WO2021169358A1 - 一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法 - Google Patents

一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法 Download PDF

Info

Publication number
WO2021169358A1
WO2021169358A1 PCT/CN2020/124995 CN2020124995W WO2021169358A1 WO 2021169358 A1 WO2021169358 A1 WO 2021169358A1 CN 2020124995 W CN2020124995 W CN 2020124995W WO 2021169358 A1 WO2021169358 A1 WO 2021169358A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
aluminum
corrosion
steel material
cast steel
Prior art date
Application number
PCT/CN2020/124995
Other languages
English (en)
French (fr)
Inventor
陈维平
凌自成
李兵
朱权利
杨鑫
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to JP2022552260A priority Critical patent/JP2023515634A/ja
Priority to US17/802,972 priority patent/US20230129247A1/en
Publication of WO2021169358A1 publication Critical patent/WO2021169358A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention belongs to the technical field of corrosion-resistant metal materials, and specifically relates to a high-temperature aluminum liquid corrosion-resistant high-boron cast steel material and a preparation method thereof.
  • the ablation process of parts in the aluminum melt is mainly composed of the following two parts: On the one hand, the surface of the parts in contact with the molten aluminum is continuously dissolved and diffused under the action of the molten aluminum, and a layer of corrosion product metal is formed on the surface of the part.
  • the parts may be subjected to thermal stress, phase change stress, or the erosion of molten aluminum, etc.
  • thermal stress phase change stress
  • erosion of molten aluminum etc.
  • the exfoliation of the product intermetallic compounds accelerates the corrosion reaction. Therefore, in the production process of aluminum and its products, higher requirements are put forward for such workpiece materials. Not only must they have good high temperature aluminum liquid corrosion resistance, but also have good thermal fatigue, thermal shock and wear resistance. .
  • the high-temperature molten aluminum corrosion-resistant materials reported at home and abroad are mainly concentrated in two categories, one is the preparation of monolithic materials, and the other is the surface treatment of heat-resistant steel, such as boronizing, nitriding, and thermal spraying. Ceramics are equal.
  • Chinese invention patent CN104593620A discloses a method for preparing and repairing a high-temperature aluminum liquid abrasion-resistant aluminum liquid degassing rotor. The service life of the workpiece. Although the use of coatings can improve the erosion-abrasion resistance of the material, the preparation process is complex, the coating and the substrate inevitably have interface defects, and the bonding strength is low.
  • Chinese invention patent CN104073706A discloses a method for preparing high temperature resistant aluminum liquid corrosion-wearing iron-based composite materials, taking into account the advantages of metal/ceramics, using nickel-containing ceramic preforms to enhance the high temperature resistant aluminum of iron-based composite materials Liquid ablation-wear performance, this method still has low bonding strength between the metal and ceramic interface, and the preparation process is complicated. The ceramic precursor peels and fails during the use of cyclic ablation-wear conditions.
  • refractory alloys such as tungsten, titanium, niobium, etc. have good resistance to high-temperature molten aluminum corrosion-wear properties, but the difficulty of preparation, processing and high cost of this series of materials limit the application of such materials.
  • the purpose of the present invention is to provide a high-temperature aluminum molten aluminum corrosion-abrasion high-boron cast steel material and a preparation method thereof.
  • solid solution strengthens and stabilizes the matrix phase, forms strong stability of different morphologies and sizes, and synergistically strengthens the corrosion-resistant boride phases, and then the preparation has certain toughness and toughness.
  • High temperature resistant molten aluminum corrosion-high boron cast steel with excellent wear performance.
  • the present invention provides a high-temperature aluminum melt corrosion-wear high-boron cast steel material, in terms of mass percentage, including: 0.1-1.0 wt.% of C, 1.0-6.5 wt.% of B, 7.5-25.0wt. % Cr, 0.5-12.5wt.% Mo, 0.5-3.5wt.% Si, 0.5-8.5wt.% Al, 0.2-1.2wt.% Mn, S ⁇ 0.05 wt.%, P ⁇ 0.05 wt.%, the rest is Fe.
  • the high-temperature aluminum melt corrosion-wear high-boron cast steel material in terms of mass percentage, includes: 0.1-0.8wt.% of C, 1.0-5.0 wt.% of B, 10.0-25.0wt. % Cr, 0.5-10.0wt.% Mo, 0.5-3.5wt.% Si, 0.5-8.5wt.% Al, 0.2-1.2wt.% Mn, S ⁇ 0.05 wt.%, P ⁇ 0.05 wt.%, the rest is Fe.
  • the invention provides a method for preparing the high-temperature resistant molten aluminum corrosion-abrasion high-boron cast steel material, including the following steps:
  • step (3) Pouring the secondly deoxidized molten steel described in step (2) into a casting mold, cooling and solidifying, to obtain a casting;
