WO2021168621A1 - 电子设备、显示装置及其驱动方法 - Google Patents

电子设备、显示装置及其驱动方法 Download PDF

Info

Publication number
WO2021168621A1
WO2021168621A1 PCT/CN2020/076464 CN2020076464W WO2021168621A1 WO 2021168621 A1 WO2021168621 A1 WO 2021168621A1 CN 2020076464 W CN2020076464 W CN 2020076464W WO 2021168621 A1 WO2021168621 A1 WO 2021168621A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
polarized light
display device
depth
metasurface
Prior art date
Application number
PCT/CN2020/076464
Other languages
English (en)
French (fr)
Inventor
洪涛
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/076464 priority Critical patent/WO2021168621A1/zh
Priority to US17/422,456 priority patent/US20220342232A1/en
Priority to CN202080000177.5A priority patent/CN113574445B/zh
Publication of WO2021168621A1 publication Critical patent/WO2021168621A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/52Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems

Definitions

  • the present disclosure relates to the field of display technology, and in particular to an electronic device, a display device, and a driving method of the display device.
  • the integrated imaging technology is a common three-dimensional display technology, which generally uses a microlens array or a microhole array to optically reproduce the spatial position of the image on the display panel in space in the original scene, thereby forming a three-dimensional image.
  • the size of the depth-of-field range is an important indicator of the integrated imaging display, which indicates how much space can be displayed in a clear three-dimensional image.
  • the existing integrated imaging display device has a small depth of field, and the display effect needs to be improved.
  • the purpose of the present disclosure is to provide an electronic device, a display device, and a driving method of the display device.
  • a display device including:
  • the display panel is used to display multiple depth-of-field images in a time-sharing period of one frame
  • the polarization conversion layer is arranged on the light exit side of the display panel, and is used to convert light of images with different depths of field into polarized light of different polarization states;
  • the lens layer is arranged on the side of the polarization conversion layer facing away from the display panel, and includes a plurality of lens units, and each of the lens units includes a metasurface lens.
  • the depth image includes a first depth image and a second depth image
  • the polarization conversion layer is used to convert light of the first depth image into first polarized light
  • the light of the second depth image is converted into second polarized light; the first polarized light and the second polarized light are circularly polarized light with opposite rotation directions.
  • each of the lens units further includes a micro lens, the metasurface lens is located between the micro lens and the polarization conversion layer, and the lens unit opposes the second lens.
  • the image distance between the first polarized light and the second polarized light meets the following conditions:
  • l 1 is the image distance of the lens unit for imaging the first polarized light
  • l 2 is the image distance of the lens unit for imaging the second polarized light
  • f a is the focal length of the microlens
  • f b is the focal length of the metasurface lens to the first polarized light
  • -f b is the focal length of the metasurface lens to the second polarized light
  • d is the distance between the microlens and the metasurface lens
  • D is the distance between the display panel and the metasurface lens
  • the display panel includes a plurality of sub-pixels, and the depth range of the lens unit for imaging the first polarized light and the second polarized light meets the following conditions:
  • ⁇ Z 1 is the depth range of the lens unit imaging the first polarized light
  • ⁇ Z 2 is the depth range of the lens unit imaging the second polarized light
  • P X is the size of the sub-pixel
  • P MLA is the distance between two adjacent lens units.
  • each of the lens units further includes a microlens, and the metasurface lens is located between the microlens and the polarization conversion layer; the display panel includes a one-to-one correspondence
  • each of the plurality of pixel islands of the microlens each of the pixel islands includes a plurality of sub-pixels arranged in an array; the plurality of sub-pixels are divided into a plurality of pixels, and each of the pixels includes a plurality of different colors. Of sub-pixels.
  • the colors of sub-pixels of the same pixel island are the same, and the plurality of pixel islands are divided into a plurality of pixel island groups, and each of the pixel island groups includes different colors.
  • sub-pixels with the same relative positions of the microlenses corresponding to each of the pixel islands constitute one pixel.
  • each of the pixels includes three sub-pixels distributed in a triangle.
  • the lens unit further includes a microlens, the number of the metasurface lens is multiple, and each metasurface lens is laminated on the microlens and the polarization conversion layer between.
  • each of the lens units further includes a microlens, the metasurface lens is located between the microlens and the polarization conversion layer, the polarization conversion layer and the polarization conversion layer A transparent first separation layer is provided between the metasurface lenses; a transparent second separation layer is provided between the metasurface lenses and the microlenses.
  • the display device further includes:
  • a polarization control circuit for controlling the polarization conversion layer to convert the light of the different depth-of-field images into polarized light of different polarization states
  • the image rendering circuit is used to control the display panel to display multiple depth-of-field images in a time-sharing period of one frame.
  • the microlens of each lens unit is an integrated structure
  • the metasurface lens of each lens unit is an integrated structure
  • a driving method of a display device the display device being the display device described in any one of the above, and the driving method includes:
  • the polarization conversion layer is controlled to convert the light of images with different depths of field into polarized light of different polarization states.
  • an electronic device including the display device described in any one of the above.
  • FIG. 1 is a schematic diagram of an embodiment of the display device of the present disclosure.
  • FIG. 2 is a block diagram of the circuit principle of an embodiment of the display device of the present disclosure.
  • FIG. 3 is an imaging principle diagram of an embodiment of the display device of the present disclosure.
  • FIG. 4 is a schematic diagram of the positive refractive power of a metasurface lens in an embodiment of the display device of the present disclosure.
  • FIG. 5 is a schematic diagram of the negative refractive power of the metasurface lens in an embodiment of the display device of the present disclosure.
  • FIG. 6 is a schematic diagram of pixel distribution of an embodiment of the display device of the present disclosure.
  • FIG. 7 is a schematic diagram of the optical path of the lens unit of an embodiment of the display device of the present disclosure.
