WO2022041020A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022041020A1
WO2022041020A1 PCT/CN2020/111535 CN2020111535W WO2022041020A1 WO 2022041020 A1 WO2022041020 A1 WO 2022041020A1 CN 2020111535 W CN2020111535 W CN 2020111535W WO 2022041020 A1 WO2022041020 A1 WO 2022041020A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
configuration
information
transmission
transmission channel
Prior art date
Application number
PCT/CN2020/111535
Other languages
English (en)
French (fr)
Inventor
张亮亮
戴喜增
刘江华
张莉莉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023513320A priority Critical patent/JP2023540903A/ja
Priority to EP20950692.2A priority patent/EP4195766A4/en
Priority to PCT/CN2020/111535 priority patent/WO2022041020A1/zh
Priority to CN202080104611.4A priority patent/CN116250293A/zh
Publication of WO2022041020A1 publication Critical patent/WO2022041020A1/zh
Priority to US18/173,638 priority patent/US20230199667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and apparatus.
  • the network device schedules the terminal device to send data, it can explicitly indicate the antenna port used when sending the data, but it does not indicate which transmission channel the terminal device uses to send the data.
  • the same antenna port configuration can correspond to multiple transmit channel configurations.
  • the network device indicates the antenna port configuration to the terminal device, the network device cannot know the terminal device. Which transmit channels will be used for data transmission.
  • the network device can know the state of the transmission channel of the terminal device, that is, which transmission channel the terminal device will use each time the carrier is scheduled, the network device can more flexibly and comprehensively consider the configuration of the antenna port, so that the terminal device can obtain more Upstream transmission opportunity.
  • the purpose of this application is to provide a communication method and apparatus for indicating the configuration of the transmission channel to the terminal equipment.
  • the present application provides a communication method, comprising: a terminal device receiving first information from a network device, where the first information is used to indicate an antenna port configuration used by an uplink carrier; and the terminal device determines the terminal device according to the antenna port configuration
  • the state of the L transmit channels; L is an integer greater than 0.
  • the terminal device can determine the states of the L transmission channels in the terminal device according to the first information, so as to determine whether the transmission channel switching needs to be performed before sending the information.
  • the terminal device determines the status of the L transmission channels in the terminal device according to the antenna port configuration, including: the terminal device determines at least one uplink carrier, at least one uplink carrier is used for transmitting information or at least one uplink carrier is.
  • the terminal device determines the antenna port transmission configuration according to the at least one uplink carrier and the antenna port configuration; the antenna port transmission configuration is used to indicate the antenna port corresponding to the at least one uplink carrier; the terminal device determines the status of the L transmit channels according to the antenna port transmission configuration.
  • the method further includes: if the configuration of the first transmission channel and the configuration of the second transmission channel are different, determining to switch the configuration of the transmission channel; or, if the configuration of the first transmission channel and the configuration of the second transmission channel are different, Then it is determined not to switch the transmission channel configuration; wherein, the second transmission channel configuration is the state of the L transmission channels when the terminal device receives the first information or before; the first transmission channel configuration is the L transmission channels determined according to the antenna port configuration status.
  • the antenna port transmission configuration corresponds to one or more transmission channel configurations; the terminal device determines the status of the L transmission channels according to the antenna port transmission configuration, including: if the antenna port transmission configuration corresponds to only one transmission channel configuration, Then, the transmission channel configuration corresponding to the antenna port transmission configuration is determined as the first transmission channel configuration; or, if the antenna port transmission configuration corresponds to multiple transmission channel configurations, and the multiple transmission channel configurations include the second transmission channel configuration, the terminal device Determine the second transmit channel configuration as the first transmit channel configuration; or, if the antenna port transmission configuration corresponds to multiple transmit channel configurations, and the multiple transmit channel configurations do not include the second transmit channel configuration, the terminal device transmits from the antenna port Among the multiple transmission channel configurations corresponding to the configuration, one transmission channel configuration is selected as the first transmission channel configuration; wherein, the second transmission channel configuration is the transmission channel configuration when the terminal device receives the first information or before.
  • the terminal device when the terminal device determines that the transmission configuration of the antenna port corresponds to the configuration of the second transmission channel, it preferentially keeps the current transmission channel configuration unchanged, which can prevent the terminal device from frequently switching the transmission channel, thereby reducing the switching time and making the terminal
  • the device can obtain more uplink transmission opportunities.
  • the terminal device selects one transmission channel configuration as the first transmission channel configuration from the multiple transmission channel configurations corresponding to the transmission configuration of the antenna port, including: the terminal device selects one transmission channel configuration from at least one transmission channel in a preset order Determine the transmission channel configuration that satisfies the condition in the configuration, and use the transmission channel configuration that meets the condition as the first transmission channel configuration; wherein, the at least one transmission channel configuration is determined according to the L transmission channels of the terminal device; Satisfaction
  • the conditional transmit channel configuration means that one or more antenna port configurations corresponding to the transmit channel configuration include the antenna port transmission configuration.
  • the second transmission channel configuration is located in the first group of transmission channel configurations in the N groups of transmission channel configurations, and the first group of transmission channel configurations includes at least one transmission channel configuration; the terminal device transmits the configuration corresponding to the antenna port. Selecting one transmission channel configuration as the first transmission channel configuration among the multiple transmission channel configurations of the As the first transmission channel configuration; or, if the terminal device determines that there is no transmission channel configuration that satisfies the condition in the first group of transmission channel configurations, it determines the transmission channel that meets the condition from the N groups of transmission channel configurations according to a preset sequence. configuration, and use the transmit channel configuration that meets the condition as the first transmit channel configuration; wherein, the transmit channel configuration that meets the condition refers to one or more antenna port configurations corresponding to the transmit channel configuration including the antenna port transmission configuration.
  • the terminal device determines the state of the transmission channel corresponding to each uplink carrier in the at least one uplink carrier according to the state of the L transmission channels;
  • the state of the transmit channel which determines at least one transmit channel used to transmit information.
  • the method further includes: the terminal device receives third information from the network device; the third information is used to indicate the status of the L transmission channels in the terminal device; L is an integer greater than 0; The information is used to indicate the state of the transmission channel corresponding to each carrier in at least one carrier in the terminal device;
  • the terminal device sends fifth information to the network device, where the fifth information is used to indicate the states of the L transmission channels in the terminal device; L is an integer greater than 0; or, the fifth information is used to indicate that at least one carrier in the terminal device is in The state of the transmit channel corresponding to each carrier; or, the terminal device sets the state of the L transmit channels to a preconfigured state.
  • the method further includes: the terminal device receives scheduling information from the network device; the scheduling information is used to indicate an index value of a first configuration combination, where the first configuration combination is one of pre-established H configuration combinations , one of the H configuration combinations includes an antenna port transmission configuration and a transmission channel configuration, and the H configuration combinations include all configuration combinations formed by the antenna port transmission configuration and the transmission channel configuration corresponding to the terminal device.
  • the method further includes: the terminal device sends capability information to the network device; wherein the capability information is used to indicate one or more of the following:
  • the terminal device can determine the uplink carrier for transmitting information in more than L uplink carriers;
  • the terminal device can support determining the uplink carrier used for transmitting information among at most S uplink carriers, where S is a positive integer greater than L; L.
  • the method further includes: the terminal device receives configuration information from the network device, where the configuration information is used to indicate one or more of the following:
  • the uplink carrier information configured by the network device for the terminal device
  • the uplink carrier information activated by the network device for the terminal device
  • the number of uplink carriers X configured by the network device for the terminal device X is a positive integer greater than L, and L is the maximum number of uplink carriers that the terminal device can perform uplink transmission at the same time;
  • the number of uplink carriers configured by the network equipment for the terminal equipment X, X is a positive integer greater than P, and P is the maximum number of transmission channels that the terminal equipment can perform uplink transmission at the same time; the number of uplink carriers used by the terminal equipment to transmit information, m, m is A positive integer less than or equal to L.
  • the method further includes: the terminal device receives first power information from the network device, where the first power information is used to indicate that the transmit power of at least one carrier is the first transmit power; the terminal device uses the first transmit power Information transmission is performed on at least one carrier.
  • the terminal device before the terminal device receives the first power information from the network device, it includes: the terminal device sends second power information to the network device, where the second power information is used to indicate that the terminal device supports using on one antenna port.
  • the first transmission power or the second transmission power is used for information transmission; wherein the first transmission power is greater than the second transmission power; or the terminal device sends the second power information to the network device, and the second power information is used to indicate that the terminal device supports one carrier.
  • Information is sent using the first transmission power or the second transmission power; wherein the first transmission power is greater than the second transmission power.
  • the terminal device supports the use of the first transmit power to transmit information on one antenna port, including: the terminal supports the use of the first transmit power to transmit information on one antenna port through K transmit channels; wherein, K is a positive integer.
  • the second power information includes at least one of the following parameters: a carrier frequency band that uses the first transmit power, a carrier frequency that uses the first transmit power, a carrier frequency index that uses the first transmit power, and a carrier frequency that uses the first transmit power.
  • the carrier frequency identifier of the transmit power, the number of antenna ports that transmit information using the first transmit power, the antenna port number that transmits information using the first transmit power, the number of transmit channels that transmit information using the first transmit power, and the number of transmit channels that transmit information using the first transmit power Information on the number of MIMO layers and power gain.
