WO2021169042A1 - 变流器散热装置及其控制方法和监控方法 - Google Patents

变流器散热装置及其控制方法和监控方法 Download PDF

Info

Publication number
WO2021169042A1
WO2021169042A1 PCT/CN2020/089304 CN2020089304W WO2021169042A1 WO 2021169042 A1 WO2021169042 A1 WO 2021169042A1 CN 2020089304 W CN2020089304 W CN 2020089304W WO 2021169042 A1 WO2021169042 A1 WO 2021169042A1
Authority
WO
WIPO (PCT)
Prior art keywords
air duct
temperature
heat dissipation
assembly
control unit
Prior art date
Application number
PCT/CN2020/089304
Other languages
English (en)
French (fr)
Inventor
史建强
蔡纪卫
刘天宇
韩国风
鲍庆臣
刘洋
邸峰
Original Assignee
中车青岛四方车辆研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方车辆研究所有限公司 filed Critical 中车青岛四方车辆研究所有限公司
Priority to ROA202200501A priority Critical patent/RO137309A2/ro
Publication of WO2021169042A1 publication Critical patent/WO2021169042A1/zh
Priority to CONC2022/0011160A priority patent/CO2022011160A2/es

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20945Thermal management, e.g. inverter temperature control

Definitions

  • the application belongs to the field of converters for rail trains, and in particular relates to a converter heat dissipation device and its control method and monitoring method.
  • the heat of the converter mainly comes from heating components such as power modules, reactors, transformers and controllers. If the heat cannot be dissipated in time, the performance of the converter will deteriorate and the reliability will be reduced.
  • the heat dissipation device includes a substrate and a heat dissipation assembly; the substrate has a first heat dissipation area for mounting power devices and a second heat dissipation area adjacent to the first heat dissipation area.
  • the heat dissipation assembly is provided on the substrate, the heat dissipation assembly has a first heat dissipation portion corresponding to the first heat dissipation area and a second heat dissipation portion corresponding to the second heat dissipation area, the heat dissipation capacity of the first heat dissipation portion Greater than the heat dissipation capacity of the second heat dissipation portion.
  • Chinese application CN210201699U discloses a heat dissipation device for a converter, which includes a converter housing, and a power module and an electrical component module are respectively arranged on both sides of the inside of the converter housing.
  • the purpose of this application is to provide a converter heat dissipation device, a control method and a monitoring method thereof, and a converter with the heat dissipation device, so as to provide a better heat dissipation effect for the converter.
  • the first embodiment of the present application provides a converter heat dissipation device, including a cabinet body assembly, a control unit is arranged in the cabinet body assembly, and the cabinet body assembly is also provided with:
  • An open chamber in which a first fan is arranged, and the first fan is electrically connected to the control unit;
  • a sealed cavity which is arranged to be sealed to each other with the open cavity, a power module is arranged in the sealed cavity, and the power module has a heat sink;
  • the air duct assembly is arranged in the sealed chamber, and the sealed chamber and the air duct assembly are sealed to each other; the first end of the air duct assembly communicates with the outside, and the heat sink of the power module is arranged in the air duct assembly. Inside the air duct assembly; the second end of the air duct assembly extends to the open chamber, and the first fan is in communication with the air duct assembly.
  • the air duct assembly includes a heat dissipation structure arranged in the sealed chamber.
  • the first end of the air duct assembly extends to the side of the sealed chamber to communicate with the outside.
  • the transformer and the reactor are arranged in the open chamber and located in the direction of the wind from the first fan.
  • each of the first temperature sensors is electrically connected to the control unit; and further includes a second temperature sensor, which is located in the air duct The inside of the assembly is arranged at the air inlet where the air duct assembly communicates with the outside, and the second temperature sensor is electrically connected with the control unit for measuring the inlet air temperature of the air duct assembly.
  • it further includes a second fan which is arranged in the sealed chamber and is electrically connected to the control unit.
  • the inside of the air duct assembly includes: a first air duct, which is arranged on the upper part of the sealed chamber, and is arranged to be sealed to each other with the sealed cavity and communicated with the outside; and a second air duct is arranged Between the sealed chamber and the open chamber, the sealed chamber and the open chamber are arranged to be sealed to each other and communicate with the first air duct; the third air duct is arranged at Below the open chamber, on the one hand, it is connected to the second air duct, and on the other hand it is connected to the first fan.
  • the air duct forms a first ventilation path bent from top to bottom in the cabinet assembly; wherein the first air duct communicates with the outside through an air inlet, and the air inlet is arranged far from the second air duct Place.
  • the air duct assembly includes a heat dissipation structure which is arranged in the sealed chamber and is adjacent to the first air duct.
  • it further includes a door panel assembly arranged on one side of the sealed chamber; the door panel assembly is provided with a fourth air duct, which communicates with the outside on the one hand, and communicates with the air duct assembly on the other hand.
  • it further includes a filter assembly connected to the door panel assembly, and the filter assembly covers the fourth air duct.
  • it further includes a wind speed sensor which is arranged in the air duct assembly, the wind speed sensor is arranged on the rear side of the filter assembly along the cooling air flow direction, and the control unit is electrically connected to the wind speed sensor.
  • the cabinet assembly includes:
  • the two sealed chambers are arranged in parallel on both sides of the open chamber, and one or more power modules are arranged in parallel in the two sealed chambers respectively;
  • At least two of the air duct components are respectively arranged in the two sealed chambers, or at least one of the air duct components is arranged in each of the two sealed chambers; the heat sink of each power module It is arranged in the corresponding air duct assembly; each air duct assembly extends to the open cavity and communicates with the first fan.
  • the second embodiment of the present application provides a converter, including the converter heat dissipation device described in any one of the above.
  • the third embodiment of the present application provides a method for controlling the heat sink of a converter.
  • the heat sink of the converter is adopted and includes the following steps: (1) A plurality of first temperature sensors measure the power module, the transformer, and the reactor respectively. (2) The control unit obtains the first temperature data of multiple first temperature sensors; (3) The second temperature sensor measures the inlet air temperature of the air duct assembly; (4) The control unit obtains the second temperature of the second temperature sensor Temperature data; (5) The control unit respectively sets a plurality of first temperature standard values and sets a second temperature standard value, and the control unit judges the temperature data: when each first temperature data is less than or equal to the corresponding first temperature standard value , And the second temperature data is less than or equal to the second temperature standard value, perform step (6); when any one of the first temperature data is greater than the corresponding first temperature standard value, or the second temperature data is greater than the second temperature standard value, perform Step (7); when any one of the first temperature data is greater than the corresponding first temperature standard value, and the second temperature data is greater than the second
  • the fourth embodiment of the present application provides a method for monitoring the heat dissipation device of a converter.
  • the use of the heat dissipation device of the converter includes the following steps: (1) the wind speed sensor measures the wind speed in the air duct assembly; (2) the control unit Obtain the wind speed data of the wind speed sensor; (3) The control unit sets the wind speed standard value, and the control unit judges the wind speed data: when the wind speed data is greater than the wind speed standard value, perform step (1); when the wind speed data is less than the wind speed standard value, the control unit obtains Wind speed sensor position, and execute step (4); (4) The control unit issues a prompt, sends the wind speed sensor position to the staff, and informs the staff to perform maintenance and clean the filter assembly.
  • the converter heat sink provided by at least one embodiment of the present application performs dual heat dissipation on the power module, which can effectively improve the heat dissipation efficiency, and effectively reduce the space occupied by the converter heat sink under the condition of constant heat dissipation. , Which is conducive to the integration and lightweight of the converter.
  • the converter heat dissipation device provided by at least one embodiment of the present application optimizes the heat dissipation sequence of the devices, makes full use of the heat dissipation space, improves the heat dissipation efficiency, strengthens the protection of key components, and prolongs the lifespan. At the same time, the heat dissipation performance capacity of the equipment is increased, and higher performance heat dissipation can be realized in a compact space.
  • the converter heat dissipating device provided by at least one embodiment of the present application is provided with two sealed chambers, and the power modules are arranged in parallel in the sealed chamber; and at least two air duct components are also provided to dissipate heat from the power modules to realize parallel connection
  • the air duct design ensures that the colder cooling air passes through the power module in parallel, further improving the heat dissipation efficiency.
  • FIG. 1 is a schematic structural diagram of a heat dissipation device of a converter provided by an embodiment
  • Figure 2 is a top view of Figure 1;
  • Fig. 3 is a schematic diagram of the heat dissipation flow direction corresponding to Fig. 2;
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • Fig. 5 is a schematic diagram of the heat dissipation flow direction corresponding to Fig. 4;
  • Fig. 6 is a schematic structural diagram of a filter assembly according to an embodiment
  • Fig. 7 is a control flow chart of a heat sink device of a converter according to an embodiment
  • Fig. 8 is a flow chart of monitoring the heat dissipation device of a converter according to an embodiment
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the orientation or positional relationship indicated by the terms “upper”, “lower”, “front”, “rear”, “inner”, “outer” etc. are based on the orientation or positional relationship shown in Figures 1 and 4, and are only for It is convenient to describe the application and simplify the description, instead of indicating or implying that the device or element referred to must have a specific orientation, be configured and operated in a specific orientation, and therefore cannot be understood as a limitation of the application. Unless otherwise clearly specified and limited, the terms “connected” and “connected” should be interpreted broadly.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or through an intermediate connection.
  • the medium is indirectly connected, which can be the internal communication between two components.
  • the converter heat dissipation device of the present application is mainly used to dissipate heat of the converter of the rail train.
  • a converter is an electrical device that changes the voltage, frequency, number of phases, and other power or characteristics of the power supply system. It usually includes power modules, transformers, reactors, and control units. Due to the device itself, the power module's tolerance to temperature is less than that of transformers and reactors. The power module is a key component of the converter, if it encounters high temperature damage, it will affect the life of the converter. Therefore, it is necessary to dissipate heat from the various components of the converter, especially the power module.
