WO2021167263A1 - 바이패스 스위치용 인터럽터 - Google Patents

바이패스 스위치용 인터럽터 Download PDF

Info

Publication number
WO2021167263A1
WO2021167263A1 PCT/KR2021/001173 KR2021001173W WO2021167263A1 WO 2021167263 A1 WO2021167263 A1 WO 2021167263A1 KR 2021001173 W KR2021001173 W KR 2021001173W WO 2021167263 A1 WO2021167263 A1 WO 2021167263A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
movable electrode
bypass switch
groove
interrupter
Prior art date
Application number
PCT/KR2021/001173
Other languages
English (en)
French (fr)
Inventor
윤재훈
Original Assignee
엘에스일렉트릭(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스일렉트릭(주) filed Critical 엘에스일렉트릭(주)
Priority to CN202180014883.XA priority Critical patent/CN115136273A/zh
Publication of WO2021167263A1 publication Critical patent/WO2021167263A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings

Definitions

  • the present invention relates to an interrupter for a bypass switch, and more particularly, a bypass capable of effectively and stably protecting a module at the rear end of a bypass switch from overcurrent by preventing chattering and preventing accidents due to overcurrent It relates to an interrupter for a pass switch.
  • An interrupter for a bypass switch is a switchgear that quickly bypasses the relevant current to the ground when a fault current occurs.
  • the interrupter for bypass switch can protect the module at the rear of the switch from overcurrent by quickly returning the fault current to the ground.
  • the movable electrode of the bypass switch interrupter contacts the fixed electrode, thereby bypassing the fault current to the ground.
  • the operating speed of the bypass switch interrupter should be higher than the operating speed of the circuit breaker or switch.
  • the chattering phenomenon is that the contacts of the movable electrode and the fixed electrode are repeatedly closed and open for a certain period of time due to mechanical vibration after the movable electrode is inserted.
  • chattering phenomenon Whenever the open state is repeated due to the chattering phenomenon, a fault current may flow into the circuit, so that the module at the rear end of the switch may be damaged and an accident may occur. Therefore, the chattering phenomenon should be prevented.
  • the vacuum interrupter according to the prior art, a movable electrode 1100 having a movable contact portion 1110 formed thereon, and a fixed contact portion facing the movable contact portion 1110 and in contact with the movable contact portion 1110 (
  • the movable electrode 1100 on which the fixed electrode 1200 is formed and the movable electrode 1100 are coupled to each other so that the movable electrode 1100 can reciprocate toward the fixed electrode 1200 by contraction and expansion.
  • a first flat portion 1111 and a first curved portion 1112 are formed in the movable contact portion 1110 , and the first flat portion 1111 of the movable contact portion 1110 is formed in the fixed contact portion 1210 .
  • a second flat portion 1211 corresponding to the first curved portion 1112 of the movable contact portion 1110 and a second curved portion 1212 corresponding at least in part are formed.
  • the movable contact part 1110 is seated on the fixed contact part 1210 .
  • An object of the present invention is to provide an interrupter for a bypass switch capable of effectively and stably protecting a module at the rear end of a bypass switch from overcurrent by preventing chattering and preventing accidents due to overcurrent.
  • the present invention provides an interrupter for a bypass switch capable of preventing an increase in the contact resistance value between the electrodes as the movable electrode is rearranged in an aligned state, even if the movable electrode is inserted obliquely in a state not aligned with the fixed electrode.
  • the present invention provides a movable electrode 100 having a protrusion 110 formed at one end, and a first groove 210 having a shape corresponding to the protrusion 110 at the other end, and the movable electrode
  • a bypass switch interrupter (10) including a fixed electrode (200) with one end of the other end spaced apart from the other end and a driving unit (300) for moving the movable electrode (100) toward the fixed electrode (200) provides
  • the protrusion 110 is press-fitted into the first groove 210 .
  • the protrusion 110 is formed along the outer periphery of one end of the movable electrode.
  • the protrusion 110 is integrally connected along the outer periphery of one end of the movable electrode.
  • the protrusion 110 is formed inside one end of the movable electrode.
  • the protrusion 110 is formed in a ring shape.
  • a second groove 120 is formed along at least one of an inner periphery or an outer periphery of the protrusion 110 .
  • a plurality of the protrusions 110 are formed at one end of the movable electrode.
  • At least two of the protrusions 110 are formed in an isometric view on a circumference centered on the central axis A of the movable electrode 100 .
  • a second groove 120 is formed along at least one of an inner periphery and an outer periphery of the protrusion 110 with respect to the at least one protrusion 110 .
  • the end 112 of the protrusion 110 is formed to be round.
  • the outer peripheral surface 114 of the protrusion 110 is inclined inwardly.
  • Concave-convex is formed on the outer circumferential surface 114 or the inner circumferential surface of the protrusion 110 .
  • the first groove 210 is formed to be deeper than the height of the protrusion 110 .
  • the space S between the one side and the other side corresponds to a vacuum state.
  • the present invention provides a fixed electrode 200 having a protrusion 210 formed at the other end, and a first groove 110 having a shape corresponding to the protrusion 210 at one end, and the An interrupter for a bypass switch comprising a movable electrode 100 with one end of the movable electrode facing the other end spaced apart from the other end by a predetermined distance, and a driving unit 300 for moving the movable electrode 100 toward the fixed electrode 200 ( 20) is provided.
  • the protrusion 110 formed at one end of the movable electrode 100 is formed in the first groove portion 210 formed at the other end of the fixed electrode 200 .
  • the protrusion 110 formed at one end of the movable electrode 100 is formed in the first groove portion 210 formed at the other end of the fixed electrode 200 .
  • chattering does not occur, so it is possible to effectively and stably protect the module at the rear end of the bypass switch from overcurrent by circulating all the fault currents quickly and preventing accidents due to overcurrent. can do.
  • the protrusion 110 may be formed along the outer periphery of one end of the movable electrode 100 . Therefore, since the contact area between the electrodes is increased, the protrusion 110 is reliably and forcefully fitted into the first groove 210 , thereby effectively preventing the occurrence of chattering. In addition, since the total contact area between the electrodes increases and the contact resistance value between the electrodes decreases, the temperature rise is suppressed during energization, thereby effectively preventing damage to the module at the rear end of the bypass switch.
  • the protrusion 110 can be easily deformed, so even if the movable electrode 100 moves obliquely in an unaligned state toward the fixed electrode 200 (even when inserted) ), a portion of the protrusion 110 first inserted and coupled to the first groove 210 is deformed, and the remaining portion of the protrusion 110 may be easily inserted and coupled to the first groove 210 . Accordingly, the movable electrode 100 may be rearranged and coupled to the fixed electrode 200 in a finally aligned state. Therefore, it is possible to prevent damage to the module at the rear end of the bypass switch due to an increase in the contact resistance between the electrodes due to an increase in the temperature during energization.
  • the protrusion 110 may be integrally connected along the outer periphery of one end of the movable electrode 100 to be formed. Accordingly, even if the movable electrode 100 moves obliquely (even when inserted) in an unaligned state toward the fixed electrode 200, a portion of the protrusion 110 inserted into the first groove portion 210 first is deformed while the portion is deformed. An adjacent portion of the protrusion 110 connected to the may be guided to be inserted and coupled to the first groove portion 210 . Accordingly, the movable electrode 100 may be rearranged and coupled to the fixed electrode 200 in a finally aligned state. Therefore, it is possible to prevent damage to the module at the rear end of the bypass switch due to an increase in the contact resistance between the electrodes due to an increase in the temperature during energization.
  • the protrusion 110 may be formed inside one end of the movable electrode 100 . Accordingly, since the second groove portion 120b ( FIGS. 8 and 9 ) may be formed along the outer periphery of the protrusion 110 at one end of the movable electrode 100 , the protrusion 110 may be easily deformed. Accordingly, even if the movable electrode 100 moves obliquely in an unaligned state toward the fixed electrode 200 (even when inserted), a portion of the protrusion 110 inserted into the first groove 210 first is inserted into the second groove portion. The remaining portion of the protrusion 110 may be more easily inserted into the first groove 210 while being more easily deformed by the 120b.
  • the movable electrode 100 may be repositioned and coupled to the fixed electrode 200 in a finally aligned state. Accordingly, it is possible to prevent the module at the rear end of the bypass switch from being damaged due to an increase in the contact resistance between the electrodes due to an increase in the temperature during energization.
  • the protrusion 110 may be formed in a ring shape. Therefore, since the contact area between the electrodes is increased, the protrusion 110 is securely pressed into the first groove 210 to effectively prevent the chattering phenomenon from occurring, and since the contact resistance value between the electrodes is reduced, the temperature rise during energization is suppressed. This can effectively prevent the module at the rear end of the bypass switch from being damaged.
  • the protrusion 110 can be easily deformed, so even if the movable electrode 100 moves obliquely in an unaligned state toward the fixed electrode 200 (even when inserted) ), a portion of the protrusion 110 first inserted and coupled to the first groove 210 is deformed, and the remaining portion of the protrusion 110 may be easily inserted and coupled to the first groove 210 . Accordingly, the movable electrode 100 may be rearranged and coupled to the fixed electrode 200 in a finally aligned state. Accordingly, it is possible to prevent the module at the rear end of the bypass switch from being damaged due to an increase in the contact resistance between the electrodes due to an increase in the temperature during energization.
  • the second groove 120 may be formed at one end of the movable electrode 100 along at least one of the inner periphery and the outer periphery of the protrusion 110 . Therefore, since the protrusion 110 can be more easily deformed, even if the movable electrode 100 moves obliquely (even if inserted) in an unaligned state toward the fixed electrode 200, it is inserted into the first groove 210 first. A portion of the coupled protrusion 110 may be more easily deformed by the second groove 120 , and the remaining portion of the protrusion 110 may be more easily inserted and coupled to the first groove 210 . Accordingly, the movable electrode 100 may be repositioned and coupled to the fixed electrode 200 in a finally aligned state. Accordingly, it is possible to prevent the module at the rear end of the bypass switch from being damaged due to an increase in the contact resistance between the electrodes due to an increase in the temperature during energization.
  • a plurality of protrusions 110 may be formed on one end of the movable electrode 100 . Therefore, since the contact area between the electrodes is increased, the protrusion 110 is reliably and forcefully fitted into the first groove 210 , thereby effectively preventing the occurrence of chattering. In addition, since the total contact area between the electrodes increases and the contact resistance value between the electrodes decreases, the temperature rise is suppressed during energization, thereby effectively preventing damage to the module at the rear end of the bypass switch.
  • each protrusion 110 is formed to be small, the deformation of the protrusion 110 is facilitated, so even if the movable electrode 100 moves obliquely in an unaligned state toward the fixed electrode 200 (even if inserted), As the protrusion 110 first inserted into the first groove 210 is deformed, the remaining protrusion 110 may be easily inserted and coupled to the first groove 210 . Therefore, in the end, all of the protrusions 110 can be easily and stably coupled to the first groove 210 . That is, the movable electrode 100 may be rearranged and coupled to the fixed electrode 200 in a finally aligned state. Accordingly, it is possible to prevent the module at the rear end of the bypass switch from being damaged due to an increase in the contact resistance between the electrodes due to an increase in the temperature during energization.
