that the refresh rate of each time sequence is not less than 30 Hz, and no image flicker occurs during viewing.
  • each display cycle includes a first sequence and a second sequence, a total of 2 sequence.
  • the first pixel driven and displayed in the first time sequence and the second pixel driven and displayed in the second time sequence multiplex the sub-pixels in one or two pixel islands, and the first pixel and the second pixel are along the line parallel to the data line.
  • a display with a high refresh rate can be used.
  • the panel 10 further enhances the 3D display resolution in the width direction Y by time-division multiplexing adjacent sub-pixels by pixels arranged along the width direction Y.
  • the same R, G, and B sub-pixels are multiplexed in timing 1 and timing 2.
  • the first first pixel in timing 1 and the first second pixel in timing 2 are multiplexed with G and B sub-pixels.
  • the first second pixel in timing 2 is also the same as the second first pixel in timing 1.
  • the pixels are multiplexed with R sub-pixels.
  • the first pixel and the second pixel are arranged along the width direction Y.
  • the control unit controls the rendering unit to render the corresponding 3D images at different timings, so that after multiplexing, in the final width direction Y, the corresponding The distance between adjacent color fusion pixels is 4 sub-pixels.
  • the resolution in the width direction Y is increased by 2 times. Since there are two time sequences in one display cycle at this time, the display panel 10 is required to have a refresh rate of at least 60 Hz at this time to ensure that the refresh rate of each time sequence is not less than 30 Hz, and no image flicker occurs during viewing.
  • each display cycle includes a first time sequence, a second time sequence, a third time sequence, a fourth time sequence, a fifth time sequence, and a sixth time sequence in total 6 time sequences.
  • the first pixel driven and displayed in the first time sequence and the second pixel driven and displayed in the second time sequence multiplex the sub-pixels in at least one pixel island, and the second pixel is multiplexed with the third pixel driven and displayed in the third time sequence.
  • the sub-pixels in at least one pixel island are used, and the first pixel, the second pixel, and the third pixel are arranged in a direction parallel to the gate line.
  • the fourth pixel driven and displayed in the fourth time sequence multiplexes the sub-pixel in at least one pixel island with the fifth pixel driven and displayed in the fifth time sequence, and the fifth pixel is multiplexed with the sixth pixel driven and displayed in the sixth time sequence.
  • the sub-pixels in at least one pixel island, and the fourth pixel, the fifth pixel, and the sixth pixel are arranged in a direction parallel to the gate line.
  • the first pixel and the fourth pixel are multiplexed with the sub-pixels in at least one pixel island, and the first pixel and the fourth pixel are arranged in a direction parallel to the data line;
  • the second pixel is also multiplexed with the fifth pixel at least The sub-pixels in one pixel island, and the second pixel and the fifth pixel are arranged in a direction parallel to the data line;
  • the third pixel and the sixth pixel also multiplex the sub-pixels in at least one pixel island, and the third pixel and The sixth pixels are arranged in a direction parallel to the data line.
  • the first first pixel in timing 1 and the first second pixel in timing 2 share the R and B sub-pixels.
  • the first second pixel in timing 2 also shares B and G sub-pixels with the first third pixel in timing 3.
  • the first first pixel in timing 1 and the first fourth pixel in timing 4 share the B and G sub-pixels.
  • the first second pixel in time sequence 2 and the first fifth pixel in time sequence 5 share the R sub-pixel.
  • the first third pixel in the sequence 3 and the first sixth pixel in the sequence 6 share the R and B sub-pixels.
  • the first pixel, the second pixel, and the third pixel are all arranged along the length direction X
  • the fourth pixel, the fifth pixel and the sixth pixel are all arranged along the length direction X
  • the first pixel and the fifth pixel are arranged along the width direction Y
  • the second pixel and the fourth pixel are arranged along the width direction Y
  • the third pixel and the sixth pixel are also arranged along the width direction Y.
  • a high refresh rate can be used.
  • the display panel 10 performs 3D display resolution in the length direction X and the width direction Y by time-division multiplexing adjacent sub-pixels by pixels arranged along the length direction X, and time-division multiplexing adjacent sub-pixels by pixels arranged along the width direction Y. The rate of improvement.
  • the R, G, and B sub-pixels are multiplexed at timing 1, timing 2, timing 3, timing 4, timing 5, and timing 6, and the control unit controls the rendering unit to perform corresponding responses at different timings.
  • 3D image rendering such that after multiplexing, in the final length direction X and width direction Y, the distance between two adjacent color fusion pixels is 4 sub-pixels. Compared with the unmultiplexed case, the resolution in the length direction is increased by 3 times, and the resolution in the width direction is increased by 2 times.
  • the display panel 10 Since there are 6 time sequences in one display cycle at this time, the display panel 10 is required to have a refresh rate of at least 180 Hz at this time to ensure that the refresh rate of each time sequence is not less than 30 Hz, and image flicker does not occur during viewing.
  • another display method of a display device is provided, the display method is used for the display device as described above, and the display method includes:
  • each display period multiple rows of pixels included in the display device are driven row by row for display.
  • each pixel includes: the first pixel island, the second pixel island, and the third pixel island that are adjacent to each other, and the gray scales given to each sub-pixel in the pixel island are all the same.
  • the 2D/3D is not used.
  • the switching element (such as liquid crystal lens and birefringent lens) controls the rendering unit through the control unit so that the sub-pixels in the first pixel island, the second pixel island and the third pixel island in the repeating unit display the same gray scale, and The first pixel island, the second pixel island, and the third pixel island jointly form a color pixel, so that the entire display device displays a 2D image.
  • the pixel islands are multiplexed for display in a time-division multiplexing manner, so as to further improve the resolution of 2D image display, and reduce the 2D display effect of 3D display using a microlens array.
  • the display resolution is degraded.
  • the resolution of the 2D display will be degraded.
  • each display period may include multiple time sequences, in which any two time sequence-driven display pixels are different, and any two time sequence-driven display pixels multiplex at least one of the pixel islands.
  • time sequences are included in the same display cycle, where m is a positive integer greater than or equal to 1; the image refresh frequency of each time sequence is greater than F, and F is the time when the human eye cannot perceive the flicker of the image Refresh frequency.
  • the R, G, and B pixel islands are multiplexed in timing 1 to timing 6, the principle of which is as described above, and will not be repeated here.
  • two spatially adjacent pixels share some of the first pixel island 11, the second pixel island 12, and the third pixel island 13, thereby realizing time division multiplexing and improving resolution rate.
  • the first pixel in timing 1 and the first pixel in timing 2 share the first pixel island 11 and the third pixel island 13, and they share the second pixel island with the first pixel in timing 4.
  • the first pixel in timing 2 also shares the second pixel island 12 and the third pixel island 13 with the first pixel in timing 3, and also shares the third pixel island 13 with the first pixel in timing 5. .