  • the first embodiment of the present application provides a heat dissipation device for a converter, which includes a cabinet assembly 2; the control unit 1 may be arranged in the cabinet assembly 2.
  • the cabinet assembly 2 also includes:
  • the open chamber 21 is provided with a first fan 211, and the control unit 1 is electrically connected to the first fan 211 to control the rotation or shift of the first fan 211;
  • the sealed cavity 22 and the open cavity 21 are arranged to be sealed to each other; the power module 11 is arranged in the sealed cavity 22, and the power module 11 has a heat sink 111;
  • the air duct assembly 3 is arranged in the sealed cavity 22; the sealed cavity 22 and the inside 301 of the air duct assembly 3 are arranged to be sealed to each other;
  • the heat sink 111 of the power module 11 is arranged in the air duct assembly 3; the second end of the air duct assembly 3 extends to the open chamber 21, and the first fan 211 communicates with the air duct assembly 3 to suck out the air inside the air duct assembly 301 Cooling wind.
  • the air duct assembly 3 is provided with a heat dissipation structure 311, and the heat dissipation structure 311 is disposed in the sealed chamber 22.
  • Fig. 5 is a cross-sectional view, only the wind direction flow inside the air duct assembly is shown.
  • the first fan 211 is energized, and the cooling air enters the air duct assembly 3 from the outside.
  • the cooling air cools the power module 11 through the heat sink 111 located in the air duct assembly 3, and the first fan 211 sucks out the cooling air carrying heat , And blow it out of the open chamber 21; at the same time, the cooling air in the air duct assembly 3 can also exchange heat with the heat in the sealed chamber 22 through the heat dissipation structure 311, thereby further cooling the power module 11 in the sealed chamber 22 Cool down.
  • the heat dissipation device can double heat the power module 11, which can effectively improve the heat dissipation efficiency. Under the condition of constant heat dissipation, the space occupied by the heat dissipation device of the converter is effectively reduced, which is beneficial to the integration and lightness of the converter. Quantify.
  • the converter heat dissipation device includes a cabinet body assembly 2, an air duct assembly 3, a temperature sensor, a door panel assembly 4, a filter assembly 5 and a wind speed sensor 6.
  • the cabinet assembly 2 provides support for the converter heat dissipation device provided in this embodiment and separates the open chamber 21 and the sealed chamber 22 from the outside.
  • the cabinet assembly 2 is provided with an open chamber 21 and a sealed chamber 22, which are arranged independently of each other and are sealed and isolated.
  • the open cavity 21 communicates with the outside to blow the cooling wind from the air duct assembly 3 out of the cabinet assembly 2, and the transformer 12 and the reactor 13 are arranged in the open cavity 21.
  • a first fan 211 is also provided in the open chamber 21. The first fan 211 communicates with the air duct assembly 3 (as shown in FIG. 4), and is used to blow the cooling air from the outside through the air duct assembly 3 to other devices.
  • the power module 11 is arranged in a sealed chamber 22, and the sealed chamber 22 is sealed and isolated from the outside.
  • the air duct assembly 3 is disposed in the sealed cavity 22, and the sealed cavity 22 and the inside 301 of the air duct assembly are sealed and isolated from each other.
  • the heat dissipation structure 311 of the air duct assembly 3 is arranged in the sealed cavity 22, so that the heat in the sealed cavity 22 is transferred to the heat dissipation structure 311, and the heat dissipation structure 311 exchanges heat with the cooling air in the air duct assembly 3, thereby realizing the sealing Heat dissipation of the power module 11 and other devices in the chamber 22.
  • a second fan 221 is also provided in the sealed chamber 22, and the second fan 221 is energized under the control of the control unit 1, so that the air in the sealed chamber 22 circulates, thereby increasing the inside of the sealed chamber 22
  • the air passing through the heat dissipation structure 311 and the cooling air in the air duct assembly 3 have the efficiency of heat exchange.
  • the heat dissipation structure 311 can be a conventional heat dissipation structure such as a heat sink; it is worth understanding that since the inside 301 of the air duct assembly and the sealed chamber 22 are sealed with each other, one or more partition plates between the two can also be used.
  • the transformer 12 and the reactor 13 are arranged in the open chamber 21; specifically, the transformer 12 and the reactor 13 are arranged in the first fan 211 in the direction of the wind.
  • the first fan 211 When the first fan 211 is energized, the cooling air in the air duct assembly 3 first dissipates heat to the power module 11 with poor heat resistance, so that the cooling air with a lower temperature cools the power module 11, and then blows through the first fan 211 The heat is dissipated to the transformer 12 and the reactor 13 with strong heat resistance.
  • the converter heat sink provided by this embodiment optimizes the heat dissipation sequence of the devices, makes full use of the heat dissipation space, improves heat dissipation efficiency, strengthens the protection of key components, and prolongs the lifespan. At the same time, the heat dissipation performance capacity of the equipment is increased, and higher performance heat dissipation can be realized in a compact space.
  • the air duct assembly 3 is an important component for cooling the converter. Since the converter heat dissipating device provided by this embodiment is mainly considered to be installed at the bottom of the rail train, in order to facilitate the entry of cooling air and improve the heat dissipation efficiency, preferably, the first end of the air duct assembly 3 extends to the side of the sealed chamber 22 . In other words, the air inlet 34 of the air duct assembly 3 is arranged on the side of the sealed chamber 22, which is more conducive to the entry of cooling air.
  • the air duct assembly 3 includes a first air duct 31, a second air duct 32, and a third air duct 33 in sequence.
  • the first air duct 31 is disposed above the sealed cavity 22, and the first air duct 31 and the sealed cavity 22 are sealed and isolated from each other.
  • the first air duct 31 has an entrance (that is, an air inlet 34), and the first air duct 31 communicates with the outside through the air inlet 34.
  • the air inlet 34 of the first air duct 31 is provided on the side surface of the sealed chamber 22.
  • the converter heat dissipation device is also provided with a plurality of door panel assemblies 4, 401, which are connected to the cabinet body assembly 2; open the door panel assembly 401 outside the sealed chamber, namely The power module 11 and other components in the sealed chamber 22 can be overhauled, which improves the convenience of overhauling.
  • the door panel assembly 4 is provided with a fourth air duct 41.
  • the first air duct 31 is opposite to the fourth air duct 41, and the cooling air enters the first air duct 31 through the fourth air duct 41.
  • the first air duct 31 is connected to the fourth air duct 41 through the sealing member 313 to facilitate the entry of cooling air and prevent air leakage.
  • the fourth air duct 41 when the fourth air duct 41 is provided, the fourth air duct 41 is connected to the first air duct 31 through the air inlet 34, and the fourth air duct 41 is connected to the outside.
  • the inner surface of the fourth air duct 41 can also be used as a sealing surface of the sealed chamber. Therefore, when the door panel assembly 4 is opened, part of the components in the sealed chamber can also be repaired.
  • an air duct plate 312 is provided in the first air duct 31, and the air duct plate 312 is obliquely arranged in the first air duct 31 to reduce the amount of cooling air entering the first air duct 31. Wind resistance can guide the flow of cooling air.
  • the second air duct 32 is provided between the open chamber 21 and the sealed chamber 22, and the second air duct 32 is in communication with the first air duct 31.
  • the heat sink 111 of the power module 11 is arranged in the second air duct 32.
  • the heat sink 111 and the second air duct 32 are set to have a small gap to ensure that the cooling air flows through the heat sink 111 of the power module 11 when the cooling air flows from top to bottom, thereby improving the heat dissipation efficiency and realizing the power module 11
  • the main heat dissipation is provided to the height of the heat sink 111 of the power module 11.
  • the third air duct 33 is disposed under the open chamber 21, and the third air duct 33 is connected to the second air duct 32 on the one hand, and is connected to the first fan 211 on the other hand.
  • the third air duct 33 is provided at the bottom of the cabinet assembly 2, the third air duct 33 is provided with a first air outlet, and the first fan 211 is provided at the first air outlet.
  • the first fan 211 draws out the cooling air through the third air duct 33, the second air duct 32 and the first air duct 31 and blows it into the open chamber 21, and then blows it out through the open chamber 21 to the outside, thereby reducing the power of the converter The heat is taken away to realize the cooling of the converter.
  • the first air duct 31, the second air duct 32, and the third air duct 33 are sequentially arranged inside the air duct assembly 301 . Since the interior 301 of the air duct assembly and the sealed chamber 22 are sealed and isolated from each other, the three air ducts are also sealed and isolated from the sealed chamber 22; but this does not prevent the air duct assembly 3 from being arranged in the sealed chamber 22.
  • the first air duct 31 can be provided in the upper part of the sealed chamber 22, or it can pass through the middle of the sealed chamber 22 (the two can be regarded as equivalent), but taking into account factors such as the layout of the devices in the sealed chamber
  • the first air duct 31 is arranged on one side of the sealed chamber, such as the upper part or the lower part.
  • the first air duct 31 is connected to the air inlet 34 on the side of the sealed chamber 22 on the one hand, and is connected to the second air duct 32 on the other hand.
  • the first air duct 31 has a much larger flow area than the air inlet.
  • the air inlet 32 is far away from the second air duct 32 and can dissipate heat from the components in the sealed chamber 22 through the heat dissipation structure 311 adjacent to the first air duct 31.
  • the second air duct 32 is located between the open chamber 21 and the sealed chamber 22, and can also be regarded as belonging to the sealed chamber 22, but is sealed to each other with the sealed chamber 22. Since the heat sink 111 is provided therein, the cooling air from the first air duct 31 after heat dissipation can more fully dissipate the heat of the devices in the sealed chamber 22 in the second air duct 32.
  • the third air duct 33 is located below the open chamber 21 and communicates with the first fan 211; it is used to blow the cooling air into the open chamber 21.
  • each air duct in this embodiment makes a first ventilation path bent from top to bottom in the cabinet assembly 2; the cooling air runs from the upper part of the cabinet assembly (the upper part of the sealed chamber) through the second air From the channel 32 to the lower part of the cabinet assembly (below the open chamber), the space of each chamber is fully utilized to make the entire cabinet assembly more compact.
  • the air duct assembly 3 is arranged in a three-dimensional space, and the space occupied by the converter heat dissipating device is further reduced under the condition that the heat dissipation capacity remains unchanged.
  • the first air duct 31, the second air duct 32, and the third air duct 33 provided in this embodiment can be formed by combining heat dissipation air duct plates (that is, each chamber partition) in combination with the structure of the cabinet assembly 2. Further reduce the volume of the heat sink of the converter.
  • the filter assembly 5 is used to filter the cooling air entering the heat sink of the converter.