  • At least two protrusions 110 among the plurality of protrusions 110 formed on one end of the movable electrode 100 are formed on a circumference centered on the central axis A of the movable electrode 100 . It may be formed at isometric intervals. Therefore, even if the movable electrode 100 is moved obliquely in a state that is not aligned toward the fixed electrode 200 (even when inserted), the plurality of protrusions 110 symmetrically formed with respect to the central axis A are formed in the first groove portion.
  • the movable electrode 100 may be easily rearranged and coupled to the fixed electrode 200 while being inserted and coupled to the 210 .
  • a second groove 120 may be formed at one end of the movable electrode 100 along at least one of an inner periphery and an outer periphery of the protrusion 110 with respect to the at least one protrusion 110 . . Therefore, since the protrusion 110 in which the second groove 120 is formed can be more easily deformed, even if the movable electrode 100 moves obliquely in an unaligned state toward the fixed electrode 200 (even if inserted), the first As the protrusion 110 first inserted into the first groove 210 is more easily deformed by the second groove 120 , the remaining protrusions 110 may be more easily inserted and coupled to the first groove 210 .
  • the movable electrode 100 may be repositioned and coupled to the fixed electrode 200 in a finally aligned state. Accordingly, it is possible to prevent the module at the rear end of the bypass switch from being damaged due to an increase in the contact resistance between the electrodes due to an increase in the temperature during energization.
  • the end 112 of the protrusion 110 may be formed to be rounded. Accordingly, even if the movable electrode 100 moves obliquely (even when inserted) in an unaligned state toward the fixed electrode 200 , the protrusion 110 slides and can be easily inserted and coupled to the first groove 210 .
  • the protrusion 110 since the outer circumferential surface 114 of the protrusion 110 is formed to be inclined inward, the protrusion 110 can be easily inserted into the first groove 210 to be press-fitted, thereby chattering phenomenon. can be effectively suppressed.
  • the value of the diameter, thickness, or width of the end 112 of the protrusion 110 is reduced, even if the movable electrode 100 moves obliquely in an unaligned state toward the fixed electrode 200 (even if inserted), the protrusion ( 110 may be easily inserted into the first groove 210 .
  • irregularities may be formed on the outer circumferential surface 114 or the inner circumferential surface of the protrusion 110 . Accordingly, the protrusion 110 is more easily pressed into the first groove portion 210 , so that the chattering phenomenon can be effectively suppressed.
  • the first groove 210 may be formed to be deeper than the height of the protrusion 110 . Therefore, since the periphery of the first groove 210 among the fixed electrodes 200 can be easily deformed, even if the movable electrode 100 moves obliquely in an unaligned state toward the fixed electrode 200 (even if inserted), Among the fixed electrodes 200 , the periphery of the first groove 210 coupled with a portion of the protrusion 110 is easily deformed, and the remaining portion of the protrusion 110 can be more easily inserted and coupled to the first groove 210 . have. Accordingly, the movable electrode 100 may be repositioned and coupled to the fixed electrode 200 in a finally aligned state. Accordingly, it is possible to prevent the module at the rear end of the bypass switch from being damaged due to an increase in the contact resistance between the electrodes due to an increase in the temperature during energization.
  • the space S between one side of the movable electrode 100 and the other side of the fixed electrode 200 may correspond to a vacuum state. Therefore, since the movable electrode 100 and the fixed electrode 200 can be disposed close to each other in normal times, the distance (insertion distance) that the movable electrode 100 needs to move in the event of an accident can be shortened. Accordingly, the interrupter 10 for the bypass switch rapidly circulates the fault current, so that the module at the rear end of the bypass switch can be quickly protected from overcurrent, and an accident caused by the overcurrent can be prevented. In addition, by using a vacuum as an insulating medium, it is possible to prevent environmental pollution and keep the inside of the interrupter 10 for the bypass switch clean.
  • FIGS. 2 and 3 are cross-sectional views illustrating an open state and a closed state of an interrupter for a bypass switch according to an embodiment of the present invention.
  • FIGS. 4 and 5 are a perspective view and a cross-sectional view of a movable electrode according to an embodiment of the present invention.
  • 6 and 7 are a perspective view and a cross-sectional view of a fixed electrode according to an embodiment of the present invention.
  • FIGS. 8 to 11 are cross-sectional views illustrating an open state of an interrupter for a bypass switch according to another embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing an open state of an interrupter for a bypass switch according to another embodiment of the present invention.
  • the present invention is not limited to the embodiments disclosed below, but can be implemented in a variety of different forms, and only these embodiments allow the disclosure of the present invention to be complete and to completely convey the scope of the invention to those of ordinary skill in the art. It is provided to inform you. Therefore, the present invention is not limited to the embodiments disclosed below, and all changes and equivalents included in the technical spirit and scope of the present invention as well as substituting or adding the configuration of any one embodiment and the configuration of other embodiments to each other It should be understood to include water or substitutes.
  • FIGS. 2 and 3 are cross-sectional views illustrating an open state and a closed state of an interrupter for a bypass switch according to an embodiment of the present invention.
  • the interrupter 10 for a bypass switch may include a movable electrode 100 , a fixed electrode 200 , a driving unit 300 , and a bellows 400 . have.
  • An interrupter for a bypass switch is normally in an open state in which the movable electrode 100 and the fixed electrode 200 are spaced apart as shown in FIG. 2, and when an accident current occurs, the movable electrode ( 100) may be moved (injected) toward the fixed electrode 200 to switch to a closed state. In the closed state, the fault current can be bypassed to ground.
  • FIGS. 4 and 5 are a perspective view and a cross-sectional view of a movable electrode according to an embodiment of the present invention.
  • the movable electrode 100 is connected to the movable part rod L1 and may be made of a conductive material.
  • the movable part load L1 may be connected to an external load or power supply of the interrupter 10 for the bypass switch.
  • a protrusion 110 may be formed at one end of the movable electrode 100 .
  • one end may mean, for example, the lower end in FIGS. 2 and 3 and the upper end in FIGS. 4 and 5 .
  • one end of the movable electrode 100 may be disposed to face the other end of the fixed electrode 200 while being spaced apart from each other by a predetermined distance.
  • the other end may mean, for example, the upper end in the drawing.
  • the other end of the movable electrode 100 may be connected to a driving unit 300 to be described later.
  • the movable electrode 100 may be moved (introduced) downward, for example, by the driving unit 300 .
  • the protrusion 110 may be press-fitted into the first groove 210 formed at the other end of the fixed electrode 200 .
  • the chattering phenomenon is that the contact between the movable electrode and the fixed electrode is repeatedly closed and open for a predetermined time due to mechanical vibration after the movable electrode is inserted.
  • the protrusion 110 may be formed along the outer periphery of one end of the movable electrode 100 .
  • the protrusion 110 may be integrally connected along the outer periphery of one end of the movable electrode 100 .
  • the protrusion 110 when the movable electrode 100 is cylindrical, the protrusion 110 may correspond to a ring shape integrally connected along the cylindrical outer periphery. Also, as shown in FIGS. 2 to 5 , the outer circumferential surface of the protrusion 110 may be smoothly connected to the outer circumferential surface of one end of the movable electrode 100 .
  • the protrusion 110 may be intermittently formed along the outer periphery of one end of the movable electrode 100 .
  • the protrusion 110 may be formed along the outer periphery of one end of the movable electrode 100 on the inside by a predetermined distance from the outer periphery of one end of the movable electrode 100 . That is, the outer peripheral surface of the protrusion 110 may not be smoothly connected to the outer peripheral surface of one end of the movable electrode 100 .
  • the protrusion 110 is formed along the outer periphery of one end of the movable electrode 100 , the contact area between the electrodes increases, so that the protrusion 110 is securely pressed into the first groove 210 to prevent the occurrence of chattering. can be effectively prevented.
  • the temperature rise is suppressed during energization, thereby effectively preventing damage to the module at the rear end of the bypass switch.
  • the protrusion 110 is formed along the outer periphery of one end of the movable electrode 100, the diameter, thickness, or width of the protrusion 110 is reduced to facilitate deformation of the protrusion 110, so that the movable electrode 100 is Even if the fixed electrode 200 moves obliquely in an unaligned state (even when inserted), a portion of the protrusion 110 inserted and coupled to the first groove 210 first is deformed, and the remaining portion of the protrusion 110 becomes the first It can be easily inserted into the groove 210 .
  • the protrusion 110 is integrally connected along the outer periphery of one end of the movable electrode 100, even if the movable electrode 100 moves obliquely in an unaligned state toward the fixed electrode 200 (even if inserted), As a portion of the protrusion 110 inserted and coupled to the first groove 210 first is deformed, an adjacent portion of the protrusion 110 connected to the portion may be guided to be inserted and coupled to the first groove 210 .
  • all of the protrusions 110 may be easily and stably coupled to the first groove 210 . That is, the movable electrode 100 may be rearranged and coupled to the fixed electrode 200 in a finally aligned state. Therefore, only a specific portion of the movable electrode 100 is coupled to the fixed electrode 200, so that the total contact area between the electrodes is reduced, and accordingly, the contact resistance value between the electrodes increases. damage can be prevented.
  • the driving unit 300 continues to apply force to the movable electrode 100 , the portion is deformed and the remaining portion of the protrusion 110 may be gradually inserted and coupled to the first groove portion 210 .
  • all of the protrusions 110 are stably inserted and coupled to the first groove 210 so that the movable electrode 100 can be rearranged in a state aligned with the fixed electrode 200 .
  • the end 112 of the protrusion 110 may be rounded.
  • the end 112 of the protrusion 110 is rounded, even if the movable electrode 100 moves obliquely in an unaligned state toward the fixed electrode 200 (even if inserted), the protrusion 110 slides. and can be easily inserted and coupled to the first groove portion 210 .
  • outer peripheral surface 114 of the protrusion 110 may be inclined inwardly.
  • the outer peripheral surface 114 of the protrusion 110 may be inclined inwardly as it moves away from one surface of the movable electrode 100 as shown in FIGS. 2 to 5 .
  • the maximum value of the diameter, thickness, or width of the protrusion 110 may be greater than the value of the diameter, thickness, or width of the first groove 210 , which will be described later.
  • the protrusion 110 can be easily inserted into the first groove portion 210 to be press-fitted, thereby effectively suppressing the chattering phenomenon. .
  • the protrusion 110 since the outer circumferential surface 114 of the protrusion 110 is inclined inwardly, the diameter, thickness, or width of the end 112 of the protrusion 110 decreases, so that the movable electrode 100 moves toward the fixed electrode 200 . Even if it is moved obliquely in an unaligned state (even if it is inserted), the protrusion 110 may be easily inserted and coupled to the first groove portion 210 .