  • the embodiments of the present disclosure propose a display device that can display a three-dimensional image in an integrated imaging manner.
  • the display device includes a display panel 1, a polarization conversion layer 2 and a lens layer 3, wherein:
  • the display panel 1 is used for time-sharing display of multiple depth-of-field images within one frame.
  • the polarization conversion layer 2 is provided on the light exit side of the display panel 1 and is used to convert light of images with different depths of field into polarized light of different polarization states.
  • the lens layer 3 is provided on the side of the polarization conversion layer 2 facing away from the display panel 1, and the lens layer 3 includes a plurality of lens units 31, and each lens unit 31 includes a metasurface lens 301.
  • the light showing the depth image of the display panel 1 can be converted into different polarized light through the polarization conversion layer 2; due to the polarization selectivity of the metasurface lens 301, the lens unit 31 can react to different polarization states.
  • the polarized light has different focal lengths, so that different central depth planes and depth ranges can be generated by the lens unit 31, and multiple depth ranges are superimposed to form the visible range of a three-dimensional image, thereby expanding the visible range of the display device 1.
  • the lens unit 31 including the metasurface lens 301 can better correct aberrations and improve the display effect of the three-dimensional display.
  • the display panel 1 may be an OLED (Organic Light Emitting Diode, organic light emitting diode) display panel, or a liquid crystal display panel, as long as it can display images.
  • OLED Organic Light Emitting Diode, organic light emitting diode
  • the display panel 1 can emit light to one side, the side where the light is emitted is the light-emitting side, and the side facing away from the light-emitting layer is the backlight layer.
  • One frame of time for displaying an image on the display panel 1 can be divided into multiple time periods, and each time period can display a depth image, that is, multiple depth images are time-divisionally displayed within one frame.
  • the specific content of the depth image is not specifically limited here, as long as it can produce a three-dimensional image after passing through the lens layer 3.
  • one frame time can be divided into two periods, and the number of depth images is two, including the first depth image and the second depth image, and each period displays a depth image.
  • the display device of the present disclosure may further include an image rendering circuit 4, which is connected to the display panel 1 and can control The display panel 1 time-divisionally displays multiple depth images within one frame.
  • the polarization conversion layer 2 is provided on the light exit side of the display panel 1, and it can convert the light of images with different depths of field into polarized light of different polarization states.
  • the polarization conversion layer 2 may include a liquid crystal phase modulator to convert the polarization state of the light to obtain polarized light with different polarization states, for example, convert the light emitted by the display panel 1 into circularly polarized light with different rotation directions.
  • the depth-of-field image includes a first depth-of-field image and a second depth-of-field image
  • the polarization conversion layer 2 can convert the light of the first depth-of-field image into first polarized light, and convert the light of the second depth-of-field image into The second polarized light, wherein the first polarized light and the second polarized light are circularly polarized light with opposite rotation directions, for example, the first polarized light is left-handed circularly polarized light, and the second polarized light is right-handed circularly polarized light.
  • the display device may further include a polarization control circuit 5, which can be connected to the polarization conversion layer 2 and can control the polarization conversion layer 2 to convert light of images with different depths of field into Polarized light in different polarization states.
  • the polarization control circuit 5 can also be connected to the image rendering circuit 4 to ensure that the state of the depth image and the polarization conversion layer 2 changes synchronously. For example, when the display panel 1 displays the first depth image, the polarization conversion layer 2 changes the first depth image When the light of the second depth of field image is displayed on the display panel 1, the polarization conversion layer 2 converts the light of the second depth of field image into the second polarized light.
  • the lens layer 3 is provided on the side of the polarization conversion layer 2 facing away from the display panel 1, and the lens layer 3 may include a plurality of lens units 31, each lens unit 31 is arranged in an array, and each lens unit 31 includes a metasurface Lens 301.
  • the metasurface lens 301 has polarization selectivity, and exhibits different optical power characteristics for incident light with different polarization states. Therefore, light rays of different polarization states can be formed into different depth ranges through the metasurface lens 301, and the positions of the center depth planes of each depth range are different, and the depth ranges of each depth range are superimposed to form the depth range of the display device, thereby increasing the display device. Depending on the scope.
  • the depth-of-field image includes a first depth-of-field image and a second depth-of-field image.
  • the light is right-handed circularly polarized light R (R rotation in FIG. 3).
  • R rotation in FIG. 3 the left circularly polarized light 301 passes over the surface of the lens, the lens surface 301 over the performance of positive refractive power, at this time, according to the principles of integrated image display device formed in a first plane of the central depth S 1 of 4
  • a three-dimensional image with a depth of field ⁇ Z 1 is the first three-dimensional image X 1 .
  • FIG. 3 the first three-dimensional image X 1 .
  • the display device is positioned at the second central depth plane S 2 A three-dimensional image of the second depth range ⁇ Z 2 is formed, that is, the second three-dimensional image X 2 .
  • the first depth range ⁇ Z 1 and the second depth range ⁇ Z 2 are superimposed to form the depth range of the display device.
  • each lens unit 31 may further include a microlens 302, the metasurface lens 301 is located between the microlens 302 and the polarization conversion layer 2, and the display panel 1 displays the depth of field image. After the light passes through the metasurface lens 301 and the micro lens 302, a three-dimensional image can be formed.
  • the specific structure of the microlens 101 is not specifically limited here.
  • the metasurface lens 301 of each lens unit 31 is distributed in an array and is an integrated structure.
  • the microlenses 302 of each lens unit 31 are arranged in an array, and are arranged in one-to-one correspondence with the metasurface lenses 301, and each metasurface lens 102 is an integrated structure.
  • a transparent first separation layer 6 may be provided between the polarization conversion layer 2 and the metasurface lens 301, and a transparent second separation layer 7 may be provided between the metasurface lens 301 and the microlens 302.
