WO2021167014A1 - 工作機械の制御装置 - Google Patents

工作機械の制御装置 Download PDF

Info

Publication number
WO2021167014A1
WO2021167014A1 PCT/JP2021/006169 JP2021006169W WO2021167014A1 WO 2021167014 A1 WO2021167014 A1 WO 2021167014A1 JP 2021006169 W JP2021006169 W JP 2021006169W WO 2021167014 A1 WO2021167014 A1 WO 2021167014A1
Authority
WO
WIPO (PCT)
Prior art keywords
condition
swing
machine tool
rocking
control device
Prior art date
Application number
PCT/JP2021/006169
Other languages
English (en)
French (fr)
Inventor
健太 山本
将司 安田
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to CN202180015062.8A priority Critical patent/CN115104073A/zh
Priority to US17/904,685 priority patent/US20230072167A1/en
Priority to JP2022501980A priority patent/JP7522180B2/ja
Priority to DE112021001156.1T priority patent/DE112021001156T5/de
Publication of WO2021167014A1 publication Critical patent/WO2021167014A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/02Arrangements for chip-breaking in turning-machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49055Remove chips from probe, tool by vibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49382Movement reciprocating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49384Control of oscillatory movement like filling a weld, weaving

Definitions

  • This disclosure relates to a machine tool control device.
  • the frequency parameter (frequency or frequency magnification; hereinafter the same) and the amplitude parameter (amplitude or oscillating magnification; hereinafter the same) of the oscillating command can be shredded so that chips can be shredded.
  • the current situation is that it takes time because the conditions are set and decided.
  • the frequency parameter and the amplitude parameter of the desired swing command capable of shredding chips can be quickly determined in the control device of the machine tool that executes the swing cutting.
  • One aspect of the present disclosure is a control device for a machine tool that processes a tool and a work while relatively swinging, a swing command calculation unit that calculates a swing operation command, and the swing.
  • a first swing condition determining unit that determines one of a frequency parameter consisting of the command frequency or frequency magnification and an amplitude parameter consisting of the amplitude or amplitude magnification of the swing command as the first swing condition, and the first swing condition determination unit.
  • a second swing condition calculation unit that calculates the other of the frequency parameter and the amplitude parameter as the second swing condition based on the first swing condition determined by the swing condition determination unit is provided. It is a control device for machine tools.
  • the present disclosure by using the correlation between the frequency parameter and the amplitude parameter, it is possible to provide a machine tool control device capable of quickly determining the frequency parameter and the amplitude parameter of a desired rocking command capable of shredding chips.
  • FIG. 1 is a diagram showing a cutting process according to an embodiment of the present disclosure.
  • the machine tool control device has at least one spindle S for relatively rotating the cutting tool T and the work W, and the cutting tool T relative to the work W.
  • the work W is cut by the cutting tool T by operating at least one feed shaft to be moved.
  • FIG. 1 shows an example in which the cutting tool T is moved in the feed direction Z by the feed shaft to perform cutting on the outer peripheral surface of the columnar work W rotated by the spindle S.
  • the cutting tool T and the work W are relatively rotated, and the cutting tool T and the work W are relatively swung in the feed direction Z. , Chips that are continuously generated by cutting can be shredded. Chips become entangled with the cutting tool T during machining and cause machining defects, chocolate stoppage, mechanical failure, etc., which can be avoided in the present embodiment.
  • the tool path P which is the locus of the cutting tool T
  • the portion processed in the previous route is set to be included in the current route.
  • the phase of the mountain portion with respect to the feed direction Z of the previous route matches the phase of the valley portion of the current route, and the portion processed in the previous route is included in the current route. Is set to. Therefore, a missed swing C (air cut) occurs in which the cutting edge of the cutting tool T is separated from the surface of the work W. This ensures that the chips are shredded.
  • FIG. 2 is a functional block diagram of the machine tool control device 1 according to the first embodiment of the present disclosure.
  • the machine tool control device 1 according to the present embodiment is configured to include a servo control device 10, and drives and controls a motor 30 that drives a feed shaft.
  • the machine tool control device 1 includes a swing command generation unit 11, a motor control unit 12, an adder 13, an input unit 14, a display unit 15, and the display unit 15. To be equipped.
  • the machine tool control device 1 generates a drive command for the motor 30 from a machining program.
  • the generated drive command (position command, etc.) is input to the adder 13 of the servo control device 10 described later, as shown in FIG.
  • tool information and tool operation information are set by a CAM system (not shown) for a machining shape created by a CAD system (not shown). It is created by being done.
  • the swing command generation unit 11 generates a swing command that swings the cutting tool T and the work W relatively in the feed direction Z.
  • the generated swing command is input to the adder 13 described later.
  • the swing command generation unit 11 includes a first swing condition determination unit 111, a second swing condition calculation unit 112, and a swing command calculation unit 113.
  • the first swing condition determination unit 111 performs the first swing of one of the frequency parameter consisting of the frequency or the frequency magnification constituting the swing command and the amplitude parameter consisting of the amplitude or the amplitude magnification also constituting the swing command. Determined as a dynamic condition.
  • the second swing condition calculation unit 112 calculates the other as the second swing condition by using the correlation between the frequency parameter and the amplitude parameter. As a result, it is possible to shorten the time for setting the conditions, which has been confirmed while setting each one in the past.
  • the first swing condition determining unit 111 has a first swing condition determination unit 111 based on at least one of the chip length, the surface roughness of the work W, the swing width, and the upper limit value of the first swing condition. 1 It is preferable to determine the swing condition.
  • a method of determining the first swing condition based on each of the chip length, the surface roughness, the swing width, and the upper limit value of the first swing condition will be described with reference to an example.
  • the first rocking condition determination unit 111 determines the frequency magnification as the first rocking condition based on the length of the chips.
  • the following mathematical formula (1-1) is used.
  • I represents the frequency magnification (times)
  • D represents the diameter of the work W (mm)
  • L represents the length of the chips (mm).
  • the diameter D of the work W can be obtained from the coordinate values of the tools positioned in the radial direction of the work during machining.
  • the frequency magnification I can be obtained. It is also possible to obtain the frequency as the first swing condition from the desired chip length L by using the mathematical formula (2-2) described later that defines the relationship between the frequency magnification and the frequency.
  • the first rocking condition determining unit 111 determines the frequency magnification as the first rocking condition based on the surface roughness
  • the maximum value of the surface roughness according to the frequency magnification is used as a table. It may be held and the frequency magnification may be determined from the desired surface roughness.
  • the variation in the surface roughness for each work phase may be obtained as a standard deviation, and the relationship between the standard deviation and the frequency magnification may be held as a table.
  • variations in surface roughness during cutting with rocking will be described with reference to FIGS. 3 and 4.
  • 3 and 4 are diagrams showing an example and another example of the relationship between the spindle phase and the position of the cutting tool T.
  • the frequency magnification I as the first swing condition is 1.5 times
  • the amplitude magnification K as the second swing condition calculated from the mathematical formula (2-1) described later is The relationship between the spindle phase and the position of the cutting tool T at 1.0 times is shown. Further, in FIG.
  • the frequency magnification I as the first swing condition is 1.2 times
  • the amplitude magnification K as the second swing condition calculated from the mathematical formula (2-1) described later is 1.701.
  • the relationship between the spindle phase and the position of the cutting tool T at the time of doubling is shown.