  • the filter assembly 5 is connected to the door panel assembly 4 and is preferably located in the visible area on the side of the cabinet assembly 2 for easy viewing and maintenance.
  • the filter assembly 5 covers the fourth air duct 41 and filters the cooling air entering the fourth air duct 41.
  • the filter assembly 5 is provided with a filter mesh 51 and a filter 52.
  • the filter screen 51 covers the entrance of the fourth air duct 41. Square holes are arranged on the surface of the filter screen 51, which facilitates the passage of cooling air and can filter larger particles and sundries.
  • the size of the square holes of the filter screen 51 can be adjusted according to the air volume required for heat dissipation of the power module 11 to achieve a reasonable distribution of air volume, targeted heat dissipation, improved heat dissipation efficiency, and reduced energy consumption.
  • the filter 52 is located at the rear side of the filter screen 51, and the cooling air passes through the filter screen 51 and then passes through the filter 52 for filtering.
  • the filter 52 can filter finer impurities, which can be implemented by a filtering device in the prior art.
  • first temperature sensors 7 and second temperature sensors 8 are also provided.
  • the multiple first temperature sensors 7 are respectively arranged on the power module 11, the transformer 12 and the reactor 13, and the first temperature sensors can also be arranged on other devices that need to monitor temperature.
  • Each first temperature sensor 7 is electrically connected to the control unit 1 for mutual transmission of signals and data.
  • the second temperature sensor 8 is located in the air duct assembly 3, and the second temperature sensor 8 is arranged at the air inlet where the air duct assembly 3 communicates with the outside. It is used to measure the air inlet temperature of the air duct assembly 3 and is also electrically connected to the control unit. .
  • a wind speed sensor 6 is also provided.
  • the wind speed sensor 6 is arranged in the first air duct 31, the wind speed sensor 6 is arranged behind the filter assembly 5 along the cooling wind direction, and the control unit is electrically connected to the wind speed sensor 6.
  • the converter includes a plurality of power modules 11, which are arranged side by side in the two sealed chambers.
  • At least two air duct assemblies 3 are respectively disposed in the two sealed chambers 22, and each air duct assembly 3 extends to the open chamber 21 and communicates with the first fan 211 respectively.
  • the heat sink 111 of the power module 11 is located in the air duct assembly 3; there are at least two heat dissipation structures 311, which are respectively located in the two sealed chambers 22.
  • the heat dissipation device includes two sealed chambers 22 respectively arranged on both sides of the open chamber 21; each sealed chamber 22 has a first air duct 31 at the upper part, It communicates with the air inlet 34.
  • the figure shows a total of four air inlets 34 dispersedly arranged, and each first air duct 31 communicates with two of them to introduce cooling air from the outside (as shown in Figs. 3 and 5) ;
  • the number of air inlets 34 is not limited to this, one or more can be designed according to actual needs.
  • a second air duct 32 is provided between each sealed cavity 22 and the open cavity 21, and a heat sink 111 is provided therein to dissipate heat of the power module 11 in the sealed cavity 22.
  • Each second air duct 32 is connected to a third air duct 33 located at the bottom of the open chamber to introduce cooling air into the open chamber 21.
  • the first fan 211, the transformer 12 and the reactor 13 are arranged between the two sealed chambers 22 and also between the two second air ducts 32; the cooling air forms a second ventilation path in the open chamber 21, To cool the devices in the open chamber, and then discharge the open chamber at the end of the second ventilation path.
  • the cooling air from the air inlet 34 enters the second air channel 32 with fins 111 through the first air channel 31 located at the upper part, enters the third air channel 33 from the lower part, and then converges to Below the first fan 211, the first fan 211 blows out to the open chamber 21; then the transformer 12 and the reactor 13 are cooled in the open chamber 21, and finally blown out of the open chamber 21.
  • the sealed chambers 22 on both sides are in parallel heat dissipation mode, and the heat dissipation efficiency is high; at the same time, for the heat dissipation channel
  • the arrangement reduces the length of the entire device, makes reasonable use of the parallel length to lengthen the width of the first air duct 31, and makes reasonable use of the sealed chamber 22 and the lower part of the open chamber 21; this makes not only the heat dissipation effect good, but also the entire device
  • the structure is more compact and the space occupied is small, which is conducive to the integration and light weight of the converter.
  • the first fan 211 is energized, and the cooling air enters the first air duct 31 and the second air duct 32 through the filter assembly 5 through the wind speed sensor 6 and the second temperature sensor 8.
  • the heat sink 111 in the second air duct 32 cools and dissipates heat, thereby realizing the heat dissipation of the power module 11; the cooling air carries heat through the third air duct 33 under the open chamber 21, and then blows out through the first fan 211 and blows toward The transformer 12 and the reactor 13 located in the wind direction of the first fan 211 finally blow out the cabinet assembly 2 from the open chamber 21.
  • the second fan 221 is energized to work, the air in the sealed chamber 22 is circulated, and the heat emitted by the power module 11 and other devices exchanges heat with the first air duct 31 through the heat dissipation structure 311, so as to realize the power module in the sealed chamber 22 11. Heat dissipation of other devices.
  • This embodiment also provides a method for controlling the heat sink of a converter. Referring to FIG. 7, the method includes the following steps:
  • the control unit acquires the first temperature data T 1 of the multiple first temperature sensors
  • the second temperature sensor measures the inlet air temperature T 2 of the air duct assembly
  • the control unit obtains the second temperature data T 2 of the second temperature sensor
  • the control unit sets the first temperature standard value T 1S and the second temperature standard value T 2S , and the control unit judges the temperature data, when each first temperature data T 1 is less than or equal to the corresponding first temperature standard value T 1S , and each second temperature data T 2 is less than or equal to the second temperature standard value T 2S , perform step (6); when any one of the first temperature data T 1 is greater than the corresponding first temperature standard value T 1S , or any If a second temperature data T 2 is greater than the second temperature standard value T 2S , step (7) is executed; when any one of the first temperature data T 1 is greater than the corresponding first temperature standard value T 1S , and any second temperature data If T 2 is greater than the second temperature standard value T 2S , perform step (8);
  • the control unit controls the low-level operation of the first fan
  • the control unit controls the mid-range operation of the first fan
  • the control unit controls the high-end operation of the first fan.
  • the low, mid, and high levels of the fan are set according to actual needs and are relative values.
  • the low level is about 2100r/min
  • the middle level is about 2600r/min
  • the high level is 3100r/min.
  • the standard value in this embodiment is generally set according to the heat resistance of the device, and can be set according to specific conditions.
  • the power module 11, the transformer 12, and the reactor 13 are all provided with a first temperature sensor 7 for measuring the temperature of the corresponding device.
  • Each first temperature sensor 7 and the control unit 1 are electrically connected to each other.
  • the control unit obtains the first temperature data of each first temperature sensor, and compares it with the corresponding first temperature standard value set (different devices may have different standard values).
  • the second temperature sensor 8 is arranged at the air inlet of the air duct assembly 3 to measure its inlet air temperature.
  • the second temperature sensor 8 is electrically connected to the control unit 1; when there are multiple air inlets, multiple second temperatures can be set Sensor 8.
  • the control unit 1 obtains the second temperature data of the second temperature sensor 8 and compares it with the set second temperature standard value.
  • each first temperature data is less than or equal to the corresponding first temperature standard value, and the second temperature data is less than or equal to the second temperature standard value, it is determined that the temperature of each device does not exceed the standard and the inlet air temperature does not exceed the standard, and the control unit 1 Control the low-level operation of the first fan 211; if any one of the first temperature data is greater than the first temperature standard value, or any one of the second temperature data is greater than the second temperature standard value, it is determined that the temperature of the device exceeds the standard or the temperature of the inlet air exceeds the standard.
  • the control unit 1 obtains the position of the device or the position of the air duct component whose inlet air temperature exceeds the standard, and controls the mid-range operation of the first fan 211 to increase the flow speed of the cooling air; if any one of the first temperature data is greater than the first temperature standard value, and If any one of the second temperature data is greater than the second temperature standard value, it is determined that the device temperature exceeds the standard and the inlet air temperature exceeds the standard, and the control unit obtains the position of the device and the position of the air duct component with the inlet air temperature exceeding the standard, and controls the first fan 211 to operate at a high level , To maximize the flow speed of the cooling air.
  • the method for controlling the heat dissipation device of the converter provided by this embodiment can obtain the temperature data of each device in real time, and control the first fan 211 according to the actual measured device temperature data and the inlet air temperature data, so as to realize the heat dissipation of the converter.
  • the automatic control of the device also reduces the energy consumption of the first fan 211.
  • This embodiment also provides a method for monitoring the heat dissipation device of a converter. Referring to FIG. 8, the method includes the following steps:
  • the wind speed sensor 6 measures the wind speed W in the air duct assembly 3;
  • the control unit 1 obtains the wind speed data W of the wind speed sensor 6;
  • control unit sets the wind speed standard value W S , and the control unit judges the wind speed data W: when the wind speed data W is greater than the wind speed standard value W S , perform step (1); if the wind speed data W is less than the wind speed standard value W S , control The unit obtains the position of the wind speed sensor, and executes step (4);
  • the control unit issues an alarm to notify the staff to perform maintenance and clean up the filter components.
  • the converter heat sink provided in this embodiment is provided with a wind speed sensor 6 which is located in the first air duct 31 and is arranged on the rear side of the filter assembly 5 along the cooling air flow direction.
  • a wind speed sensor 6 which is located in the first air duct 31 and is arranged on the rear side of the filter assembly 5 along the cooling air flow direction.
  • the control unit obtains the wind speed data of the wind speed sensor 6 and compares it with the set wind speed standard value.
  • the control unit obtains the position of the clogged filter assembly 5 and issues an alarm to notify The staff conducts overhaul and cleans the filter assembly 5.
  • the method for monitoring the heat dissipation device of the converter provided by this embodiment can monitor the working condition of the filter assembly 5 in real time, and can obtain the position of the blocked filter assembly 5, which provides convenience for the workers to inspect and repair the filter assembly 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)