  • step (3) Heat the castings described in step (3) for annealing treatment, and then cool them in the furnace; then heat up the temperature for oil-cooling quenching treatment, tempering treatment, and air-cooling to room temperature to obtain the high temperature resistant aluminum melt corrosion-wear high boron casting Steel material.
  • the modifier in step (2) includes rare earth ferrosilicon alloy and aluminum titanium boron alloy; the quality of the rare earth ferrosilicon alloy is 0.3-0.5 of that of molten steel. wt.%; the mass of the aluminum-titanium-boron alloy is 0.3-0.4 wt.% of the mass of molten steel.
  • step (3) the pouring temperature of the secondly deoxidized molten steel is 1450-1500 °C.
  • the temperature of the annealing treatment in step (4) is 850-900 °C;
  • the annealing treatment time is 1-2 h.
  • the temperature of the oil-cooled quenching treatment in step (4) is 900-1200°C, and the time of the oil-cooled quenching treatment is 1-4 h.
  • the temperature of the oil-cooling quenching treatment is 950-1050°C
  • the time of the oil-cooling quenching treatment is 1-2 h
  • the temperature of the oil-cooling treatment is 50-80°C.
  • the temperature of the tempering treatment in step (4) is 350-550 °C
  • the time of tempering treatment is 1-4 h.
  • the temperature of the tempering treatment is 350-400°C, and the time of the tempering treatment is 1-2 h.
  • the principle of the present invention based on the high chemical stability, high hardness, high wear resistance, high corrosion resistance and other characteristics of the reticulated boride Fe 2 B phase, the boride phase is introduced into the cast steel structure, and the B, Cr With the content of Mo and Mo, a high boron steel with a certain distribution of rod, irregular block and dendritic boride structure is obtained. It has excellent high temperature resistance to molten aluminum corrosion-wear performance; adding a certain amount of rare earth ferrosilicon alloy and aluminum titanium The boron alloy modifier further refines the grains and improves the toughness of the structure; adding a certain amount of Al is solid-dissolved in the steel matrix to improve the stability of the matrix.
  • the present invention has the following advantages and beneficial effects:
  • the high-temperature aluminum melt corrosion-abrasion-resistant high-boron cast steel material prepared by the present invention can obtain a certain distribution of rod-shaped, irregular block and dendritic boride structures by adjusting the content of B, Cr and Mo. Boron cast steel, with excellent high temperature resistance to molten aluminum corrosion-wear performance;
  • the high-temperature resistant molten aluminum corrosion-abrasion high-boron cast steel material prepared by the present invention has been subjected to a 1000 °C ring-block type molten aluminum ablation-abrasion machine test (refer to the method described in the patent number: ZL 201010526678.5 for this test ), at a load of 10N, a speed of 75mm ⁇ s -1 , and 750 °C molten aluminum corrosion-wear for 30 minutes, its high-temperature molten aluminum corrosion-abrasion resistance is 2.0 higher than that of H13 steel, which is commonly used in the industry. -9.0 times; at the same time, the impact toughness of the material reaches 2.5-8.0 J/cm 2 ;
  • the preparation process of the present invention is simple, the cost is low, and it is suitable for industrialized production. Secondly, it can effectively increase the service life of parts and components, thereby improving production efficiency, and has good technical, economic and social benefits.
  • Figure 1 is a picture of the microstructure of the high-temperature resistant molten aluminum corrosion-abrasion high-boron cast steel material prepared in Example 1;
  • Figure 2 is a macroscopic picture of the high-temperature molten aluminum corrosion-abrasion-resistant high-boron cast steel material prepared in Example 1 after being corroded-abraded by the high-temperature molten aluminum;
  • FIG. 3 is a microstructure picture of the high-temperature aluminum melt corrosion-abrasion-resistant high-boron cast steel material prepared in Example 3;
  • Example 4 is a macroscopic morphology picture of the high-temperature aluminum liquid corrosion-resistant high-boron cast steel material prepared in Example 3 after high-temperature aluminum liquid corrosion-wear.
  • test methods for the high temperature resistant aluminum melt corrosion-abrasion resistant high-boron cast steel materials refer to the method introduced in the patent document ZL 201010526678.5.
  • the specific test conditions are: aluminum melt erosion-wear 30 min at a load of 10N, a rotation speed of 75mm ⁇ s -1, and 750 °C.
  • the casting is annealed at 850 °C, holding for 1 hour, and then cooled with the furnace; then, the casting is heated to 900 °C and held for 2 hours, and then subjected to oil-cooling quenching treatment; finally, the casting is subjected to 350 °C tempering treatment, heat preservation for 1 h, air cooling to room temperature, to obtain the high-temperature resistant molten aluminum corrosion-abrasion high-boron cast steel material.