  • the phase of each rotation of the spindle is shifted by half a cycle, so that the phase of the peak portion in the previous tool path is the phase of the valley portion in the current tool path in a specific spindle phase.
  • the specific phase for example, in the vicinity of the spindle phase of 120 °, the change in the feed amount for each rotation of the spindle becomes large.
  • the unevenness of the work surface becomes large due to the influence of the corner radius of the tool tip and the like, and the surface roughness becomes large.
  • the feed amount for each rotation of the spindle is always constant, and the surface roughness becomes small. In such a case, the variation in surface roughness becomes large depending on the phase of the spindle.
  • the spindle phase in which the feed amount increases with each rotation of the spindle is not constant.
  • the variation in surface roughness according to the spindle phase becomes small. Since the variation in surface roughness may affect the roundness of the processed work, the first swing condition may be determined by the variation in surface roughness.
  • the frequency and amplitude of the rocking operation have a range that can be operated according to the machine tool.
  • the first swing condition may be determined by clamping at an upper limit value for a desired frequency or amplitude.
  • the second swing condition calculation unit 112 calculates the other of the frequency parameter and the amplitude parameter as the second swing condition based on the first swing condition determined by the first swing condition determination unit 111 described above. do. Further, the second swing condition calculation unit 112 calculates the second swing condition based on the first swing condition and either the number of tools or the number of blades.
  • the second swing condition calculation unit 112 calculates the second swing condition using the following mathematical formulas (2-1), (2-2) and (2-3).
  • I is the frequency magnification (times)
  • K is the amplitude magnification (times)
  • n is the number of tools or the number of blades of the tools.
  • I' represents the vibration frequency (Hz)
  • S represents the spindle speed (minutes- 1 )
  • K' represents the amplitude (mm)
  • F represents the feed rate (mm / rotation).
  • the frequency magnification I 1, it means that the main shaft swings once with one rotation.
  • amplitude magnification K is 1, it means that the amplitude is the same as the feed amount (movement amount in the feed direction) per rotation of the spindle.
  • the value of one of the frequency and the frequency magnification can be calculated from the value of the other by the above formula (2-2).
  • the other value can be calculated from one value of the amplitude and the amplitude magnification by the above mathematical formula (2-3). Therefore, the second swing condition can be calculated based on the first swing condition by using the relationship between these formulas (2-2) and (2-3) and the formula (2-1).
  • the second swing condition calculation unit 112 calculates the amplitude parameter as the second swing condition including the margin based on the runout of the cutting tool T and the runout of the work W. Since the cutting edge (machine tip) and work W of the cutting tool T bend and swing due to swinging, by calculating the amplitude parameter including the margin based on the swinging, the missed swing C is surely generated and the chips are finely divided. It is possible to decline.
  • the frequency parameter and the amplitude parameter of the swing command must be finally determined according to the cutting process, and therefore must be set by the machine tool user.
  • the machine tool designer sets the upper limit value of the machine tool and the margin of the machine tool. Then, the user automatically determines the first swing condition and the second swing condition by setting conditions such as the diameter of the work W, the hole diameter in the drilling and cutting process, and the length of chips. , Swinging cutting can be easily performed.
  • the machine designer sets an amplitude magnification K1 corresponding to a margin based on the runout of the cutting edge and the work W so that chips can be shredded under swing conditions near the upper limit of the machine.
  • the upper limit of the machine tool is also set.
  • the frequency magnification I as the first swing condition is determined from the input value to the control device 1 of the machine tool by the user, the upper limit value of the machine, and the like.
  • the swing command calculation unit 113 has a first swing condition determined by the first swing condition determination unit 111 and a second swing condition calculated by the second swing condition calculation unit 112. Based on, the swing command is calculated.
  • the swing command calculation unit 113 synchronizes the phase of the swing command with the phase of the spindle that relatively rotates the cutting tool T and the work W, so that the phase of the swing command is deviated from the phase of the spindle. It disappears. As a result, chips can be reliably shredded even under the first swing condition and the second swing condition calculated by using the correlation between the frequency parameter and the amplitude parameter.
  • the adder 13 generates a superposition command. Specifically, the adder 13 refers to the integrated value of the position deviation, which is the difference between the position feedback based on the position detection by the encoder provided in the motor 30 of the feed shaft (not shown) and the above-mentioned position command.
  • the superimposition command is generated by adding (superimposing) the rocking command generated by the above-mentioned rocking command generation unit 11.
  • the motor control unit 12 generates a torque command for the motor 30 that drives the feed shaft based on the superposition command generated by the adder 13 described above, and controls the motor 30 by the generated torque command. As a result, the motor 30 that drives the feed shaft reaches the command position with rocking.
  • the input unit 14 includes various parameters required for the first rocking condition determination unit 111 to determine the first rocking condition, various parameters required for the second rocking condition calculation unit 112 to calculate the second rocking condition, which will be described later. It is an input unit in which at least one of the priority condition and the margin to be input can be input. Specifically, the input unit 14 uses the variables in the above equations (2-1), (2-2) and (2-3), chip length, surface roughness, swing width, and first swing. It is possible to enter the upper limit of the dynamic condition, the priority condition described later, the margin, and the like. The input value input by the user via the input unit 14 enables the determination of the first swing condition and the calculation and determination of the second swing condition.
  • the display unit 15 has an input value input by the input unit 14, a first swing condition determined by the first swing condition determination unit 111, and a second swing calculated by the second swing condition calculation unit 112. It is a display unit capable of displaying at least one of various specifications determined from the conditions, the first rocking condition and the second rocking condition.
  • the various specifications include chip length, surface roughness, variation in surface roughness, swing width, machine tool operation parameters, and the like.
  • the display on the display unit 15 makes it easy for the user to set and confirm the swing condition.
  • FIG. 5 is a functional block diagram of the machine tool control device 1A according to the second embodiment of the present disclosure.
  • the machine tool control device 1A according to the second embodiment has a swing command generation unit 11A and a servo as compared with the machine tool control device 1 according to the first embodiment described above.
  • the configuration is the same except that the configuration of the control device 10A is different.
  • the upper limit determination unit that changes the first swing condition based on at least one of the upper limit value of the second swing condition and the upper limit value of the operation parameter of the machine tool. 114 is provided.
  • the second swing condition calculated from the first swing condition is the upper limit value determined from the operation upper limit of the machine tool. Clamp the condition. When the clamp is applied, the second swing condition and the first swing condition are calculated back from the above mathematical formula (2-1). The finally determined first swing condition and second swing condition are notified to the swing command calculation unit 113.
  • Machine tool operating parameters include, for example, feed rate and feed acceleration.
  • the maximum feed rate and maximum acceleration are calculated using the following formulas (3-1) to (3-5).
  • Y is a movement command (position command)
  • F is a feed rate (mm / rotation)
  • S is a spindle speed (minute- 1 )
  • I is.
  • the frequency magnification (times) and K represent the amplitude magnification (times).
  • the amplitude magnification K and frequency magnification I which correspond to the second swing condition, are limited so that the maximum feed rate and the maximum acceleration calculated using the above formulas (3-1) to (3-5) do not exceed the upper limit values. ..
  • the above mathematical formulas (2-2) and (2-3) are used for conversion to the swing amplitude and swing frequency.