  • the terminal device uses the first transmit power to transmit information on at least one carrier, including: the terminal device uses K transmit channels to transmit information on at least one carrier using the first transmit power on one antenna port. or, for the ith carrier in the at least one carrier, the terminal device uses K transmit channels to transmit information on the ith carrier using the first transmit power on one antenna port; where i is a positive integer.
  • the present application provides a communication method, including: a network device sending first information to a terminal device, where the first information is used to indicate an antenna port configuration used by an uplink carrier; and the network device determines, according to the antenna port configuration, the The state of the L transmit channels; L is an integer greater than 0.
  • the method further includes: if the configuration of the first transmission channel and the configuration of the second transmission channel are different, determining to switch the configuration of the transmission channel; or, if the configuration of the first transmission channel and the configuration of the second transmission channel are different, Then it is determined not to switch the transmission channel configuration; wherein, the second transmission channel configuration is the state of the transmission channel corresponding to each carrier in the at least one carrier when the terminal device receives the first information or before; the first transmission channel configuration is based on the antenna port. The state of the transmit channel corresponding to each carrier in the determined at least one carrier is configured.
  • the method further includes: the terminal device sends second power information to the network device, where the second power information is used to indicate that the terminal device supports using the first transmit power or the second transmit power for information on one antenna port. sending; wherein the first sending power is greater than the second sending power; or, the terminal device sends second power information to the network device, where the second power information is used to indicate that the terminal device supports the use of the first sending power or the second sending power on one carrier Information transmission is performed; wherein the first transmission power is greater than the second transmission power.
  • the present application provides a communication method, comprising: a terminal device receiving third information from a network device; the third information is used to indicate the status of L transmission channels in the terminal device; L is an integer greater than 0; According to the states of the L transmission channels, at least one transmission channel used for transmitting information in the terminal device is determined.
  • the terminal device can directly determine the states of the L transmission channels in the terminal device according to the third information, so as to determine which transmission channels are used to send information.
  • the state of the transmission channel includes at least one of an on state and an off state.
  • the third information is used to indicate that each transmission channel in the L transmission channels is in an open state or a closed state; or, the third information is used to indicate an open state of the transmission channels in the L transmission channels; or , the third information is used to indicate the transmission channel in the closed state among the L transmission channels; or, the third information is used to indicate the state of the transmission channel corresponding to each carrier in the at least one carrier in the terminal device.
  • the method further includes: the terminal device receives second information from the network device; the second information is used to indicate the information of the uplink carrier corresponding to each transmission channel in the at least one transmission channel, or the second information The information is used to indicate information of at least one uplink carrier.
  • the terminal device determines at least one transmission channel used for transmitting information in the terminal device according to the states of the L transmission channels, including: determining, according to the third information, the terminal device in an open state among the L transmission channels. A transmission channel; the terminal device determines, according to the second information, a transmission channel corresponding to each uplink carrier in the at least one uplink carrier, and determines the state of the transmission channel corresponding to the open state of the at least one uplink carrier as the at least one transmission channel used for transmitting information Or, the terminal device determines the state of the transmission channel corresponding to each uplink carrier in the at least one uplink carrier according to the state of the L transmission channels and the second information; the terminal device determines at least one transmission channel used for transmitting information in the terminal device.
  • the method further includes: the terminal device receives first information from the network device, where the first information is used to indicate the antenna port configuration used by the uplink carrier; or the first information is used to indicate that the configuration is for the terminal device The antenna port configuration used by each uplink carrier on the X uplink carriers, where X is a positive integer.
  • the terminal device determines at least one transmission channel for transmitting information in the terminal device according to the states of the L transmission channels, including: the terminal device determines according to the third information that one of the L transmission channels is enabled. The transmission channel of the state; the terminal device determines the transmission channel corresponding to each antenna port in the at least one antenna port according to the first information, and determines the transmission channel state corresponding to the open state of the at least one antenna port as the at least one transmission channel used for transmitting information transmission channel; or, the terminal device determines the state of the transmission channel corresponding to each antenna port in the at least one uplink carrier according to the state of the L transmission channels and the first information; the terminal device determines at least one transmission channel used for transmitting information in the terminal device aisle.
  • the method further includes: the third information is further used to indicate one or more of the following: the state of the transmission channel used by the uplink carrier; the number of transmission channels used by the uplink carrier; The three information is also used to indicate one or more of the following: the state of the transmit channel used by each uplink carrier on the X uplink carriers; the number of transmit channels used by each uplink carrier on the X uplink carriers; X is a positive Integer.
  • the terminal device determines at least one transmission channel used for transmitting information in the terminal device according to the states of the L transmission channels, including: the terminal device converts at least one transmission channel in an open state among the L transmission channels. , determine at least one transmission channel used for transmitting information in the terminal device; or, the terminal device determines at least one transmission channel used for transmitting information in the terminal device according to the state of the transmission channel used by each uplink carrier on the X uplink carriers .
  • the method further includes: the terminal device receives first power information from the network device, where the first power information is used to indicate that the transmit power of at least one carrier is the first transmit power; the terminal device uses the first transmit power Information transmission is performed on at least one carrier.
  • the terminal device before the terminal device receives the first power information from the network device, it includes: the terminal device sends second power information to the network device, where the second power information is used to indicate that the terminal device supports using on one antenna port.
  • the first transmission power or the second transmission power is used for information transmission; wherein the first transmission power is greater than the second transmission power; or the terminal device sends the second power information to the network device, and the second power information is used to indicate that the terminal device supports one carrier.
  • Information is sent using the first transmission power or the second transmission power; wherein the first transmission power is greater than the second transmission power.
  • the terminal device supports the use of the first transmit power to transmit information on one antenna port, including: the terminal supports the use of the first transmit power to transmit information on one antenna port through K transmit channels; wherein, K is a positive integer.
  • the second power information includes at least one of the following parameters: a carrier frequency band that uses the first transmit power, a carrier frequency that uses the first transmit power, a carrier frequency index that uses the first transmit power, and a carrier frequency that uses the first transmit power.
  • the carrier frequency identifier of the transmit power, the number of antenna ports that transmit information using the first transmit power, the antenna port number that transmits information using the first transmit power, the number of transmit channels that transmit information using the first transmit power, and the number of transmit channels that transmit information using the first transmit power Information on the number of MIMO layers and power gain.
  • the terminal device uses the first transmit power to transmit information on at least one carrier, including: the terminal device uses K transmit channels to transmit information on at least one carrier using the first transmit power on one antenna port. or, for the ith carrier in the at least one carrier, the terminal device uses K transmit channels to transmit information on the ith carrier using the first transmit power on one antenna port; where i is a positive integer.
  • the present application provides a communication method, comprising: a network device sending third information to a terminal device; the third information is used to indicate the status of L transmission channels in the terminal device; or, the third information is used to indicate at least one The state of the transmit channel corresponding to each carrier in the carrier; the network device receives information on at least one carrier according to the state of the transmit channel.
  • the network device sends first power information to the terminal device, where the first power information is used to indicate that the transmit power of at least one carrier is the first transmit power.
  • the network device receives second power information from the terminal device, where the second power information is used to indicate that the terminal device supports information transmission using the first transmit power or the second transmit power on one antenna port; wherein The first transmit power is greater than the second transmit power; the second power information is used to indicate that the terminal device supports using the first transmit power or the second transmit power to transmit information on one carrier.
  • the present application provides a communication method, comprising: a terminal device receiving third information from a network device; the third information is used to indicate the state of a transmission channel corresponding to each carrier in the at least one carrier; The state of the transmission channel corresponding to each carrier in the carrier determines at least one transmission channel used for transmitting information in the terminal device.
  • the terminal device can determine the state of the transmission channel corresponding to each carrier according to the third information, thereby determining the state of the L transmission channels in the terminal device, thereby determining which transmission channel to use to send information.
  • the state of the transmission channel includes an on state and/or an off state.
  • the third information includes at least one of the following items: the state of the transmission channel used by the uplink carrier; the number of transmission channels used by the uplink carrier; or, the third information includes at least one item: X The state of the transmit channel used by each uplink carrier on the uplink carrier; the number of transmit channels used by each uplink carrier on the X uplink carriers; X is a positive integer.
  • the configuration of the first transmission channel and the configuration of the second transmission channel are different, it is determined to switch the transmission channel configuration; or, if the configuration of the first transmission channel and the configuration of the second transmission channel are different, it is determined not to perform the switching.
  • Transmission channel configuration switching wherein, the second transmission channel configuration is the state of the transmission channel corresponding to each carrier in at least one carrier when the terminal device receives the first information or before; the first transmission channel configuration is determined according to the antenna port configuration at least The state of the transmit channel corresponding to each carrier in a carrier.
  • the terminal device receives the first power information from the network device, and the first power information is used to indicate that the transmit power of at least one carrier is the first transmit power; the terminal device uses the first transmit power on the at least one carrier. information transfer.
  • the terminal device before the terminal device receives the first power information from the network device, it includes: the terminal device sends second power information to the network device, where the second power information is used to indicate that the terminal device supports using on one antenna port.
  • the first transmission power or the second transmission power is used for information transmission; wherein the first transmission power is greater than the second transmission power; or the terminal device sends the second power information to the network device, and the second power information is used to indicate that the terminal device supports one carrier.
  • Information is sent using the first transmission power or the second transmission power; wherein the first transmission power is greater than the second transmission power.
  • the terminal device supports the use of the first transmit power to transmit information on one antenna port, including: the terminal supports the use of the first transmit power to transmit information on one antenna port through K transmit channels; wherein, K is a positive integer.