  • not only the outer peripheral surface 114 of the protrusion 110 but also the outer peripheral surface of one side of the movable electrode 100 smoothly connected to the outer peripheral surface 114 of the protrusion 110 may be inclined inwardly. .
  • Concavities and convexities may be formed on the outer circumferential surface 114 or the inner circumferential surface of the protrusion 110 .
  • the protrusion 110 is more easily pressed into the first groove portion 210 , thereby effectively suppressing the chattering phenomenon.
  • the second groove 120 may be formed along the inner periphery of the protrusion 110 . In this regard, it will be described later.
  • the second groove 120 may be formed at one end of the movable electrode 100 along at least one of an inner periphery or an outer periphery of the protrusion 110 .
  • the second groove 120 is formed along the outer periphery of the protrusion 110 at one end of the movable electrode 100 . cannot be formed The specific details will be looked at with reference to FIGS. 8 to 11 .
  • the protrusion 110 may be more easily deformed. Therefore, even if the movable electrode 100 moves obliquely (even if inserted) in an unaligned state toward the fixed electrode 200, a portion of the protrusion 110 first inserted into the first groove 210 is inserted into the second groove ( While being more easily deformed by the 120 , the remaining portion of the protrusion 110 may be more easily inserted and coupled to the first groove 210 . Accordingly, the movable electrode 100 may be repositioned and coupled to the fixed electrode 200 in a finally aligned state. Therefore, only a specific portion of the movable electrode 100 is coupled to the fixed electrode 200, so that the total contact area between the electrodes is reduced, and accordingly, the contact resistance value between the electrodes increases. damage can be prevented.
  • 6 and 7 are a perspective view and a cross-sectional view of a fixed electrode according to an embodiment of the present invention.
  • the fixed electrode 200 is connected to the fixed part rod L2 and may be made of a conductive material.
  • the fixed load L2 may be connected to an external load or power supply of the interrupter 10 for the bypass switch.
  • a first groove portion 210 may be formed at the other end of the fixed portion electrode 200 .
  • the other end may mean the upper end in the drawing.
  • the other end of the fixed electrode 200 may be disposed to face one end of the movable electrode 100 and spaced apart from each other by a predetermined distance.
  • the other end of the movable electrode 100 may be connected to a driving unit 300 to be described later.
  • the movable electrode 100 may be moved (introduced) downward, for example, by the driving unit 300 .
  • the protrusion 110 may be press-fitted into the first groove 210 formed at the other end of the fixed electrode 200 .
  • the first groove 210 may be formed in a shape corresponding to the protrusion 110 at the other end of the fixed electrode 200 .
  • the protrusion 110 may be inserted into the first groove 210 to be press-fitted.
  • the first groove 210 may be formed to be deeper than the height of the protrusion 110 .
  • the peripheral portion of the first groove portion 210 among the fixed electrodes 200 may be easily deformed. Therefore, even if the movable electrode 100 moves obliquely (even if it is inserted) in an unaligned state toward the fixed electrode 200, the first groove portion 210 first coupled to a portion of the protrusion 110 among the fixed electrode 200. As the peripheral portion is easily deformed, the remaining portion of the protrusion 110 may be more easily inserted and coupled to the first groove portion 210 . Accordingly, the movable electrode 100 may be repositioned and coupled to the fixed electrode 200 in a finally aligned state. Therefore, only a specific portion of the movable electrode 100 is coupled to the fixed electrode 200, so that the total contact area between the electrodes is reduced, and accordingly, the contact resistance value between the electrodes increases. damage can be prevented.
  • the space S between one side of the movable electrode 100 and the other side of the fixed electrode 200 may correspond to a vacuum state.
  • the space S between one side of the movable electrode 100 and the other side of the fixed electrode 200 corresponds to a vacuum state, so that the movable electrode 100 and the fixed electrode 200 can be placed close to each other in normal times, resulting in an accident.
  • the distance (insertion distance) to which the movable electrode 100 needs to move at the time of operation may be shortened. Therefore, the interrupter 10 for the bypass switch can quickly circulate the fault current to quickly protect the module at the rear end of the bypass switch from overcurrent and prevent an accident caused by the overcurrent.
  • the driving unit 300 may be coupled to the other end of the movable electrode 100 .
  • the driving unit 300 may move (inject) the movable electrode 100 toward the fixed electrode 200 .
  • a magnet, a spring, gunpowder, etc. may be provided in the driving unit 300 , and the movable electrode 100 may be moved (injected) by magnetic force, elastic restoring force, or explosive force.
  • the bellows 400 may be coupled to the outer peripheral surface of the movable electrode 100 .
  • the bellows 400 may be made of a stretchable material. However, as shown in FIGS. 2 and 3 , when the bellows 400 is configured in a shape such as an uneven part, it may be linearly deformable by contraction and expansion even though it is made of a metal material.
  • the bellows 400 may support the movable electrode 100 to be movable toward the fixed electrode 200 .
  • FIGS. 8 to 11 are cross-sectional views illustrating an open state of an interrupter for a bypass switch according to another embodiment of the present invention.
  • the protrusion 110 formed on the movable electrode 100 of the bypass switch interrupter 10 may be formed inside one end of the movable electrode 100 . That is, unlike FIGS. 2 and 3 , the protrusion 110 may be formed inside by a predetermined distance from the outer periphery of one end of the movable electrode 100 .
  • the protrusion 110 may be formed in the form of a dome ( FIG. 8 ) or a ring ( FIG. 9 ) in which the outer circumferential surface is inclined inward.
  • the second groove 120b is formed at one end of the movable electrode 100 along the outer periphery of the protrusion 110 .
  • a second groove 120a may be formed at one end of the movable electrode 100 along the inner periphery of the protrusion 110 .
  • the protrusion 110 is formed inside one end of the movable electrode 100, so that the second groove 120b can be formed on one end of the movable electrode 100 along the outer periphery of the protrusion 110 so that the protrusion 110 is formed. It can be easily deformed. Therefore, even if the movable electrode 100 moves obliquely (even if inserted) in an unaligned state toward the fixed electrode 200, a portion of the protrusion 110 first inserted into the first groove 210 is inserted into the second groove ( 120b), the remaining portion of the protrusion 110 may be more easily inserted into the first groove 210 while being more easily deformed.
  • the movable electrode 100 may be repositioned and coupled to the fixed electrode 200 in a finally aligned state. Therefore, only a specific portion of the movable electrode 100 is coupled to the fixed electrode 200, so that the total contact area between the electrodes is reduced, and accordingly, the contact resistance value between the electrodes increases. damage can be prevented.
  • the protrusion 110 is formed in a ring shape, the contact area between the electrodes is increased, so that the protrusion 110 is securely pressed into the first groove 210 to effectively prevent the chattering phenomenon, and contact between the electrodes Since the resistance value is reduced, the temperature rise is suppressed during energization, effectively preventing the module at the rear end of the bypass switch from being damaged.
  • the protrusion 110 can be easily deformed, so even if the movable electrode 100 moves obliquely in an unaligned state toward the fixed electrode 200 (even when inserted) ), a portion of the protrusion 110 first inserted and coupled to the first groove 210 is deformed, and the remaining portion of the protrusion 110 may be easily inserted and coupled to the first groove 210 . Accordingly, the movable electrode 100 may be rearranged and coupled to the fixed electrode 200 in a finally aligned state. Therefore, only a specific portion of the movable electrode 100 is coupled to the fixed electrode 200, so that the total contact area between the electrodes is reduced, and accordingly, the contact resistance value between the electrodes increases. damage can be prevented.
  • a plurality of protrusions 110 may be formed at one end of the movable electrode 100 of the interrupter 10 for a bypass switch according to an embodiment.
  • a plurality of dome-shaped protrusions 110 of FIG. 8 may be formed at one end of the movable electrode 100 as shown in FIG. 10
  • a plurality of ring-shaped protrusions 110 of FIG. 9 may be formed as shown in FIG. 11 .
  • the contact area between the electrodes is increased, so that the protrusions 110 are securely pressed into the first grooves 210 to effectively reduce the occurrence of chattering. can be prevented
  • the temperature rise is suppressed during energization, thereby effectively preventing damage to the module at the rear end of the bypass switch.
  • each protrusion 110 is formed to be small, the deformation of the protrusion 110 is facilitated, so even if the movable electrode 100 moves obliquely in an unaligned state toward the fixed electrode 200 (even if inserted), As the protrusion 110 first inserted into the first groove 210 is deformed, the remaining protrusion 110 may be easily inserted and coupled to the first groove 210 .
  • the movable electrode 100 may be rearranged and coupled to the fixed electrode 200 in a finally aligned state. Therefore, only a specific portion of the movable electrode 100 is coupled to the fixed electrode 200, so that the total contact area between the electrodes is reduced, and accordingly, the contact resistance value between the electrodes increases. damage can be prevented.
  • At least two of the plurality of protrusions 110 formed at one end of the movable electrode 100 are on a circumference centered on the central axis A of the movable electrode 100 . It may be formed at equal angle intervals. 10 and 11 show that two domed or ring-shaped protrusions 110 are formed at intervals of 180 degrees on a circumference centered on the central axis A. As shown in FIG.
  • At least two protrusions 110 among the plurality of protrusions 110 formed on one end of the movable electrode 100 are formed at equal angular intervals on a circumference centered on the central axis A of the movable electrode 100 .
  • a plurality of protrusions 110 symmetrically formed with respect to the central axis A are formed in the first groove portion ( While being inserted and coupled to the 210 , the movable electrode 100 may be easily rearranged and coupled to the fixed electrode 200 in an aligned state.
  • a second groove 120 may be formed along at least one of an inner periphery and an outer periphery of the protrusion 110 with respect to the at least one protrusion 110 .
  • the second groove 120 is formed along at least one of the inner periphery and the outer periphery of the protrusion 110 with respect to the at least one protrusion 110 , so that the second groove 120 is formed.
  • the formed protrusion 110 may be more easily deformed. Therefore, even if the movable electrode 100 is moved obliquely in an unaligned state toward the fixed electrode 200 (even if inserted), the protrusion 110 inserted into the first groove 210 first is coupled to the second groove 120 . While being more easily deformed by the , the remaining protrusion 110 may be more easily inserted and coupled to the first groove 210 .
  • the movable electrode 100 may be repositioned and coupled to the fixed electrode 200 in a finally aligned state. Therefore, only a specific portion of the movable electrode 100 is coupled to the fixed electrode 200, so that the total contact area between the electrodes is reduced, and accordingly, the contact resistance value between the electrodes increases. damage can be prevented.
  • FIG. 12 is a cross-sectional view showing an open state of an interrupter for a bypass switch according to another embodiment of the present invention.
  • the interrupter 20 for a bypass switch may include a movable electrode 100 , a fixed electrode 200 , a driving unit 300 , and a bellows 400 . Only the differences from FIG. 2 are as follows.
  • the protrusion 210 and the second groove 220 may be formed at the other end of the fixed electrode 200 instead of at one end of the movable electrode 100
  • the first groove 110 may be formed at the other end of the fixed electrode 200 .
  • it may be formed at one end of the movable electrode 100 .

