WO2021164612A1 - 一种业务传输方法及装置 - Google Patents

一种业务传输方法及装置 Download PDF

Info

Publication number
WO2021164612A1
WO2021164612A1 PCT/CN2021/075984 CN2021075984W WO2021164612A1 WO 2021164612 A1 WO2021164612 A1 WO 2021164612A1 CN 2021075984 W CN2021075984 W CN 2021075984W WO 2021164612 A1 WO2021164612 A1 WO 2021164612A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
channel group
frequency channel
service
frequency channels
Prior art date
Application number
PCT/CN2021/075984
Other languages
English (en)
French (fr)
Inventor
龚政委
杨弃
丁正虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21757288.2A priority Critical patent/EP4096287A4/en
Priority to JP2022549306A priority patent/JP7466669B2/ja
Publication of WO2021164612A1 publication Critical patent/WO2021164612A1/zh
Priority to US17/820,079 priority patent/US20220394729A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a service transmission method and device.
  • Multi-input Multi-out (MIMO) technology has become a key technology for mobile communication systems such as new radio (NR) systems and long term evolution (LTE) systems to increase system capacity.
  • NR new radio
  • LTE long term evolution
  • a radio frequency channel in the base station includes modules such as power amplifiers, low noise amplifiers, digital-to-analog converters, radio frequency chips, and peripheral circuits.
  • modules such as power amplifiers, low noise amplifiers, digital-to-analog converters, radio frequency chips, and peripheral circuits.
  • the power consumption of the base station increases. For example, when the number of antennas of the base station is increased from 2 to 64, the power consumption of the devices included in the radio frequency channel in the base station will increase from 150 watts to 600 watts.
  • the purpose of the embodiments of the present application is to provide a service transmission method and device to solve the problem of how to reduce the power consumption of the base station.
  • the present application provides a service transmission method, including: determining the service volume of a first time unit; determining, according to the service volume and a first mapping relationship, to open a first number of radio frequency channels in the first time unit
  • the first mapping relationship includes the mapping relationship between the traffic volume and the number of radio frequency channels; in the first time unit, the services are transmitted through the first number of radio frequency channels, and the services include data channels and reference signals in At least one.
  • the number of opened radio frequency channels is determined according to the business volume, so that the number of opened radio frequency channels can be reduced, thereby reducing power consumption.
  • the method before the service is transmitted through the first number of radio frequency channels, the method further includes: determining a second mapping relationship between the first number of radio frequency channels and the second number of antenna ports ; Wherein, the second number does not change with the change of the first number.
  • the second number of antenna ports are all antenna ports included in the network device.
  • the second mapping relationship includes a mapping between any one of the second number of antenna ports and at least one of the first number of radio frequency channels Relationship; wherein, when the first number is greater than or equal to the second number, different antenna ports in the second number of antenna ports are mapped to different radio frequency channels; or, the first number is less than the second number In the case of the number of antenna ports, at least two antenna ports of different antenna ports in the second number of antenna ports map to the same radio frequency channel.
  • the method when the first number is less than the second number, the method further includes: the first number is greater than 1, and the second number of antenna ports includes a transmission diversity transmission data channel When there are at least two antenna ports, the radio frequency channels mapped to each of the at least two antenna ports are different.
  • the transmitting service through the first number of radio frequency channels includes: according to the second mapping relationship, at least one of the antenna ports mapped through each of the second number of antenna ports The radio frequency channel transmits the service corresponding to each antenna port.
  • the transmission of the service through the first number of radio frequency channels includes: if the service volume is less than the first threshold, passing the first time unit within the first time unit The first antenna port group corresponding to the radio frequency channel group sends the reference signal; when the data channel is sent in the first time unit, the data channel is sent through the second antenna port group corresponding to the second radio frequency channel group.
  • the reference is sent through the first antenna port group corresponding to the first radio frequency channel group within the first time unit Signal and the data channel.
  • any antenna port in the second antenna port group belongs to the first antenna port group, and at least one antenna port in the first antenna port group does not belong to the second antenna port group,
  • One of the antenna port groups includes at least one antenna port.
  • the service volume includes the first service volume of the first cell and the second service volume of the second cell; the first cell and the second cell belong to the same network device.
  • the first number is the number of radio frequency channels included in the fourth radio frequency channel group or the number of radio frequency channels included in the third radio frequency channel group;
  • the opening of the first number of radio frequency channels in the first time unit includes: if at least one of the first service volume and the second service volume is greater than or equal to a second threshold, then in the first time unit Open the third radio frequency channel group within; if the first traffic volume and the second traffic volume are both less than the second threshold, then open the fourth radio frequency channel group within the first time unit; wherein, the The radio frequency channels included in the fourth radio frequency channel group belong to radio frequency channels shared by the third radio frequency channel group and the fourth radio frequency channel group, and the number of radio frequency channels included in the third radio frequency channel group is greater than that of the fourth radio frequency.
  • the number of RF channels included in the channel group is the number of radio frequency channels included in the fourth radio frequency channel group or the number of radio frequency channels included in the third radio frequency channel group;
  • the number of opened radio frequency channels is determined according to the traffic volume of different cells, so that when the traffic volume of the cell decreases, the number of opened radio frequency channels can be reduced, thereby achieving the purpose of energy saving and power consumption.
  • the transmitting service through the first number of radio frequency channels includes: when the third radio frequency channel group is turned on in the first time unit, passing through the third radio frequency channel Group to send the service of the first cell and/or the service of the second cell; or when the fourth radio frequency channel group is turned on in the first time unit, send all the services through the fourth radio frequency channel group The service of the first cell and/or the service of the second cell.
  • the first number is the number of radio frequency channels included in the fifth radio frequency channel group or the number of radio frequency channels included in the sixth radio frequency channel group or the number of radio frequency channels included in the seventh radio frequency channel group;
  • the service volume and the first mapping relationship determine to open a first number of radio frequency channels within the first time unit, including: if the service volume is greater than or equal to a second threshold value, opening a fifth radio frequency channel group; If the traffic volume is greater than the first threshold value and less than the second threshold value, the sixth radio frequency channel group is turned on; if the traffic volume is less than or equal to the first threshold value, the seventh radio frequency channel group is turned on.
  • Radio frequency channel group wherein the radio frequency channels included in the sixth radio frequency channel group belong to the fifth radio frequency channel group, and the number of radio frequency channels included in the fifth radio frequency channel group is greater than that of the sixth radio frequency channel group
  • the number of radio frequency channels included; the radio frequency channels included in the seventh radio frequency channel group belong to the fifth radio frequency channel group, and the number of radio frequency channels included in the sixth radio frequency channel group is greater than the seventh radio frequency channel
  • the number of RF channels included in the group is
  • the transmitting service through the first number of radio frequency channels includes: when the fifth radio frequency channel group is opened in the first time unit, passing through the fifth radio frequency channel Group transmission of the service; or when the sixth radio frequency channel group is opened in the first time unit, the service is transmitted through the sixth radio frequency channel group; or when the service is opened in the first time unit In the seventh radio frequency channel group, the service is transmitted through the seventh radio frequency channel group.
  • the radio frequency channel when the service is a downlink service, includes at least one of a power amplifier, a low-noise amplifier, a digital-to-analog converter, and a radio frequency signal processing unit; or, the service is an uplink service.
  • the radio frequency channel includes at least one of a small signal amplifier, a low noise amplifier, an analog-to-digital converter, and a radio frequency signal processing unit.
  • an embodiment of the present application provides a communication device, which can execute any of the foregoing methods.
  • the above-mentioned device includes one or more processors and communication interfaces.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the network device in the above method. For example, generating resource configuration information.
  • the communication interface is used to support the device to communicate with other devices, and realize the function of receiving and/or sending. For example, sending resource configuration information.
  • the apparatus may further include one or more memories, where the memories are configured to be coupled with the processor, and store necessary program instructions and/or data of the network device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be a base station, gNB or TRP, etc.
  • the communication interface may be a transceiver, or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the device may also be a communication chip.
  • the communication interface may be an input/output circuit or interface of a communication chip.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes the network device in the first aspect or any one of the possible implementations of the first aspect The method of completion.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the foregoing method examples.
  • these units can perform corresponding functions in the foregoing method examples.
  • a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the method in the first aspect or any one of the possible implementation manners of the first aspect.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute any one of the first aspect or the first aspect. The method in the possible implementation mode.
  • the present application provides a communication device, the communication device includes a processor and a memory, the memory is used to store computer programs or instructions; the processor is used to execute the computer programs or instructions stored in the memory, So that the communication device executes the method in the first aspect or any one of the possible implementation manners of the first aspect.
  • the present application provides a chip including a processor, the processor is coupled with a memory, and is configured to execute a computer program or instruction stored in the memory, and when the processor executes the computer program or instruction , Making the method in the first aspect or any one of the possible implementation manners of the first aspect.
  • Fig. 1 is a schematic structural diagram of a wireless communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a service transmission method provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a mapping relationship between radio frequency channels and antenna ports according to an embodiment of the application
  • FIG. 5 is a schematic diagram of a mapping relationship between radio frequency channels and antenna ports according to an embodiment of the application
  • FIG. 6 is a schematic diagram of a mapping relationship between radio frequency channels and antenna ports according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of service transmission of a radio frequency channel group provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of service transmission of a radio frequency channel group provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • NR New Radio
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device may be a device with a wireless transceiver function or a chip that can be installed in any device, and may also be referred to as user equipment (UE), access terminal, user unit, or user station. , Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • Mobile station mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal equipment in the embodiments of this application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in the smart city (smart city), wireless terminals in the smart home (smart home), and so on.
  • the network equipment can be the next-generation base station (next Generation node B, gNB) in the NR system, the evolutional node B (eNB) in the LTE system, or the global system of mobile communication.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of this application.
  • the wireless communication system includes terminal equipment and network equipment.
  • Figure 1 is only an example. In practical applications, there may be multiple terminal equipment establishing connections with the network equipment.
  • the transmission link from the terminal device to the network device is recorded as uplink (UL), and the transmission link from the network device to the terminal device is recorded as downlink (DL).
  • UL uplink
  • DL downlink
  • data transmission in the uplink can be abbreviated as uplink data transmission or uplink transmission
  • data transmission in the downlink can be abbreviated as downlink data transmission or downlink transmission.
  • terminal equipment and network equipment support one or more of the same radio access technology (RAT), such as NR, LTE, and so on.
  • RAT radio access technology
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • the communication device may be the network device in the embodiment of the present application.
  • the communication device may include application subsystems, memory, massive storage, baseband subsystems, radio frequency intergreted circuit (RFIC), radio frequency front end (radio frequency front end, RFFE) devices, and antennas (antenna, ANT), these devices can be coupled through various interconnection buses or other electrical connection methods.
  • RFIC radio frequency intergreted circuit
  • RFFE radio frequency front end
  • antennas antennas
  • ANT_1 represents the first antenna, and so on, ANT_N represents the Nth antenna, and N is a positive integer greater than 1.
  • Tx represents the transmission path
  • Rx represents the reception path
  • different numbers represent different paths.
  • FBRx represents the feedback receiving path
  • PRx represents the main receiving path
  • DRx represents the diversity receiving path.
  • HB stands for high frequency
  • LB stands for low frequency. Both refer to the relative high and low of the frequency.
  • BB stands for baseband. It should be understood that the marks and components in FIG. 2 are for illustrative purposes only, and are only used as a possible implementation manner, and the embodiments of the present application also include other implementation manners.
  • the application subsystem can be used as the main control system or main computing system of the communication device, used to run the main operating system and application programs, manage the software and hardware resources of the entire communication device, and provide users with a user operation interface.
  • the application subsystem may include one or more processing cores.
  • the application subsystem may also include driver software related to other subsystems (such as the baseband subsystem).
  • the baseband subsystem may also include one or more processing cores, as well as a hardware accelerator (HAC) and cache.
  • HAC hardware accelerator
  • RFFE devices, RFIC 1 can jointly form a radio frequency subsystem.
  • the radio frequency subsystem includes radio frequency channels, which can be further divided into radio frequency receive path and radio frequency transmit path.
  • the radio frequency receiving channel can receive the radio frequency signal through the antenna, and process the radio frequency signal (such as amplifying, filtering and down-converting) to obtain the baseband signal, and pass it to the baseband subsystem.
  • the radio frequency transmitting channel can receive the baseband signal from the baseband subsystem, perform radio frequency processing (such as up-conversion, amplification and filtering) on the baseband signal to obtain the radio frequency signal, and finally radiate the radio frequency signal into the space through the antenna.
  • the radio frequency transmission channel may include a low noise amplifier (LNA), a power amplifier (PA), a mixer (mixer), a local oscillator (LO), and a filter.
  • LNA low noise amplifier
  • PA power amplifier
  • mixer mixer
  • LO local oscillator
  • filter filter
  • electronic devices such as digital to analog converters (DAC), these electronic devices can be integrated into one or more chips as needed.
  • the antenna can sometimes be considered part of the radio frequency subsystem.
  • the radio frequency receiving channel can include a small signal amplifier, a low noise amplifier (LNA), a power amplifier (PA), a mixer (mixer), a local oscillator (LO), a filter (filter ) And electronic devices such as analog to digital converter (ADC), which can be integrated into one or more chips as required.
  • LNA low noise amplifier
  • PA power amplifier
  • mixer mixer
  • LO local oscillator
  • filter filter
  • ADC analog to digital converter
  • the radio frequency transmitting channel and the radio frequency receiving channel may further include a radio frequency signal processing unit
  • the radio frequency signal processing unit may be a general-purpose processor or a processor designed for a specific field.
  • it may be a central processing unit (CPU) or a digital signal processor (DSP).
  • the processor can also be a microcontroller (microcontrol unit, MCU), graphics processing unit (GPU), image signal processing (ISP), audio signal processor (ASP) ), and a processor specially designed for artificial intelligence (AI) applications.
  • the AI processor includes, but is not limited to, a neural network processing unit (NPU), a tensor processing unit (TPU), and a processor called an AI engine.
  • the communication device in the embodiment of the present application may include multiple radio frequency receiving channels and radio frequency transmitting channels.
  • the memory can be divided into a volatile memory (volatile memory) and a non-volatile memory (non-volatile memory, NVM).
  • Volatile memory refers to the memory in which the data stored inside will be lost when the power supply is interrupted.
  • volatile memory is mainly random access memory (RAM), including static random access memory (static RAM, SRAM) and dynamic random access memory (dynamic RAM, DRAM).
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • Non-volatile memory refers to the memory in which the data stored in the internal storage will not be lost even if the power supply is interrupted.
  • Common non-volatile memories include read only memory (ROM), optical disks, magnetic disks, and various memories based on flash memory technology.
  • volatile memory can be used for memory
  • non-volatile memory such as magnetic disk or flash memory, can be used for mass storage.
  • the baseband subsystem and the radio frequency subsystem jointly constitute a communication subsystem, which provides wireless communication functions for the communication device.
  • the baseband subsystem is responsible for managing the software and hardware resources of the communication subsystem, and can configure the working parameters of the radio frequency subsystem.
  • One or more processing cores of the baseband subsystem may be integrated into one or more chips, which may be referred to as a baseband processing chip or a baseband chip.
  • RFIC can be called a radio frequency processing chip or a radio frequency chip.
  • the functional division of the radio frequency subsystem and the baseband subsystem in the communication subsystem can also be adjusted.
  • part of the functions of the radio frequency subsystem is integrated into the baseband subsystem, or part of the functions of the baseband subsystem is integrated into the radio frequency subsystem.
  • the communication device may use a combination of different numbers and different types of processing cores.
  • the radio frequency subsystem may include an independent antenna, an independent radio frequency front end (RF front end, RFFE) device, and an independent radio frequency chip.
  • Radio frequency chips are sometimes called receivers, transmitters, or transceivers. Antennas, RF front-end devices and RF processing chips can all be manufactured and sold separately.