  • the second power information includes at least one of the following parameters: a carrier frequency band that uses the first transmit power, a carrier frequency that uses the first transmit power, a carrier frequency index that uses the first transmit power, and a carrier frequency that uses the first transmit power.
  • the carrier frequency identifier of the transmit power, the number of antenna ports that transmit information using the first transmit power, the antenna port number that transmits information using the first transmit power, the number of transmit channels that transmit information using the first transmit power, and the number of transmit channels that transmit information using the first transmit power Information on the number of MIMO layers and power gain.
  • the terminal device uses the first transmit power to transmit information on at least one carrier, including: the terminal device uses K transmit channels to transmit information on at least one carrier using the first transmit power on one antenna port. or, for the ith carrier in the at least one carrier, the terminal device uses K transmit channels to transmit information on the ith carrier using the first transmit power on one antenna port; where i is a positive integer.
  • the present application provides a communication method, comprising: a terminal device receiving first power information from a network device, where the first power information is used to indicate that the transmit power of at least one carrier is the first transmit power; the terminal device uses the first power The transmit power transmits information on at least one carrier.
  • the terminal device before the terminal device receives the first power information from the network device, it includes: the terminal device sends second power information to the network device, where the second power information is used to indicate that the terminal device supports using on one antenna port.
  • the first transmission power or the second transmission power is used for information transmission; wherein the first transmission power is greater than the second transmission power; or the terminal device sends the second power information to the network device, and the second power information is used to indicate that the terminal device supports one carrier.
  • Information is sent using the first transmission power or the second transmission power; wherein the first transmission power is greater than the second transmission power.
  • the terminal device supports the use of the first transmit power to transmit information on one antenna port, including: the terminal supports the use of the first transmit power to transmit information on one antenna port through K transmit channels; wherein, K is a positive integer.
  • the second power information includes at least one of the following parameters: a carrier frequency band that uses the first transmit power, a carrier frequency that uses the first transmit power, a carrier frequency index that uses the first transmit power, and a carrier frequency that uses the first transmit power.
  • the carrier frequency identifier of the transmit power, the number of antenna ports that transmit information using the first transmit power, the antenna port number that transmits information using the first transmit power, the number of transmit channels that transmit information using the first transmit power, and the number of transmit channels that transmit information using the first transmit power Information on the number of MIMO layers and power gain.
  • the terminal device uses the first transmit power to transmit information on at least one carrier, including: the terminal device uses K transmit channels to transmit information on at least one carrier using the first transmit power on one antenna port. or, for the ith carrier in the at least one carrier, the terminal device uses K transmit channels to transmit information on the ith carrier using the first transmit power on one antenna port; where i is a positive integer.
  • the present application provides a communication method, including: a terminal device sending second power information to a network device, where the second power information is used to indicate that the terminal device supports using the first transmit power or the second transmit power on one antenna port Send information; where the first sending power is greater than the second sending power; or, the terminal device sends second power information to the network device, where the second power information is used to indicate that the terminal device supports the use of the first sending power or the second sending power on one carrier
  • the transmission power is used for information transmission; wherein the first transmission power is greater than the second transmission power.
  • the terminal device supports the use of the first transmit power to transmit information on one antenna port, including: the terminal supports the use of the first transmit power to transmit information on one antenna port through K transmit channels; wherein, K is a positive integer.
  • the second power information includes at least one of the following parameters: a carrier frequency band that uses the first transmit power, a carrier frequency that uses the first transmit power, a carrier frequency index that uses the first transmit power, and a carrier frequency that uses the first transmit power.
  • the carrier frequency identifier of the transmit power, the number of antenna ports that transmit information using the first transmit power, the antenna port number that transmits information using the first transmit power, the number of transmit channels that transmit information using the first transmit power, and the number of transmit channels that transmit information using the first transmit power Information on the number of MIMO layers and power gain.
  • the terminal device receives the first power information from the network device, and the first power information is used to indicate that the transmit power of at least one carrier is the first transmit power; the terminal device uses the first transmit power on the at least one carrier. information transfer.
  • the terminal device uses the first transmit power to transmit information on at least one carrier, including: the terminal device uses K transmit channels to transmit information on at least one carrier using the first transmit power on one antenna port. or, for the ith carrier in the at least one carrier, the terminal device uses K transmit channels to transmit information on the ith carrier using the first transmit power on one antenna port; where i is a positive integer.
  • the present application further provides a communication device, which can implement any of the methods provided in any one of the first to seventh aspects above.
  • the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication apparatus includes: a processor, and the processor is configured to support the communication apparatus to perform corresponding functions of the terminal device in the method provided in any of the above aspects.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes a communication interface, where the communication interface is used to support communication between the communication apparatus and devices such as network equipment.
  • the communication apparatus includes: a processor, and the processor is configured to support the communication apparatus to perform corresponding functions of the network device in the method provided in any of the above aspects.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes a communication interface, where the communication interface is used to support communication between the communication apparatus and equipment such as terminal equipment.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication apparatus includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • the description of the method provided in the first aspect which is not repeated here.
  • the present application provides a communication apparatus, the communication apparatus includes a processor, and when the processor executes a computer program or an instruction in a memory, the method according to the first aspect is performed.
  • the present application provides a communication device, the communication device includes a processor and a memory, the memory is used for storing computer programs or instructions; the processor is used for executing the computer programs or instructions stored in the memory, to cause the communication device to perform any of the methods provided by any one of the first to seventh aspects.
  • the present application provides a communication device, the communication device includes a processor, a memory and a communication interface, the communication interface is used for receiving a signal or sending a signal; the memory is used for storing a computer program or instruction ; the processor for invoking the computer program or instructions from the memory to execute any of the methods provided in any one of the first to seventh aspects.
  • the present application provides a communication device, the communication device includes a processor and a communication interface, the communication interface is configured to receive code instructions and transmit them to the processor; the processor runs the code instructions to perform any method as provided by any of the first to seventh aspects.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store a computer program or instruction, and when the computer reads and executes the computer program or instruction, the first aspect to the Any method provided by any of the seventh aspects is implemented.
  • the present application provides a computer program product comprising instructions, which when a computer reads and executes the computer program product, enables any of the methods provided in any one of the first to seventh aspects to be implemented.
  • the present application provides a chip, including a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory, when the processor executes the computer program or instruction When any one of the methods provided in any one of the first aspect to the seventh aspect is implemented.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • NR new radio
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • the terminal device may be a device with a wireless transceiver function or a chip that can be installed in any device, and may also be referred to as user equipment (user equipment, UE), an access terminal, a subscriber unit, or a subscriber station. , mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user equipment.
  • user equipment user equipment
  • UE user equipment
  • access terminal a subscriber unit
  • subscriber station mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user equipment.
  • the terminal device in this embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • a mobile phone mobile phone
  • a tablet computer (Pad)
  • a computer with a wireless transceiver function a virtual reality (VR) terminal, an augmented reality (AR) terminal
  • an industrial Wireless terminal in industrial control wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the network equipment can be a next generation base station (next Generation node B, gNB) in the NR system, can be an evolved base station (evolutional node B, eNB) in the LTE system, can be a global system of mobile communication (global system of mobile communication, Base station (base transceiver station, BTS) in GSM) system or code division multiple access (code division multiple access, CDMA), it can also be a base station (nodeB) in wideband code division multiple access (wideband code division multiple access, WCDMA) system , NB) etc.
  • FIG. 1 is a schematic structural diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes terminal equipment and network equipment. According to different transmission directions, the transmission link from the terminal equipment to the network equipment is marked as uplink (uplink, UL), and the transmission link from the network equipment to the terminal equipment is marked as downlink (downlink, DL).
  • uplink uplink
  • downlink downlink
  • data transmission in the uplink may be abbreviated as uplink data transmission or uplink transmission
  • data transmission in the downlink may be abbreviated as downlink data transmission or downlink transmission.
  • FIG. 1 the architecture of the communication system shown in FIG. 1 is not limited to include only the devices shown in the figure, but may also include other devices not shown in the figure, which are not listed one by one in this application.
  • a transmit channel is a physical concept, and may also be called a radio frequency (radio frequency, RF) transmit channel, and is referred to as a transmit channel for short in this application.
  • the transmit channel may work in the following manner, but is not limited to the following manner: the transmit channel may receive a baseband signal from a baseband chip, and perform radio frequency processing (such as up-conversion, amplification and filtering) on the baseband signal to obtain a radio frequency signal , and finally radiate the radio frequency signal into space through the antenna.
  • radio frequency processing such as up-conversion, amplification and filtering
  • the transmit channel may include an antenna switch, an antenna tuner, a low noise amplifier (LNA), a power amplifier (PA), a mixer (mixer), and a local oscillator (LO) , filter (filter) and other electronic devices, these electronic devices can be integrated into one or more chips as required. Antennas can also sometimes be considered part of the transmit channel.
  • LNA low noise amplifier
  • PA power amplifier
  • mixer mixer
  • LO local oscillator
  • filter filter
  • the antenna port is a logical concept. When the signal is actually sent, the antenna port is mapped to the corresponding transmit channel. Currently, when scheduling the terminal device to transmit data, the network device can explicitly indicate the port number of the antenna port used for data transmission.
  • a component carrier is a frequency domain resource used to carry the information output by the transmission channel.
  • the component carrier is sometimes also translated as the component carrier, which can be referred to as the carrier for short.