Landscapes

  • Thermally Actuated Switches (AREA)
  • Contacts (AREA)

Abstract

본 발명은 일단에 돌출부(110)가 형성되는 가동전극(100); 타단에 상기 돌출부(110)에 대응하는 형태로 제1홈부(210)가 형성되고 상기 가동전극의 일단이 상기 타단과 소정거리 이격되어 마주하도록 배치되는 고정전극(200); 및 상기 가동전극(100)을 고정전극(200)쪽으로 이동시키는 구동부(300);를 포함하는 바이패스 스위치용 인터럽터(10)를 제공한다. 상기 구동부(300)가 상기 가동전극(100)을 이동시키면 상기 돌출부(110)가 상기 제1홈부(210)에 억지끼움되는 것을 특징으로 한다. 본 발명에 따르면 가동전극(100)이 고속으로 투입되더라도 채터링 현상이 발생하지 않으므로 사고전류 전부를 신속하게 회류시켜 바이패스 스위치 후단의 모듈을 과전류로부터 효과적이고 안정적으로 보호할 수 있고 과전류로 인한 사고를 방지할 수 있다.

Description

바이패스 스위치용 인터럽터
본 발명은 바이패스 스위치용 인터럽터에 관한 것으로, 보다 상세하게는, 채터링 현상을 방지하여 바이패스 스위치 후단의 모듈을 과전류로부터 효과적이고 안정적으로 보호할 수 있고 과전류로 인한 사고를 방지할 수 있는 바이패스 스위치용 인터럽터에 관한 것이다.
바이패스 스위치(Bypass Switch)용 인터럽터(Interrupter)는 사고전류 발생시 해당전류를 신속히 접지로 바이패스 시키는 역할을 하는 개폐장치이다. 바이패스 스위치용 인터럽터는 사고전류를 신속히 접지로 회류시킴으로써 스위치 후단의 모듈을 과전류로부터 보호할 수 있다.
구체적으로, 사고 전류가 발생하면 바이패스 스위치용 인터럽터의 가동전극이 고정전극에 접촉하면서 사고전류가 접지로 바이패스 하게 된다.
한편, 사고전류를 신속히 회류시키기 위해서 바이패스 스위치용 인터럽터의 동작속도는 차단기나 개폐기의 동작 속도보다 높아야 한다.. 따라서, 바이패스 스위치용 인터럽터의 가동전극이 고정전극쪽으로 빠르게 투입될 필요가 있다.
그런데, 가동전극이 고속으로 투입되면 두 전극 사이에 채터링 현상이 유발된다. 채터링 현상은 가동전극 투입 후 기계적인 진동에 의해 가동전극 및 고정전극의 접점이 닫힌 상태(close)와 열린 상태(open)가 일정시간 동안 반복되는 것이다.
채터링 현상으로 인하여 열린 상태가 반복될 때마다 사고전류가 회로로 유입될 수 있으므로 스위치 후단의 모듈이 손상될 수 있고 사고가 발생할 수 있다. 따라서, 채터링 현상이 방지되어야 한다.
바이패스 스위치용 인터럽터와 관련된 선행기술문헌으로는 도 1에 도시된 한국공개실용신안 제20-2018-0002883호 '진공 인터럽터'가 있다.
도 1을 참조하면, 선행기술에 따른 진공 인터럽터는, 가동 접촉부(1110)가 형성된 가동전극(1100)과, 상기 가동 접촉부(1110)에 대향되고, 가동 접촉부(1110)에 접촉되기 위한 고정 접촉부(1210)가 형성된 고정전극(1200)와, 상기 가동전극(1100)이 결합되고, 수축 및 팽창에 의해 상기 가동전극(1100)이 상기 고정전극(1200)을 향해 왕복이동 가능하도록 상기 가동전극(1100)을 지지하는 벨로우즈(1300)를 포함한다.
선행기술에 따르면 상기 가동 접촉부(1110)에는 제1 평면부(1111)와 제1 곡면부(1112)가 형성되고, 상기 고정 접촉부(1210)에는 상기 가동 접촉부(1110)의 제1 평면부(1111)에 대응되는 제2 평면부(1211)와 상기 가동 접촉부(1110)의 제1 곡면부(1112)와 적어도 일부가 대응되는 제2 곡면부(1212)가 형성된다. 선행기술에 따르면 상기 가동전극(1100)과 상기 고정전극(1200)이 접촉될 경우, 상기 가동 접촉부(1110)는 상기 고정 접촉부(1210)에 안착된다.
그러나, 선행기술은 채터링 현상을 방지하기 위한 방법을 제시하지 못한다.
본 발명은 채터링 현상을 방지하여 바이패스 스위치 후단의 모듈을 과전류로부터 효과적이고 안정적으로 보호하고 과전류로 인한 사고를 방지할 수 있는 바이패스 스위치용 인터럽터를 제공하는 것을 목적으로 한다.
또한, 본 발명은 가동전극이 고정전극과 정렬되지 않은 상태로 비스듬히 투입되더라도, 가동전극이 정렬된 상태로 재배치됨에 따라, 전극 간 접촉저항값 증가를 방지할 수 있는 바이패스 스위치용 인터럽터를 제공하는 것을 목적으로 한다.
상술한 과제를 해결하기 위해 본 발명은, 일단에 돌출부(110)가 형성되는 가동전극(100), 타단에 상기 돌출부(110)에 대응하는 형태로 제1홈부(210)가 형성되고 상기 가동전극의 일단이 상기 타단과 소정거리 이격되어 마주하도록 배치되는 고정전극(200) 및 상기 가동전극(100)을 고정전극(200)쪽으로 이동시키는 구동부(300)를 포함하는 바이패스 스위치용 인터럽터(10)를 제공한다.
상기 구동부(300)가 상기 가동전극(100)을 이동시키면 상기 돌출부(110)가 상기 제1홈부(210)에 억지끼움된다.
상기 돌출부(110)는 상기 가동전극의 일단의 외주를 따라 형성된다.
상기 돌출부(110)는 상기 가동전극의 일단의 외주를 따라 일체로 연결되어 형성된다.
상기 돌출부(110)는 상기 가동전극의 일단의 내측에 형성된다.
상기 돌출부(110)는 링형태로 형성된다.
상기 가동전극의 일단에는 상기 돌출부(110)의 내주 또는 외주 중 적어도 어느 하나를 따라 제2홈부(120)가 형성된다.
상기 가동전극의 일단에는 상기 돌출부(110)가 복수 개 형성된다.
적어도 두 개의 상기 돌출부(110)는 상기 가동전극(100)의 중심축(A)을 중심으로 하는 원주 상에 등각도
간격으로 형성된다.
상기 가동전극의 일단에는 적어도 하나의 상기 돌출부(110)에 대해서 돌출부(110)의 내주 및 외주 중 적어도 어느 하나를 따라 제2홈부(120)가 형성된다.
상기 돌출부(110)의 단부(112)는 라운드지게 형성된다.
상기 돌출부(110)의 외주면(114)은 내측으로 경사지게 형성된다.
상기 돌출부(110)의 외주면(114) 또는 내주면에는 요철이 형성된다.
상기 제1홈부(210)는 상기 돌출부(110)의 높이보다 더 깊게 형성된다.
상기 일측 및 타측 사이의 공간(S)은 진공상태에 해당한다.
또한, 상술한 과제를 해결하기 위해 본 발명은, 타단에 돌출부(210)가 형성되는 고정전극(200), 일단에 상기 돌출부(210)에 대응하는 형태로 제1홈부(110)가 형성되고 상기 가동전극의 일단이 상기 타단과 소정거리 이격되어 마주하도록 배치되는 가동전극(100) 및 상기 가동전극(100)을 고정전극(200)쪽으로 이동시키는 구동부(300)를 포함하는 바이패스 스위치용 인터럽터(20)를 제공한다.
본 발명의 실시예들에 따르면, 가동전극(100)이 이동하면(투입되면) 가동전극(100)의 일단에 형성된 돌출부(110)가 고정전극(200)의 타단에 형성된 제1홈부에(210)에 억지끼움될 수 있다. 따라서, 가동전극(100)이 고속으로 투입되더라도 채터링 현상이 발생하지 않으므로 사고전류 전부를 신속하게 회류시켜 바이패스 스위치 후단의 모듈을 과전류로부터 효과적이고 안정적으로 보호할 수 있고 과전류로 인한 사고를 방지할 수 있다.
본 발명의 실시예들에 따르면, 돌출부(110)가 가동전극(100) 일단의 외주를 따라 형성될 수 있다. 따라서, 전극 간 접촉면적이 증가하므로 돌출부(110)가 제1홈부(210)에 확실하게 억지끼움되어 채터링 현상 발생을 효과적으로 방지할 수 있다. 또한, 전극 간 총 접촉면적이 증가하여 전극 간 접촉저항 값이 감소하므로 통전 시 온도상승이 억제되어 바이패스 스위치 후단의 모듈이 손상되는 것을 효과적으로 방지할 수 있다.
또한, 돌출부(110)의 직경, 두께 또는 폭이 작아져서 돌출부(110)의 변형이 용이해지므로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)의 일부분이 변형되면서 돌출부(110)의 나머지 부분이 제1홈부(210)에 용이하게 삽입결합될 수 있다. 이에 따라, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 따라서, 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
본 발명의 실시예들에 따르면, 돌출부(110)가 가동전극(100) 일단의 외주를 따라 일체로 연결되어 형성될 수 있다. 따라서, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)의 일부분이 변형되면서 상기 일부분과 연결된 돌출부(110)의 인접부분이 제1홈부(210)에 삽입결합되도록 가이드될 수 있다. 이에 따라, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 따라서, 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
본 발명의 실시예들에 따르면, 돌출부(110)는 가동전극(100) 일단의 내측에 형성될 수 있다. 따라서, 가동전극(100) 일단에는 돌출부(110) 외주를 따라 제2홈부(120b, 도 8 및 도 9)가 형성될 수 있으므로 돌출부(110)가 용이하게 변형될 수 있다. 이에 따라, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)의 일부분이 제2홈부(120b)에 의해 더욱 용이하게 변형되면서 돌출부(110)의 나머지 부분이 제1홈부(210)에 더욱 용이하게 삽입결합될 수 있다. 따라서, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 이에 따라, 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