  • the structure of the high-temperature resistant molten aluminum corrosion-abrasion high-boron cast steel material prepared in this embodiment is shown in FIG.
  • the material has excellent performance, in which the hardness reaches 36.8 HRC, the impact toughness reaches 8.0 J/cm 2 , and its high-temperature molten aluminum corrosion-wear performance (mass loss is 0.79g) is 2.0 higher than H13 steel (mass loss is 2.04g) Times.
  • mass loss mass loss is 0.79g
  • H13 steel mass loss is 2.04g
  • the boride with high thermal stability and good erosion-abrasion resistance can block the erosion of the matrix by the liquid aluminum and act as the main load-bearing phase to hinder the erosion.
  • the generated intermetallic compound layer is peeled off, thereby slowing down the corrosion of molten aluminum.
  • the adjusted composition (wt.%) is: C: 0.3, B: 2.5, Cr: 12.0, Mo: 2.5, Si: 3.5, Al: 1.0, Mn: 1.0, S ⁇ 0.05, P ⁇ 0.05, the balance is Fe;
  • the castings are annealed at 850 °C, holding for 1 hour, and then cooled with the furnace; then, the castings are heated to 900 °C and held for 2 hours, and then subjected to oil-cooling quenching treatment; finally, the castings are subjected to 400 °C tempering, heat preservation for 1 h, air-cool to room temperature.
  • the Cr-rich boride is rod-shaped and network-shaped, and the Mo-rich boride phase is mainly distributed in irregular blocks.
  • the material has excellent performance, among which, the hardness reaches 58.6 HRC, the impact toughness reaches 2.5 J/cm 2 , and its high-temperature molten aluminum corrosion-wear performance is 4.4 times higher than that of H13 steel.
  • rod-shaped borides and irregular block borides with high thermal stability and good erosion-abrasion resistance can block the erosion of the substrate by the aluminum liquid. And as the main load-bearing phase, it can prevent the intermetallic compound layer generated by ablation from peeling off, thereby slowing down the ablation of molten aluminum.
  • the adjusted composition (wt.%) is: C: 0.8, B: 4.2, Cr: 18.5, Mo: 8.5, Si: 0.5, Al: 4.0, Mn: 1.2, S ⁇ 0.05, P ⁇ 0.05, the balance is Fe;
  • the casting is annealed at 850 °C, holding for 1 hour, and then cooled with the furnace; then, the casting is heated to 1000 °C and holding for 1 hour, and then oil-cooled quenching is performed; finally, the casting is tempered at 400 °C for 1 h , Air-cooled to room temperature.
  • the structure of the high-temperature resistant molten aluminum corrosion-wear high-boron cast steel material prepared in this embodiment is shown in Figure 3. It is obvious that the Cr-rich boride is mainly distributed in a rod shape, while the Mo-rich boride phase is mainly irregular. Block distribution.
  • the material has excellent properties, with a hardness of 61.0 HRC and an impact toughness of 2.5 J/cm 2 .
  • the surface of this material (as shown in Figure 4) is relatively smooth after high-temperature molten aluminum abrasion and wear without obvious pits. Its high-temperature molten aluminum ablation-wear performance is 9.0 times higher than that of H13 steel, and its performance is excellent.
  • the casting is annealed at 850 °C, holding for 1 hour, and then cooled with the furnace; then, the casting is heated to 900 °C and held for 2 hours, and then subjected to oil-cooling quenching treatment; finally, the casting is subjected to 350 °C tempering, heat preservation for 1 h, air-cooled to room temperature.
  • the structure of the high-temperature resistant molten aluminum corrosion-abrasion high-boron cast steel material prepared in this embodiment is mainly composed of a martensite matrix, a rod-shaped Cr-rich boride, and an irregular block-distributed Mo-rich boride phase.
  • the hardness of the material reaches 60.0 HRC
  • the impact toughness is 2.3 J/cm 2
  • the high temperature aluminum liquid corrosion-wear performance is 8.5 times higher than that of H13 steel, and the performance is excellent.
  • the adjusted composition (wt.%) is: C: 1.0, B: 6.5, Cr: 21.5, Mo: 12.5, Si: 1.5, Al: 3.5, Mn: 0.4, S ⁇ 0.05, P ⁇ 0.05, the balance is Fe;
  • the casting is annealed at 850 °C, holding for 1 hour, and then cooled with the furnace; then, the casting is heated to 900 °C and held for 2 hours, and then subjected to oil-cooling quenching treatment; finally, the casting is subjected to 350 °C tempering, heat preservation for 1 h, air-cooled to room temperature.
  • the structure of the high-temperature resistant aluminum melt corrosion-wear high-boron cast steel material prepared in this embodiment is mainly composed of a rod-shaped distribution of Cr-rich boride and an irregular block distribution of Mo-rich boride phases.
  • the material has excellent performance, the hardness reaches 60.0 HRC, the impact toughness is 4.5 J/cm 2 , and the high temperature aluminum liquid corrosion-abrasion resistance is 3.0 times higher than that of H13 steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法。该材料的成分(wt.%)包括:C:0.1-1,B:1.0-6.5,Cr:7.5-25,Mo:0.5-12.5,Si:0.5-3.5,Al:0.5-8.5,Mn:0.2-1.2,S<0.05,P<0.05,余量为Fe。该方法包括:将获得的铸件进行退火处理,经淬火和回火处理制得的。制备的材料组织由基体马氏体相、棒状和网状富Cr硼化物相以及不规则块体富Mo硼化物相组成,室温硬度达到36.5-61.0HRC,冲击韧性达到2.5-8.0J/cm 2,经750℃高温铝液熔蚀-磨损速率较H13钢降低了2.0-9.0倍。

