WO2021167070A1 - 弁ばね - Google Patents

弁ばね Download PDF

Info

Publication number
WO2021167070A1
WO2021167070A1 PCT/JP2021/006386 JP2021006386W WO2021167070A1 WO 2021167070 A1 WO2021167070 A1 WO 2021167070A1 JP 2021006386 W JP2021006386 W JP 2021006386W WO 2021167070 A1 WO2021167070 A1 WO 2021167070A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve spring
content
less
fatigue limit
inclusions
Prior art date
Application number
PCT/JP2021/006386
Other languages
English (en)
French (fr)
Inventor
真也 寺本
根石 豊
通匡 青野
暁 峰田
鈴木 章一
越智 達朗
Original Assignee
日本製鉄株式会社
日鉄Sgワイヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, 日鉄Sgワイヤ株式会社 filed Critical 日本製鉄株式会社
Priority to JP2022501078A priority Critical patent/JP7321354B2/ja
Priority to CN202180015954.8A priority patent/CN115335545B/zh
Priority to DE112021001170.7T priority patent/DE112021001170T5/de
Priority to US17/904,448 priority patent/US20230087453A1/en
Publication of WO2021167070A1 publication Critical patent/WO2021167070A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods

Definitions

  • the present disclosure relates to springs, and more particularly to valve springs used to adjust the movement of valves used in internal combustion engines and the like.
  • valve springs are used in automobiles or general machines.
  • valve springs have a role of adjusting the opening and closing of valves in the equipment of automobiles and general machines.
  • Valve springs are used, for example, to control the opening and closing of supply and exhaust valves of an internal combustion engine (engine) of an automobile.
  • valve spring repeats compression thousands of times per minute to adjust the opening and closing of the valve. Therefore, the valve spring is required to have a high fatigue limit. Therefore, in valve springs, the fatigue limit is usually increased by performing nitriding treatment.
  • An example of a method for manufacturing a valve spring is as follows. Perform tempering treatment (quenching treatment and tempering treatment) on the steel wire. Cold coiling is performed on the tempered steel wire to form a coiled intermediate steel material. Strain removal annealing treatment is performed on the intermediate steel material. After the strain-removing annealing treatment, nitriding treatment is performed as necessary. That is, the nitriding treatment may or may not be carried out. After the strain-removing annealing treatment or the nitriding treatment, shot peening is performed as necessary to apply compressive residual stress to the surface layer.
  • a valve spring is manufactured by the above steps.
  • Patent Document 1 JP-A-2-57637
  • Patent Document 2 JP-A-2010-163689
  • Patent Document 3 JP-A-2007-302950
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2006-183137
  • the steel wire for a high fatigue limit spring disclosed in Patent Document 1 has a weight% of C: 0.3 to 1.3%, Si: 0.8 to 2.5%, and Mn: 0.5 to 2. It contains 0%, Cr: 0.5 to 2.0%, and as optional elements, Mo: 0.1 to 0.5%, V: 0.05 to 0.5%, Ti: 0.002 to 0. 0.05%, Nb: 0.005 to 0.2%, B: 0.0003 to 0.01%, Cu: 0.1 to 2.0%, Al: 0.01 to 0.1%, and N: A steel containing 0.01 to 0.05% of one or more types and the balance consisting of Fe and unavoidable impurities is austenitized, retained at 250 to 500 ° C. for 3 seconds to 30 minutes, and then air-cooled.
  • the fatigue limit of a spring depends on the yield strength of the spring, and the higher the yield strength of the spring, the higher the fatigue limit of the spring. (See line 5), proposing a steel wire for a high fatigue limit spring having the above configuration.
  • the spring disclosed in Patent Document 2 is manufactured by using an oil tempered wire having a tempered martensite structure.
  • the oil temper wire has C: 0.50 to 0.75%, Si: 1.50 to 2.50%, Mn: 0.20 to 1.00%, Cr: 0.70 to 2.20 in mass%. %, V: Contains 0.05 to 0.50%, and the balance consists of Fe and unavoidable impurities.
  • this oil tempered wire is subjected to gas soft nitriding treatment at 450 ° C. for 2 hours, the lattice constant of the nitrided layer formed on the wire surface portion of the oil tempered wire is 2.881 to 2.890 ⁇ . Further, when this oil tempered wire is heated at 450 ° C.
  • Patent Document 2 describes that a spring having a high fatigue limit can be manufactured by using an oil tempered wire in which the yield strength of the steel material does not decrease even if the nitriding treatment time is long (Patent Document 2). See paragraphs 2 [0025] and [0026]).
  • the steel wire for high-strength spring disclosed in Patent Document 3 has C: 0.5 to 0.7%, Si: 1.5 to 2.5%, Mn: 0.2 to 1.0%, Cr: Chemistry containing 1.0 to 3.0%, V: 0.05 to 0.5%, suppressing Al: 0.005% or less (not including 0%), and the balance being Fe and unavoidable impurities Has a composition.
  • 30 spherical cementites having a diameter equivalent to a circle of 10 to 100 nm are 30 pieces / ⁇ m 2 or more, the Cr concentration in cementite is 20% or more in mass%, and the V concentration is 2% or more. ..
  • Patent Document 3 it is described that increasing the strength of the steel wire is effective for improving the fatigue limit and the settling resistance (see paragraph [0003] of Patent Document 3).
  • the number of fine spherical cementites having a circle-equivalent diameter of 10 to 100 nm is 30 pieces / ⁇ m 2 or more, the Cr concentration in cementite is 20% or more in mass%, and the V concentration is 2% or more. Therefore, it is described that the decomposition and disappearance of cementite can be suppressed and the strength of the steel wire can be maintained even during heat treatment such as strain removal annealing treatment and nitriding treatment during the manufacturing process (Patent Document 3 paragraph). [0011]).
  • the steel wire used as the material of the spring disclosed in Patent Document 4 is C: 0.45 to 0.7%, Si: 1.0 to 3.0%, Mn: 0.1 to 2 in mass%. 0.0%, P: 0.015% or less, S: 0.015% or less, N: 0.0005 to 0.007%, t-O: 0.0002 to 0.01%, and the balance is iron and It is composed of unavoidable impurities, has a tensile strength of 2000 MPa or more, and has an occupied area ratio of cementite-based spherical carbides and alloy-based carbides having a circle-equivalent diameter of 0.2 ⁇ m or more on the microscopic surface of 7% or less, and has a circle-equivalent diameter of 0.
  • the abundance density of cementite-based spherical carbides and alloy-based carbides of 2 to 3 ⁇ m is 1 piece / ⁇ m 2 or less, and the abundance density of cementite-based spherical carbides and alloy-based carbides having a circle equivalent diameter of more than 3 ⁇ m is 0.001 piece / ⁇ m 2.
  • the former austenite particle size number is 10 or more, the retained austenite is 15 mass% or less, and the area ratio of the dilute region where the abundance density of cementite-based spherical carbide having a circle equivalent diameter of 2 ⁇ m or more is small is 3% or less. be. In this document, it is described that further increase in strength is required in order to further improve spring performance such as fatigue and settling.
  • An object of the present disclosure is to provide a valve spring having an excellent fatigue limit.
  • the valve spring according to the present disclosure is When the wire diameter is defined as d (mm), the chemical composition at the d / 4 depth position from the surface is mass%.
  • the rest consists of Fe and impurities
  • the number density of V-based precipitates having a maximum diameter of 2 to 10 nm is 5000 to 80,000 / ⁇ m 3 .
  • Inclusions with an O content of 10.0% or more in mass% are defined as oxide-based inclusions.
  • An inclusion having an S content of 10.0% or more and an O content of less than 10.0% by mass is defined as a sulfide-based inclusion.
  • the Ca content is 10.0% or more in mass%
  • the S content is 10.0% or more
  • the O content is 10.0%.
  • the ratio of the number of Ca sulfides to the total number of the oxide-based inclusions and the sulfide-based inclusions is 0.20% or less.
  • the valve spring according to the present disclosure has an excellent fatigue limit.
  • FIG. 1A is an example of a TEM image of the ferrite (001) plane of the thin film sample.
  • FIG. 1B is a schematic view of a TEM image of the ferrite (001) plane of the thin film sample.
  • Figure 2 is a drawing showing a valve spring having the chemical composition of the present embodiment, and Ca sulfides number ratio Rca, the relationship between the 10 8 times fatigue limit in the number of repetitions of the (high cycle fatigue limit).
  • FIG. 3 is a flow chart showing a manufacturing process of the valve spring of the present embodiment.
  • the present inventors have studied a valve spring having an excellent fatigue limit.
  • the present inventors took an approach of increasing the fatigue limit of a valve spring by increasing the strength and hardness of the steel material constituting the valve spring, similar to the spring steel material disclosed in the above-mentioned prior literature. Specifically, it was examined to increase the strength and hardness of the steel material and increase the fatigue limit of the valve spring by refining cementite. As a result, as described in Patent Document 3 or Patent Document 4, the strength and hardness of the steel material could be increased as the cementite was made finer. Therefore, it was considered that the fatigue limit of the valve spring would be increased by miniaturizing cementite.
  • the present inventors have considered increasing the fatigue limit of the valve spring with a technical idea different from the technical idea of increasing the fatigue limit of the valve spring by increasing the strength and hardness of the steel material constituting the valve spring. ..
  • Patent Documents 1 to 4 in the conventional spring technology, it has been considered that the strength and hardness of the steel material constituting the valve spring have a positive correlation with the fatigue limit of the valve spring.
  • the fatigue limit of the valve spring was predicted. That is, the fatigue limit of the valve spring was predicted from the result of the tensile test or the hardness test which did not take time without carrying out the fatigue test which took time.
  • the present inventors considered that the strength and hardness of the steel material and the fatigue limit of the valve spring do not necessarily correlate with each other. Therefore, instead of raising the fatigue limit of the valve spring by increasing the strength and hardness of the steel material, it was examined to raise the fatigue limit of the valve spring by other technical ideas.
  • the present inventors paid attention to V-based precipitates represented by V carbides and V carbonitrides.
  • the V-based precipitate means a precipitate containing V or containing V and Cr.
  • the V-based precipitate does not have to contain Cr.
  • the present inventors raise the fatigue limit of the valve spring by generating a large number of nano-sized fine V-based precipitates, instead of the conventional technical idea of raising the fatigue limit of the valve spring by increasing the strength of the steel material. I thought about it. Therefore, as the chemical composition of the valve spring for increasing the fatigue limit by utilizing the nano-sized V-based precipitate, the present inventors, in mass%, C: 0.50 to 0.80%, Si: 1.
  • the steel material having the above-mentioned chemical composition was subjected to heat treatment at various heat treatment temperatures after the quenching treatment to produce a valve spring.
  • the present inventors obtained the following new findings in the valve spring having the above chemical composition.
  • the nitriding treatment is carried out in the conventional valve spring manufacturing process, the heat treatment after the tempering treatment step (strain removal annealing treatment step or the like) is carried out at a temperature lower than the nitriding temperature of the nitriding treatment.
  • the conventional valve spring manufacturing process is based on the technical idea that the fatigue limit of the spring is increased by maintaining the strength and hardness of the steel material at a high level.
  • the heat treatment temperature of the heat treatment step other than the nitriding treatment is set to be lower than the nitriding temperature as much as possible to suppress the decrease in the strength of the valve spring.
  • the valve spring of the present embodiment is not a technical idea of increasing the fatigue limit by increasing the strength of the steel material, but a technique of increasing the fatigue limit of the valve spring by generating a large number of nano-sized fine V-based precipitates.
  • Adopt the idea Therefore, if heat treatment is performed at a heat treatment temperature of 540 to 650 ° C. in the manufacturing process to precipitate a large number of nano-sized fine V-based precipitates, the heat treatment temperature for precipitating the V-based precipitates is nitrided. Even if the temperature is higher than the temperature and as a result the strength of the valve spring core is reduced (that is, the hardness of the valve spring core is low), an excellent fatigue limit can be obtained and the valve spring core can be obtained.
  • the fatigue limit ratio defined by the ratio of the fatigue limit to the hardness is also increased. More specifically, in the valve spring, if the number density of V-based precipitates having a maximum diameter of 2 to 10 nm is 5000 pieces / ⁇ m 3 or more, a sufficient fatigue limit can be obtained in the valve spring. It became clear for the first time by these studies.
  • valve spring repeats compression several thousand times per minute, and the compression frequency is much higher than that of the damper spring. Therefore, valve springs are required to have a higher fatigue limit than damper springs. Specifically, the damper spring, in 10 seven repeat count, whereas a high fatigue limit is required, the valve spring, in 108 iterations number is required high fatigue limit. Hereinafter, in this specification, the fatigue limit of the number of repetitions of 10 8 times as high cycle fatigue limit.
  • inclusions having an O content of 10.0% or more in mass% are defined as oxide-based inclusions.
  • a sulfide-based inclusion is defined as an inclusion having an S content of 10.0% or more and an O content of less than 10.0% by mass.
  • inclusions having a Ca content of 10.0% or more in mass%, an S content of 10.0% or more, and an O content of less than 10.0% are defined as Ca sulfide.
  • Ca sulfide is a kind of sulfide-based inclusions.
  • a valve spring when the ratio of the number of Ca sulfides in the oxide-based inclusions and sulfide inclusions is low, it increases the fatigue limit of a high cycle (108 cycles).
  • a valve spring when the ratio of the number of Ca sulfides to the total number of oxide-based inclusions and sulfide-based inclusions is low, Ca is sufficiently solidified with oxide-based inclusions and sulfide-based inclusions other than Ca sulfide. It's melting. In this case, the oxide-based inclusions and the sulfide-based inclusions are sufficiently softened and made finer. Therefore, cracks starting from the oxide inclusions or sulfide inclusions hardly occur, believed to fatigue limit in high cycle (108 cycles) increases.
  • the present inventors focused on the number ratio of Ca sulfides to the total number of oxide-based inclusions and sulfide-based inclusions among the inclusions, and focused on the number ratio of Ca sulfides and the high cycle.
  • valve spring of the present embodiment is not based on the conventional technical idea based on the positive correlation between the strength and hardness of the steel material constituting the valve spring and the fatigue limit of the valve spring, as in the conventional case. Is derived from a completely different technical idea and has the following structure.
  • Inclusions with an O content of 10.0% or more in mass% are defined as oxide-based inclusions.
  • An inclusion having an S content of 10.0% or more and an O content of less than 10.0% by mass is defined as a sulfide-based inclusion.
  • the Ca content is 10.0% or more in mass%
  • the S content is 10.0% or more
  • the O content is 10.0%.
  • the ratio of the number of Ca sulfides to the total number of oxide-based inclusions and sulfide-based inclusions is 0.20% or less. Valve spring.
  • the V-based precipitate is a carbide or carbonitride containing V, or a carbide or carbonitride containing V and Cr, as described above, and is, for example, a carbide or a carbonitride V. Any one or more.
  • the V-based precipitate may be a composite precipitate containing any one of V carbide and V carbonitride and one or more other elements.
  • the V-based precipitate is deposited in a plate shape along the ⁇ 001 ⁇ plane of ferrite (body-centered cubic lattice). Therefore, the V-based precipitate is observed as a line segment (edge portion) extending linearly in parallel with the [100] direction or the [010] direction in the TEM image of the (001) plane of ferrite.
  • the precipitates other than the V-based precipitates are not observed as line segments (edge portions) extending linearly in parallel with the [100] direction or the [010] direction. That is, only the V-based precipitate is observed as a line segment (edge portion) extending linearly in parallel with the [100] direction or the [010] direction. Therefore, by observing the TEM image of the (001) plane of the ferrite, the V-based precipitate can be easily distinguished from the Fe carbide such as cementite, and the V-based precipitate can be specified. That is, in the present specification, in the TEM image of the (001) plane of ferrite, a line segment extending in the [100] direction or the [010] direction is defined as a V-based precipitate.
  • valve spring according to [1].
  • the chemical composition is Mo: 0.50% or less, Nb: 0.050% or less, W: 0.60% or less, Ni: 0.500% or less, Co: 0.30% or less, and B: Contains one or more selected from the group consisting of 0.0050% or less. Valve spring.
  • valve spring according to [1] or [2].
  • the chemical composition is Cu: 0.050% or less, Al: 0.0050% or less, and Ti: Contains one or more selected from the group consisting of 0.050% or less. Valve spring.
  • valve spring of this embodiment has a coil shape.
  • the wire diameter of the valve spring, the average coil diameter, the inner diameter of the coil, the outer diameter of the coil, the free height, the effective number of turns, the total number of turns, the winding direction, and the pitch are not particularly limited.
  • the valve spring of the present embodiment may be nitrided or unnitrided.
  • the valve spring When nitrided, the valve spring includes a nitride layer and a core portion inside the nitrided layer.
  • the nitrided layer is formed on the surface layer of the valve spring.
  • the nitrided layer includes a compound layer and a diffusion layer formed inside the compound layer.
  • the nitrided layer does not have to contain a compound layer.
  • the core portion is a base material portion inside the nitrided layer, and is a portion that is not substantially affected by the diffusion of nitrogen due to the nitriding treatment described later.
  • the nitrided layer and core of the nitrided valve spring can be distinguished by microstructure observation.
  • the wire diameter of the valve spring is defined as d (mm)
  • the d / 4 depth position from the surface corresponds to the core portion of the nitrided valve spring. If not nitrided, the valve spring does not have a nitriding layer.
  • the chemical composition at the d / 4 depth position from the surface contains the following elements.
  • C 0.50 to 0.80% Carbon (C) increases the fatigue limit of valve springs. If the C content is less than 0.50%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the C content exceeds 0.80%, coarse cementite is produced. In this case, even if the content of other elements is within the range of this embodiment, the ductility of the steel material used as the material of the valve spring is lowered. Further, the fatigue limit of the valve spring is rather lowered. Therefore, the C content is 0.50 to 0.80%.
  • the lower limit of the C content is preferably 0.51%, more preferably 0.52%, still more preferably 0.54%, still more preferably 0.56%.
  • the preferred upper limit of the C content is 0.79%, more preferably 0.78%, still more preferably 0.76%, still more preferably 0.74%, still more preferably 0.72. %, More preferably 0.70%.
  • Si 1.20 to less than 2.50%
  • Silicon (Si) raises the fatigue limit of the valve spring and further enhances the settling resistance of the valve spring. Si further deoxidizes the steel. Si also increases the temper softening resistance of steel materials. Therefore, the strength and fatigue limit of the valve spring can be maintained high even after the tempering process is performed in the valve spring manufacturing process. If the Si content is less than 1.20%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, when the Si content is 2.50% or more, the ductility of the steel material used as the material of the valve spring is lowered even if the content of other elements is within the range of the present embodiment, and the fatigue limit of the valve spring is reduced.
  • the Si content is less than 1.20 to 2.50%.
  • the preferable lower limit of the Si content is 1.25%, more preferably 1.30%, still more preferably 1.40%, still more preferably 1.50%, still more preferably 1.60. %, More preferably 1.70%, still more preferably 1.80%.
  • the preferred upper limit of the Si content is 2.48%, more preferably 2.46%, still more preferably 2.45%, still more preferably 2.43%, still more preferably 2.40. %.
  • Mn 0.25 to 1.00%
  • Manganese (Mn) enhances the hardenability of steel and raises the fatigue limit of valve springs. If the Mn content is less than 0.25%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mn content exceeds 1.00%, the strength of the steel material used as the material of the valve spring becomes high even if the other element content is within the range of the present embodiment, and the cold workability of the steel material becomes high. Decreases. Therefore, the Mn content is 0.25 to 1.00%.
  • the preferable lower limit of the Mn content is 0.27%, more preferably 0.29%, still more preferably 0.35%, still more preferably 0.40%, still more preferably 0.50. %, More preferably 0.55%.
  • the preferred upper limit of the Mn content is 0.98%, more preferably 0.96%, still more preferably 0.90%, still more preferably 0.85%, still more preferably 0.80. %.
  • Phosphorus (P) is an impurity. P segregates at the grain boundaries and lowers the fatigue limit of the valve spring. Therefore, the P content is 0.020% or less.
  • the preferred upper limit of the P content is 0.018%, more preferably 0.016%, even more preferably 0.014%, still more preferably 0.012%.
  • the P content is preferably as low as possible. However, excessive reduction of P content raises manufacturing costs. Therefore, considering normal industrial production, the preferable lower limit of the P content is more than 0%, more preferably 0.001%, still more preferably 0.002%.
  • S 0.020% or less Sulfur (S) is an impurity. Similar to P, S segregates at grain boundaries and forms sulfide-based inclusions such as Mn sulfide and / or Ca sulfide, thereby lowering the fatigue limit of the valve spring. Therefore, the S content is 0.020% or less.
  • the upper limit of the S content is preferably 0.018%, more preferably 0.016%, still more preferably 0.014%, still more preferably 0.012%.
  • the S content is preferably as low as possible. However, excessive reduction of S content raises manufacturing costs. Therefore, considering normal industrial production, the preferable lower limit of the S content is more than 0%, more preferably 0.001%, still more preferably 0.002%.
  • Chromium (Cr) enhances the hardenability of steel materials and raises the fatigue limit of valve springs. If the Cr content is less than 0.40%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cr content exceeds 1.90%, even if the content of other elements is within the range of the present embodiment, coarse Cr carbides are excessively generated, and the fatigue limit of the valve spring is lowered. .. Therefore, the Cr content is 0.40 to 1.90%.
  • the lower limit of the Cr content is preferably 0.42%, more preferably 0.45%, still more preferably 0.50%, still more preferably 0.60%, still more preferably 0.80. %, More preferably 1.00%, still more preferably 1.20%.
  • the preferred upper limit of the Cr content is 1.88%, more preferably 1.85%, still more preferably 1.80%, still more preferably 1.70%, still more preferably 1.60. %.
  • V Vanadium (V) combines with C and / or N to form fine V-based precipitates, increasing the fatigue limit of valve springs. If the V content is less than 0.05%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the V content exceeds 0.60%, the V-based precipitate becomes coarse and the maximum diameter exceeds 10 nm even if the other element content is within the range of the present embodiment. Is generated in large numbers. In this case, the fatigue limit of the valve spring is rather lowered. Therefore, the V content is 0.05 to 0.60%.
  • the lower limit of the V content is preferably 0.06%, more preferably 0.07%, still more preferably 0.10%, still more preferably 0.15%, still more preferably 0.20. %.
  • the preferred upper limit of the V content is 0.59%, more preferably 0.58%, still more preferably 0.55%, still more preferably 0.50%, still more preferably 0.45. %, More preferably 0.40%.
  • Ca 0.0001 to 0.0050% Calcium (Ca) is contained in oxide-based inclusions and sulfide-based inclusions to soften these inclusions.
  • the softened oxide-based inclusions and sulfide-based inclusions are elongated, divided, and refined during hot rolling. Therefore, the fatigue limit of the valve spring is increased, and in particular, the high cycle fatigue limit is increased.
  • the Ca content is less than 0.0001%, these effects cannot be obtained even if the other element content is within the range of the present embodiment.
  • the Ca content exceeds 0.0050%, coarse Ca sulfide and coarse oxide-based inclusions (Ca oxide) are formed, and the fatigue limit of the valve spring is lowered.
  • the Ca content is 0.0001 to 0.0050%.
  • the preferable lower limit of the Ca content is 0.0002%, more preferably 0.0003%, still more preferably 0.0004%, still more preferably 0.0005%.
  • the preferred upper limit of the Ca content is 0.0048%, more preferably 0.0046%, still more preferably 0.0040%, still more preferably 0.0035%, still more preferably 0.0025. %, More preferably 0.0020%.
  • N 0.0100% or less Nitrogen (N) is an impurity. N combines with Al and Ti to form AlN and TiN, which lowers the fatigue limit of the valve spring. Therefore, the N content is 0.0100% or less.
  • the preferred upper limit of the N content is 0.0090%, more preferably 0.0080%, still more preferably 0.0060%, still more preferably 0.0050%.
  • the N content is preferably as low as possible. However, excessive reduction of N content raises manufacturing costs. Therefore, the preferred lower limit of the N content is more than 0%, more preferably 0.0001%, still more preferably 0.0005%.
  • the rest of the chemical composition of the valve spring according to this embodiment consists of Fe and impurities.
  • the impurities are those mixed from ore, scrap, manufacturing environment, etc. as raw materials when the steel material used as the material of the valve spring is industrially manufactured, and are mixed in the valve spring of the present embodiment. It means something that is acceptable as long as it does not adversely affect it.
  • the chemical composition of the valve spring according to the present embodiment further contains one or more selected from the group consisting of Mo, Nb, W, Ni, Co, and B instead of a part of Fe. May be good. These elements are optional elements and all increase the fatigue limit of the valve spring.
  • Mo Molybdenum
  • Mo Molybdenum
  • Mo is an optional element and may not be contained. That is, the Mo content may be 0%.
  • Mo enhances the hardenability of the steel material and raises the fatigue limit of the valve spring.
  • Mo further increases the temper softening resistance of steel materials. Therefore, the strength and fatigue limit of the valve spring can be maintained high even after the tempering process is performed in the valve spring manufacturing process. If even a small amount of Mo is contained, the above effect can be obtained to some extent.
  • the Mo content is 0 to 0.50%, and when Mo is contained, the Mo content is 0.50% or less.
  • the lower limit of the Mo content is more than 0%, more preferably 0.01%, still more preferably 0.05%, still more preferably 0.10%.
  • the preferred upper limit of the Mo content is 0.45%, more preferably 0.40%, still more preferably 0.35%, still more preferably 0.30%.
  • Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When contained, that is, when the Nb content is more than 0%, Nb combines with C and / or N to form carbides, nitrides, or carbonitrides (hereinafter referred to as Nb carbonitrides, etc.). do. Nb carbonitride and the like refine the austenite crystal grains and increase the fatigue limit of the valve spring. If even a small amount of Nb is contained, the above effect can be obtained to some extent. However, if the Nb content exceeds 0.050%, coarse Nb carbonitrides and the like are generated, and the fatigue limit of the valve spring is lowered.