본 발명의 실시예들에 따르면, 돌출부(110)가 링형태로 형성될 수 있다. 따라서, 전극 간 접촉면적이 증가하므로 돌출부(110)가 제1홈부(210)에 확실하게 억지끼움되어 채터링 현상 발생을 효과적으로 방지할 수 있고 전극 간 접촉저항 값이 감소하므로 통전 시 온도상승이 억제되어 바이패스 스위치 후단의 모듈이 손상되는 것을 효과적으로 방지할 수 있다. 또한, 돌출부(110)의 직경, 두께 또는 폭이 작아져서 돌출부(110)의 변형이 용이해지므로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)의 일부분이 변형되면서 돌출부(110)의 나머지 부분이 제1홈부(210)에 용이하게 삽입결합될 수 있다. 이에 따라, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 이에 따라, 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
본 발명의 실시예들에 따르면, 제2홈부(120)가 돌출부(110)의 내주 또는 외주 중 적어도 어느 하나를 따라 가동전극(100) 일단에 형성될 수 있다. 따라서, 돌출부(110)는 더욱 용이하게 변형될 수 있으므로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)의 일부분이 제2홈부(120)에 의해 더욱 용이하게 변형되면서 돌출부(110)의 나머지 부분이 제1홈부(210)에 더욱 용이하게 삽입결합될 수 있다. 따라서, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 이에 따라, 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
본 발명의 실시예들에 따르면, 가동전극(100) 일단에 복수 개의 돌출부(110)가 형성될 수 있다. 따라서, 전극 간 접촉면적이 증가하므로 돌출부(110)가 제1홈부(210)에 확실하게 억지끼움되어 채터링 현상 발생을 효과적으로 방지할 수 있다. 또한, 전극 간 총 접촉면적이 증가하여 전극 간 접촉저항 값이 감소하므로 통전 시 온도상승이 억제되어 바이패스 스위치 후단의 모듈이 손상되는 것을 효과적으로 방지할 수 있다. 또한, 개개의 돌출부(110) 크기는 작게 형성되어 돌출부(110)의 변형이 용이해지므로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)가 변형되면서 나머지 돌출부(110)가 제1홈부(210)에 용이하게 삽입결합될 수 있다. 따라서, 종국에는 돌출부(110) 모두가 제1홈부(210)에 용이하게 안정적으로 결합될 수 있다. 즉, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 이에 따라, 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
본 발명의 실시예들에 따르면, 가동전극(100) 일단에 형성된 복수 개의 돌출부(110) 중에서 적어도 두 개의 돌출부(110)가 가동전극(100)의 중심축(A)을 중심으로 하는 원주 상에 등각도 간격으로 형성될 수 있다. 따라서, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 중심축(A)을 기준으로 대칭적으로 형성된 복수 개의 돌출부(110)가 제1홈부(210)에 삽입결합되면서 가동전극(100)이 고정전극(200)에 정렬된 상태로 용이하게 재배치되어 결합될 수 있다.
본 발명의 실시예들에 따르면, 가동전극(100) 일단에는 적어도 하나의 돌출부(110)에 대해서 돌출부(110)의 내주 및 외주 중 적어도 어느 하나를 따라 제2홈부(120)가 형성될 수 있다. 따라서, 제2홈부(120)가 형성된 돌출부(110)는 더욱 용이하게 변형될 수 있으므로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)가 제2홈부(120)에 의해 더욱 용이하게 변형되면서 나머지 돌출부(110)가 제1홈부(210)에 더욱 용이하게 삽입결합될 수 있다. 따라서, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 이에 따라, 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
본 발명의 실시예들에 따르면, 돌출부(110)의 단부(112)가 라운드지게 형성될 수 있다. 따라서, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 돌출부(110)가 미끄러져 제1홈부(210)에 용이하게 삽입결합될 수 있다.
본 발명의 실시예들에 따르면, 돌출부(110)의 외주면(114)이 내측으로 경사지게 형성됨으로써, 돌출부(110)가 제1홈부에(210)에 용이하게 삽입되어 억지끼움될 수 있으므로 채터링 현상을 효과적으로 억제할 수 있다. 또한, 돌출부(110) 단부(112)의 직경, 두께 또는 폭의 값이 작아지므로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 돌출부(110)가 제1홈부(210)에 용이하게 삽입결합될 수 있다.
본 발명의 실시예들에 따르면, 돌출부(110)의 외주면(114) 또는 내주면에 요철이 형성될 수 있다. 따라서, 돌출부(110)가 제1홈부에(210)에 더욱 용이하게 억지끼움되어 채터링 현상이 효과적으로 억제될 수 있다.
본 발명의 실시예들에 따르면, 제1홈부(210)가 돌출부(110)의 높이보다 더 깊게 형성될 수 있다. 따라서, 고정전극(200) 중에서 제1홈부(210)의 주변부가 용이하게 변형될 수 있으므로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 고정전극(200) 중에서 돌출부(110) 일부분과 먼저 결합된 제1홈부(210)의 주변부가 용이하게 변형되면서 돌출부(110)의 나머지 부분이 제1홈부(210)에 더욱 용이하게 삽입결합될 수 있다. 따라서, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 이에 따라, 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
본 발명의 실시예들에 따르면, 가동전극(100) 일측 및 고정전극(200) 타측 사이의 공간(S)은 진공상태에 해당할 수 있다. 따라서, 평상시에 가동전극(100) 및 고정전극(200)을 가까이 배치할 수 있어서 사고발생 시에 가동전극(100)이 이동해야 하는 거리(투입거리)가 짧아질 수 있다. 이에 따라, 바이패스 스위치용 인터럽터(10)는 사고전류를 신속하게 회류시켜 바이패스 스위치 후단의 모듈을 과전류로부터 신속하게 보호할 수 있고 과전류로 인한 사고를 방지할 수 있다. 또한, 진공을 절연매질로 사용함으로써 환경오염을 방지하고 바이패스 스위치용 인터럽터(10) 내부를 청결하게 유지할 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 선행기술을 나타낸 도면이다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 바이패스 스위치용 인터럽터의 열린 상태 및 닫힌 상태를 나타낸 단도면이다.
도 4 및 도 5는 본 발명의 일 실시예에 따른 가동전극의 사시도 및 단면도이다.
도 6 및 도 7은 본 발명의 일 실시예에 따른 고정전극의 사시도 및 단면도이다.
도 8 내지 도 11은 본 발명의 다른 일 실시예에 따른 바이패스 스위치용 인터럽터의 열린 상태를 나타낸 단도면이다.
도 12는 본 발명의 다른 일 실시예에 따른 바이패스 스위치용 인터럽터의 열린 상태를 나타낸 단도면이다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조로 하여 상세히 설명한다.
본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 따라서 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 어느 하나의 실시예의 구성과 다른 실시예의 구성을 서로 치환하거나 부가하는 것은 물론도 본 발명의 기술적 사상과 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면에서 구성요소들은 이해의 편의 등을 고려하여 크기나 두께가 과장되게 크거나 작게 표현될 수 있으나, 이로 인해 본 발명의 보호범위가 제한적으로 해석되어서는 아니 될 것이다.
본 명세서에서 사용한 용어는 단지 특정한 구현예나 실시예를 설명하기 위해 사용되는 것으로, 본 발명을 한정하려는 의도가 아니다. 그리고 단수의 표현은, 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 명세서에서 ~포함하다, ~이루어진다 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이다. 즉 명세서에서 ~포함하다, ~이루어진다 등의 용어는. 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들이 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
어떤 구성요소가 다른 구성요소의 "상부에 있다"거나 "하부에 있다"고 언급된 때에는, 그 다른 구성요소의 바로 위에 배치되어 있는 것뿐만 아니라 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 바이패스 스위치용 인터럽터의 열린 상태 및 닫힌 상태를 나타낸 단도면이다.
도 2 및 도 3을 참조하면, 일 실시예에 따른 바이패스 스위치용 인터럽터(10)는 가동전극(100), 고정전극(200), 구동부(300) 및 벨로우즈(400)를 포함하여 구성될 수 있다.
바이패스 스위치(Bypass Switch)용 인터럽터(Interrupter)는 평상시에는 도 2와 같이 가동전극(100)과 고정전극(200)이 이격되어 배치되는 열린 상태로 있다가 사고전류 발생시 도 3과 같이 가동전극(100)을 고정전극(200)쪽으로 이동시켜(투입하여) 닫힌 상태로 전환될 수 있다. 닫힌 상태에서는 사고전류가 접지로 바이패스 될 수 있다.
[가동전극]