Description

一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法 技术领域
  本发明属于耐熔蚀-磨损金属材料技术领域,具体涉及一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法。
背景技术
在铝及其合金熔炼、成形及热浸镀铝加工过程中,所使用的坩埚、模具、充液料斗、喷嘴、夹具、除气转子等与高温铝液接触的部分发生熔蚀、磨损甚至失效的问题,缩短了服役材料的使用寿命,而且对铝液造成污染。零件在铝熔体中的熔蚀过程主要由以下两部分组成:一方面,与铝液接触的零件表面在铝液的作用下不断地发生溶解、扩散,在零件表面形成一层熔蚀产物金属间化合物;另一方面,在工况条件下,零件还有可能受到热应力、相变应力或铝液的冲刷作用等,在这些外部条件的作用下,很容易造成零件表面已形成的熔蚀产物金属间化合物的剥落,促使熔蚀反应加速进行。因此,在铝及其制品生产过程中对此类工件材料提出更高的要求,不仅要有良好的耐高温铝液熔蚀性能,而且要具有良好的抗热疲劳、热冲击和耐磨损性能。
目前,国内外报道的耐高温铝液熔蚀-磨损材料主要集中在两大类,一类是制备整体材料,另外一类是对耐热钢进行表面处理,如渗硼、渗氮、热喷涂陶瓷相等。中国发明专利CN104593620A公开了一种耐高温铝液熔蚀-磨损的铝液除气中转子制备及其修复方法,该发明通过在高强耐热钢基体上热喷涂NiAl,NiCrAl或NiCr涂层以延长该工件使用寿命。采用涂层虽能提高材料的耐熔蚀-磨损性能,但存在制备工艺复杂,涂层与基体难免存在界面缺陷,结合强度低,在铝液冲蚀磨损作用下涂层一旦发生破碎或剥落,铝液将直接与基体接触加速材料的熔蚀失效。中国发明专利CN104073706A公开了一种制备耐高温铝液熔蚀-磨损铁基复合材料的方法,综合考虑利用金属/陶瓷二者的优势,采用含镍陶瓷预制体增强铁基复合材料的耐高温铝液熔蚀-磨损性能,该方法仍存在金属与陶瓷界面结合强度低,制备工艺复杂,陶瓷前驱体在循环熔蚀-磨损工况使用中发生剥落、失效。另外,难熔合金如钨、钛、铌等具有良好的耐高温铝液熔蚀-磨损性能,但该系列材料的制备、加工成形困难及成本高限制了该类材料的应用。
技术解决方案
针对上述问题,本发明的目的是提供一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法。本发明通过调控Cr、Mo、B和Al的含量,固溶强化并稳定基体相,形成不同形貌及尺寸的强稳定性、耐蚀性硼化物相协同增强,进而制备出具有一定强韧性且耐高温铝液熔蚀-磨损性能优异的高硼铸钢。
本发明的目的至少通过如下技术方案之一实现。
本发明提供的一种耐高温铝液熔蚀-磨损高硼铸钢材料,按照质量百分比计,包括:0.1-1.0 wt.%的C、1.0-6.5 wt.%的B、7.5-25.0wt.%的Cr、0.5-12.5wt.%的Mo、0.5-3.5wt.%的Si、0.5-8.5wt.%的Al、0.2-1.2wt.%的Mn、S<0.05 wt.%、P<0.05 wt.%,余者为Fe。
进一步地,所述的耐高温铝液熔蚀-磨损高硼铸钢材料,按照质量百分比计,包括:0.1-0.8wt.%的C、1.0-5.0 wt.%的B、10.0-25.0wt.%的Cr、0.5-10.0wt.%的Mo、0.5-3.5wt.%的Si、0.5-8.5wt.%的Al、0.2-1.2wt.%的Mn、S<0.05 wt.%、P<0.05 wt.%,余者为Fe。
本发明提供的一种制备所述的耐高温铝液熔蚀-磨损高硼铸钢材料的方法,包括如下步骤:
(1)将工业纯铁或废低碳钢、铬铁和钼铁混合,加热熔化,然后加入铝棒和铝钛硼脱氧,得到钢水;
(2)将步骤(1)所述钢水加热至1580~1620 °C,调整成分合格后,加入变质剂,加入铝棒(Al的加入量为0.2~0.3 wt.%)脱氧,出炉,得到二次脱氧的钢水;
(3)将步骤(2)所述二次脱氧的钢水浇注到铸型中,冷却凝固,得到铸件;
(4)将步骤(3)所述铸件加热进行退火处理,随炉冷却;然后升温进行油冷淬火处理,回火处理,空冷至室温,得到所述耐高温铝液熔蚀-磨损高硼铸钢材料。
进一步地,步骤(2)所述变质剂包括稀土硅铁合金和铝钛硼合金;所述稀土硅铁合金的质量为钢水质量的0.3-0.5 wt.%;所述铝钛硼合金的质量为钢水质量的0.3-0.4 wt.%。
进一步地,步骤(3)中,二次脱氧的钢水的浇注温度为1450-1500 ℃。
进一步地,步骤(4)所述退火处理的温度为850-900 ℃;所述退火处理的时间为1-2 h。
进一步地,步骤(4)所述油冷淬火处理的温度为900-1200 ℃,油冷淬火处理的时间为1-4 h。
优选地,所述油冷淬火处理的温度为950-1050 ℃,油冷淬火处理的时间为1-2 h,油冷的温度为50-80℃。