  • the materials of the first separation layer 6 and the second separation layer 7 are not particularly limited here, as long as they are transparent materials.
  • the number of metasurface lenses 301 of the lens unit 31 is plural, and each metasurface lens 301 of each lens unit 31 is laminated between the microlens 302 and the polarization conversion layer 2. Thereby, the depth of field can be further expanded.
  • the lens unit 31 formed by the superposition of a plurality of metasurface lenses 301 and microlenses 302 can better correct aberrations, improve the display effect of three-dimensional display, for example, obtain better Contrast, larger viewing angle, etc.
  • the display panel 1 may include a plurality of pixel islands 100, and each pixel island 100 is arranged in a one-to-one correspondence with each microlens 302, that is, each pixel island 100 is located on the lens layer 3
  • the projections are located in the range of each microlens 302 in a one-to-one correspondence, and the light emitted from each pixel island 100 can pass through the corresponding lens layer 3.
  • Each pixel island 100 includes a plurality of sub-pixels arranged in an array, and the plurality of sub-pixels are divided into a plurality of pixels 200.
  • Each pixel 200 includes a plurality of sub-pixels with different colors. For example, each pixel 200 includes three different colors.
  • the sub-pixels are red R sub-pixels, green G sub-pixels, and blue B sub-pixels.
  • each pixel island group 300 includes multiple pixel islands 100 with different colors, for example, each pixel
  • the island group 300 includes three pixel islands 100, where the sub-pixels of one pixel island 100 are all R sub-pixels, the sub-pixels of one pixel island 100 are all G sub-pixels, and the sub-pixels of one pixel island 100 are all B sub-pixels.
  • each sub-pixel of a pixel 200 is distributed in each pixel island 100 of the same pixel island group 300 in a one-to-one correspondence, and the three sub-pixels are distributed in a triangular shape.
  • the depth-of-field image includes a first depth-of-field image and a second depth-of-field image, and the image distance at which the lens unit 31 images the first polarized light and the second polarized light meets the following conditions:
  • l 1 is the image distance of the lens unit 31 for imaging the first polarized light
  • l 2 is the image distance of the lens unit 31 for imaging the second polarized light
  • f a is the focal length of the micro lens 302
  • f b is the focal length of the metasurface lens 301 for the first polarized light
  • -f b is the focal length of the metasurface lens 301 for the second polarized light
  • d is the distance between the micro lens 302 and the metasurface lens 301
  • D is the distance between the display panel 1 and the metasurface lens 301.
  • the display panel 1 includes a plurality of sub-pixels, and the depth range of the lens unit 31 for imaging the first polarized light and the second polarized light meets the following conditions:
  • ⁇ Z 1 is the depth range of the lens unit 31 imaging the first polarized light
  • ⁇ Z 2 is the depth range of the lens unit 31 imaging the second polarized light
  • P X is the size of the sub-pixel, for example, the sub-pixel is rectangular
  • P X is the width of the sub-pixel
  • P MLA is the distance between two adjacent lens units 31.
  • the imaging formula of the lens is:
  • f is the focal length of the lens unit 31
  • l′ is the object distance of the lens unit 31, that is, the object distance of the display panel 1 relative to the lens unit 31.
  • the calculation formula of the focal length f of the lens unit 31 is:
  • f a is the focal length of the microlens 302
  • f b is the focal length of the metasurface lens 301 for the first polarized light
  • -f b is the focal length of the metasurface lens 301 for the second polarized light
  • d is the microlens 302 and the metasurface The distance of the lens 301.
  • the back focal length B of the lens unit 31 (that is, the distance between the metasurface lens 301 and the focal point) is obtained by the following formula:
  • the back intercept B'of the lens unit 31 (that is, the distance between the metasurface lens 301 and the focal point) is obtained by the following formula:
  • P 1 is the position of the first principal plane of the lens unit 31
  • P 2 is the position of the second principal plane of the lens unit 31.
  • the object distance is:
  • the image distance l 1 of the lens unit 31 imaging the first polarized light is:
  • the image distance l 2 of the lens unit 31 imaging the second polarized light is:
  • the embodiments of the present disclosure also provide a method for driving a display device.
  • the display device may be the display device of any of the above-mentioned embodiments, and the structure of the display device will not be repeated here.
  • the driving method includes step S110 and step S120, wherein:
  • Step S110 Make the display panel time-division display each of the depth images within one frame.
  • Step S120 controlling the polarization conversion layer to convert light of images with different depths of field into polarized light of different polarization states.
  • the time of one frame can be divided into two time periods, for example, the first time period and the second time period.
  • the time of one frame is less than the refresh time of the human eye, and the refresh time of the general human eye can be 1. /30 seconds.
  • the display panel 1 displays the first depth image
  • the polarization conversion layer 2 converts the light of the first depth image into first polarized light (left-handed circularly polarized light).
  • the first polarized light passes through the lens unit 31 to form a first The first three-dimensional image of the range of depth of field;
  • the display panel 1 displays the second depth image
  • the polarization conversion layer 2 converts the light of the first depth image into second polarized light (right-handed circularly polarized light), and the second polarized light passes through the lens unit 31 to form a second polarized light.
  • the depth ranges of the first three-dimensional image and the second three-dimensional image are superimposed to synthesize the three-dimensional image.
  • the example embodiments described here can be implemented by software, or can be implemented by combining software with necessary hardware. Therefore, the technical solution according to the embodiments of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network , Including several instructions to make a computing device (which may be a personal computer, a server, a mobile terminal, or a network device, etc.) execute the method according to the embodiments of the present disclosure.
  • a non-volatile storage medium which can be a CD-ROM, U disk, mobile hard disk, etc.
  • Including several instructions to make a computing device which may be a personal computer, a server, a mobile terminal, or a network device, etc.
  • the embodiments of the present disclosure also provide an electronic device, including the display device of any of the above embodiments, the structure and beneficial effects of which will not be described in detail here.
  • the electronic device can be a mobile phone, a tablet computer, a TV, etc., but is not limited to this, and can also be other electronic devices that can perform three-dimensional display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