  • the control unit controls the rendering unit to perform corresponding 3D image rendering at different timings, so that the resolution of the 2D display image is improved.
  • the display panel 10 Since there are 6 time sequences in one display cycle at this time, the display panel 10 is required to have a refresh rate of at least 180 Hz to ensure that the refresh rate of each time sequence is not less than 30 Hz, and image flicker does not occur during viewing.
  • the embodiment of the present disclosure reduces The size of the microlens is reduced, so even if time-division multiplexing is not used, the problem of degradation of the display resolution of 2D images has been improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种显示装置及其显示方法,以提高3D显示成像的分辨率。显示装置包括显示面板(10)和位于显示面板(10)上的出光侧的微透镜阵列(20),显示面板(10)包括的多个像素岛中,彼此相邻的显示第一颜色的第一像素岛(11)、显示第二颜色的第二像素岛(12)和显示第三颜色的第三像素岛(13)可以组成一重复单元。由于在同一重复单元中,第一像素岛(11)中、第二像素岛(12)中和第三像素岛(13)中相对于各自微透镜单元的位置相同的三个子像素分别位于三角形的三个顶点,因此三个子像素可以组成一个彩色融合像素。又由于显示装置还包括与多个像素岛一一对应的微透镜阵列(20),因此可以实现3D显示。

Description

显示装置及其显示方法
本公开要求于2019年10月30日提交的申请号为201911042575.9、发明名称为“显示装置及其显示方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示装置及其显示方法。
背景技术
目前常见的双目视差的裸眼3D显示装置,所显示的3D物体是通过向用户的左右眼分别显示不同的图像而形成的立体视觉。但是,由于基于双眼立体视觉的3D显示存在辐辏调节冲突的问题,使得用户长时间佩戴时会造成眼睛的疲劳和眩晕,这是立体显示装置中亟待解决的问题。
发明内容
本公开提供一种显示装置及其显示方法。
根据本公开实施例的第一方面,提供一种显示装置。所述显示装置包括显示面板和位于所述显示面板上的出光侧的微透镜阵列,所述显示面板包括多个像素岛,所述微透镜阵列包括与所述多个像素岛一一对应的多个微透镜单元,每个所述微透镜单元在所述显示面板上的正投影与对应的一个所述像素岛所在的区域重合,或者位于对应的一个所述像素岛所在的区域内;每个所述像素岛包括阵列排布的多个子像素,同一所述像素岛内的子像素显示的颜色相同,所述多个像素岛包括显示第一颜色的第一像素岛、显示第二颜色的第二像素岛和显示第三颜色的第三像素岛,彼此相邻的所述第一像素岛、所述第二像素岛和所述第三像素岛组成一重复单元;在同一所述重复单元中,所述第一像素岛中的第一子像素、所述第二像素岛中的第二子像素和所述第三像素岛中的第三子像素分别位于三角形的三个顶点,其中,所述第一子像素相对于所述第一像素岛对应的所述微透镜单元的位置,所述第二子像素相对于所述第二像素岛对应 的所述微透镜单元的位置,以及所述第三子像素相对于所述第三像素岛对应的所述微透镜单元的位置相同。
可选的,在同一所述重复单元中,所述第一像素岛中的第一子像素、所述第二像素岛中的第二子像素和所述第三像素岛中的第三子像素分别位于等腰三角形的三个顶点。
可选的,所述像素岛与所述微透镜单元的形状均为矩形。
可选的,在每一所述像素岛中,长度方向的所述子像素的数量为2k个,且长度方向的所述子像素的数量与所述宽度方向的所述子像素的数量之比为2i:1,其中,k为大于或等于2的整数,i为大于或等于1的整数。
可选的,所述长度方向平行于栅线的延伸方向。
可选的,所述微透镜单元的节距P的计算公式如下:
P=(N×T×Px)/(T+Px);
所述微透镜单元的曲率半径r的计算公式如下:
r=(Px×L×(N-1))/T;
所述微透镜单元与所述显示面板之间的距离h的计算公式如下:
h=(L×Px)/T;
所述微透镜单元的厚度d的计算公式如下:
d=n×r/(n-1)-n×h;
所述微透镜单元的宽度w的计算公式如下:
w=(L×N×Px)/(L+h);
其中,所述子像素的宽度为Px,所述微透镜单元的材料的折射率为n,预设的观看距离为L,预设的双眼瞳距为T,视点数为N。视点数也即是每个像素岛包括的子像素的个数。
可选的,所述显示装置还包括控制单元和渲染单元,所述控制单元与所述渲染单元电连接,且所述控制单元用于控制所述渲染单元进行图像渲染,所述像素岛中的每一子像素均与所述渲染单元电连接。
根据本公开实施例的第二方面,提供一种显示装置的显示方法,所述显示方法用于如上所述的显示装置,所述显示方法包括:
在每个显示周期内,逐行驱动所述显示装置包括的多行像素进行显示;
其中,每个所述像素包括:同一所述重复单元中的所述第一像素岛中的第 一子像素、所述第二像素岛中的第二子像素和所述第三像素岛中的第三子像素。
可选的,每个所述显示周期中包括多个时序,所述多个时序中任意两个时序驱动显示的像素不同,且任意两个时序驱动显示的像素复用至少一个所述像素岛中的子像素。
可选的,每个所述显示周期中包括2m、或者3m、或者6m个时序,其中m为大于等于1的正整数;每一所述时序的图像刷新频率大于F,F为人眼不能感知到图像的闪烁时的刷新频率。
可选的,每个所述显示周期中包括第一时序、第二时序和第三时序共3个时序;
所述第一时序中驱动显示的第一像素与所述第二时序中驱动显示的第二像素复用至少一个所述像素岛中的子像素,所述第二像素与所述第三时序中驱动显示的第三像素复用至少一个所述像素岛中的子像素,且所述第一像素、所述第二像素和所述第三像素沿平行于栅线的方向排列。
可选的,每个所述显示周期中包括第一时序和第二时序共2个时序;
所述第一时序中驱动显示的第一像素与所述第二时序中驱动显示的第二像素复用至少一个所述像素岛中的子像素,且所述第一像素和所述第二像素沿平行于数据线的方向排列。
可选的,每个所述显示周期中包括第一时序、第二时序、第三时序、第四时序、第五时序和第六时序共6个时序;
所述第一时序中驱动显示的第一像素与所述第二时序中驱动显示的第二像素复用至少一个所述像素岛中的子像素,所述第二像素与所述第三时序中驱动显示的第三像素复用至少一个所述像素岛中的子像素,且所述第一像素、所述第二像素和所述第三像素沿平行于栅线的方向排列;