  • FIG. 6 is a functional block diagram of the machine tool control device 1B according to the third embodiment of the present disclosure.
  • the machine tool control device 1B according to the third embodiment controls the machine tool control device 1 according to the first embodiment and the machine tool control device 1B according to the second embodiment.
  • the configuration is the same as that of the apparatus 1A except that the configurations of the swing command generation unit 11B and the servo control device 1B are different.
  • at least one of chip length, surface roughness, frequency parameter, amplitude parameter, machine tool operation parameter, or various specifications determined from these is set as a priority condition.
  • the optimum condition determination unit 115 is provided.
  • the various specifications are, for example, the width of the swing, the variation in surface roughness, and the like.
  • the optimum condition determination unit 115 notifies the first rocking condition determination unit 111 of the first rocking condition in order to calculate the corresponding second rocking condition from the first rocking condition within a predetermined range. Based on the notification, the first swing condition determination unit 111 and the second swing condition calculation unit 112 determine the first swing condition and the second swing condition. The optimum condition determination unit 115 calculates the priority condition based on the first swing condition and the second swing condition. At the same time, it is confirmed whether the upper limit values of all the conditions including the priority conditions are satisfied. The priority conditions are confirmed for the first swing condition within a predetermined range, and the first swing condition and the second swing condition that satisfy the upper limit values of all the conditions and minimize the priority condition are rocked. Notify the command calculation unit 113.
  • the swing command is calculated from the first swing condition and the second swing condition, and the maximum feed acceleration under the command is calculated. At the same time, check whether the upper limit values of all the conditions including the feed acceleration are exceeded, and record only when all the upper limit values are satisfied.
  • the first swing condition is gradually lowered from the upper limit value, and confirmation is continued until the upper limit values of all the conditions cannot be satisfied.
  • the swing command calculation unit 113 is notified of the first swing condition and the second swing condition in which the feed acceleration is the smallest.
  • FIG. 7 is a flowchart showing a cutting procedure according to the embodiment of the present disclosure.
  • step S1 the first swing condition is determined.
  • the first swing condition one of the frequency parameter and the amplitude parameter is selected.
  • step S2 the second rocking condition is calculated based on the first rocking condition determined in step S1.
  • the second swing condition the other of the frequency parameter and the amplitude parameter is selected. That is, of the frequency parameter and the amplitude parameter, the other that was not selected as the first swing condition in step S2 is calculated.
  • step S3 the swing command is calculated based on the first swing condition determined in step S1 and the second swing condition calculated in step S2.
  • step S4 the superposition command is generated by superimposing the swing command calculated in step S3 on the position command. Then, the motor 30 that drives the feed shaft is driven and controlled by the generated superimposition command. This is the end of this process.
  • one of the frequency parameter consisting of the frequency or frequency magnification of the swing command and the amplitude parameter consisting of the amplitude or amplitude magnification of the swing command is determined as the first swing condition.
  • a swing condition determination unit 111 is provided.
  • the second swing condition calculation unit 112 that calculates the other of the frequency parameter and the amplitude parameter as the second swing condition based on the first swing condition determined by the first swing condition determination unit 111. was provided.
  • the frequency parameter and the amplitude parameter are correlated with each other, in the embodiment of the present disclosure, one is determined under a certain condition and then the other is calculated and determined, thereby shortening the time for setting the condition, which has been conventionally performed. can. Therefore, according to the embodiments of the present disclosure, it is possible to quickly determine the frequency parameter and the amplitude parameter of the desired swing command capable of shredding the chips.
  • the second swing condition calculation unit 112 calculates the second swing condition based on the first swing condition and either the number of tools or the number of blades. Thereby, the frequency parameter and the amplitude parameter of the desired swing command capable of shredding the chips can be determined more reliably and quickly.
  • the first swing condition determination unit 111 determines at least one of the chip length, the surface roughness of the work W, the swing width, and the upper limit value of the first swing condition. Based on this, the first swing condition was determined. As a result, the swing command is issued so that the desired chip length, surface roughness, and swing width are obtained, or the upper limit of the frequency and amplitude determined according to the machine tool is not exceeded.
  • the first swing condition and the second swing condition to be configured can be determined.
  • the upper limit determination unit 114 for changing the first swing condition is provided based on at least one of the upper limit value of the second swing condition and the upper limit value of the operation parameter of the machine tool. rice field. Thereby, the first swing condition and the second swing condition constituting the swing command can be determined without exceeding the upper limit value of the second swing condition and the upper limit value of the operation parameter of the machine tool.
  • the optimum condition determination unit 115 sets the first swing condition and the second swing condition that minimize the priority condition based on the second swing condition calculated from the first swing condition within a predetermined range. Judged. As a result, when there are a plurality of first swing conditions that can satisfy each condition, the priority conditions are confirmed for the first swing conditions within a predetermined range, the upper limit values of all the conditions are satisfied, and the priority conditions are set. The minimum first swing condition and the second swing condition can be determined.
  • the second swing condition calculation unit 112 calculates the second swing condition using the above-mentioned mathematical formulas (2-1), (2-2) and (2-3). I tried to do it. As a result, the other of the frequency parameter and the amplitude parameter can be reliably calculated based on one of the frequency parameter and the amplitude parameter determined by the first swing condition determination unit 111.
  • the second swing condition calculation unit 112 calculates the amplitude parameter as the second swing condition including the margin based on the runout of the cutting edge of the tool T and the work W.
  • the cutting edge (machine tip) and work W of the tool T bend and swing due to swinging, but according to this embodiment, by calculating the amplitude parameter including the margin based on the swinging, the missed swing C is more reliably performed. Can be generated.
  • the input unit 14 uses various parameters required for the first swing condition determination unit 111 to determine the first swing condition, and various parameters required for the second swing condition calculation unit 112 to calculate the second swing condition. At least one of the parameter, the priority condition, and the margin is used as an input unit that can be input.
  • the display unit 15 shows the input contents input by the input unit 14, the first rocking condition determined by the first rocking condition determining unit 111, and the second rocking calculated by the second rocking condition calculation unit. At least one of various specifications determined by the dynamic condition, the first swing condition, and the second swing condition is displayed as a display unit. As a result, the first swing condition can be determined and the second swing condition can be calculated and determined based on the input value input by the user via the input unit 14. Further, the display by the display unit 15 makes it easy for the user to set and confirm the swing condition.
  • the learning control unit may be provided in the control device 1 of the machine tool according to the above embodiment.
  • This learning control unit calculates the correction amount of the superimposition command based on the integrated value of the position deviation up to one learning cycle, and superimposes the calculated correction amount on the superimposition command for correction.
  • the position deviation is likely to occur due to the inclusion of the swing command, but the followability to the periodic swing command can be improved by the correction by the learning control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Turning (AREA)