本公开涉及一种电子设备、显示装置及显示装置的驱动方法,涉及显示技术领域。该显示装置包括显示面板、偏振转换层和透镜层。显示面板用于在一帧的时间内分时显示多个景深图像。偏振转换层设于显示面板的出光侧,用于将不同的景深图像的光线转换为不同偏振态的偏振光。透镜层设于偏振转换层背离显示面板的一侧,且包括多个透镜单元,每个透镜单元包括超表面透镜。

Description

电子设备、显示装置及其驱动方法 技术领域
本公开涉及显示技术领域,尤其涉及一种电子设备、显示装置及显示装置的驱动方法。
背景技术
集成成像技术是一种常见的三维显示技术,其一般是通过微透镜阵列或者微孔阵列使显示面板上的图像在空间中光学再现原有场景中的空间位置,从而形成三维图像。其中,景深范围的大小是集成成像显示的重要指标,它表示在多大空间范围内能显示清晰的三维图像。但是,现有集成成像的显示装置的景深范围较小,显示效果有待提高。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种电子设备、显示装置及显示装置的驱动方法。
根据本公开的一个方面,提供一种显示装置,包括:
显示面板,用于在一帧的时间内分时显示多个景深图像;
偏振转换层,设于所述显示面板的出光侧,用于将不同的景深图像的光线转换为不同偏振态的偏振光;
透镜层,设于所述偏振转换层背离所述显示面板的一侧,且包括多个透镜单元,每个所述透镜单元包括超表面透镜。
在本公开的一种示例性实施例中,所述景深图像包括第一景深图像和第二景深图像,所述偏振转换层用于将所述第一景深图像的光线转换为第一偏振光,将所述第二景深图像的光线转换为第二偏振光;所述第一偏振光和所述第二偏振光为旋转方向相反的圆偏振光。
在本公开的一种示例性实施例中,每个所述透镜单元还包括微透镜,所述超表面透镜位于所述微透镜和所述偏振转换层之间,所述透镜单元对所述第一偏振光和所述第二偏振光成像的像距符合以下条件:
Figure PCTCN2020076464-appb-000001
Figure PCTCN2020076464-appb-000002
其中,l 1为所述透镜单元对所述第一偏振光成像的像距;l 2为所述透镜单元对所述第二偏振光成像的像距;
f a为所述微透镜的焦距,f b为所述超表面透镜对所述第一偏振光的焦距;-f b为所述超表面透镜对所述第二偏振光的焦距;
d为所述微透镜和所述超表面透镜的距离,D为所述显示面板与所述超表面透镜的距离。
在本公开的一种示例性实施例中,所述显示面板包括多个子像素,所述透镜单元对所述第一偏振光和所述第二偏振光成像的景深范围符合以下条件:
Figure PCTCN2020076464-appb-000003
Figure PCTCN2020076464-appb-000004
其中,ΔZ 1为所述透镜单元对所述第一偏振光成像的景深范围,ΔZ 2为所述透镜单元对所述第二偏振光成像的景深范围;P X为所述子像素的尺寸;P MLA为相邻两所述透镜单元的间距。
在本公开的一种示例性实施例中,每个所述透镜单元还包括微透镜,所述超表面透镜位于所述微透镜和所述偏振转换层之间;所述显示面板包括一一对应于各所述微透镜的多个像素岛,每个所述像素岛包括阵列排布的多个子像素;多个所述子像素被划分为多个像素,每个所述像素包括多个颜色不同的子像素。
在本公开的一种示例性实施例中,同一所述像素岛的子像素的颜色相同,多个所述像素岛被划分为多个像素岛组,每个所述像素岛组包括颜色不同的多个像素岛,在同一所述像素岛组中,与各所述像素岛对应的微透镜相对位置相同的子像素,构成一个像素。
在本公开的一种示例性实施例中,每个所述像素包括三个呈三角形分布的所述子像素。
在本公开的一种示例性实施例中,所述透镜单元还包括微透镜,所述超表面透镜的数量为多个,各所述超表面透镜层叠于所述微透镜和所述偏振转换层之间。
在本公开的一种示例性实施例中,每个所述透镜单元还包括微透镜,所述超表面透镜位于所述微透镜和所述偏振转换层之间,所述偏振转换层和所述超表面透镜间设有透明的第一分隔层;所述超表面透镜和所述微透镜之间设有透明的第二分隔层。
在本公开的一种示例性实施例中,所述显示装置还包括:
偏振控制电路,用于控制所述偏振转换层将不同的所述景深图像的光线转换为不同 偏振态的偏振光;
图像渲染电路,用于控制所述显示面板在一帧的时间内分时显示多个景深图像。
在本公开的一种示例性实施例中,各所述透镜单元的微透镜为一体式结构,各所述透镜单元的超表面透镜为一体式结构。
根据本公开的一个方面,提供一种显示装置的驱动方法,所述显示装置为上述任意一项所述的显示装置,所述驱动方法包括:
在一帧的时间内使所述显示面板分时显示各所述景深图像;
控制所述偏振转换层将不同景深图像的光线转换为不同偏振态的偏振光。
根据本公开的一个方面,提供一种电子设备,包括上述任意一项所述的显示装置。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开显示装置一实施方式的示意图。
图2为本公开显示装置一实施方式的电路原理框图。
图3为本公开显示装置一实施方式的成像原理图。
图4为本公开显示装置一实施方式中超表面透镜的正光焦度的示意图。
图5为本公开显示装置一实施方式中超表面透镜的负光焦度的示意图。
图6为本公开显示装置一实施方式的像素分布示意图。
图7为本公开显示装置一实施方式的透镜单元的光路原理图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
用语“一个”、“一”、“该”、“所述”用以表示存在一个或多个要素/组成部分 /等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”和“第二”仅作为标记使用,不是对其对象的数量限制。