所述第四时序中驱动显示的第四像素与所述第五时序中驱动显示的第五像素复用至少一个所述像素岛中的子像素,所述第五像素与所述第六时序中驱动显示的第六像素复用至少一个所述像素岛中的子像素,且所述第四像素、所述第五像素和所述第六像素沿平行于栅线的方向排列;
所述第一像素与所述第四像素复用至少一个所述像素岛中的子像素,且所述第一像素和所述第四像素沿平行于数据线的方向排列;
所述第二像素与所述第五像素复用至少一个所述像素岛中的子像素,且所 述第二像素与所述第五像素沿平行于数据线的方向排列;
所述第三像素与所述第六像素复用至少一个所述像素岛中的子像素,且所述第三像素与所述第六像素沿平行于数据线的方向排列。
根据本公开实施例的第三方面,提供显示装置的另一种显示方法,所述显示方法用于如上所述的显示装置,所述显示方法包括:
在每个显示周期内,逐行驱动所述显示装置包括的多行像素进行显示;
其中,每个所述像素包括彼此相邻的所述第一像素岛、所述第二像素岛和所述第三像素岛,且每个所述像素岛中的各个子像素的灰阶均相同。
可选的,每个所述显示周期中包括多个时序,所述多个时序中任意两个时序驱动显示的像素不同,且任意两个时序驱动显示的像素复用至少一个所述像素岛。
可选的,每个所述显示周期中包括2m、或者3m、或者6m个时序,其中m为大于等于1的正整数;每一所述时序的图像刷新频率大于F,F为人眼不能感知到图像的闪烁时的刷新频率。
附图说明
图1是相关技术中集成成像的3D显示系统的成像示意图。
图2是相关技术中的显示面板的结构示意图。
图3是本公开一示例性实施例的显示面板的结构示意图。
图4是本公开一示例性实施例的另一显示面板的结构示意图。
图5是本公开一示例性实施例的显示面板的局部结构示意图。
图6是本公开一示例性实施例的另一3D图像显示方法中显示面板的局部显示示意图。
图7是本公开一示例性实施例的又一3D图像显示方法中显示面板的局部显示示意图。
图8是本公开一示例性实施例的再一3D图像显示方法中显示面板的局部显示示意图。
图9是本公开一示例性实施例的另一2D图像显示方法中显示面板的局部显示示意图。
附图1和附图2的附图标记说明
显示面板10’
像素11’
微透镜阵列20’
三维显示物体30’
附图3至附图9的附图标记说明
显示面板10
第一像素岛11
第二像素岛12
第三像素岛13
融合像素14
微透镜阵列20
第一微透镜单元21
第二微透镜单元22
第三微透镜单元23
控制单元40
渲染单元50
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。除非另作定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词 语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。“至少一个”是指一个或多个,“多个”是指两个或两个以上。在本公开说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
目前,光场显示为解决用户眼睛疲劳和眩晕提供了一个可行的方法,通过模拟自然3D物体的光场,实现自然的3D显示,降低了人眼的疲劳和眩晕。实现光场显示的方法除了全息显示以外,主要有采用微透镜阵列的集成成像显示。如图1所示,可以在显示元件的前方叠加一层微透镜阵列,通过在显示元件上渲染集成成像的显示图像,通过微透镜阵列对各个方向光线的控制,形成自然的3D显示。
如图1所示,在集成成像的3D显示系统中,在显示空间内,显示面板10’上的像素11’所携带的信息被微透镜阵列20’中的微透镜成像成为三维显示物体30’。在一般的集成成像三维显示系统中,一个微透镜下对应多个由红色子像素(R子像素)、绿色子像素(G子像素)和蓝色子像素(B子像素)组成的像素。如图2所示,为相关技术中的一个显示面板10’,一个微透镜下对应8×8个像素11’。其中,每个像素11’由RGB三个子像素构成,则一个微透镜的尺寸对应长度方向24个子像素,宽度方向24个子像素。8×8个像素11’构成3D图像单元,每一个像素11’对应一个光线的方向,因此8×8个像素构成了64个光线方向,即提供了64个视点。
集成成像的3D图像分辨率取决于微透镜的尺寸,为了提高3D图像分辨率,需要减小微透镜的尺寸。但是,减小微透镜的尺寸将不能保证视点的数量,从而会影响光场3D显示的立体效果。目前,采用普通RGB像素排列方式集成成像显示的微透镜尺寸较大(如上述所述,对应24×24个子像素),3D分辨率较低,无法满足人眼的视觉要求。因此,在保证有足够多的视点实现光场3D显示的基础上,如何提高3D显示成像的分辨率是本领域有待解决的一个难题。
请结合图3和图4以理解,本实施案例提供一种显示装置。所述显示装置包括显示面板10和位于所述显示面板10的出光侧的微透镜阵列20(图3中未标示)。所述显示面板10设有多个像素岛,所述微透镜阵列20设有与所述像素岛一一对应的多个微透镜单元。其中,每个微透镜单元在该显示面板10上的正投影与对应的一个像素岛所在的区域重合,或者位于对应的一个像素岛所在的区域内。也即是,每个微透镜单元的尺寸可以小于或等于对应的一个像素岛的尺寸。
每个所述像素岛包括阵列排布的多个子像素,同一所述像素岛内的子像素显示的颜色相同。所述像素岛包括显示第一颜色的第一像素岛11、显示第二颜色的第二像素岛12和显示第三颜色的第三像素岛13。相应的,如图4所示,该微透镜阵列20包括:与该第一像素岛11对应的第一微透镜单元21,与该第二像素岛12对应的第二微透镜单元22,以及与该第三像素岛13对应的第三微透镜单元23。
其中,彼此相邻的所述第一像素岛11、所述第二像素岛12和所述第三像素岛13形成一重复单元,在同一所述重复单元中,所述第一像素岛11中的第一子像素、所述第二像素岛12中的第二子像素和所述第三像素岛13中的第三子像素分别位于三角形的三个顶点。并且,该第一子像素相对于第一像素岛11对应的所述微透镜单元的位置,该第二子像素相对于第二像素岛12对应的所述微透镜单元的位置,以及该第三子像素相对于第三像素岛13对应的所述微透镜单元的位置相同。
图5是本公开一示例性实施例的显示面板的局部结构示意图。如图5所示,该第一像素岛11用于显示的第一颜色为红色(red,R),第二像素岛12用于显示的第二颜色为绿色(green,G),第三像素岛13用于显示的第三颜色为蓝色(blue,B)。并且,该第一像素岛11中第一行第一列的第一子像素R,第二像素岛12中第一行第一列的第一子像素G,以及第三像素岛13中第一行第一列的第一子像素B分别位于三角形的三个顶点。
也就是说,每个所述像素岛对应一个所述微透镜单元进行光束方向的控制,所述像素岛中每个子像素对应一个方向的光线,所述显示面板10和所述微透镜阵列共同作用以实现集成成像的3D显示。基于所述重复单元中所述第一像素岛11、所述第二像素岛12和所述第三像素岛13彼此相邻的排列方式,且在同一 所述重复单元中,所述第一像素岛11中、所述第二像素岛12中和所述第三像素岛13中相对于各自所述微透镜单元的位置相同的三个子像素分别位于三角形的三个顶点的设置,能够在保证长度方向形成多个视点方向的3D图像的基础上提高集成成像的分辨率。而且,利用所述重复单元中所述第一像素岛11、所述第二像素岛12和所述第三像素岛13彼此相邻的排列方式,可以减小微透镜尺寸,能够改善对作为3D显示装置对2D显示分辨率的影响。