  • the network device may configure multiple uplink carriers and multiple downlink carriers for the terminal device. In this application, the number of uplink carriers configured by the network device may be greater than the number of downlink carriers.
  • the transmission channel needs to be adapted to the frequency of CC1.
  • the transmission channel also needs to adapt to the frequency of CC 2. Since the frequencies of CC 1 and CC 2 are different, it takes a certain amount of time for the frequency adapted by the transmission channel of the terminal equipment to readjust from one frequency to another, which can be recorded as the TX switching time, or the radio frequency readjustment time.
  • the tuning time RF retuning time
  • the switching time is related to the hardware and software configuration of the terminal device.
  • the interruption time of data transmission includes switching time. Therefore, reducing the switching time can reduce the interruption time of data transmission, which is beneficial to improve the system performance.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the interaction between a terminal device and a network device is used as an example for description.
  • the methods provided in the embodiments of the present application can also be applied to the interaction between other execution subjects, for example, a chip or module of a terminal device, and a
  • a chip or module of a terminal device for example, a chip or module of a terminal device
  • a for the interaction between chips or modules in the network device when the execution body is a chip or a module, reference may be made to the descriptions in the embodiments of this application, and details are not repeated here.
  • the terminal device may send capability information to the network device.
  • the capability information is used to indicate one or more of the following:
  • the terminal device can determine the uplink carrier used for sending information among more than L uplink carriers, where L is an integer greater than 0;
  • the terminal device can support determining an uplink carrier used for transmitting information among at most S uplink carriers, where S is a positive integer greater than the L;
  • the network device may send configuration information to the terminal device, where the configuration information is used to indicate one or more of the following:
  • the network device is the uplink carrier information configured by the terminal device
  • the network device is the uplink carrier information activated by the terminal device
  • uplink carrier information used by the terminal device to transmit information
  • the network device is the number X of uplink carriers configured by the terminal device, where the X is a positive integer greater than L, and the L is the maximum number of uplink carriers that the terminal device can perform uplink transmission simultaneously;
  • the network device is the number X of uplink carriers configured by the terminal device, where the X is a positive integer greater than P, and the P is the maximum number of transmission channels that the terminal device can simultaneously perform uplink transmission;
  • the number m of uplink carriers used by the terminal device to transmit information where m is a positive integer less than or equal to the L.
  • the uplink carrier information may be at least one of the following: an identifier of an uplink carrier; an index of an uplink carrier; a frequency of an uplink carrier, a frequency index of an uplink carrier, a frequency identifier of an uplink carrier, and the like.
  • the network device is an uplink carrier configured by the terminal device
  • this type of carrier which can also be called the carrier is configured, is configured with a carrier.
  • the carrier is a configuration carrier.
  • the configured carrier may be that the terminal device has performed one or more of synchronization, measurement, and power control adjustment on the carrier, or the terminal device has sent a reference signal on the carrier, or the network The device only configures a carrier for the terminal device, but the terminal device does not need to perform physical downlink control channel (PDCCH) listening on the carrier, and does not need to perform random access channel (random access channel, RACH) connection.
  • PDCCH physical downlink control channel
  • RACH random access channel
  • the network device is an uplink carrier activated by the terminal device
  • the activated carrier may be that the terminal device performs at least one of the following on the carrier: sending an SRS, sending a reference signal, performing PDCCH listening, and performing a physical uplink control channel (physical uplink control channel, PUCCH)/short PUCCH (Short PUCCH, SPUCCH) transmission, or do CQI/PMI/RI/PTI/CRI reporting.
  • the uplink carrier used by the terminal device to transmit information means: it can also be said that the carrier is scheduled, or a carrier is scheduled. At this time, the carrier can also be called a scheduling carrier. Of course, other names may also be used, which are not limited in this application.
  • the scheduling carrier can be that the terminal device sends information on the carrier, or can communicate on the carrier, or the network allocates resources to the terminal device for the terminal device to use the resource to send information on the carrier.
  • the network device configures 5 carriers for the terminal device, and activates 3 of them so that the terminal can use the carrier for communication at any time, but during the actual scheduling, the network device only actually uses the 3 carriers. 2 carriers are used for communication. It should be noted that the three carriers are the maximum number of uplink carriers supported by the UE for parallel transmission, or the three carriers are the maximum number of TX transmission channels that the terminal device can support.
  • the above content can be executed before step 203 .
  • FIG. 2 a schematic flowchart of a communication method provided by an embodiment of the present application is shown. Referring to Figure 2, the method includes:
  • Step 201 The network device sends first information to the terminal device.
  • the first information is used to indicate the antenna port configuration, and the antenna port configuration is the antenna port configuration used by the uplink carrier of the terminal device; or the antenna port configuration is the antenna port configuration used by each uplink carrier configured by the terminal device.
  • Antenna port configuration is used to indicate the antenna port configuration, and the antenna port configuration is the antenna port configuration used by the uplink carrier of the terminal device; or the antenna port configuration is the antenna port configuration used by each uplink carrier configured by the terminal device.
  • the network device specifically sends the first information is not limited in this embodiment of the present application.
  • the first information may be sent through high-level signaling, and the first information may also be sent through downlink control information (DCI).
  • DCI downlink control information
  • the network device may further indicate information of at least one uplink carrier to the terminal device.
  • the at least one uplink carrier is an activated uplink carrier of the terminal device, a configured uplink carrier, or a scheduled uplink carrier.
  • the X uplink carriers are not necessarily activated.
  • the network device will only activate Q uplink carriers among the X uplink carriers according to the capabilities of the terminal device. , Q is less than or equal to X.
  • the terminal device can send information on the uplink carrier only when the uplink carrier is scheduled, that is to say, at least one uplink carrier that the terminal device is scheduled to use is the one of the activated Q uplink carriers. some or all.
  • the network device sends second information to the terminal device, where the second information is used to indicate whether the uplink carrier is scheduled or whether the uplink carrier is activated.
  • the network device may send a piece of second information in the downlink carrier corresponding to each uplink carrier, where the second information is used to indicate the information of the uplink carrier.
  • the second information may include one or more of the following: identifier of uplink carrier; index of uplink carrier; frequency index of uplink carrier; frequency identifier of uplink carrier; whether uplink carrier is scheduled; whether uplink carrier is activated.
  • the network device may send a piece of second information in one downlink carrier, where the second information is used to indicate the information of the at least one uplink carrier.
  • the second information may include one or more of the following: identifiers of m uplink carriers; m uplink carrier indices; m uplink carrier frequency indices; m uplink carrier frequency identifiers; m is positive Integer, m is the number of the scheduled at least one uplink carrier; whether the uplink carrier is scheduled, whether the uplink carrier is activated.
  • the second information includes A1 bits, and each bit is used to indicate whether an uplink carrier is scheduled or activated for use.
  • the second information may include 5 bits, and each bit corresponds to one uplink carrier. Assuming that the value of the bit is 1, it means that the uplink carrier is scheduled; when the value of the bit is 0, it means that the uplink carrier is not scheduled; when the second information is 11000, it means that two uplink carriers among the five uplink carriers are scheduled.
  • numbers may be set for the five carriers, for example, the two uplink carriers are the first carrier CC1 and the second carrier CC2 are scheduled respectively.
  • an implementation manner is that the network device sends the first information to the terminal device, so that the terminal device obtains the antenna configuration of the uplink carrier, the uplink carrier includes at least one uplink carrier, the The uplink carrier can be a configured carrier or an activated carrier.
  • the network device also sends the second information to the terminal device, so that the terminal device obtains the information of the scheduled carrier through the second information.
  • step 201 another implementation is that the network device sends the first information to the terminal device, so that the terminal device obtains the antenna configuration of the uplink carrier, where the uplink carrier includes at least one uplink carrier, so The uplink carrier may be a scheduled carrier.
  • Step 202 The terminal device receives first information from the network device, where the first information is used to indicate an antenna port configuration, where the antenna port configuration includes an antenna port configuration used by an uplink carrier configured for the terminal device.
  • the first information may be used to indicate the antenna port configuration used by each uplink carrier in the X uplink carriers, such as the number of antenna ports and/or or antenna port number, etc.
  • the specific implementation manner of the first information is not limited in this embodiment of the present application, and reference may be made to the description in the prior art.
  • an implementation manner is that the network device sends the first information to the terminal device, so that the terminal device obtains the antenna port configuration of the uplink carrier, where the uplink carrier includes at least one uplink carrier, so
  • the above-mentioned uplink carrier may be a configured carrier or an activated carrier.
  • the network device also sends the second information to the terminal device, so that the terminal device obtains the information of the scheduled carrier through the second information. Through the first information and the second information, the terminal device obtains the antenna port configuration used by the uplink carrier configured for the terminal device.
  • step 202 another implementation is that the network device sends the first information to the terminal device, so that the terminal device obtains the antenna configuration of the uplink carrier, where the uplink carrier includes at least one uplink carrier, for example , the uplink carrier may be a scheduled carrier.
  • Step 203 The terminal device determines the states of the L transmit channels in the terminal device according to the antenna port configuration.
  • the state of the transmit channel includes at least one of an open state and a closed state.
  • An open transmission channel can be used to send information, but whether it is used to send information depends on whether the uplink carrier corresponding to the transmission channel is scheduled; a closed transmission channel cannot be used to send information.
  • the transmit channel configuration is used to indicate the transmit channel in the open state and/or the transmit channel in the closed state in the terminal device.