本公开实施方式提出了一种显示装置,该显示装置可通过集成成像的方式显示三维图像,如图1所示,该显示装置包括显示面板1、偏振转换层2和透镜层3,其中:
显示面板1用于在一帧的时间内分时显示多个景深图像。
偏振转换层2设于所述显示面板1的出光侧,用于将不同的景深图像的光线转换为不同偏振态的偏振光。
透镜层3设于偏振转换层2背离显示面板1的一侧,且透镜层3包括多个透镜单元31,每个透镜单元31包括超表面透镜301。
本公开实施方式的显示装置,可通过偏振转换层2将显示面板1显示景深图像的光线转换为不同的偏振光;由于超表面透镜301具有偏振选择性,使得透镜单元31对不同的偏振态的偏振光具有不同的焦距,从而可通过透镜单元31产生不同的中心深度平面和景深范围,多个景深范围叠加形成三维图像的可视范围,从而扩大了显示装置1的可视范围。同时,通过包含超表面透镜301的透镜单元31可以更好的进行像差的矫正,提升三维显示的显示效果。
下面对本公开实施方式显示装置的各部分进行详细说明:
如图1所示,显示面板1可以是OLED(Organic Light Emitting Diode,有机发光二极管)显示面板,也可以是液晶显示面板,只要能显示图像即可。显示面板1可向一侧发光,该出光的一侧为出光侧,背向出光层的一侧为背光层。
显示面板1显示图像的一帧时间可分为多个时段,每个时段可显示一景深图像,也就是,在一帧的时间内分时显示多个景深图像。景深图像的具体内容在此不做特殊限定,只要能在通过透镜层3后产生三维图像即可。举例而言,一帧时间可分为两个时段,景深图像的数量为两个,包括第一景深图像和第二景深图像,每个时段显示一景深图像。
为了控制显示面板1显示景深图像,如图2所示,在本公开的一些实施方式中,本公开的显示装置还可包括图像渲染电路4,图像渲染电路4与显示面板1连接,并可控制显示面板1在一帧的时间内分时显示多个景深图像。
如图1所示,偏振转换层2设于显示面板1的出光侧,其可将不同的景深图像的光线转换为不同偏振态的偏振光。其中,偏振转换层2可包括液晶相位调制器,对光线的偏振态进行转换,以便得到偏振态不同的偏振光,例如,将显示面板1发出的光线转换为旋转方向不同的圆偏振光。
在本公开的一些实施方式中,景深图像包括第一景深图像和第二景深图像,偏振转换层2可将第一景深图像的光线转换为第一偏振光,将第二景深图像的光线转换为第二偏振光,其中,第一偏振光和第二偏振光为旋转方向相反的圆偏振光,举例而言,第一偏振光为左旋圆偏振光,第二偏振光为右旋圆偏振光。
在本公开的一些实施方式中,如图2所示,显示装置还可包括偏振控制电路5,其可与偏振转换层2连接,并可控制偏振转换层2将不同的景深图像的光线转换为不同偏振态的偏振光。同时,偏振控制电路5还可与图像渲染电路4连接,保证景深图像与偏振转换层2的状态同步变化,例如,在显示面板1显示第一景深图像时,偏振转换层2将第一景深图像的光线转换为第一偏振光,在显示面板1显示第二景深图像时,偏振转换层2将第二景深图像的光线转换为第二偏振光。
如图1所示,透镜层3设于偏振转换层2背离显示面板1的一侧,且透镜层3可包括多个透镜单元31,各透镜单元31阵列分布,每个透镜单元31包括超表面透镜301。
超表面透镜301具有偏振选择性,对于不同偏振态的入射光线表现为不同的光焦度特性。因此,可通过超表面透镜301使不同偏振态的光线形成不同的景深范围,且各景深范围的中心深度平面的位置不同,各景深范围叠加构成显示装置的景深范围,从而增大了显示装置可视范围。
在本公开的一些实施方式中,如图3所示,景深图像包括第一景深图像和第二景深图像,第一偏振光为左旋圆偏振光(图3中的L旋向),第二偏振光为右旋圆偏振光R(图3中的R旋向)。如图4所示,在左旋圆偏振光通过超表面透镜301时,超表面透镜301表现为正光焦度,此时,根据集成成像的原理,显示装置在第一中心深度平面S 1的形成第一景深范围ΔZ 1的三维图像,即第一三维图像X 1。如图5所示,在右旋圆偏振光通过超表面透镜301时,超表面透镜301表现为负光焦度,此时,根据集成成像的原理,显示装置在第二中心深度平面S 2的形成第二景深范围ΔZ 2的三维图像,即第二三维图像X 2。第一景深范围ΔZ 1和第二景深范围ΔZ 2叠加构成显示装置的景深范围。
在本公开的一些实施方式中,如图3所示,每个透镜单元31还可包括微透镜302,超表面透镜301位于微透镜302和偏振转换层2之间,显示面板1显示景深图像的光线在通过超表面透镜301和微透镜302后,可形成三维图像。微透镜101的具体结构在此不做特殊限定。
各透镜单元31的超表面透镜301阵列分布,且为一体式结构。各透镜单元31的微透镜302阵列分布,且与超表面透镜301一一对应设置,各超表面透镜102为一体式结构。
进一步的,如图1所示,偏振转换层2和超表面透镜301间可设有透明的第一分隔层6,超表面透镜301和微透镜302之间设有透明的第二分隔层7。第一分隔层6和第二分隔层7的材料在此不做特殊限定,只要是透明材料即可。
透镜单元31的超表面透镜301的数量为多个,每个透镜单元31的各超表面透镜301层叠于微透镜302和偏振转换层2之间。从而可以进一步进行景深范围的扩展,同时通过多个超表面透镜301和微透镜302的叠加形成的透镜单元31可以更好的进行像差的矫正,提升三维显示的显示效果,例如,获得更好的对比度、更大的视角等。
在本公开的一些实施方式中,如图6所示,显示面板1可包括多个像素岛100,各像素岛100与各微透镜302一一对应设置,即各像素岛100在透镜层3的投影一一对应的位于各微透镜302的范围内,每个像素岛100发出光线可通过对应的透镜层3。