可选地,参考图5,在每一所述像素岛中,长度方向X的所述子像素的数量为2k个,且长度方向X的所述子像素的数量与宽度方向Y的所述子像素的数量之比为2i:1。其中,k为大于或等于2的整数,i为大于或等于1的整数。即,在每一所述像素岛长度方向X的子像素最少为4、宽度方向Y的子像素最少为2,每一所述像素岛中至少大于8个子像素数量,以形成长度方向至少4个视角,宽度方向至少2个视角的3D图像。例如,在图3和图5所示的示例中,每个像素岛中,长度方向的子像素的个数为8,宽度方向的子像素的个数为4,即每个像素岛包括8×4个子像素。
在本公开实施例中,该长度方向X可以平行于栅线的延伸方向,宽度方向Y可以平行于数据线的延伸方向。
在相关技术中,在普通的RGB子像素依次分布排列的情况下,由于彩膜的最小间隔是一个子像素的大小,在此基础上,如果要提升彩膜的分辨率,会提升彩膜的制作难度,对良率产生影响。而在本实施例中,彩膜的最小间隔是一个单色像素岛的大小。而且,由于单色像素岛中的子像素的数量大于8个,从而可以在较大的单位尺寸上制作彩膜,从而降低彩膜的制作工艺要求,提高良品率,更进一步降低了提升彩膜的分辨率的制作难度。
所述微透镜单元的大小与形状均与所述像素岛的大小与形状一致。所述像素岛与所述微透镜单元的形状均为矩形。所述微透镜阵列起着控制光线方向的作用。应理解的是,该像素岛和微透镜单元的形状还可以为除矩形之外的其他形状,例如,还可以为圆形、菱形或正六边形等。
可选地,所述微透镜单元的节距P的计算公式如下:
P=(N×T×Px)/(T+Px);
所述微透镜单元的曲率半径r的计算公式如下:
r=(Px×L(N-1))/T;
所述微透镜单元与所述显示面板之间的距离(也可以称为微透镜单元的放置高度)h的计算公式如下:
h=(L×Px)/T;
所述微透镜单元的厚度d的计算公式如下:
d=n×r/(n-1)-n×h;
所述微透镜单元的宽度w的计算公式如下:
w=(L×N×Px)/(L+h);
其中,所述子像素的宽度为Px,所述微透镜单元的材料的折射率为n,L为预设的观看距离,T为预设的双眼瞳距,N为每个像素岛包括的子像素的个数,也可以称为视点数。
应理解的是,子像素的宽度方向平行于微透镜单元的宽度方向,且平行于栅线的延伸方向。并且,每个子像素的长度与宽度的比值可以为3:1。上述微透镜单元与所述显示面板之间的距离h可以是指:微透镜的光心与显示面板的出光面之间的距离。微透镜的光心也可以理解为微透镜的中心。上述预设的观看距离L可以是根据显示装置的应用场景确定的。例如,若该显示装置为手机,则该预设的观看距离L的取值范围可以为200毫米(mm)至350mm。若该显示装置为电视,则该预设的观看距离L的取值范围可以为1米(m)至3m。预设的双眼瞳距T的取值范围为55mm至75mm,例如可以取平均值65mm。
可选地,在同一所述重复单元中,所述第一像素岛11中的第一子像素、所述第二像素岛12中的第二子像素和所述第三像素岛13中的第三子像素分别位于等腰三角形的三个顶点。
从图3和图5中可以看出,所述重复单元中彼此相邻的所述第一像素岛11、所述第二像素岛12和所述第三像素岛13,分布于相邻的上下两行,且呈相错排列。因此,当上一行中的所述第一像素岛11位于下一行相对应位置的所述第二像素岛12和所述第三像素岛13的正中,即形成所述第一像素岛11中、所述第二像素岛12中和所述第三像素岛13中相对于各自所述微透镜的位置相同的三个子像素分别位于等腰三角形的三个顶点,以方便显示面板的制作。
可选地,所述显示装置还包括控制单元40和渲染单元50,所述控制单元40与所述渲染单元50电连接,且所述控制单元40用于控制所述渲染单元50进行图像渲染,所述像素岛中的每一子像素均与所述渲染单元50电连接。
其中,该渲染单元50可以为图形处理器(graphics processing unit,GPU)或者中央处理器(central processing unit,CPU)。并且,该渲染单元50可以通过驱动电路(例如源极驱动电路)与各个子像素连接。该控制单元40可以为CPU。在本公开实施例中,该渲染单元50与该控制单元40可以相互独立设置,也可以集成设置。
请复参阅图3和图5,在本实施例中,显示面板10采用8K(7680×4320)的RGB子像素的面板,实际整个显示面板10的长度方向的子像素数量为(7680×3)。显示面板10中每个所述第一像素岛11、所述第二像素岛12和所述第三像素岛13的大小均设置为8×4个单色子像素,代表了可渲染8×4=32个方向的图像,即长度方向(也称为横向)8个视点,宽度方向(也称为纵向)4个视点,共形成32个视点的集成成像3D显示。
每个重复单元中,形成一个视点的彩色融合像素的RGB三个子像素为显示红色的第一像素岛11中、显示绿色的第二像素岛12中和显示蓝色的第三像素岛13中相对于各自所述微透镜单元的位置相同的三个子像素。RGB三个子像素位于三角形的三个顶点设置,整个显示面板10的彩色融合像素共同组成各个视点的彩色3D图像。并且,通过使彩色融合像素中RGB三个子像素位于三角形的三个顶点,可以确保显示面板中形成的彩色融合像素在横纵方向的尺寸较为均衡。
此时,如图5所示,相邻两个彩色融合像素14的长度方向X的间距为12个子像素的宽度,宽度方向Y的间距为8个子像素的长度,所以能实现的3D图像的长度方向X的分辨率为7680*3/12=1960,宽度方向Y的分辨率为4320/8=540。
而相关技术中的显示面板10的普通的RGB间隔子像素排列的方式,每个微透镜对应8×8个像素,其长度方向具有8个视点,纵向具有8个视点。其能实现的3D图像的长度方向的分辨率为7680/8=960,宽度方向的分辨率为4320/8=540。
可以看出,本公开的3D图像在长度方向视点数目相同的情况下,具有更高的长度方向的分辨率。需要解释的是,一般人眼对长度方向的分辨率提升更为敏感,因此,在长度方向上的分辨率的提升,对整体的视觉上的分辨率的提升的作用更大。
基于同一发明构思,本公开的实施例提供一种显示装置的显示方法。所述显示方法包括:
在每个显示周期内,逐行驱动所述显示装置包括的多行像素进行显示。
其中,每个像素包括:同一所述重复单元中的所述第一像素岛中的第一子像素、所述第二像素岛中的第二子像素和所述第三像素岛中的第三子像素。
通过该显示方法显示的图像为3D图像。这样,控制单元控制渲染单元对重复单元的像素岛中的子像素按照相应的灰阶进行渲染,以便形成不同方向的图像,形成集成成像的3D图像。
更进一步,本公开实施例提供的显示方法可以采用时分复用方式复用所述像素岛中的子像素进行显示,以进一步提升3D图像显示的分辨率。
可选的,该每个显示周期中可以包括多个时序,该多个时序中任意两个时序驱动显示的像素不同,且任意两个时序驱动显示的像素复用至少一个所述像素岛中的子像素。
示例的,每个显示周期中可以包括2m、或者3m、或者6m个时序,其中m为大于等于1的正整数。并且,每一时序的图像刷新频率大于F,F为人眼不能感知到图像的闪烁时的刷新频率。由于人眼不能感知到图像的闪烁时的刷新频率一般为大于30Hz,因此该F可以大于或等于30Hz。同时,为了让显示装置正确显示所需图像,控制单元控制渲染单元保证在正确的时序对3D图像进行渲染进而显示在显示面板上。