  • the Nb content is 0 to 0.050%, and when Nb is contained, the Nb content is 0.050% or less.
  • the preferable lower limit of the Nb content is more than 0%, more preferably 0.001%, still more preferably 0.005%, still more preferably 0.010%.
  • the preferred upper limit of the Nb content is 0.048%, more preferably 0.046%, still more preferably 0.042%, even more preferably 0.038%, still more preferably 0.035. %, More preferably 0.030%, still more preferably 0.025%.
  • Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%. When it is contained, that is, when the W content is more than 0%, W enhances the hardenability of the steel material and raises the fatigue limit of the valve spring. W further increases the temper softening resistance of the steel material. Therefore, the strength and fatigue limit of the valve spring can be maintained high even after the tempering process is performed in the valve spring manufacturing process. If W is contained even in a small amount, the above effect can be obtained to some extent.
  • the W content is 0 to 0.60%, and when W is contained, the W content is 0.60% or less.
  • the lower limit of the W content is preferably more than 0%, more preferably 0.01%, still more preferably 0.05%, still more preferably 0.10%.
  • the preferred upper limit of the W content is 0.55%, more preferably 0.50%, still more preferably 0.45%, still more preferably 0.40%, still more preferably 0.35. %, More preferably 0.30%.
  • Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%. When it is contained, that is, when the Ni content is more than 0%, Ni enhances the hardenability of the steel material and raises the fatigue limit of the valve spring. If even a small amount of Ni is contained, the above effect can be obtained to some extent. However, if the Ni content exceeds 0.500%, the strength of the steel material used as the material of the valve spring becomes high even if the content of other elements is within the range of the present embodiment, and the cold workability of the steel material becomes high. Decreases. Therefore, the Ni content is 0 to 0.500%, and when Ni is contained, the Ni content is 0.500% or less.
  • the preferable lower limit of the Ni content is more than 0%, more preferably 0.001%, still more preferably 0.005%, still more preferably 0.010%, still more preferably 0.050%. It is more preferably 0.100%, still more preferably 0.150%.
  • the preferred upper limit of the Ni content is 0.450%, more preferably 0.400%, still more preferably 0.350%, still more preferably 0.300%, still more preferably 0.250. %.
  • Co 0.30% or less Cobalt (Co) is an optional element and may not be contained. That is, the Co content may be 0%. When it is contained, that is, when the Co content is more than 0%, Co increases the temper softening resistance of the steel material. Therefore, the strength and fatigue limit of the valve spring can be maintained high even after the tempering process is performed in the valve spring manufacturing process. If even a small amount of Co is contained, the above effect can be obtained to some extent. However, if the Co content exceeds 0.30%, the strength of the steel material used as the material of the valve spring becomes high even if the content of other elements is within the range of the present embodiment, and the cold workability of the steel material becomes high. Decreases.
  • the Co content is 0 to 0.30%, and when Co is contained, the Co content is 0.30% or less.
  • the lower limit of the Co content is preferably more than 0%, more preferably 0.01%, still more preferably 0.05%, still more preferably 0.10%.
  • the preferred upper limit of the Co content is 0.28%, more preferably 0.26%, still more preferably 0.24%.
  • B Boron (B) is an optional element and may not be contained. That is, the B content may be 0%. When it is contained, that is, when the B content is more than 0%, B enhances the hardenability of the steel material and raises the fatigue limit of the valve spring. If B is contained even in a small amount, the above effect can be obtained to some extent. However, if the B content exceeds 0.0050%, the strength of the steel material used as the material of the valve spring becomes high even if the content of other elements is within the range of the present embodiment, and the cold workability of the steel material becomes high. Decreases. Therefore, the B content is 0 to 0.0050%, and when B is contained, the B content is 0.0050% or less.
  • the preferable lower limit of the B content is more than 0%, more preferably 0.0001%, further preferably 0.0010%, still more preferably 0.0015%, still more preferably 0.0020%. Is.
  • the preferred upper limit of the B content is 0.0049%, more preferably 0.0048%, still more preferably 0.0046%, still more preferably 0.0044%, still more preferably 0.0042. %.
  • the chemical composition of the valve spring according to the present embodiment further comprises Cu: 0.050% or less, Al: 0.0050% or less, and Ti: 0.050% or less as impurities instead of a part of Fe. It may contain one or more selected from the group. When the content of these elements is within the above range, the effect of the valve spring according to the present embodiment can be obtained.
  • Cu Copper (Cu) is an impurity and may not be contained. That is, the Cu content may be 0%. Cu reduces the cold workability of steel materials. If the Cu content exceeds 0.050%, the cold workability of the steel material is significantly reduced even if the content of other elements is within the range of the present embodiment. Therefore, the Cu content is 0.050% or less. Since the Cu content may be 0%, the Cu content is 0 to 0.050%. The preferred upper limit of the Cu content is 0.045%, more preferably 0.040%, still more preferably 0.030%, still more preferably 0.025%, still more preferably 0.020. %, More preferably 0.018%. As described above, it is preferable that the Cu content is as low as possible. However, excessive reduction of Cu content raises manufacturing costs. Therefore, the preferable lower limit of the Cu content is more than 0%, more preferably 0.001%, still more preferably 0.002%, still more preferably 0.005%.
  • Al 0.0050% or less
  • Aluminum (Al) is an impurity and may not be contained. That is, the Al content may be 0%. Al forms coarse oxide-based inclusions and lowers the fatigue limit of the valve spring. When the Al content exceeds 0.0050%, the fatigue limit of the spring is remarkably lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Al content is 0.0050% or less. Since the Al content may be 0%, the Al content is 0 to 0.0050%.
  • the preferred upper limit of the Al content is 0.0045%, more preferably 0.0040%, still more preferably 0.0030%, still more preferably 0.0025%, still more preferably 0.0020. %.
  • the Al content is as low as possible.
  • the preferable lower limit of the Al content is more than 0%, more preferably 0.0001%, still more preferably 0.0003%, still more preferably 0.0005%.
  • Titanium (Ti) is an impurity and may not be contained. That is, the Ti content may be 0%. Ti forms a coarse TiN. TiN is likely to be the starting point of failure and lowers the fatigue limit of the valve spring. If the Ti content exceeds 0.050%, the fatigue limit of the spring will be significantly reduced even if the content of other elements is within the range of this embodiment. Therefore, the Ti content is 0.050% or less. Since the Ti content may be 0%, the Ti content is 0 to 0.050%. The preferred upper limit of the Ti content is 0.045%, more preferably 0.040%, still more preferably 0.030%, still more preferably 0.020%. As described above, it is preferable that the Ti content is as low as possible. However, excessive reduction of Ti content raises manufacturing costs. Therefore, the preferred lower limit of the Ti content is more than 0%, more preferably 0.001%.
  • the number density of V-based precipitates having a maximum diameter of 2 to 10 nm is 5000 to 80,000 / ⁇ m 3 .
  • the number density of V-based precipitates means the number of V-based precipitates per unit volume (1 ⁇ m 3 in the present specification).
  • the V-based precipitate is a precipitate containing V or V and Cr.
  • the V-based precipitates are, for example, V carbides and V carbonitrides.
  • the V-based precipitate may be a composite precipitate containing any one of V carbide and V carbonitride and one or more other elements.
  • the V-based precipitate does not have to contain Cr.
  • the V-based precipitate is deposited in a plate shape along the ⁇ 001 ⁇ plane of ferrite. Therefore, the V-based precipitate is observed as a line segment (edge portion) extending linearly in parallel with the [100] direction or the [010] direction in the TEM image of the (001) plane of ferrite. Therefore, by observing the TEM image of the (001) plane of the ferrite, the V-based precipitate can be easily distinguished from the Fe carbide such as cementite, and the V-based precipitate can be specified.
  • the fatigue limit of the valve spring is increased by precipitating a large number of nano-sized V-based precipitates having a maximum diameter of 2 to 10 nm. If the number density of V-based precipitates having a maximum diameter of 2 to 10 nm is less than 5000 pieces / ⁇ m 3 , there are too few V-based precipitates that contribute to the improvement of the fatigue limit. In this case, a sufficient fatigue limit cannot be obtained for the valve spring. When the number density of V-based precipitates having a maximum diameter of 2 to 10 nm is 5000 pieces / ⁇ m 3 or more, sufficient V-based precipitates are present in the valve spring. Therefore, the fatigue limit and the fatigue limit ratio of the valve spring are remarkably increased.
  • the preferred lower limit of the number density of V-based precipitates having a maximum diameter of 2 to 10 nm is 6000 / ⁇ m 3 , more preferably 7000 / ⁇ m 3 , still more preferably 8000 / ⁇ m 3 , and even more preferably 10000.
  • Pieces / ⁇ m 3 more preferably 11000 pieces / ⁇ m 3 , still more preferably 12000 pieces / ⁇ m 3 , still more preferably 13000 pieces / ⁇ m 3 , still more preferably 14000 pieces / ⁇ m 3 . , More preferably 15,000 pieces / ⁇ m 3 .
  • the upper limit of the number density of V-based precipitates having a maximum diameter of 2 to 10 nm is not particularly limited. However, in the case of the above-mentioned chemical composition, the upper limit of the number density of V-based precipitates having a maximum diameter of 2 to 10 nm is, for example, 80,000 pieces / ⁇ m 3 . The upper limit of the number density of V-based precipitates having a maximum diameter of 2 to 10 nm may be 75,000 / ⁇ m 3 or 73000 / ⁇ m 3 .
  • the number density of V-based precipitates having a maximum diameter of 2 to 10 nm in the valve spring according to the present embodiment can be obtained by the following method.
  • a disk having a surface (cross section) in the wire radial direction and a thickness of 0.5 mm is collected by cutting the valve spring according to the present embodiment in the wire radial direction. Grinding is performed from both sides of the disk using emery paper to make the disk thickness 50 ⁇ m. Then, a sample having a diameter of 3 mm is taken from the disk. The sample is immersed in a 10% perchloric acid-glacial acetic acid solution and electropolished to prepare a thin film sample having a thickness of 100 nm.
  • the prepared thin film sample is observed with a transmission electron microscope (Transmission Electron Microscope: TEM). Specifically, first, the Kikuchi line is analyzed for the thin film sample to specify the crystal orientation of the thin film sample. Next, the thin film sample is tilted based on the specified crystal orientation, and the thin film sample is set so that the (001) plane of ferrite (body-centered cubic lattice) can be observed. Specifically, a thin film sample is inserted into the TEM and the Kikuchi line is observed. The inclination of the thin film sample is adjusted so that the [001] direction of the ferrite of the Kikuchi line coincides with the incident direction of the electron beam.
  • TEM Transmission Electron Microscope
  • the real image When the real image is observed after the adjustment, it is observed from the vertical direction of the (001) plane of ferrite.
  • the observation fields of view of any four points of the thin film sample are specified. Each observation field of view is observed with an observation magnification of 200,000 times and an acceleration voltage of 200 kV.
  • the observation field of view is 0.09 ⁇ m ⁇ 0.09 ⁇ m.
  • FIG. 1A is an example of a TEM image on the (001) plane of the ferrite of the thin film sample
  • FIG. 1B is a schematic diagram of the TEM image on the (001) plane of the ferrite of the thin film sample.
  • the axis indicated by [100] ⁇ in the figure means the [100] orientation in the ferrite which is the parent phase.
  • the axis indicated by [010] ⁇ in the figure means the [010] orientation in the ferrite which is the parent phase.
  • the V-based precipitate is deposited in a plate shape along the ⁇ 001 ⁇ plane of ferrite.
  • the V-based precipitate is observed as a line segment (edge portion) linearly extending in the [100] direction or the [010] direction.
  • the precipitates are shown with different contrasts of lightness compared to the matrix. Therefore, in the TEM image of the (001) plane of ferrite, a line segment extending in the [100] direction or the [010] direction is regarded as a V-based precipitate.
  • the length of the line segment of the V-based precipitate specified in the observation field is measured, and the length of the measured line segment is defined as the maximum diameter (nm) of the V-based precipitate.
  • reference numeral 10 (black line segment) in FIGS. 1A and 1B is a V-based precipitate.
  • the total number of V-based precipitates having a maximum diameter of 2 to 10 nm in four observation fields is determined. Based on the total number of V-based precipitates obtained and the total volume of the four observation fields, the number density (pieces / ⁇ m 3 ) of V-based precipitates having a maximum diameter of 2 to 10 nm is determined.
  • the microstructure of the valve spring is a martensite-based structure.
  • the microstructure is a martensite-based organization
  • the martensite referred to in the present specification means tempered martensite.
  • the phases other than martensite are precipitates, inclusions, and retained austenite. Of these phases, the precipitates and inclusions are negligibly small as compared with the other phases.
  • the area ratio of martensite can be obtained by the following method.
  • a test piece is collected by cutting in the wire radial direction of the valve spring according to the present embodiment.
  • the surface corresponding to the cross section in the wire radial direction of the valve spring is used as the observation surface.
  • the observation surface is etched with 2% alcohol nitrate (Nital corrosive liquid).
  • the length obtained by dividing the wire diameter d of the valve spring into four equal parts is defined as d / 4.
  • the d / 4 depth position from the surface of the valve spring is observed using a 500x optical microscope to generate a photographic image of an arbitrary five fields of view. The size of each field of view is 100 ⁇ m ⁇ 100 ⁇ m.
  • each phase of martensite, retained austenite, precipitate, inclusions, etc. has a different contrast for each phase. Therefore, martensite is identified based on contrast.
  • the total area ( ⁇ m 2 ) of martensite specified in each field of view is calculated.
  • the ratio of the total area of martensite in all visual fields to the total area of all visual fields (10000 ⁇ m 2 ⁇ 5) is defined as the area ratio (%) of martensite.
  • oxide-based inclusions inclusions having an O content of 10.0% or more in mass%
  • Sulfur-based inclusions S content of 10.0% or more in mass% and an O content of 10.
  • Ca sulfide Of the sulfide-based inclusions, the Ca content is 10.0% or more and the S content is 10.0% or more in mass%, and O. Inclusions with a content of less than 10.0%
  • the oxide-based inclusions are, for example, one or more selected from the group consisting of SiO 2 , MnO, Al 2 O 3, and MgO.
  • the oxide-based inclusions may be composite inclusions containing one or more selected from the group consisting of SiO 2 , MnO, Al 2 O 3, and MgO, and other alloying elements.
  • the sulfide-based inclusions are, for example, one or more selected from the group consisting of MnS and CaS, and further, a composite containing one or more selected from the group consisting of MnS and CaS and other alloying elements. It may be an inclusion.
  • the Ca sulfide is, for example, CaS and may be a composite inclusion in which CaS contains other alloying elements.
  • the Ca sulfide number ratio Rca is 0.20% or less.
  • FIG. 2 is a drawing showing a valve spring having the chemical composition of the present embodiment, and Ca sulfides number ratio Rca, the relationship between the 10 8 times fatigue limit in the number of repetitions of the (high cycle fatigue limit).
  • Rca Ca sulfides number ratio
  • the preferable upper limit of the Ca sulfide number ratio Rca is 0.19%, more preferably 0.18%, still more preferably 0.17%.
  • the lower limit of the Ca sulfide number ratio Rca is not particularly limited, but in the case of the above-mentioned chemical composition, the lower limit of the Ca sulfide number ratio Rca is, for example, 0.01%.
  • Ca sulfide number ratio Rca is measured by the following method.
  • the valve spring according to the present embodiment is cut in the wire radial direction, and a part of the wire constituting the valve spring is collected.
  • the length of the sampled wire shall be about 1/12 turn of the valve spring (about 30 °).
  • the collected strands can be regarded as substantially straight.
  • a test piece having a cross section including the central axis of the strands (the axis passing through the center of the wire diameter) as an observation surface is prepared. That is, the vertical cross section including the central axis of the strands constituting the valve spring is used as the observation surface.
  • a scanning electron microscope (SEM) is used to observe the mirror-polished observation surface at a magnification of 1000 times. Specifically, among the observation surfaces, 10 arbitrary observation fields of view (each observation field of view: 100 ⁇ m ⁇ 100 ⁇ m) are observed at a d / 4 depth position in the wire radial direction from the surface of the valve spring (wire). ..
  • EDS is used to identify oxide-based inclusions, sulfide-based inclusions, and Ca sulfides.
  • inclusions having an O content of 10.0% or more in mass% are specified as "oxide-based inclusions” based on the result of elemental analysis of inclusions by EDS.
  • inclusions having an S content of 10.0% or more in mass% and an O content of less than 10.0% are specified as “sulfide-based inclusions”.
  • the Ca content is 10.0% or more
  • the S content is 10.0% or more
  • the O content is 10.
  • Inclusions less than 0% are identified as "Ca sulfides”.
  • the above-mentioned specific target inclusions are inclusions having a circle-equivalent diameter of 0.5 ⁇ m or more.
  • the circle-equivalent diameter means the diameter of a circle when the area of each inclusion is converted into a circle having the same area. If the equivalent circle diameter is more than twice the beam diameter of EDS, the accuracy of elemental analysis will be improved.
  • the beam diameter of the EDS used to identify inclusions is 0.2 ⁇ m.
  • inclusions having a circle-equivalent diameter of less than 0.5 ⁇ m cannot improve the accuracy of elemental analysis in EDS. Inclusions with a circular equivalent diameter of less than 0.5 ⁇ m also have a very small effect on the fatigue limit of the valve spring.
  • inclusions having a circle-equivalent diameter of 0.5 ⁇ m or more are specified.
  • the upper limit of the equivalent circle diameter of the oxide-based inclusions, the sulfide-based inclusions, and the Ca sulfide is not particularly limited, but is, for example, 100 ⁇ m.
  • each element in the chemical composition is within the range of the present embodiment, and the number density of V-based precipitates having a maximum diameter of 2 to 10 nm is 5000 to 80,000 / ⁇ m 3.
  • the Ca sulfide number ratio Rca is 0.20% or less. Therefore, the valve spring of the present embodiment has an excellent fatigue limit. Specifically, in 108 iterations count, high fatigue limit (high cycle fatigue limit) is obtained.
  • valve spring of the present embodiment has the above configuration
  • the manufacturing method is not limited to the following manufacturing method.
  • the manufacturing method described below is a preferable example of manufacturing the valve spring of the present embodiment.
  • FIG. 3 is a flow chart showing an example of the valve spring manufacturing process of the present embodiment.
  • the valve spring manufacturing method of the present embodiment includes a wire rod preparation step (S10), a steel wire preparation step (S20), and a valve spring manufacturing step (S30).
  • S10 wire rod preparation step
  • S20 steel wire preparation step
  • S30 valve spring manufacturing step
  • the wire rod preparation step (S10) includes a material preparation step (S1) and a hot working step (S2). In the wire rod preparation step (S10), a wire rod as a material for steel wire is manufactured.
  • the material preparation step (S1) includes a refining step and a casting step.
  • the refining process In the refining process, the refining of molten steel and the composition adjustment of molten steel are performed.
  • the refining process involves primary refining and secondary refining.
  • Primary refining is refining using a converter and is a well-known refining.
  • Secondary refining is refining using a ladle, which is a well-known refining.
  • various ferroalloys and auxiliary raw materials slag-making agents
  • ferroalloys and auxiliary materials contain Ca in various forms. Therefore, in order to control the Ca content in the valve spring and the Ca sulfide number ratio Rca, (A) control of the Ca content contained in the ferroalloy and (B) timing of addition of the auxiliary raw material are required. It becomes important.
  • an auxiliary raw material (slag slag) is added to the molten steel.
  • the slag-forming agent is quicklime, dolomite, recycled slag containing Ca oxide, and the like.
  • Ca in the slag-making agent added to the molten steel in the secondary refining of the smelting process is contained in the slag-making agent as a Ca oxide. Therefore, Ca in the slag-making agent is incorporated into the slag during the secondary refining.
  • Ca does not sufficiently float and remains in the molten steel without being incorporated into the slag.
  • the slag slag is added to the molten steel before the end of the secondary smelting.
  • "before the end of the secondary refining” means, when the refining time of the secondary refining is defined as t (minutes), at least the time from the start of the secondary refining to the elapse of 4 t / 5 minutes. Means. That is, the slag-making agent is added to the molten steel before 0.80 tons from the start of the secondary refining in the refining step.
  • a material (bloom or ingot) is produced using the molten steel produced by the above refining process. Specifically, bloom is manufactured by a continuous casting method using molten steel. Alternatively, a molten steel may be used to form an ingot by the ingot method. Using this bloom or ingot (material), the hot working step (S2) of the next step is carried out.
  • the hot working process (S2) includes a rough rolling process and a finish rolling process.
  • the material is first heated.
  • a heating furnace or a soaking furnace is used for heating the material.
  • the material is heated to 1200-1300 ° C. in a heating furnace or a soaking furnace.
  • the material is held at a furnace temperature of 1200 to 1300 ° C. for 1.5 to 10.0 hours.
  • the material after heating is extracted from a heating furnace or a soaking furnace, and hot rolling is performed.
  • a bulk rolling mill is used. Billets are manufactured by performing slab rolling on the material with a slab rolling mill.
  • a continuous rolling mill When a continuous rolling mill is installed downstream of the ingot rolling mill, hot rolling is further performed on the billet after the ingot rolling using the continuous rolling mill to produce a smaller billet. You may.
  • a continuous rolling mill for example, horizontal stands having a pair of horizontal rolls and vertical stands having a pair of vertical rolls are alternately arranged in a row. Through the above steps, the material is manufactured into billets in the rough rolling step.
  • the finish rolling process hot rolling is performed on the billets after the rough rolling process to manufacture wire rods.
  • the billet is placed in a heating furnace and heated at 900 to 1250 ° C.
  • the heating time at the furnace temperature at 900 to 1250 ° C. is, for example, 0.5 to 5.0 hours.
  • the heated billet is extracted from the heating furnace.
  • the extracted billets are hot-rolled using a continuous rolling mill to produce wire rods.
  • the diameter of the wire is not particularly limited.
  • the diameter of the wire is determined based on the wire diameter of the valve spring, which is the final product.
  • the wire rod is manufactured by the above manufacturing process.
  • Step wire preparation process (S20) In the steel wire preparation step (S20), a steel wire as a material for the valve spring is prepared.
  • the steel wire means a steel material obtained by performing wire drawing processing once or more on a wire material which is a hot-worked material (hot-rolled material).
  • the steel wire preparation step (S20) includes a patenting treatment step (S3), a wire drawing processing step (S4), and a tempering treatment step (S5), which are carried out as needed.
  • Patenting process (S3) In the patenting treatment step (S3), the wire rod produced in the wire rod preparation step (S10) is subjected to the patenting treatment to soften the microstructure of the wire rod into a ferrite and a pearlite structure. It suffices to carry out the patenting process by a well-known method.
  • the heat treatment temperature in the patenting treatment is, for example, 550 ° C. or higher, more preferably 580 ° C. or higher.
  • the upper limit of the heat treatment temperature in patenting is 750 ° C.
  • the patenting processing step (S3) is not an essential step but an arbitrary step. That is, it is not necessary to carry out the patenting processing step (S3).
  • wire drawing process (S4) When the patterning process (S3) is carried out, in the wire drawing process (S4), the wire drawing process is performed on the wire rod after the patterning process (S3). When the patenting processing step (S3) is not carried out, in the wire drawing processing step (S4), the wire drawing processing is performed on the wire rod after the hot processing step (S2).
  • the wire drawing process (S4) may be carried out by a well-known method. Specifically, the wire rod is lubricated to form a lubricating film represented by a phosphate film or a metal soap layer on the surface of the wire rod. The wire rod after lubrication is subjected to wire drawing at room temperature. In the wire drawing process, a well-known wire drawing machine may be used. The wire drawing machine is provided with a die for wire drawing.
  • the tempering treatment step (S5) includes a quenching treatment step and a tempering treatment step.
  • the steel wire is first heated to the Ac 3 transformation point or higher.
  • a high frequency induction heating device or a radiant heating device is used. Quench the heated steel wire.
  • the quenching method may be water cooling or oil cooling. By the quenching process, the microstructure of the steel wire is made mainly of martensite.
  • a tempering process is performed on the steel wire after the quenching process.
  • the tempering temperature in the tempering process is below the Ac 1 transformation point.
  • the tempering temperature is, for example, 250 to 520 ° C.
  • the microstructure of the steel wire becomes a tempered martensite-based structure.
  • valve spring manufacturing process (S30) In the valve spring manufacturing step (S30), the valve spring is manufactured using the steel wire manufactured in the steel wire preparation step (S20).
  • the valve spring manufacturing step (S30) includes a cold coiling step (S6), a strain removing annealing treatment step (S7), a nitriding treatment step (S8) to be carried out as needed, and a V-based precipitate formation heat treatment step (S7).
  • S100) and a shot peening step (S9) are provided.
  • Cold coiling step (S6) In the cold coiling step (S6), the steel wire produced in the steel wire preparation step (S20) is cold-coiled to produce an intermediate steel material for the valve spring.
  • Cold coiling is manufactured using a well-known coiling device.
  • the coiling device includes, for example, a plurality of transport roller sets, a wire guide, a plurality of coil molding jigs (coiling pins), and a core metal having a semicircular cross section.