  • This application mainly takes the transmission channel configuration used to indicate the transmission channel in the open state and the transmission channel in the closed state in the terminal device as examples to describe the content of the invention.
  • the terminal device can send information on one uplink carrier through one transmit channel, or can send information on one uplink carrier through multiple transmit channels.
  • the transmit channel configuration can also indicate that the information is sent on the same uplink carrier. the number of transmit channels.
  • One transmit channel transmits information on one uplink carrier can be equivalent to "transmits one uplink carrier information on one transmit channel", or "transmits one uplink carrier information on one transmit channel”.
  • Multiple transmit channels can transmit information on one uplink carrier” can be equivalent to "transmit information on the same uplink carrier on multiple transmit channels", that is, the information transmitted on multiple channels is to serve the same uplink carrier , which are the contents of the same uplink carrier.
  • the information transmitted on multiple transmission channels may be the same or different.
  • the transmit channel configuration of the terminal device can exist as shown in Table 1. condition.
  • the terminal device may further determine the antenna port transmission configuration according to at least one uplink carrier and the antenna port configuration; the at least one uplink carrier is an uplink carrier used for transmitting information, or the at least one uplink carrier
  • the uplink carrier that is scheduled to be used by the terminal device, or the at least one uplink carrier is an activated uplink carrier.
  • the activated uplink carrier is a carrier that can be used to transmit information at any time. Whether the activated uplink carrier will transmit information depends on whether the carrier is actually scheduled, or whether there is a service on the carrier that needs to transmit information. In the prior art, each carrier has a corresponding antenna port configuration.
  • the antenna port corresponding to at least one carrier is referred to as an antenna port transmission configuration; or it may also be referred to as an antenna port transmission indication, or may also be referred to as a carrier transmission indication, or may also be referred to as Configured for carrier transmission.
  • the antenna port transmission configuration is used to indicate the antenna port corresponding to the at least one uplink carrier; that is, the antenna port transmission configuration may indicate the antenna port that the terminal device needs to use when sending information.
  • the network device activates three uplink carriers for the terminal device, which are CC1, CC2, and CC3, respectively.
  • the antenna port transmission configuration can be expressed as ⁇ 1P, 0P, 0P ⁇ , 1P means that the terminal device needs to use the antenna port corresponding to CC1 to send information, and the first 0P means that the terminal device does not need to use the antenna port corresponding to CC2 To send information, the second 0P indicates that the terminal device does not need to use the antenna port corresponding to CC3 to send information. Therefore, according to the antenna port configuration of the three carriers, the corresponding antenna port transmission configuration of the terminal device is ⁇ 1P, 0P, 0P ⁇ .
  • the network device activates three uplink carriers for the terminal device, which are CC1, CC2, and CC3, respectively.
  • the antenna port transmission configuration can be expressed as ⁇ 1P, 0P, 0P ⁇ , 1P means that the terminal device needs to use the antenna port corresponding to CC1 to send information, and the first 0P means that the terminal device does not need to use the antenna port corresponding to CC2 To send information, the second 0P indicates that the terminal device does not need to use the antenna port corresponding to CC3 to send information. Therefore, according to the antenna port configuration of the three carriers, the corresponding antenna port transmission configuration of the terminal device is ⁇ 1P, 0P, 0P ⁇ .
  • TX3 the network device activates three uplink carriers for the terminal device, namely CC1, CC2 and CC3, then TX1 can be corresponding to CC1, TX2 can be corresponding to CC2, and TX3 can be corresponding to CC3.
  • the uplink carrier corresponding to the transmission channel may or may not be scheduled; if a transmission channel in the terminal device is in an open state, In the off state, the uplink carrier corresponding to the transmit channel will not be scheduled.
  • the transmission channel corresponding to the uplink carrier must be in the open state; if an uplink carrier is not scheduled, the transmission channel corresponding to the uplink carrier can be in the open state or in the open state. Disabled.
  • the corresponding relationship between the transmission channel configuration and the antenna port transmission configuration may be established in advance, and the specific process of establishing the relationship will not be repeated.
  • the terminal device when the terminal device is activated with 3 carriers, but the actual transmission only uses 2 carriers, or the terminal device is configured with 3 carriers, but actually uses 2 carriers for transmitting information.
  • the terminal device when the terminal device includes 3 transmission channels, and can only use at most 2 transmission channels to send information at a time, and the network device activates 3 uplink carriers for the terminal device, the terminal device according to each of the three The antenna port configuration of the carrier is obtained, thereby obtaining one antenna port transmission configuration, and the antenna port transmission configuration can correspond to one transmission channel configuration.
  • one transmission channel configuration corresponds to one or more antenna port transmission configurations; correspondingly, one antenna port transmission configuration corresponds to one or more transmission channel configurations.
  • the antenna port transmission configuration can be determined, and the terminal device can determine the status of the L transmit channels in the terminal device according to the antenna port transmission configuration.
  • the following steps are performed respectively. describe.
  • the scheduled at least one uplink carrier may be at least one uplink carrier used for actually transmitting information.
  • the state of the L transmit channels determined according to the antenna port transmission configuration is referred to as the first transmit channel configuration
  • the state of the L transmit channels when the terminal device receives the first information or before is referred to as the first transmit channel configuration.
  • the state is called the second transmit channel configuration.
  • the second transmission channel configuration is the state of the current L transmission channels in the terminal device
  • the first transmission channel configuration is the state of the L transmission channels that need to be configured before the terminal device sends information.
  • the antenna port used by the terminal device to transmit information in the scheduled uplink carrier is the antenna port configured for the uplink carrier.
  • multiple transmit channels may be supported to transmit information using different antenna ports in one uplink carrier, and multiple transmit channels may also be supported to transmit information by using the same antenna port in one uplink carrier.
  • the first transmit channel when configured as ⁇ 2T, 0T, 0T ⁇ and the antenna port transmission configuration is ⁇ 2P, 0P, 0P ⁇ , it means that information is transmitted in CC1 through TX1 and TX1, And TX1 and TX1 transmit information through different antenna ports respectively; when the first transmit channel is configured as ⁇ 2T, 0T, 0T ⁇ and the antenna port transmission configuration is ⁇ 1PX, 0P, 0P ⁇ , it means that TX1 and TX1 are transmitted in CC1 information, and TX1 and TX1 transmit information through the same antenna port.
  • the terminal device determines that the number of antenna ports is less than the number of transmission channels, that is, when the terminal device determines that the same antenna port is used to transmit information in an uplink carrier through multiple transmission channels, it can use high power gain to transmit information in the antenna port.
  • the network device instructs the terminal device to set the first transmission channel configuration as ⁇ 2T, 0T, 0T ⁇ , or how the terminal device transmits the configuration through the antenna port as ⁇ 1P, 0P, 0P ⁇ , and obtains the first transmission channel configuration as ⁇ 1P, 0P, 0P ⁇ .
  • the channel configuration is set to ⁇ 2T, 0T, 0T ⁇ and there may be multiple methods.
  • the terminal device can use a higher power than conventional power to send information.
  • the network When configuring the carrier, the device may instruct the terminal to use a higher power than the normal power to send information, thereby instructing the terminal device to set the first transmission channel configuration to ⁇ 2T, 0T, 0T ⁇ .
  • the network device when the terminal reports capability information, the network device is informed that the terminal device supports sending information on a single port through 2TX, and the transmission power can support 3dBm higher than the original conventional transmission power of 23dBm. In this way, the network device can instruct the terminal device to use a power higher than the conventional transmission power to transmit information on a certain carrier through 1 bit (bit). For example, 1 represents 26 dBm, and 0 represents 23 dBm, thus actually instructing the terminal device to use 2TX to send information on a certain carrier.
  • bit For example, 1 represents 26 dBm, and 0 represents 23 dBm, thus actually instructing the terminal device to use 2TX to send information on a certain carrier.
  • the network device instructs the terminal device to use M TXs to send information on a certain carrier through a single antenna port by indicating the first transmit power.
  • M TXs to send information on a certain carrier through a single antenna port by indicating the first transmit power.
  • the terminal device may determine, among the L transmission channels, a transmission channel that corresponds to an uplink carrier in at least one uplink carrier and is in an open state as at least one transmission channel for transmitting information. .
  • it may further include the following steps: after the terminal device determines the states of the L transmission channels, it determines to perform transmission channel switching or not to perform transmission channel switching; or, the terminal device determines the configuration of the first transmission channel, and determines to perform transmission channel switching or Transmit channel switching is not performed.
  • At least one transmission channel used for transmitting information in the terminal device is determined, that is, the terminal device determines the configuration of the first transmission channel. Then the terminal device determines whether to switch the transmission channel: specifically, if the configuration of the first transmission channel and the configuration of the second transmission channel are different, it is determined to switch the transmission channel configuration, that is to say, the transmission channel of the terminal device needs to be switched.
  • step 203 a possible implementation manner may be as follows, and other steps are consistent with the content of the above embodiment, and will not be repeated one by one:
  • Step 203 The terminal device determines the states of the L transmit channels in the terminal device according to the antenna port configuration. Specifically, step A, step B, and step C may be included. In the three steps, the terminal device may choose to execute one of the three steps according to the actual situation.
  • Step A After the terminal device determines the transmission configuration of the antenna port, if the terminal device determines that the transmission configuration of the antenna port can only correspond to one transmission channel configuration, the terminal device may determine the transmission channel configuration corresponding to the transmission configuration of the antenna port as: The first transmit channel configuration.