进一步地,步骤(4)所述回火处理的温度为350-550 ℃,回火处理的时间为1-4 h。
优选地,所述回火处理的温度为350-400 ℃,回火处理的时间为1-2 h。
本发明的原理:基于网状硼化物Fe 2B相的高化学稳定性、高硬度、高耐磨性、高耐蚀性等特点,在铸钢组织中引入硼化物相,通过调控B、Cr和Mo的含量,获得具有一定分布的棒状、不规则块状和树枝状硼化物组织的高硼钢,具有优异的耐高温铝液熔蚀-磨损性能;添加一定量的稀土硅铁合金和铝钛硼合金变质剂,进一步细化晶粒、提高组织的韧性;加入一定量的Al固溶于钢基体中,提高基体的稳定性。
有益效果
与现有技术相比,本发明具有如下优点和有益效果:
    (1)本发明制备的耐高温铝液熔蚀-磨损高硼铸钢材料,通过调控B、Cr和Mo的含量,获得具有一定分布的棒状、不规则块状和树枝状硼化物组织的高硼铸钢,具有优异的耐高温铝液熔蚀-磨损性能;
(2)本发明制备的耐高温铝液熔蚀-磨损高硼铸钢材料,经1000 °C环-块式铝液熔蚀-磨损机试验(该试验参照专利号:ZL 201010526678.5中介绍的方法),在载荷为10N、转速为75mm·s -1、750 °C铝液熔蚀-磨损30 min后,其耐高温铝液熔蚀-磨损性能较工业常用的模具钢材料H13钢提高了2.0-9.0倍;同时,该材料的冲击韧性达到2.5-8.0 J/cm 2
(3)本发明制备工艺简单,成本较低,适合工业化生产,其次可以有效地提高零部件使用寿命,从而提高生产效率,具有很好的技术经济和社会效益。
附图说明
图1为实施例1所制备的耐高温铝液熔蚀-磨损高硼铸钢材料的显微组织图片;
图2为实施例1所制备的耐高温铝液熔蚀-磨损高硼铸钢材料经高温铝液熔蚀-磨损后的宏观形貌图片;
图3为实施例3所制备的耐高温铝液熔蚀-磨损高硼铸钢材料的显微组织图片;
图4为实施例3所制备的耐高温铝液熔蚀-磨损高硼铸钢材料经高温铝液熔蚀-磨损后的宏观形貌图片。
本发明的实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
以下实施例提供的耐高温铝液熔蚀-磨损高硼铸钢材料的耐高温铝液熔蚀-磨损性能和冲击韧性测试方法参照专利文件ZL 201010526678.5中介绍的方法。具体测试条件为:在载荷为10N、转速为75mm·s -1、750 °C铝液熔蚀-磨损30 min。
实施例1
本实施例所述耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法,具体包括以下步骤:
(1)将A3钢废料、铬铁、硼铁、钼铁及锰铁混合加热熔化,调整钢的成分(wt.%)为:C: 0.5,B: 1.0,Cr: 7.5,Mo: 0.5,Si: 1.0,Al: 0.5,Mn: 0.2, S<0.05,P <0.05,余量为Fe;
(2)钢水加热到1580 °C,调整成分合格后分别加入0.3 wt.%稀土硅铁合金和0.3 wt.%铝钛硼合金作为变质剂,最后加入0.2 wt.%的Al脱氧后出炉;
(3)钢水浇注到铸型中,浇注温度为1480 °C,冷却凝固得到铸件;
(4)铸件在850 °C退火处理,保温1h,随炉冷却;然后,铸件加热至900 °C并保温2 h,进行油冷淬火处理;最后,铸件进行350 °C 回火处理,保温1 h,空冷至室温,得到所述耐高温铝液熔蚀-磨损高硼铸钢材料。
本实施例制备得到的耐高温铝液熔蚀-磨损高硼铸钢材料组织如图1所示,其中富Cr硼化物呈棒状和网状,而富Mo硼化物相则主要呈网状分布。该材料性能优良,其中硬度达到了36.8 HRC, 冲击韧性达到8.0 J/cm 2,其高温铝液熔蚀-磨损性能(质量损失为0.79g)较H13钢(质量损失为2.04g)提高了2.0倍。另外,从该材料经熔蚀-磨损后的表面(如图2所示)可以看到,内生的硼化物紧紧镶嵌在基体中且与基体结合良好。当该材料在高温铝液中发生熔蚀-磨损时,热稳定性高且有良好的耐熔蚀-磨损性能的硼化物能阻挡铝液对基体的熔蚀,并作为主要承载相阻碍熔蚀生成的金属间化合物层剥落,进而减缓铝液的熔蚀。
实施例2
本实施例所述耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法,具体包括以下步骤:
(1)将工业纯铁,铬铁,硼铁,钼铁及锰铁混合加热熔化,调整成分(wt.%)为:C: 0.3,B: 2.5,Cr: 12.0,Mo: 2.5,Si: 3.5,Al: 1.0,Mn: 1.0,S<0.05,P <0.05,余量为Fe;
(2)钢水加热到1580 °C,调整成分合格后分别加入0.3 wt.%稀土硅铁合金和0.3 wt.%铝钛硼合金作为变质剂,最后加入0.2 wt.%的Al脱氧后出炉;