  • the transport roller set includes a pair of rollers facing each other. A plurality of transport roller sets are arranged in a row. Each transport roller set sandwiches a steel wire between a pair of rollers and transports the steel wire in the wire guide direction.
  • the steel wire passes through the wire guide.
  • the steel wire coming out of the wire guide is bent in an arc shape by a plurality of coiling pins and a core metal, and is molded into a coil-shaped intermediate steel material.
  • the strain removing annealing treatment step (S7) is an indispensable step.
  • an annealing treatment is carried out in order to remove the residual stress generated in the intermediate steel material by the cold coiling step.
  • the processing temperature (annealing temperature) in the annealing treatment is, for example, 400 to 500 ° C.
  • the holding time at the annealing temperature is not particularly limited, but is, for example, 10 to 50 minutes. After the holding time has elapsed, the intermediate steel material is allowed to cool or slowly cooled to room temperature.
  • the nitriding process (S8) is an arbitrary process and is not an essential process. That is, the nitriding treatment step may or may not be carried out.
  • the nitriding treatment is carried out on the intermediate steel material after the strain removing annealing treatment step (S7).
  • nitrogen is infiltrated into the surface layer of the intermediate steel material to form a nitrided layer (hardened layer) on the surface layer of the intermediate steel material by solid solution strengthening by solid solution nitrogen and precipitation strengthening by nitride formation.
  • the nitriding treatment is carried out at a treatment temperature (nitriding temperature) equal to or lower than the Ac 1 transformation point.
  • the nitriding temperature is, for example, 400 to 530 ° C.
  • the holding time at the nitriding temperature is 1.0 hour to 5.0 hours.
  • the atmosphere in the furnace where the nitriding treatment is carried out is not particularly limited as long as it is an atmosphere in which the chemical potential of nitrogen is sufficiently high.
  • the atmosphere in the furnace of the nitriding treatment may be, for example, an atmosphere in which a carburizing gas (RX gas or the like) is mixed as in the soft nitriding treatment.
  • V-based precipitate formation heat treatment step (S100) The V-based precipitate formation heat treatment step (S100) is an indispensable step.
  • the intermediate steel material after the strain removing annealing treatment step (S7) is subjected to a heat treatment (V-based precipitate formation heat treatment) to generate fine V-based precipitates in the valve spring.
  • V-based precipitate formation heat treatment By carrying out the V-based precipitate formation heat treatment step (S100), the number density of V-based precipitates having a maximum diameter of 2 to 10 nm is set to 5000 to 80,000 pieces / ⁇ m 3 in the valve spring.
  • the heat treatment temperature is set to 540 to 650 ° C.
  • the holding time t (minutes) at the heat treatment temperature T (° C.) is not particularly limited, but is, for example, 5/60 (that is, 5 seconds) to 50 minutes.
  • the number density of V-based precipitates having a maximum diameter of 2 to 10 nm in the valve spring is set to 5000 to 80,000 pieces / ⁇ m 3 .
  • the heat treatment temperature in the V-based precipitate formation heat treatment may be higher than the nitriding temperature in the nitriding treatment step (S8) when the nitriding treatment step (S8) is carried out.
  • the heat treatment in the heat treatment after the tempering process (strain removal annealing process, etc.), the heat treatment is performed at a temperature lower than the nitriding temperature when the nitriding process (S8) is performed. .. This is because the conventional valve spring manufacturing process is based on the technical idea that the fatigue limit is increased by maintaining the strength and hardness of the steel material constituting the valve spring high.
  • the nitriding treatment step (S8) is carried out, heating to the nitriding temperature is required.
  • the heat treatment temperature is set to be lower than the nitriding temperature as much as possible, and the decrease in the strength of the steel material is suppressed.
  • the valve spring of the present embodiment instead of the technical idea of increasing the fatigue limit of the valve spring by increasing the strength of the steel material, the valve spring is produced by generating a large number of nano-sized fine V-based precipitates. Adopt a technical concept that raises the fatigue limit. Therefore, in the V-based precipitate formation heat treatment, the heat treatment temperature is set to 540 to 650 ° C., which is a temperature range in which V-based precipitates are likely to be formed.
  • the preferable lower limit of the heat treatment temperature in the V-based precipitate formation heat treatment is 550 ° C, more preferably 560 ° C, still more preferably 565 ° C, still more preferably 570 ° C.
  • the preferred upper limit of the heat treatment temperature in the V-based precipitate formation heat treatment is 640 ° C., more preferably 630 ° C., further preferably 620 ° C., and further preferably 610 ° C.
  • the Fn defined by the following formula (2) is further set to 29.5 to 38.9.
  • Fn ⁇ T 3/2 x ⁇ 0.6t 1/8 + (Cr + Mo + 2V) 1/2 ⁇ / 1000
  • T the heat treatment temperature (° C.) in the V-based precipitate formation heat treatment
  • t the holding time (minutes) at the heat treatment temperature T.
  • the content (mass%) of the corresponding element in the chemical composition of the valve spring is substituted for each element symbol in the formula (2).
  • the amount of V-based precipitates precipitated is affected not only by the heat treatment temperature T (° C.) and the holding time t (minutes), but also by the contents of Cr, Mo and V, which are elements that contribute to the formation of V-based precipitates. receive.
  • V-based precipitates is promoted by Cr and Mo.
  • Cr produces Fe-based carbides such as cementite or Cr carbides in a temperature range lower than the temperature range in which V-based precipitates are formed.
  • Mo also produces Mo carbide (Mo 2 C) in a temperature range lower than the temperature range in which V-based precipitates are formed.
  • Fe-based carbides, Cr carbides, and Mo-carbides are dissolved to form a precipitation nucleation site for V-based precipitates.
  • the formation of V-based precipitates is promoted at the heat treatment temperature T.
  • the maximum diameter is 2 in the manufactured valve spring.
  • the number density of V-based precipitates having a diameter of about 10 nm is 5000 to 80,000 / ⁇ m 3 .
  • the preferable lower limit of Fn is 29.6, more preferably 29.8, and even more preferably 30.0.
  • the preferred upper limit of Fn is 38.5, more preferably 38.0, still more preferably 37.5, still more preferably 37.0, still more preferably 36.5, still more preferably. It is 36.0, more preferably 35.5.
  • the shot peening step (S9) is an indispensable step.
  • shot peening is performed on the surface of the intermediate steel material after the V-based precipitate formation heat treatment step (S100).
  • compressive residual stress is applied to the surface layer of the valve spring, and the fatigue limit of the valve spring can be further increased.
  • Shot peening may be carried out by a well-known method.
  • a projection material having a diameter of 0.01 to 1.5 mm is used.
  • the projecting material is, for example, a steel shot, a steel bead, or the like, and a well-known material may be used.
  • the compressive residual stress applied to the valve spring is adjusted according to the diameter of the projecting material, the projecting velocity, the projecting time, and the amount of projecting to the unit area per unit time.
  • the valve spring of the present embodiment is manufactured by the above manufacturing process.
  • the nitriding process (S8) may or may not be performed.
  • the valve spring of the present embodiment may or may not be subjected to nitriding treatment.
  • the number density of V-based precipitates having a maximum diameter of 2 to 10 nm is 5000 to 80,000 / ⁇ m 3 .
  • the Ca sulfide number ratio Rca is 0.20% or less. Therefore, the valve spring has an excellent fatigue limit.
  • the V-based precipitate formation heat treatment step (S100) is carried out after the nitriding treatment step (S8).
  • the V-based precipitate formation heat treatment step (S100) is carried out after the strain removing annealing treatment step (S7).
  • the V-based precipitate formation heat treatment step (S100) may be carried out at any stage as long as it is after the quenching treatment step of the tempering treatment step (S5).
  • the shot peening is performed after the nitriding treatment step (S8) and before the shot peening step (S9) without performing the V-based precipitate formation heat treatment step (S100).
  • a V-based precipitate formation heat treatment step (S100) may be carried out.
  • the tempering is performed without carrying out the V-based precipitate formation heat treatment step (S100) after the nitriding treatment step (S8) and before the shot peening step (S9).
  • the V-based precipitate formation heat treatment step (S100) may be carried out after the treatment step (S5) and before the cold coiling step (S6).
  • a V-based precipitate formation heat treatment step (S100) may be carried out after the quenching treatment step.
  • the V-based precipitate formation heat treatment step (S100) also serves as a tempering treatment step.
  • the valve spring manufacturer of the present embodiment receives the supply of the wire rod from a third party and carries out the steel wire preparation step (S20) and the valve spring manufacturing step (S30) using the prepared wire rod. May be good.
  • the valve spring manufacturer may receive the supply of the steel wire from a third party and carry out the valve spring manufacturing step (S30) using the prepared steel wire.
  • valve spring of this embodiment will be described more specifically by way of examples.
  • the conditions in the following examples are one condition example adopted for confirming the feasibility and effect of the valve spring of the present embodiment. Therefore, the valve spring of the present embodiment is not limited to this one condition example.
  • a molten steel having the chemical composition shown in Table 1 was manufactured.
  • the "-" part in Table 1 means that the corresponding element content was below the detection limit. That is, it means that the corresponding element was not contained.
  • the Nb content of steel type number A means that it was "0"% when rounded to the fourth decimal place.
  • the balance other than the elements shown in Table 1 was Fe and impurities. Refining conditions for manufacturing molten steel (Ca content (mass%) in ferroalloy added in the refining process and slag from the start of the refining process when the refining time is t (minutes). The time until the agent was added) was as shown in Table 2.
  • Bloom was manufactured by continuous casting using molten steel after refining. After heating this bloom, bulk rolling, which is a rough rolling step, and subsequent rolling by a continuous rolling mill were carried out to produce billets having a cross section of 162 mm ⁇ 162 mm perpendicular to the longitudinal direction.
  • the heating temperature in the lump rolling was 1200 to 1250 ° C., and the holding time at the heating temperature was 2.0 hours.
  • a finish rolling process was carried out to manufacture a wire rod having a diameter of 5.5 mm.
  • the heating temperature in the heating furnace of each test number in the finish rolling step was 1150 to 1200 ° C., and the holding time at the heating temperature was 1.5 hours.
  • the manufactured wire rod was subjected to a patenting process.
  • the heat treatment temperature in the patenting treatment was 650 to 700 ° C., and the holding time at the heat treatment temperature was 20 minutes.
  • the wire rod after the patenting treatment was subjected to wire drawing to produce a steel wire having a diameter of 4.0 mm.
  • the manufactured steel wire was hardened.
  • the quenching temperature was 950 to 1000 ° C. Water cooling was performed on the steel wire maintained at the quenching temperature.
  • the hardened steel wire was tempered.
  • the tempering temperature was 480 ° C.
  • the nitriding valve spring was manufactured by the following manufacturing method. Cold coiling was carried out on the steel wire of each test number under the same conditions to produce a coiled intermediate steel material.
  • the coil average diameter D of the coiled intermediate steel material was 26.5 mm, and the wire diameter d of the coiled intermediate steel material was 4.0 mm.
  • the intermediate steel material was subjected to strain removal annealing treatment. The annealing temperature in the strain removing annealing treatment was 450 ° C., and the holding time at the annealing temperature was 20 minutes.
  • the intermediate steel material was allowed to cool. Nitriding treatment was performed on the intermediate steel material after the strain-removing annealing treatment. The nitriding temperature was 450 ° C., and the holding time at the nitriding temperature was 5.0 hours.
  • the intermediate steel material after the nitriding treatment was subjected to a V-based precipitate formation heat treatment.
  • the heat treatment temperature T (° C.), holding time t (minutes), and Fn value in the V-based precipitate formation heat treatment are as shown in Table 2. For test numbers 22 and 26 to 28, the V-based precipitate formation heat treatment was not performed. After the V-based precipitate formation heat treatment was carried out, shot peening was carried out under well-known conditions.
  • shot peening was performed using a cut wire having a diameter of 0.8 mm as a projection material.
  • shot peening was performed using a steel shot having a diameter of 0.2 mm as a projection material.
  • the projection speed, projection time, and projection amount to the unit area per unit time for each shot peening were the same for each test number.
  • a valve spring with nitriding treatment was manufactured by the above manufacturing method.
  • each phase of martensite, retained austenite, precipitate, inclusions, etc. has a different contrast for each phase. Therefore, martensite was identified based on the contrast.
  • the total area ( ⁇ m 2 ) of martensite identified in each visual field was determined.
  • the ratio of the total area of martensite in all visual fields to the total area of all visual fields (10000 ⁇ m 2 ⁇ 5) was defined as the area ratio (%) of martensite. Table 2 shows the obtained area ratio of martensite.
  • V-based precipitate number density measurement test A disk having a surface (cross section) in the wire radial direction and a thickness of 0.5 mm was collected by cutting the valve spring with nitriding treatment of each test number in the wire radial direction. Grinding was performed from both sides of the disk using emery paper to make the thickness of the disk 50 ⁇ m. Then, a sample having a diameter of 3 mm was taken from the disk. The sample was immersed in a 10% perchloric acid-glacial acetic acid solution and electropolished to prepare a thin film sample having a thickness of 100 nm.
  • the prepared thin film sample was observed by TEM. Specifically, first, the Kikuchi line was analyzed for the thin film sample to identify the crystal orientation of the thin film sample. Next, the thin film sample was set so that the (001) plane of ferrite (body-centered cubic lattice) could be observed by inclining the thin film sample based on the specified crystal orientation. Specifically, a thin film sample was inserted into the TEM and the Kikuchi line was observed. The inclination of the thin film sample was adjusted so that the [001] direction of the ferrite of the Kikuchi line coincided with the incident direction of the electron beam. When the real image was observed after the adjustment, it was observed from the vertical direction of the (001) plane of ferrite.
  • observation fields of view of any four points of the thin film sample were specified.
  • Each observation field of view was observed with the observation magnification set to 200,000 times and the acceleration voltage set to 200 kV.
  • the observation field of view was 0.09 ⁇ m ⁇ 0.09 ⁇ m.
  • the V-based precipitate is deposited in a plate shape along the ⁇ 001 ⁇ plane of ferrite.
  • the V-based precipitate is observed as a line segment (edge portion) linearly extending in the [100] direction or the [010] direction.
  • the precipitates are shown with different contrasts of lightness compared to the matrix. Therefore, in the TEM image of the (001) plane of ferrite, a line segment extending in the [100] direction or the [010] direction was regarded as a V-based precipitate.
  • the length of the line segment of the V-based precipitate specified in the observation field was measured, and the length of the measured line segment was defined as the maximum diameter (nm) of the V-based precipitate.
  • the total number of V-based precipitates having a maximum diameter of 2 to 10 nm was determined in four observation fields. Based on the total number of V-based precipitates obtained and the total volume of the four observation fields, the number density (pieces / ⁇ m 3 ) of V-based precipitates having a maximum diameter of 2 to 10 nm was determined. The obtained number density of V-based precipitates is shown in the "V-based precipitate number density (pieces / ⁇ m 3 )" column in Table 2. A “-" in the "V-based precipitate number density (pieces / ⁇ m 3 )" column means that the V-based precipitate number density was 0 pieces / ⁇ m 3 .
  • each observation field of view 100 ⁇ m ⁇ 100 ⁇ m
  • 10 arbitrary observation fields of view were observed at a d / 4 depth position in the wire radial direction from the surface of the valve spring (wire) among the observation surfaces. ..
  • the inclusions in each observation field of view were identified based on the contrast in each observation field of view.
  • EDS was used to identify oxide-based inclusions, sulfide-based inclusions, and Ca sulfides.
  • inclusions having an O content of 10.0% or more in mass% were identified as "oxide-based inclusions” based on the results of elemental analysis of inclusions by EDS.
  • inclusions having an S content of 10.0% or more in mass% and an O content of less than 10.0% were identified as “sulfide-based inclusions”.
  • the Ca content is 10.0% or more
  • the S content is 10.0% or more
  • the O content is 10. Less than 0% inclusions were identified as "Ca sulfides”.
  • the inclusions to be specified were defined as inclusions having a circle-equivalent diameter of 0.5 ⁇ m or more.
  • the beam diameter of the EDS used to identify inclusions was 0.2 ⁇ m.
  • the formula (1) is based on the total number of oxide-based inclusions and sulfide-based inclusions specified in the above 10 observation fields and the total number of Ca sulfides specified in the above 10 observation fields. ) was used to determine the Ca sulfide number ratio Rca (%).
  • Rca number of Ca sulfides / total number of oxide-based inclusions and sulfide-based inclusions x 100 (1)
  • the hardness of the core of the nitriding valve spring of each test number was determined by the Vickers hardness measurement test. Specifically, a Vickers hardness measurement test conforming to JIS Z 2244 (2009) was carried out at arbitrary three positions at d / 4 positions in the cross section of the nitriding valve spring of each test number in the wire radial direction. The test force was 0.49N. The arithmetic mean value of the obtained three Vickers hardnesses was taken as the Vickers hardness of the core of the nitriding valve spring of the test number.
  • the test conditions were a stress ratio of 0.2 as a load and a frequency of 1 to 3 Hz. Number of repetitions is a limit of 10 8 times was performed to nitriding treatment there valve spring breaks. If the valve spring until 108 times is not broken, where truncation test was judged to unbroken.
  • the maximum value of unbroken test stress 10 8 times as F M the minimum value of the broken test stress before reaching the 10 8 times or more F M was F B.
  • results of the test when all broken, i.e., if F M is not obtained, extrapolating the test stress corresponding the relationship between the rupture life and the test stress to 108 times the life of the obtained test stress was defined as the fatigue limit (MPa).
  • the test stress corresponded to the surface stress amplitude at the fracture position.
  • Table 2 shows the test results.
  • Test Nos. 1 to 21 had an appropriate chemical composition and an appropriate manufacturing process. Therefore, the steel wire of each test number was excellent in the workability of cold coiling.
  • the martensite area ratio was 90.0% or more.
  • the number densities of V-based precipitates having a maximum diameter of 2 to 10 nm were all 5000 to 80,000 / ⁇ m 3 .
  • test number 23 the V content was too low. Therefore, the number density of V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1390 MPa, and the fatigue limit ratio was less than 2.45.
  • test number 24 the Ca content was too low. As a result, the fatigue limit was less than 1390 MPa, and the fatigue limit ratio was less than 2.45.
  • test number 25 the Ca content was too high. Therefore, the ratio of the number of Ca sulfides was too high. As a result, the fatigue limit was less than 1390 MPa, and the fatigue limit ratio was less than 2.45.
  • test numbers 26 to 28 although the chemical composition was appropriate, the V-based precipitate formation heat treatment was not performed. Therefore, the number density of V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1390 MPa, and the fatigue limit ratio was less than 2.45.
  • test numbers 29 to 31 although the chemical composition was appropriate, the heat treatment temperature in the V-based precipitate formation heat treatment was too low. Therefore, the number density of V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1390 MPa, and the fatigue limit ratio was less than 2.45.
  • test numbers 32 to 34 although the chemical composition was appropriate, the heat treatment temperature in the V-based precipitate formation heat treatment was too high. Therefore, the V-based precipitates became coarse, and the number density of the V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1390 MPa, and the fatigue limit ratio was less than 2.45.
  • test number 39 although the chemical composition was appropriate, the Fn defined by the formula (2) exceeded 38.9 in the V-based precipitate formation heat treatment. As a result, the number density of V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1390 MPa, and the fatigue limit ratio was less than 2.45.
  • test number 40 although the chemical composition was appropriate, the Fn defined by the formula (2) was less than 29.5 in the V-based precipitate formation heat treatment. As a result, the number density of V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1390 MPa, and the fatigue limit ratio was less than 2.45.
  • a molten steel having the chemical composition shown in Table 1 was manufactured. Refining conditions for manufacturing molten steel (Ca content (mass%) in ferroalloy added in the refining process and slag from the start of the refining process when the refining time is t (minutes). The time until the agent was added) was as shown in Table 3.
  • a steel wire was produced by the same method as in Example 1 except for the refining conditions. Using the manufactured steel wire, a valve spring without nitriding treatment was manufactured. Hereinafter, the valve spring without nitriding treatment will be referred to as "non-nitriding valve spring".
  • the valve spring without nitriding treatment was manufactured by the following manufacturing method.
  • the steel wire of each test number was cold-coiled under the same conditions as the nitriding-treated valve spring of Example 1 to produce a coiled intermediate steel material.
  • the coil average diameter D of the coiled intermediate steel material was 26.5 mm, and the wire diameter d of the coiled intermediate steel material was 4.0 mm.
  • the intermediate steel material was subjected to strain removal annealing treatment.
  • the annealing temperature in the strain removing annealing treatment was 450 ° C., and the holding time at the annealing temperature was 20 minutes. After the holding time had elapsed, the intermediate steel material was allowed to cool.
  • the intermediate steel material after the strain-removing annealing treatment was subjected to a V-based precipitate formation heat treatment without performing a nitriding treatment.
  • the heat treatment temperature T (° C.), holding time t (minutes), and Fn value in the V-based precipitate formation heat treatment are as shown in Table 3.
  • the V-based precipitate formation heat treatment was not performed.
  • shot peening was carried out under the same conditions as the valve spring with nitriding treatment of Example 1.
  • a valve spring without nitriding treatment was manufactured by the above manufacturing method.
  • V-based precipitate number density measurement test The number density of V-based precipitates of the valve spring without nitriding treatment of each test number was measured by the same method as in the V-based precipitate number density measurement test in Example 1. Specifically, a disc having a surface (cross section) in the wire radial direction and having a thickness of 0.5 mm was collected by cutting the valve spring without nitriding treatment of each test number in the wire radial direction. Grinding was performed from both sides of the disk using emery paper to make the thickness of the disk 50 ⁇ m. Then, a sample having a diameter of 3 mm was taken from the disk. The sample was immersed in a 10% perchloric acid-glacial acetic acid solution and electropolished to prepare a thin film sample having a thickness of 100 nm.
  • the number density (pieces / ⁇ m 3 ) of V-based precipitates having a maximum diameter of 2 to 10 nm was determined by the same method as in Example 1.
  • Table 3 shows the number densities of V-based precipitates of the nitriding-free valve springs of the obtained test numbers.
  • a "-" in the "V-based precipitate number density (pieces / ⁇ m 3 )" column means that the V-based precipitate number density was 0 pieces / ⁇ m 3 .
  • Table 3 shows the test results.
  • Test Nos. 1 to 21 had an appropriate chemical composition and an appropriate manufacturing process. Therefore, the steel wire of each test number was excellent in the workability of cold coiling.
  • the martensite area ratio was 90.0% or more.
  • the number densities of V-based precipitates having a maximum diameter of 2 to 10 nm were all 5000 to 80,000 / ⁇ m 3 .
  • test number 23 the V content was too low. Therefore, the number density of V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1340 MPa, and the fatigue limit ratio was less than 2.35.
  • test number 24 the Ca content was too low. As a result, the fatigue limit was less than 1340 MPa, and the fatigue limit ratio was less than 2.35.
  • test number 25 the Ca content was too high. Therefore, the ratio of the number of Ca sulfides was too high. As a result, the fatigue limit was less than 1340 MPa, and the fatigue limit ratio was less than 2.35.
  • test numbers 26 to 28 although the chemical composition was appropriate, the V-based precipitate formation heat treatment was not performed. Therefore, the number density of V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1340 MPa, and the fatigue limit ratio was less than 2.35.
  • test numbers 29 to 31 although the chemical composition was appropriate, the heat treatment temperature in the V-based precipitate formation heat treatment was too low. Therefore, the number density of V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1340 MPa, and the fatigue limit ratio was less than 2.35.
  • test numbers 32 to 34 although the chemical composition was appropriate, the heat treatment temperature in the V-based precipitate formation heat treatment was too high. Therefore, the V-based precipitates became coarse, and the number density of the V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1340 MPa, and the fatigue limit ratio was less than 2.35.
  • test number 39 although the chemical composition was appropriate, the Fn defined by the formula (2) exceeded 38.9 in the V-based precipitate formation heat treatment. As a result, the number density of V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1340 MPa, and the fatigue limit ratio was less than 2.35.
  • test number 40 although the chemical composition was appropriate, the Fn defined by the formula (2) was less than 29.5 in the V-based precipitate formation heat treatment. As a result, the number density of V-based precipitates having a maximum diameter of 2 to 10 nm was too low. As a result, the fatigue limit was less than 1340 MPa, and the fatigue limit ratio was less than 2.35.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Springs (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