  • the determined transmission configuration of the antenna port is ⁇ 1P, 1P, 0P ⁇ . It can be seen from Table 2 that ⁇ 1P, 1P, 0P ⁇ can only correspond to ⁇ 1T, 1T, 0T ⁇ , then ⁇ 1T, 1T, 0T ⁇ can be directly configured as the first transmission channel. In this case, in fact, there is a one-to-one correspondence between the first transmission channel configuration and the antenna port transmission configuration.
  • Step B After the terminal device determines the antenna port transmission configuration, if it is determined that the multiple transmission channel configurations corresponding to the antenna port transmission configuration include the second transmission channel configuration, the terminal device determines the second transmission channel configuration and the first transmission channel configuration.
  • the transmission channel configurations are the same, that is, the second transmission channel configuration may be determined as the first transmission channel configuration.
  • the second transmit channel configuration is ⁇ 1T, 0T, 1T ⁇
  • the determined antenna port transmission configuration is ⁇ 1P, 0P, 0P ⁇ . It can be seen from Table 2 that ⁇ 1P, 0P, 0P ⁇ corresponds to ⁇ 1T, 1T, 0T ⁇ and ⁇ 1T, 0T, 1T ⁇ , including the second transmission channel configuration, then the second transmission channel configuration can be used as the first transmission channel configuration to keep the current transmit channel configuration unchanged.
  • Step C After the terminal device determines the transmission configuration of the antenna port, if it is determined that the multiple transmission channel configurations corresponding to the transmission configuration of the antenna port do not include the configuration of the second transmission channel, the terminal device can transmit the configuration from the antenna port Among the corresponding one or more transmission channel configurations, one transmission channel configuration is selected as the first transmission channel configuration, and how to select it will be described in detail later.
  • the determined transmission configuration of the antenna port is ⁇ OP, 0P, 1P ⁇ . It can be seen from Table 2 that ⁇ 0P, 0P, 1P ⁇ corresponds to ⁇ 0T, 1T, 1T ⁇ and ⁇ 1T, 0T, 1T ⁇ , which does not include the second transmit channel configuration, then it can be calculated from ⁇ 0T, 1T, 1T ⁇ and ⁇ One of 1T, 0T, 1T ⁇ is selected as the first transmit channel configuration.
  • step C how to select one transmission channel configuration as the first transmission channel configuration is described as an example as follows: for the states of the L transmission channels, there may be N types of transmission channel configurations.
  • each group of transmit channel configurations includes one transmit channel configuration, and the corresponding index value may be as shown in Table 3-1.
  • the second transmission channel configuration is located in a certain transmission channel configuration among the six transmission channel configurations (for example, the index value is 001, ⁇ 1T, 1T, 0T ⁇ ), and the transmission channel configuration is called the first group transmit channel configuration.
  • the transmission configuration of the antenna port for example, the transmission configuration of the antenna port is ⁇ OP, 0P, 1P ⁇
  • the transmission configuration of the antenna port can correspond to various transmission channel configurations, but cannot correspond to the transmission configuration of the second transmission channel.
  • Antenna port transmission configuration for example, the transmission configuration of the antenna port is ⁇ OP, 0P, 1P ⁇
  • the first transmission channel configuration may be determined in the following manner: if the terminal device determines that in the first transmission channel configuration, there is no transmission channel configuration that meets the condition, then according to a preset sequence, from the The transmission channel configuration that satisfies the condition is determined from the N types of transmission channel configurations, and the transmission channel configuration that meets the condition is used as the first transmission channel configuration.
  • the transmit channel configuration that satisfies the condition means that one or more antenna port configurations corresponding to the transmit channel configuration include the antenna port transmission configuration.
  • each transmission channel configuration in the N types of transmission channel configurations corresponds to an index value
  • the preset order may refer to the circular order according to the index values of the N types of transmission channels from large to small, or it may be according to The circular order of the index values of the N types of transmission channels from small to large is not limited in this embodiment of the present application. There may also be other implementation manners of the preset order, which will not be listed here.
  • the determined transmission configuration of the antenna port is ⁇ 0P, 0P, 1P ⁇ . From Table 2, it can be seen that ⁇ 0P, 0P, 1P ⁇ does not correspond to ⁇ 0T, 0T, 2T ⁇ , then according to the circular order of index values from large to small, the transmission corresponding to the index values 001, 010, 011...101 can be followed in turn.
  • the channel configuration it is determined whether there is a transmit channel configuration that satisfies the condition.
  • a transmission channel configuration that satisfies the condition may be determined from the transmission channel configuration corresponding to 010, so that ⁇ 1T, 0T, 1T ⁇ may be used as the first transmission channel configuration.
  • one transmission channel is configured as a group as an example.
  • other grouping situations may exist.
  • ⁇ 1T, 1T, 0T ⁇ and ⁇ 1T, 1T, 0T ⁇ are grouped into a group
  • ⁇ 0T , 1T, 1T ⁇ and ⁇ 2T, 0T, 0T ⁇ are grouped into a group
  • ⁇ 0T, 2T, 0T ⁇ and ⁇ 0T, 0T, 2T ⁇ are grouped into a group, etc., which will not be repeated here.
  • the terminal device includes three transmit channels, which are denoted as TX1, TX2, and TX3, respectively.
  • the terminal device can use two transmit channels to send information at the same time.
  • the network device activates three uplink carriers for the terminal device, namely CC1, CC2 and CC3, wherein TX1 corresponds to CC1, TX2 corresponds to CC2, and TX3 corresponds to CC3.
  • TX1 corresponds to CC1
  • TX2 corresponds to CC2
  • TX3 corresponds to CC3.
  • Table 3-2 for the meanings of different antenna port transmission configurations.
  • 1PX in the table actually has the same meaning as 1P, just to illustrate that at this time, the terminal device transmits information through two transmission channels on one carrier and one antenna port.
  • ⁇ 1PX, 0P, 0P ⁇ corresponds to ⁇ 2T, 0T, 0T ⁇
  • the network device instruct the terminal device to set the first transmission channel configuration to ⁇ 2T, 0T, 0T ⁇ , or in other words, how does the terminal device pass the
  • the antenna port transmission configuration is ⁇ 1P, 0P, 0P ⁇
  • the first transmit channel configuration is set to ⁇ 2T, 0T, 0T ⁇ , which will be described in detail below.
  • the same antenna port is used to send information in one uplink carrier, and at this time, the transmission power of the terminal device can be The information is sent using a power higher than the normal power.
  • the network device may instruct the terminal device to use a higher power than the normal power to send the information when configuring the carrier, thereby instructing the terminal device to set the first transmission.
  • the channel configuration is ⁇ 2T, 0T, 0T ⁇ .
  • the terminal device when the terminal device reports capability information, it informs the network device that the terminal device supports sending information on a single port through 2TX, and the transmit power can support 3dBm higher than the original conventional transmit power of 23dBm. Therefore, the network device can instruct the terminal device to use a power higher than the conventional transmission power to send information on a certain carrier through 1 bit. For example, 1 represents 26 dBm, and 0 represents 23 dBm, thus actually instructing the terminal device to use 2TX to send information on a certain carrier.
  • the network device instructs the terminal device to use M TXs to transmit information on a certain carrier through a single antenna port by indicating the first transmit power.
  • M TXs to transmit information on a certain carrier through a single antenna port by indicating the first transmit power.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • step 203 a possible implementation manner may be as follows, and other steps are consistent with the content of the above embodiment, and will not be repeated one by one:
  • Step 203 The terminal device determines the states of the L transmit channels in the terminal device according to the antenna port configuration.
  • the configuration of N groups of transmission channels may be pre-determined, and the configuration of N groups of transmission channels is determined according to the open and closed states of the L transmission channels in the terminal device.
  • the terminal device includes 3 transmission channels, which are denoted as TX1, TX2 and TX3 respectively, and the terminal device can use 2 transmission channels to send information at the same time, then the open state and closed state of the three transmission channels in the terminal device can exist in Table 1
  • N groups of transmission channel configurations can be determined according to the 6 transmission channel configurations.
  • group ⁇ 1T, 1T, 0T ⁇ and ⁇ 1T, 1T, 0T ⁇ , group ⁇ 0T, 1T, 1T ⁇ and ⁇ 2T, 0T, 0T ⁇ , group ⁇ 0T, 2T, 0T ⁇ and ⁇ 0T, 0T, 2T ⁇ are grouped together, etc. In practical applications, there may also be other grouping situations, which will not be exemplified here.
  • each of the N groups of transmission channel configurations includes at least one transmission channel configuration, and N is an integer greater than 1.
  • step A, step B, and step C may be included.
  • the terminal device may choose to execute one of the three steps according to the actual situation.
  • Step A One antenna port transmission configuration corresponds to one or more transmission channel configurations. If the antenna port transmission configuration corresponds to only one transmission channel configuration, it is not necessary to compare with the second transmission channel, and the transmission channel corresponding to the antenna port transmission configuration can be directly configured as the first transmit channel configuration.
  • the terminal device can determine the number of transmission channel configurations corresponding to each antenna port transmission configuration.
  • the terminal device may determine the transmission channel configuration corresponding to the antenna port transmission configuration as the first transmission channel configuration.
  • Step B If it is determined that the antenna port transmission indication corresponds to multiple transmission channel configurations and includes a second transmission channel configuration, the terminal device may determine the second transmission channel configuration as the first transmission channel configuration.