  • the radio frequency subsystem can also adopt different devices or different integration methods based on power consumption and performance requirements. For example, part of the devices belonging to the radio frequency front end are integrated into the radio frequency chip, and even the antenna and the radio frequency front end device are integrated into the radio frequency chip.
  • the radio frequency chip may also be called a radio frequency antenna module or an antenna module.
  • the baseband subsystem may be used as an independent chip, and the chip may be called a modem (modem) chip.
  • the hardware components of the baseband subsystem can be manufactured and sold in units of modem chips.
  • the modem chip is sometimes called a baseband chip or baseband processor.
  • the baseband subsystem can also be further integrated in the SoC chip, manufactured and sold in units of the SoC chip.
  • the software components of the baseband subsystem can be built into the hardware components of the chip before the chip leaves the factory, or imported into the hardware components of the chip from other non-volatile memories after the chip leaves the factory, or can also be downloaded online through the network And update these software components.
  • FIG. 3 it is a schematic flowchart of a service transmission method provided by an embodiment of this application.
  • the execution subject of the process shown in FIG. 3 may be a network device. Referring to FIG. 3, the method includes:
  • Step 301 Determine the business volume of the first time unit.
  • the first time unit can be a period of time, such as hours or minutes.
  • a time unit can be one hour, 10 hours, 30 minutes, etc.; the first time unit can also be a transmission time interval (transmit time).
  • Interval (TTI) or time slot (slot) or subframe (subframe) or symbol or radio frame is a unit, which is not limited in the embodiment of the present application.
  • the business volume of the first time unit can be predicted based on the business volume in the historical data, and the business volume of the first time unit can also be inferred through a neural network algorithm, etc., which will not be illustrated one by one here.
  • the first time unit may be specifically configured by the network device, or may be defined in the communication standard, and may also be determined according to other methods, which will not be repeated here.
  • Step 302 Determine, according to the traffic volume and the first mapping relationship, to open a first number of radio frequency channels within the first time unit.
  • the first mapping relationship includes the mapping relationship between the traffic volume and the number of radio frequency channels.
  • the specific implementation of the first mapping relationship is not limited in the embodiment of the present application, and will be described in the following embodiments, and will not be repeated here.
  • Step 303 In the first time unit, transmit a service through the first number of radio frequency channels, where the service includes at least one of a data channel and a reference signal.
  • the factors that affect communication transmission performance can be divided into at least two categories.
  • the first category is air interface transmission parameters specified by standardized protocols, such as antenna port configuration information.
  • This type of information requires network equipment to notify terminal equipment, and MIMO transmission is realized based on the configuration of the antenna port and the transmission mode based on the configuration.
  • This type of information requires the network equipment and terminal equipment to be unified;
  • the second type is the implementation behavior of the network equipment or terminal equipment, which does not require standardization, and the network equipment or terminal equipment can Change the implementation according to your own capabilities, but this type of implementation cannot affect the first type of configuration parameters.
  • the number of radio frequency channels configured by the network device can be more than the number of antenna ports configured by the air interface transmission parameters.
  • the number of radio frequency channels configured by the network device is 8 and the number of antenna ports configured on the air interface side is 4.
  • Two radio frequency channels can be mapped to one antenna port, so that the power of multiple radio frequency channels can be used to transmit the signal corresponding to the same antenna port, which improves the signal-to-noise ratio of the signal and thus improves the transmission performance.
  • the existing radio frequency channel shutdown technology generally requires the radio frequency channel to be shut down at the same time as the corresponding antenna port. Signal transmission to ensure the consistency of the antenna ports that turn off the reference signal and the data channel. However, in some scenarios, the number of antenna ports cannot be reconfigured in time, so that the antenna port through which the network device actually sends a signal does not match the antenna port determined by the terminal device, resulting in performance degradation.
  • the embodiments of the present application provide the following methods to transmit services, which can realize that while some radio frequency channels are turned off to save power consumption, any antenna ports that send signals are not turned off, and the remapping between the radio frequency channels and the antenna ports is achieved. , To ensure that the antenna port where the network device actually sends the signal matches the antenna port determined by the terminal device, and improve the system performance when some channels are turned off. The following is a detailed description in conjunction with the process shown in FIG. 3.
  • step 302 there may be multiple implementation manners for the first mapping relationship.
  • the number of radio frequency channels that need to be opened is different when the service volume is within different value ranges. Among different value ranges, the smaller the value range, the smaller the number of RF channels that need to be turned on.
  • the first mapping relationship may be as shown in Table 1.
  • the first service volume threshold is less than the second service volume threshold.
  • the first service volume threshold and the second service volume threshold may be configured by the network device, or defined in the communication standard, or determined in other ways. I won't repeat them here.
  • Table 1 is only an example, and there may be other situations in the first mapping relationship, and the specifics can be deduced by analogy, and the examples are not described one by one.
  • the traffic volume can be divided into four levels, from small to large as the first traffic threshold, the second traffic threshold, and the first For the third service volume threshold and the fourth service volume threshold, the corresponding number of opened radio frequency channels can be 1 radio frequency channel, 2 radio frequency channels, 4 radio frequency channels and 8 radio frequency channels, respectively.
  • the second mapping relationship between the first number of radio frequency channels and the second number of antenna ports can also be determined; wherein, the second number does not follow the first number of antenna ports.
  • a change in quantity changes.
  • the second number may be the number of antenna ports configured by the network device, and may be a fixed value.
  • the service corresponding to each antenna port may be transmitted through at least one radio frequency channel mapped by each antenna port in the second number of antenna ports according to the second mapping relationship.
  • the second mapping relationship includes the mapping relationship between any one of the second number of antenna ports and at least one of the first number of radio frequency channels.
  • each antenna port of the second number of antenna ports maps at least one radio frequency channel
  • each of the first number of radio frequency channels maps at least one antenna port.
  • the second mapping relationship may be determined according to the first quantity and the second quantity, which will be discussed in different situations below.
  • the first quantity is greater than or equal to the second quantity.
  • different antenna ports in the second number of antenna ports map different radio frequency channels.
  • each antenna port maps different radio frequency channels.
  • the second mapping relationship may be R1 mapping RF1, R2 mapping RF2, R3 mapping RF3, and R4 mapping RF4.
  • the specific second mapping relationship may be as shown in FIG. 4 and Table 2.
  • the reference signal and data channel corresponding to R1 can be transmitted through RF1; the reference signal and data channel corresponding to R2 can be transmitted through RF2; the reference signal corresponding to R3 can be transmitted through RF3 And data channel; The reference signal and data channel corresponding to R4 are transmitted through RF4. Other situations will not be repeated.
  • the first quantity is less than the second quantity.
  • At least two antenna ports among different antenna ports in the second number of antenna ports are mapped to the same radio frequency channel.
  • the second number of antenna ports includes at least two antenna ports used for transmission diversity transmission data channels, the radio frequency channel mapped by each antenna port of the at least two antenna ports different.
  • the at least two antenna ports used for the transmission diversity transmission data channel may mean that the at least two antenna ports transmit the same data stream.
  • the network device includes 4 radio frequency channels, namely RF1, RF2, RF3, and RF4, and the network device is configured with 4 antenna ports, namely R1, R2, R3, and R4.
  • the mapping relationship between radio frequency channels and antenna ports It can be as shown in Table 1. Assume that R1 and R3 send the same data stream, R2 and R4 send the same data stream, and R1 and R2 send different data streams. In this scenario, R1 and R3 are antenna ports used for transmission diversity to send data channels, and R2 and R4 are antenna ports used for transmission diversity to send data channels.
  • the second mapping relationship may be R1 mapping RF1, R2 mapping RF1, R3 mapping RF2, and R4 mapping RF2.
  • the specific second mapping relationship may be as shown in FIG. 5 and Table 3.
  • the reference signal and data channel corresponding to R1 and the reference signal and data channel corresponding to R2 can be transmitted through RF1; the reference signal and data corresponding to R3 can be transmitted through RF2 Channel, and the reference signal and data channel corresponding to R4.
  • R1 and R2 can also be mapped to RF2, and R3 and R4 can also be mapped to RF1.
  • the mapping relationship represents partial data through an antenna port mapping coefficients R i ⁇ ij transmitted from the post-processing channel RF j.
  • the antenna ports of the second number are all mapped with this one radio frequency channel.
  • the same radio frequency channel is used to transmit the reference signals and data channels corresponding to all different antenna ports.
  • the reference signal and data channel corresponding to R1 the reference signal and data channel corresponding to R2, the reference signal and data channel corresponding to R3, and R4 can be transmitted through RF1.
  • the radio frequency channel in order to ensure that the transmission performance before and after the radio frequency channel is turned off, it is necessary to not change the power of the reference signal used to measure coverage per unit resource. Therefore, it is used to transmit the corresponding antenna port.
  • the total power of the unit resource corresponding to the service remains unchanged, and the total power is provided by the power of multiple radio frequency channels corresponding to the antenna port.
  • T represents the channel and P represents the antenna port; the network equipment is configured with 8 radio frequency channels and the number of antenna ports configured Is 4.
  • P represents the antenna port
  • the network equipment is configured with 8 radio frequency channels and the number of antenna ports configured Is 4.
  • the power provided by each RF channel on the unit resource of its mapped antenna port is P 0.
  • the total power of the reference signal corresponding to each antenna port on the unit resource is 2P 0
  • one of the antenna ports is powered by two RF channels.
  • half of the radio frequency channels are turned off, it becomes 4 radio frequency channels and 4 antenna ports (4T4P).
  • each antenna port maps a radio frequency channel, so each antenna port has only one radio frequency channel to provide power.
  • the power per unit resource of the reference signal sent by each radio frequency channel to the respective mapped antenna port is 2P 0.
  • the power per unit resource of the reference signal sent by each radio frequency channel to the respective mapped antenna port is 2P 0.
  • radio frequency channel 4 antenna ports (1T4P) when 7/8 of the radio frequency channels are turned off to 1 radio frequency channel 4 antenna ports (1T4P), at this time, one radio frequency channel needs to provide power to the reference signal sent by the corresponding four antenna ports, and each radio frequency channel The power provided to the reference signal sent by the respective mapped antenna port is 2P 0 , which can be referred to Table 5(b) for details.
  • the number of opened radio frequency channels can be determined according to the traffic volume, thereby reducing the power consumption of the network device. Furthermore, when only some radio frequency channels are turned on, MIMO transmission modes, including diversity and space division multiplexing, can still be supported, and the coverage performance of the cell remains unchanged, so that the service transmission performance may not be reduced.
  • the antenna ports of the network equipment still send corresponding services based on the mapped radio frequency channels, so the network equipment does not need to notify the terminal equipment of which antenna ports’ radio frequency channels have been turned off, so there is no need to reconfigure any antennas. Port parameters or transmission mode. Further, since the antenna port can still transmit services after the network device shuts off some radio frequency channels, the network device does not need to be restarted.
  • the existing radio frequency channel shutdown technology generally requires that the corresponding antenna port be shut off at the same time as the radio frequency channel is shut down, and the consistency of the antenna ports of the reference signal and the data channel is ensured.
  • This type of radio frequency channel shutdown generally requires reconfiguration or remapping based on the antenna port to take effect, which makes the effective time longer and is not suitable for the busy period of communication.
  • "communication busy hour” is generally defined as the average resource utilization rate of the communication coefficient within a period of time exceeds a certain threshold, for example, the utilization rate of physical resource blocks exceeds 50%.
  • the embodiment of the present application provides a A method for turning off the radio frequency channel with asymmetric reference signal and data channel can avoid the influence on the measurement reference signal of the terminal equipment, and can realize energy saving by turning off the radio frequency channel corresponding to the data channel.
  • other compensation transmission methods such as adaptive coding and modulation
  • the first time unit may be a unit of a transmission time interval (transmit time interval, TTI) or a time slot (slot) or a subframe (subframe) or a symbol or a radio frame.
  • TTI transmission time interval
  • slot time slot
  • subframe subframe
  • the radio frequency channels included in the network device may be divided into at least two radio frequency channel groups.
  • the following takes the division into two radio frequency channel groups as an example for description, and other cases can be deduced by analogy.
  • the second radio frequency channel group may be a subset of the first radio frequency channel group.
  • the radio frequency channels included in the second radio frequency channel group belong to radio frequency channels shared by the first radio frequency channel group and the second radio frequency channel group, and the number of radio frequency channels included in the first radio frequency channel group It is greater than the number of radio frequency channels included in the second radio frequency channel group.
  • the radio frequency channels in the first radio frequency channel group are all radio frequency channels included in the network device.
  • a network device includes 8 radio frequency channels
  • the first radio frequency channel group can be all 8 radio frequency channels included in the network device
  • the radio frequency channels included in the second radio frequency channel group can be any 4 of the 8 radio frequency channels. aisle.
  • the number of opened radio frequency channels for different service volume mappings may be as shown in Table 6.
  • the first radio frequency channel group or the second radio frequency channel group is turned on in the first time unit; if the business of the first time unit If the amount is greater than or equal to the first threshold, the second radio frequency channel group is turned on in the first time unit.
  • the specific value of the first threshold may be determined according to actual conditions, which is not limited in the embodiment of the present application.
  • the reference signal or data channel when in the first time unit, can be transmitted according to the following method:
  • the first radio frequency channel group is turned on in the first time unit and sent through the first antenna port group corresponding to the first radio frequency channel group Reference signal and data channel;
  • the first radio frequency channel group is turned on, and the first radio frequency channel group corresponding to the first radio frequency channel group is passed through.
  • the antenna port group sends the reference signal; when a data channel needs to be sent in the first time unit, a second radio frequency channel group is turned on, and the data is sent through the second antenna port group corresponding to the second radio frequency channel group channel.
  • both the first antenna port group and the second antenna port group include at least one antenna port.
  • the second antenna port group is a subset of the first antenna port group, that is, any antenna port in the second antenna port group belongs to the first antenna port group, and the first antenna port group includes at least one Antenna ports that do not belong to the second antenna port group.
  • the first time unit is a subframe including 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • the 14 OFDM symbols are respectively symbols 0 to 0 in time sequence.
  • Symbol 13 Among them, reference signals need to be sent in symbol 0, symbol 4, symbol 7, and symbol 11.
  • the first radio frequency channel group includes 4 radio frequency channels, RF1, RF2, RF3, and RF4; the second radio frequency channel group includes 2 radio frequency channels, RF1 and RF2, respectively.
  • the first radio frequency channel group can be turned on, and the reference signal can be sent through the first radio frequency channel group; in the first time unit, the symbol 0 can be divided.
  • the second radio frequency channel group can be turned on, and the data channel can be sent through the second radio frequency channel group.
  • the radio frequency channel used to transmit the data channel on this part of the frequency domain resource The same radio frequency channel as other OFDM symbols used to transmit data channels.
  • the difference between the number of radio frequency channels (or the number of antenna ports) for transmitting data channels and the number of radio frequency channels (or the number of antenna ports) for transmitting reference signals may cause channel estimation mismatch. Lead to a decline in network transmission performance.
  • a terminal device based on 4 antenna ports and transmission mode TM4 is still based on 4 antenna ports for channel measurement and precoding matrix index feedback, and the precoding length used when receiving the data channel is 4; but in fact , The antenna port used by the network device to send the data channel is 2, so the precoding length on the sending side is 2.
  • the network device sends the reference signal based on the antenna port group corresponding to the first radio frequency channel group, sends the data channel based on the antenna port group corresponding to the second radio frequency channel group, and determines the precoding based on the number of antenna ports corresponding to the second radio frequency channel group. Length to send data channel.
  • the number of RF channels to be opened is determined according to the traffic volume of the first time unit.
  • the number of RF channels for sending reference signals is different from the number of RF channels for sending data channels. Regardless of the traffic volume, the number of RF channels for sending reference signals is different. Always remain unchanged, so as to ensure that when some RF channels are turned off, the current business volume in the first time unit is met, without affecting the transmission of reference signals, and does not affect the measurement of reference signal volume by terminal equipment to ensure high subsequent transmissions. Business volume requirements.
  • radio frequency channels corresponding to multiple cells can be shared.
  • different cells have different requirements for the number of radio frequency channels or antenna ports in actual transmission. This makes the shared radio frequency channel redundant for some cells, so it can be used during transmission.
  • the radio frequency channels of a part of the cells are shut down to achieve energy saving, which will be described in detail below with reference to the process shown in FIG. 3.
  • the network device can set up multiple cells at the same time by means of carrier aggregation, etc.