優れた疲労限度を有する弁ばねを提供する。本実施形態による弁ばねの化学組成は、質量%で、C:0.50~0.80%、Si:1.20~2.50%未満、Mn:0.25~1.00%、P:0.020%以下、S:0.020%以下、Cr:0.40~1.90%、V:0.05~0.60%、Ca:0.0001~0.0050%、N:0.0100%以下、を含有し、残部がFe及び不純物からなり、最大径が2~10nmであるV系析出物の数密度が5000~80000個/μm3であり、酸化物系介在物及び硫化物系介在物の総個数に対するCa硫化物の個数割合が0.20%以下である。

Description

弁ばね
 本開示は、ばねに関し、さらに詳しくは、内燃機関等に使用される弁の動きを調整するために利用される弁ばねに関する。
 自動車又は一般機械では、多くのばねが利用されている。自動車や一般機械に使用されるばねのうち、弁ばねは、自動車や一般機械の機器内の弁の開閉を調整する役割を有する。弁ばねはたとえば、自動車の内燃機関(エンジン)の給排気弁の開閉制御に使用される。
 弁ばねは弁の開閉を調整するために、1分間に数千回もの圧縮を繰り返す。したがって、弁ばねには、高い疲労限度が求められる。そこで、弁ばねでは通常、窒化処理を実施することにより、疲労限度を高めている。弁ばねの製造方法の一例は次のとおりである。鋼線に対して調質処理(焼入れ処理及び焼戻し処理)を実施する。調質処理後の鋼線に対して冷間コイリングを実施して、コイル状の中間鋼材を形成する。中間鋼材に対して歪取り焼鈍処理を実施する。歪取り焼鈍処理後、必要に応じて、窒化処理を実施する。つまり、窒化処理は実施してもよいし、実施しなくてもよい。歪取り焼鈍処理後、又は、窒化処理後、必要に応じてショットピーニングを実施して、表層に圧縮残留応力を付与する。以上の工程により、弁ばねが製造される。
 最近では、弁ばねの疲労限度のさらなる向上が求められている。
 ばねの疲労限度の向上に関する技術が、特開平2-57637号公報(特許文献1)、特開2010-163689号公報(特許文献2)、特開2007-302950号公報(特許文献3)、及び、特開2006-183137号公報(特許文献4)に開示されている。
 特許文献1に開示された高疲労限度ばね用鋼線は、重量%で、C:0.3~1.3%、Si:0.8~2.5%、Mn:0.5~2.0%、Cr:0.5~2.0%を含有し、任意元素として、Mo:0.1~0.5%、V:0.05~0.5%、Ti:0.002~0.05%、Nb:0.005~0.2%、B:0.0003~0.01%、Cu:0.1~2.0%、Al:0.01~0.1%、及び、N:0.01~0.05%の1種又は2種以上を含有し、残部はFe及び不可避不純物からなる鋼について、オーステナイト化処理後250~500℃に3秒~30分保定した後空冷又は急冷することにより製造され、降伏比を0.85以下とする。この文献では、ばねの疲労限度はばねの降伏強度に依存し、ばねの降伏強度が高いほど、ばねの疲労限度も高まるという知見に基づいて(特許文献1の第2ページ右上欄第1行~第5行参照)、上述の構成を有する高疲労限度ばね用鋼線を提案している。
 特許文献2に開示されたばねは、焼戻しマルテンサイト組織を有するオイルテンパー線を用いて製造されている。オイルテンパー線は、質量%でC:0.50~0.75%、Si:1.50~2.50%、Mn:0.20~1.00%、Cr:0.70~2.20%、V:0.05~0.50%を含有し、残部がFe及び不可避不純物からなる。このオイルテンパー線に、450℃で2時間のガス軟窒化処理を行った場合、オイルテンパー線の線表面部に形成される窒化層の格子定数は2.881~2.890Åとなる。また、このオイルテンパー線に、450℃で2時間の加熱を行った場合、引張強度が1974MPa以上、降伏応力が1769MPa以上、絞り値が40%超、となる。この文献では、窒化処理されて製造されるばねの素材となるオイルテンパー線を規定している。窒化処理によりばねを製造する場合、窒化処理の時間が長くなるにしたがって、ばねの鋼材の降伏強度及び引張強度が低下する。この場合、鋼材内部の硬さが低下してしまい、疲労限度が低下する。そこで、特許文献2では、窒化処理の処理時間が長くなっても、鋼材の降伏強度が低下しないオイルテンパー線を用いることにより、疲労限度の高いばねを製造できる、と記載されている(特許文献2の段落[0025]及び[0026]参照)。
 特許文献3に開示された高強度ばね用鋼線は、C:0.5~0.7%、Si:1.5~2.5%、Mn:0.2~1.0%、Cr:1.0~3.0%、V:0.05~0.5%を含有し、Al:0.005%以下(0%を含まない)に抑制し、残部がFe及び不可避不純物である化学組成を有する。鋼線中において、円相当直径で10~100nmの球状セメンタイトが30個/μm以上であり、かつ、セメンタイト中におけるCr濃度が質量%で20%以上であり、V濃度が2%以上である。この文献では、疲労限度及び耐へたり性の向上には、鋼線の高強度化が有効であると記載されている(特許文献3の段落[0003]参照)。そして、円相当直径が10~100nmの微細な球状セメンタイトの個数を30個/μm以上とし、かつ、セメンタイト中におけるCr濃度を質量%で20%以上とし、V濃度を2%以上とすることにより、製造工程中の歪取り焼鈍処理や窒化処理といった熱処理時においても、セメンタイトの分解及び消失を抑制でき、鋼線の強度を維持することができる、と記載されている(特許文献3の段落[0011])。
 特許文献4に開示された、ばねの素材となる鋼線は、質量%で、C:0.45~0.7%、Si:1.0~3.0%、Mn:0.1~2.0%、P:0.015%以下、S:0.015%以下、N:0.0005~0.007%、t-O:0.0002~0.01%、及び、残部が鉄及び不可避不純物からなり、引張強度が2000MPa以上であり、検鏡面において、円相当径が0.2μm以上のセメンタイト系球状炭化物及び合金系炭化物の占有面積率が7%以下であり、円相当径0.2~3μmのセメンタイト系球状炭化物及び合金系炭化物の存在密度が1個/μm以下であり、円相当径3μm超のセメンタイト系球状炭化物及び合金系炭化物の存在密度が0.001個/μm以下であり、旧オーステナイト粒度番号が10番以上であり、残留オーステナイトが15mass%以下であり、円相当径が2μm以上のセメンタイト系球状炭化物の存在密度が小さい希薄域の面積率が3%以下である。この文献では、さらなる疲労、へたり等のばね性能向上のためにはさらなる高強度化が必要であると記載されている。この文献ではさらに、ミクロ組織の制御とセメンタイト系の微細炭化物の分布を制御することにより、ばねの高強度化が実現し、疲労やへたり等のばね性能が向上すると記載されている(特許文献4の段落[0009]及び[0021]参照)。
特開平2-57637号公報 特開2010-163689号公報 特開2007-302950号公報 特開2006-183137号公報
 上述の特許文献1~4に記載の技術では、いずれも、ばねを構成する鋼材の強度(硬さ)を高めることにより、疲労限度やへたり等のばね特性を高めるアプローチを行っている。しかしながら、他のアプローチにより、弁ばねの疲労限度を高めてもよい。
 本開示の目的は、優れた疲労限度を有する弁ばねを提供することである。
 本開示による弁ばねは、
 線径をd(mm)と定義したとき、表面からd/4深さ位置での化学組成が、質量%で、
 C:0.50~0.80%、
 Si:1.20~2.50%未満、
 Mn:0.25~1.00%、
 P:0.020%以下、
 S:0.020%以下、
 Cr:0.40~1.90%、
 V:0.05~0.60%、
 Ca:0.0001~0.0050%、
 N:0.0100%以下、を含有し、
 残部がFe及び不純物からなり、
 最大径が2~10nmであるV系析出物の数密度が5000~80000個/μmであり、
 介在物のうち、
 質量%でO含有量が10.0%以上の介在物を酸化物系介在物と定義し、
 質量%でS含有量が10.0%以上であり、かつ、前記O含有量が10.0%未満の介在物を硫化物系介在物と定義し、
 前記硫化物系介在物のうち、質量%でCa含有量が10.0%以上であり、かつ、前記S含有量が10.0%以上であり、かつ、前記O含有量が10.0%未満の介在物をCa硫化物と定義したとき、
 前記酸化物系介在物及び前記硫化物系介在物の総個数に対する前記Ca硫化物の個数割合が0.20%以下である。
 本開示による弁ばねは、優れた疲労限度を有する。
図1Aは、薄膜試料のフェライトの(001)面でのTEM画像の一例である。 図1Bは、薄膜試料のフェライトの(001)面でのTEM画像の模式図である。 図2は、本実施形態の化学組成を有する弁ばねにおける、Ca硫化物個数割合Rcaと、10回の繰返し回数における疲労限度(高サイクル疲労限度)との関係を示す図である。 図3は、本実施形態の弁ばねの製造工程を示すフロー図である。
 本発明者らは、疲労限度に優れた弁ばねの検討を行った。本発明者らは初めに、上述の先行文献に開示されたばね鋼材と同様に、弁ばねを構成する鋼材の強度及び硬さを高めることにより、弁ばねの疲労限度を高めるアプローチを行った。具体的には、セメンタイトを微細化することにより、鋼材の強度及び硬さを高めて、弁ばねの疲労限度を高めることを検討した。その結果、特許文献3又は特許文献4に記載のとおり、セメンタイトを微細化するほど、鋼材の強度及び硬さを高めることができた。したがって、セメンタイトを微細化することにより、弁ばねの疲労限度も高まると思われた。
 しかしながら、鋼材の強度及び硬さを高めれば、冷間コイリングが困難になり、弁ばねを製造するのが困難となる。したがって、セメンタイトの微細化により弁ばねを構成する鋼材の強度及び硬さを高め、弁ばねの疲労限度を高めるアプローチには限界があると考えた。
 そこで、本発明者らは、弁ばねを構成する鋼材の強度及び硬さを高めることにより弁ばねの疲労限度を高める技術思想とは異なる技術思想で、弁ばねの疲労限度を高めることを考えた。特許文献1~4にも記載されているとおり、従前のばねの技術では、弁ばねを構成する鋼材の強度及び硬さが弁ばねの疲労限度と正の相関を有すると考えられてきた。このように、鋼材の強度及び硬さと弁ばねの疲労限度とが正の相関を有することがばね技術での技術常識であった。そのため、従前では、非常に時間の掛かる疲労試験に代替して、短時間で完了する引張試験により得られる鋼材の強度、又は、短時間で完了する硬さ試験により得られる鋼材の硬さに基づいて、弁ばねの疲労限度を予測していた。つまり、時間の掛かる疲労試験を実施せずに、時間の掛からない引張試験又は硬さ試験の結果により、弁ばねの疲労限度を予測していた。
 しかしながら、本発明者らは、鋼材の強度及び硬さと、弁ばねの疲労限度とは、必ずしも相関しないと考えた。そこで、鋼材の強度及び硬さを高めることにより弁ばねの疲労限度を高めるのではなく、他の技術思想により弁ばねの疲労限度を高めることを検討した。
 ここで、本発明者らは、V炭化物、V炭窒化物に代表される、V系析出物に注目した。本明細書においてV系析出物とは、Vを含有し、又は、V及びCrを含有する析出物を意味する。V系析出物はCrを含有しなくてもよい。本発明者らは、鋼材の強度を高めることにより弁ばねの疲労限度を高めるという従来の技術思想ではなく、ナノサイズの微細なV系析出物を多数生成することにより弁ばねの疲労限度を高めることを考えた。そこで、ナノサイズのV系析出物を活用して疲労限度を高めるための弁ばねの化学組成として、本発明者らは、質量%で、C:0.50~0.80%、Si:1.20~2.50%未満、Mn:0.25~1.00%、P:0.020%以下、S:0.020%以下、Cr:0.40~1.90%、V:0.05~0.60%、Ca:0.0001~0.0050%、N:0.0100%以下、Mo:0~0.50%、Nb:0~0.050%、W:0~0.60%、Ni:0~0.500%、Co:0~0.30%、B:0~0.0050%、Cu:0~0.050%、Al:0~0.0050%、及び、Ti:0~0.050%、を含有し、残部がFe及び不純物からなる化学組成が適切と考えた。そして、上述の化学組成を有する鋼材に対して、焼入れ処理後に種々の熱処理温度での熱処理を実施して弁ばねを製造した。そして弁ばねの疲労限度と、弁ばねの硬さに対する疲労限度の比で定義される疲労限度比(つまり、疲労限度比=疲労限度/弁ばねの硬さ)とを調査した。
 調査の結果、上記化学組成を有する弁ばねにおいて、本発明者らは次の新たな知見を得た。上述の背景技術に記載のとおり、弁ばねの製造では、窒化処理を実施する場合と、窒化処理を実施しない場合とがある。従前の弁ばねの製造工程において窒化処理を実施する場合、調質処理工程後の熱処理(歪取り焼鈍処理工程等)では、窒化処理の窒化温度よりも低い温度で熱処理を実施している。これは、従前の弁ばねの製造工程が、鋼材の強度及び硬さを高く維持することによりばねの疲労限度を高める、という技術思想に基づくためである。窒化処理を実施する場合、窒化温度までの加熱が必要となる。そのため、従来の製造工程では、窒化処理以外の他の熱処理工程の熱処理温度は、なるべく、窒化温度未満として、弁ばねの強度の低下を抑えていた。
 しかしながら、本実施形態の弁ばねでは、鋼材の強度を高めることにより疲労限度を高めるという技術思想ではなく、ナノサイズの微細なV系析出物を多数生成することにより弁ばねの疲労限度を高める技術思想を採用する。そのため、製造工程中において、540~650℃の熱処理温度で熱処理を実施してナノサイズの微細なV系析出物を多数析出させれば、たとえV系析出物を析出させるための熱処理温度が窒化温度よりも高く、その結果、弁ばねの芯部の強度が低下しても(つまり、弁ばねの芯部の硬さが低くても)、優れた疲労限度が得られ、弁ばねの芯部硬さに対する疲労限度の比で定義される疲労限度比も高くなることが、本発明者らの調査により判明した。より具体的には、弁ばねにおいて、最大径が2~10nmのV系析出物の数密度が5000個/μm以上であれば、弁ばねにおいて、十分な疲労限度が得られることが、本発明者らの検討により初めて判明した。
 ところで、弁ばねは、1分間に数千回もの圧縮を繰返し、その圧縮頻度は、ダンパーばねよりも遥かに多い。そのため、弁ばねは、ダンパーばねと比較して、さらに高い疲労限度が求められる。具体的には、ダンパーばねでは、10回の繰返し回数において、高い疲労限度が求められるのに対して、弁ばねでは、10回の繰返し回数において、高い疲労限度が求められる。以下、本明細書において、10回の繰返し回数における疲労限度を高サイクル疲労限度という。
 発明者らは、弁ばねの高サイクル疲労限度を高めるために、介在物に注目した。そして、介在物と高サイクル疲労限度との関係について調査及び検討した結果、介在物のうち特に、Ca硫化物が高サイクル疲労限度に影響することが判明した。具体的には、弁ばねの介在物のうち、質量%でO含有量が10.0%以上の介在物を酸化物系介在物と定義する。質量%でS含有量が10.0%以上であり、かつ、O含有量が10.0%未満の介在物を硫化物系介在物と定義する。硫化物系介在物のうち、質量%でCa含有量が10.0%以上であり、かつ、S含有量が10.0%以上であり、かつ、O含有量が10.0%未満の介在物をCa硫化物と定義する。Ca硫化物は、硫化物系介在物の一種である。弁ばねにおいて、酸化物系介在物及び硫化物系介在物におけるCa硫化物の個数割合が低い場合、高サイクル(10サイクル)での疲労限度が高まる。
 この理由としては、次の事項が考えられる。弁ばねにおいて、酸化物系介在物及び硫化物系介在物の総個数に対するCa硫化物の個数割合が低い場合、Caが酸化物系介在物及びCa硫化物以外の硫化物系介在物に十分固溶している。この場合、酸化物系介在物及び硫化物系介在物が十分に軟質化しており、かつ、微細化されている。そのため、酸化物系介在物や硫化物系介在物を起点とした割れが発生しにくくなり、高サイクル(10サイクル)での疲労限度が高まると考えられる。
 そこで、本発明者らは、介在物のうち、酸化物系介在物及び硫化物系介在物の総個数に対する、Ca硫化物の個数割合に着目して、Ca硫化物の個数割合と、高サイクル疲労限度との関係について調査を行った。その結果、酸化物系介在物及び硫化物系介在物の総個数に対する、Ca硫化物の個数割合が0.20%以下であれば、優れた高サイクル疲労限度が得られることが判明した。
 以上のとおり、本実施形態の弁ばねは、従来のような、弁ばねを構成する鋼材の強度及び硬さと弁ばねの疲労限度とが正の相関を有することに基づく技術思想ではなく、従来とは全く異なる技術思想により導き出されたものであり、次の構成を有する。
 [1]
 弁ばねであって、
 線径をd(mm)と定義したとき、表面からd/4深さ位置での化学組成が、質量%で、
 C:0.50~0.80%、
 Si:1.20~2.50%未満、
 Mn:0.25~1.00%、
 P:0.020%以下、
 S:0.020%以下、
 Cr:0.40~1.90%、
 V:0.05~0.60%、
 Ca:0.0001~0.0050%、
 N:0.0100%以下、を含有し、
 残部がFe及び不純物からなり、
 最大径が2~10nmであるV系析出物の数密度が5000~80000個/μmであり、
 介在物のうち、
 質量%でO含有量が10.0%以上の介在物を酸化物系介在物と定義し、
 質量%でS含有量が10.0%以上であり、かつ、前記O含有量が10.0%未満の介在物を硫化物系介在物と定義し、
 前記硫化物系介在物のうち、質量%でCa含有量が10.0%以上であり、かつ、前記S含有量が10.0%以上であり、かつ、前記O含有量が10.0%未満の介在物をCa硫化物と定義したとき、
 前記酸化物系介在物及び前記硫化物系介在物の総個数に対する前記Ca硫化物の個数割合が0.20%以下である、
 弁ばね。
 ここで、V系析出物とは、上述のとおり、Vを含有する炭化物又は炭窒化物、又は、V及びCrを含有する炭化物又は炭窒化物であり、たとえば、V炭化物及びV炭窒化物のいずれか1種以上である。V系析出物は、V炭化物及びV炭窒化物のいずれかと他の1種以上の元素とを含有する複合析出物であってもよい。V系析出物はフェライト(体心立方格子)の{001}面上に沿って板状に析出する。そのため、V系析出物は、フェライトの(001)面のTEM画像において、[100]方位又は[010]方位に平行に直線状に延びた線分(エッジ部分)として観察される。そして、V系析出物以外の他の析出物は、[100]方位又は[010]方位に平行に直線状に延びた線分(エッジ部分)として観察されない。つまり、[100]方位又は[010]方位に平行に直線状に延びた線分(エッジ部分)として観察されるのはV系析出物のみである。そのため、フェライトの(001)面のTEM画像を観察することにより、V系析出物をセメンタイト等のFe炭化物と容易に区別でき、V系析出物を特定できる。つまり、本明細書において、フェライトの(001)面のTEM画像内において、[100]方位又は[010]方位に延びる線分を、V系析出物と定義する。
 [2]
 [1]に記載の弁ばねであって、
 前記化学組成は、
 Mo:0.50%以下、
 Nb:0.050%以下、
 W:0.60%以下、
 Ni:0.500%以下、
 Co:0.30%以下、及び、
 B:0.0050%以下からなる群から選択される1種又は2種以上を含有する、
 弁ばね。
 [3]
 [1]又は[2]に記載の弁ばねであって、
 前記化学組成は、
 Cu:0.050%以下、
 Al:0.0050%以下、及び、
 Ti:0.050%以下からなる群から選択される1種又は2種以上を含有する、
 弁ばね。
 以下、本実施形態の弁ばねについて詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。
 [本実施形態の弁ばねの構成]
 本実施形態の弁ばねは、コイル状である。弁ばねの線径、コイル平均径、コイル内径、コイル外径、自由高さ、有効巻数、総巻数、巻方向、ピッチは特に限定されない。
 本実施形態の弁ばねは、窒化処理されたものであってもよいし、窒化処理されていないものであってもよい。窒化処理された場合、弁ばねは、窒化層と、窒化層よりも内部の芯部とを備える。窒化層は、弁ばねの表層に形成されている。窒化層は、化合物層と、化合物層よりも内部に形成される拡散層とを含む。窒化層は、化合物層を含まなくてもよい。芯部は、窒化層よりも内部の母材部分であって、後述の窒化処理による窒素の拡散の影響を実質的に受けていない部分である。窒化処理された弁ばねの窒化層及び芯部は、ミクロ組織観察により区別可能である。なお、弁ばねの線径をd(mm)と定義した場合、窒化処理された弁ばねにおいて、表面からd/4深さ位置は、芯部に相当する。窒化処理されていない場合、弁ばねは窒化層を備えない。
 [化学組成]
 本実施形態の弁ばねにおいて、表面からd/4深さ位置での化学組成は、次の元素を含有する。
 C:0.50~0.80%
 炭素(C)は弁ばねの疲労限度を高める。C含有量が0.50%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、C含有量が0.80%を超えれば、粗大なセメンタイトが生成する。この場合、他の元素含有量が本実施形態の範囲内であっても、弁ばねの素材となる鋼材の延性が低下する。さらに、弁ばねの疲労限度がかえって低下する。したがって、C含有量は0.50~0.80%である。C含有量の好ましい下限は0.51%であり、さらに好ましくは0.52%であり、さらに好ましくは0.54%であり、さらに好ましくは0.56%である。C含有量の好ましい上限は0.79%であり、さらに好ましくは0.78%であり、さらに好ましくは0.76%であり、さらに好ましくは0.74%であり、さらに好ましくは0.72%であり、さらに好ましくは0.70%である。
 Si:1.20~2.50%未満
 シリコン(Si)は弁ばねの疲労限度を高め、さらに、弁ばねの耐へたり性を高める。Siはさらに、鋼を脱酸する。Siはさらに、鋼材の焼戻し軟化抵抗を高める。そのため、弁ばねの製造工程において調質処理を実施した後であっても、弁ばねの強度及び疲労限度を高く維持できる。Si含有量が1.20%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Si含有量が2.50%以上であれば、他の元素含有量が本実施形態の範囲内であっても、弁ばねの素材となる鋼材の延性が低下し、弁ばねの疲労限度がかえって低下する。さらに、Si含有量が2.50%以上であれば、他の元素含有量が本実施形態の範囲内であっても、弁ばねの素材となる鋼材の強度が高くなり、鋼材の冷間加工性が低下する。したがって、Si含有量は1.20~2.50%未満である。Si含有量の好ましい下限は1.25%であり、さらに好ましくは1.30%であり、さらに好ましくは1.40%であり、さらに好ましくは1.50%であり、さらに好ましくは1.60%であり、さらに好ましくは1.70%であり、さらに好ましくは1.80%である。Si含有量の好ましい上限は2.48%であり、さらに好ましくは2.46%であり、さらに好ましくは2.45%であり、さらに好ましくは2.43%であり、さらに好ましくは2.40%である。
 Mn:0.25~1.00%
 マンガン(Mn)は鋼の焼入れ性を高め、弁ばねの疲労限度を高める。Mn含有量が0.25%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mn含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、弁ばねの素材となる鋼材の強度が高くなり、鋼材の冷間加工性が低下する。したがって、Mn含有量は0.25~1.00%である。Mn含有量の好ましい下限は0.27%であり、さらに好ましくは0.29%であり、さらに好ましくは0.35%であり、さらに好ましくは0.40%であり、さらに好ましくは0.50%であり、さらに好ましくは0.55%である。Mn含有量の好ましい上限は0.98%であり、さらに好ましくは0.96%であり、さらに好ましくは0.90%であり、さらに好ましくは0.85%であり、さらに好ましくは0.80%である。