도 4 및 도 5는 본 발명의 일 실시예에 따른 가동전극의 사시도 및 단면도이다.
도 4 및 도 5를 더 참조하면, 일 실시예에 따른 가동전극(100)은 가동부 로드(L1)에 연결되고 도전성 재료로 이루질 수 있다. 가동부로드(L1)는 바이패스 스위치용 인터럽터(10) 외부의 부하 또는 전원과 연결될 수 있다.
또한, 가동전극(100)의 일단에는 돌출부(110)가 형성될 수 있다. 여기에서, 일단은 예를 들면, 도 2 및 도 3에서는 하단을 의미할 수 있고 도 4 및 도 5에서는 상단을 의미할 수 있다.
또한, 가동전극(100)의 일단은 고정전극(200)의 타단과 소정거리 이격되어 마주하도록 배치될 수 있다. 여기에서, 타단은 예를 들면, 도면에서 상단을 의미할 수 있다.
가동전극(100)의 타단은 후술할 구동부(300)와 연결될 수 있다. 가동전극(100)은 구동부(300)에 의해 예를 들면 하방으로 이동할(투입될) 수 있다. 가동전극(100)이 이동하면(투입되면) 돌출부(110)가 고정전극(200)의 타단에 형성된 제1홈부(210)에 억지끼움될 수 있다.
이와 같이, 가동전극(100)이 이동하면(투입되면) 가동전극(100)의 일단에 형성된 돌출부(110)가 고정전극(200)의 타단에 형성된 제1홈부에(210)에 억지끼움됨으로써, 가동전극(100)이 고속으로 투입되더라도 채터링 현상이 발생하지 않으므로 사고전류 전부를 신속하게 회류시켜 바이패스 스위치 후단의 모듈을 과전류로부터 효과적이고 안정적으로 보호할 수 있고 과전류로 인한 사고를 방지할 수 있다.
여기에서, 채터링 현상은 가동전극 투입 후 기계적인 진동에 의해 가동전극 및 고정전극의 접점이 닫힌 상태(close)와 열린 상태(open)가 일정시간 동안 반복되는 것이다.
[돌출부]
돌출부(110)는 가동전극(100) 일단의 외주를 따라 형성될 수 있다. 또한, 돌출부(110)는 가동전극(100) 일단의 외주를 따라 일체로 연결되어 형성될 수 있다.
예를 들어, 도 2 내지 도 5와 같이, 가동전극(100)이 원통형이면, 돌출부(110)는 원통형 외주를 따라 일체로 연결된 링형태에 해당할 수 있다. 또한, 도 2 내지 도 5와 같이, 돌출부(110)의 외주면이 가동전극(100) 일단의 외주면과 매끄럽게 연결될 수도 있다.
다만, 이러한 구성에 한정되는 것은 아니다. 예를 들면, 돌출부(110)는 가동전극(100) 일단의 외주를 따라 단속적으로 형성될 수도 있다. 또한, 돌출부(110)는 가동전극(100) 일단의 외주로부터 소정의 거리만큼 내측에 가동전극(100) 일단의 외주를 따라 형성될 수도 있다. 즉, 돌출부(110) 외주면이 가동전극(100) 일단의 외주면과 매끄럽게 연결되지 않을 수도 있다.
이와 같이, 돌출부(110)가 가동전극(100) 일단의 외주를 따라 형성됨으로써, 전극 간 접촉면적이 증가하므로 돌출부(110)가 제1홈부(210)에 확실하게 억지끼움되어 채터링 현상 발생을 효과적으로 방지할 수 있다.
또한, 전극 간 총 접촉면적이 증가하여 전극 간 접촉저항 값이 감소하므로 통전 시 온도상승이 억제되어 바이패스 스위치 후단의 모듈이 손상되는 것을 효과적으로 방지할 수 있다.
또한, 돌출부(110)가 가동전극(100) 일단의 외주를 따라 형성됨으로써, 돌출부(110)의 직경, 두께 또는 폭이 작아져서 돌출부(110)의 변형이 용이해지므로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)의 일부분이 변형되면서 돌출부(110)의 나머지 부분이 제1홈부(210)에 용이하게 삽입결합될 수 있다.
또한, 돌출부(110)가 가동전극(100) 일단의 외주를 따라 일체로 연결되어 형성됨으로써, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)의 일부분이 변형되면서 상기 일부분과 연결된 돌출부(110)의 인접부분이 제1홈부(210)에 삽입결합되도록 가이드될 수 있다.
따라서, 종국에는 돌출부(110) 전부가 제1홈부(210)에 용이하게 안정적으로 결합될 수 있다. 즉, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 따라서, 가동전극(100)의 특정부위만 고정전극(200)에 결합되어 전극 간 총 접촉면적이 감소하고 이에 따라 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
구체적으로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되어(투입되어), 돌출부(110) 일부분만 제1홈부(210)에 먼저 삽입결합되더라도, 구동부(300)가 가동전극(100)에 계속 힘을 가하면 상기 일부분이 변형되면서 돌출부(110)의 나머지 부분이 제1홈부(210)에 점차 삽입결합될 수 있다. 그리하여, 종국에는 돌출부(110) 전부가 제1홈부(210)에 안정적으로 삽입결합되어 가동전극(100)이 고정전극(200)에 정렬된 상태로 재배치될 수 있다.
돌출부(110)의 단부(112)는 라운드지게 형성될 수 있다.
이와 같이, 돌출부(110)의 단부(112)가 라운드지게 형성됨으로써, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 돌출부(110)가 미끄러져 제1홈부(210)에 용이하게 삽입결합될 수 있다.
또한, 돌출부(110)의 외주면(114)은 내측으로 경사지게 형성될 수 있다. 예를 들면, 돌출부(110)의 외주면(114)은 도 2 내지 도 5와 같이, 가동전극(100)의 일면에서 멀어질수록 내측으로 기울어지게 형성될 수 있다.
이 때에, 돌출부(110)의 직경, 두께 또는 폭의 최대값은 후술할 제1홈부(210)의 직경, 두께 또는 폭의 값보다 더 클 수 있다.
이와 같이, 돌출부(110)의 외주면(114)이 내측으로 경사지게 형성됨으로써, 돌출부(110)가 제1홈부에(210)에 용이하게 삽입되어 억지끼움될 수 있으므로 채터링 현상을 효과적으로 억제할 수 있다.
또한, 돌출부(110)의 외주면(114)이 내측으로 경사지게 형성됨으로써, 돌출부(110) 단부(112)의 직경, 두께 또는 폭의 값이 작아지므로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 돌출부(110)가 제1홈부(210)에 용이하게 삽입결합될 수 있다.
한편, 도 2 내지 도 5와 같이, 돌출부(110)의 외주면(114) 뿐만 아니라, 돌출부(110)의 외주면(114)과 매끄럽게 연결된 가동전극(100) 일측의 외주면도 내측으로 경사지게 형성될 수 있다.
돌출부(110)의 외주면(114) 또는 내주면에는 요철이 형성될 수 있다.
이와 같이, 돌출부(110)의 외주면(114) 또는 내주면에 요철이 형성됨으로써, 돌출부(110)가 제1홈부에(210)에 더욱 용이하게 억지끼움되어 채터링 현상이 효과적으로 억제될 수 있다.
한편, 돌출부(110)의 내주를 따라 제2홈부(120)가 형성될 수 있다. 이와 관련하여 후술한다.
[제2홈부]
제2홈부(120)는 돌출부(110)의 내주 또는 외주 중 적어도 어느 하나를 따라 가동전극(100) 일단에 형성될 수 있다. 다만, 도 2 내지 도 5에서는 가동전극(100) 일단의 외주면과 돌출부(110)의 외주면이 매끄럽게 연결되므로, 제2홈부(120)는 돌출부(110)의 외주를 따라 가동전극(100) 일단에 형성될 수는 없다. 구체적인 사항은 도 8 내지 도 11에서 살펴본다.
이와 같이, 제2홈부(120)가 돌출부(110)의 내주 또는 외주 중 적어도 어느 하나를 따라 가동전극(100) 일단에 형성됨으로써, 돌출부(110)는 더욱 용이하게 변형될 수 있다. 따라서, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)의 일부분이 제2홈부(120)에 의해 더욱 용이하게 변형되면서 돌출부(110)의 나머지 부분이 제1홈부(210)에 더욱 용이하게 삽입결합될 수 있다. 따라서, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 따라서, 가동전극(100)의 특정부위만 고정전극(200)에 결합되어 전극 간 총 접촉면적이 감소하고 이에 따라 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
[고정전극]
도 6 및 도 7은 본 발명의 일 실시예에 따른 고정전극의 사시도 및 단면도이다.
도 2, 도 3, 도 6 및 도 7을 참조하면, 일 실시예에 따른 고정전극(200)은 고정부 로드(L2)에 연결되고 도전성 재료로 이루질 수 있다. 고정부로드(L2)는 바이패스 스위치용 인터럽터(10) 외부의 부하 또는 전원과 연결될 수 있다.
또한, 고정부전극(200)의 타단에는 제1홈부(210)가 형성될 수 있다. 여기에서, 타단은 도면에서 상단을 의미할 수 있다.
또한, 고정전극(200)의 타단은 가동전극(100)의 일단과 소정거리 이격되어 마주하도록 배치될 수 있다.
가동전극(100)의 타단은 후술할 구동부(300)와 연결될 수 있다. 가동전극(100)은 구동부(300)에 의해 예를 들면 하방으로 이동할(투입될) 수 있다. 가동전극(100)이 이동하면(투입되면) 돌출부(110)가 고정전극(200)의 타단에 형성된 제1홈부(210)에 억지끼움될 수 있다.
[제1홈부]
제1홈부(210)는 고정전극(200)의 타단에 돌출부(110)에 대응하는 형태로 형성될 수 있다. 제1홈부(210)에는 돌출부(110)가 삽입결합되어 억지끼움될 수 있다.
제1홈부(210)는 돌출부(110)의 높이보다 더 깊게 형성될 수 있다.