  • carrier aggregation etc.
  • the following description will be made by taking the first cell and the second cell as an example, and other situations can be deduced by analogy.
  • the embodiment of the present application does not limit the first cell and the second cell.
  • the first cell may be an LTE cell
  • the second cell may be an NB-IOT cell.
  • the determined service volume of the first time unit may include the first service volume of the first cell and the second service volume of the second cell.
  • the radio frequency channels included in the network device may be divided into at least two radio frequency channel groups.
  • the following takes the division into two radio frequency channel groups as an example for description, and other cases can be deduced by analogy.
  • the fourth second radio frequency channel group can be a subset of the third radio frequency channel group.
  • the radio frequency channels included in the fourth radio frequency channel group belong to radio frequency channels shared by the third radio frequency channel group and the fourth radio frequency channel group, and the number of radio frequency channels included in the third radio frequency channel group It is greater than the number of radio frequency channels included in the fourth radio frequency channel group.
  • the radio frequency channels in the third radio frequency channel group are all radio frequency channels included in the network device.
  • the network device includes 4 radio frequency channels
  • the third radio frequency channel group can be all 4 radio frequency channels included in the network device
  • the radio frequency channels included in the fourth radio frequency channel group can be any 2 of the 4 radio frequency channels. aisle.
  • the first mapping relationship may be as shown in Table 7.
  • the specific value of the second threshold may be determined according to actual conditions, which is not limited in the embodiment of the present application.
  • Table 7 is just an example, and there may also be other first mapping relationships, which will not be illustrated one by one here.
  • the third radio frequency channel group is opened in the first time unit; if the first If both the traffic volume and the second traffic volume are less than the second threshold, a fourth radio frequency channel group is opened in the first time unit.
  • the service of the first cell and the second radio frequency channel group may be sent through the third radio frequency channel group. At least one of the services of the second cell;
  • the service of the first cell and the service of the second cell can be sent through the fourth radio frequency channel group. At least one item in the business.
  • the network device includes 4 radio frequency channels, namely RF1, RF2, RF3, and RF4.
  • the third radio frequency channel group may be all 4 radio frequency channels included in the network device, and the radio frequency channels included in the fourth radio frequency channel group may be RF1 and RF2.
  • the third radio frequency channel group can be turned on, that is, RF1, RF2, and RF2 are turned on. RF3 and RF4.
  • at least one of the service of the first cell and the service of the second cell may be transmitted through RF1, RF2, RF3, and RF4.
  • the fourth radio frequency channel group may be turned on, that is, RF1 and RF2 may be turned on.
  • at least one of the service of the first cell and the service of the second cell may be transmitted through RF1 and RF2.
  • Embodiment 1 to Embodiment 3 can be applied to downlink transmission.
  • the service transmitted in Embodiment 1 to Embodiment 3 is a downlink service
  • the radio frequency channel is a radio frequency transmission channel.
  • the radio frequency channel may include one or more of the following modules: a power amplifier, a low noise amplifier, a digital-to-analog converter, and a radio frequency signal processing unit.
  • the hardware units corresponding to the radio frequency receiving channels are mainly low noise amplifiers and radio frequency chips.
  • the embodiment of the present application provides a method that can save the power consumption of the radio frequency receiving channel, which is described in detail below with reference to the process shown in FIG. 3.
  • the radio frequency channels included in the network device may be divided into at least two radio frequency channel groups.
  • the following takes the division into three radio frequency channel groups as an example for description, and other cases can be deduced by analogy.
  • the sixth radio frequency channel group may be a subset of the fifth radio frequency channel group
  • the seventh radio frequency channel group The channel group may be a subset of the sixth radio frequency channel group.
  • the radio frequency channels included in the sixth radio frequency channel group belong to radio frequency channels shared by the fifth radio frequency channel group and the sixth radio frequency channel group, and the radio frequency channels included in the fifth radio frequency channel group have The number is greater than the number of radio frequency channels included in the sixth radio frequency channel group; the radio frequency channels included in the seventh radio frequency channel group belong to radio frequency channels shared by the sixth radio frequency channel group and the seventh radio frequency channel group, and The number of radio frequency channels included in the sixth radio frequency channel group is greater than the number of radio frequency channels included in the seventh radio frequency channel group.
  • the radio frequency channels in the fifth radio frequency channel group are all radio frequency channels included in the network device.
  • the network device includes 8 radio frequency channels
  • the fifth radio frequency channel group can be all 8 radio frequency channels included in the network device
  • the radio frequency channels included in the sixth radio frequency channel group can be any 4 of the 8 radio frequency channels.
  • the radio frequency channels included in the seventh radio frequency channel group may be any two radio frequency channels among the radio frequency channels included in the sixth radio frequency channel group.
  • the first mapping relationship may be:
  • the seventh radio frequency channel group is opened.
  • the service may be transmitted through the fifth radio frequency channel group
  • the service may be transmitted through the sixth radio frequency channel group;
  • the service may be transmitted through the seventh radio frequency channel group.
  • the network device can adaptively adjust the number of opened radio frequency channels according to the business volume of the first time unit, which can reduce the power consumption of the network device and achieve the purpose of energy saving.
  • the fourth embodiment can be applied to downlink transmission.
  • the service transmitted in the fourth embodiment is an uplink service
  • the radio frequency channel is a radio frequency receiving channel.
  • the radio frequency channel may include one or more of the following modules: a small signal amplifier, a low noise amplifier, an analog-to-digital converter, and a radio frequency signal processing unit.
  • Embodiment 1 to Embodiment 4 can be independent embodiments or can be combined according to internal logic.
  • Embodiment 1 and Embodiment 2 are combined into one embodiment, and these solutions fall into the protection scope of this application. middle.
  • the methods and operations implemented by the network device may also be implemented by components (for example, a chip or a circuit) that can be used for the network device.
  • the network device may include a hardware structure and/or software modules, and implement the foregoing functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the various embodiments of the present application may be integrated in one processor, or may exist alone physically, or two or more modules may be integrated in one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • an embodiment of the present application further provides an apparatus 900 for implementing the function of the network device in the above-mentioned method.
  • the device may be a software module or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 900 may include: a processing unit 901 and a communication unit 902.
  • the communication unit may also be referred to as a transceiving unit, and may include a sending unit and/or a receiving unit, which are respectively configured to perform the steps of sending and receiving by the network device in the above method embodiment.
  • the processing unit 901 is configured to determine the service volume of the first time unit; determine, according to the service volume and the first mapping relationship, to open the first number of radio frequency channels in the first time unit; the first mapping relationship includes the service The mapping relationship between the quantity and the number of radio frequency channels;
  • the communication unit 902 is configured to transmit a service through the first number of radio frequency channels in the first time unit, and the service includes at least one of a data channel and a reference signal.
  • the processing unit 901 before the service is transmitted through the first number of radio frequency channels, the processing unit 901 is further configured to:
  • a second mapping relationship between the first number of radio frequency channels and a second number of antenna ports is determined; wherein the second number does not change with the change of the first number.
  • the second mapping relationship includes a mapping between any one of the second number of antenna ports and at least one of the first number of radio frequency channels relation;
  • the first number is less than the second number
  • at least two antenna ports of different antenna ports in the second number of antenna ports are mapped to the same radio frequency channel.
  • the method when the first number is less than the second number, the method further includes:
  • each of the at least two antenna ports maps different radio frequency channels .
  • the communication unit 902 is specifically configured to:
  • the service corresponding to each antenna port is transmitted through at least one radio frequency channel mapped by each antenna port in the second number of antenna ports.
  • the first number is the number of radio frequency channels included in the second radio frequency channel group or the number of radio frequency channels included in the first radio frequency channel group;
  • the processing unit 901 is specifically configured to:
  • the radio frequency channels included in the second radio frequency channel group belong to radio frequency channels shared by the first radio frequency channel group and the second radio frequency channel group, and the number of radio frequency channels included in the first radio frequency channel group It is greater than the number of radio frequency channels included in the second radio frequency channel group.
  • the communication unit 902 is specifically configured to:
  • the communication unit 902 is specifically configured to: if the traffic volume is greater than or equal to the first threshold, pass the corresponding first radio frequency channel group within the first time unit The first antenna port group transmits the reference signal and the data channel.
  • any antenna port in the second antenna port group belongs to the first antenna port group, and at least one antenna port in the first antenna port group does not belong to the second antenna port group,
  • One of the antenna port groups includes at least one antenna port.
  • the service volume includes the first service volume of the first cell and the second service volume of the second cell; the first cell and the second cell belong to the same network device.
  • the first number is the number of radio frequency channels included in the fourth radio frequency channel group or the number of radio frequency channels included in the third radio frequency channel group;
  • the processing unit 901 is specifically configured to:
  • a fourth radio frequency channel group is opened in the first time unit
  • the radio frequency channels included in the fourth radio frequency channel group belong to radio frequency channels shared by the third radio frequency channel group and the fourth radio frequency channel group, and the number of radio frequency channels included in the third radio frequency channel group It is greater than the number of radio frequency channels included in the fourth radio frequency channel group.
  • the communication unit 902 is specifically configured to:
  • the service of the first cell and/or the service of the second cell is sent through the fourth radio frequency channel group.
  • the first number is the number of radio frequency channels included in the fifth radio frequency channel group or the number of radio frequency channels included in the sixth radio frequency channel group or the number of radio frequency channels included in the seventh radio frequency channel group;
  • the processing unit 901 is specifically configured to:
  • the radio frequency channels included in the sixth radio frequency channel group belong to the fifth radio frequency channel group, and the number of radio frequency channels included in the fifth radio frequency channel group is greater than the number of radio frequency channels included in the sixth radio frequency channel group quantity;
  • All radio frequency channels included in the seventh radio frequency channel group belong to the fifth radio frequency channel group, and the number of radio frequency channels included in the sixth radio frequency channel group is greater than the number of radio frequency channels included in the seventh radio frequency channel group .
  • the communication unit 902 is specifically configured to:
  • the service is transmitted through the seventh radio frequency channel group.
  • the radio frequency channel includes at least one of a power amplifier, a low noise amplifier, a digital-to-analog converter, and a radio frequency signal processing unit;
  • the radio frequency channel includes at least one of a small signal amplifier, a low noise amplifier, an analog-to-digital converter, and a radio frequency signal processing unit.
  • FIG. 10 is an apparatus 1000 provided by an embodiment of the application, and the apparatus shown in FIG. 10 may be a hardware circuit implementation of the apparatus shown in FIG. 9.
  • the communication device can be applied to the flowchart shown above to perform the function of the network device in the above method embodiment.
  • FIG. 10 only shows the main components of the communication device.
  • the apparatus 1000 shown in FIG. 10 includes at least one processor 1020, configured to implement any method implemented by a network device provided in the embodiment of the present application.
  • the device 1000 may also include at least one memory 1030 for storing program instructions and/or data.
  • the memory 1030 and the processor 1020 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may operate in cooperation with the memory 1030.
  • the processor 1020 may execute program instructions stored in the memory 1030. At least one of the at least one memory may be included in the processor.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processing circuit (digital signal processor, DSP), a dedicated integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory. It should be noted that the memories of the systems and methods described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the apparatus 1000 may further include a communication interface 1010 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1000 can communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver with integrated transceiver functions, or an interface circuit.
  • the device 1000 may further include a communication line 1040.
  • the communication interface 1010, the processor 1020, and the memory 1030 may be connected to each other through a communication line 1040;
  • the communication line 1040 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture). , Referred to as EISA) bus and so on.
  • the communication line 1040 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used to represent in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor 1020 is configured to determine the service volume of the first time unit; determine, according to the service volume and the first mapping relationship, to open the first number of radio frequency channels in the first time unit; the first mapping relationship includes the service The mapping relationship between the quantity and the number of radio frequency channels;
  • the communication interface 1010 is configured to transmit a service through the first number of radio frequency channels in the first time unit, and the service includes at least one of a data channel and a reference signal.
  • the processor 1020 before the service is transmitted through the first number of radio frequency channels, the processor 1020 is further configured to:
  • a second mapping relationship between the first number of radio frequency channels and a second number of antenna ports is determined; wherein the second number does not change with the change of the first number.
  • the second mapping relationship includes a mapping between any one of the second number of antenna ports and at least one of the first number of radio frequency channels relation;
  • the first number is less than the second number
  • at least two antenna ports of different antenna ports in the second number of antenna ports are mapped to the same radio frequency channel.
  • the method when the first number is less than the second number, the method further includes:
  • each of the at least two antenna ports maps different radio frequency channels .
  • the communication interface 1010 is specifically used for:
  • the service corresponding to each antenna port is transmitted through at least one radio frequency channel mapped by each antenna port in the second number of antenna ports.
  • the first number is the number of radio frequency channels included in the second radio frequency channel group or the number of radio frequency channels included in the first radio frequency channel group;
  • the processor 1020 is specifically configured to:
  • the radio frequency channels included in the second radio frequency channel group belong to radio frequency channels shared by the first radio frequency channel group and the second radio frequency channel group, and the number of radio frequency channels included in the first radio frequency channel group It is greater than the number of radio frequency channels included in the second radio frequency channel group.
  • the communication interface 1010 is specifically used for:
  • the communication interface 1010 is specifically configured to: if the traffic volume is greater than or equal to the first threshold, pass the corresponding first radio frequency channel group within the first time unit The first antenna port group transmits the reference signal and the data channel.
  • any antenna port in the second antenna port group belongs to the first antenna port group, and at least one antenna port in the first antenna port group does not belong to the second antenna port group,
  • One of the antenna port groups includes at least one antenna port.
  • the service volume includes the first service volume of the first cell and the second service volume of the second cell; the first cell and the second cell belong to the same network device.
  • the first number is the number of radio frequency channels included in the fourth radio frequency channel group or the number of radio frequency channels included in the third radio frequency channel group;
  • the processor 1020 is specifically configured to:
  • a fourth radio frequency channel group is opened in the first time unit
  • the radio frequency channels included in the fourth radio frequency channel group belong to radio frequency channels shared by the third radio frequency channel group and the fourth radio frequency channel group, and the number of radio frequency channels included in the third radio frequency channel group It is greater than the number of radio frequency channels included in the fourth radio frequency channel group.
  • the communication interface 1010 is specifically used for:
  • the service of the first cell and/or the service of the second cell is sent through the fourth radio frequency channel group.
  • the first number is the number of radio frequency channels included in the fifth radio frequency channel group or the number of radio frequency channels included in the sixth radio frequency channel group or the number of radio frequency channels included in the seventh radio frequency channel group;
  • the processor 1020 is specifically configured to:
  • the radio frequency channels included in the sixth radio frequency channel group belong to the fifth radio frequency channel group, and the number of radio frequency channels included in the fifth radio frequency channel group is greater than the number of radio frequency channels included in the sixth radio frequency channel group quantity;
  • All radio frequency channels included in the seventh radio frequency channel group belong to the fifth radio frequency channel group, and the number of radio frequency channels included in the sixth radio frequency channel group is greater than the number of radio frequency channels included in the seventh radio frequency channel group .
  • the communication interface 1010 is specifically used for:
  • the service is transmitted through the seventh radio frequency channel group.
  • the radio frequency channel includes at least one of a power amplifier, a low noise amplifier, a digital-to-analog converter, and a radio frequency signal processing unit;
  • the radio frequency channel includes at least one of a small signal amplifier, a low noise amplifier, an analog-to-digital converter, and a radio frequency signal processing unit.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种业务传输方法及装置,其中方法包括:确定第一时间单元的业务量;根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道;所述第一映射关系包括业务量与射频通道数量的映射关系;在所述第一时间单元内,通过所述第一数量的射频通道传输业务,所述业务包括数据信道和参考信号中的至少一种。通过上述方法,根据业务量确定开启的射频通道的数量,从而可以实现降低开启的射频通道数,进而降低功耗。