(3)钢水浇注到铸型中,浇注温度为1480 °C,冷却凝固得到铸件;
(4)铸件在850 °C退火处理,保温1h,随炉冷却;然后,铸件加热至900 °C并保温2 h,进行油冷淬火处理;最后,铸件进行400 °C回火处理,保温1 h,空冷至室温。
本实施例制备得到的耐高温铝液熔蚀-磨损高硼铸钢材料组织中,富Cr硼化物呈棒状和网状,富Mo硼化物相则主要呈不规则块体分布。该材料性能优良,其中,硬度达到了58.6 HRC, 冲击韧性达到2.5 J/cm 2,其高温铝液熔蚀-磨损性能较H13钢提高了4.4倍。当该材料在高温铝液中发生熔蚀-磨损时,热稳定性高且有良好的耐熔蚀-磨损性能的棒状硼化物和不规则块状硼化物能阻挡铝液对基体的熔蚀,并作为主要承载相能阻碍熔蚀生成的金属间化合物层剥落,进而减缓铝液的熔蚀。
实施例3
本实施例所述耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法,具体包括以下步骤:
(1)将工业纯铁,铬铁,硼铁,钼铁及锰铁混合加热熔化,调整成分(wt.%)为:C: 0.8,B: 4.2,Cr: 18.5,Mo: 8.5,Si: 0.5,Al: 4.0,Mn: 1.2,S<0.05,P <0.05,余量为Fe;
(2)钢水加热到1580 °C,调整成分合格后分别加入0.3 wt.%稀土硅铁合金和0.3 wt.%铝钛硼合金作为变质剂,最后加入0.2 wt.%的Al脱氧后出炉;
(3)钢水浇注到铸型中,浇注温度为1480 °C,冷却凝固得到铸件;
(4)铸件在850 °C退火处理,保温1h,随炉冷却;然后,铸件加热至1000 °C并保温1h,进行油冷淬火处理;最后,铸件进行400 °C回火处理,保温1 h,空冷至室温。
本实施例制备得到的耐高温铝液熔蚀-磨损高硼铸钢材料组织如图3所示,明显看到,富Cr硼化物主要呈棒状分布,而富Mo硼化物相则主要呈不规则块体分布。该材料性能优良,其中硬度达到61.0 HRC, 冲击韧性2.5 J/cm 2。另外,该材料经高温铝液熔蚀-磨损后表面(如图4所示)较为平缓,无明显蚀坑,其高温铝液熔蚀-磨损性能较H13钢提高了9.0倍,性能优异。
实施例4
本实施例所述耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法,具体包括以下步骤:
(1)将A3钢废料,铬铁,硼铁,钼铁及锰铁混合加热熔化,调整成分(wt.%)为:C: 0.2,B: 3.5,Cr: 25.0,Mo: 6.5,Si: 2.0,Al: 8.5,Mn: 0.6, S<0.05,P <0.05,余量为Fe;
(2)钢水加热到1580 °C,调整成分合格后分别加入0.3 wt.%稀土硅铁合金和0.3 wt.%铝钛硼合金作为变质剂,最后加入0.2 wt.%的Al脱氧后出炉;
(3)钢水浇注到铸型中,浇注温度为1480 °C,冷却凝固得到铸件;
(4)铸件在850 °C退火处理,保温1h,随炉冷却;然后,铸件加热至900 °C并保温2 h,进行油冷淬火处理;最后,铸件进行350 °C 回火处理,保温1 h,空冷至室温。
本实施例制备得到的耐高温铝液熔蚀-磨损高硼铸钢材料组织,主要由马氏体基体、棒状富Cr硼化物及不规则块体分布富Mo硼化物相组成。该材料的硬度达到了60.0 HRC, 冲击韧性为2.3 J/cm 2,耐高温铝液熔蚀-磨损性能较H13钢提高了8.5倍,性能优异。
实施例5
本实施例所述耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法,具体包括以下步骤:
(1)将工业纯铁,铬铁,硼铁,钼铁及锰铁混合加热熔化,调整成分(wt.%)为:C: 1.0,B: 6.5,Cr: 21.5,Mo: 12.5,Si: 1.5,Al: 3.5,Mn: 0.4,S<0.05,P <0.05,余量为Fe;
(2)钢水加热到1580 °C,调整成分合格后分别加入0.3 wt.%稀土硅铁合金和0.3 wt.%铝钛硼合金作为变质剂,最后加入0.2 wt.%的Al脱氧后出炉;
(3)钢水浇注到铸型中,浇注温度为1480 °C,冷却凝固得到铸件;
(4)铸件在850 °C退火处理,保温1h,随炉冷却;然后,铸件加热至900 °C并保温2 h,进行油冷淬火处理;最后,铸件进行350 °C 回火处理,保温1 h,空冷至室温。
本实施例制备得到的耐高温铝液熔蚀-磨损高硼铸钢材料,组织主要呈棒状分布的富Cr硼化物及不规则块体分布富Mo硼化物相组成。该材料性能优良,硬度达到了60.0 HRC, 冲击韧性为4.5 J/cm 2,耐高温铝液熔蚀-磨损性能较H13钢提高了3.0倍。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