 P:0.020%以下
 リン(P)は不純物である。Pは粒界に偏析して、弁ばねの疲労限度を低下する。したがって、P含有量は0.020%以下である。P含有量の好ましい上限は0.018%であり、さらに好ましくは0.016%であり、さらに好ましくは0.014%であり、さらに好ましくは0.012%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は製造コストを引き上げる。したがって、通常の工業生産を考慮すれば、P含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%である。
 S:0.020%以下
 硫黄(S)は不純物である。SはPと同様に粒界に偏析したり、Mn硫化物及び/又はCa硫化物等の硫化物系介在物を形成したりして、弁ばねの疲労限度を低下する。したがって、S含有量は0.020%以下である。S含有量の好ましい上限は0.018%であり、さらに好ましくは0.016%であり、さらに好ましくは0.014%であり、さらに好ましくは0.012%である。S含有量はなるべく低い方が好ましい。しかしながら、S含有量の過剰な低減は製造コストを引き上げる。したがって、通常の工業生産を考慮すれば、S含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%である。
 Cr:0.40~1.90%
 クロム(Cr)は鋼材の焼入れ性を高め、弁ばねの疲労限度を高める。Cr含有量が0.40%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cr含有量が1.90%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なCr炭化物が過剰に生成して、弁ばねの疲労限度が低下する。したがって、Cr含有量は0.40~1.90%である。Cr含有量の好ましい下限は0.42%であり、さらに好ましくは0.45%であり、さらに好ましくは0.50%であり、さらに好ましくは0.60%であり、さらに好ましくは0.80%であり、さらに好ましくは1.00%であり、さらに好ましくは1.20%である。Cr含有量の好ましい上限は1.88%であり、さらに好ましくは1.85%であり、さらに好ましくは1.80%であり、さらに好ましくは1.70%であり、さらに好ましくは1.60%である。
 V:0.05~0.60%
 バナジウム(V)は、C及び/又はNと結合して微細なV系析出物を形成し、弁ばねの疲労限度を高める。V含有量が0.05%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、V含有量が0.60%を超えれば、他の元素含有量が本実施形態の範囲内であっても、V系析出物が粗大化して、最大径が10nmを超えるV系析出物が多数生成する。この場合、弁ばねの疲労限度がかえって低下する。したがって、V含有量は0.05~0.60%である。V含有量の好ましい下限は0.06%であり、さらに好ましくは0.07%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%であり、さらに好ましくは0.20%である。V含有量の好ましい上限は0.59%であり、さらに好ましくは0.58%であり、さらに好ましくは0.55%であり、さらに好ましくは0.50%であり、さらに好ましくは0.45%であり、さらに好ましくは0.40%である。
 Ca:0.0001~0.0050%
 カルシウム(Ca)は、酸化物系介在物及び硫化物系介在物に含有されて、これらの介在物を軟質化する。軟質化された酸化物系介在物及び硫化物系介在物は、熱間圧延時に伸長して分断され、微細化される。そのため、弁ばねの疲労限度が高まり、特に、高サイクル疲労限度が高まる。Ca含有量が0.0001%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が得られない。一方、Ca含有量が0.0050%を超えれば、粗大なCa硫化物及び粗大な酸化物系介在物(Ca酸化物)を形成して、弁ばねの疲労限度が低下する。したがって、Ca含有量は0.0001~0.0050%である。Ca含有量の好ましい下限は0.0002%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0004%であり、さらに好ましくは0.0005%である。Ca含有量の好ましい上限は0.0048%であり、さらに好ましくは0.0046%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0035%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。
 N:0.0100%以下
 窒素(N)は不純物である。Nは、AlやTiと結合してAlNやTiNを形成し、弁ばねの疲労限度を低下する。したがって、N含有量は0.0100%以下である。N含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%である。N含有量はなるべく低い方が好ましい。しかしながら、N含有量の過剰な低減は製造コストを引き上げる。したがって、N含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0005%である。
 本実施形態による弁ばねの化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、弁ばねの素材となる鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態の弁ばねに悪影響を与えない範囲で許容されるものを意味する。
 [任意元素(optional elements)について]
 本実施形態による弁ばねの化学組成はさらに、Feの一部に代えて、Mo、Nb、W、Ni、Co、及び、Bからなる群から選択される1種又は2種以上を含有してもよい。これらの元素は任意元素であり、いずれも、弁ばねの疲労限度を高める。
 Mo:0.50%以下
 モリブデン(Mo)は、任意元素であり、含有されなくてもよい。つまり、Mo含有量は0%であってもよい。含有される場合、つまり、Mo含有量が0%超である場合、Moは鋼材の焼入れ性を高めて弁ばねの疲労限度を高める。Moはさらに、鋼材の焼戻し軟化抵抗を高める。そのため、弁ばねの製造工程において調質処理を実施した後であっても、弁ばねの強度及び疲労限度を高く維持できる。Moが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mo含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、弁ばねの素材となる鋼材の強度が高くなり、鋼材の冷間加工性が低下する。したがって、Mo含有量は0~0.50%であり、Moが含有される場合、Mo含有量は0.50%以下である。Mo含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。Mo含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%である。
 Nb:0.050%以下
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。含有される場合、つまり、Nb含有量が0%超である場合、NbはC及び/又はNと結合して炭化物、窒化物、又は炭窒化物(以下、Nb炭窒化物等という)を生成する。Nb炭窒化物等は、オーステナイト結晶粒を微細化し、弁ばねの疲労限度を高める。Nbが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Nb含有量が0.050%を超えれば、粗大なNb炭窒化物等が生成して、弁ばねの疲労限度が低下する。したがって、Nb含有量は0~0.050%であり、Nbが含有される場合、Nb含有量は0.050%以下である。Nb含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。Nb含有量の好ましい上限は0.048%であり、さらに好ましくは0.046%であり、さらに好ましくは0.042%であり、さらに好ましくは0.038%であり、さらに好ましくは0.035%であり、さらに好ましくは0.030%であり、さらに好ましくは0.025%である。
 W:0.60%以下
 タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。含有される場合、つまり、W含有量が0%超である場合、Wは鋼材の焼入れ性を高めて弁ばねの疲労限度を高める。Wはさらに、鋼材の焼戻し軟化抵抗を高める。そのため、弁ばねの製造工程において調質処理を実施した後であっても、弁ばねの強度及び疲労限度を高く維持できる。Wが少しでも含有されれば、上記効果がある程度得られる。しかしながら、W含有量が0.60%を超えれば、他の元素含有量が本実施形態の範囲内であっても、弁ばねの素材となる鋼材の強度が高くなり、鋼材の冷間加工性が低下する。したがって、W含有量は0~0.60%であり、Wが含有される場合、W含有量は0.60%以下である。W含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。W含有量の好ましい上限は0.55%であり、さらに好ましくは0.50%であり、さらに好ましくは0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%である。
 Ni:0.500%以下
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。つまり、Ni含有量は0%であってもよい。含有される場合、つまり、Ni含有量が0%超である場合、Niは鋼材の焼入れ性を高めて弁ばねの疲労限度を高める。Niが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ni含有量が0.500%を超えれば、他の元素含有量が本実施形態の範囲内であっても、弁ばねの素材となる鋼材の強度が高くなり、鋼材の冷間加工性が低下する。したがって、Ni含有量は0~0.500%であり、Niが含有される場合、Ni含有量は0.500%以下である。Ni含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.050%であり、さらに好ましくは0.100%であり、さらに好ましくは0.150%である。Ni含有量の好ましい上限は0.450%であり、さらに好ましくは0.400%であり、さらに好ましくは0.350%であり、さらに好ましくは0.300%であり、さらに好ましくは0.250%である。
 Co:0.30%以下
 コバルト(Co)は任意元素であり、含有されなくてもよい。つまり、Co含有量は0%であってもよい。含有される場合、つまり、Co含有量が0%超である場合、Coは鋼材の焼戻し軟化抵抗を高める。そのため、弁ばねの製造工程において調質処理を実施した後であっても、弁ばねの強度及び疲労限度を高く維持できる。Coが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Co含有量が0.30%を超えれば、他の元素含有量が本実施形態の範囲内であっても、弁ばねの素材となる鋼材の強度が高くなり、鋼材の冷間加工性が低下する。したがって、Co含有量は0~0.30%であり、Coを含有する場合、Co含有量は0.30%以下である。Co含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。Co含有量の好ましい上限は0.28%であり、さらに好ましくは0.26%であり、さらに好ましくは0.24%である。
 B:0.0050%以下
 ボロン(B)は任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。含有される場合、つまり、B含有量が0%超である場合、Bは鋼材の焼入れ性を高めて弁ばねの疲労限度を高める。Bが少しでも含有されれば、上記効果がある程度得られる。しかしながら、B含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、弁ばねの素材となる鋼材の強度が高くなり、鋼材の冷間加工性が低下する。したがって、B含有量は0~0.0050%であり、Bを含有する場合、B含有量は0.0050%以下である。B含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0015%であり、さらに好ましくは0.0020%である。B含有量の好ましい上限は0.0049%であり、さらに好ましくは0.0048%であり、さらに好ましくは0.0046%であり、さらに好ましくは0.0044%であり、さらに好ましくは0.0042%である。
 本実施形態による弁ばねの化学組成はさらに、不純物として、Feの一部に代えて、Cu:0.050%以下、Al:0.0050%以下、及び、Ti:0.050%以下からなる群から選択される1種又は2種以上を含有していてもよい。これらの元素含有量が上述の範囲内であれば、本実施形態による弁ばねの効果は得られる。
 Cu:0.050%以下
 銅(Cu)は不純物であり、含有されなくてもよい。つまり、Cu含有量は0%であってもよい。Cuは、鋼材の冷間加工性を低下する。Cu含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の冷間加工性が顕著に低下する。したがって、Cu含有量は0.050%以下である。Cu含有量は0%でもよいため、Cu含有量は0~0.050%である。Cu含有量の好ましい上限は0.045%であり、さらに好ましくは0.040%であり、さらに好ましくは0.030%であり、さらに好ましくは0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.018%である。上述のとおり、Cu含有量はなるべく低い方が好ましい。しかしながら、Cu含有量の過剰な低減は製造コストを引き上げる。したがって、Cu含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.005%である。
 Al:0.0050%以下
 アルミニウム(Al)は不純物であり、含有されなくてもよい。つまり、Al含有量は0%であってもよい。Alは粗大な酸化物系介在物を形成して、弁ばねの疲労限度を低下する。Al含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、ばねの疲労限度が顕著に低下する。したがって、Al含有量は0.0050%以下である。Al含有量は0%でもよいため、Al含有量は0~0.0050%である。Al含有量の好ましい上限は0.0045%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。上述のとおり、Al含有量はなるべく低い方が好ましい。しかしながら、Al含有量の過剰な低減は製造コストを引き上げる。したがって、Al含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。
 Ti:0.050%以下
 チタン(Ti)は不純物であり、含有されなくてもよい。つまり、Ti含有量は0%であってもよい。Tiは粗大なTiNを形成する。TiNは破壊の起点となりやすく、弁ばねの疲労限度を低下する。Ti含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、ばねの疲労限度が顕著に低下する。したがって、Ti含有量は0.050%以下である。Ti含有量は0%でもよいため、Ti含有量は0~0.050%である。Ti含有量の好ましい上限は0.045%であり、さらに好ましくは0.040%であり、さらに好ましくは0.030%であり、さらに好ましくは0.020%である。上述のとおり、Ti含有量はなるべく低い方が好ましい。しかしながら、Ti含有量の過剰な低減は製造コストを引き上げる。したがって、Ti含有量の好ましい下限は0%超であり、さらに好ましくは0.001%である。
 [弁ばね中のV系析出物の数密度]
 本実施形態の弁ばねでは、最大径が2~10nmであるV系析出物の数密度が5000~80000個/μmである。本明細書において、V系析出物の数密度とは、単位体積(本明細書では1μm)あたりのV系析出物の個数を意味する。
 本明細書において、V系析出物とは、V、又は、V及びCrを含有する析出物である。V系析出物はたとえば、V炭化物及びV炭窒化物である。V系析出物は、V炭化物及びV炭窒化物のいずれかと他の1種以上の元素とを含有する複合析出物であってもよい。上述のとおり、V系析出物は、Crを含有しなくてもよい。V系析出物はフェライトの{001}面上に沿って板状に析出する。そのため、V系析出物は、フェライトの(001)面のTEM画像において、[100]方位又は[010]方位に平行に直線状に延びた線分(エッジ部分)として観察される。そのため、フェライトの(001)面のTEM画像を観察することにより、V系析出物をセメンタイト等のFe炭化物と容易に区別でき、V系析出物を特定できる。
 なお、化学組成中の各元素含有量が本実施形態の範囲内であり、かつ、後述の製造方法により製造された鋼線において、フェライトの(001)面のTEM画像において、[100]方位又は[010]方位に延びる線分(エッジ部分)として観察される析出物がV系析出物であることは、エネルギー分散型X線分光器(Energy dispersive X-ray spectroscopy:EDS)及びナノビーム回折図形(Nano Beam Electron Diffraction:NBD)を用いた解析により確認できる。
 具体的には、フェライトの(001)面のTEM画像において、[100]方位又は[010]方位に延びる線分で観察される析出物に対して、EDSにより成分分析を実施すれば、V、又は、V及びCrが検出される。また、この析出物に対してNBDによる結晶構造解析を実施すれば、この析出物の結晶構造が立方晶であり、格子定数がa=b=c=0.4167nm±5%の範囲内である。なお、国際回折データセンター(International Center for Diffraction Data:ICDD)のデータベースにおいて、V系析出物(V炭化物及びV炭窒化物の)結晶構造は立方晶であり、格子定数は0.4167nmである(ICDD No.065-8822)。
 本実施形態の弁ばねでは、最大径が2~10nmのナノサイズのV系析出物を多数析出することにより、弁ばねの疲労限度を高める。最大径が2~10nmのV系析出物の数密度が5000個/μm未満であれば、疲労限度の向上に寄与するV系析出物が少なすぎる。この場合、弁ばねにおいて十分な疲労限度が得られない。最大径が2~10nmのV系析出物の数密度が5000個/μm以上であれば、弁ばね中にV系析出物が十分に存在する。そのため、弁ばねの疲労限度及び疲労限度比が顕著に高まる。最大径が2~10nmのV系析出物の数密度の好ましい下限は6000個/μmであり、さらに好ましくは7000個/μmであり、さらに好ましくは8000個/μmであり、さらに好ましくは10000個/μmであり、さらに好ましくは11000個/μmであり、さらに好ましくは12000個/μmであり、さらに好ましくは13000個/μmであり、さらに好ましくは14000個/μmであり、さらに好ましくは15000個/μmである。
 なお、最大径が2~10nmのV系析出物の数密度の上限は特に限定されない。しかしながら、上述の化学組成の場合、最大径が2~10nmのV系析出物の数密度の上限はたとえば、80000個/μmである。最大径が2~10nmのV系析出物の数密度の上限は75000個/μmであってもよいし、73000個/μmであってもよい。
 [V系析出物の数密度の測定方法]
 本実施形態による弁ばねにおける、最大径が2~10nmのV系析出物の数密度は次の方法で求めることができる。本実施形態による弁ばねの線径方向に切断して、線径方向の表面(断面)を有し、厚さが0.5mmの円板を採取する。エメリー紙を用いて円板の両側から研削研磨を行い、円板の厚さを50μmとする。その後、円板から直径3mmのサンプルを採取する。サンプルを10%過塩素酸-氷酢酸溶液中に浸漬して、電解研磨を実施して、厚さ100nmの薄膜試料を作製する。
 作製された薄膜試料を、透過電子顕微鏡(Transmission Electron Microscope:TEM)で観察する。具体的には、初めに、薄膜試料に対して菊池線を解析して、薄膜試料の結晶方位を特定する。次に、特定した結晶方位に基づいて薄膜試料を傾斜させて、フェライト(体心立方格子)の(001)面を観察できるように、薄膜試料を設定する。具体的には、TEMに薄膜試料を挿入し、菊池線を観察する。菊池線のフェライトの[001]方向が電子線の入射方向と一致するように、薄膜試料の傾斜を調整する。調整後、実像を観察すると、フェライトの(001)面の垂直方向からの観察となる。設定後、薄膜試料の任意の4箇所の観察視野を特定する。観察倍率を200000倍とし、加速電圧を200kVとして各観察視野を観察する。観察視野は0.09μm×0.09μmとする。
 図1Aは、薄膜試料のフェライトの(001)面でのTEM画像の一例であり、図1Bは、薄膜試料のフェライトの(001)面でのTEM画像の模式図である。図中の[100]αと示された軸は、母相であるフェライトにおける[100]方位を意味する。図中の[010]αと示された軸は、母相であるフェライトにおける[010]方位を意味する。V系析出物はフェライトの{001}面上に沿って板状に析出する。(001)面のフェライト粒内において、V系析出物は、[100]方位又は[010]方位に直線状に延びた線分(エッジ部分)として観察される。TEM画像において、析出物は、母相と比較して、明度の異なるコントラストで示される。したがって、フェライトの(001)面のTEM画像内において、[100]方位又は[010]方位に延びる線分を、V系析出物とみなす。観察視野において特定されたV系析出物の線分の長さを測定し、測定された線分の長さを、そのV系析出物の最大径(nm)と定義する。たとえば、図1A及び図1B中の符号10(黒色の線分)が、V系析出物である。
 上記測定により、4箇所の観察視野における、最大径が2~10nmのV系析出物の総個数を求める。求めたV系析出物の総個数と、4箇所の観察視野の総体積とに基づいて、最大径が2~10nmのV系析出物の数密度(個/μm)を求める。
 [弁ばねのミクロ組織]
 弁ばねのミクロ組織は、マルテンサイト主体の組織である。ここで、「ミクロ組織がマルテンサイト主体の組織である」とは、ミクロ組織において、マルテンサイトの面積率が90.0%以上であることを意味する。なお、本明細書にいうマルテンサイトは、焼戻しマルテンサイトを意味する。弁ばねのミクロ組織において、マルテンサイト以外の相は、析出物、介在物、及び、残留オーステナイトである。なお、これらの相のうち、析出物及び介在物は、他の相と比較して無視できるほど小さい。
 マルテンサイトの面積率は、次の方法により求めることができる。本実施形態による弁ばねの線径方向に切断して、試験片を採取する。採取した試験片の表面のうち、弁ばねの線径方向の断面に相当する表面を観察面とする。観察面を鏡面研磨した後、2%硝酸アルコール(ナイタール腐食液)を用いて観察面をエッチングする。エッチングされた観察面のうち、弁ばねの線径dを4等分した長さをd/4と定義する。観察面のうち、弁ばねの表面からd/4深さ位置を、500倍の光学顕微鏡を用いて観察し、任意の5視野の写真画像を生成する。各視野のサイズは、100μm×100μmとする。