Abstract

切屑を細断可能な所望の揺動指令の周波数パラメータ及び振幅パラメータを速やかに決定できる工作機械の制御装置を提供すること。工具TとワークWを相対的に揺動させながら加工する工作機械の制御装置1であって、揺動動作の指令を算出する揺動指令算出部113と、揺動指令の周波数又は周波数倍率からなる周波数パラメータ、及び揺動指令の振幅又は振幅倍率からなる振幅パラメータのうちの一方を第1揺動条件として決定する第1揺動条件決定部111と、第1揺動条件決定部111により決定された第1揺動条件に基づいて、周波数パラメータ及び振幅パラメータのうちの他方を第2揺動条件として算出する第2揺動条件算出部112と、を備える、工作機械の制御装置1である。

Description

工作機械の制御装置
 本開示は、工作機械の制御装置に関する。
 従来、切削工具を用いてワークを切削加工する際に、連続して発生する切屑が切削工具に絡まるなどして加工不良、チョコ停、機械障害などの原因となることが知られている。これに対して、切削工具とワークを相対的に揺動させながら切削加工することにより切屑を細断する揺動切削が提案されている(例えば、特許文献1参照)。
特開2017-56515号公報
 しかしながら、従来の揺動切削では、揺動指令の周波数パラメータ(周波数又は周波数倍率。以下、同じ。)と振幅パラメータ(振幅又は振幅倍率。以下、同じ。)については、切屑が細断できるように条件出しを行って決定しているため、時間を要しているのが現状である。
 従って、揺動切削を実行する工作機械の制御装置において、切屑を細断可能な所望の揺動指令の周波数パラメータ及び振幅パラメータを速やかに決定できることが望まれる。
 (1) 本開示の一態様は、工具とワークを相対的に揺動させながら加工する工作機械の制御装置であって、揺動動作の指令を算出する揺動指令算出部と、前記揺動指令の周波数又は周波数倍率からなる周波数パラメータ、及び前記揺動指令の振幅又は振幅倍率からなる振幅パラメータのうちの一方を第1揺動条件として決定する第1揺動条件決定部と、前記第1揺動条件決定部により決定された第1揺動条件に基づいて、前記周波数パラメータ及び前記振幅パラメータのうちの他方を第2揺動条件として算出する第2揺動条件算出部と、を備える、工作機械の制御装置である。
 本開示によれば、周波数パラメータと振幅パラメータの相関を用いることで、切屑を細断可能な所望の揺動指令の周波数パラメータ及び振幅パラメータを速やかに決定できる工作機械の制御装置を提供できる。
本開示の実施形態に係る切削加工を示す図である。 本開示の第一の実施形態に係る工作機械の制御装置の機能ブロック図である。 主軸位相と切削工具の位置との関係の一例を示す図である。 主軸位相と切削工具の位置との関係の他の例を示す図である。 本開示の第二の実施形態に係る工作機械の制御装置の機能ブロック図である。 本開示の第三の実施形態に係る工作機械の制御装置の機能ブロック図である。 本開示の実施形態に係る切削加工の手順を示すフローチャートである。
 以下、本開示の実施形態について図面を参照して詳しく説明する。
 図1は、本開示の実施形態に係る切削加工を示す図である。図1に示されるように、本実施形態に係る工作機械の制御装置は、切削工具TとワークWとを相対的に回転させる少なくとも一つの主軸Sと、切削工具TをワークWに対して相対移動させる少なくとも一つの送り軸と、を動作させて、切削工具TによりワークWを切削加工するものである。なお、図1では、主軸Sにより回転する円柱状のワークWの外周面に対して、送り軸により切削工具Tを送り方向Zに移動させて切削加工する例を示している。
 また、本実施形態に係る切削加工は、切削工具TとワークWとを相対的に回転させるとともに、切削工具TとワークWとを相対的に送り方向Zに揺動させながら切削加工することにより、切削加工により連続的に生じる切屑を細断できるものである。切屑は加工中に切削工具Tに絡まるなどして加工不良、チョコ停、機械障害などの要因となるところ、本実施形態ではこれを回避できる。
 より詳しくは、図1に示されるように、切削工具Tの軌跡である工具経路Pは、前回経路に対して今回経路が重なるように設定される。即ち、前回経路で加工済の部分が今回経路に含まれるように設定される。図1に示される例では、前回経路の送り方向Zに対して山の部分の位相が、今回経路の谷の部分の位相に一致し、前回経路で加工済の部分が今回経路に含まれるように設定されている。そのため、切削工具Tの刃先がワークWの表面から離れる空振りC(エアカット)が発生する。これにより、切屑が確実に細断されるようになっている。
 図2は、本開示の第一の実施形態に係る工作機械の制御装置1の機能ブロック図である。図2に示されるように、本実施形態に係る工作機械の制御装置1は、サーボ制御装置10を含んで構成され、送り軸を駆動するモータ30を駆動制御する。
 本実施形態に係る工作機械の制御装置1は、図2に示されるように、揺動指令生成部11と、モータ制御部12と、加算器13と、入力部14と、表示部15と、を備える。
 本実施形態に係る工作機械の制御装置1は、加工プログラムよりモータ30の駆動指令を生成する。生成された駆動指令(位置指令など)は、図2に示されるように、後述するサーボ制御装置10の加算器13に入力される。
 また、本実施形態に係る工作機械の制御装置1の加工プログラムは、例えば、図示しないCADシステムで作成された加工形状に対して、同じく図示しないCAMシステムにより工具情報や工具の動作情報などが設定されることにより作成される。
 揺動指令生成部11は、切削工具TとワークWとを相対的に送り方向Zに揺動させる揺動指令を生成する。生成された揺動指令は、後述する加算器13に入力される。図2に示されるように、揺動指令生成部11は、第1揺動条件決定部111と、第2揺動条件算出部112と、揺動指令算出部113と、を有する。
 第1揺動条件決定部111は、揺動指令を構成する周波数又は周波数倍率からなる周波数パラメータ、及び同じく揺動指令を構成する振幅又は振幅倍率からなる振幅パラメータのうちの一方を、第1揺動条件として決定する。次いで、後述するように、第2揺動条件算出部112により、周波数パラメータと振幅パラメータの相関を用いて、他方を第2揺動条件として算出する。これにより、従来一つ一つ設定しながら確認していた条件出しの時間を短縮することができる。
 より詳しくは、第1揺動条件決定部111は、切屑の長さ、ワークWの表面粗さ、揺動の幅、第1揺動条件の上限値のうちの少なくとも一つに基づいて、第1揺動条件を決定することが好ましい。以下、切屑の長さ、表面粗さ、揺動の幅、第1揺動条件の上限値のそれぞれに基づいて第1揺動条件を決定する方法について、例を挙げて説明する。
 例えば、第1揺動条件決定部111が、切屑の長さに基づいて、第1揺動条件としての周波数倍率を決定する場合には、以下の数式(1-1)が用いられる。
Figure JPOXMLDOC01-appb-M000002
 上記数式(1-1)中、Iは周波数倍率(倍)、DはワークWの直径(mm)、Lは切屑の長さ(mm)を表している。ワークWの直径Dは、加工時にワークの径方向に位置決めした工具の座標値から求めることができる。所望の切屑の長さLを上記数式(1-1)に代入することにより、周波数倍率Iが求められる。なお、周波数倍率と周波数との関係を規定した後述の数式(2-2)を用いることにより、所望の切屑の長さLから第1揺動条件としての周波数を求めることもできる。
 また例えば、第1揺動条件決定部111が、表面粗さに基づいて、第1揺動条件としての周波数倍率を決定する場合には、周波数倍率に応じた表面粗さの最大値をテーブルとして持ち、所望の表面粗さから周波数倍率を決定しても良い。
 また、表面粗さそのものではなく、ワーク位相毎の表面粗さのばらつきを標準偏差として求め、その標準偏差と周波数倍率の関係をテーブルとして持っても良い。ここで、揺動を伴う切削加工時の表面粗さのばらつきについて、図3及び4にて説明する。図3及び図4は、主軸位相と切削工具Tの位置との関係の一例と他の例を示す図である。具体的には、図3は、第1揺動条件としての周波数倍率Iが1.5倍であり、後述の数式(2-1)から算出される第2揺動条件としての振幅倍率Kが1.0倍のときにおける主軸位相と切削工具Tの位置との関係を示している。また、図4は、第1揺動条件としての周波数倍率Iが1.2倍であり、後述の数式(2-1)から算出される第2揺動条件としての振幅倍率Kが1.701倍のときにおける主軸位相と切削工具Tの位置との関係を示している。