作为一种可选的实现方式,如图6所示,为本实施例的另一3D图像显示方法的显示面板10的显示示意图。该显示方法可以通过时分复用相邻子像素的方法进一步进行长度方向X的3D显示分辨率的提升。在该实现方式中,每个显示周期中包括第一时序、第二时序和第三时序共3个时序。其中,第一时序中驱动显示的第一像素与第二时序中驱动显示的第二像素复用至少一个像素岛中的子像素,该第二像素与第三时序中驱动显示的第三像素复用至少一个像素岛中的子像素,并且,该第一像素、第二像素和第三像素沿平行于栅线的方向(即该长度方向X)排列。
本实施例中所提出的基于所述重复单元中所述第一像素岛11、所述第二像素岛12和所述第三像素岛13彼此相邻的排列方式,可以采用高刷新率的显示面板10,通过沿长度方向X排列的像素时分复用相邻子像素的方法,进一步进 行长度方向X的3D显示分辨率的提升。
从图6中可看到,假设第一时序为时序1,第二时序为时序2,则在时序1和时序2复用了相同的R、G和B子像素。例如,按照由左至右的顺序,第一时序:时序1中的第一个第一像素和第二时序:时序2中的第一个第二像素共用了R和B子像素。该时序2中第一个第二像素还和时序1中第二个第一像素共用了G子像素。应理解的是,就相邻的两个像素来说,时序1中第一个第一像素和时序2中第一个第二像素共用了R和B子像素,而该相邻的两个像素并未共用G子像素。即,在相邻的时序的图像中,空间相邻的两个像素采用的第一像素岛11中的第一子像素、第二像素岛12中的第二子像素和第三像素岛13中的第三子像素部分共用,从而实现时分复用,并提高分辨率。
同理,如图6所示,假设第三时序为时序3,则在时序2和时序3时复用了R、B和G子像素,时序1和时序3时复用R、G和B子像素。例如,时序3中第一个第三像素和时序2中第一个第二像素共用了G和B子像素,且与时序2中第二个第二像素共用了R子像素。该时序3中第一个第三像素还和时序1中第二个第一像素共用了G和R子像素。从图6可以看出,上述第一像素,第二像素和第三像素沿长度方向X排列。
若显示面板中每个像素岛均包括8×4个单色子像素,则控制单元控制渲染单元分别在不同时序进行相应的3D图像的渲染,这样复用后在最终的长度方向X上,相邻两个彩色融合像素的间距为4个子像素。相比未复用的情况,长度方向的分辨率提升了3倍。由于在一个显示周期包含3个时序,此时要求显示面板10具有至少90Hz的刷新率,以保证每个时序的刷新率不小于30Hz,在观看时不发生图像的闪烁。
作为另一种可选的实现方式,如图7所示,为本实施例的又一3D图像显示方法的显示面板10的显示示意图。该显示方法可以通过时分复用相邻子像素的方法进一步进行宽度方向Y的3D显示分辨率的提升。在该实现方式中,每个显示周期中包括第一时序和第二时序共2个时序。其中,第一时序中驱动显示的第一像素与第二时序中驱动显示的第二像素复用一个或两个像素岛中的子像素,且第一像素和第二像素沿平行于数据线的方向(即宽度方向Y)排列。
本实施例中所提出的基于所述重复单元中所述第一像素岛11、所述第二像素岛12和所述第三像素岛13彼此相邻的排列方式,可以采用高刷新率的显示 面板10,通过沿宽度方向Y排列的像素时分复用相邻子像素的方法,进一步进行宽度方向Y的3D显示分辨率的提升。
从图7中可看到,在时序1和时序2时复用了相同的R、G和B子像素。例如,时序1中第一个第一像素和时序2中第一个第二像素复用了G和B子像素,该时序2中第一个第二像素还与时序1中第二个第一像素复用了R子像素。并且,上述第一像素和第二像素沿宽度方向Y排列。
若显示面板中每个像素岛均包括8×4个单色子像素,则控制单元控制渲染单元分别在不同时序进行相应的3D图像的渲染,这样复用后在最终的宽度方向Y上,相邻的彩色融合像素的间距为4个子像素。相比未复用的情况,宽度方向Y的分辨率提升了2倍。由于此时在一个显示周期包含2个时序,此时要求显示面板10具有至少60Hz的刷新率,以保证每个时序的刷新率不小于30Hz,在观看时不发生图像的闪烁。
作为再一种可选的实现方式,如图8所示,为本实施例的再一3D图像显示方法的显示面板10的显示示意图,为了同时提高长度方向X和宽度方向Y的3D显示分辨率,该显示方法采用时分复用同时对长度方向排列的子像素和宽度方向排列的子像素进行复用。在该实现方式中,每个显示周期中包括第一时序、第二时序、第三时序、第四时序、第五时序和第六时序共6个时序。
其中,第一时序中驱动显示的第一像素与第二时序中驱动显示的第二像素复用至少一个像素岛中的子像素,该第二像素与第三时序中驱动显示的第三像素复用至少一个像素岛中的子像素,且该第一像素、第二像素和第三像素沿平行于栅线的方向排列。
该第四时序中驱动显示的第四像素与第五时序中驱动显示的第五像素复用至少一个像素岛中的子像素,该第五像素与第六时序中驱动显示的第六像素复用至少一个像素岛中的子像素,且该第四像素、第五像素和第六像素沿平行于栅线的方向排列。
上述第一像素还与第四像素复用至少一个像素岛中的子像素,且该第一像素和第四像素沿平行于数据线的方向排列;上述第二像素还与第五像素复用至少一个像素岛中的子像素,且第二像素与第五像素沿平行于数据线的方向排列;上述第三像素还与第六像素复用至少一个像素岛中的子像素,且第三像素与第六像素沿平行于数据线的方向排列。
例如,参考图8,时序1中的第一个第一像素和时序2中的第一个第二像素共用了R和B子像素。该时序2中第一个第二像素还和时序3中第一个第三像素共用了B和G子像素。时序1中的第一个第一像素和时序4中的第一个第四像素共用了B和G子像素。该时序2中第一个第二像素和时序5中第一个第五像素共用了R子像素。该时序3中第一个第三像素和时序6中第一个第六像素共用了R和B子像素。上述第一像素、第二像素和第三像素均沿长度方向X排列,第四像素、第五像素和第六像素也均沿长度方向X排列。并且,上述第一像素和第五像素沿宽度方向Y排列,第二像素和第四像素沿宽度方向Y排列,第三像素和第六像素也沿宽度方向Y排列。
本公开实施例中所提出的基于所述重复单元中所述第一像素岛11、所述第二像素岛12和所述第三像素岛13彼此相邻的排列方式,可以采用高刷新率的显示面板10,通过沿长度方向X排列的像素时分复用相邻子像素,以及沿宽度方向Y排列的像素时分复用相邻子像素的方法,进行长度方向X和宽度方向Y的3D显示分辨率的提升。
本公开实施例提供的显示方法,在时序1、时序2、时序3、时序4、时序5和时序6时复用了R、G、B子像素,控制单元控制渲染单元分别在不同时序进行相应的3D图像的渲染,这样复用后在最终的长度方向X和宽度方向Y上,相邻两个彩色融合像素的间距为都为4个子像素。相比未复用的情况,长度方向的分辨率提升了3倍,宽度方向的分辨率提升了2倍。由于此时在一个显示周期包含6个时序,此时要求显示面板10具有至少180Hz的刷新率,以保证每个时序的刷新率不小于30Hz,在观看时不发生图像的闪烁。
根据本公开实施例的第三方面,提供显示装置的另一种显示方法,所述显示方法用于如上所述的显示装置,所述显示方法包括:
在每个显示周期内,逐行驱动所述显示装置包括的多行像素进行显示。
其中,每个像素包括:彼此相邻的所述第一像素岛、所述第二像素岛和所述第三像素岛,且么给所述像素岛中的各个子像素的灰阶均相同。