 各視野において、マルテンサイト、残留オーステナイト、析出物、介在物等の各相は、相ごとにコントラストが異なる。したがって、コントラストに基づいて、マルテンサイトを特定する。各視野で特定されたマルテンサイトの総面積(μm)を求める。全ての視野の総面積(10000μm×5)に対する、全ての視野におけるマルテンサイトの総面積の割合を、マルテンサイトの面積率(%)と定義する。
 [Ca硫化物個数割合]
 本実施形態において、弁ばね中における酸化物系介在物、硫化物系介在物、及び、Ca硫化物を次のとおり定義する。
 酸化物系介在物:質量%でO含有量が10.0%以上の介在物
 硫化物系介在物:質量%でS含有量が10.0%以上であり、かつ、O含有量が10.0%未満の介在物
 Ca硫化物:硫化物系介在物のうち、質量%でCa含有量が10.0%以上であり、かつ、S含有量が10.0%以上であり、かつ、O含有量が10.0%未満の介在物
 酸化物系介在物はたとえば、SiO、MnO、Al、MgOからなる群から選択される1種又は2種以上である。酸化物系介在物は、SiO、MnO、Al、MgOからなる群から選択される1種又は2種以上と、他の合金元素とを含有する複合介在物であってもよい。硫化物系介在物はたとえば、MnS、CaSからなる群から選択される1種以上であり、さらに、MnS、CaSからなる群から選択される1種以上と、他の合金元素とを含有する複合介在物であってもよい。Ca硫化物はたとえば、CaSであり、CaSに他の合金元素を含有する複合介在物であってもよい。
 弁ばねにおいて、酸化物系介在物及び硫化物系介在物の総個数に対するCa硫化物の個数割合をCa硫化物個数割合Rca(%)と定義する。つまり、Rcaは次の式で示される。
 Rca=Ca硫化物の個数/酸化物系介在物及び硫化物系介在物の総個数×100 (1)
 このとき、弁ばねにおいて、Ca硫化物個数割合Rcaは0.20%以下である。
 図2は、本実施形態の化学組成を有する弁ばねにおける、Ca硫化物個数割合Rcaと、10回の繰返し回数における疲労限度(高サイクル疲労限度)との関係を示す図である。図2を参照して、Ca硫化物個数割合Rcaが0.20%超の場合、Ca硫化物個数割合Rcaが小さくなるにしたがって、高サイクル疲労限度は顕著に高まる。一方、Ca硫化物個数割合Rcaが0.20%以下の場合、Ca硫化物個数割合Rcaを小さくしても、高サイクル疲労限度はそれほど大きくならず、ほぼ一定になる。つまり、図2において、Ca硫化物個数割合Rca=0.20%付近において変曲点が存在する。
 以上のとおり、Ca硫化物個数割合Rcaが0.20%を超えれば、10回の繰返し回数における疲労限度(高サイクル疲労限度)が急速に低下する。Ca硫化物個数割合Rcaが0.20%以下であれば、優れた高サイクル疲労限度が得られる。したがって、本実施形態の弁ばねにおいて、Ca硫化物個数割合Rcaの好ましい上限は0.19%であり、さらに好ましくは0.18%であり、さらに好ましくは0.17%である。なお、Ca硫化物個数割合Rcaの下限は特に限定されないが、上述の化学組成の場合、Ca硫化物個数割合Rcaの下限はたとえば0.01%である。
 Ca硫化物個数割合Rcaは次の方法で測定する。本実施形態による弁ばねを線径方向で切断して、弁ばねを構成する素線の一部を採取する。採取した素線の長さは、弁ばねの約1/12回転巻き分(約30°分)程度の長さとする。採取した素線は略直線状とみなすことができる。採取した素線を用いて、素線の中心軸(線径の中心を通る軸)を含む断面を観察面とする試験片を作製する。つまり、弁ばねを構成する素線の中心軸を含む縦断面を観察面とする。観察面を鏡面研磨する。走査型電子顕微鏡(SEM)を用いて1000倍の倍率で、鏡面研磨した観察面を観察する。具体的には、観察面のうち、弁ばね(素線)の表面から線径方向にd/4深さ位置において、任意の10箇所の観察視野(各観察視野:100μm×100μm)を観察する。
 各観察視野でのコントラストに基づいて、各観察視野中の介在物を特定する。特定した各介在物に対して、EDSを用いて、酸化物系介在物、硫化物系介在物、及び、Ca硫化物を特定する。具体的には、介在物のEDSによる元素分析結果に基づいて、介在物のうち、質量%でO含有量が10.0%以上の介在物を「酸化物系介在物」と特定する。介在物のうち、質量%でS含有量が10.0%以上であり、かつ、O含有量が10.0%未満の介在物を「硫化物系介在物」と特定する。さらに、特定された硫化物系介在物のうち、質量%でCa含有量が10.0%以上であり、かつ、S含有量が10.0%以上であり、かつ、O含有量が10.0%未満の介在物を「Ca硫化物」と特定する。
 上記特定の対象とする介在物は、円相当径が0.5μm以上の介在物とする。ここで、円相当径とは、各介在物の面積を、同じ面積を有する円に換算した場合の円の直径を意味する。円相当径がEDSのビーム径の2倍以上の介在物であれば、元素分析の精度が高まる。本実施形態において、介在物の特定に使用するEDSのビーム径は0.2μmとする。この場合、円相当径が0.5μm未満の介在物は、EDSでの元素分析の精度を高めることができない。円相当径0.5μm未満の介在物はさらに、弁ばねの疲労限度への影響が極めて小さい。したがって、本実施形態において、円相当径が0.5μm以上の介在物を、特定対象とする。酸化物系介在物、硫化物系介在物、及び、Ca硫化物の円相当径の上限は特に限定されないが、たとえば、100μmである。
 上記10箇所の観察視野で特定された酸化物系介在物及び硫化物系介在物の総個数と、上記10箇所の観察視野で特定されたCa硫化物の総個数とに基づいて、式(1)を用いて、Ca硫化物個数割合Rca(%)を求める。
 Rca=Ca硫化物の個数/酸化物系介在物及び硫化物系介在物の総個数×100 (1)
 以上のとおり、本実施形態の弁ばねは、化学組成中の各元素が本実施形態の範囲内であって、最大径が2~10nmであるV系析出物の数密度が5000~80000個/μmであり、かつ、Ca硫化物個数割合Rcaが0.20%以下である。そのため、本実施形態の弁ばねは、優れた疲労限度が得られる。具体的には、10回の繰返し回数において、高い疲労限度(高サイクル疲労限度)が得られる。
 [製造方法]
 以下、本実施形態の弁ばねの製造方法の一例を説明する。なお、本実施形態の弁ばねは、上記構成を有すれば、製造方法は以下の製造方法に限定されない。ただし、以下に説明する製造方法は、本実施形態の弁ばねを製造する好適な一例である。
 図3は、本実施形態の弁ばねの製造工程の一例を示すフロー図である。図3を参照して、本実施形態の弁ばねの製造方法は、線材準備工程(S10)と、鋼線準備工程(S20)と、弁ばね製造工程(S30)とを備える。以下、各工程について説明する。
 [線材準備工程(S10)]
 線材準備工程(S10)は、素材準備工程(S1)と、熱間加工工程(S2)とを含む。線材準備工程(S10)では、鋼線の素材となる線材を製造する。
 [素材準備工程(S1)]
 素材準備工程(S1)では、上述の化学組成を有する素材を製造する。ここでいう素材はブルーム、インゴットである。素材準備工程(S1)は、精錬工程と、鋳造工程とを含む。
 [精錬工程]
 精錬工程では、溶鋼の精錬及び溶鋼の成分調整を行う。精錬工程は一次精錬と二次精錬とを含む。一次精錬は転炉を用いた精錬であり周知の精錬である。二次精錬は取鍋を用いた精錬であり、周知の精錬である。二次精錬では、溶鋼に各種の合金鉄及び副原料(造滓剤)を添加する。一般に合金鉄及び副原料は、Caを種々の形態で含んでいる。そのため、弁ばね中のCa含有量及びCa硫化物個数割合Rcaを制御するためには、(A)合金鉄に含まれるCa含有量の管理、及び、(B)副原料の添加のタイミング、が重要となる。
[(A)について]
 上記(A)に関して、合金鉄中のCa含有量は高い。そして、Si脱酸した溶鋼の場合、溶鋼中でのCa歩留りが高い。そのため、二次精錬において、Ca含有量が高い合金鉄を添加すれば、溶鋼中にCa硫化物が過剰に生成し、Ca硫化物個数割合Rcaが増加する。具体的には、二次精錬において、溶鋼に添加する合金鉄中のCa含有量が質量%で1.0%を超えれば、Ca硫化物個数割合Rcaが0.20%を超えてしまう。したがって、二次精錬で溶鋼に添加する合金鉄中のCa含有量を1.0%以下とする。
[(B)について]
 さらに、上記(B)に関して、副原料(造滓剤)を溶鋼に添加する。造滓剤は生石灰、ドロマイト、Ca酸化物を含有するリサイクルスラグ等である。精錬工程の二次精錬で溶鋼に添加された造滓剤中のCaは、Ca酸化物として造滓剤中に含まれている。そのため、造滓剤中のCaは、二次精錬中にスラグ中に取り込まれる。しかしながら、二次精錬末期に造滓剤を溶鋼に添加した場合、Caが十分に浮上せず、スラグに取り込まれることなく溶鋼中に残存する。この場合、Ca硫化物個数割合Rcaが増加する。したがって、造滓剤は二次精錬の末期よりも前に溶鋼に添加する。ここで、「二次精錬の末期よりも前」とは、二次精錬の精錬時間をt(分)と定義した場合、少なくとも二次精錬を開始したときから4t/5分経過するまでの時間を意味する。つまり、造滓剤は精錬工程における二次精錬の開始から0.80t分よりも前に溶鋼に添加する。
 [鋳造工程]
 上記精錬工程により製造された溶鋼を用いて、素材(ブルーム又はインゴット)を製造する。具体的には、溶鋼を用いて連続鋳造法によりブルームを製造する。又は、溶鋼を用いて造塊法によりインゴットにしてもよい。このブルーム又はインゴット(素材)を用いて、次工程の熱間加工工程(S2)を実施する。
 [熱間加工工程(S2)]
 熱間加工工程(S2)では、素材準備工程(S1)にて準備された素材(ブルーム又はインゴット)に対して、熱間圧延加工を実施して、弁ばね用の線材を製造する。
 熱間加工工程(S2)は粗圧延工程と、仕上げ圧延工程とを含む。粗圧延工程では、初めに、素材を加熱する。素材の加熱には、加熱炉又は均熱炉を用いる。加熱炉又は均熱炉により、素材を1200~1300℃に加熱する。たとえば、1200~1300℃の炉温で、1.5~10.0時間、素材を保持する。加熱後の素材を加熱炉又は均熱炉から抽出して、熱間圧延を実施する。粗圧延工程での熱間圧延ではたとえば、分塊圧延機を用いる。分塊圧延機により素材に対して分塊圧延を実施して、ビレットを製造する。分塊圧延機の下流に連続圧延機が設置されている場合、分塊圧延後のビレットに対してさらに、連続圧延機を用いて熱間圧延を実施して、さらにサイズの小さいビレットを製造してもよい。連続圧延機では、たとえば、一対の水平ロールを有する水平スタンドと、一対の垂直ロールを有する垂直スタンドとが交互に一列に配列される。以上の工程により、粗圧延工程では、素材をビレットに製造する。
 仕上げ圧延工程では、粗圧延工程後のビレットに対して熱間圧延を実施して、線材を製造する。具体的には、ビレットを加熱炉に装入して、900~1250℃で加熱する。900~1250℃での炉温での加熱時間はたとえば、0.5~5.0時間である。加熱後のビレットを加熱炉から抽出する。抽出されたビレットに対して、連続圧延機を用いた熱間圧延を実施して、線材を製造する。線材の直径は特に限定されない。最終製品である弁ばねの線径に基づいて、線材の直径が決定される。以上の製造工程により、線材を製造する。
 [鋼線準備工程(S20)]
 鋼線準備工程(S20)では、弁ばねの素材となる鋼線を準備する。ここで、鋼線とは、熱間加工材(熱間圧延材)である線材に対して1回以上の伸線加工を実施した鋼材を意味する。鋼線準備工程(S20)は、必要に応じて実施されるパテンティング処理工程(S3)と、伸線加工工程(S4)と、調質処理工程(S5)とを含む。
 [パテンティング処理工程(S3)]
 パテンティング処理工程(S3)では、線材準備工程(S10)により製造された線材に対してパテンティング処理を実施して、線材のミクロ組織をフェライト及びパーライト組織とし、軟化する。パテンティング処理は周知の方法で実施すれば足りる。パテンティング処理での熱処理温度はたとえば、550℃以上であり、さらに好ましくは580℃以上である。パテンティングでの熱処理温度の上限は750℃である。なお、パテンティング処理工程(S3)は必須の工程ではなく、任意の工程である。つまり、パテンティング処理工程(S3)を実施しなくてもよい。
 [伸線加工工程(S4)]
 パテンティング処理工程(S3)を実施する場合、伸線加工工程(S4)では、パテンティング処理工程(S3)後の線材に対して、伸線加工を実施する。パテンティング処理工程(S3)を実施しない場合、伸線加工工程(S4)では、熱間加工工程(S2)後の線材に対して、伸線加工を実施する。伸線加工を実施することにより、所望の直径を有する鋼線を製造する。伸線加工工程(S4)は周知の方法で実施すればよい。具体的には、線材に対して潤滑処理を実施して、リン酸塩被膜や金属石鹸層に代表される潤滑被膜を線材の表面に形成する。潤滑処理後の線材に対して、常温で伸線加工を実施する。伸線加工では、周知の伸線機を用いればよい。伸線機は、線材を伸線加工するためのダイスを備える。
 [調質処理工程(S5)]
 調質処理工程(S5)では、伸線加工工程(S4)後の鋼線に対して、調質処理を実施する。調質処理工程(S5)は、焼入れ処理工程と、焼戻し処理工程とを含む。焼入れ処理工程では初めに、鋼線をAc変態点以上に加熱する。加熱にはたとえば、高周波誘導加熱装置又は輻射加熱装置を用いる。加熱された鋼線を急冷する。急冷方法は水冷であってもよいし、油冷であってもよい。焼入れ処理工程により、鋼線のミクロ組織をマルテンサイト主体の組織とする。
 焼入れ処理工程後の鋼線に対して、焼戻し処理工程を実施する。焼戻し処理工程での焼戻し温度はAc変態点以下である。焼戻し温度はたとえば、250~520℃である。焼戻し処理工程を実施することにより、鋼線のミクロ組織を焼戻しマルテンサイト主体の組織とする。以上の製造工程により、弁ばねの素材となる鋼線を製造する。
 [弁ばね製造工程(S30)]
 弁ばね製造工程(S30)では、鋼線準備工程(S20)により製造された鋼線を用いて、弁ばねを製造する。弁ばね製造工程(S30)は、冷間コイリング工程(S6)と、歪取り焼鈍処理工程(S7)と、必要に応じて実施する窒化処理工程(S8)と、V系析出物生成熱処理工程(S100)と、ショットピーニング工程(S9)とを備える。
 [冷間コイリング工程(S6)]
 冷間コイリング工程(S6)では、鋼線準備工程(S20)により製造された鋼線に対して、冷間にてコイリングを実施して、弁ばねの中間鋼材を製造する。冷間コイリングは周知のコイリング装置を用いて製造する。コイリング装置はたとえば、複数の搬送ローラーセットと、ワイヤーガイドと、複数のコイル成型治具(コイリングピン)と、横断面が半円状の芯金とを備える。搬送ローラーセットは、互いに対向する一対のローラーを含む。複数の搬送ローラーセットは、一列に配列される。各搬送ローラーセットは、一対のローラー間に鋼線を挟み、鋼線をワイヤーガイド方向に搬送する。鋼線はワイヤーガイドを通る。ワイヤーガイドから出た鋼線は、複数のコイリングピン及び芯金により円弧状に曲げられ、コイル状の中間鋼材に成型される。
 [歪取り焼鈍処理工程(S7)]
 歪取り焼鈍処理工程(S7)は必須の工程である。歪取り焼鈍処理工程(S7)では、冷間コイリング工程により中間鋼材に生じる残留応力を除去するために、焼鈍処理を実施する。焼鈍処理における処理温度(焼鈍温度)はたとえば、400~500℃とする。焼鈍温度での保持時間は特に限定されないが、たとえば10~50分である。保持時間経過後、中間鋼材を常温まで放冷又は徐冷する。
 [窒化処理工程(S8)]
 窒化処理工程(S8)は任意の工程であって、必須の工程ではない。つまり、窒化処理工程は実施してもよいし、実施しなくてもよい。実施する場合、窒化処理工程(S8)では、歪取り焼鈍処理工程(S7)後の中間鋼材に対して、窒化処理を実施する。窒化処理では、中間鋼材の表層に窒素を侵入させて、固溶窒素による固溶強化や、窒化物生成による析出強化により、中間鋼材の表層に窒化層(硬化層)を形成する。
 窒化処理は周知の条件で実施すれば足りる。窒化処理では、Ac変態点以下の処理温度(窒化温度)で実施する。窒化温度はたとえば、400~530℃である。窒化温度での保持時間は1.0時間~5.0時間である。窒化処理を実施する炉内雰囲気は、十分に窒素の化学ポテンシャルが高くなるような雰囲気であれば特に限定されない。窒化処理の炉内雰囲気はたとえば、軟窒化処理のように浸炭性のガス(RXガス等)を混合した雰囲気としてもよい。
 [V系析出物生成熱処理工程(S100)]
 V系析出物生成熱処理工程(S100)は必須の工程である。V系析出物生成熱処理工程(S100)では、窒化処理工程(S8)を実施する場合、窒化処理工程(S8)後の中間鋼材に対して、又は、窒化処理工程(S8)を実施しない場合、歪取り焼鈍処理工程(S7)後の中間鋼材に対して、熱処理(V系析出物生成熱処理)を実施して、弁ばね中に微細なV系析出物を生成する。V系析出物生成熱処理工程(S100)を実施することにより、弁ばねにおいて、最大径が2~10nmであるV系析出物の数密度を5000~80000個/μmとする。
 V系析出物生成熱処理では、熱処理温度を540~650℃とする。熱処理温度T(℃)での保持時間t(分)は特に限定されないが、たとえば、5/60(つまり5秒)~50分である。以上の熱処理温度及び保持時間を調整して、弁ばねにおいて、最大径が2~10nmであるV系析出物の数密度を5000~80000個/μmとする。
 V系析出物生成熱処理での熱処理温度は、窒化処理工程(S8)を実施する場合、窒化処理工程(S8)での窒化温度よりも高くてもよい。従前の弁ばねの製造工程において、調質処理工程後の熱処理(歪取り焼鈍処理工程等)では、窒化処理工程(S8)を実施する場合における窒化温度よりも低い温度で熱処理を実施している。これは、従前の弁ばねの製造工程が、弁ばねを構成する鋼材の強度及び硬さを高く維持することにより疲労限度を高める、という技術思想に基づいているためである。窒化処理工程(S8)を実施する場合、窒化温度までの加熱は必要となる。そのため、従来の製造工程では、窒化処理以外の他の熱処理工程ではなるべく、窒化温度未満の熱処理温度として、鋼材の強度の低下を抑えていた。一方、本実施形態の弁ばねでは、鋼材の強度を高めることにより、弁ばねの疲労限度を高めるという技術思想ではなく、ナノサイズの微細なV系析出物を多数生成することにより、弁ばねの疲労限度を高める技術思想を採用する。そのため、V系析出物生成熱処理では、熱処理温度をV系析出物が生成しやすい温度域の540~650℃に設定する。V系析出物生成熱処理での熱処理温度の好ましい下限は550℃であり、さらに好ましくは560℃であり、さらに好ましくは565℃であり、さらに好ましくは570℃である。V系析出物生成熱処理での熱処理温度の好ましい上限は640℃であり、さらに好ましくは630℃であり、さらに好ましくは620℃であり、さらに好ましくは610℃である。
 V系析出物生成熱処理ではさらに、次の式(2)で定義されるFnが29.5~38.9となるようにする。
 Fn={T3/2×{0.6t1/8+(Cr+Mo+2V)1/2}}/1000 (2)
 式(2)中のTは、V系析出物生成熱処理での熱処理温度(℃)であり、tは熱処理温度Tでの保持時間(分)である。式(2)中の各元素記号には、弁ばねの化学組成のうちの対応する元素の含有量(質量%)が代入される。
 V系析出物の析出量は、熱処理温度T(℃)及び保持時間t(分)だけでなく、V系析出物の生成に寄与する元素である、Cr、Mo及びVの含有量の影響を受ける。
 具体的には、V系析出物の生成は、Cr及びMoにより促進される。その理由は定かではないが、次の理由が考えられる。CrはV系析出物が生成する温度域よりも低い温度域においてセメンタイト等のFe系炭化物又はCr炭化物を生成する。Moも同様に、V系析出物が生成する温度域よりも低い温度域において、Mo炭化物(MoC)を生成する。温度の上昇に伴い、Fe系炭化物、Cr炭化物、及び、Mo炭化物が固溶して、V系析出物の析出核生成サイトとなる。その結果、熱処理温度Tにおいて、V系析出物の生成が促進される。
 弁ばねの化学組成中の各元素含有量が本実施形態の範囲内であることを前提として、Fnが29.5未満である場合、V系析出物生成熱処理において、V系析出物の生成が不十分となる。この場合、製造された弁ばねにおいて、最大径が2~10nmであるV系析出物の数密度が5000個/μm未満となる。一方、弁ばねの化学組成中の各元素含有量が本実施形態の範囲内であることを前提として、Fnが38.9を超える場合、生成したV系析出物が粗大化してしまう。この場合、製造された弁ばねにおいて、最大径が2~10nmであるV系析出物の数密度が5000個/μm未満となる。
 弁ばねの化学組成中の各元素含有量が本実施形態の範囲内であることを前提として、Fnが29.5~38.9である場合、製造された弁ばね中において、最大径が2~10nmであるV系析出物の数密度が5000~80000個/μmとなる。
 Fnの好ましい下限は29.6であり、さらに好ましくは29.8であり、さらに好ましくは30.0である。Fnの好ましい上限は38.5であり、さらに好ましくは38.0であり、さらに好ましくは37.5であり、さらに好ましくは37.0であり、さらに好ましくは36.5であり、さらに好ましくは36.0であり、さらに好ましくは35.5である。
 [ショットピーニング工程(S9)]
 ショットピーニング工程(S9)は必須の工程である。ショットピーニング工程(S9)では、V系析出物生成熱処理工程(S100)後の中間鋼材の表面に対してショットピーニングを実施する。これにより、弁ばねの表層に圧縮残留応力が付与され、弁ばねの疲労限度をさらに高めることができる。ショットピーニングは周知の方法で実施すればよい。ショットピーニングにはたとえば、直径が0.01~1.5mmの投射材を用いる。投射材はたとえば、スチールショット、スチールビーズ等であり、周知のものを利用すればよい。投射材の直径、投射速度、投射時間、及び、単位時間当たりの単位面積への投射量に応じて、弁ばねに付与する圧縮残留応力を調整する。
 以上の製造工程により、本実施形態の弁ばねが製造される。なお、弁ばねの製造工程では、上述のとおり、窒化処理工程(S8)を実施してもよいし、実施しなくてもよい。要するに、本実施形態の弁ばねは、窒化処理が施されていてもよいし、窒化処理が施されていなくてもよい。本実施形態の弁ばねでは、最大径が2~10nmであるV系析出物の数密度が5000~80000個/μmである。さらに、本実施形態の弁ばねでは、Ca硫化物個数割合Rcaが0.20%以下である。そのため、弁ばねは優れた疲労限度が得られる。
 なお、上述の製造工程では、窒化処理工程(S8)を実施する場合、V系析出物生成熱処理工程(S100)は窒化処理工程(S8)後に実施される。窒化処理工程(S8)を実施しない場合、V系析出物生成熱処理工程(S100)は歪取り焼鈍処理工程(S7)後に実施される。しかしながら、V系析出物生成熱処理工程(S100)は、調質処理工程(S5)の焼入れ処理工程後であれば、どの段階で実施してもよい。たとえば、窒化処理工程(S8)を実施する場合、窒化処理工程(S8)後であって、ショットピーニング工程(S9)前にV系析出物生成熱処理工程(S100)を実施せずに、ショットピーニング工程(S9)後にV系析出物生成熱処理工程(S100)を実施してもよい。また、窒化処理工程(S8)を実施する場合、窒化処理工程(S8)後であって、ショットピーニング工程(S9)前にV系析出物生成熱処理工程(S100)を実施せずに、調質処理工程(S5)後であって、冷間コイリング工程(S6)前にV系析出物生成熱処理工程(S100)を実施してもよい。さらに、調質処理工程(S5)の焼戻し処理工程に代えて、焼入れ処理工程後に、V系析出物生成熱処理工程(S100)を実施してもよい。この場合、V系析出物生成熱処理工程(S100)は、焼戻し処理工程を兼ねる。焼戻し処理工程に代えて、焼入れ処理工程後に、V系析出物生成熱処理工程(S100)を実施する場合、窒化処理工程(S8)後にV系析出物生成熱処理工程(S100)を実施しなくてよい。