Description

一种业务传输方法及装置
相关申请的交叉引用
本申请要求在2020年02月17日提交中国国家知识产权局、申请号为202010096886.X、申请名称为“一种业务传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种业务传输方法及装置。
背景技术
目前,多输入多输出(Multi-input Multi-out,MIMO)技术成为了新无线(new radio,NR)系统以及长期演进(long term evolution,LTE)系统等移动通信系统提升系统容量的关键技术。而随着MIMO规格的不断提升,基站配置的天线数量越来越多,基站中的射频通道的数量也随着基站的天线数量成线性的增长。
基站中的一个射频通道包括功率放大器、低噪声放大器、数模转换器、射频芯片以及外围电路等模块,随着射频通道数量的增加,基站的功耗也随之提升。举例来说,基站的天线数量从2增加到64时,基站中的射频通道所包括的器件所对应的功耗将从150瓦提升到600瓦。
为此,如何降低基站的功耗,是一个亟待解决的问题。
发明内容
本申请实施方式的目的在于提供一种业务传输方法及装置,用以解决如何降低基站的功耗的问题。
第一方面,本申请提供一种业务传输方法,包括:确定第一时间单元的业务量;根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道;所述第一映射关系包括业务量与射频通道数量的映射关系;在所述第一时间单元内,通过所述第一数量的射频通道传输业务,所述业务包括数据信道和参考信号中的至少一种。
通过上述方法,根据业务量确定开启的射频通道的数量,从而可以实现降低开启的射频通道数,进而降低功耗。
在一种可能的设计中,所述通过所述第一数量的射频通道传输业务之前,所述方法还包括:确定所述第一数量的射频通道与第二数量的天线端口的第二映射关系;其中,所述第二数量不随所述第一数量的变化而变化。
在一种可能的设计中,第二数量的天线端口为网络设备包括的所有天线端口。
通过这种方法,可以实现不关断任何发送信号的天线端口,并通过射频通道与天线端口之间的重新映射,确保网络设备实际发送信号的天线端口和终端设备确定的天线端口相匹配,提升系统在部分通道关断下的系统性能。而且通过射频通道与天线端口之间的重新映射之后,网络设备不需要进行重启,不会对业务造成传输中断。
在一种可能的设计中,所述第二映射关系包括所述第二数量的天线端口中的任一所述天线端口与所述第一数量的射频通道中的至少一个射频通道之间的映射关系;其中,所述第一数量大于或等于所述第二数量时,所述第二数量的天线端口中不同的天线端口映射不同的射频通道;或者,所述第一数量小于所述第二数量时,所述第二数量的天线端口中不同的天线端口中至少有两个天线端口映射的射频通道相同。
在一种可能的设计中,所述第一数量小于所述第二数量时,还包括:所述第一数量大于1,且所述第二数量的天线端口包括用于传输分集发送数据信道的至少两个天线端口时,所述至少两个天线端口中每个天线端口映射的射频通道不同。
在一种可能的设计中,所述通过所述第一数量的射频通道传输业务,包括:根据所述第二映射关系,通过所述第二数量的天线端口中每个天线端口映射的至少一个射频通道,传输每个天线端口对应的业务。
在一种可能的设计中,所述第一数量为第二射频通道组包括的射频通道数量或者第一射频通道组包括的射频通道数量;所述根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道,包括:如果所述业务量小于第一阈值,则在所述第一时间单元内开启所述第一射频通道组或者所述第二射频通道组;如果业务量大于或等于所述第一阈值,则在所述第一时间单元内开启所述第一射频通道组;其中,所述第二射频通道组中包括的射频通道属于所述第一射频通道组和所述第二射频通道组共享的射频通道,且所述第一射频通道组中包括的射频通道的数量大于第二射频通道组包括的射频通道的数量。
在一种可能的设计中,所述通过所述第一数量的射频通道传输业务,包括:如果所述业务量小于所述第一阈值,则在所述第一时间单元内通过所述第一射频通道组对应的第一天线端口组发送所述参考信号;在所述第一时间单元内发送数据信道时,通过所述第二射频通道组对应的第二天线端口组发送所述数据信道。
在一种可能的设计中,如果所述业务量大于或等于所述第一阈值,则在所述第一时间单元内通过所述第一射频通道组对应的第一天线端口组发送所述参考信号以及所述数据信道。
在一种可能的设计中,所述第二天线端口组中任一天线端口都属于第一天线端口组,且所述第一天线端口组中至少包含一个天线端口不属于第二天线端口组,其中一个天线端口组包含至少一个天线端口。
在一种可能的设计中,所述业务量包括第一小区的第一业务量和第二小区的第二业务量;所述第一小区和第二小区属于同一个网络设备。
在一种可能的设计中,所述第一数量为第四射频通道组包括的射频通道数量或者第三射频通道组包括的射频通道数量;所述根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道,包括:如果所述第一业务量和所述第二业务量中的至少一个大于或等于第二阈值,则在所述第一时间单元内开启第三射频通道组;如果所述第一业务量和所述第二业务量均小于所述第二阈值,则在所述第一时间单元内开启第四射频通道组;其中,所述第四射频通道组中包括的射频通道属于所述第三射频通道组和所述第四射频通道组共享的射频通道,且所述第三射频通道组中包括的射频通道的数量大于第四射频通道组包括的射频通道的数量。
上面的方法中,根据不同小区的业务量确定开启的射频通道数量,从而可以在小区的 业务量减少时,降低开启的射频通道数量,进而实现节能降低功耗的目的。
在一种可能的设计中,所述通过所述第一数量的射频通道传输业务,包括:当在所述第一时间单元内开启所述第三射频通道组时,通过所述第三射频通道组发送所述第一小区的业务和/或所述第二小区的业务;或者当在所述第一时间单元内开启所述第四射频通道组时,通过所述第四射频通道组发送所述第一小区的业务和/或所述第二小区的业务。
在一种可能的设计中,所述第一数量为第五射频通道组包括的射频通道数量或者第六射频通道组包括的射频通道数量或者第七射频通道组包括的射频通道数量;所述根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道,包括:如果所述业务量大于或等于第二门限值,则开启第五射频通道组;如果所述业务量大于第一门限值,且小于所述第二门限值,则开启第六射频通道组;如果所述业务量小于或等于所述第一门限值,则开启第七射频通道组;其中,所述第六射频通道组中包括的射频通道都属于所述第五射频通道组,且所述第五射频通道组包括的射频通道的数量大于所述第六射频通道组包括的射频通道的数量;所述第七射频通道组中包括的射频通道都属于所述第五射频通道组,且所述第六射频通道组包括的射频通道的数量大于所述第七射频通道组包括的射频通道的数量。
在一种可能的设计中,所述通过所述第一数量的射频通道传输业务,包括:当在所述第一时间单元内开启所述第五射频通道组时,通过所述第五射频通道组传输所述业务;或者当在所述第一时间单元内开启所述第六射频通道组时,通过所述第六射频通道组传输所述业务;或者当在所述第一时间单元内开启所述第七射频通道组时,通过所述第七射频通道组传输所述业务。
在一种可能的设计中,所述业务为下行业务时,所述射频通道包括功率放大器、低噪声放大器、数模转换器以及射频信号处理单元中的至少一种;或者,所述业务为上行业务时,所述射频通道包括小信号放大器、低噪声放大器、模数转换器以及射频信号处理单元中的至少一种。
第二方面,本申请实施例提供了一种通信装置,所述通信装置可以执行上述任意一种方法。
在一种可能的设计中,上述装置包括一个或多个处理器和通信接口。所述一个或多个处理器被配置为支持所述装置执行上述方法中网络设备相应的功能。例如,生成资源配置信息。所述通信接口用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,发送资源配置信息。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为基站,gNB或TRP等,所述通信接口可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信接口可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第一方面或第一方面中任一种可能实现方式中网络设备完成的方法。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法 中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第三方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的指令。
第四方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一种可能实现方式中的方法。
第五方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如第一方面或第一方面中任一种可能实现方式中的方法。
第六方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第一方面或第一方面中任一种可能实现方式中的方法。
附图说明
图1为适用于本申请实施例的一种无线通信系统的结构示意图;
图2为本申请实施例提供的一种通信装置的结构示意图;
图3为本申请实施例提供的一种业务传输方法流程示意图;
图4为本申请实施例提供的一种射频通道与天线端口的映射关系示意图;
图5为本申请实施例提供的一种射频通道与天线端口的映射关系示意图;
图6为本申请实施例提供的一种射频通道与天线端口的映射关系示意图;
图7为本申请实施例提供的一种射频通道组的业务传输示意图;
图8为本申请实施例提供的一种射频通道组的业务传输示意图;
图9为本申请实施例提供的一种通信装置结构示意图;
图10为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例的技术方案可以应用于各种支持MIMO的通信系统,例如:新无线(New Radio,NR)系统、全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等,在此不做限制。
本申请实施例中,终端设备,可以为具有无线收发功能的设备或可设置于任一设备中 的芯片,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
网络设备,可以是NR系统中的下一代基站(next Generation node B,gNB),可以是LTE系统中的演进型基站(evolutional node B,eNB),可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB)等。
为了便于表述,本申请中将以基站和终端为例,详细说明本申请实施例的技术方案。
图1为本申请实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统包括终端设备和网络设备,图1只是示例,在实际应用中,可能存在多个终端设备与网络设备建立连接。按照传输方向的不同,从终端设备到网络设备的传输链路记为上行链路(uplink,UL),从网络设备到终端设备的传输链路记为下行链路(downlink,DL)。相类似地,上行链路中的数据传输可简记为上行数据传输或上行传输,下行链路中的数据传输可简记为下行数据传输或下行传输。
该无线通信系统中,终端设备和网络设备支持一种或多种相同的无线电接入技术(radio access technology,RAT),例如NR、LTE等。
图2为本申请实施例提供的一种通信装置的结构示意图。该通信装置可以是本申请实施例中的网络设备。如图2所示,该通信装置可包括应用子系统,内存(memory),大容量存储器(massive storge),基带子系统,射频集成电路(radio frequency intergreted circuit,RFIC),射频前端(radio frequency front end,RFFE)器件,以及天线(antenna,ANT),这些器件可以通过各种互联总线或其他电连接方式耦合。
图2中,ANT_1表示第一天线,依次类推,ANT_N表示第N天线,N为大于1的正整数。Tx表示发送路径,Rx表示接收路径,不同的数字表示不同的路径。FBRx表示反馈接收路径,PRx表示主接收路径,DRx表示分集接收路径。HB表示高频,LB表示低频,两者是指频率的相对高低。BB表示基带。应理解,图2中的标记和组件仅为示意目的,仅作为一种可能的实现方式,本申请实施例还包括其他的实现方式。
其中,应用子系统可作为通信装置的主控制系统或主计算系统,用于运行主操作系统和应用程序,管理整个通信装置的软硬件资源,并可为用户提供用户操作界面。应用子系统可包括一个或多个处理核心。此外,应用子系统中也可包括与其他子系统(例如基带子系统)相关的驱动软件。基带子系统也可包括以及一个或多个处理核心,以及硬件加速器(hardware accelerator,HAC)和缓存等。
图2中,RFFE器件,RFIC 1(以及可选的RFIC 2)可以共同组成射频子系统。射频子系统中包括射频通道,射频通道可以进一步分为射频接收通道(radio frequency receive path)和射频发射通道(radio frequency transmit path)。
射频接收通道可通过天线接收射频信号,对该射频信号进行处理(如放大、滤波和下变频)以得到基带信号,并传递给基带子系统。射频发射通道可接收来自基带子系统的基带信号,对基带信号进行射频处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。
具体地,射频发射通道可以包括低噪声放大器(low noise amplifier,LNA),功率放大器(power amplifier,PA),混频器(mixer),本地振荡器(local oscillator,LO)、滤波器(filter)以及数模转换器(digital to analog converter,DAC)等电子器件,这些电子器件可以根据需要集成到一个或多个芯片中。天线有时也可以认为是射频子系统的一部分。
射频接收通道可以包括小信号放大器、低噪声放大器(low noise amplifier,LNA),功率放大器(power amplifier,PA),混频器(mixer),本地振荡器(local oscillator,LO)、滤波器(filter)以及模数转换器(analog to digital converter,ADC)等电子器件,这些电子器件可以根据需要集成到一个或多个芯片中。天线有时也可以认为是射频子系统的一部分。
本申请实施例中,射频发射通道和射频接收通道还可以包括射频信号处理单元,射频信号处理单元可以是通用处理器,也可以是为特定领域设计的处理器。例如,可以是中央处理单元(center processing unit,CPU),也可以是数字信号处理器(digital signal processor,DSP)。该处理器也可以是微控制器(micro control unit,MCU),图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processing,ISP),音频信号处理器(audio signal processor,ASP),以及为人工智能(artificial intelligence,AI)应用专门设计的处理器。AI处理器包括但不限于神经网络处理器(neural network processing unit,NPU),张量处理器(tensor processing unit,TPU)以及被称为AI引擎的处理器。
需要说明的是,本申请实施例中的通信装置可以包括多条射频接收通道以及射频发射通道。
本申请实施例中,存储器可分为易失性存储器(volatile memory)和非易失性存储器(non-volatile memory,NVM)。易失性存储器是指当电源供应中断后,内部存放的数据便会丢失的存储器。目前,易失性存储器主要是随机存取存储器(random access memory,RAM),包括静态随机存取存储器(static RAM,SRAM)和动态随机存取存储器(dynamic RAM,DRAM)。非易失性存储器是指即使电源供应中断,内部存放的数据也不会因此丢失的存储器。常见的非易失性存储器包括只读存储器(read only memory,ROM)、光盘、磁盘以及基于闪存(flash memory)技术的各种存储器等。通常来说,内存可以选用易失性存储器,大容量存储器可以选用非易失性存储器,例如磁盘或闪存。
本申请实施例中,基带子系统和射频子系统共同组成通信子系统,为通信装置提供无线通信功能。通常,基带子系统负责管理通信子系统的软硬件资源,并且可以配置射频子系统的工作参数。基带子系统的一个或多个处理核心可以集成为一个或多个芯片,该芯片可称为基带处理芯片或基带芯片。类似地,RFIC可以被称为射频处理芯片或射频芯片。此外,随着技术的演进,通信子系统中射频子系统和基带子系统的功能划分也可以有所调整。例如,将部分射频子系统的功能集成到基带子系统中,或者将部分基带子系统的功能集成到射频子系统中。在实际应用中,基于应用场景的需要,通信装置可采用不同数目和不同类型的处理核心的组合。
本申请实施例中,射频子系统可包括独立的天线,独立的射频前端(RF front end,RFFE) 器件,以及独立的射频芯片。射频芯片有时也被称为接收机(receiver)、发射机(transmitter)或收发机(transceiver)。天线、射频前端器件和射频处理芯片都可以单独制造和销售。当然,射频子系统也可以基于功耗和性能的需求,采用不同的器件或者不同的集成方式。例如,将属于射频前端的部分器件集成在射频芯片中,甚至将天线和射频前端器件都集成射频芯片中,该射频芯片也可以称为射频天线模组或天线模组。
本申请实施例中,基带子系统可以作为独立的芯片,该芯片可被称调制解调器(modem)芯片。基带子系统的硬件组件可以按照modem芯片为单位来制造和销售。modem芯片有时也被称为基带芯片或基带处理器。此外,基带子系统也可以进一步集成在SoC芯片中,以SoC芯片为单位来制造和销售。基带子系统的软件组件可以在芯片出厂前内置在芯片的硬件组件中,也可以在芯片出厂后从其他非易失性存储器中导入到芯片的硬件组件中,或者还可以通过网络以在线方式下载和更新这些软件组件。