Abstract

本申请提供一种变流器散热装置,包括其内设置有开放腔室、密封腔室和风道组件的柜体组件;开放腔室内设置有与控制单元电连接的第一风机;密封腔室与开放腔室相互密封隔离设置,功率模块设置于密封腔室内;风道组件设置于密封腔室内,其内部与密封腔室相互密封,风道组件与外部相连通,功率模块的散热片设置于风道组件内,风道组件的一端延伸至开放腔室,第一风机与风道组件相连通。

Description

变流器散热装置及其控制方法和监控方法
本申请要求在2020年02月28日提交中国专利局、申请号为202010129266.1、发明名称为“变流器散热装置及变流器、变流器散热装置控制方法及监控方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于轨道列车用变流器领域,尤其涉及一种变流器散热装置及其控制方法和监控方法。
背景技术
目前,轨道交通列车对于大容量的变流器的需求越来越多。变流器在工作过程中,会释放出热量。变流器的热量主要来自功率模块、电抗器、变压器和控制器等发热元器件。如果不能及时将热量散出,会导致变流器的性能变差,可靠性降低。
中国申请CN110799021A公开了一种散热装置及变流器,所述散热装置包括基板和散热组件;所述基板具有用于安装功率器件的第一散热区和与第一散热区相邻的第二散热区;所述散热组件设于基板,散热组件具有对应所述第一散热区设置的第一散热部和对应所述第二散热区设置的第二散热部,所述第一散热部的散热能力大于所述第二散热部的散热能力。
中国申请CN210201699U公开了一种变流器的散热装置,包括变流器外壳,其内部两侧分别设置有功率模块和电器元件模块。
发明内容
本申请的目的在于提供一种变流器散热装置及其控制方法和监控方法,以及具有该散热装置的变流器,以提供更好地对于变流器的散热效果。
本申请的第一种实施方式提供了一种变流器散热装置,包括柜体组件,控制单元设置于柜体组件内,所述柜体组件内还设置有:
开放腔室,其内设置有第一风机,第一风机与控制单元电连接;
密封腔室,其与所述开放腔室相互密封设置,功率模块设置于所述密封腔室内,功率模块具有散热片;
风道组件,其设置于所述密封腔室内,所述密封腔室与所述风道组件内部相互密封设置;所述风道组件第一端与外部相连通,功率模块的散热片设置于所述风道组件内;所述风道组件的第二端延伸至所述开放腔室,所述第一风机与所述风道组件相连通。所述风道组件包括散热结构,其设置于所述密封腔室内。
可选地,风道组件的第一端延伸至所述密封腔室的侧面,以与外部相连通。
可选地,变压器和电抗器设置于开放腔室内,位于第一风机的出风方向上。
可选地,包括多个第一温度传感器,分别测量功率模块、变压器和电抗器的温度,每个第一温度传感器均与控制单元电连接;还包括第二温度传感器,其位于所述风道组件内,设置于所述风道组件与外部相连通的进风口处,所述第二温度传感器与控制单元电连接,用于测量风道组件的进风温度。
可选地,还包括第二风机,其设置于所述密封腔室内,并与控制单元电连接。
可选地,所述风道组件内部包括:第一风道,其设置于所述密封腔室的上部,与所述密封腔室相互密封设置,与外部相连通;第二风道,其设置于所述密封腔室与所述开放腔室之间,分别与所述密封腔室和所述开放腔室相互密封设置,与所述第一风道相连通;第三风道,其设置于所述开放腔室下方,一方面与所述第二风道相连通,另一方面与所述第一风机相连通。
可选地,所述风道在柜体组件内形成由上至下弯折而成的第一通风路径;其 中,第一风道通过进风口与外部连通,进风口设置在远离第二风道处。所述风道组件包括散热结构,所述散热结构设置于所述密封腔室内,与第一风道相邻。
可选地,还包括设置于所述密封腔室一侧的门板组件;所述门板组件设置有:第四风道,一方面与外部相连通,另一方面与所述风道组件相连通。可选地,还包括过滤组件,其与所述门板组件相连接,所述过滤组件覆盖所述第四风道。
可选地,还包括风速传感器,其设置于所述风道组件内,所述风速传感器沿冷却风流通方向设置于所述过滤组件后侧,所述控制单元与所述风速传感器电连接。
可选地,所述柜体组件内包括:
两个所述密封腔室,并列设置于所述开放腔室两侧,一个或多个功率模块分别并列设置于两个所述密封腔室中;
至少两个所述风道组件,其分别设置于两个所述密封腔室内,或者说两个所述密封腔室的每一个至少设置有一个所述风道组件;每个功率模块的散热片设置于对应的风道组件中;每个风道组件延伸至所述开放腔室,与所述第一风机相互连通。
本申请的第二种实施方式提供了一种变流器,包含上述任一项所述的变流器散热装置。
本申请的第三种实施方式提供了一种变流器散热装置控制方法,采用上述变流器散热装置,包括以下步骤:(1)多个第一温度传感器分别测量功率模块、变压器和电抗器的温度;(2)控制单元获取多个第一温度传感器的第一温度数据;(3)第二温度传感器测量风道组件的进风温度;(4)控制单元获取第二温度传感器的第二温度数据;(5)控制单元分别设置多个第一温度标准值和设置第二温度标准值,控制单元对温度数据进行判断:当每个第一温度数据均小于等于对应的第一温度标准值,且第二温度数据小于等于第二温度标准值,执行步骤(6);当其中任意一个 第一温度数据大于对应的第一温度标准值,或第二温度数据大于第二温度标准值,执行步骤(7);当其中任意一个第一温度数据大于对应的第一温度标准值,且第二温度数据大于第二温度标准值,执行步骤(8);(6)控制单元控制第一风机低档运转;(7)控制单元控制第一风机中档运转;(8)控制单元控制第一风机高档运转。
本申请的第四种实施方式提供了一种变流器散热装置监控方法,使用上述变流器散热装置,包括以下步骤:(1)风速传感器测量风道组件内的风速;(2)控制单元获取风速传感器的风速数据;(3)控制单元设置风速标准值,控制单元对风速数据进行判断:当风速数据大于风速标准值,执行步骤(1);当风速数据小于风速标准值,控制单元获取风速传感器位置,并执行步骤(4);(4)控制单元发出提示,将风速传感器位置发送给工作人员,通知工作人员进行检修,清理过滤组件。
与现有技术相比,本申请的有益效果在于:
1.本申请至少一个实施方式所提供的变流器散热装置对功率模块进行双重散热,能够有效提高散热效率,在散热量不变的情况下,有效减小变流器散热装置所占用的空间,有利于变流器的集成化与轻量化。
2.本申请的至少一个实施方式所提供的变流器散热装置对器件的散热顺序进行优化,充分利用散热空间,提高了散热效率,加强对关键部件的保护,延长寿命。同时增加了设备散热性能容量,在紧凑空间下实现更高性能的散热。
3.本申请至少一个实施方式提供的变流器散热装置设置有两个密封腔室,功率模块并列设置于密封腔室中;还设置有至少两个风道组件对功率模块进行散热,实现并联风道设计,保证较冷的冷却风并行通过功率模块,进一步提高散热效率。
附图说明
图1为一种实施方式所提供的变流器散热装置的结构示意图;
图2为图1的俯视图;
图3为图2对应的散热流向示意图;
图4为图3的A-A剖视图;
图5为图4对应的散热流向示意图;
图6为一种实施方式的过滤组件的结构示意图;
图7为一种实施方式的变流器散热装置控制流程图;
图8为一种实施方式的变流器散热装置监控流程图;
具体实施方式
以下结合具体实施方式对本申请的技术方案进行详实的阐述,然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益地结合到其他实施方式中。
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。术语“上”、“下”、“前”、“后”、“内”、“外”等指示的方位或位置关系为基于附图1和图4所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请的变流器散热装置主要用于对轨道列车的变流器进行散热。变流器是使电源系统的电压、频率、相数和其他电量或特性发生变化的电器设备,通常包括 功率模块、变压器、电抗器和控制单元等。由于器件自身原因,功率模块对于温度的耐受性小于变压器和电抗器。功率模块作为变流器的关键部件,若遭遇高温破坏会影响变流器寿命。因此,需要对变流器的各个器件进行散热,尤其是功率模块。
如图1-5所示,其中,为了便于观察内部结构,图中隐藏了柜体组件的上表面,该上表面可以理解为常规的平面盖板,为柜体组件的一部分。本申请的第一种实施方式提供了一种变流器散热装置,包括柜体组件2;控制单元1可以设置于柜体组件2内。柜体组件2内还包括:
开放腔室21,其内设置有第一风机211,控制单元1与第一风机211电连接,以控制第一风机211转动或换挡;
密封腔室22,其与开放腔室21相互密封设置;功率模块11设置于密封腔室22内,功率模块11具有散热片111;
风道组件3,其设置于密封腔室22内;密封腔室22与风道组件3内部301相互密封设置;风道组件3第一端与外部相连通,以向其内部301供应冷却风。功率模块11的散热片111设置于风道组件3内;风道组件3的第二端延伸至开放腔室21,第一风机211与风道组件3相连通,以吸出风道组件内部301的冷却风。可选地,所述风道组件3设置有散热结构311,散热结构311设置于密封腔室22内。
工作时,如图3和图5所示,其中由于图5是剖视图,仅示出了风道组件内部的风向流动。第一风机211通电动作,冷却风从外部进入风道组件3,冷却风通过位于风道组件3内的散热片111对功率模块11进行冷却降温,第一风机211将携带有热量的冷却风吸出,并将其吹出开放腔室21;同时,风道组件3内的冷却风还可以通过散热结构311与密封腔室22内的热量进行交换,从而对密封腔室22 内的功率模块11进一步冷却降温。该散热装置可对功率模块11进行双重散热,能够有效提高散热效率,在散热量不变的情况下,有效减小变流器散热装置所占用的空间,有利于变流器的集成化与轻量化。
具体地说,本实施方式所提供的变流器散热装置包括柜体组件2、风道组件3、温度传感器、门板组件4、过滤组件5和风速传感器6。
柜体组件2为本实施方式所提供的变流器散热装置提供支撑作用以及将开放腔室21和密封腔室22与外部分隔。参考图1-3,柜体组件2内设置有开放腔室21和密封腔室22,二者相互独立设置且密封隔离。开放腔室21与外部相连通,以将来自风道组件3的冷却风吹出柜体组件2,变压器12和电抗器13设置于开放腔室21内。开放腔室21内还设置有第一风机211,第一风机211与风道组件3相连通(如图4所示),用于将来自外部随后经过风道组件3的冷却风吹至其他器件,以冷却其他器件,并最终吹出开放腔室21。功率模块11设置于密封腔室22内,密封腔室22与外部相密封隔离。风道组件3设置于密封腔室22内,密封腔室22与风道组件内部301相互密封隔离。风道组件3的散热结构311设置于密封腔室22内,使得密封腔室22内的热量传递至散热结构311,散热结构311与风道组件3内的冷却风进行热量交换,从而实现对密封腔室22内功率模块11及其他器件的散热。作为优选,密封腔室22内还设置有第二风机221,第二风机221在控制单元1的控制下通电动作,使得密封腔室22内的空气进行流通循环,从而增加了密封腔室22内的空气通过散热结构311与风道组件3内的冷却风进行热量交换的效率。所述散热结构311可以选择散热片等常规散热结构;值得理解的是,由于风道组件内部301与密封腔室22之间相互密封,那么二者之间的一个或多个分隔板也是可以作为散热结构进行散热的。
为了进一步优化本实施方式所提供的变流器散热装置的结构提高散热效率,将变压器12和电抗器13设置于开放腔室21内;具体地说,变压器12和电抗器13设置于第一风机211的出风方向上。第一风机211通电动作时,风道组件3内的冷却风先对耐热性能较差的功率模块11进行散热,使得温度较低的冷却风冷却功率模块11后,再经由第一风机211吹向耐热能力较强的变压器12和电抗器13,对其进行散热。本实施方式所提供的变流器散热装置对器件的散热顺序进行优化,充分利用散热空间,提高了散热效率,加强对关键部件的保护,延长寿命。同时增加了设备散热性能容量,在紧凑空间下实现更高性能的散热。
风道组件3为对变流器进行冷却的重要部件。由于本实施方式所提供的变流器散热装置主要考虑安装于轨道列车底部,为了便于冷却风的进入,提高散热效率,作为优选,风道组件3的第一端延伸至密封腔室22的侧面。也就是说,风道组件3的进风口34设置于密封腔室22侧面,更有利于冷却风的进入。
更为具体地,如图2-5所示,风道组件3顺次包括第一风道31、第二风道32和第三风道33。第一风道31设置于密封腔室22的上方,第一风道31与密封腔室22相互密封隔离。第一风道31具有入口(即进风口34),第一风道31通过进风口34与外部相连通。作为优选,第一风道31的进风口34设置于密封腔室22的侧面。为方便对变流器的检修,可选地,变流器散热装置还设置有多个门板组件4,401,门板组件连接于柜体组件2上;将密封腔室外的门板组件401打开,即可对密封腔室22内的功率模块11及其他器件进行检修,提高了检修的便捷性。可选地,如图4所示,门板组件4设置有第四风道41。第一风道31与第四风道41相对接,冷却风经由第四风道41进入至第一风道31内。作为优选,第一风道31通过密封件313与第四风道41相对接,便于冷却风的进入,防止漏风。值得理解的是,当 设置第四风道41后,第四风道41通过进风口34与第一风道31相接,第四风道41与外部连通。此外,由图4可知,第四风道41的内表面还可以作为密封腔室的一个密封面,因此,当打开门板组件4时,也可以对密封腔室内的部分器件进行维修。作为进一步优选,如图1所示,第一风道31内设置有风道板312,风道板312倾斜设置于第一风道31内,以减小进入第一风道31的冷却风的风阻,可以对冷却风流动起到引导作用。
如图2-5所示,第二风道32设置于开放腔室21和密封腔室22之间,第二风道32与第一风道31相连通。功率模块11的散热片111设置于第二风道32中。可选地,散热片111与第二风道32设置为具有较小的间隙,保证冷却风由上而下流通时全部流经功率模块11的散热片111,从而提高散热效率,实现功率模块11的主要散热。为进一步保证散热效果,第二散热风道33的位置、结构可以根据功率模块11的散热片111高度进行调整。
如图4所示,第三风道33设置于开放腔室21的下方,第三风道33一方面与第二风道32相连通,另一方面与第一风机211相连通。具体地,第三风道33设置于柜体组件2的底部,第三风道33上设置有第一出风口,第一风机211设置于该第一出风口处。第一风机211经由第三风道33、第二风道32和第一风道31将冷却风抽出并吹向开放腔室21内,然后经由开放腔室21吹出至外部,将变流器的热量带走,实现对变流器的冷却降温。
对于本实施方式中各个风道的设置,还可以采用以下描述以辅助理解相关的技术方案:所述风道组件内部301依次设置第一风道31,第二风道32和第三风道33。由于风道组件内部301与密封腔室22相互密封隔离,因此,这三个风道也都与密封腔室22相互密封隔离;但是这并不妨碍风道组件3设置在密封腔室22内, 例如,第一风道31可以设置在密封腔室22上部,也可以从密封腔室22中部穿过(二者可看做是等价的),但是考虑到便于密封腔室内器件的布局等因素,优选将第一风道31设置在密封腔室的一侧,如上部或下部。所述第一风道31一方面连接位于密封腔室22侧面的进风口34,另一方面连接第二风道32。第一风道31具有比进风口处大很多的流通面积,进风口32远离第二风道32,可以通过与第一风道31相邻的散热结构311与密封腔室22内的器件散热。第二风道32位于开放腔室21和密封腔室22之间,也可以看做属于密封腔室22内,但是又与密封腔室22之间彼此密封。由于散热片111设置于其中,来自第一风道31的散热后的冷却风可以在第二风道32中更充分地对密封腔室22内的器件散热。第三风道33位于开放腔室21的下方,并与第一风机211连通;用于将冷却风吹至开放腔室21中。本实施方式中各个风道的设置使得在柜体组件2中形成由上至下弯折而成的第一通风路径;冷却风由柜体组件的上部(密封腔室上部)运行经过第二风道32至柜体组件的下部(开放腔室下方),充分利用各个腔室的空间使得整个柜体组件更加紧凑。
本实施方式所提供的变流器散热装置,风道组件3进行空间立体布局,在散热能力不变的情况下,进一步减小变流器散热装置所占用的空间。作为优选,本实施方式所提供的第一风道31、第二风道32和第三风道33可以由散热风道板(即各腔室隔板)结合柜体组件2的结构而成型,进一步减小变流器散热装置的体积。