 図3から明らかなように、主軸1回転毎の位相が半周期分ずれることにより、特定の主軸位相において、前回の工具経路における山の部分の位相が、今回の工具経路における谷の部分の位相に一致する。その特定の位相、例えば主軸位相120°付近では、主軸1回転毎の送り量の変化が大きくなる。その結果、工具先端のコーナ半径などの影響により、ワーク表面の凹凸が大きくなり、表面粗さが大きくなる。逆に主軸位相180°付近では、主軸1回転毎の送り量が常に一定になり、表面粗さが小さくなる。このような場合、主軸位相に応じて、表面粗さのばらつきが大きくなってしまう。
 これに対して図4の場合では、主軸1回転毎に送り量が大きくなる主軸位相が一定ではない。このような場合、主軸位相に応じた表面粗さのばらつきは小さくなる。表面粗さのばらつきが加工したワークの真円度に影響することもあるため、表面粗さのばらつきにより第1揺動条件を決める場合もある。
 また、揺動の幅より、揺動の振幅を求めてもよい。具体的には、揺動の幅がX(mm)の場合、後述の数式(2-3)を用いて、K’=X、K=X/Fと設定する。
 また、揺動動作の周波数や振幅は、工作機械に応じて動作可能な範囲が決まっている。所望の周波数や振幅に対して、上限値でクランプすることにより、第1揺動条件を決めても良い。
 第2揺動条件算出部112は、上述の第1揺動条件決定部111により決定された第1揺動条件に基づいて、周波数パラメータ及び振幅パラメータのうちの他方を第2揺動条件として算出する。また、第2揺動条件算出部112は、第1揺動条件と、工具の数又は刃数のいずれかと、に基づいて、第2揺動条件を算出する。
 より詳しくは、第2揺動条件算出部112は、第2揺動条件を、以下の数式(2-1)、(2-2)及び(2-3)を用いて算出する。
Figure JPOXMLDOC01-appb-M000003
 ここで、上記数式(2-1)、(2-2)及び(2-3)中、Iは周波数倍率(倍)、Kは振幅倍率(倍)、nは工具の数又は工具の刃数(個)、I’は振動周波数(Hz)、Sは主軸回転数(分-1)、K’は振幅(mm)、Fは送り速度(mm/回転)を表している。例えば、周波数倍率Iが1の場合、主軸1回転で1回揺動することを意味している。また、振幅倍率Kが1の場合、主軸1回転あたりの送り量(送り方向の移動量)と同じ振幅となることを意味している。
 また、上記数式(2-2)により、周波数と周波数倍率のうちの一方の値から、他方の値を算出できる。同様に、上記数式(2-3)により、振幅と振幅倍率のうちの一方の値から、他方の値を算出できる。従って、これら数式(2-2)及び(2-3)の関係と、数式(2-1)を利用することにより、第1揺動条件に基づいて第2揺動条件を算出可能である。
 また、第2揺動条件算出部112は、第2揺動条件としての振幅パラメータを、切削工具Tの刃先及びワークWの振れに基づいたマージンを含んで算出することが好ましい。切削工具Tの刃先(機械先端)・ワークWは、揺動により撓んで振れるため、係る振れに基づいたマージンを含んで振幅パラメータを算出することにより、確実に空振りCを発生させ、切屑を細断することが可能となる。
 ここで、揺動指令の周波数パラメータ及び振幅パラメータは、最終的には切削加工に応じて決定する必要があるため、工作機械の使用者が設定する必要がある。しかしながら、上述の各機械上限値や、どの程度マージンを設ける必要があるかについては、工作機械により異なるため、使用者が設定することは困難である。そこで、工作機械の設計者が、工作機械の上限値や工作機械のマージンを設定する。そして、使用者は、例えばワークWの径や穴開け切削加工における穴径、切屑の長さなどの条件を設定することにより、自動的に第1揺動条件及び第2揺動条件が決定され、容易に揺動切削を実行可能である。
 具体的には、機械設計者は、機械上限値付近の揺動条件で切屑が細断できるように、刃先及びワークWの振れに基づいたマージン分に相当する振幅倍率K1を設定する。別途、工作機械の上限値も設定する。次いで、使用者による工作機械の制御装置1への入力値と、上記機械上限値などから、第1揺動条件としての周波数倍率Iが決定される。そして、決定された周波数倍率Iより、上記数式(2-1)を用いて空振りCに必要な振幅倍率K2が算出され、最終的な振幅倍率K=K1×K2が算出できる。
 図2に戻って、揺動指令算出部113は、第1揺動条件決定部111で決定された第1揺動条件と、第2揺動条件算出部112で算出された第2揺動条件とに基づいて、揺動指令を算出する。
 また揺動指令算出部113は、揺動指令の位相を、切削工具TとワークWとを相対的に回転させる主軸の位相に同期させることで、主軸位相に対して空振りする位相がずれることがなくなる。これにより、周波数パラメータと振幅パラメータの相関を用いて算出した第1揺動条件と第2揺動条件でも、確実に切屑が細断できる。
 加算器13は、重畳指令を生成する。具体的には、加算器13は、図示しない送り軸のモータ30に設けられるエンコーダによる位置検出に基づいた位置フィードバックと、上述の位置指令と、の差分である位置偏差の積算値に対して、上述の揺動指令生成部11で生成される揺動指令を加算(重畳)することにより、重畳指令を生成する。
 モータ制御部12は、上述の加算器13で生成された重畳指令に基づいて、送り軸を駆動するモータ30に対するトルク指令を生成し、生成したトルク指令によりモータ30を制御する。これにより、送り軸を駆動するモータ30は、揺動を伴いながら指令位置に到達する。
 入力部14は、第1揺動条件決定部111による第1揺動条件の決定に必要な各種パラメータ、第2揺動条件算出部112による第2揺動条件の算出に必要な各種パラメータ、後述する優先条件、マージンのうち少なくとも一つを入力可能な入力部である。具体的には、入力部14は、上記数式(2-1)、(2-2)及び(2-3)中の変数、切屑の長さ、表面粗さ、揺動の幅、第1揺動条件の上限値、後述する優先条件、マージンなどを入力可能である。使用者がこの入力部14を介して入力する入力値により、第1揺動条件の決定と第2揺動条件の算出、決定が可能となっている。
 表示部15は、上記入力部14により入力される入力値、第1揺動条件決定部111により決定される第1揺動条件、第2揺動条件算出部112により算出される第2揺動条件、前記第1揺動条件と前記第2揺動条件から決まる各種諸元のうち少なくとも一つを表示可能な表示部である。各種諸元とは、切り屑の長さ、表面粗さ、表面粗さのばらつき、揺動の幅、工作機械の動作パラメータなどである。この表示部15による表示により、使用者は揺動条件の設定と確認が容易となっている。
 次に、本開示の第二の実施形態について、図5を参照しながら説明する。図5は、本開示の第二の実施形態に係る工作機械の制御装置1Aの機能ブロック図である。図5に示されるように、第二の実施形態に係る工作機械の制御装置1Aは、上述の第一の実施形態に係る工作機械の制御装置1と比べて、揺動指令生成部11A、サーボ制御装置10Aの構成が異なる以外は同様の構成である。具体的には、第二の実施形態では、第2揺動条件の上限値、工作機械の動作パラメータの上限値のうち少なくとも一つに基づいて、前記第1揺動条件を変更する上限判定部114を備える。
 上限判定部114が第2揺動条件の上限値による判断を行う場合、第1揺動条件から算出された第2揺動条件について、工作機械の動作上限から決まる上限値にて第2揺動条件をクランプする。クランプをかけた場合、第2揺動条件と上記数式(2-1)から第1揺動条件を逆算する。最終的に決定した第1揺動条件と第2揺動条件を揺動指令算出部113へ通知する。
 また、上限判定部114が工作機械の動作パラメータの上限値による判断を行う場合について説明する。工作機械の動作パラメータには、例えば、送り速度や送り加速度がある。送り速度や加速度により制限をかける場合、以下の数式(3-1)~(3-5)を用いて最大送り速度や最大加速度を算出する。
Figure JPOXMLDOC01-appb-M000004
 ここで、上記数式(3-1)~(3-5)中、Yは移動指令(位置指令)、Fは送り速度(mm/回転)、Sは主軸回転数(分-1)、Iは周波数倍率(倍)、Kは振幅倍率(倍)を表している。上記数式(3-1)~(3-5)を用いて算出される最大送り速度や最大加速度が上限値を超えないように、第2揺動条件にあたる振幅倍率Kや周波数倍率Iを制限する。なお、揺動振幅や揺動周波数への換算は、上記数式(2-2)、(2-3)を用いる。