每个像素岛100包括阵列排布的多个子像素,且多个子像素被划分为多个像素200,每个像素200包括多个颜色不同的子像素,例如,每个像素200包括三个不同颜色的子像素,即红色的R子像素、绿色的G子像素和蓝色的B子像素。
进一步的,同一像素岛100的子像素的颜色相同,多个像素岛100被划分为多个像素岛组300,每个像素岛组300包括颜色不同的多个像素岛100,例如,每个像素岛组300包括三个像素岛100,其中一个像素岛100的子像素均为R子像素,一个像素岛100的子像素均为G子像素,一个像素岛100的子像素均为B子像素。
如图6所示,在同一像素岛组300中,与各像素岛100对应的微透镜302相对位置相同的子像素,构成一个像素200,即每个像素岛组300中,每个像素岛100的第n行第m列的子像素构成一个像素200。也就是说,一个像素200的各个子像素一一对应的分布于同一像素岛组300的各像素岛100中,且三个子像素呈三角形分布。
在本公开的一些实施方式中,如图3所示,景深图像包括第一景深图像和第二景深图像,透镜单元31对第一偏振光和第二偏振光成像的像距符合以下条件:
Figure PCTCN2020076464-appb-000005
Figure PCTCN2020076464-appb-000006
其中,l 1为透镜单元31对第一偏振光成像的像距;l 2为透镜单元31对第二偏振光成像的像距;
f a为微透镜302的焦距,f b为超表面透镜301对第一偏振光的焦距;-f b为超表面透 镜301对第二偏振光的焦距;
d为微透镜302和超表面透镜301的距离,D为显示面板1与超表面透镜301的距离。
显示面板1包括多个子像素,透镜单元31对第一偏振光和第二偏振光成像的景深范围符合以下条件:
Figure PCTCN2020076464-appb-000007
Figure PCTCN2020076464-appb-000008
其中,ΔZ 1为透镜单元31对第一偏振光成像的景深范围,ΔZ 2为透镜单元31对第二偏振光成像的景深范围;P X为子像素的尺寸,例如,子像素为矩形,P X为子像素的宽度;P MLA为相邻两透镜单元31的间距。
下面以景深图像包括第一景深图像和第二景深图像为例,如图7所示,对式(1)、式(2)、式(3)和式(4)的推导过程进行说明:
透镜的成像公式为:
Figure PCTCN2020076464-appb-000009
其中,f为透镜单元31的焦距,l'为透镜单元31的物距,即显示面板1相对于透镜单元31的物距。
对于左旋圆偏振光,透镜单元31的焦距f的计算公式为:
Figure PCTCN2020076464-appb-000010
对于右旋圆偏振光,透镜单元31的焦距f'的计算公式为:
Figure PCTCN2020076464-appb-000011
其中,f a为微透镜302的焦距,f b为超表面透镜301对第一偏振光的焦距;-f b为超表面透镜301对第二偏振光的焦距,d为微透镜302和超表面透镜301的距离。
对于左旋偏振光,透镜单元31的后截距B(即超表面透镜301与焦点的距离)由以下公式得出:
Figure PCTCN2020076464-appb-000012
对于右旋偏振光,透镜单元31的后截距B'(即超表面透镜301与焦点的距离)由以下公式得出:
Figure PCTCN2020076464-appb-000013
P 1为透镜单元31的第一主平面位置,P 2为透镜单元31的第二主平面位置,假设显示面板11与超表面透镜301的距离为D,则对于左旋偏振光的物距为:
l′ 1=f-B+D;  (10)
对于右旋偏振光的物距为:
l′ 2=f′-B′+D;  (11)
透镜单元31对第一偏振光成像的像距l 1为:
Figure PCTCN2020076464-appb-000014
透镜单元31对第二偏振光成像的像距l 2为:
Figure PCTCN2020076464-appb-000015
根据上述的式(5)-(13)可得到上述的式(1)-(4)。
本公开实施方式还提供一种显示装置的驱动方法,该显示装置可为上述任意实施方式的显示装置,其结构在此不再赘述。该驱动方法包括步骤S110和步骤S120,其中:
步骤S110、在一帧的时间内使所述显示面板分时显示各所述景深图像。
步骤S120、控制所述偏振转换层将不同景深图像的光线转换为不同偏振态的偏振光。
本公开实施方式的驱动方法的有益效果可参考上述显示装置的实施方式,在此不再赘述。
在本公开的一些实施方式中,可将一帧的时间分为两个时段,例如,第一时段和第二时段,一帧的时间小于人眼的刷新时间,一般人眼的刷新时间可为1/30秒。
在第一时段,显示面板1显示第一景深图像,偏振转换层2使第一景深图像的光线转换为第一偏振光(左旋圆偏振光),第一偏振光通过透镜单元31后形成第一景深范围的第一三维图像;
在第二时段,显示面板1显示第二景深图像,偏振转换层2使第一景深图像的光线转换为第二偏振光(右旋圆偏振光),第二偏振光通过透镜单元31后形成第二景深范围的第二三维图像;
第一三维图像和第二三维图像的景深范围叠加,合成三维图像。
需要说明的是,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步 骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本公开实施方式的方法。
本公开实施方式还提供一种电子设备,包括上述任意实施方式的显示装置,其结构有益效果在此不再详述。该电子设备可以是手机、平板电脑、电视等,但不限于此,还可以是其他可以进行三维显示的电子设备。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (13)