过滤组件5用于对进入变流器散热装置的冷却风进行过滤。过滤组件5与门板组件4相连接,优选位于柜体组件2侧面的可视区域,便于查看与维护。过滤组件5覆盖第四风道41,对进入第四风道41内的冷却风进行过滤。具体地说,过滤组件5设置有过滤网51和过滤器52。过滤网51覆盖第四风道41的入口。过滤网51表面布有方孔,便于冷却风通过,且可过滤较大颗粒杂物。过滤网51方孔的大 小可以根据功率模块11的散热所需风量进行调整,实现风量的合理分配,有针对性地散热,提高散热效率,降低能耗。过滤器52位于过滤网51的后侧,冷却风经过过滤网51后再经过过滤器52进行过滤。过滤器52能够对更细小的杂质进行过滤,其可以采用现有技术中的过滤装置实现。
为了便于对本实施方式所提供的变流器散热装置进行控制,还设置有多个第一温度传感器7和第二温度传感器8。多个第一温度传感器7分别设置于功率模块11、变压器12和电抗器13上,也可以在其他需要监控温度的器件上设置第一温度传感器。每个第一温度传感器7均与控制单元1电连接,以进行信号和数据的相互传递。第二温度传感器8位于风道组件3内,第二温度传感器8设置于风道组件3与外部相连通的进风口处,用于测量风道组件3的进风温度,也与控制单元电连接。
为了便于对本实施方式所提供的变流器散热装置进行监控,还设置有风速传感器6。风速传感器6设置于第一风道31内,风速传感器6沿冷却风方向设置于过滤组件5之后,控制单元与风速传感器6电连接。
为了进一步提高散热效率,密封腔室22设置为两个,两个密封腔室22分别设置于开放腔室21两侧,变流器包括多个功率模块11,其并列设置于两个密封腔室22内。至少两个风道组件3分别设置于两个密封腔室22内,每个风道组件3均延伸至开放腔室21,并分别与第一风机211相互连通。功率模块11的散热片111位于风道组件3内;散热结构311至少有两个,分别位于两个密封腔室22内。
换而言之,如图1-5所示,所述散热装置包括分别设置在开放腔室21两侧的两个密封腔室22;每个密封腔室22上部均具有第一风道31,其与进风口34相通,图中共计示出了四个分散设置的进风口34,每个第一风道31与其中两个相通,以从外部引入冷却风(如图3和5所示);但是进风口34数量并不局限于此,可根据 实际需要设计一个或多个。每个密封腔室22与开放腔室21之间均设有第二风道32,其中具有散热片111,以对密封腔室22内的功率模块11散热。每个第二风道32均连接至位于开放腔室底部的第三风道33,以将冷却风引入开放腔室21中。
所述第一风机211,变压器12和电抗器13设置在两个密封腔室22之间,也位于两个第二风道32之间;冷却风在开放腔室21中形成第二通风路径,以冷却位于开放腔室中的器件,然后在第二通风路径末端排出开放腔室。
如图3和图5所示,来自进风口34的冷却风经由位于上部的第一风道31进入具有散热片111的第二风道32,并从下部进入第三风道33,然后汇聚到第一风机211下方,由第一风机211吹出至开放腔室21;然后在开放腔室21中冷却变压器12和电抗器13,最后被吹出开放腔室21。当具有两个密封腔室22时,在第一风道31和第二风道32中对功率模块11进行散热时,两边的密封腔室22为并联散热模式,散热效率高;同时对于散热通道的安排,减少了整个装置的长度,合理利用并联的长度拉长第一风道31的宽度,合理地利用了密封腔室22以及开放腔室21的下方;使得不但散热效果好,整个装置的结构更紧凑,占用空间小,有利于变流器的集成化和轻量化。
为了便于对本申请技术方案的理解,下面对本实施例所提供的变流器散热装置的散热过程作进一步描述。
参考图3和图5,第一风机211通电动作,冷却风经由过滤组件5经过风速传感器6和第二温度传感器8后顺次进入第一风道31和第二风道32,冷却风对第二风道32内散热片111进行冷却散热,进而实现对功率模块11散热降温;冷却风携带热量经位于开放腔室21下方的第三风道33,然后经由第一风机211吹出,并吹向位于第一风机211出风方向的变压器12和电抗器13,最终从开放腔室21的 吹出柜体组件2。第二风机221通电工作,密封腔室22内的空气进行循环,功率模块11及其他器件发出的热量通过散热结构311与第一风道31进行热量交换,从而实现对密封腔室22内功率模块11及其他器件的散热。
本实施方式还提供一种变流器散热装置控制方法,参考图7,包括以下步骤:
(1)多个第一温度传感器分别测量功率模块、变压器和电抗器的温度T 1
(2)控制单元获取多个第一温度传感器的第一温度数据T 1
(3)第二温度传感器测量风道组件的进风温度T 2
(4)控制单元获取第二温度传感器的第二温度数据T 2
(5)控制单元设置第一温度标准值T 1S和第二温度标准值T 2S,控制单元对温度数据进行判断,当每个第一温度数据T 1均小于等于对应的第一温度标准值T 1S,且每个第二温度数据T 2小于等于第二温度标准值T 2S,执行步骤(6);当其中任意一个第一温度数据T 1大于对应的第一温度标准值T 1S,或任意一个第二温度数据T 2大于第二温度标准值T 2S,执行步骤(7);当其中任意一个第一温度数据T 1大于对应的第一温度标准值T 1S,且任意一个第二温度数据T 2大于第二温度标准值T 2S,执行步骤(8);
(6)控制单元控制第一风机低档运转;
(7)控制单元控制第一风机中档运转;
(8)控制单元控制第一风机高档运转。
值得注意的是,风机的低档,中档和高档是根据实际的需求设定,是相对的值,例如对于本实施方式,其低档为2100r/min左右,中档为2600r/min左右,高档为3100r/min左右。此外本实施方式中的标准值一般是根据器件的耐热性能而设定的,可以根据具体的情况进行设定。
具体地说,功率模块11、变压器12和电抗器13上均设置有第一温度传感器7,用于测量相应器件的温度。每个第一温度传感器7与控制单元1相互电连接。控制单元获取各个第一温度传感器的第一温度数据,并与所设置的对应的第一温度标准值相比较(不同器件可能有不同的标准值)。第二温度传感器8设置于风道组件3的进风口处,测量其进风温度,第二温度传感器8与控制单元1相互电连接;当具有多个进风口时,可以设置多个第二温度传感器8。控制单元1获取第二温度传感器8的第二温度数据,并与所设置的第二温度标准值相比较。如果每个第一温度数据均小于等于对应的第一温度标准值,且第二温度数据均小于等于第二温度标准值,则判定为各个器件温度不超标且进风温度不超标,控制单元1控制第一风机211低档运转;如果有任意一个第一温度数据大于第一温度标准值,或任意一个第二温度数据大于第二温度标准值,则判定为该器件温度超标或者进风温度超标,控制单元1获取该器件位置或进风温度超标的风道组件的位置,并控制第一风机211中档运转,增加冷却风的流动速度;如果任意一个第一温度数据大于第一温度标准值,且任意一个第二温度数据大于第二温度标准值,则判定为器件温度超标且进风温度超标,控制单元获取器件位置及进风温度超标的风道组件的位置,并控制第一风机211高档运转,使冷却风的流动速度达到最大。
本实施方式所提供的变流器散热装置控制方法,能够实时获取各个器件的温度数据,并根据实际测量的器件温度数据及进风温度数据进行第一风机211的控制,实现了变流器散热装置的自动化控制,同时也降低了第一风机211的能耗。
本实施方式还提供一种变流器散热装置监控方法,参考图8,包括以下步骤:
(1)风速传感器6测量风道组件3内的风速W;
(2)控制单元1获取风速传感器6的风速数据W;
(3)控制单元设置风速标准值W S,控制单元对风速数据W进行判断:当风速数据W大于风速标准值W S,执行步骤(1);若风速数据W小于风速标准值W S,控制单元获取该风速传感器位置,执行步骤(4);
(4)控制单元发出警报,通知工作人员进行检修,清理过滤组件。
具体地说,本实施方式所提供的变流器散热装置设置有风速传感器6,风速传感器6位于第一风道31内,且沿冷却风流动方向设置于过滤组件5的后侧。当过滤组件5堵塞时,进入第一风道31内的风速变小,风速传感器6可测量得到风速数据。控制单元获取风速传感器6的风速数据,并与所设置的风速标准值相比较。如果风速数据大于风速标准值,则判断为过滤组件5未堵塞;如果风速数据小于等于风速标准值,则判断为过滤组件5堵塞,控制单元获取堵塞的过滤组件5的位置,并发出警报,通知工作人员进行检修,清理过滤组件5。
本实施方式所提供的变流器散热装置监控方法,能够对过滤组件5的工作情况进行实时监控,并可以获取堵塞的过滤组件5位置,为工作人员对过滤组件5的检修提供便捷性。
所述的实施方式仅仅是对本申请的优选实施方式进行描述,并非对本申请的范围进行限定,在不脱离本申请设计精神的前提下,本领域普通技术人员对本申请的技术方案作出的各种变形和改进,均应落入本申请权利要求书确定的保护范围内。