 次に、本開示の第三の実施形態について、図6を参照しながら説明する。図6は、本開示の第三の実施形態に係る工作機械の制御装置1Bの機能ブロック図である。図6に示されるように、第三の実施形態に係る工作機械の制御装置1Bは、上述の第一の実施形態に係る工作機械の制御装置1及び第二の実施形態に係る工作機械の制御装置1Aと比べて、揺動指令生成部11B、サーボ制御装置1Bの構成が異なる以外は同様の構成である。具体的には、第三の実施形態では、切屑の長さ、表面粗さ、周波数パラメータ、振幅パラメータ、工作機械の動作パラメータ、又はこれらから決まる各種諸元のうち少なくとも一つを優先条件として設定する最適条件判定部115を備える。
 各種諸元とは、例えば、揺動の幅、表面粗さのばらつきなどである。最適条件判定部115は、所定の範囲内の第1揺動条件からそれに対応する第2揺動条件を算出させるため、第1揺動条件決定部111に第1揺動条件を通知する。その通知を元に第1揺動条件決定部111と第2揺動条件算出部112にて、第1揺動条件と第2揺動条件が決まる。最適条件判定部115は、その第1揺動条件と第2揺動条件に基づいて、優先条件を算出する。また同時に優先条件以外を含めた全ての条件の上限値を満たしているか確認する。所定範囲内の第1揺動条件について優先条件の確認を行い、全ての条件の上限値を満たす、かつ、優先条件が最小になる前記第1揺動条件と前記第2揺動条件を揺動指令算出部113へ通知する。
 具体的には、例えば、優先条件が送り加速度の場合、第1揺動条件と第2揺動条件から揺動指令を算出し、その指令での最大の送り加速度を算出する。同時に送り加速度を含めた全ての条件の上限値を超えていないか確認し、全ての上限値を満たす場合のみ記録しておく。第1揺動条件は上限値から徐々に下げていき、全ての条件の上限値を満たせなくなるまで確認を続ける。確認が終わった時点で、送り加速度が一番小さくなる第1揺動条件と第2揺動条件を揺動指令算出部113に通知する。
 次に、本開示の実施形態に係る切削加工の手順について、図7を参照しながら説明する。ここで、図7は、本開示の実施形態に係る切削加工の手順を示すフローチャートである。
 先ず、ステップS1では、第1揺動条件を決定する。第1揺動条件としては、周波数パラメータ及び振幅パラメータのうちの一方が選択される。
 ステップS2では、ステップS1で決定された第1揺動条件に基づいて、第2揺動条件を算出する。第2揺動条件として、周波数パラメータ及び振幅パラメータのうちの他方が選択される。即ち、周波数パラメータ及び振幅パラメータのうち、ステップS2において第1揺動条件として選択されなかった他方が算出される。
 ステップS3では、ステップS1で決定された第1揺動条件と、ステップS2で算出された第2揺動条件とに基づいて、揺動指令を算出する。
 ステップS4では、ステップS3で算出された揺動指令を、位置指令に重畳することにより重畳指令を生成する。そして、生成された重畳指令により、送り軸を駆動するモータ30を駆動制御する。以上で本処理を終了する。
 本開示の実施形態によれば、以下の効果が奏される。
 (1) 本開示の実施形態では、揺動指令の周波数又は周波数倍率からなる周波数パラメータ、及び揺動指令の振幅又は振幅倍率からなる振幅パラメータのうちの一方を第1揺動条件として決定する第1揺動条件決定部111を設けた。また、第1揺動条件決定部111により決定された第1揺動条件に基づいて、周波数パラメータ及び前記振幅パラメータのうちの他方を第2揺動条件として算出する第2揺動条件算出部112を設けた。
 周波数パラメータと振幅パラメータは互いに相関があるところ、本開示の実施形態では、ある条件にて一方を決定してから、他方を算出して決定することにより、従来行っていた条件出しの時間を短縮できる。従って、本開示の実施形態によれば、切屑を細断可能な所望の揺動指令の周波数パラメータ及び振幅パラメータを速やかに決定できる。
 (2) 本開示の実施形態では、第2揺動条件算出部112は、第1揺動条件と、工具の数又は刃数のいずれかと、に基づいて第2揺動条件を算出した。
 これにより、切屑を細断可能な所望の揺動指令の周波数パラメータ及び振幅パラメータをより確実かつ速やかに決定できる。
 (3) 本開示の実施形態では、第1揺動条件決定部111により、切屑の長さ、ワークWの表面粗さ、揺動の幅、第1揺動条件の上限値のうちの少なくとも一つに基づいて、第1揺動条件を決定した。
 これにより、所望の切屑の長さ、表面粗さ、揺動の幅となるように、あるいは、工作機械に応じて決められた周波数や振幅の上限値を超えないようにして、揺動指令を構成する第1揺動条件及び第2揺動条件を決定できる。
 (4) 本開示の実施形態では、第2揺動条件の上限値、工作機械の動作パラメータの上限値のうち少なくとも一つに基づいて、第1揺動条件を変更する上限判定部114を設けた。
 これにより、第2揺動条件の上限値や、工作機械の動作パラメータの上限値を超えないようにして、揺動指令を構成する第1揺動条件及び第2揺動条件を決定できる。
 (5) 本開示の実施形態では、切屑の長さ、ワークの表面粗さ、周波数パラメータ、振幅パラメータ、工作機械の動作パラメータ、又はこれらから決まる各種諸元のうち少なくとも一つを優先条件として設定する最適条件判定部115を設けた。そして、最適条件判定部115により、所定の範囲内の第1揺動条件から算出された第2揺動条件に基づいて、優先条件が最小になる第1揺動条件と第2揺動条件を判定した。
 これにより、各条件を満たし得る第1揺動条件が複数ある場合に、所定範囲内の第1揺動条件について優先条件の確認を行い、全ての条件の上限値を満たす、かつ、優先条件が最小になる第1揺動条件と第2揺動条件を決定できる。
 (6) 本開示の実施形態では、第2揺動条件算出部112により、第2揺動条件を上述の数式(2-1)、(2-2)及び(2-3)を用いて算出するようにした。
 これにより、第1揺動条件決定部111で決定された周波数パラメータと振幅パラメータのうちの一方に基づいて、周波数パラメータと振幅パラメータのうちの他方を確実に算出することができる。
 (7) 本開示の実施形態では、第2揺動条件算出部112により、第2揺動条件として振幅パラメータを、工具Tの刃先及びワークWの振れに基づいたマージンを含んで算出した。
 工具Tの刃先(機械先端)・ワークWは、揺動により撓んで振れるところ、本実施形態によれば、係る振れに基づいたマージンを含んで振幅パラメータを算出することにより、より確実に空振りCを発生させることができる。
 (8) 本開示の実施形態では、入力部14と、表示部15のうち少なくとも一方を設けた。ここで、入力部14は、第1揺動条件決定部111による第1揺動条件の決定に必要な各種パラメータ、第2揺動条件算出部112による第2揺動条件の算出に必要な各種パラメータ、前記優先条件、前記マージンのうち少なくとも一つを入力可能な入力部とした。また、表示部15は、入力部14により入力される入力内容、第1揺動条件決定部111により決定される第1揺動条件、前記第2揺動条件算出部により算出される第2揺動条件、第1揺動条件と第2揺動条件から決まる各種諸元のうち少なくとも一つを表示可能な表示部とした。
 これにより、使用者が入力部14を介して入力する入力値により、第1揺動条件の決定と第2揺動条件の算出、決定が可能となる。また、表示部15による表示により、使用者は、揺動条件の設定と確認が容易となる。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。
 例えば上記実施形態に係る工作機械の制御装置1において、学習制御部を設けてもよい。この学習制御部は、1学習周期前までの位置偏差の積算値に基づいて、重畳指令の補正量を算出し、算出した補正量を重畳指令に重畳して補正する。上記実施形態の重畳指令は、揺動指令を含むことで位置偏差が生じ易いところ、学習制御部による補正により周期的な揺動指令に対する追従性を向上できる。
 1,1A,1B 工作機械の制御装置
 10,10A,10B サーボ制御装置
 11,11A,11B 揺動指令生成部
 12 モータ制御部
 13 加算器
 14 入力部
 15 表示部
 30 モータ
 111 第1揺動条件決定部
 112 第2揺動条件算出部
 113 揺動指令算出部
 114 上限判定部
 115 最適条件判定部
 C 空振り
 P 工具経路
 S 主軸
 T 切削工具
 W ワーク
 Z 送り方向