이와 같이, 제1홈부(210)가 돌출부(110)의 높이보다 더 깊게 형성됨으로써, 고정전극(200) 중에서 제1홈부(210)의 주변부가 용이하게 변형될 수 있다. 따라서, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 고정전극(200) 중에서 돌출부(110) 일부분과 먼저 결합된 제1홈부(210)의 주변부가 용이하게 변형되면서 돌출부(110)의 나머지 부분이 제1홈부(210)에 더욱 용이하게 삽입결합될 수 있다. 따라서, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 따라서, 가동전극(100)의 특정부위만 고정전극(200)에 결합되어 전극 간 총 접촉면적이 감소하고 이에 따라 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
한편, 가동전극(100) 일측 및 고정전극(200) 타측 사이의 공간(S)은 진공상태에 해당할 수 있다.
이와 같이, 가동전극(100) 일측 및 고정전극(200) 타측 사이의 공간(S)은 진공상태에 해당함으로써, 평상시에 가동전극(100) 및 고정전극(200)을 가까이 배치할 수 있어서 사고발생 시에 가동전극(100)이 이동해야 하는 거리(투입거리)가 짧아질 수 있다. 따라서, 바이패스 스위치용 인터럽터(10)는 사고전류를 신속하게 회류시켜 바이패스 스위치 후단의 모듈을 과전류로부터 신속하게 보호할 수 있고 과전류로 인한 사고를 방지할 수 있다.
또한, 진공을 절연매질로 사용함으로써 환경오염을 방지하고 바이패스 스위치용 인터럽터(10) 내부를 청결하게 유지할 수 있다.
[구동부]
구동부(300)는 가동전극(100)의 타단에 결합될 수 있다.
구동부(300)는 가동전극(100)을 고정전극(200)쪽으로 이동시킬(투입할) 수 있다. 구체적으로 예를 들면, 구동부(300)에는 자석, 스프링, 화약 등이 구비될 수 있고 자력, 탄성복원력, 폭발력 등에 의해 가동전극(100)을 이동시킬(투입할) 수 있다.
[벨로우즈]
벨로우즈(400)는 가동전극(100) 외주면에 결합될 수 있다. 벨로우즈(400)는 신축 가능한 재료로 구성될 수 있다. 다만, 도 2 및 도 3과 같이 벨로우즈(400)가 요철부와 같은 형상으로 구성될 경우에는 금속재료로 구성되더라도 수축 및 팽창에 의해 선형으로 변형가능할 수 있다.
벨로우즈(400)는 가동전극(100)이 고정전극(200)을 향해 이동가능하도록 지지할 수 있다.
도 8 내지 도 11은 본 발명의 다른 일 실시예에 따른 바이패스 스위치용 인터럽터의 열린 상태를 나타낸 단도면이다.
도 8 및 도 9를 참조하면, 다른 일 실시예에 따른 바이패스 스위치용 인터럽터(10)의 가동전극(100)에 형성된 돌출부(110)는 가동전극(100) 일단의 내측에 형성될 수 있다. 즉, 도 2 및 도 3과 달리, 돌출부(110)는 가동전극(100) 일단의 외주로부터 소정거리만큼 이격되어 내측에 형성될 수 있다.
구체적으로 예를 들면, 돌출부(110)는 외주면이 내측으로 기울어진 돔형(도 8) 또는 링(도 9) 형태로 형성될 수 있다.
한편, 돌출부(110)는 가동전극(100) 일단의 내측에 형성되므로, 도 2 및 도 3과 달리, 가동전극(100) 일단에는 돌출부(110) 외주를 따라 제2홈부(120b)가 형성될 수 있다. 물론, 도 2 및 도 3과 같이, 가동전극(100) 일단에는 돌출부(110) 내주를 따라 제2홈부(120a)가 형성될 수도 있다.
이와 같이, 돌출부(110)는 가동전극(100) 일단의 내측에 형성됨으로써, 가동전극(100) 일단에는 돌출부(110) 외주를 따라 제2홈부(120b)가 형성될 수 있으므로 돌출부(110)가 용이하게 변형될 수 있다. 따라서, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)의 일부분이 제2홈부(120b)에 의해 더욱 용이하게 변형되면서 돌출부(110)의 나머지 부분이 제1홈부(210)에 더욱 용이하게 삽입결합될 수 있다. 따라서, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 따라서, 가동전극(100)의 특정부위만 고정전극(200)에 결합되어 전극 간 총 접촉면적이 감소하고 이에 따라 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
또한, 돌출부(110)가 링형태로 형성됨으로써, 전극 간 접촉면적이 증가하므로 돌출부(110)가 제1홈부(210)에 확실하게 억지끼움되어 채터링 현상 발생을 효과적으로 방지할 수 있고 전극 간 접촉저항 값이 감소하므로 통전 시 온도상승이 억제되어 바이패스 스위치 후단의 모듈이 손상되는 것을 효과적으로 방지할 수 있다. 또한, 돌출부(110)의 직경, 두께 또는 폭이 작아져서 돌출부(110)의 변형이 용이해지므로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)의 일부분이 변형되면서 돌출부(110)의 나머지 부분이 제1홈부(210)에 용이하게 삽입결합될 수 있다. 이에 따라, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 따라서, 가동전극(100)의 특정부위만 고정전극(200)에 결합되어 전극 간 총 접촉면적이 감소하고 이에 따라 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
도 10 및 도 11을 참조하면, 일 실시예에 따른 바이패스 스위치용 인터럽터(10)의 가동전극(100) 일단에는 복수 개의 돌출부(110)가 형성될 수 있다.
구체적으로 예를 들면, 가동전극(100) 일단에는 도 10과 같이 도 8의 돔형 돌출부(110)가 복수 개 형성될 수도 있고, 도 11과 같이 도 9의 링형 돌출부(110)가 복수 개 형성될 수 있다.
이와 같이, 가동전극(100) 일단에 복수 개의 돌출부(110)가 형성됨으로써, 전극 간 접촉면적이 증가하므로 돌출부(110)가 제1홈부(210)에 확실하게 억지끼움되어 채터링 현상 발생을 효과적으로 방지할 수 있다.
또한, 전극 간 총 접촉면적이 증가하여 전극 간 접촉저항 값이 감소하므로 통전 시 온도상승이 억제되어 바이패스 스위치 후단의 모듈이 손상되는 것을 효과적으로 방지할 수 있다.
또한, 개개의 돌출부(110) 크기는 작게 형성되어 돌출부(110)의 변형이 용이해지므로, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)가 변형되면서 나머지 돌출부(110)가 제1홈부(210)에 용이하게 삽입결합될 수 있다.
따라서, 종국에는 돌출부(110) 모두가 제1홈부(210)에 용이하게 안정적으로 결합될 수 있다. 즉, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 따라서, 가동전극(100)의 특정부위만 고정전극(200)에 결합되어 전극 간 총 접촉면적이 감소하고 이에 따라 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
또한, 도 10 및 도 11과 같이, 가동전극(100) 일단에 형성된 복수 개의 돌출부(110) 중에서 적어도 두 개의 돌출부(110)는 가동전극(100)의 중심축(A)을 중심으로 하는 원주 상에 등각도 간격으로 형성될 수 있다. 도 10 및 도 11은 두 개의 돔형 또는 링형 돌출부(110)가 중심축(A)을 중심으로 하는 원주 상에 180도 간격으로 형성된 것을 나타낸다.
이와 같이, 가동전극(100) 일단에 형성된 복수 개의 돌출부(110) 중에서 적어도 두 개의 돌출부(110)가 가동전극(100)의 중심축(A)을 중심으로 하는 원주 상에 등각도 간격으로 형성됨으로써, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 중심축(A)을 기준으로 대칭적으로 형성된 복수 개의 돌출부(110)가 제1홈부(210)에 삽입결합되면서 가동전극(100)이 고정전극(200)에 정렬된 상태로 용이하게 재배치되어 결합될 수 있다.
또한, 가동전극(100) 일단에는 적어도 하나의 돌출부(110)에 대해서 돌출부(110)의 내주 및 외주 중 적어도 어느 하나를 따라 제2홈부(120)가 형성될 수 있다.
이와 같이, 가동전극(100) 일단에는 적어도 하나의 돌출부(110)에 대해서 돌출부(110)의 내주 및 외주 중 적어도 어느 하나를 따라 제2홈부(120)가 형성됨으로써, 제2홈부(120)가 형성된 돌출부(110)는 더욱 용이하게 변형될 수 있다. 따라서, 가동전극(100)이 고정전극(200)쪽으로 정렬되지 않은 상태로 비스듬히 이동하게 되더라도(투입되더라도), 제1홈부(210)에 먼저 삽입결합된 돌출부(110)가 제2홈부(120)에 의해 더욱 용이하게 변형되면서 나머지 돌출부(110)가 제1홈부(210)에 더욱 용이하게 삽입결합될 수 있다. 따라서, 가동전극(100)은 최종적으로 정렬된 상태로 고정전극(200)에 재배치되어 결합될 수 있다. 따라서, 가동전극(100)의 특정부위만 고정전극(200)에 결합되어 전극 간 총 접촉면적이 감소하고 이에 따라 전극 간 접촉저항 값이 증가함으로써 통전 시 온도가 상승하여 바이패스 스위치 후단의 모듈이 손상되는 것을 방지할 수 있다.
도 12는 본 발명의 다른 일 실시예에 따른 바이패스 스위치용 인터럽터의 열린 상태를 나타낸 단도면이다.
도 12를 참조하면, 다른 일 실시예에 따른 바이패스 스위치용 인터럽터(20)는 가동전극(100), 고정전극(200), 구동부(300) 및 벨로우즈(400)를 포함하여 구성될 수 있다. 도 2와의 차이점만 살펴보면 다음과 같다.
도 2와 달리, 돌출부(210) 및 제2홈부(220)가 가동전극(100) 일단이 아니라 고정전극(200) 타단에 형성될 수 있고, 제1홈부(110)가 고정전극(200) 타단이 아니라 가동전극(100) 일단에 형성될 수 있다.
도 12의 바이패스 스위치용 인터럽터(20)는 돌출부(210), 제1홈부(110) 및 제2홈부(220)가 형성된 전극이 서로 바뀌었을 뿐이므로 모든 구성에 대해 전술한 실시예가 적용될 수 있다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다.
아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.