  1. 一种耐高温铝液熔蚀-磨损高硼铸钢材料,其特征在于,按照质量百分比计,包括:0.1-1.0 wt.%的C、1.0-6.5 wt.%的B、7.5-25.0wt.%的Cr、0.5-12.5wt.%的Mo、0.5-3.5wt.%的Si、0.5-8.5wt.%的Al、0.2-1.2wt.%的Mn、S<0.05 wt.%、P<0.05 wt.%,余者为Fe。
  2. 根据权利要求1所述的耐高温铝液熔蚀-磨损高硼铸钢材料,其特征在于,按照质量百分比计,包括:0.1-0.8wt.%的C、1.0-5.0 wt.%的B、10.0-25.0wt.%的Cr、0.5-10.0wt.%的Mo、0.5-3.5wt.%的Si、0.5-8.5wt.%的Al、0.2-1.2wt.%的Mn、S<0.05 wt.%、P<0.05 wt.%,余者为Fe。
  3. 一种制备权利要求1-2任一项所述的耐高温铝液熔蚀-磨损高硼铸钢材料的方法,其特征在于,包括如下步骤:
    (1)将工业纯铁或废低碳钢、铬铁和钼铁混合,加热熔化,然后加入铝棒和铝钛硼脱氧,得到钢水;
    (2)将步骤(1)所述钢水加热至1580-1620 °C,然后加入变质剂,加入铝棒脱氧,得到二次脱氧的钢水;
    (3)将步骤(2)所述二次脱氧的钢水浇注到铸型中,冷却凝固,得到铸件;
    (4)将步骤(3)所述铸件加热进行退火处理,随炉冷却;然后升温进行油冷淬火处理,回火处理,空冷至室温,得到所述耐高温铝液熔蚀-磨损高硼铸钢材料。
  4. 根据权利要求3所述的耐高温铝液熔蚀-磨损高硼铸钢材料的制备方法,其特征在于,步骤(2)所述变质剂包括稀土硅铁合金和铝钛硼合金;所述稀土硅铁合金的质量为钢水质量的0.3-0.5 wt.%;所述铝钛硼合金的质量为钢水质量的0.3-0.4 wt.%。
  5. 根据权利要求3所述的耐高温铝液熔蚀-磨损高硼铸钢材料的制备方法,其特征在于,步骤(3)中,二次脱氧的钢水的浇注温度为1450-1500 ℃。
  6. 根据权利要求3所述的耐高温铝液熔蚀-磨损高硼铸钢材料的制备方法,其特征在于,步骤(4)所述退火处理的温度为850-900 ℃;所述退火处理的时间为1-2 h。
  7. 根据权利要求3所述的耐高温铝液熔蚀-磨损高硼铸钢材料的制备方法,其特征在于,步骤(4)所述油冷淬火处理的温度为900-1200 ℃,油冷淬火处理的时间为1-4 h。
  8. 根据权利要求7所述的耐高温铝液熔蚀-磨损高硼铸钢材料的制备方法,其特征在于,所述油冷淬火处理的温度为950-1050 ℃,油冷淬火处理的时间为1-2 h,油冷的温度为50-80℃。
  9. 根据权利要求3所述的耐高温铝液熔蚀-磨损高硼铸钢材料的制备方法,其特征在于,步骤(4)所述回火处理的温度为350-550 ℃,回火处理的时间为1-4 h。
  10. 根据权利要求9所述的耐高温铝液熔蚀-磨损高硼铸钢材料的制备方法,其特征在于,回火处理的温度为350-400 ℃,回火处理的时间为1-2 h。
PCT/CN2020/124995 2020-02-29 2020-10-30 一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法 WO2021169358A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022552260A JP2023515634A (ja) 2020-02-29 2020-10-30 高温溶融アルミニウムの腐食及び摩耗に耐える高ホウ素鋳鋼材料及びその調製方法
US17/802,972 US20230129247A1 (en) 2020-02-29 2020-10-30 High-boron cast steel material resisting high-temperature molten aluminum corrosion-abrasion and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010132886.0A CN111235482B (zh) 2020-02-29 2020-02-29 一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法
CN202010132886.0 2020-02-29