 なお、本実施形態の弁ばねの製造者は、第三者から線材の供給を受けて、準備された線材を用いて鋼線準備工程(S20)及び弁ばね製造工程(S30)を実施してもよい。弁ばねの製造者は、第三者から鋼線の供給を受けて、準備された鋼線を用いて弁ばね製造工程(S30)を実施してもよい。
 実施例により本実施形態の弁ばねの効果をさらに具体的に説明する。以下の実施例での条件は、本実施形態の弁ばねの実施可能性及び効果を確認するために採用した一条件例である。したがって、本実施形態の弁ばねはこの一条件例に限定されない。
 表1の化学組成を有する溶鋼を製造した。
Figure JPOXMLDOC01-appb-T000001
 表1中の「-」部分は、対応する元素含有量が検出限界未満であったことを意味する。つまり、対応する元素が含有されていなかったことを意味する。たとえば、鋼種番号AのNb含有量は、小数第四位で四捨五入した場合に「0」%であったことを意味する。表1に記載の鋼種番号の化学組成では、表1に記載の元素以外の残部はFe及び不純物であった。溶鋼を製造するときの精錬条件(精錬工程にて溶鋼にて添加する合金鉄中のCa含有量(質量%)、及び、精錬時間をt(分)とした場合の、精錬工程開始から造滓剤を添加するまでの時間)は、表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000002
 精錬後の溶鋼を用いて連続鋳造法によりブルームを製造した。このブルームを加熱した後、粗圧延工程である分塊圧延及びその後の連続圧延機による圧延を実施して、長手方向に垂直な断面が162mm×162mmのビレットを製造した。分塊圧延での加熱温度は1200~1250℃であり、加熱温度での保持時間は2.0時間であった。
 製造されたビレットを用いて、仕上げ圧延工程を実施して、直径5.5mmの線材を製造した。仕上げ圧延工程における各試験番号の加熱炉での加熱温度は1150~1200℃であり、加熱温度での保持時間は1.5時間であった。
 製造された線材に対して、パテンティング処理を実施した。パテンティング処理での熱処理温度は650~700℃であり、熱処理温度での保持時間は20分であった。パテンティング処理後の線材に対して、伸線加工を実施し、直径4.0mmの鋼線を製造した。製造された鋼線に対して、焼入れ処理を実施した。焼入れ温度は950~1000℃であった。焼入れ温度で保持した鋼線に対して水冷を実施した。焼入れ後の鋼線に対して、焼戻し処理を実施した。焼戻し温度は480℃であった。以上の工程により、各試験番号の鋼線を製造した。
 製造された鋼線に対して、弁ばね製造工程を実施した。以下、窒化処理した弁ばねを「窒化処理有り弁ばね」と称する。窒化処理有り弁ばねは、次の製造方法で製造した。各試験番号の鋼線に対して同じ条件で冷間コイリングを実施して、コイル状の中間鋼材を製造した。コイル状の中間鋼材のコイル平均径Dは26.5mmであり、コイル状の中間鋼材の線径dは4.0mmであった。中間鋼材に対して、歪取り焼鈍処理を実施した。歪取り焼鈍処理での焼鈍温度は450℃であり、焼鈍温度での保持時間は20分であった。保持時間経過後、中間鋼材を放冷した。歪取り焼鈍処理後の中間鋼材に対して、窒化処理を実施した。窒化温度を450℃とし、窒化温度での保持時間を5.0時間とした。窒化処理後の中間鋼材に対して、V系析出物生成熱処理を実施した。V系析出物生成熱処理での熱処理温度T(℃)、保持時間t(分)及びFn値は表2に示すとおりであった。なお、試験番号22、26~28については、V系析出物生成熱処理を実施しなかった。V系析出物生成熱処理を実施した後、周知の条件でショットピーニングを実施した。初めに、投射材として直径が0.8mmのカットワイヤーを用いてショットピーニングを実施した。次に、投射材として直径が0.2mmのスチールショットを用いてショットピーニングを実施した。それぞれのショットピーニングでの投射速度、投射時間、及び、単位時間当たりの単位面積への投射量については、各試験番号で同じとした。以上の製造方法により、窒化処理有り弁ばねを製造した。
 [評価試験]
 製造された各試験番号の鋼線に対し、冷間コイリング加工性試験を実施した。さらに、製造された各試験番号の窒化処理有り弁ばねに対して、ミクロ組織観察試験、V系析出物の数密度測定試験、Ca硫化物個数割合Rca測定試験、ビッカース硬さ測定試験及び疲労試験を実施した。
 [冷間コイリング加工性試験]
 各試験番号の鋼線に対して、次の条件で冷間コイリングを実施し、冷間コイリング加工の可否を調べた。コイル状の中間鋼材のコイル平均径D(=(コイル内径+コイル外径)/2)を12.1mmとし、コイル状の中間鋼材の線径dを4.0mmとした。冷間コイリング加工の可否を表2の「コイリング可否」欄に示す。冷間コイリング加工ができた場合を「〇」とし、冷間コイリング加工ができなかった場合を「×」とした。
 [ミクロ組織観察試験]
 各試験番号の窒化処理有り弁ばねの線径方向に切断して、試験片を採取した。採取した試験片の表面のうち、弁ばねの線径方向の断面に相当する表面を観察面とした。観察面を鏡面研磨した後、2%硝酸アルコール(ナイタール腐食液)を用いて観察面をエッチングした。エッチングされた観察面のうち、弁ばねの表面からd/4深さ位置を、500倍の光学顕微鏡を用いて観察し、任意の5視野の写真画像を生成した。各視野のサイズは、100μm×100μmとした。各視野において、マルテンサイト、残留オーステナイト、析出物、介在物等の各相は、相ごとにコントラストが異なる。そこで、コントラストに基づいて、マルテンサイトを特定した。各視野で特定されたマルテンサイトの総面積(μm)を求めた。全ての視野の総面積(10000μm×5)に対する、全ての視野におけるマルテンサイトの総面積の割合を、マルテンサイトの面積率(%)と定義した。求めたマルテンサイトの面積率を表2に示す。
 [V系析出物の数密度測定試験]
 各試験番号の窒化処理有り弁ばねの線径方向に切断して、線径方向の表面(断面)を有し、厚さが0.5mmの円板を採取した。エメリー紙を用いて円板の両側から研削研磨を行い、円板の厚さを50μmとした。その後、円板から直径3mmのサンプルを採取した。サンプルを10%過塩素酸-氷酢酸溶液中に浸漬して、電解研磨を実施して、厚さ100nmの薄膜試料を作製した。
 作製された薄膜試料を、TEMで観察した。具体的には、初めに、薄膜試料に対して菊池線を解析して、薄膜試料の結晶方位を特定した。次に、特定した結晶方位に基づいて薄膜試料を傾斜させて、フェライト(体心立方格子)の(001)面を観察できるように、薄膜試料を設定した。具体的には、TEMに薄膜試料を挿入し、菊池線を観察した。菊池線のフェライトの[001]方向が電子線の入射方向と一致するように、薄膜試料の傾斜を調整した。調整後、実像を観察すると、フェライトの(001)面の垂直方向からの観察となった。設定後、薄膜試料の任意の4箇所の観察視野を特定した。観察倍率を200000倍とし、加速電圧を200kVとして各観察視野を観察した。観察視野は0.09μm×0.09μmとした。
 上述のとおり、V系析出物はフェライトの{001}面上に沿って板状に析出する。(001)面のフェライト粒内において、V系析出物は、[100]方位又は[010]方位に直線状に延びた線分(エッジ部分)として観察される。TEM画像において、析出物は、母相と比較して、明度の異なるコントラストで示される。したがって、フェライトの(001)面のTEM画像内において、[100]方位又は[010]方位に延びる線分を、V系析出物とみなした。観察視野において特定されたV系析出物の線分の長さを測定し、測定された線分の長さを、そのV系析出物の最大径(nm)と定義した。
 上記測定により、4箇所の観察視野における、最大径が2~10nmのV系析出物の総個数を求めた。求めたV系析出物の総個数と、4箇所の観察視野の総体積とに基づいて、最大径が2~10nmのV系析出物の数密度(個/μm)を求めた。求めたV系析出物の数密度を表2中の「V系析出物数密度(個/μm)」欄に示す。「V系析出物数密度(個/μm)」欄中の「-」は、V系析出物の数密度が0個/μmであったことを意味する。
 [Ca硫化物個数割合Rca測定試験]
 各試験番号の弁ばねを線径方向で切断して、弁ばねを構成する素線の一部を採取した。採取した素線の長さは、弁ばねの約1/12回転巻き分(約30°分)程度の長さとした。採取した素線を用いて、素線の中心軸(線径の中心を通る軸)を含む断面を観察面とする試験片を作製した。つまり、弁ばねを構成する素線の中心軸を含む縦断面を観察面とした。観察面を鏡面研磨した。走査型電子顕微鏡(SEM)を用いて1000倍の倍率で、鏡面研磨した観察面を観察した。具体的には、観察面のうち、弁ばね(素線)の表面から線径方向にd/4深さ位置において、任意の10箇所の観察視野(各観察視野:100μm×100μm)を観察した。
 各観察視野でのコントラストに基づいて、各観察視野中の介在物を特定した。特定した各介在物に対して、EDSを用いて、酸化物系介在物、硫化物系介在物、及び、Ca硫化物を特定した。具体的には、介在物のEDSによる元素分析結果に基づいて、介在物のうち、質量%でO含有量が10.0%以上の介在物を「酸化物系介在物」と特定した。介在物のうち、質量%でS含有量が10.0%以上であり、かつ、O含有量が10.0%未満の介在物を「硫化物系介在物」と特定した。さらに、特定された硫化物系介在物のうち、質量%でCa含有量が10.0%以上であり、かつ、S含有量が10.0%以上であり、かつ、O含有量が10.0%未満の介在物を「Ca硫化物」と特定した。
 上記特定の対象とする介在物は、円相当径が0.5μm以上の介在物とした。介在物の特定に使用するEDSのビーム径は0.2μmとした。上記10箇所の観察視野で特定された酸化物系介在物及び硫化物系介在物の総個数と、上記10箇所の観察視野で特定されたCa硫化物の総個数とに基づいて、式(1)を用いて、Ca硫化物個数割合Rca(%)を求めた。
 Rca=Ca硫化物の個数/酸化物系介在物及び硫化物系介在物の総個数×100 (1)
 [ビッカース硬さ測定試験]
 各試験番号の窒化処理有り弁ばねの芯部の硬さをビッカース硬さ測定試験により求めた。具体的には、各試験番号の窒化処理有り弁ばねの線径方向の断面のd/4位置の任意の3箇所で、JIS Z 2244(2009)に準拠したビッカース硬さ測定試験を実施した。試験力は0.49Nとした。得られた3箇所のビッカース硬さの算術平均値を、その試験番号の窒化処理有り弁ばねの芯部のビッカース硬さとした。
 [疲労試験]
 各試験番号の窒化処理有り弁ばねを使用して、次に示す疲労試験を実施した。疲労試験では、コイル状の窒化処理有り弁ばねの中心軸方向に、繰返し負荷を与える圧縮疲労試験を実施した。試験機として、電気油圧サーボ型疲労試験機(荷重容量500kN)を用いた。
 試験条件は、応力比0.2を負荷とし、周波数は1~3Hzとした。繰返し回数は10回を上限として、窒化処理有り弁ばねが破断するまで実施した。10回まで弁ばねが破断しない場合、そこで試験を打ち切り、未破断と判断した。ここで、10回で未破断の試験応力の最大値をFとして、F以上で10回に到達する前に破断した試験応力の最小値をFとした。FとFとの算術平均値をFとし、(F-F)/F≦0.10となった場合のFを、疲労限度(MPa)と定義した。一方、試験の結果、全て破断した場合、すなわち、Fが得られなかった場合、破断寿命と試験応力との関係から10回の寿命に相当する試験応力を外挿し、得られた試験応力を疲労限度(MPa)と定義した。ここで、試験応力は、破断位置の表面応力振幅に相当した。各試験番号の窒化処理有り弁ばねについて、上述の定義と評価試験とに基づき、高サイクルでの疲労限度(MPa)を求めた。さらに、得られた疲労限度及び芯部のビッカース硬さを用いて、窒化処理有り弁ばねの疲労限度比(=疲労限度/芯部のビッカース硬さ)を求めた。
 [試験結果]
 表2に試験結果を示す。表2を参照して、試験番号1~21は、化学組成が適切であり、かつ、製造工程も適切であった。そのため、各試験番号の鋼線は、冷間コイリングの加工性に優れていた。また、各試験番号の窒化処理有り弁ばねのミクロ組織では、マルテンサイト面積率が90.0%以上であった。さらに、最大径が2~10nmのV系析出物の数密度はいずれも5000~80000個/μmであった。さらに、Ca硫化物個数割合Rcaが0.20%以下であった。そのため、窒化処理有り弁ばねの疲労限度は1390MPa以上であり、窒化処理有り弁ばねの疲労限度比(=疲労限度/芯部のビッカース硬さ)は2.45以上であった。
 一方、試験番号22では、Si含有量が高すぎた。そのため、冷間コイリングの加工性が低かった。
 試験番号23では、V含有量が低すぎた。そのため、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1390MPa未満であり、疲労限度比が2.45未満であった。
 試験番号24では、Ca含有量が低すぎた。その結果、疲労限度が1390MPa未満であり、疲労限度比が2.45未満であった。
 試験番号25では、Ca含有量が高すぎた。そのため、Ca硫化物個数割合が高すぎた。その結果、疲労限度が1390MPa未満であり、疲労限度比が2.45未満であった。
 試験番号26~28では、化学組成は適切であるものの、V系析出物生成熱処理を実施しなかった。そのため、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1390MPa未満であり、疲労限度比が2.45未満であった。
 試験番号29~31では、化学組成は適切であるものの、V系析出物生成熱処理での熱処理温度が低すぎた。そのため、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1390MPa未満であり、疲労限度比が2.45未満であった。
 試験番号32~34では、化学組成は適切であるものの、V系析出物生成熱処理での熱処理温度が高すぎた。そのため、V系析出物が粗大化し、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1390MPa未満であり、疲労限度比が2.45未満であった。
 試験番号35及び36では、精錬工程において、溶鋼に添加する合金鉄中のCa含有量が1.0%を超えた。そのため、Ca硫化物個数割合Rcaが高すぎた。その結果、疲労限度が1390MPa未満であり、疲労限度比が2.45未満であった。
 試験番号37及び38では、精錬工程において、精錬工程開始から造滓剤を添加するまでの時間が、4t/5(0.80t)(分)を超えた。そのため、Ca硫化物個数割合Rcaが高すぎた。その結果、疲労限度が1390MPa未満であり、疲労限度比が2.45未満であった。
 試験番号39では、化学組成は適切であるものの、V系析出物生成熱処理において、式(2)で定義されるFnが38.9を超えた。その結果、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1390MPa未満であり、疲労限度比が2.45未満であった。
 試験番号40では、化学組成は適切であるものの、V系析出物生成熱処理において、式(2)で定義されるFnが29.5未満であった。その結果、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1390MPa未満であり、疲労限度比が2.45未満であった。
 表1の化学組成を有する溶鋼を製造した。溶鋼を製造するときの精錬条件(精錬工程にて溶鋼にて添加する合金鉄中のCa含有量(質量%)、及び、精錬時間をt(分)とした場合の、精錬工程開始から造滓剤を添加するまでの時間)は、表3に示すとおりであった。精錬条件以外は、実施例1と同じ方法で、鋼線を製造した。製造された鋼線を用いて、窒化処理しない弁ばねを製造した。以下、窒化処理しない弁ばねを「窒化処理無し弁ばね」と称する。
Figure JPOXMLDOC01-appb-T000003
 窒化処理無し弁ばねは、次の製造方法で製造した。各試験番号の鋼線に対して、実施例1の窒化処理有り弁ばねと同じ条件で冷間コイリングを実施して、コイル状の中間鋼材を製造した。コイル状の中間鋼材のコイル平均径Dは26.5mmであり、コイル状の中間鋼材の線径dは4.0mmであった。中間鋼材に対して、歪取り焼鈍処理を実施した。歪取り焼鈍処理での焼鈍温度は450℃であり、焼鈍温度での保持時間は20分であった。保持時間経過後、中間鋼材を放冷した。歪取り焼鈍処理後の中間鋼材に対して、窒化処理を実施することなく、V系析出物生成熱処理を実施した。V系析出物生成熱処理での熱処理温度T(℃)、保持時間t(分)及びFn値は表3に示すとおりであった。なお、試験番号22、26~28については、V系析出物生成熱処理を実施しなかった。V系析出物生成熱処理を実施した後、実施例1の窒化処理有り弁ばねと同じ条件でショットピーニングを実施した。以上の製造方法により、窒化処理無し弁ばねを製造した。
 [評価試験]
 製造された各試験番号の鋼線に対し、冷間コイリング加工性試験を実施した。さらに、製造された各試験番号の窒化処理無し弁ばねに対して、ミクロ組織観察試験、V系析出物の数密度測定試験、Ca硫化物個数割合Rca測定試験、ビッカース硬さ測定試験及び疲労試験を実施した。
 [冷間コイリング加工性試験]
 各試験番号の鋼線に対して、次の条件で冷間コイリングを実施し、冷間コイリング加工の可否を調べた。コイル状の中間鋼材のコイル平均径D(=(コイル内径+コイル外径)/2)を12.1mmとし、コイル状の中間鋼材の線径dを4.0mmとした。冷間コイリング加工の可否を表2の「コイリング可否」欄に示す。冷間コイリング加工ができた場合を「〇」とし、冷間コイリング加工ができなかった場合を「×」とした。
 [ミクロ組織観察試験]
 実施例1でのミクロ組織観察試験と同じ方法により、各試験番号の窒化処理無し弁ばねのマルテンサイト面積率を求めた。求めた各試験番号の窒化処理無し弁ばねのマルテンサイトの面積率を表3に示す。
 [V系析出物の数密度測定試験]
 実施例1でのV系析出物の数密度測定試験と同じ方法により、各試験番号の窒化処理無し弁ばねのV系析出物の数密度を測定した。具体的には、各試験番号の窒化処理無し弁ばねの線径方向に切断して、線径方向の表面(断面)を有し、厚さが0.5mmの円板を採取した。エメリー紙を用いて円板の両側から研削研磨を行い、円板の厚さを50μmとした。その後、円板から直径3mmのサンプルを採取した。サンプルを10%過塩素酸-氷酢酸溶液中に浸漬して、電解研磨を実施して、厚さ100nmの薄膜試料を作製した。
 作製された薄膜試料を用いて、実施例1と同じ方法により、最大径が2~10nmのV系析出物の数密度(個/μm)を求めた。求めた各試験番号の窒化処理無し弁ばねのV系析出物の数密度を表3に示す。「V系析出物数密度(個/μm)」欄中の「-」は、V系析出物の数密度が0個/μmであったことを意味する。
 [Ca硫化物個数割合Rca測定試験]
 各試験番号の窒化処理無し弁ばねに対して、実施例1の窒化処理有り弁ばねで観察した方法と同じ方法により、Ca硫化物個数割合Rca(%)を求めた。各試験番号の窒化処理無し弁ばねのCa硫化物個数割合Rca(%)を表3に示す。
 [ビッカース硬さ測定試験]
 実施例1の窒化処理有り弁ばねで求めた方法と同じ方法により、各試験番号の窒化処理無し弁ばねの硬さをビッカース硬さ測定試験により求めた。具体的には、各試験番号の窒化処理無し弁ばねの線径方向の断面のd/4位置の任意の3箇所で、JIS Z 2244(2009)に準拠したビッカース硬さ測定試験を実施した。試験力は0.49Nとした。得られた3箇所のビッカース硬さの算術平均値を、その試験番号の窒化処理無し弁ばねのビッカース硬さとした。
 [疲労試験]
 各試験番号の窒化処理無し弁ばねを使用して、次に示す疲労試験を実施した。疲労試験では、コイル状の窒化処理無し弁ばねの中心軸方向に、繰返し負荷を与える圧縮疲労試験を実施した。試験機として、電気油圧サーボ型疲労試験機(荷重容量500kN)を用いた。試験条件は、実施例1の窒化処理有り弁ばねで用いた条件と同じ条件で、各試験番号の弁ばねについて、疲労限度(MPa)を求めた。さらに、得られた疲労限度及びビッカース硬さを用いて、窒化処理無し弁ばねの疲労限度比(=疲労限度/ビッカース硬さ)を求めた。
 [試験結果]
 表3に試験結果を示す。表3を参照して、試験番号1~21は、化学組成が適切であり、かつ、製造工程も適切であった。そのため、各試験番号の鋼線は、冷間コイリングの加工性に優れていた。また、各試験番号の窒化処理無し弁ばねのミクロ組織では、マルテンサイト面積率が90.0%以上であった。さらに、最大径が2~10nmのV系析出物の数密度はいずれも5000~80000個/μmであった。さらに、Ca硫化物個数割合Rcaが0.20%以下であった。そのため、窒化処理無し弁ばねの疲労限度は1340MPa以上であり、窒化処理無し弁ばねの疲労限度比(=疲労限度/ビッカース硬さ)は2.35以上であった。
 一方、試験番号22では、Si含有量が高すぎた。そのため、冷間コイリングの加工性が低かった。
 試験番号23では、V含有量が低すぎた。そのため、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1340MPa未満であり、疲労限度比が2.35未満であった。
 試験番号24では、Ca含有量が低すぎた。その結果、疲労限度が1340MPa未満であり、疲労限度比が2.35未満であった。
 試験番号25では、Ca含有量が高すぎた。そのため、Ca硫化物個数割合が高すぎた。その結果、疲労限度が1340MPa未満であり、疲労限度比が2.35未満であった。
 試験番号26~28では、化学組成は適切であるものの、V系析出物生成熱処理を実施しなかった。そのため、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1340MPa未満であり、疲労限度比が2.35未満であった。
 試験番号29~31では、化学組成は適切であるものの、V系析出物生成熱処理での熱処理温度が低すぎた。そのため、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1340MPa未満であり、疲労限度比が2.35未満であった。
 試験番号32~34では、化学組成は適切であるものの、V系析出物生成熱処理での熱処理温度が高すぎた。そのため、V系析出物が粗大化し、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1340MPa未満であり、疲労限度比が2.35未満であった。
 試験番号35及び36では、精錬工程において、溶鋼に添加する合金鉄中のCa含有量が1.0%を超えた。そのため、Ca硫化物個数割合Rcaが高すぎた。その結果、疲労限度が1340MPa未満であり、疲労限度比が2.35未満であった。
 試験番号37及び38では、精錬工程において、精錬工程開始から造滓剤を添加するまでの時間が、4t/5(0.80t)(分)を超えた。そのため、Ca硫化物個数割合Rcaが高すぎた。その結果、疲労限度が1340MPa未満であり、疲労限度比が2.35未満であった。
 試験番号39では、化学組成は適切であるものの、V系析出物生成熱処理において、式(2)で定義されるFnが38.9を超えた。その結果、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1340MPa未満であり、疲労限度比が2.35未満であった。
 試験番号40では、化学組成は適切であるものの、V系析出物生成熱処理において、式(2)で定義されるFnが29.5未満であった。その結果、最大径が2~10nmのV系析出物の数密度が少なすぎた。その結果、疲労限度が1340MPa未満であり、疲労限度比が2.35未満であった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。