Claims (12)

  1. 一种变流器散热装置,包括柜体组件(2),控制单元(1)设置于柜体组件(2)内,其中,所述柜体组件(2)内还设置有:
    开放腔室(21),其内设置有第一风机(211),第一风机(211)与控制单元(1)电连接;
    密封腔室(22),其与所述开放腔室(21)相互密封设置,功率模块(11)设置于所述密封腔室(22)内,功率模块(11)具有散热片(111);
    风道组件(3),其设置于所述密封腔室(22)内,所述密封腔室(22)与所述风道组件内部(301)相互密封设置,所述风道组件第一端与外部相连通,功率模块(11)的散热片(111)设置于所述风道组件内,所述风道组件的第二端延伸至所述开放腔室(21),所述第一风机(211)与所述风道组件(3)相连通。
  2. 根据权利要求1所述的变流器散热装置,其中,所述风道组件内部(301)包括:
    第一风道(31),其设置于所述密封腔室(22)的上部,与所述密封腔室(22)相互密封设置,与外部相连通;
    第二风道(32),其设置于所述密封腔室(22)与所述开放腔室(21)之间,分别与所述密封腔室(22)和所述开放腔室(21)相互密封设置,与所述第一风道(31)相连通;
    第三风道,其设置于所述开放腔室(21)下方,一方面与所述第二风道(32)相连通,另一方面与所述第一风机(211)相连通。
  3. 根据权利要求2所述的变流器散热装置,其中,所述风道在柜体组件(2)内形成由上至下弯折而成的第一通风路径;第一风道(31)通过进风口(34)与外 部连通,进风口(34)设置在远离第二风道(32)处;所述风道组件(3)包括散热结构(311),所述散热结构(311)设置于所述密封腔室内,与第一风道(31)相邻。
  4. 根据权利要求1-3任一项所述的变流器散热装置,其中,变压器(12)和电抗器(13)设置于所述开放腔室(21)内,位于所述第一风机的出风方向上。
  5. 根据权利要求4所述的变流器散热装置,其中,包括多个第一温度传感器(7),分别测量功率模块(11)、变压器(12)和电抗器(13)的温度,每个第一温度传感器(7)均与控制单元(1)电连接;还包括第二温度传感器(8),其位于所述风道组件内,设置于所述风道组件(3)与外部相连通的进风口处,用于测量风道组件的进风温度,第二温度传感器(8)与控制单元(1)电连接。
  6. 根据权利要求1-3任一项所述的变流器散热装置,其中,还包括第二风机(221),其设置于所述密封腔室(22)内,并与控制单元(1)电连接。
  7. 根据权利要求1-3任一项所述的变流器散热装置,其中,还包括设置于所述密封腔室(22)一侧的门板组件(4),所述门板组件(4)设置有:第四风道(41),一方面与外部相连通,另一方面与所述风道组件(3)相连通;还包括过滤组件(5),其与所述门板组件(4)相连接,所述过滤组件(5)覆盖所述第四风道(41)。
  8. 根据权利要求7所述的变流器散热装置,其中,还包括风速传感器(6),其设置于所述风道组件内,所述风速传感器(6)沿冷却风流通方向设置于所述过滤组件(5)后侧,所述控制单元(1)与所述风速传感器(6)电连接。
  9. 根据权利要求1~8任一项所述的变流器散热装置,其中,所述柜体组件内包括:
    两个密封腔室(22),并列设置于所述开放腔室(21)两侧,一个或多个功率 模块分别并列设置于两个所述密封腔室中;
    至少两个所述风道组件(3),两个密封腔室(22)中的每一个至少设置有一个所述风道组件(3),每个功率模块的散热片(111)设置于所对应的风道组件中;每个所述风道组件(3)延伸至所述开放腔室,与所述第一风机(211)相互连通。
  10. 一种变流器散热装置控制方法,使用权利要求5所述的变流器散热装置,其中,包括以下步骤:
    (1)多个第一温度传感器分别测量功率模块、变压器和电抗器的温度;
    (2)控制单元获取多个第一温度传感器的第一温度数据;
    (3)第二温度传感器测量风道组件的进风温度;
    (4)控制单元获取第二温度传感器的第二温度数据;
    (5)控制单元分别设置多个第一温度标准值和设置第二温度标准值,控制单元对温度数据进行判断:当每个第一温度数据均小于等于对应的第一温度标准值,且第二温度数据小于等于第二温度标准值,执行步骤(6);当其中任意一个第一温度数据大于对应的第一温度标准值,或第二温度数据大于第二温度标准值,执行步骤(7);当其中任意一个第一温度数据大于对应的第一温度标准值,且第二温度数据大于第二温度标准值,执行步骤(8);
    (6)控制单元控制第一风机低档运转;
    (7)控制单元控制第一风机中档运转;
    (8)控制单元控制第一风机高档运转。
  11. 一种变流器散热装置监控方法,使用权利要求8所述的变流器散热装置,其中,包括以下步骤:
    (1)风速传感器测量风道组件内的风速;
    (2)控制单元获取风速传感器的风速数据;
    (3)控制单元设置风速标准值,控制单元对风速数据进行判断:当风速数据大于风速标准值,执行步骤(1);当风速数据小于风速标准值,控制单元获取风速传感器位置,并执行步骤(4);
    (4)控制单元发出提示,将风速传感器位置发送给工作人员,通知工作人员进行检修,清理过滤组件。
  12. 一种变流器,包含权利要求1~9任一项所述的变流器散热装置。
PCT/CN2020/089304 2020-02-28 2020-05-09 变流器散热装置及其控制方法和监控方法 WO2021169042A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ROA202200501A RO137309A2 (ro) 2020-02-28 2020-05-09 Dispozitiv de disipare a căldurii unui convertor şi metodă de comandă şi metodă de monitorizare asociate
CONC2022/0011160A CO2022011160A2 (es) 2020-02-28 2022-08-08 Dispositivo de disipación de calor del convertidor y método de control y método de monitoreo del mismo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010129266.1 2020-02-28
CN202010129266.1A CN112839479B (zh) 2020-02-28 2020-02-28 变流器散热装置及变流器、变流器散热装置控制方法及监控方法

Publications (1)

Publication Number Publication Date
WO2021169042A1 true WO2021169042A1 (zh) 2021-09-02