结合前面的描述,如图3所示,为本申请实施例提供的一种业务传输方法流程示意图。图3所示的流程的执行主体可以为网络设备,参见图3,该方法包括:
步骤301:确定第一时间单元的业务量。
第一时间单元可以为一段时间,例如以小时或者分钟为单位,举例来说可以一个时间单元可以为一个小时、10个小时、30分钟等;第一时间单元还可以以传输时间间隔(transmit time interval,TTI)或者时隙(slot)或者子帧(subframe)或者符号或者无线帧等为单位,本申请实施例并不限定。
进一步的,具体如何确定第一时间单元的业务量,本申请实施例并不限定。例如,可以根据历史数据中的业务量对第一时间单元的业务量进行预测,也可以通过神经网络算法推测第一时间单元的业务量等,在此不再逐一举例说明。
第一时间单元具体可以为网络设备配置的,也可以为通信标准中定义的,还可以根据其他方式确定,在此不再赘述。
步骤302:根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道。
其中所述第一映射关系包括业务量与射频通道数量的映射关系。第一映射关系的具体实现方式,本申请实施例并不限定,将在后面的实施例中描述,在此不再赘述。
需要说明的是,本申请实施例中,业务量越少,需要开启的射频通道的数量也越少。
步骤303:在所述第一时间单元内,通过所述第一数量的射频通道传输业务,所述业务包括数据信道和参考信号中的至少一种。
图3所示的流程,可以适用于各种不同的MIMO场景,下面分别进行描述。
实施例一:
在实施例一中,将影响通信传输性能的因素可以划分为至少两类,第一类是标准化协议规定的空口传输参数,比如天线端口的配置信息,这类信息需要网络设备通知终端设备,并基于天线端口的配置以及基于配置的传输模式实现MIMO传输,这类信息需要网络设备和终端设备保持统一;第二类是网络设备或终端设备的实现行为,不需要标准化,网络设备或终端设备可以根据自身能力来改变实现方式,但这类的实现是不能影响第一类配置参数的。比如射频通道数的配置,网络设备配置的射频通道数可以多于空口传输参数配置的天线端口数,例如网络设备配置的射频通道数为8,而空口侧配置的天线端口数为4,此 时两个射频通道可以与一个天线端口映射,这样可以将多个射频通道的功率用于发送同一个天线端口对应的信号,提升信号的信噪比从而改善传输性能。
然而通信业务的业务量下降时,如果开启所有的射频通道来发送信号,就造成了功耗浪费,现有射频通道关断的技术一般都要求射频通道关断的同时,关断对应的天线端口的信号发送,保证关断参考信号和数据信道的天线端口的一致性。然而,由于某些场景下,天线端口数不能及时重配,使得网络设备实际发送信号的天线端口和终端设备确定的天线端口不匹配,导致性能下降。因此本申请实施例提供了以下的方法来传输业务,可以实现在关断部分射频通道节省功耗的同时,不关断任何发送信号的天线端口,并通过射频通道与天线端口之间的重新映射,确保网络设备实际发送信号的天线端口和终端设备确定的天线端口相匹配,提升系统在部分通道关断下的系统性能。下面结合图3所示的流程详细描述。
步骤302中,第一映射关系可能存在多种实现方式。本申请实施例中,业务量在不同取值范围内,需要开启的射频通道的数量不同。不同取值范围中,取值范围越小,需要开启的射频通道的数量越少。
举例来说,假设网络设备包括的射频通道数量为N,N为大于0的偶数,第一映射关系可以如表1所示。
表1
Figure PCTCN2021075984-appb-000001
表1中,第一业务量阈值小于第二业务量阈值,第一业务量阈值和第二业务量阈值可以为网络设备配置的,也可以为通信标准中定义的,还可以通过其他方式确定,在此不再赘述。
当然,表1只是示例,第一映射关系还可能存在其他情况,具体可以以此类推,不再逐一举例说明。
再举例来说,假设网络设备有8个射频通道,以及配置有4个天线端口;业务量可以分为四挡,按照从小到大依次分别为第一业务量阈值,第二业务量阈值,第三业务量阈值和第四业务量阈值,对应开启的射频通道数量可以分别为1个射频通道,2个射频通道,4个射频通道和8个射频通道。
在实施例一中,确定第一数量的射频通道之后,还可以确定所述第一数量的射频通道与第二数量的天线端口的第二映射关系;其中,所述第二数量不随所述第一数量的变化而变化。例如第二数量可以为网络设备配置的天线端口数,可以是一个固定值。
确定第二映射关系之后,可以根据所述第二映射关系,通过所述第二数量的天线端口中每个天线端口映射的至少一个射频通道,传输每个天线端口对应的业务。
本申请实施例中,第二映射关系包括所述第二数量的天线端口中的任一所述天线端口与所述第一数量的射频通道中的至少一个射频通道之间的映射关系,在第二映射关系中,第二数量的天线端口中的每个天线端口映射至少一个射频通道,第一数量的射频通道中的每个射频通道映射至少一个天线端口。
一般地,不同的射频通道对应的传输信道不同,为了确保采用MIMO传输时,获得更好的分集增益或复用增益,需要确保不同天线端口之间对应的信道系数的相关性越小,其中不同信道系数之间的相关性的强弱表征信道系数之间的相似性,相关性越强,系数越相同,反之则系数越不同。因此,本申请实施例中,可以根据第一数量和第二数量确定第二映射关系,下面分不同情况讨论。
第一种情况,第一数量大于或等于第二数量。
在该情况下,第二数量的天线端口中不同的天线端口映射不同的射频通道。
其中,当两个天线端口映射的射频通道的数量不同时,可以认为这两个天线端口映射不同的射频通道;当两个天线端口映射的射频通道不是相同的射频通道时,也可以认为这两个天线端口映射不同的射频通道。
举例来说,假设网络设备需要开启4个射频通道,分别为RF1、RF2、RF3以及RF4,网络设备配置有4个天线端口,分别为R1、R2、R3以及R4。此时第二映射关系可以为R1映射RF1,R2映射RF2,R3映射RF3,R4映射RF4,具体的第二映射关系可以如图4以及表2所示。
表2
射频通道 RF1 RF2 RF3 RF4
天线端口 R1 R2 R3 R4
结合表2,在确定表2所示的第二映射关系之后,可以通过RF1传输R1对应的参考信号和数据信道;通过RF2传输R2对应的参考信号和数据信道;通过RF3传输R3对应的参考信号和数据信道;通过RF4传输R4对应的参考信号和数据信道。其它情况不再赘述。
第二种情况,第一数量小于第二数量。
在该情况下,第二数量的天线端口中不同的天线端口中至少有两个天线端口映射的射频通道相同。
进一步的,第一数量大于1,且所述第二数量的天线端口包括用于传输分集发送数据信道的至少两个天线端口时,所述至少两个天线端口中每个天线端口映射的射频通道不同。
其中,用于传输分集发送数据信道的至少两个天线端口,可以是指所述至少两个天线端口发送相同的数据流。
举例来说,假设网络设备包括4个射频通道,分别为RF1、RF2、RF3以及RF4,网络设备配置有4个天线端口,分别为R1、R2、R3以及R4,射频通道与天线端口的映射关系可以如表1所示。假设R1和R3发送相同的数据流,R2和R4发送相同的数据流,R1和R2发送不相同的数据流。这种场景下,R1和R3为用于传输分集发送数据信道的天线端口,R2和R4为用于传输分集发送数据信道的天线端口。
结合上面的例子,当确定只开启4个射频通道中的2个射频通道时,R1和R3需要映射不同的射频通道,R2和R4需要映射不同的射频通道。假设开启的射频通道为RF1和RF2,此时第二映射关系可以为R1映射RF1,R2映射RF1,R3映射RF2,R4映射RF2,具体的第二映射关系可以如图5以及表3所示。
表3
射频通道 RF1 RF1 RF2 RF2
天线端口 R1 R2 R3 R4
结合表3,在确定表3所示的第二映射关系之后,可以通过RF1传输R1对应的参考信号和数据信道,以及R2对应的参考信号和数据信道;通过RF2传输R3对应的参考信号和数据信道,以及R4对应的参考信号和数据信道。
当然,在上面的例子中,R1和R2也可以映射RF2,R3和R4也可以映射RF1。
可选地,第一种情况和第二种情况下,不同天线端口映射的射频通道不同还可以包括基于相同的一组射频通道和不同的组合系数构成;比如,编号为i(i=1,2,3,4)端口R i与编号为j(j=1,2,…,8)通道RF j之间的映射关系为R i=∑ jα ijRF j,(j=1,2,….,8)其中α ij为第j个通道与第i个端口之间的映射系数,一般为复数。该映射关系表示天线端口R i的部分数据经过映射系数α ij处理后由通道RF j发送。
进一步的,第二种情况中,当第一数量等于1时,第二数量的天线端口均与这一个射频通道映射。此时,使用相同的射频通道发送所有不同天线端口对应的参考信号和数据信道。
结合上面的例子,当确定只开启4个射频通道中的RF1时,R1、R2、R3以及R4均映射RF1,R3映射RF2,R4映射RF2,具体的第二映射关系可以如图6以及表4所示。
表4
射频通道 RF1 RF1 RF1 RF1
天线端口 R1 R2 R3 R4
结合表4,在确定表4所示的第二映射关系之后,可以通过RF1传输R1对应的参考信号和数据信道,R2对应的参考信号和数据信道,R3对应的参考信号和数据信道,以及R4对应的参考信号和数据信道。
进一步的,在实施例一中,为了确保射频通道关断前后的传输性能的不变,需要不改变用于测量覆盖的参考信号在单位资源上的功率,因此,用于发送一个天线端口对应的业务所对应的单位资源的总功率不变,且该总功率由该天线端口对应的多个射频通道的功率来提供。
举例来说,如表5(a)所示的8射频通道4天线端口(8T4P)的MIMO系统中,其中T表示通道,P表示天线端口;网络设备配置8个射频通道,配置的天线端口数为4。在8个射频通道全部开启的时候,每个射频通道在其映射的天线端口的单位资源上提供的功率为P 0,相应地,每个天线端口对应的参考信号在单位资源上的总功率为2P 0,其中一个天线端口由两个射频通道来提供功率。当关掉一半射频通道后变为4射频通道4天线端口(4T4P),此时,每个天线端口映射一个射频通道,因此每个天线端口只有一个射频通道提供功率。为了保证每个天线端口对应的参考信号在单位资源上的总功率保持不变,每个射频通道给各自映射的天线端口所发送的参考信号的单位资源上提供的功率为2P 0,具体可以参考表格5(a)所示。
进一步地,当关掉3/4的射频通道变为2射频通道4天线端口(2T4P)时,此时,一个射频通道需要给对应的两个天线端口发送的业务提供功率,为了保证每个天线端口对应 的参考信号在单位资源上的总功率保持不变,且每个射频通道给各自映射的天线端口所发送的参考信号提供的功率为2P 0。进一步地,关掉7/8的射频通道变为1射频通道4天线端口(1T4P)时,此时,一个射频通道需要给对应的四个天线端口发送的参考信号提供功率,且每个射频通道给各自映射的天线端口所发送的参考信号提供的功率为2P 0,具体可以参考表格5(b)所示。
表5(a)
Figure PCTCN2021075984-appb-000002
表5(b)
Figure PCTCN2021075984-appb-000003
通过上面的实施例,可以实现根据业务量确定开启的射频通道的数量,从而实现降低网络设备的功耗。进一步的,在只开启部分射频通道的情况下,仍可以支持MIMO传输模式,包括分集和空分复用,且保证小区覆盖性能不变,从而可以不降低业务传输性能。
而且在部分射频通道关断之后,网络设备的天线端口仍然基于映射的射频通道发送对应的业务,因此网络设备不需要通知终端设备关断了哪些天线端口的射频通道,从而不需要重配任何天线端口参数或传输模式。进一步的,由于网络设备关断部分射频通道之后,天线端口仍然可以发送业务,因此网络设备也不需要进行重新启动。
实施例二:
现有射频通道关断的技术一般都要求射频通道关断的同时,关断对应的天线端口,且保证关断参考信号和数据信道的天线端口的一致性。这类射频通道关断的方式一般需要基于天线端口的重配置或重新映射生效,使得生效时间长,不适用于通信忙时阶段。其中,“通信忙时”一般定义为一段时间内通信系数的平均资源利用率超过某个门限值,比如物理资源块利用率超过50%。
然而,即使在通信忙时,也存在单位时间资源上业务的波动,比如不同子帧(subframe)或传输时间间隔,在某些单位时间资源上出现轻载业务,从而使得这些单位时间内高阶的MIMO传输能力成为了冗余,因此,可以关断部分射频通道实现节能。
在这类场景下,参考信号对应的射频通道如果发生改变,但天线端口未变的情况下,终端设备的信道质量测量会下降,从而导致后续传输效率的下降,因此,本申请实施例提供一种参考信号和数据信道不对称的射频通道关断方法,可以避免对终端设备测量参考信号的影响,又能通过数据信道对应的射频通道关断实现节能。需要说明的是,在轻载业务 时,还可以通过其它补偿传输手段(例如自适应编码调制),确保单位时间资源上的轻载业务实现准确传输,从而实现既确保了单位时间资源上的准确传输,又实现了通道关断下的节能。下面结合图3所示的流程详细描述。
在步骤301中,第一时间单元可以为以传输时间间隔(transmit time interval,TTI)或者时隙(slot)或者子帧(subframe)或者符号或者无线帧等为单位。
在实施例二中,可以将网络设备包括的射频通道划分为至少两个射频通道组。以下以划分为两个射频通道组为例进行说明,其他情况可以以此类推。
网络设备包括的射频通道划分为第一射频通道组和第二射频通道组时,所述第二射频通道组可以为第一射频通道组的子集。其中,所述第二射频通道组中包括的射频通道属于所述第一射频通道组和所述第二射频通道组共享的射频通道,且所述第一射频通道组中包括的射频通道的数量大于第二射频通道组包括的射频通道的数量。
可选的,第一射频通道组中的射频通道为网络设备包括的所有射频通道。
举例来说,网络设备包括8个射频通道,第一射频通道组可以为网络设备包括的所有8个射频通道,第二射频通道组包括的射频通道可以为8个射频通道中的任意4个射频通道。
本申请实施例中,为了保证业务的正常传输,不同业务量映射的开启的射频通道数量,即第一映射关系可以如表6所示。
表6
Figure PCTCN2021075984-appb-000004
结合表6,如果第一时间单元的业务量小于第一阈值,则在所述第一时间单元内开启所述第一射频通道组或者所述第二射频通道组;如果第一时间单元的业务量大于或等于第一阈值,则在所述第一时间单元内开启所述第二射频通道组。
其中,第一阈值的具体取值可以根据实际情况确定,本申请实施例对此并不限定。
进一步的,结合前面的描述,当在第一时间单元内,可以按照以下方法传输参考信号或者数据信道:
如果第一时间单元的业务量大于或等于所述第一阈值,则在所述第一时间单元内开启第一射频通道组,并通过所述第一射频通道组对应的第一天线端口组发送参考信号以及数据信道;
如果第一时间单元的业务量小于所述第一阈值,则在所述第一时间单元内需要发送参考信号时,开启第一射频通道组,并通过所述第一射频通道组对应的第一天线端口组发送所述参考信号;在所述第一时间单元内需要发送数据信道时,开启第二射频通道组,并通过所述第二射频通道组对应的第二天线端口组发送所述数据信道。
其中,第一天线端口组和第二天线端口组均包含至少一个天线端口。所述第二天线端口组为第一天线端口组的子集,即所述第二天线端口组中任一天线端口都属于第一天线端口组,且所述第一天线端口组中至少包含一个不属于第二天线端口组的天线端口。
举例来说,如图7所示,第一时间单元为一个包括14个正交频分复用(Orthogonal  Frequency Division Multiplexing,OFDM)符号的子帧,14个OFDM符号按照时间顺序分别为符号0至符号13。其中在符号0、符号4、符号7以及符号11中需要发送参考信号。
假设当前确定第一时间单元的业务量小于第一阈值,那么结合表6,可以确定需要开启第一射频通道组或第二射频通道组。假设第一射频通道组包括4个射频通道,分别为RF1、RF2、RF3以及RF4;第二射频通道组包括2个射频通道,分别为RF1以及RF2。为此,在第一时间单元的符号0、符号4、符号7以及符号11中,可以开启第一射频通道组,并通过第一射频通道组发送参考信号;在第一时间单元中除符号0、符号4、符号7以及符号11之外的符号中,可以只开启第二射频通道组,并通过第二射频通道组发送数据信道。另外,如果在参考信号所在的OFDM符号(符号0、符号4、符号7以及符号11)中,也有部分频域资源用于发送数据信道,则该部分频域资源上发送数据信道所用的射频通道与其它发送数据信道的OFDM符号所用的射频通道相同。
需要说明的是,在实施例二中,发送数据信道的射频通道数(或者天线端口数)与发送参考信号的射频通道数(或者天线端口数)的不同,可能会引起信道估计的不匹配,导致网络传输性能的下降。例如,一个基于配置为4天线端口和传输模式TM4的终端设备,还是基于4个天线端口做信道测量以及预编码矩阵索引反馈,且在接收数据信道时所用预编码的长度为4;而实际上,网络设备发送数据信道时所用的天线端口为2,因此发送侧的预编码长度为2。一般地,网络设备基于第一射频通道组对应的天线端口组发送参考信号,基于第二射频通道组对应的天线端口组发送数据信道,且基于第二射频通道组对应的天线端口数确定预编码长度来发送数据信道。
通过上面的过程可知,根据第一时间单元的业务量确定开启的射频通道,发送参考信号的射频通道数和发送数据信道的射频通道数不同,不论业务量是多少,发送参考信号的射频通道数始终保持不变,从而可以确保在关断部分射频通道时,满足当前第一时间单元内业务量的同时,又不影响参考信号的发送,不影响终端设备测量参考信号量,确保后续传输的高业务量需求。
实施例三:
随着无线通信网络业务多元化以及大容量的需求,基于多个小区间(可以是相同频点对应的多个小区或不同频点对应的多个小区)聚合大容量的传输成为了关键技术之一。为了实现网络侧的简易或低成本部署,基于多个小区对应的射频通道能够实现共享。然而,由于小区间业务量需求的差异,实际传输中不同小区对射频通道数或天线端口数的需求不同,这就使得共享的射频通道对于某些小区是冗余的,因此在传输过程中可以关断一部分小区的射频通道实现节能,下面结合图3所示的流程详细描述。
在实施例三中,网络设备可以通过载波聚合等方式同时设置多个小区,以下以包括第一小区和第二小区为例进行描述,其他情况可以以此类推。
需要说明的是,本申请实施例对第一小区和第二小区并不限定,举例来说,第一小区可以为LTE小区,第二小区可以为NB-IOT小区。
当第一小区和第二小区属于同一个网络设备时,在步骤301中,确定的第一时间单元的业务量可以包括第一小区的第一业务量和第二小区的第二业务量。
在实施例三中,可以将网络设备包括的射频通道划分为至少两个射频通道组。以下以划分为两个射频通道组为例进行说明,其他情况可以以此类推。