  • Step C If it is determined that the antenna port transmission configuration corresponds to multiple transmission channel configurations and does not include the second transmission channel configuration, the terminal device may select one or more transmission channel configurations corresponding to the antenna port transmission configuration. , select a transmission channel configuration as the first transmission channel configuration.
  • all transmission channel configurations corresponding to the L transmission channels of the terminal device are divided into N groups of transmission channel configurations, each group of transmission channel configurations includes at least one transmission channel configuration, and N is an integer greater than 1. In this case, how to choose will be described in detail later.
  • First transmit channel configuration Assuming that the second transmit channel configuration is located in the first group of transmit channel configurations in the N groups of transmit channel configurations, when the antenna port transmission configuration corresponds to multiple transmit channel configurations and does not include the second transmit channel configuration, it can be determined in the following manner First transmit channel configuration:
  • the transmission channel configuration that meets the condition is used as the first transmission channel configuration; wherein, the transmission channel that meets the condition
  • the configuration refers to that one or more antenna port configurations corresponding to the transmit channel configuration include the antenna port transmission configuration.
  • the terminal device determines that in the first group of transmission channel configurations, there is no transmission channel configuration that satisfies the condition, then, according to a preset sequence, determine the satisfied condition from the N groups of transmission channel configurations transmit channel configuration, and use the transmit channel configuration that meets the conditions as the first transmit channel configuration;
  • the transmit channel configuration that satisfies the condition means that one or more antenna port configurations corresponding to the transmit channel configuration include the antenna port transmission configuration.
  • each group of transmission channel configurations in the N groups of transmission channel configurations corresponds to an index value.
  • the cyclic sequence of the index values of the N groups of transmission channels from small to large is not limited in this embodiment of the present application. There may also be other implementation manners of the preset order, which will not be listed here.
  • each group of transmission channel configurations includes one transmission channel configuration, and the corresponding index value may be as shown in Table 4.
  • the determined transmission configuration of the antenna port is ⁇ 0P, 0P, 1P ⁇ . From Table 2, it can be seen that ⁇ 0P, 0P, 1P ⁇ does not correspond to ⁇ 0T, 0T, 2T ⁇ , then according to the circular order of index values from large to small, the transmission corresponding to the index values 001, 010, 011...101 can be followed in turn.
  • the channel configuration it is determined whether there is a transmit channel configuration that satisfies the condition.
  • a transmission channel configuration that satisfies the condition may be determined from the transmission channel configuration corresponding to 010, so that ⁇ 1T, 0T, 1T ⁇ may be used as the first transmission channel configuration.
  • one transmission channel is configured as a group as an example.
  • other grouping situations may exist.
  • ⁇ 1T, 1T, 0T ⁇ and ⁇ 1T, 1T, 0T ⁇ are grouped into a group
  • ⁇ 0T , 1T, 1T ⁇ and ⁇ 2T, 0T, 0T ⁇ are grouped into a group
  • ⁇ 0T, 2T, 0T ⁇ and ⁇ 0T, 0T, 2T ⁇ are grouped into a group, etc., which will not be repeated here.
  • the configuration of the first transmission channel may also be determined in the following manner:
  • the antenna port transmission configuration corresponds to only one transmission channel configuration, determining the transmission channel configuration corresponding to the antenna port transmission configuration as the first transmission channel configuration;
  • the terminal device determines the second transmission channel configuration as the selected transmission channel configuration. the first transmission channel configuration
  • the antenna port transmission configuration corresponds to multiple transmit channel configurations, and the multiple transmit channel configurations do not include the second transmit channel configuration, then determine from at least one transmit channel configuration according to a preset order The transmission channel configuration that meets the condition, and the transmission channel configuration that meets the condition is used as the first transmission channel configuration; the at least one transmission channel configuration is determined according to the L transmission channels of the terminal device;
  • the transmit channel configuration that satisfies the condition means that one or more antenna port configurations corresponding to the transmit channel configuration include the antenna port transmission configuration.
  • the configuration of the at least one transmission channel is determined according to the ON state and the OFF state of the L transmission channels in the terminal device. Assuming that the terminal device includes 3 transmission channels, which are denoted as TX1, TX2 and TX3 respectively, and the terminal device can use 2 transmission channels to send information at the same time, then the open state and closed state of the three transmission channels in the terminal device can exist in Table 1 6 transmit channel configurations shown.
  • the terminal equipment Before determining the configuration of the first transmission channel, the state of the L transmission channels in the terminal device may also be synchronized between the network device and the terminal device, and the synchronization method may include but is not limited to any of the following methods:
  • the state settings of the L transmission channels in the terminal device can be pre-configured. Specifically, the state of the L transmission channels in the terminal device can be pre-agreed. For example, when there are 3 transmission channels in the terminal device, the network device An antenna port transmission configuration can be selected to configure the antenna port configuration of the three carriers of the terminal device. For example, the selected antenna port transmission configuration can only correspond to one transmission channel configuration. In this way, the network device transmits without explicitly indicating the TX state. In the case of the channel transmission configuration, the transmission channel transmission configuration can be aligned with the terminal device. At this point, it can be understood that the initial transmit channel configuration is synchronized.
  • the terminal device indicates the status of the L transmission channels in the terminal device to the network device.
  • the network device may send third information to the terminal device, and the third information is used to indicate the L transmission channels in the terminal device. Status of the channel. How to specifically indicate is not limited in this embodiment of the present application.
  • the terminal device indicates to the network device the states of the L transmission channels in the terminal device at time T1.
  • the network device indicates to the terminal device the status of the L transmission channels in the terminal device.
  • the terminal device sends fifth information to the network device, where the fifth information is used to indicate the L transmission channels in the terminal device.
  • the state of the transmission channel, and how to indicate it specifically, is not limited in this embodiment of the present application.
  • the network device indicates the states of the L transmission channels in the terminal device at time T2.
  • the terminal device may further determine at least one transmission channel for transmitting information according to the state of the transmission channel corresponding to each uplink carrier in the at least one uplink carrier.
  • the at least one uplink carrier is used for transmitting information or the at least one uplink carrier is an uplink carrier that the terminal device is scheduled to use.
  • the transmit channel can transmit information; alternatively, the transmit channel transmits information; or, the terminal device has already adjusted synchronization and/or power control on a certain carrier through the transmit channel.
  • the method may further include the step of: the terminal device may determine, among the L transmission channels, a transmission channel in an open state that corresponds to an uplink carrier in at least one uplink carrier as at least one transmission channel for transmitting information.
  • the terminal device may determine, among the L transmission channels, a transmission channel that corresponds to an uplink carrier in at least one uplink carrier and is in an open state as at least one transmission channel used for transmitting information.
  • the terminal device includes 3 transmit channels, denoted as TX1, TX2, and TX3 respectively, and the network device activates 3 uplink carriers for the terminal device, namely CC1, CC2, and CC3, where TX1 corresponds to CC1, and TX2 corresponds to CC2 corresponds to, TX3 corresponds to CC3.
  • TX1 may be determined as at least one transmission channel used for transmitting information.
  • TX2 is in an open state, its corresponding CC2 is not scheduled, so it is not used for information transmission.
  • it further includes the step of: after the terminal device determines the states of the L transmission channels, it determines to perform transmission channel switching or not to perform transmission channel switching; or, the terminal device determines the configuration of the first transmission channel, and determines to perform transmission channel switching or not to perform transmission channel switching. Transmit channel switch.
  • At least one transmission channel used for transmitting information in the terminal device is determined, that is, the terminal device determines the configuration of the first transmission channel. Then the terminal device determines whether to switch the transmission channel: specifically, if the configuration of the first transmission channel and the configuration of the second transmission channel are different, it is determined to switch the transmission channel configuration, that is to say, the transmission channel of the terminal device needs to be switched.
  • This application also involves content about power and transmit channel configuration, which is described in detail below:
  • the antenna port used by the terminal device to transmit information in the scheduled uplink carrier is the antenna port configured for the uplink carrier.
  • multiple transmit channels may be supported to transmit information using different antenna ports in one uplink carrier, and multiple transmit channels may also be supported to transmit information by using the same antenna port in one uplink carrier.
  • the first transmit channel when configured as ⁇ 2T, 0T, 0T ⁇ and the antenna port transmission configuration is ⁇ 2P, 0P, 0P ⁇ , it means that information is transmitted in CC1 through TX1 and TX1, And TX1 and TX1 transmit information through different antenna ports respectively; when the first transmit channel is configured as ⁇ 2T, 0T, 0T ⁇ and the antenna port transmission configuration is ⁇ 1PX, 0P, 0P ⁇ , it means that TX1 and TX1 are transmitted in CC1 information, and TX1 and TX1 transmit information through the same antenna port.
  • the terminal device determines that the number of antenna ports is less than the number of transmit channels, that is, when the terminal device determines that the same antenna port is used to transmit information in one uplink carrier through multiple transmit channels, high power gain can be used to transmit information in the antenna port.
  • the network device instructs the terminal device to set the first transmission channel configuration as ⁇ 2T, 0T, 0T ⁇ , or how the terminal device transmits the configuration through the antenna port as ⁇ 1P, 0P, 0P ⁇ , and obtains the first transmission channel configuration as ⁇ 1P, 0P, 0P ⁇ .
  • the channel configuration is set to ⁇ 2T, 0T, 0T ⁇ , which will be described in detail below.
  • the same antenna port is used to send information in one uplink carrier, and at this time, the transmission power of the terminal device can be The information is sent using a power higher than the normal power.