Family

ID=75923046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089304 WO2021169042A1 (zh) 2020-02-28 2020-05-09 变流器散热装置及其控制方法和监控方法

Country Status (4)

Country Link
CN (1) CN112839479B (zh)
CO (1) CO2022011160A2 (zh)
RO (1) RO137309A2 (zh)
WO (1) WO2021169042A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132349A (zh) * 2021-11-26 2022-03-04 株洲中车时代电气股份有限公司 变流装置冷却系统、维护方法、维护装置及变流装置
CN114389170A (zh) * 2022-01-20 2022-04-22 阳光电源股份有限公司 一种风电变流器
CN114838339A (zh) * 2022-04-29 2022-08-02 佛山电器照明股份有限公司 一种散热装置、散热装置的设计方法及集鱼灯
CN114980709A (zh) * 2022-07-28 2022-08-30 深圳市德兰明海科技有限公司 一种双风道散热组件以及应用该组件的逆变器
CN115643721A (zh) * 2022-09-26 2023-01-24 新风光电子科技股份有限公司 散热风道采用下进风的均温性小体积双向变流器
CN116600548A (zh) * 2023-06-16 2023-08-15 苏州冠礼科技有限公司 散热装置及分散式可视化智能控温系统
FR3137840A1 (fr) 2022-07-18 2024-01-19 Bernard Béné Procédé et machine d’hémodialyse avec un dialysat tamponné au bicarbonate sans acidifiant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659806A (zh) * 2021-08-18 2021-11-16 中车青岛四方车辆研究所有限公司 辅助变流器装置
CN114354234A (zh) * 2022-01-06 2022-04-15 中车青岛四方车辆研究所有限公司 一种阻水过滤器性能测试装置及测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423507A (zh) * 2015-12-21 2016-03-23 珠海格力电器股份有限公司 空调机的加热控制方法、装置和系统
CN106452106A (zh) * 2016-11-02 2017-02-22 中车青岛四方车辆研究所有限公司 变流器散热装置
CN207151079U (zh) * 2017-09-20 2018-03-27 北京天诚同创电气有限公司 机柜及光伏逆变器
CN108361916A (zh) * 2018-01-09 2018-08-03 深圳市飓风智云科技有限公司 智能实时风道滤网堵塞程度判定系统及方法
CN209261730U (zh) * 2018-12-29 2019-08-16 新疆金风科技股份有限公司 变桨柜及风力发电机组

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144556A (en) * 1999-03-30 2000-11-07 Lanclos; Kenneth W. Heat dissipating housing for electronic components
DE102008027584B3 (de) * 2008-06-10 2009-12-24 Siemens Aktiengesellschaft Gehäuse für ein elektrisches Gerät
CN202488952U (zh) * 2012-03-09 2012-10-10 兖州东方机电有限公司 一种柜体用散热装置
CN202949665U (zh) * 2012-09-24 2013-05-22 西安电子工程研究所 一种复合散热密封机箱
CN204168153U (zh) * 2014-09-25 2015-02-18 阳光电源股份有限公司 一种光伏逆变器及其机柜
CN204721201U (zh) * 2015-06-30 2015-10-21 株洲南车时代电气股份有限公司 一种具有内部循环系统的风冷变流柜
CN205883811U (zh) * 2016-06-16 2017-01-11 江苏爱克赛电气制造有限公司 一种具有散热性能的电气控制柜
CN206023556U (zh) * 2016-07-27 2017-03-15 西安特锐德智能充电科技有限公司 一种大功率模块化电源的风冷散热结构
CN107171570A (zh) * 2017-06-05 2017-09-15 阳光电源股份有限公司 一种逆变器功率柜
CN108092490A (zh) * 2018-01-15 2018-05-29 天津瑞能电气有限公司 一种分区散热的功率柜
CN208227557U (zh) * 2018-05-11 2018-12-11 阳光电源股份有限公司 电气设备及其箱体组件和散热结构
CN208905262U (zh) * 2018-05-30 2019-05-24 特变电工西安电气科技有限公司 一种大功率户外散热机柜结构
CN209030074U (zh) * 2018-10-13 2019-06-25 华能新能源股份有限公司蒙东分公司 一种用于风机的电器柜
CN209046513U (zh) * 2018-12-12 2019-06-28 杭州嘉皇电子有限公司 一种变频器
CN109952002B (zh) * 2019-04-03 2020-02-18 中车青岛四方车辆研究所有限公司 一种冷却散热箱体及散热控制方法
CN210075068U (zh) * 2019-08-16 2020-02-14 广州地铁集团有限公司 一种变流器柜
CN110785056B (zh) * 2019-10-18 2021-01-01 中车永济电机有限公司 一种包含全冷却风道的辅助滤波柜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423507A (zh) * 2015-12-21 2016-03-23 珠海格力电器股份有限公司 空调机的加热控制方法、装置和系统
CN106452106A (zh) * 2016-11-02 2017-02-22 中车青岛四方车辆研究所有限公司 变流器散热装置
CN207151079U (zh) * 2017-09-20 2018-03-27 北京天诚同创电气有限公司 机柜及光伏逆变器
CN108361916A (zh) * 2018-01-09 2018-08-03 深圳市飓风智云科技有限公司 智能实时风道滤网堵塞程度判定系统及方法
CN209261730U (zh) * 2018-12-29 2019-08-16 新疆金风科技股份有限公司 变桨柜及风力发电机组

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132349A (zh) * 2021-11-26 2022-03-04 株洲中车时代电气股份有限公司 变流装置冷却系统、维护方法、维护装置及变流装置
CN114389170A (zh) * 2022-01-20 2022-04-22 阳光电源股份有限公司 一种风电变流器
CN114389170B (zh) * 2022-01-20 2024-04-12 阳光电源股份有限公司 一种风电变流器
CN114838339A (zh) * 2022-04-29 2022-08-02 佛山电器照明股份有限公司 一种散热装置、散热装置的设计方法及集鱼灯
CN114838339B (zh) * 2022-04-29 2024-01-23 佛山电器照明股份有限公司 一种散热装置、散热装置的设计方法及集鱼灯
FR3137840A1 (fr) 2022-07-18 2024-01-19 Bernard Béné Procédé et machine d’hémodialyse avec un dialysat tamponné au bicarbonate sans acidifiant
WO2024017853A1 (fr) 2022-07-18 2024-01-25 Bernard Bene Procédé et machine d'hémodialyse avec un dialysat tamponné au bicarbonate sans acidifiant
CN114980709A (zh) * 2022-07-28 2022-08-30 深圳市德兰明海科技有限公司 一种双风道散热组件以及应用该组件的逆变器
CN114980709B (zh) * 2022-07-28 2022-09-30 深圳市德兰明海科技有限公司 一种双风道散热组件以及应用该组件的逆变器
CN115643721A (zh) * 2022-09-26 2023-01-24 新风光电子科技股份有限公司 散热风道采用下进风的均温性小体积双向变流器
CN116600548A (zh) * 2023-06-16 2023-08-15 苏州冠礼科技有限公司 散热装置及分散式可视化智能控温系统
CN116600548B (zh) * 2023-06-16 2024-02-09 苏州冠礼科技有限公司 散热装置及分散式可视化智能控温系统

Also Published As

Publication number Publication date
CN112839479B (zh) 2022-04-22
CN112839479A (zh) 2021-05-25
RO137309A2 (ro) 2023-02-28
CO2022011160A2 (es) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2021169042A1 (zh) 变流器散热装置及其控制方法和监控方法
US20120129442A1 (en) Container data center
TWI405945B (zh) 氣冷式熱交換器及其適用之電子設備
CN201682702U (zh) 一种直通风散热机柜
CN108418128A (zh) 一种电气配电柜
WO2018103124A1 (zh) 集成变流柜
CN210866855U (zh) 一种便于降温的配电柜
JP3168027U (ja) バーンインオーブンの構造
CN216162246U (zh) 一种集风冷水冷一体的节能型户外用配电柜
US20230008191A1 (en) A container type frequency conversion pry
CN212626803U (zh) 一种纵向吊车配电柜
CN217469232U (zh) 一种电压互感器柜
CN212965997U (zh) 一种服务器散热机箱
CN210405102U (zh) 电机变频控制器
WO2021169164A1 (zh) 牵引变流器及其控制方法
CN112867340B (zh) 变流器散热装置及变流器
CN212389495U (zh) 空气动力系统装置
CN105977803A (zh) 一种防尘散热综合配电箱
CN202395676U (zh) 逆变器机箱
CN113707410A (zh) 一种用于输变电系统的高散热性变压器设备
CN218866437U (zh) 一种区块链运算服务器的散热机舱
CN218448977U (zh) 一种智能用电安全监控平台用终端箱
CN218631681U (zh) 一种低压电力电容器
CN220755362U (zh) 一种信息化运维控制终端降温冷却装置
CN219514486U (zh) 机柜、变流器及发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022 202200501

Country of ref document: RO

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921404

Country of ref document: EP

Kind code of ref document: A1