网络设备包括的射频通道可以划分为第三射频通道组和第四射频通道组时,所述第四二射频通道组可以为第三射频通道组的子集。其中,所述第四射频通道组中包括的射频通道属于所述第三射频通道组和所述第四射频通道组共享的射频通道,且所述第三射频通道组中包括的射频通道的数量大于第四射频通道组包括的射频通道的数量。
可选的,第三射频通道组中的射频通道为网络设备包括的所有射频通道。
举例来说,网络设备包括4个射频通道,第三射频通道组可以为网络设备包括的所有4个射频通道,第四射频通道组包括的射频通道可以为4个射频通道中的任意2个射频通道。
结合前面的描述,在实施例二中,第一映射关系可以如表7所示。
表7
Figure PCTCN2021075984-appb-000005
表7中,第二阈值的具体取值可以根据实际情况确定,本申请实施例对此并不限定。
表7只是示例,还可能存在其他第一映射关系,在此不再逐一举例说明。
结合表7,如果所述第一业务量和所述第二业务量中的至少一个大于或等于第二阈值,则在所述第一时间单元内开启第三射频通道组;如果所述第一业务量和所述第二业务量均小于所述第二阈值,则在所述第一时间单元内开启第四射频通道组。
进一步的,当在所述第一时间单元内开启所述第三射频通道组时,在第一时间单元内,可以通过所述第三射频通道组发送所述第一小区的业务和所述第二小区的业务中的至少一项;
当在所述第一时间单元内开启所述第四射频通道组时,在第一时间单元内,可以通过所述第四射频通道组发送所述第一小区的业务和所述第二小区的业务中的至少一项。
举例来说,结合图8所示,网络设备包括4个射频通道,分别为RF1、RF2、RF3以及RF4。第三射频通道组可以为网络设备包括的所有4个射频通道,第四射频通道组包括的射频通道可以为RF1和RF2。
在第一时间单元内,第一小区的第一业务量和第二小区的第二业务量中的至少一个大于或等于第二阈值时,可以开启第三射频通道组,即开启RF1、RF2、RF3以及RF4。相应的,在第一时间单元内,可以通过RF1、RF2、RF3以及RF4发送所述第一小区的业务和所述第二小区的业务中的至少一项。
在第一时间单元内,第一小区的第一业务量和第二小区的第二业务量均小于第二阈值时,可以开启第四射频通道组,即开启RF1、RF2。相应的,在第一时间单元内,可以通过RF1、RF2发送所述第一小区的业务和所述第二小区的业务中的至少一项。
实施例一至实施例三可以应用于下行传输。应用于下行传输时,实施例一至实施例三中传输的业务为下行业务,射频通道为射频发射通道。其中,射频通道可以包括的模块包括但不限于以下一种或多种:功率放大器、低噪声放大器、数模转换器以及射频信号处理单元。
实施例四:
随着通信系统中MIMO能力的逐渐提升,射频接收通道的数量也随之增多,导致网络设备的功耗也逐渐增大,其中射频接收通道对应的硬件单元主要是一些低噪声放大器和射频芯片。为此,本申请实施例提供一种方法,可以节省射频接收通道的功耗,下面结合图3所示的流程详细描述。
在实施例四中,可以将网络设备包括的射频通道划分为至少两个射频通道组。以下以划分为三个射频通道组为例进行说明,其他情况可以以此类推。
网络设备包括的射频通道划分为第五射频通道组、第六射频通道组和第七射频通道组时,所述第六射频通道组可以为第五射频通道组的子集,所述第七射频通道组可以为第六射频通道组的子集。
具体的,所述第六射频通道组中包括的射频通道属于所述第五射频通道组和所述第六射频通道组共享的射频通道,且所述第五射频通道组中包括的射频通道的数量大于第六射频通道组包括的射频通道的数量;所述第七射频通道组中包括的射频通道属于所述第六射频通道组和所述第七射频通道组共享的射频通道,且所述第六射频通道组中包括的射频通道的数量大于第七射频通道组包括的射频通道的数量。
可选的,第五射频通道组中的射频通道为网络设备包括的所有射频通道。
举例来说,网络设备包括8个射频通道,第五射频通道组可以为网络设备包括的所有8个射频通道,第六射频通道组包括的射频通道可以为8个射频通道中的任意4个射频通道,第七射频通道组包括的射频通道可以为第六射频通道组包括的射频通道中的任意2个射频通道。
结合前面的描述,在实施例四中,第一映射关系可以为:
如果所述业务量大于或等于第二门限值,则开启第五射频通道组;
如果所述业务量大于第一门限值,且小于所述第二门限值,则开启第六射频通道组;
如果所述业务量小于或等于所述第一门限值,则开启第七射频通道组。
以上只是示例,还可能存在其他第一映射关系,在此不再逐一举例说明。
进一步的,当在所述第一时间单元内开启所述第五射频通道组时,可以通过所述第五射频通道组传输所述业务;
当在所述第一时间单元内开启所述第六射频通道组时,可以通过所述第六射频通道组传输所述业务;
当在所述第一时间单元内开启所述第七射频通道组时,可以通过所述第七射频通道组传输所述业务。
通过上述方法,网络设备可以根据第一时间单元的业务量,自适应的调整开启的射频通道的数量,可以降低网络设备的功耗,实现节能的目的。
实施例四可以应用于下行传输。应用于上行传输时,实施例四中传输的业务为上行业务,射频通道为射频接收通道。其中,射频通道可以包括的模块包括但不限于以下一种或多种:小信号放大器、低噪声放大器、模数转换器以及射频信号处理单元。
需要说明的是,实施例一至实施例四可以为独立的实施例,也可以根据内在逻辑进行组合,例如实施例一和实施例二组合为一个实施例,这些方案都落入本申请的保护范围中。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
为了实现上述本申请实施例提供的方法中的各功能,网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图9所示,本申请实施例还提供一种装置900用于实现上述方法中网络设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置900可以包括:处理单元901和通信单元902。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备发送和接收的步骤。
以下,结合图9至图10详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
处理单元901,用于确定第一时间单元的业务量;根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道;所述第一映射关系包括业务量与射频通道数量的映射关系;
通信单元902,用于在所述第一时间单元内,通过所述第一数量的射频通道传输业务,所述业务包括数据信道和参考信号中的至少一种。
在一种可能的设计中,所述通过所述第一数量的射频通道传输业务之前,所述处理单元901还用于:
确定所述第一数量的射频通道与第二数量的天线端口的第二映射关系;其中,所述第二数量不随所述第一数量的变化而变化。
在一种可能的设计中,所述第二映射关系包括所述第二数量的天线端口中的任一所述天线端口与所述第一数量的射频通道中的至少一个射频通道之间的映射关系;
其中,所述第一数量大于或等于所述第二数量时,所述第二数量的天线端口中不同的天线端口映射不同的射频通道;
或者,所述第一数量小于所述第二数量时,所述第二数量的天线端口中不同的天线端口中至少有两个天线端口映射的射频通道相同。
在一种可能的设计中,所述第一数量小于所述第二数量时,还包括:
所述第一数量大于1,且所述第二数量的天线端口包括用于传输分集发送数据信道的至少两个天线端口时,所述至少两个天线端口中每个天线端口映射的射频通道不同。
在一种可能的设计中,所述通信单元902具体用于:
根据所述第二映射关系,通过所述第二数量的天线端口中每个天线端口映射的至少一个射频通道,传输每个天线端口对应的业务。
在一种可能的设计中,所述第一数量为第二射频通道组包括的射频通道数量或者第一射频通道组包括的射频通道数量;
所述处理单元901具体用于:
如果所述业务量小于第一阈值,则在所述第一时间单元内开启所述第一射频通道组或者所述第二射频通道组;
如果业务量大于或等于所述第一阈值,则在所述第一时间单元内开启所述第一射频通道组;
其中,所述第二射频通道组中包括的射频通道属于所述第一射频通道组和所述第二射频通道组共享的射频通道,且所述第一射频通道组中包括的射频通道的数量大于第二射频通道组包括的射频通道的数量。
在一种可能的设计中,所述通信单元902具体用于:
如果所述业务量小于所述第一阈值,则在所述第一时间单元内通过所述第一射频通道组对应的第一天线端口组发送所述参考信号;在所述第一时间单元内发送数据信道时,通过所述第二射频通道组对应的第二天线端口组发送所述数据信道。
在一种可能的设计中,所述通信单元902具体用于:如果所述业务量大于或等于所述第一阈值,则在所述第一时间单元内通过所述第一射频通道组对应的第一天线端口组发送所述参考信号以及所述数据信道。
在一种可能的设计中,所述第二天线端口组中任一天线端口都属于第一天线端口组,且所述第一天线端口组中至少包含一个天线端口不属于第二天线端口组,其中一个天线端口组包含至少一个天线端口。
在一种可能的设计中,所述业务量包括第一小区的第一业务量和第二小区的第二业务量;所述第一小区和第二小区属于同一个网络设备。
在一种可能的设计中,所述第一数量为第四射频通道组包括的射频通道数量或者第三射频通道组包括的射频通道数量;
所述处理单元901具体用于:
如果所述第一业务量和所述第二业务量中的至少一个大于或等于第二阈值,则在所述第一时间单元内开启第三射频通道组;
如果所述第一业务量和所述第二业务量均小于所述第二阈值,则在所述第一时间单元内开启第四射频通道组;
其中,所述第四射频通道组中包括的射频通道属于所述第三射频通道组和所述第四射频通道组共享的射频通道,且所述第三射频通道组中包括的射频通道的数量大于第四射频通道组包括的射频通道的数量。
在一种可能的设计中,所述通信单元902具体用于:
当在所述第一时间单元内开启所述第三射频通道组时,通过所述第三射频通道组发送所述第一小区的业务和/或所述第二小区的业务;
或者当在所述第一时间单元内开启所述第四射频通道组时,通过所述第四射频通道组发送所述第一小区的业务和/或所述第二小区的业务。
在一种可能的设计中,所述第一数量为第五射频通道组包括的射频通道数量或者第六 射频通道组包括的射频通道数量或者第七射频通道组包括的射频通道数量;
所述处理单元901具体用于:
如果所述业务量大于或等于第二门限值,则开启第五射频通道组;
如果所述业务量大于第一门限值,且小于所述第二门限值,则开启第六射频通道组;
如果所述业务量小于或等于所述第一门限值,则开启第七射频通道组;
其中,所述第六射频通道组中包括的射频通道都属于所述第五射频通道组,且所述第五射频通道组包括的射频通道的数量大于所述第六射频通道组包括的射频通道的数量;
所述第七射频通道组中包括的射频通道都属于所述第五射频通道组,且所述第六射频通道组包括的射频通道的数量大于所述第七射频通道组包括的射频通道的数量。
在一种可能的设计中,所述通信单元902具体用于:
当在所述第一时间单元内开启所述第五射频通道组时,通过所述第五射频通道组传输所述业务;
或者当在所述第一时间单元内开启所述第六射频通道组时,通过所述第六射频通道组传输所述业务;
或者当在所述第一时间单元内开启所述第七射频通道组时,通过所述第七射频通道组传输所述业务。
在一种可能的设计中,所述业务为下行业务时,所述射频通道包括功率放大器、低噪声放大器、数模转换器以及射频信号处理单元中的至少一种;
或者,所述业务为上行业务时,所述射频通道包括小信号放大器、低噪声放大器、模数转换器以及射频信号处理单元中的至少一种。
如图10所示为本申请实施例提供的装置1000,图10所示的装置可以为图9所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中网络设备的功能。为了便于说明,图10仅示出了该通信装置的主要部件。
图10所示的装置1000包括至少一个处理器1020,用于实现本申请实施例提供的网络设备实现的任一方法。
装置1000还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可能执行存储器1030中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理电路(digital signal processor,DSP)、专用集成芯片(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
装置1000还可以包括通信接口1010,用于通过传输介质和其它设备进行通信,从而用于装置1000中的装置可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
装置1000还可以包括通信线路1040。其中,通信接口1010、处理器1020以及存储器1030可以通过通信线路1040相互连接;通信线路1040可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路1040可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1020,用于确定第一时间单元的业务量;根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道;所述第一映射关系包括业务量与射频通道数量的映射关系;
通信接口1010,用于在所述第一时间单元内,通过所述第一数量的射频通道传输业务,所述业务包括数据信道和参考信号中的至少一种。
在一种可能的设计中,所述通过所述第一数量的射频通道传输业务之前,所述处理器1020还用于:
确定所述第一数量的射频通道与第二数量的天线端口的第二映射关系;其中,所述第二数量不随所述第一数量的变化而变化。
在一种可能的设计中,所述第二映射关系包括所述第二数量的天线端口中的任一所述天线端口与所述第一数量的射频通道中的至少一个射频通道之间的映射关系;
其中,所述第一数量大于或等于所述第二数量时,所述第二数量的天线端口中不同的天线端口映射不同的射频通道;
或者,所述第一数量小于所述第二数量时,所述第二数量的天线端口中不同的天线端口中至少有两个天线端口映射的射频通道相同。
在一种可能的设计中,所述第一数量小于所述第二数量时,还包括:
所述第一数量大于1,且所述第二数量的天线端口包括用于传输分集发送数据信道的至少两个天线端口时,所述至少两个天线端口中每个天线端口映射的射频通道不同。
在一种可能的设计中,所述通信接口1010具体用于:
根据所述第二映射关系,通过所述第二数量的天线端口中每个天线端口映射的至少一个射频通道,传输每个天线端口对应的业务。
在一种可能的设计中,所述第一数量为第二射频通道组包括的射频通道数量或者第一射频通道组包括的射频通道数量;
所述处理器1020具体用于:
如果所述业务量小于第一阈值,则在所述第一时间单元内开启所述第一射频通道组或者所述第二射频通道组;
如果业务量大于或等于所述第一阈值,则在所述第一时间单元内开启所述第一射频通道组;
其中,所述第二射频通道组中包括的射频通道属于所述第一射频通道组和所述第二射 频通道组共享的射频通道,且所述第一射频通道组中包括的射频通道的数量大于第二射频通道组包括的射频通道的数量。
在一种可能的设计中,所述通信接口1010具体用于:
如果所述业务量小于所述第一阈值,则在所述第一时间单元内通过所述第一射频通道组对应的第一天线端口组发送所述参考信号;在所述第一时间单元内发送数据信道时,通过所述第二射频通道组对应的第二天线端口组发送所述数据信道。
在一种可能的设计中,所述通信接口1010具体用于:如果所述业务量大于或等于所述第一阈值,则在所述第一时间单元内通过所述第一射频通道组对应的第一天线端口组发送所述参考信号以及所述数据信道。
在一种可能的设计中,所述第二天线端口组中任一天线端口都属于第一天线端口组,且所述第一天线端口组中至少包含一个天线端口不属于第二天线端口组,其中一个天线端口组包含至少一个天线端口。
在一种可能的设计中,所述业务量包括第一小区的第一业务量和第二小区的第二业务量;所述第一小区和第二小区属于同一个网络设备。
在一种可能的设计中,所述第一数量为第四射频通道组包括的射频通道数量或者第三射频通道组包括的射频通道数量;
所述处理器1020具体用于:
如果所述第一业务量和所述第二业务量中的至少一个大于或等于第二阈值,则在所述第一时间单元内开启第三射频通道组;
如果所述第一业务量和所述第二业务量均小于所述第二阈值,则在所述第一时间单元内开启第四射频通道组;
其中,所述第四射频通道组中包括的射频通道属于所述第三射频通道组和所述第四射频通道组共享的射频通道,且所述第三射频通道组中包括的射频通道的数量大于第四射频通道组包括的射频通道的数量。
在一种可能的设计中,所述通信接口1010具体用于:
当在所述第一时间单元内开启所述第三射频通道组时,通过所述第三射频通道组发送所述第一小区的业务和/或所述第二小区的业务;
或者当在所述第一时间单元内开启所述第四射频通道组时,通过所述第四射频通道组发送所述第一小区的业务和/或所述第二小区的业务。
在一种可能的设计中,所述第一数量为第五射频通道组包括的射频通道数量或者第六射频通道组包括的射频通道数量或者第七射频通道组包括的射频通道数量;
所述处理器1020具体用于:
如果所述业务量大于或等于第二门限值,则开启第五射频通道组;
如果所述业务量大于第一门限值,且小于所述第二门限值,则开启第六射频通道组;
如果所述业务量小于或等于所述第一门限值,则开启第七射频通道组;
其中,所述第六射频通道组中包括的射频通道都属于所述第五射频通道组,且所述第五射频通道组包括的射频通道的数量大于所述第六射频通道组包括的射频通道的数量;
所述第七射频通道组中包括的射频通道都属于所述第五射频通道组,且所述第六射频通道组包括的射频通道的数量大于所述第七射频通道组包括的射频通道的数量。
在一种可能的设计中,所述通信接口1010具体用于:
当在所述第一时间单元内开启所述第五射频通道组时,通过所述第五射频通道组传输所述业务;
或者当在所述第一时间单元内开启所述第六射频通道组时,通过所述第六射频通道组传输所述业务;
或者当在所述第一时间单元内开启所述第七射频通道组时,通过所述第七射频通道组传输所述业务。
在一种可能的设计中,所述业务为下行业务时,所述射频通道包括功率放大器、低噪声放大器、数模转换器以及射频信号处理单元中的至少一种;
或者,所述业务为上行业务时,所述射频通道包括小信号放大器、低噪声放大器、模数转换器以及射频信号处理单元中的至少一种。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (34)