也就是说,本实施例中所提出的基于所述重复单元中所述第一像素岛、所述第二像素岛和所述第三像素岛彼此相邻的排列方式,在不采用2D/3D切换元件(如液晶透镜和双折射透镜),通过控制单元控制渲染单元使得重复单元中的第一像素岛、第二像素岛和所述第三像素岛中的子像素显示相同的灰阶,而 使第一像素岛、第二像素岛和所述第三像素岛共同构成一个彩色的像素,使得整个显示装置显示2D图像。
更进一步,在本公开的另一2D图像显示方法中,采用时分复用方式复用所述像素岛进行显示,以进一步提升2D图像显示的分辨率,减轻了使用微透镜阵列的3D显示对2D显示的分辨率劣化问题。在普通基于微透镜阵列的3D显示中,由于2D图像的像素大小受到微透镜尺寸的影响,2D显示分辨率会劣化。
可选地,每个显示周期中可以包括多个时序,该多个时序中任意两个时序驱动显示的像素不同,且任意两个时序驱动显示的像素复用至少一个所述像素岛。
具体地,在同一显示周期中包括2m、或者3m、或者6m个时序,其中m为大于等于1的正整数;每一时序的图像刷新频率大于F,F为人眼不能感知到图像的闪烁时的刷新频率。如图9所示,时序1至时序6复用了R、G和B像素岛,其原理如上所述,在此不在累述。在相邻的时序的图像中,空间相邻的两个像素采用第一像素岛11、第二像素岛12和第三像素岛13中的部分像素岛共用,从而实现时分复用,并提高分辨率。例如图9中,时序1中的第一个像素与时序2中的第一个像素共用了第一像素岛11和第三像素岛13,且与时序4中的第一个像素共用了第二像素岛12和第三像素岛13。时序2中的第一个像素还与时序3中的第一个像素共用了第二像素岛12和第三像素岛13,且还与时序5中的第一个像素共用了第三像素岛13。
控制单元控制渲染单元分别在不同时序进行相应的3D图像的渲染,使得2D显示图像的分辨率得到了提升。
由于此时在一个显示周期包含6个时序,因此要求显示面板10具有至少180Hz的刷新率,以保证每个时序的刷新率不小于30Hz,在观看时不发生图像的闪烁。
应当理解的是,本公开实施例所述的基于所述重复单元中所述第一像素岛11、所述第二像素岛12和所述第三像素岛13彼此相邻的排列方式,减小了微透镜的尺寸,因此即使不采用时分复用的方式,2D图像的显示分辨率劣化问题也得到了改善。
以上所述仅为本公开的示例性实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本 公开保护的范围之内。

Claims (20)

  1. 一种显示装置,包括:显示面板和位于所述显示面板的出光侧的微透镜阵列,所述显示面板包括多个像素岛,所述微透镜阵列包括与所述多个像素岛一一对应的多个微透镜单元,每个所述微透镜单元在所述显示面板上的正投影与对应的一个所述像素岛所在的区域重合,或者位于对应的一个所述像素岛所在的区域内;
    每个所述像素岛包括阵列排布的多个子像素,同一所述像素岛内的子像素显示的颜色相同,所述多个像素岛包括显示第一颜色的第一像素岛、显示第二颜色的第二像素岛和显示第三颜色的第三像素岛,彼此相邻的所述第一像素岛、所述第二像素岛和所述第三像素岛组成一重复单元;
    在同一所述重复单元中,所述第一像素岛中的第一子像素、所述第二像素岛中的第二子像素和所述第三像素岛中的第三子像素分别位于三角形的三个顶点,其中,所述第一子像素相对于所述第一像素岛对应的所述微透镜单元的位置,所述第二子像素相对于所述第二像素岛对应的所述微透镜单元的位置,以及所述第三子像素相对于所述第三像素岛对应的所述微透镜单元的位置相同。
  2. 如权利要求1所述的显示装置,其中,在同一所述重复单元中,所述第一像素岛中的第一子像素、所述第二像素岛中的第二子像素和所述第三像素岛中的第三子像素分别位于等腰三角形的三个顶点。
  3. 如权利要求1或2所述的显示装置,其中,所述像素岛与所述微透镜单元的形状均为矩形。
  4. 如权利要求3所述的显示装置,其中,在每一所述像素岛中,长度方向的所述子像素的数量为2k个,且长度方向的所述子像素的数量与宽度方向的所述子像素的数量之比为2i:1,其中,k为大于或等于2的整数,i为大于或等于1的整数。
  5. 如权利要求4所述的显示装置,其中,所述长度方向平行于栅线的延伸 方向。
  6. 如权利要求1至5中任意一项所述的显示装置,其中,所述微透镜单元的节距P根据所述子像素的宽度Px,预设的双眼瞳距T,以及每个所述像素岛包括的子像素的个数N确定;所述节距P的计算公式如下:
    P=(N×T×Px)/(T+Px)。
  7. 如权利要求1至6中任意一项所述的显示装置,其中,所述微透镜单元的曲率半径r根据所述子像素的宽度Px,预设的双眼瞳距T,每个所述像素岛包括的子像素的个数N,以及预设的观看距离L确定;所述曲率半径r的计算公式如下:
    r=(Px×L×(N-1))/T。
  8. 如权利要求1至7中任意一项所述的显示装置,其中,所述微透镜单元与所述显示面板之间的距离h根据所述子像素的宽度Px,预设的双眼瞳距T,以及预设的观看距离L确定;所述距离h的计算公式如下:
    h=(L×Px)/T。
  9. 如权利要求1至8中任意一项所述的显示装置,其中,所述微透镜单元的厚度d根据所述微透镜单元的材料的折射率n,所述微透镜单元的曲率半径r,以及所述微透镜单元与所述显示面板之间的距离h确定;所述厚度d的计算公式如下:
    d=n×r/(n-1)-n×h。
  10. 如权利要求1至9中任意一项所述的显示装置,其中,所述微透镜单元的宽度w根据所述子像素的宽度Px,所述微透镜单元与所述显示面板之间的距离h,每个所述像素岛包括的子像素的个数N,以及预设的观看距离L确定,所述微透镜单元的宽度w的计算公式如下:
    w=(L×N×Px)/(L+h)。
  11. 如权利要求1至10中任意一项所述的显示装置,其中,所述显示装置还包括控制单元和渲染单元,所述控制单元与所述渲染单元电连接,且所述控制单元用于控制所述渲染单元进行图像渲染,所述像素岛中的每一子像素均与所述渲染单元电连接。
  12. 一种显示装置的显示方法,其中,所述显示方法用于如权利要求1-11中任意一项所述的显示装置,所述显示方法包括:
    在每个显示周期内,逐行驱动所述显示装置包括的多行像素进行显示;
    其中,每个所述像素包括:同一所述重复单元中的所述第一像素岛中的第一子像素、所述第二像素岛中的第二子像素和所述第三像素岛中的第三子像素。
  13. 如权利要求12所述的显示方法,其中,每个所述显示周期中包括多个时序,所述多个时序中任意两个时序驱动显示的像素不同,且任意两个时序驱动显示的像素复用至少一个所述像素岛中的子像素。
  14. 如权利要求13所述的显示方法,其中,每个所述显示周期中包括2m、或者3m、或者6m个时序,其中m为大于等于1的正整数;每一所述时序的图像刷新频率大于F,F为人眼不能感知到图像的闪烁时的刷新频率。
  15. 如权利要求14所述的显示方法,其中,每个所述显示周期中包括第一时序、第二时序和第三时序共3个时序;
    所述第一时序中驱动显示的第一像素与所述第二时序中驱动显示的第二像素复用至少一个所述像素岛中的子像素,所述第二像素与所述第三时序中驱动显示的第三像素复用至少一个所述像素岛中的子像素,且所述第一像素、所述第二像素和所述第三像素沿平行于栅线的方向排列。