  1. 一种显示装置,其中,包括:
    显示面板,用于在一帧的时间内分时显示多个景深图像;
    偏振转换层,设于所述显示面板的出光侧,用于将不同的景深图像的光线转换为不同偏振态的偏振光;
    透镜层,设于所述偏振转换层背离所述显示面板的一侧,且包括多个透镜单元,每个所述透镜单元包括超表面透镜。
  2. 根据权利要求1所述的显示装置,其中,所述景深图像包括第一景深图像和第二景深图像,所述偏振转换层用于将所述第一景深图像的光线转换为第一偏振光,将所述第二景深图像的光线转换为第二偏振光;所述第一偏振光和所述第二偏振光为旋转方向相反的圆偏振光。
  3. 根据权利要求2所述的显示装置,其中,每个所述透镜单元还包括微透镜,所述超表面透镜位于所述微透镜和所述偏振转换层之间,所述透镜单元对所述第一偏振光和所述第二偏振光成像的像距符合以下条件:
    Figure PCTCN2020076464-appb-100001
    Figure PCTCN2020076464-appb-100002
    其中,l 1为所述透镜单元对所述第一偏振光成像的像距;l 2为所述透镜单元对所述第二偏振光成像的像距;
    f a为所述微透镜的焦距,f b为所述超表面透镜对所述第一偏振光的焦距;-f b为所述超表面透镜对所述第二偏振光的焦距;
    d为所述微透镜和所述超表面透镜的距离,D为所述显示面板与所述超表面透镜的距离。
  4. 根据权利要求3所述的显示装置,其中,所述显示面板包括多个子像素,所述透镜单元对所述第一偏振光和所述第二偏振光成像的景深范围符合以下条件:
    Figure PCTCN2020076464-appb-100003
    Figure PCTCN2020076464-appb-100004
    其中,ΔZ 1为所述透镜单元对所述第一偏振光成像的景深范围,ΔZ 2为所述透镜单元对所述第二偏振光成像的景深范围;P X为所述子像素的尺寸;P MLA为相 邻两所述透镜单元的间距。
  5. 根据权利要求1所述的显示装置,其中,每个所述透镜单元还包括微透镜,所述超表面透镜位于所述微透镜和所述偏振转换层之间;所述显示面板包括一一对应于各所述微透镜的多个像素岛,每个所述像素岛包括阵列排布的多个子像素;多个所述子像素被划分为多个像素,每个所述像素包括多个颜色不同的子像素。
  6. 根据权利要求5所述的显示装置,其中,同一所述像素岛的子像素的颜色相同,多个所述像素岛被划分为多个像素岛组,每个所述像素岛组包括颜色不同的多个像素岛,在同一所述像素岛组中,与各所述像素岛对应的微透镜相对位置相同的子像素,构成一个像素。
  7. 根据权利要求6所述的显示装置,其中,每个所述像素包括三个呈三角形分布的所述子像素。
  8. 根据权利要求1所述的显示装置,其中,所述透镜单元还包括微透镜,所述超表面透镜的数量为多个,各所述超表面透镜层叠于所述微透镜和所述偏振转换层之间。
  9. 根据权利要求1所述的显示装置,其中,每个所述透镜单元还包括微透镜,所述超表面透镜位于所述微透镜和所述偏振转换层之间,所述偏振转换层和所述超表面透镜间设有透明的第一分隔层;所述超表面透镜和所述微透镜之间设有透明的第二分隔层。
  10. 根据权利要求1所述的显示装置,其中,所述显示装置还包括:
    偏振控制电路,用于控制所述偏振转换层将不同的所述景深图像的光线转换为不同偏振态的偏振光;
    图像渲染电路,用于控制所述显示面板在一帧的时间内分时显示多个景深图像。
  11. 根据权利要求5所述的显示装置,其中,各所述透镜单元的微透镜为一体式结构,各所述透镜单元的超表面透镜为一体式结构。
  12. 一种显示装置的驱动方法,所述显示装置为权利要求1-11任一项所述的显示装置,其中,所述驱动方法包括:
    在一帧的时间内使所述显示面板分时显示各所述景深图像;
    控制所述偏振转换层将不同景深图像的光线转换为不同偏振态的偏振光。
  13. 一种电子设备,其中,包括权利要求1-11任一项所述的显示装置。
PCT/CN2020/076464 2020-02-24 2020-02-24 电子设备、显示装置及其驱动方法 WO2021168621A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/076464 WO2021168621A1 (zh) 2020-02-24 2020-02-24 电子设备、显示装置及其驱动方法
US17/422,456 US20220342232A1 (en) 2020-02-24 2020-02-24 Electronic device, display device and driving method thereof
CN202080000177.5A CN113574445B (zh) 2020-02-24 2020-02-24 电子设备、显示装置及其驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076464 WO2021168621A1 (zh) 2020-02-24 2020-02-24 电子设备、显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2021168621A1 true WO2021168621A1 (zh) 2021-09-02