Claims (8)

  1.  工具とワークを相対的に揺動させながら加工する工作機械の制御装置であって、
     揺動動作の指令を算出する揺動指令算出部と、
     揺動指令の周波数又は周波数倍率からなる周波数パラメータ、及び前記揺動指令の振幅又は振幅倍率からなる振幅パラメータのうちの一方を第1揺動条件として決定する第1揺動条件決定部と、
     前記第1揺動条件決定部により決定された第1揺動条件に基づいて、前記周波数パラメータ及び前記振幅パラメータのうちの他方を第2揺動条件として算出する第2揺動条件算出部と、を備える、工作機械の制御装置。
  2.  前記第2揺動条件算出部は、前記第1揺動条件と、前記工具の数又は刃数のいずれかと、に基づいて前記第2揺動条件を算出する、請求項1に記載の工作機械の制御装置。
  3.  前記第1揺動条件決定部は、切屑の長さ、前記ワークの表面粗さ、前記揺動の幅、前記第1揺動条件の上限値のうちの少なくとも一つに基づいて前記第1揺動条件を決定する、請求項1又は2に記載の工作機械の制御装置。
  4.  前記第2揺動条件の上限値、前記工作機械の動作パラメータの上限値のうち少なくとも一つに基づいて、前記第1揺動条件を変更する上限判定部を備える、請求項1~3いずれかに記載の工作機械の制御装置。
  5.  切屑の長さ、前記ワークの表面粗さ、前記周波数パラメータ、前記振幅パラメータ、前記工作機械の動作パラメータ、又はこれらから決まる各種諸元のうち少なくとも一つを優先条件として設定する最適条件判定部を備え、
     前記最適条件判定部は、所定の範囲内の前記第1揺動条件から算出された前記第2揺動条件に基づいて、前記優先条件が最小になる前記第1揺動条件と前記第2揺動条件を判定する、請求項1~4いずれかに記載の工作機械の制御装置。
  6.  前記第2揺動条件算出部は、前記第2揺動条件を以下の数式(2-1)、(2-2)及び(2-3)により算出する、請求項5に記載の工作機械の制御装置。
    Figure JPOXMLDOC01-appb-M000001
    [前記数式(2-1)、(2-2)及び(2-3)中、Iは周波数倍率(倍)、Kは振幅倍率(倍)、nは前記工具の数又は工具の刃数(個)、I’は振動周波数(Hz)、Sは主軸回転数(分-1)、K’は振幅(mm)、Fは送り速度(mm/回転)を表す。]
  7.  前記第2揺動条件算出部は、前記第2揺動条件として前記振幅パラメータを、前記工具の刃先及び前記ワークの振れに基づいたマージンを含んで算出する、請求項6に記載の工作機械の制御装置。
  8.  前記第1揺動条件決定部による第1揺動条件の決定に必要な各種パラメータ、前記第2揺動条件算出部による第2揺動条件の算出に必要な各種パラメータ、前記優先条件、前記マージンのうち少なくとも一つを入力可能な入力部と、
     前記入力部により入力される入力内容、前記第1揺動条件決定部により決定される第1揺動条件、及び前記第2揺動条件算出部により算出される第2揺動条件、前記第1揺動条件と前記第2揺動条件から決まる各種諸元のうち少なくとも一つを表示可能な表示部と、
     のうち少なくとも一つを備える、請求項7に記載の工作機械の制御装置。
PCT/JP2021/006169 2020-02-20 2021-02-18 工作機械の制御装置 WO2021167014A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180015062.8A CN115104073A (zh) 2020-02-20 2021-02-18 机床的控制装置
US17/904,685 US20230072167A1 (en) 2020-02-20 2021-02-18 Machine tool control device
JP2022501980A JP7522180B2 (ja) 2020-02-20 2021-02-18 工作機械の制御装置
DE112021001156.1T DE112021001156T5 (de) 2020-02-20 2021-02-18 Werkzeugmaschinensteuervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-027474 2020-02-20
JP2020027474 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021167014A1 true WO2021167014A1 (ja) 2021-08-26