  16. 如权利要求14所述的显示方法,其中,每个所述显示周期中包括第一时序和第二时序共2个时序;
    所述第一时序中驱动显示的第一像素与所述第二时序中驱动显示的第二像素复用至少一个所述像素岛中的子像素,且所述第一像素和所述第二像素沿平 行于数据线的方向排列。
  17. 如权利要求14所述的显示方法,其中,每个所述显示周期中包括第一时序、第二时序、第三时序、第四时序、第五时序和第六时序共6个时序;
    所述第一时序中驱动显示的第一像素与所述第二时序中驱动显示的第二像素复用至少一个所述像素岛中的子像素,所述第二像素与所述第三时序中驱动显示的第三像素复用至少一个所述像素岛中的子像素,且所述第一像素、所述第二像素和所述第三像素沿平行于栅线的方向排列;
    所述第四时序中驱动显示的第四像素与所述第五时序中驱动显示的第五像素复用至少一个所述像素岛中的子像素,所述第五像素与所述第六时序中驱动显示的第六像素复用至少一个所述像素岛中的子像素,且所述第四像素、所述第五像素和所述第六像素沿平行于栅线的方向排列;
    所述第一像素与所述第四像素复用至少一个所述像素岛中的子像素,且所述第一像素和所述第四像素沿平行于数据线的方向排列;
    所述第二像素与所述第五像素复用至少一个所述像素岛中的子像素,且所述第二像素与所述第五像素沿平行于数据线的方向排列;
    所述第三像素与所述第六像素复用至少一个所述像素岛中的子像素,且所述第三像素与所述第六像素沿平行于数据线的方向排列。
  18. 一种显示装置的显示方法,其中,所述显示方法用于如权利要求1-11中任意一项所述的显示装置,所述显示方法包括:
    在每个显示周期内,逐行驱动所述显示装置包括的多行像素进行显示;
    其中,每个所述像素包括彼此相邻的所述第一像素岛、所述第二像素岛和所述第三像素岛,且每个所述像素岛中的各个子像素的灰阶均相同。
  19. 如权利要求18所述的显示方法,其中,每个所述显示周期中包括多个时序,所述多个时序中任意两个时序驱动显示的像素不同,且任意两个时序驱动显示的像素复用至少一个所述像素岛。
  20. 如权利要求19所述的显示方法,其中,每个所述显示周期中包括2m、 或者3m、或者6m个时序,其中m为大于等于1的正整数;每一所述时序的图像刷新频率大于F,F为人眼不能感知到图像的闪烁时的刷新频率。
PCT/CN2020/115125 2019-10-30 2020-09-14 显示装置及其显示方法 WO2021082765A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/288,586 US12003696B2 (en) 2019-10-30 2020-09-14 Display device and display method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911042575.9A CN110632767B (zh) 2019-10-30 2019-10-30 显示装置及其显示方法
CN201911042575.9 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021082765A1 true WO2021082765A1 (zh) 2021-05-06

Family

ID=68976768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115125 WO2021082765A1 (zh) 2019-10-30 2020-09-14 显示装置及其显示方法

Country Status (2)

Country Link
CN (1) CN110632767B (zh)
WO (1) WO2021082765A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051105A1 (zh) * 2021-09-30 2023-04-06 京东方科技集团股份有限公司 显示面板与显示装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632767B (zh) * 2019-10-30 2022-05-24 京东方科技集团股份有限公司 显示装置及其显示方法
CN113495365B (zh) * 2020-04-03 2022-09-30 驻景(广州)科技有限公司 以子像素为显示单元的单目多视图显示方法
CN112117317B (zh) * 2020-09-23 2024-05-28 京东方科技集团股份有限公司 一种像素结构以及显示装置
CN114495830B (zh) * 2020-11-12 2023-10-24 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN114945972B (zh) * 2020-11-20 2023-09-08 京东方科技集团股份有限公司 显示装置及其驱动方法
US11842684B2 (en) * 2020-12-09 2023-12-12 Boe Technology Group Co., Ltd. Display panel and method for driving the same, and display apparatus
CN115398525A (zh) 2020-12-18 2022-11-25 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
US20240005826A1 (en) * 2020-12-21 2024-01-04 Boe Technology Group Co., Ltd. Display device and driving method therefor
US20230164302A1 (en) * 2021-01-25 2023-05-25 Boe Technology Group Co., Ltd. Display apparatus and driving method thereof
CN115250633A (zh) * 2021-02-26 2022-10-28 京东方科技集团股份有限公司 显示面板、显示装置及驱动方法
CN113376860A (zh) * 2021-06-23 2021-09-10 南方科技大学 一种立体显示装置
CN113556529B (zh) * 2021-07-30 2022-07-19 中山大学 一种高分辨率光场图像显示方法、装置、设备和介质
CN114079765B (zh) * 2021-11-17 2024-05-28 京东方科技集团股份有限公司 图像显示方法、装置及系统
CN114114706B (zh) * 2021-11-30 2024-03-15 京东方科技集团股份有限公司 显示面板与显示装置
WO2023206428A1 (zh) * 2022-04-29 2023-11-02 京东方科技集团股份有限公司 显示数据处理方法和装置、以及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062626A (ja) * 2003-08-18 2005-03-10 Seiko Epson Corp 投射型表示装置