Claims (12)

  1. 일단에 돌출부가 형성되는 가동전극;
    타단에 상기 돌출부에 대응하는 형태로 제1홈부가 형성되고 상기 가동전극의 일단이 상기 타단과 소정거리 이격되어 마주하도록 배치되는 고정전극; 및
    상기 가동전극을 상기 고정전극쪽으로 이동시키는 구동부;를 포함하고,
    상기 구동부가 상기 가동전극을 이동시키면 상기 돌출부가 상기 제1홈부에 억지끼움되는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
  2. 청구항 1에 있어서,
    상기 돌출부는 상기 가동전극의 일단의 외주를 따라 형성되는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
  3. 청구항 1에 있어서,
    상기 돌출부는 상기 가동전극의 일단의 내측에 형성되는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
  4. 청구항 3에 있어서,
    상기 돌출부는 링형태로 형성되는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
  5. 청구항 2 내지 청구항 4 중 어느 한 항에 있어서,
    상기 가동전극의 일단에는 상기 돌출부의 내주 또는 외주 중 적어도 어느 하나를 따라 제2홈부가 형성되는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
  6. 청구항 1에 있어서,
    상기 가동전극의 일단에는 상기 돌출부가 복수 개 형성되는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
  7. 청구항 6에 있어서,
    적어도 두 개의 상기 돌출부는 상기 가동전극의 중심축(A)을 중심으로 하는 원주 상에 등각도 간격으로 형성되는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
  8. 청구항 1에 있어서,
    상기 돌출부의 단부는 라운드지게 형성되는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
  9. 청구항 1에 있어서,
    상기 돌출부의 외주면은 내측으로 경사지게 형성되는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
  10. 청구항 1에 있어서,
    상기 돌출부의 외주면 또는 내주면에는 요철이 형성되는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
  11. 청구항 1에 있어서,
    상기 제1홈부는 상기 돌출부의 높이보다 더 깊게 형성되는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
  12. 청구항 1에 있어서,
    상기 일측 및 타측 사이의 공간(S)은 진공상태에 해당하는 것을 특징으로 하는 바이패스 스위치용 인터럽터.
PCT/KR2021/001173 2020-02-18 2021-01-28 바이패스 스위치용 인터럽터 WO2021167263A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180014883.XA CN115136273A (zh) 2020-02-18 2021-01-28 旁通开关用灭弧室

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200019905A KR102358202B1 (ko) 2020-02-18 2020-02-18 바이패스 스위치용 인터럽터
KR10-2020-0019905 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021167263A1 true WO2021167263A1 (ko) 2021-08-26

Family

ID=77391045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001173 WO2021167263A1 (ko) 2020-02-18 2021-01-28 바이패스 스위치용 인터럽터

Country Status (3)

Country Link
KR (1) KR102358202B1 (ko)
CN (1) CN115136273A (ko)
WO (1) WO2021167263A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113778A (ja) * 1998-10-06 2000-04-21 Mitsubishi Electric Corp 永久電流スイッチ
JP2003092051A (ja) * 2001-09-17 2003-03-28 Toshiba Corp 開閉装置
JP2007280891A (ja) * 2006-04-11 2007-10-25 Ricoh Co Ltd マイクロスイッチ
KR20180002883U (ko) * 2017-03-29 2018-10-10 엘에스산전 주식회사 진공 인터럽터
KR20190002819U (ko) * 2018-05-03 2019-11-13 엘에스산전 주식회사 바이패스 스위치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142023A (ja) * 1988-11-22 1990-05-31 Meidensha Corp 真空インタラプタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113778A (ja) * 1998-10-06 2000-04-21 Mitsubishi Electric Corp 永久電流スイッチ
JP2003092051A (ja) * 2001-09-17 2003-03-28 Toshiba Corp 開閉装置
JP2007280891A (ja) * 2006-04-11 2007-10-25 Ricoh Co Ltd マイクロスイッチ
KR20180002883U (ko) * 2017-03-29 2018-10-10 엘에스산전 주식회사 진공 인터럽터
KR20190002819U (ko) * 2018-05-03 2019-11-13 엘에스산전 주식회사 바이패스 스위치

Also Published As

Publication number Publication date
KR102358202B1 (ko) 2022-02-03
KR20210105215A (ko) 2021-08-26
CN115136273A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2020060134A1 (ko) 디스플레이용 기판
WO2019164296A1 (ko) 카메라 모듈
WO2013002521A1 (en) Camera module
WO2020027588A1 (ko) 렌즈 구동장치 및 이를 포함하는 카메라 모듈
WO2021167263A1 (ko) 바이패스 스위치용 인터럽터
WO2018182105A1 (ko) 고속스위치
WO2018026177A1 (ko) 리어 홀더 및 이를 포함하는 모터
WO2021172761A1 (ko) 모터
WO2020130258A1 (ko) 과전류 보호 전원 절체 스위치
EP3841640A1 (en) Adapter and electronic system having the same
WO2017131296A1 (ko) 회전전기기계
WO2021187774A1 (ko) 아크 소호 조립체 및 이를 포함하는 차단기
WO2020116901A1 (ko) 실링 장치 및 이를 포함하는 휠 베어링 조립체
WO2019107828A1 (ko) 로터 및 이를 구비하는 모터
WO2016148321A1 (ko) 자성체 홀딩 장치
WO2022139430A1 (ko) 자력을 이용한 고정장치를 가진 배터리 팩 및 그 제조 방법, 배터리 팩의 배터리 셀 교체 방법
WO2018207957A1 (ko) N상 중첩절환 절체스위치
WO2024106841A1 (ko) 모터
WO2020138580A1 (ko) 아크 방향성을 유도하는 영구 자석을 포함한 퓨즈
WO2019132389A1 (ko) 모터
WO2023128154A1 (ko) 가스절연 개폐장치의 고속 접지 스위치 및 이를 갖는 가스절연 개폐장치
WO2019151660A1 (ko) 로터 및 이를 구비하는 모터
WO2019027191A1 (ko) Dc-dc 전압 컨버터를 벅 동작 모드에서 안전 동작 모드로 전환하는 제어 시스템
WO2019098544A1 (ko) 소프트 리니어 액추에이터
WO2021172770A1 (ko) 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756647

Country of ref document: EP

Kind code of ref document: A1