  1. 一种业务传输方法,其特征在于,包括:
    确定第一时间单元的业务量;
    根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道;所述第一映射关系包括业务量与射频通道数量的映射关系;
    在所述第一时间单元内,通过所述第一数量的射频通道传输业务,所述业务包括数据信道和参考信号中的至少一种。
  2. 根据权利要求1所述的方法,其特征在于,所述通过所述第一数量的射频通道传输业务之前,所述方法还包括:
    确定所述第一数量的射频通道与第二数量的天线端口的第二映射关系;其中,所述第二数量不随所述第一数量的变化而变化。
  3. 根据权利要求2所述的方法,其特征在于,所述第二映射关系包括所述第二数量的天线端口中的任一所述天线端口与所述第一数量的射频通道中的至少一个射频通道之间的映射关系;
    其中,所述第一数量大于或等于所述第二数量时,所述第二数量的天线端口中不同的天线端口映射不同的射频通道;
    或者,所述第一数量小于所述第二数量时,所述第二数量的天线端口中不同的天线端口中至少有两个天线端口映射的射频通道相同。
  4. 根据权利要求3所述的方法,其特征在于,所述第一数量小于所述第二数量时,还包括:
    所述第一数量大于1,且所述第二数量的天线端口包括用于传输分集发送数据信道的至少两个天线端口时,所述至少两个天线端口中每个天线端口映射的射频通道不同。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述通过所述第一数量的射频通道传输业务,包括:
    根据所述第二映射关系,通过所述第二数量的天线端口中每个天线端口映射的至少一个射频通道,传输每个天线端口对应的业务。
  6. 根据权利要求1所述的方法,其特征在于,所述第一数量为第二射频通道组包括的射频通道数量或者第一射频通道组包括的射频通道数量;
    所述根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道,包括:
    如果所述业务量小于第一阈值,则在所述第一时间单元内开启所述第一射频通道组或者所述第二射频通道组;
    如果业务量大于或等于所述第一阈值,则在所述第一时间单元内开启所述第一射频通道组;
    其中,所述第二射频通道组中包括的射频通道属于所述第一射频通道组和所述第二射频通道组共享的射频通道,且所述第一射频通道组中包括的射频通道的数量大于第二射频通道组包括的射频通道的数量。
  7. 根据权利要求6所述的方法,其特征在于,所述通过所述第一数量的射频通道传输业务,包括:
    如果所述业务量小于所述第一阈值,则在所述第一时间单元内通过所述第一射频通道组对应的第一天线端口组发送所述参考信号;在所述第一时间单元内发送数据信道时,通过所述第二射频通道组对应的第二天线端口组发送所述数据信道。
  8. 根据权利要求7所述的方法,其特征在于,如果所述业务量大于或等于所述第一阈值,则在所述第一时间单元内通过所述第一射频通道组对应的第一天线端口组发送所述参考信号以及所述数据信道。
  9. 根据权利要求7至8任一所述的方法,其特征在于,所述第二天线端口组中任一天线端口都属于第一天线端口组,且所述第一天线端口组中至少包含一个天线端口不属于第二天线端口组,其中一个天线端口组包含至少一个天线端口。
  10. 根据权利要求1所述的方法,其特征在于,所述业务量包括第一小区的第一业务量和第二小区的第二业务量;所述第一小区和第二小区属于同一个网络设备。
  11. 根据权利要求10所述的方法,其特征在于,所述第一数量为第四射频通道组包括的射频通道数量或者第三射频通道组包括的射频通道数量;
    所述根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道,包括:
    如果所述第一业务量和所述第二业务量中的至少一个大于或等于第二阈值,则在所述第一时间单元内开启第三射频通道组;
    如果所述第一业务量和所述第二业务量均小于所述第二阈值,则在所述第一时间单元内开启第四射频通道组;
    其中,所述第四射频通道组中包括的射频通道属于所述第三射频通道组和所述第四射频通道组共享的射频通道,且所述第三射频通道组中包括的射频通道的数量大于第四射频通道组包括的射频通道的数量。
  12. 根据权利要求11所述的方法,其特征在于,所述通过所述第一数量的射频通道传输业务,包括:
    当在所述第一时间单元内开启所述第三射频通道组时,通过所述第三射频通道组发送所述第一小区的业务和/或所述第二小区的业务;
    或者当在所述第一时间单元内开启所述第四射频通道组时,通过所述第四射频通道组发送所述第一小区的业务和/或所述第二小区的业务。
  13. 根据权利要求1所述的方法,其特征在于,所述第一数量为第五射频通道组包括的射频通道数量或者第六射频通道组包括的射频通道数量或者第七射频通道组包括的射频通道数量;
    所述根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道,包括:
    如果所述业务量大于或等于第二门限值,则开启第五射频通道组;
    如果所述业务量大于第一门限值,且小于所述第二门限值,则开启第六射频通道组;
    如果所述业务量小于或等于所述第一门限值,则开启第七射频通道组;
    其中,所述第六射频通道组中包括的射频通道都属于所述第五射频通道组,且所述第五射频通道组包括的射频通道的数量大于所述第六射频通道组包括的射频通道的数量;
    所述第七射频通道组中包括的射频通道都属于所述第五射频通道组,且所述第六射频通道组包括的射频通道的数量大于所述第七射频通道组包括的射频通道的数量。
  14. 根据权利要求13所述的方法,其特征在于,所述通过所述第一数量的射频通道传输业务,包括:
    当在所述第一时间单元内开启所述第五射频通道组时,通过所述第五射频通道组传输所述业务;
    或者当在所述第一时间单元内开启所述第六射频通道组时,通过所述第六射频通道组传输所述业务;
    或者当在所述第一时间单元内开启所述第七射频通道组时,通过所述第七射频通道组传输所述业务。
  15. 根据权利要求1至14任一所述的方法,其特征在于,所述业务为下行业务时,所述射频通道包括功率放大器、低噪声放大器、数模转换器以及射频信号处理单元中的至少一种;
    或者,所述业务为上行业务时,所述射频通道包括小信号放大器、低噪声放大器、模数转换器以及射频信号处理单元中的至少一种。
  16. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一时间单元的业务量;根据所述业务量以及第一映射关系确定在所述第一时间单元内开启第一数量的射频通道;所述第一映射关系包括业务量与射频通道数量的映射关系;
    通信单元,用于在所述第一时间单元内,通过所述第一数量的射频通道传输业务,所述业务包括数据信道和参考信号中的至少一种。
  17. 根据权利要求16所述的装置,其特征在于,所述通过所述第一数量的射频通道传输业务之前,所述处理单元还用于:
    确定所述第一数量的射频通道与第二数量的天线端口的第二映射关系;其中,所述第二数量不随所述第一数量的变化而变化。
  18. 根据权利要求17所述的装置,其特征在于,所述第二映射关系包括所述第二数量的天线端口中的任一所述天线端口与所述第一数量的射频通道中的至少一个射频通道之间的映射关系;
    其中,所述第一数量大于或等于所述第二数量时,所述第二数量的天线端口中不同的天线端口映射不同的射频通道;
    或者,所述第一数量小于所述第二数量时,所述第二数量的天线端口中不同的天线端口中至少有两个天线端口映射的射频通道相同。
  19. 根据权利要求18所述的装置,其特征在于,所述第一数量小于所述第二数量时,还包括:
    所述第一数量大于1,且所述第二数量的天线端口包括用于传输分集发送数据信道的至少两个天线端口时,所述至少两个天线端口中每个天线端口映射的射频通道不同。
  20. 根据权利要求16至19任一所述的装置,其特征在于,所述通信单元具体用于:
    根据所述第二映射关系,通过所述第二数量的天线端口中每个天线端口映射的至少一个射频通道,传输每个天线端口对应的业务。
  21. 根据权利要求16所述的装置,其特征在于,所述第一数量为第二射频通道组包括的射频通道数量或者第一射频通道组包括的射频通道数量;
    所述处理单元具体用于:
    如果所述业务量小于第一阈值,则在所述第一时间单元内开启所述第一射频通道组或者所述第二射频通道组;
    如果业务量大于或等于所述第一阈值,则在所述第一时间单元内开启所述第一射频通道组;
    其中,所述第二射频通道组中包括的射频通道属于所述第一射频通道组和所述第二射频通道组共享的射频通道,且所述第一射频通道组中包括的射频通道的数量大于第二射频通道组包括的射频通道的数量。
  22. 根据权利要求21所述的装置,其特征在于,所述通信单元具体用于:
    如果所述业务量小于所述第一阈值,则在所述第一时间单元内通过所述第一射频通道组对应的第一天线端口组发送所述参考信号;在所述第一时间单元内发送数据信道时,通过所述第二射频通道组对应的第二天线端口组发送所述数据信道。
  23. 根据权利要求22所述的装置,其特征在于,所述通信单元具体用于:如果所述业务量大于或等于所述第一阈值,则在所述第一时间单元内通过所述第一射频通道组对应的第一天线端口组发送所述参考信号以及所述数据信道。
  24. 根据权利要求22至23任一所述的装置,其特征在于,所述第二天线端口组中任一天线端口都属于第一天线端口组,且所述第一天线端口组中至少包含一个天线端口不属于第二天线端口组,其中一个天线端口组包含至少一个天线端口。
  25. 根据权利要求16所述的装置,其特征在于,所述业务量包括第一小区的第一业务量和第二小区的第二业务量;所述第一小区和第二小区属于同一个网络设备。
  26. 根据权利要求25所述的装置,其特征在于,所述第一数量为第四射频通道组包括的射频通道数量或者第三射频通道组包括的射频通道数量;
    所述处理单元具体用于:
    如果所述第一业务量和所述第二业务量中的至少一个大于或等于第二阈值,则在所述第一时间单元内开启第三射频通道组;
    如果所述第一业务量和所述第二业务量均小于所述第二阈值,则在所述第一时间单元内开启第四射频通道组;
    其中,所述第四射频通道组中包括的射频通道属于所述第三射频通道组和所述第四射频通道组共享的射频通道,且所述第三射频通道组中包括的射频通道的数量大于第四射频通道组包括的射频通道的数量。
  27. 根据权利要求26所述的装置,其特征在于,所述通信单元具体用于:
    当在所述第一时间单元内开启所述第三射频通道组时,通过所述第三射频通道组发送所述第一小区的业务和/或所述第二小区的业务;
    或者当在所述第一时间单元内开启所述第四射频通道组时,通过所述第四射频通道组发送所述第一小区的业务和/或所述第二小区的业务。
  28. 根据权利要求16所述的装置,其特征在于,所述第一数量为第五射频通道组包括的射频通道数量或者第六射频通道组包括的射频通道数量或者第七射频通道组包括的射频通道数量;
    所述处理单元具体用于:
    如果所述业务量大于或等于第二门限值,则开启第五射频通道组;
    如果所述业务量大于第一门限值,且小于所述第二门限值,则开启第六射频通道组;
    如果所述业务量小于或等于所述第一门限值,则开启第七射频通道组;
    其中,所述第六射频通道组中包括的射频通道都属于所述第五射频通道组,且所述第五射频通道组包括的射频通道的数量大于所述第六射频通道组包括的射频通道的数量;
    所述第七射频通道组中包括的射频通道都属于所述第五射频通道组,且所述第六射频通道组包括的射频通道的数量大于所述第七射频通道组包括的射频通道的数量。
  29. 根据权利要求28所述的装置,其特征在于,所述通信单元具体用于:
    当在所述第一时间单元内开启所述第五射频通道组时,通过所述第五射频通道组传输所述业务;
    或者当在所述第一时间单元内开启所述第六射频通道组时,通过所述第六射频通道组传输所述业务;
    或者当在所述第一时间单元内开启所述第七射频通道组时,通过所述第七射频通道组传输所述业务。
  30. 根据权利要求16至29任一所述的装置,其特征在于,所述业务为下行业务时,所述射频通道包括功率放大器、低噪声放大器、数模转换器以及射频信号处理单元中的至少一种;
    或者,所述业务为上行业务时,所述射频通道包括小信号放大器、低噪声放大器、模数转换器以及射频信号处理单元中的至少一种。
  31. 一种通信装置,其特征在于,包括处理器,通信接口;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,当执行所述计算机程序或指令时,通过所述通信接口实现权利要求1至15中任意一项所述的方法。
  32. 一种可读存储介质,其特征在于,包括计算机程序或指令,当执行所述计算机程序或指令时,如权利要求1至15中任意一项所述的方法被执行。
  33. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,如权利要求1至15中任意一项所述的方法被执行。
  34. 一种计算机程序产品,其特征在于,包括计算机可读指令,当通信装置读取并执行所述计算机可读指令,使得所述通信装置执行如权利要求1至15中任一项所述的方法。
PCT/CN2021/075984 2020-02-17 2021-02-08 一种业务传输方法及装置 WO2021164612A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21757288.2A EP4096287A4 (en) 2020-02-17 2021-02-08 SERVICE TRANSMISSION APPARATUS AND METHOD
JP2022549306A JP7466669B2 (ja) 2020-02-17 2021-02-08 サービス伝送方法、および装置
US17/820,079 US20220394729A1 (en) 2020-02-17 2022-08-16 Service Transmission Method, and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010096886.XA CN113271626B (zh) 2020-02-17 2020-02-17 一种业务传输方法及装置
CN202010096886.X 2020-02-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/820,079 Continuation US20220394729A1 (en) 2020-02-17 2022-08-16 Service Transmission Method, and Apparatus