Claims (3)

  1.  弁ばねであって、
     線径をd(mm)と定義したとき、表面からd/4深さ位置での化学組成が、質量%で、
     C:0.50~0.80%、
     Si:1.20~2.50%未満、
     Mn:0.25~1.00%、
     P:0.020%以下、
     S:0.020%以下、
     Cr:0.40~1.90%、
     V:0.05~0.60%、
     Ca:0.0001~0.0050%、
     N:0.0100%以下、を含有し、
     残部がFe及び不純物からなり、
     最大径が2~10nmであるV系析出物の数密度が5000~80000個/μmであり、
     介在物のうち、
     質量%でO含有量が10.0%以上の介在物を酸化物系介在物と定義し、
     質量%でS含有量が10.0%以上であり、かつ、前記O含有量が10.0%未満の介在物を硫化物系介在物と定義し、
     前記硫化物系介在物のうち、質量%でCa含有量が10.0%以上であり、かつ、前記S含有量が10.0%以上であり、かつ、前記O含有量が10.0%未満の介在物をCa硫化物と定義したとき、
     前記酸化物系介在物及び前記硫化物系介在物の総個数に対する前記Ca硫化物の個数割合が0.20%以下である、
     弁ばね。
  2.  請求項1に記載の弁ばねであって、
     前記化学組成は、
     Mo:0.50%以下、
     Nb:0.050%以下、
     W:0.60%以下、
     Ni:0.500%以下、
     Co:0.30%以下、及び、
     B:0.0050%以下からなる群から選択される1種又は2種以上を含有する、
     弁ばね。
  3.  請求項1又は2に記載の弁ばねであって、
     前記化学組成は、
     Cu:0.050%以下、
     Al:0.0050%以下、及び、
     Ti:0.050%以下からなる群から選択される1種又は2種以上を含有する、
     弁ばね。
PCT/JP2021/006386 2020-02-21 2021-02-19 弁ばね WO2021167070A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022501078A JP7321354B2 (ja) 2020-02-21 2021-02-19 弁ばね
CN202180015954.8A CN115335545B (zh) 2020-02-21 2021-02-19 阀门弹簧
DE112021001170.7T DE112021001170T5 (de) 2020-02-21 2021-02-19 Ventilfeder
US17/904,448 US20230087453A1 (en) 2020-02-21 2021-02-19 Valve spring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-027778 2020-02-21
JP2020027778 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021167070A1 true WO2021167070A1 (ja) 2021-08-26

Family

ID=77390852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006386 WO2021167070A1 (ja) 2020-02-21 2021-02-19 弁ばね

Country Status (5)

Country Link
US (1) US20230087453A1 (ja)
JP (1) JP7321354B2 (ja)
CN (1) CN115335545B (ja)
DE (1) DE112021001170T5 (ja)
WO (1) WO2021167070A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213588A (ja) * 2004-01-29 2005-08-11 Kobe Steel Ltd 疲労特性及びコイリング性に優れた高強度高清浄ばね用鋼
JP2007063584A (ja) * 2005-08-05 2007-03-15 Sumitomo Electric Ind Ltd オイルテンパー線およびその製造方法
WO2007114491A1 (ja) * 2006-03-31 2007-10-11 Nippon Steel Corporation 高強度ばね用熱処理鋼
JP2018003051A (ja) * 2016-06-28 2018-01-11 株式会社神戸製鋼所 疲労特性に優れた熱処理鋼線
KR20180026014A (ko) * 2016-09-01 2018-03-12 주식회사 포스코 수소취성 저항성이 우수한 고강도 스프링용 강재 및 그 제조방법
WO2018211779A1 (ja) * 2017-05-19 2018-11-22 住友電気工業株式会社 オイルテンパー線

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257637A (ja) * 1988-08-23 1990-02-27 Nippon Steel Corp 高疲労強度ばねの製造方法及びそれに用いるばね用鋼線
JPH07157846A (ja) * 1993-12-03 1995-06-20 Kobe Steel Ltd 高強度ばね用鋼
JP4555768B2 (ja) * 2004-11-30 2010-10-06 新日本製鐵株式会社 高強度ばね用鋼線
CN101287851B (zh) * 2005-08-05 2012-09-05 住友电气工业株式会社 油回火线及其制造方法
JP4868935B2 (ja) * 2006-05-11 2012-02-01 株式会社神戸製鋼所 耐へたり性に優れた高強度ばね用鋼線
JP5342827B2 (ja) * 2007-11-19 2013-11-13 株式会社神戸製鋼所 疲労特性に優れたばね鋼およびばね
JP5609946B2 (ja) * 2011-10-25 2014-10-22 新日鐵住金株式会社 耐疲労特性に優れたばね鋼及びその製造方法
US10350676B2 (en) * 2013-04-23 2019-07-16 Nippon Steel & Sumitomo Metal Corporation Spring steel with excellent fatigue resistance and method of manufacturing the same
WO2015162928A1 (ja) * 2014-04-23 2015-10-29 新日鐵住金株式会社 ばね鋼及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213588A (ja) * 2004-01-29 2005-08-11 Kobe Steel Ltd 疲労特性及びコイリング性に優れた高強度高清浄ばね用鋼
JP2007063584A (ja) * 2005-08-05 2007-03-15 Sumitomo Electric Ind Ltd オイルテンパー線およびその製造方法
WO2007114491A1 (ja) * 2006-03-31 2007-10-11 Nippon Steel Corporation 高強度ばね用熱処理鋼
JP2018003051A (ja) * 2016-06-28 2018-01-11 株式会社神戸製鋼所 疲労特性に優れた熱処理鋼線
KR20180026014A (ko) * 2016-09-01 2018-03-12 주식회사 포스코 수소취성 저항성이 우수한 고강도 스프링용 강재 및 그 제조방법
WO2018211779A1 (ja) * 2017-05-19 2018-11-22 住友電気工業株式会社 オイルテンパー線

Also Published As

Publication number Publication date
US20230087453A1 (en) 2023-03-23
CN115335545B (zh) 2023-08-11
JP7321354B2 (ja) 2023-08-04
CN115335545A (zh) 2022-11-11
JPWO2021167070A1 (ja) 2021-08-26
DE112021001170T5 (de) 2022-12-08

Similar Documents

Publication Publication Date Title
KR101482473B1 (ko) 침탄용 강, 침탄강 부품 및 그 제조 방법
JP5200540B2 (ja) 高強度ばね用熱処理鋼
KR101988153B1 (ko) 강판 및 그의 제조 방법
JP6628014B1 (ja) 浸炭処理が行われる部品用の鋼材
US10385430B2 (en) High-strength steel material having excellent fatigue properties
WO2021167070A1 (ja) 弁ばね
WO2021167069A1 (ja) 鋼線
KR20100077250A (ko) 고강도 스프링강 및 스프링강선
WO2021075501A1 (ja) 弁ばね
WO2021075509A1 (ja) 鋼線
WO2021167072A1 (ja) ダンパーばね
WO2021075500A1 (ja) ダンパーばね
WO2022201381A1 (ja) 鋼材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501078

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21756896

Country of ref document: EP

Kind code of ref document: A1