Publications (1)

Publication Number Publication Date
WO2021169358A1 true WO2021169358A1 (zh) 2021-09-02

Family

ID=70878436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124995 WO2021169358A1 (zh) 2020-02-29 2020-10-30 一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法

Country Status (4)

Country Link
US (1) US20230129247A1 (zh)
JP (1) JP2023515634A (zh)
CN (1) CN111235482B (zh)
WO (1) WO2021169358A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235482B (zh) * 2020-02-29 2022-01-18 华南理工大学 一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法
CN114058930A (zh) * 2021-11-22 2022-02-18 昆明理工大学 一种耐铝液熔蚀复合材料的制备方法
CN116987972A (zh) * 2023-08-08 2023-11-03 威海天润新材料科技有限公司 一种盾构机用新型含硼滚刀刀圈材料及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072106A (ja) * 2011-09-27 2013-04-22 Nippon Yakin Kogyo Co Ltd ボロン含有ステンレス鋼の製造方法
CN103498108A (zh) * 2013-10-22 2014-01-08 江苏盛伟模具材料有限公司 具有良好红硬性的高硼高铬低碳耐磨合金钢及其制备方法
CN105316588A (zh) * 2015-11-13 2016-02-10 丹阳嘉伟耐磨材料科技有限公司 多元耐磨高硼合金钢及其制备方法
CN109351916A (zh) * 2018-07-31 2019-02-19 湖南人文科技学院 一种高硼合金的制备方法
CN111235482A (zh) * 2020-02-29 2020-06-05 华南理工大学 一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA934072B (en) * 1992-06-19 1994-01-19 Commw Scient Ind Res Org Rolls for metal shaping
JP2007297700A (ja) * 2006-04-06 2007-11-15 Nisshin Steel Co Ltd 燃料タンク用高強度溶融アルミニウムめっき鋼板及びその製造方法
CN101775558B (zh) * 2010-02-05 2011-05-04 北京工业大学 一种铁铬硼铸造耐磨合金及其制造方法
CN104073706B (zh) * 2014-07-01 2016-06-29 南京工程学院 一种制备耐高温铝熔液熔蚀-磨损铁基复合材料的方法
CN108486481B (zh) * 2018-06-11 2019-12-31 江苏大学 一种铝电解槽打壳复合锤头的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072106A (ja) * 2011-09-27 2013-04-22 Nippon Yakin Kogyo Co Ltd ボロン含有ステンレス鋼の製造方法
CN103498108A (zh) * 2013-10-22 2014-01-08 江苏盛伟模具材料有限公司 具有良好红硬性的高硼高铬低碳耐磨合金钢及其制备方法
CN105316588A (zh) * 2015-11-13 2016-02-10 丹阳嘉伟耐磨材料科技有限公司 多元耐磨高硼合金钢及其制备方法
CN109351916A (zh) * 2018-07-31 2019-02-19 湖南人文科技学院 一种高硼合金的制备方法
CN111235482A (zh) * 2020-02-29 2020-06-05 华南理工大学 一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法

Also Published As

Publication number Publication date
CN111235482A (zh) 2020-06-05
JP2023515634A (ja) 2023-04-13
CN111235482B (zh) 2022-01-18
US20230129247A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2021169358A1 (zh) 一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法
CN102251184B (zh) 含铝Fe-Cr-B耐磨合金及其制备方法
CN104060157B (zh) 一种过共晶高铬白口铸铁及其制备方法
CN100526495C (zh) 含硼铸造模具钢及其制备方法
CN105458227B (zh) 离心铸造高硼高速钢复合轧辊及其制备方法
CN102851597A (zh) 一种抗磨蚀沉没辊轴套及其制造方法
CN112725659A (zh) 一种基于中频炉的镍合金铸造工艺
JP2024522278A (ja) 超高n含有量高温合金のvim炉製錬方法
CN113046641B (zh) 一种低钒含氮热作模具钢及其制备方法
CN114717467A (zh) 一种过共晶高铬铸铁材料、制备方法及其应用
CN106544596A (zh) 一种铝合金化高硼高速钢复合轧辊及其制备方法
CN1067443C (zh) 多元钨合金铸铁辊环及其制造方法
WO2023213334A1 (zh) 一种高碳高合金钢的碳化物细化方法
CN108842041A (zh) 一种可用于研磨强氧化性材料的多层耐磨球及其制备方法
CN101100724A (zh) 一种环锤式碎煤机的锤头材料
CN111206188B (zh) 一种耐熔融铝腐蚀的高硼铸造铁基合金及其制备方法
CN1044496C (zh) 多元高铬铸钢轧钢机组合式导板及其制造方法
CN115570103A (zh) 一种熔模铸造低碳低合金高强度结构钢生产方法
CN114318165B (zh) 一种精确控制硼、氮元素的转子合金的制备方法
CN104651705A (zh) 一种过共晶耐磨高铬铸铁及其制备方法
CN104651709A (zh) 一种球墨铸铁
CN105803322B (zh) 一种高锰钢及其制备方法
CN104651721B (zh) 斗齿用合金钢及斗齿的制备方法
CN101050510A (zh) 适用于棒线材连轧机的新型硬质材料轧辊及其制造方法
CN110468343B (zh) TiC析出增强高锰钢基复合材料及其制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920971

Country of ref document: EP

Kind code of ref document: A1