Family

ID=77392145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006169 WO2021167014A1 (ja) 2020-02-20 2021-02-18 工作機械の制御装置

Country Status (5)

Country Link
US (1) US20230072167A1 (ja)
JP (1) JP7522180B2 (ja)
CN (1) CN115104073A (ja)
DE (1) DE112021001156T5 (ja)
WO (1) WO2021167014A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7313585B1 (ja) * 2022-08-05 2023-07-24 三菱電機株式会社 駆動条件決定装置および駆動条件決定方法
WO2023218648A1 (ja) * 2022-05-13 2023-11-16 ファナック株式会社 工作機械の制御装置
WO2024013870A1 (ja) * 2022-07-13 2024-01-18 ファナック株式会社 工作機械制御装置および工作機械制御プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535229A (ja) * 2006-05-03 2009-10-01 パーデュ リサーチ ファンデーション 変調利用機械加工のための工具ホルダアセンブリおよび変調利用機械加工方法
JP2016182655A (ja) * 2015-03-26 2016-10-20 シチズンホールディングス株式会社 工作機械及びこの工作機械の制御装置
JP2017056515A (ja) * 2015-09-16 2017-03-23 ファナック株式会社 複数軸を備えた工作機械の制御装置
JP2018083257A (ja) * 2016-11-24 2018-05-31 シチズン時計株式会社 工作機械の制御装置および工作機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535229A (ja) * 2006-05-03 2009-10-01 パーデュ リサーチ ファンデーション 変調利用機械加工のための工具ホルダアセンブリおよび変調利用機械加工方法
JP2016182655A (ja) * 2015-03-26 2016-10-20 シチズンホールディングス株式会社 工作機械及びこの工作機械の制御装置
JP2017056515A (ja) * 2015-09-16 2017-03-23 ファナック株式会社 複数軸を備えた工作機械の制御装置
JP2018083257A (ja) * 2016-11-24 2018-05-31 シチズン時計株式会社 工作機械の制御装置および工作機械

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218648A1 (ja) * 2022-05-13 2023-11-16 ファナック株式会社 工作機械の制御装置
WO2024013870A1 (ja) * 2022-07-13 2024-01-18 ファナック株式会社 工作機械制御装置および工作機械制御プログラム
JP7313585B1 (ja) * 2022-08-05 2023-07-24 三菱電機株式会社 駆動条件決定装置および駆動条件決定方法

Also Published As

Publication number Publication date
CN115104073A (zh) 2022-09-23
JPWO2021167014A1 (ja) 2021-08-26
JP7522180B2 (ja) 2024-07-24
US20230072167A1 (en) 2023-03-09
DE112021001156T5 (de) 2022-12-22

Similar Documents

Publication Publication Date Title
WO2021167014A1 (ja) 工作機械の制御装置
JP5908342B2 (ja) 工作機械の加工振動抑制方法及び加工振動抑制装置
JP6530780B2 (ja) 揺動切削のための表示装置および加工システム
JP6763917B2 (ja) 工作機械の制御装置
JP5606658B1 (ja) 数値制御装置
WO2015162739A1 (ja) 数値制御装置
JP6744815B2 (ja) 工作機械の制御装置および工作機械
JP7195110B2 (ja) 工作機械及び制御装置
US11717926B2 (en) Control device for machine tool
WO2016038687A1 (ja) 数値制御装置
JP2019185355A (ja) 工作機械の制御装置
JP2021096839A (ja) 工作機械の制御装置及び工作機械制御方法
US11285576B2 (en) Servo controller
JP6599920B2 (ja) 揺動切削を行う工作機械の制御装置
JP2021066005A (ja) 数値制御装置、プログラム及び制御方法
WO2020084771A1 (ja) 数値制御装置、工作機械および数値制御方法
JP6967357B2 (ja) 工作機械の制御装置および工作機械
WO2021177449A1 (ja) 工作機械の制御装置、制御方法
WO2022264260A1 (ja) 情報処理装置、工作機械の制御装置、及びコンピュータプログラム
JP2021111026A (ja) 工作機械の加工制御方法
JP7252426B1 (ja) 工作機械の制御装置及び工作機械の表示装置
WO2023218649A1 (ja) 工作機械の制御装置
WO2021177450A1 (ja) 工作機械の制御装置、制御方法
WO2022269751A1 (ja) 工作機械の制御装置
WO2023139743A1 (ja) 情報処理装置、工作機械の制御装置、及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501980

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21757417

Country of ref document: EP

Kind code of ref document: A1