Family

ID=77491713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076464 WO2021168621A1 (zh) 2020-02-24 2020-02-24 电子设备、显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US20220342232A1 (zh)
CN (1) CN113574445B (zh)
WO (1) WO2021168621A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114755800A (zh) * 2022-03-07 2022-07-15 维沃移动通信有限公司 镜头模组、电子设备和景深拓展方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150331247A1 (en) * 2014-05-16 2015-11-19 The Hong Kong University Of Science And Technology 2D/3D Switchable Liquid Crystal Lens Unit
CN105988228A (zh) * 2015-02-13 2016-10-05 北京三星通信技术研究有限公司 三维显示设备及其三维显示方法
CN108803031A (zh) * 2018-05-29 2018-11-13 成都理想境界科技有限公司 一种近眼显示装置及设备、变焦模组及变焦方法
CN109212771A (zh) * 2018-11-27 2019-01-15 上海天马微电子有限公司 一种三维显示装置及显示方法
CN111624782A (zh) * 2020-06-29 2020-09-04 京东方科技集团股份有限公司 光场调节模组及其控制方法、光场显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11221479B2 (en) * 2019-09-24 2022-01-11 Facebook Technologies, Llc Varifocal optical assembly providing astigmatism compensation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150331247A1 (en) * 2014-05-16 2015-11-19 The Hong Kong University Of Science And Technology 2D/3D Switchable Liquid Crystal Lens Unit
CN105988228A (zh) * 2015-02-13 2016-10-05 北京三星通信技术研究有限公司 三维显示设备及其三维显示方法
CN108803031A (zh) * 2018-05-29 2018-11-13 成都理想境界科技有限公司 一种近眼显示装置及设备、变焦模组及变焦方法
CN109212771A (zh) * 2018-11-27 2019-01-15 上海天马微电子有限公司 一种三维显示装置及显示方法
CN111624782A (zh) * 2020-06-29 2020-09-04 京东方科技集团股份有限公司 光场调节模组及其控制方法、光场显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114755800A (zh) * 2022-03-07 2022-07-15 维沃移动通信有限公司 镜头模组、电子设备和景深拓展方法
CN114755800B (zh) * 2022-03-07 2024-05-31 维沃移动通信有限公司 镜头模组、电子设备和景深拓展方法

Also Published As

Publication number Publication date
CN113574445B (zh) 2023-11-28
CN113574445A (zh) 2021-10-29
US20220342232A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
WO2021169576A1 (zh) 近眼显示装置和可穿戴设备
WO2022028020A1 (zh) 显示组件、显示装置和驱动方法
US10274741B2 (en) Display for personal immersion apparatus
US20020075566A1 (en) 3D or multiview light emitting display
KR102328128B1 (ko) 통합 영상 디스플레이, 이의 제조 방법, 및 이를 포함하는 시스템
JP2003215497A (ja) 空間像型表示装置
WO2021184324A1 (zh) 显示装置及其显示方法
WO2017096964A1 (zh) 3d显示面板组件、3d显示装置及其驱动方法
JP7439097B2 (ja) マルチビューディスプレイ、システム、及び動的なカラーサブピクセルの再マッピングを有する方法
CN102279484A (zh) 立体图像显示装置及其制造方法
WO2013135083A1 (zh) 3d显示方法及显示装置
CN110634415B (zh) 一种显示装置
WO2018076775A1 (zh) 显示面板和显示装置
WO2019000948A1 (zh) 三维立体显示面板、其显示方法及显示装置
WO2017117928A1 (zh) 一种显示模组、显示装置及其驱动方法
US11424295B2 (en) Display substrate with sub-pixel virtual images being connected with each other, preparation method thereof, and display apparatus
CN111638600B (zh) 一种近眼显示的方法、装置及可穿戴设备
WO2021168621A1 (zh) 电子设备、显示装置及其驱动方法
CN108198841A (zh) 显示面板及显示装置
EP3907770A1 (en) Electronic device, display apparatus and pixel structure
TW202225799A (zh) 採用擴散器的主動發射器多視像背光件、顯示器和方法
WO2017206543A1 (zh) 显示装置及其驱动方法
WO2021027148A1 (zh) 多层显示装置及电子设备
CN206133120U (zh) 一种显示面板和显示装置
WO2020181939A1 (zh) 显示装置及其显示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921962

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20921962

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20921962

Country of ref document: EP

Kind code of ref document: A1