US20080252558A1 (en) * 2007-04-16 2008-10-16 Samsung Electronics Co., Ltd. Color display apparatus
CN106531072A (zh) * 2016-12-30 2017-03-22 上海天马有机发光显示技术有限公司 一种显示基板、显示面板、显示装置及像素渲染方法
CN106773081A (zh) * 2016-11-29 2017-05-31 南京中电熊猫液晶显示科技有限公司 集成成像三维显示装置
CN107561723A (zh) * 2017-10-13 2018-01-09 京东方科技集团股份有限公司 显示面板和显示装置
CN107993580A (zh) * 2017-11-30 2018-05-04 武汉天马微电子有限公司 阵列基板、显示面板、显示装置和阵列基板的驱动方法
CN110632767A (zh) * 2019-10-30 2019-12-31 京东方科技集团股份有限公司 显示装置及其显示方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311337A (en) * 1992-09-23 1994-05-10 Honeywell Inc. Color mosaic matrix display having expanded or reduced hexagonal dot pattern
TWI355548B (en) * 2006-11-22 2012-01-01 Au Optronics Corp Pixel array and display panel and display thereof
CN103886808B (zh) * 2014-02-21 2016-02-24 北京京东方光电科技有限公司 显示方法和显示装置
CN103903524B (zh) * 2014-03-25 2016-06-15 京东方科技集团股份有限公司 显示方法
CN105807438B (zh) * 2016-04-25 2018-11-20 中山大学 一种增加视点呈现数目的时分复用模组和方法
CN107783304B (zh) * 2017-11-08 2020-04-28 京东方科技集团股份有限公司 显示装置和显示装置的驱动方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062626A (ja) * 2003-08-18 2005-03-10 Seiko Epson Corp 投射型表示装置
US20080252558A1 (en) * 2007-04-16 2008-10-16 Samsung Electronics Co., Ltd. Color display apparatus
CN106773081A (zh) * 2016-11-29 2017-05-31 南京中电熊猫液晶显示科技有限公司 集成成像三维显示装置
CN106531072A (zh) * 2016-12-30 2017-03-22 上海天马有机发光显示技术有限公司 一种显示基板、显示面板、显示装置及像素渲染方法
CN107561723A (zh) * 2017-10-13 2018-01-09 京东方科技集团股份有限公司 显示面板和显示装置
CN107993580A (zh) * 2017-11-30 2018-05-04 武汉天马微电子有限公司 阵列基板、显示面板、显示装置和阵列基板的驱动方法
CN110632767A (zh) * 2019-10-30 2019-12-31 京东方科技集团股份有限公司 显示装置及其显示方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051105A1 (zh) * 2021-09-30 2023-04-06 京东方科技集团股份有限公司 显示面板与显示装置

Also Published As

Publication number Publication date
CN110632767A (zh) 2019-12-31
US20220311991A1 (en) 2022-09-29
CN110632767B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2021082765A1 (zh) 显示装置及其显示方法
US10459126B2 (en) Visual display with time multiplexing
KR101897479B1 (ko) 오토스테레오스코픽 디스플레이 디바이스
CN102902071B (zh) 自动立体3d显示设备
TWI493527B (zh) 具有循序驅動架構的顯示器
US8553030B2 (en) Stereo display apparatus and lens array thereof
CN105182553B (zh) 一种显示装置
US7997748B2 (en) Stereoscopic display device
KR102606673B1 (ko) 표시 패널, 입체 영상 표시 패널 및 표시 장치
CN107783304A (zh) 显示装置和显示装置的驱动方法
WO2017092453A1 (zh) 三维显示装置及其驱动方法
US20090109127A1 (en) Three-Dimensional Image Display Device and a Displaying Method Thereof
WO2017118058A1 (zh) 三维显示装置及其驱动方法
KR20180099781A (ko) 무안경 입체 디스플레이 장치 및 디스플레이 방법
US10642061B2 (en) Display panel and display apparatus
CN105388623B (zh) 一种显示装置
CN105744253A (zh) 自动立体三维显示设备
JP2013076724A (ja) 表示装置、表示パネル、および電子機器
JP2013141234A (ja) 3次元画像表示装置
CN111638600B (zh) 一种近眼显示的方法、装置及可穿戴设备
US20240036351A1 (en) Display panel and display apparatus
CN113311594B (zh) 显示面板及显示设备
CN203482339U (zh) 三维显示设备
CN206133120U (zh) 一种显示面板和显示装置
US12003696B2 (en) Display device and display method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880918

Country of ref document: EP

Kind code of ref document: A1