Publications (1)

Publication Number Publication Date
WO2021164612A1 true WO2021164612A1 (zh) 2021-08-26

Family

ID=77227493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075984 WO2021164612A1 (zh) 2020-02-17 2021-02-08 一种业务传输方法及装置

Country Status (5)

Country Link
US (1) US20220394729A1 (zh)
EP (1) EP4096287A4 (zh)
JP (1) JP7466669B2 (zh)
CN (3) CN116567714A (zh)
WO (1) WO2021164612A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114071516B (zh) * 2021-11-12 2024-02-06 三维通信股份有限公司 分布式天线系统的载波配置方法、系统、处理设备及芯片
CN115087006B (zh) * 2022-06-20 2024-04-02 中国联合网络通信集团有限公司 一种灵活帧结构系统下行仿真方法、装置及设备
CN118075845A (zh) * 2022-11-22 2024-05-24 华为技术有限公司 一种通信方法和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340853A (zh) * 2010-07-20 2012-02-01 电信科学技术研究院 移动通信系统基站节能方法及装置
WO2012071827A1 (zh) * 2010-11-30 2012-06-07 中兴通讯股份有限公司 基站功耗控制方法及系统
CN105682208A (zh) * 2016-03-17 2016-06-15 京信通信技术(广州)有限公司 一种微小区Smallcell节能方法及本地控制器
WO2017000791A1 (zh) * 2015-07-01 2017-01-05 中兴通讯股份有限公司 一种lte系统的节能方法及装置
CN110677873A (zh) * 2019-09-09 2020-01-10 中国联合网络通信集团有限公司 一种业务数据的传输方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3891436B2 (ja) * 2003-07-08 2007-03-14 株式会社エヌ・ティ・ティ・ドコモ 通信制御装置
JP4791158B2 (ja) * 2005-11-24 2011-10-12 株式会社日立製作所 無線基地局装置および空間多重送信数制御装置
JP5006001B2 (ja) * 2006-08-22 2012-08-22 株式会社エヌ・ティ・ティ・ドコモ 下りリンクmimo伝送制御方法および基地局装置
JP5884152B2 (ja) * 2011-07-29 2016-03-15 シャープ株式会社 基地局、端末、通信システムおよび通信方法
EP2893660B1 (en) * 2012-09-05 2018-12-12 LG Electronics Inc. Method and apparatus for transmitting downlink signal in wireless communication system
JP6275422B2 (ja) * 2013-09-06 2018-02-07 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
WO2017161575A1 (en) * 2016-03-25 2017-09-28 Qualcomm Incorporated Channel state information reference signal transmission
JP2019125820A (ja) * 2016-05-12 2019-07-25 シャープ株式会社 送信装置および受信装置
CN109391387B (zh) * 2017-08-03 2022-05-17 维沃移动通信有限公司 解调参考信号传输方法、网络设备及计算机可读存储介质
CN109660324B (zh) * 2017-10-11 2021-01-08 维沃移动通信有限公司 解调参考信号传输方法、网络设备及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340853A (zh) * 2010-07-20 2012-02-01 电信科学技术研究院 移动通信系统基站节能方法及装置
WO2012071827A1 (zh) * 2010-11-30 2012-06-07 中兴通讯股份有限公司 基站功耗控制方法及系统
WO2017000791A1 (zh) * 2015-07-01 2017-01-05 中兴通讯股份有限公司 一种lte系统的节能方法及装置
CN105682208A (zh) * 2016-03-17 2016-06-15 京信通信技术(广州)有限公司 一种微小区Smallcell节能方法及本地控制器
CN110677873A (zh) * 2019-09-09 2020-01-10 中国联合网络通信集团有限公司 一种业务数据的传输方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4096287A4 *

Also Published As

Publication number Publication date
JP7466669B2 (ja) 2024-04-12
CN113271626B (zh) 2023-04-11
US20220394729A1 (en) 2022-12-08
CN113271626A (zh) 2021-08-17
CN116405973A (zh) 2023-07-07
EP4096287A1 (en) 2022-11-30
CN116567714A (zh) 2023-08-08
JP2023513828A (ja) 2023-04-03
EP4096287A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2021164612A1 (zh) 一种业务传输方法及装置
USRE47978E1 (en) Communication device and power control method thereof
US11304187B2 (en) Data transmission method, device, network device and user equipment
TWI285480B (en) Spatial puncturing apparatus, method, and system
US9191900B2 (en) Communication device and power control method thereof
US20230089990A1 (en) Capability information reporting method and apparatus
WO2021218920A1 (zh) 通信方法和装置
WO2020228374A1 (zh) 通信方法和装置
KR20240015681A (ko) 통신 방법 및 관련 통신 장치
WO2022052131A1 (zh) 通信方法、装置
WO2023124773A1 (zh) 一种传输信息的方法和通信装置
WO2022082466A1 (zh) 无线通信方法及通信装置
WO2022041020A1 (zh) 一种通信方法及装置
WO2022141342A1 (zh) 一种系统信息的传输方法、通信装置及相关设备
WO2022022516A1 (zh) 无线通信的方法和装置
WO2023035225A1 (zh) 能力信息的上报方法、接收方法、装置、设备及存储介质
WO2023125221A1 (zh) 一种信道质量指示的上报方法和装置
WO2023092401A1 (zh) 功率确定方法及装置
WO2023071901A1 (zh) 通信方法和通信装置
US20240259928A1 (en) Apparatus, system, and method of frequency bandwidth (bw) blocking for wireless communication
WO2022246648A1 (zh) 用于终端的通信方法及通信装置
WO2023207224A1 (zh) 一种用于终端的通信方法及通信装置
WO2022214032A1 (zh) 一种信息发送、接收的方法和通信装置
WO2023011617A1 (zh) 一种获取信息的方法和装置
WO2023039770A1 (zh) 一种用于天线切换的探测参考信号srs触发方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549306

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021757288

Country of ref document: EP

Effective date: 20220824

NENP Non-entry into the national phase

Ref country code: DE