  • the network device may instruct the terminal to use a higher power than the normal power to send the information when configuring the carrier, thereby instructing the terminal device to set the first transmission channel. Configured as ⁇ 2T, 0T, 0T ⁇ .
  • the network device when the terminal reports capability information, the network device is informed that the terminal device supports sending information on a single port through 2TX, and the transmission power can support 3dBm higher than the original conventional transmission power of 23dBm. In this way, the network device can instruct the terminal device to use a power higher than the conventional transmission power to send information on a certain carrier through 1 bit. For example, 1 represents 26 dBm, and 0 represents 23 dBm, thus actually instructing the terminal device to use 2TX to send information on a certain carrier.
  • the network device instructs the terminal device to use M TXs to send information on a certain carrier through a single antenna port by indicating the first transmission power.
  • M TXs to send information on a certain carrier through a single antenna port by indicating the first transmission power.
  • the terminal device needs to determine the states of the L radio frequency channels according to the antenna port configuration of each carrier in the at least one carrier.
  • the network device may directly indicate the states of the L radio frequency channels, which will be described in detail below.
  • Mode 1 In Table 2 above, the antenna port transmission configurations corresponding to different transmission channel configurations are given. For this reason, this application can first determine all possible configuration combinations formed by the antenna port transmission configuration and the transmission channel configuration, and then directly send the The terminal device indicates the corresponding configuration combination.
  • each of the H configuration combinations includes an antenna port transmission configuration and a transmission channel configuration, and each of the H configuration combinations corresponds to an index value.
  • the network device may schedule information to the terminal device, where the scheduling information is used to indicate an index value of the first configuration combination.
  • the terminal device can determine the first configuration combination according to the index value indicated by the scheduling information, so as to determine the antenna port transmission configuration and the transmission channel configuration included in the first configuration combination, and then can determine the status of the L radio frequency channels, and at least the scheduled configuration. an upstream carrier.
  • the network device indicates the transmit channel state corresponding to the antenna port configuration of the terminal device by sending the index value. This ensures that the network device and the terminal device are aligned with the transmission channel state of the terminal device.
  • index value transmit channel configuration Antenna Port Transmission Configuration 0000 ⁇ 1T, 1T, 0T ⁇ ⁇ 1P, 1P, 0P ⁇ 0001 ⁇ 1T, 0T, 1T ⁇ ⁇ 1P, 0P, 1P ⁇ 0010 ⁇ 0T, 1T, 1T ⁇ ⁇ 0P, 1P, 1P ⁇ 0011 ⁇ 2T, 0T, 0T ⁇ ⁇ 2P, 0P, 0P ⁇ 0100 ⁇ 0T, 2T, 0T ⁇ ⁇ 0P, 2P, 0P ⁇ 0101 ⁇ 0T, 0T, 2T ⁇ ⁇ 0P, 0P, 2P ⁇ 0110 ⁇ 1T, 1T, 0T ⁇ ⁇ 1P, 0P, 0P ⁇ 0111 ⁇ 1T, 0T, 1T ⁇ ⁇ 1P, 0P, 0P ⁇ 1000 ⁇ 2T, 0T, 0T ⁇ ⁇ 1PX, 0P, 0P ⁇ 100
  • the terminal device can determine that the first transmission channel configuration is ⁇ 0T, 1T, 1T ⁇ , the antenna port transmission configuration is ⁇ 0P, 1P, 1P ⁇ , and no other conditions Repeat.
  • Mode 2 According to the previous description, there is a one-to-one correspondence between some transmission channel configurations and antenna port transmission configurations.
  • the first transmission channel configuration may not be indicated, but the first transmission channel configuration may be indirectly indicated by the scheduled uplink carrier. transmit channel configuration. Specifically, in this case, the transmission channel corresponding to the scheduled uplink carrier is in an open state, and the transmission channel corresponding to the unscheduled uplink carrier is in a closed state.
  • the terminal device includes 3 transmit channels, denoted as TX1, TX2, and TX3 respectively, and the network device activates 3 uplink carriers for the terminal device, namely CC1, CC2, and CC3, where TX1 corresponds to CC1, and TX2 corresponds to CC2 corresponds to, TX3 corresponds to CC3.
  • the configuration of the first transmission channel may not be indicated.
  • the terminal device may determine that the first transmission channel is configured as ⁇ 1T, 1T, 0T ⁇ according to the scheduled uplink carrier.
  • the network device schedules the terminal device to transmit information in CC1 and CC3, the configuration of the first transmission channel may not be indicated.
  • the terminal device may determine that the configuration of the first transmission channel is ⁇ 1T, 0T, 1T ⁇ according to the scheduled uplink carrier.
  • the method in the first mode can be used to directly indicate. For example, as shown in Table 6.
  • index value transmit channel configuration Antenna Port Transmission Configuration 0000 ⁇ 1T, 1T, 0T ⁇ ⁇ 1P, 0P, 0P ⁇ 0001 ⁇ 1T, 0T, 1T ⁇ ⁇ 1P, 0P, 0P ⁇ 0010 ⁇ 2T, 0T, 0T ⁇ ⁇ 1PX, 0P, 0P ⁇ 0011 ⁇ 1T, 1T, 0T ⁇ ⁇ 0P, 1P, 0P ⁇ 0100 ⁇ 0T, 1T, 1T ⁇ ⁇ 0P, 1P, 0P ⁇ 0101 ⁇ 0T, 2T, 0T ⁇ ⁇ 0P, 1PX, 0P ⁇ 0110 ⁇ 1T, 0T, 1T ⁇ ⁇ 0P, 0P, 1P ⁇ 0111 ⁇ 0T, 1T, 1T ⁇ ⁇ 0P, 0P, 1P ⁇ 1000 ⁇ 0T, 0T, 2T ⁇ ⁇ 0P, 0P, 1PX ⁇
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the network device may also directly indicate the states of the L transmission channels in the terminal device, which will be described in detail below.
  • a schematic flowchart of a communication method provided by an embodiment of the present application includes:
  • Step 301 The network device sends third information to the terminal device.
  • the third information is used to indicate the states of the L transmission channels in the terminal device; L is an integer greater than 0.
  • the third information is used to indicate the state of the transmission channel corresponding to each carrier in the at least one carrier in the terminal device.
  • the at least one carrier may be a configuration carrier, an activated carrier, or a scheduling carrier, which is not limited in this application.
  • the present application takes an activated carrier as an example, and the third information is used to indicate the state of a transmission channel corresponding to each activated carrier in at least one activated carrier in the terminal device.
  • the third information may be sent through high-layer signaling, and the third information may also be sent through DCI.
  • ⁇ 1T, 1T, 0T ⁇ corresponds to 110.
  • the third information sent may be 110, and the indicated first transmission channel is configured as ⁇ 1T, 1T, 0T ⁇ , indicating that TX1 and TX2 in the terminal device are in an open state.
  • the network device determines the third information. How the network device specifically determines the third information is not limited in this embodiment of the present application.
  • Step 302 The terminal device receives the third information from the network device.
  • the present application takes an activated carrier as an example, and the third information is used to indicate the state of a transmission channel corresponding to each activated carrier in at least one activated carrier in the terminal device.
  • the terminal device can also receive the first information and the second information from the network device, and the specific content of the first information and the second information can be referred to the previous description, which will not be repeated here.
  • the first information is used to indicate an antenna port configuration
  • the antenna port configuration is the antenna port configuration used by the uplink carrier of the terminal device; or the antenna port configuration is the antenna port configuration used by each uplink carrier configured by the terminal device.
  • the network device sends second information to the terminal device, where the second information is used to indicate whether the uplink carrier is scheduled or whether the uplink carrier is activated.
  • the network device may send a piece of second information in the downlink carrier corresponding to each uplink carrier, where the second information is used to indicate the information of the uplink carrier.
  • the second information may include one or more of the following: the identifier of the uplink carrier; the index of the uplink carrier; the frequency index of the uplink carrier; the frequency identifier of the uplink carrier, whether the uplink carrier is scheduled, and whether the uplink carrier is activated.
  • the network device may send a piece of second information in one downlink carrier, where the second information is used to indicate the information of the at least one uplink carrier.
  • the second information may include one or more of the following: identifiers of m uplink carriers; m uplink carrier indices; m uplink carrier frequency indices; m uplink carrier frequency identifiers; m is positive Integer, m is the number of the scheduled at least one uplink carrier, whether the uplink carrier is scheduled, and whether the uplink carrier is activated.
  • the second information includes A1 bits, and each bit is used to indicate whether an uplink carrier is scheduled or activated for use.
  • the second information may include 5 bits, and each bit corresponds to one uplink carrier. Assuming that the value of the bit is 1, it means that the uplink carrier is scheduled; when the value of the bit is 0, it means that the uplink carrier is not scheduled; when the second information is 11000, it means that two uplink carriers among the five uplink carriers are scheduled.
  • numbers may be set for the five carriers, for example, the two uplink carriers are the first carrier CC1 and the second carrier CC2 are scheduled respectively.
  • step 303 the terminal device determines at least one transmission channel used for transmitting information in the terminal device according to the states of the L transmission channels.
  • the third information is used to indicate the states of the L transmission channels in the terminal device; L is an integer greater than 0.
  • the third information may be used to indicate that each of the L transmission channels is in an open state or a closed state; or, the third information may be used to indicate an open transmission channel among the L transmission channels; or , and the third information is used to indicate the transmission channel in the closed state among the L transmission channels.
  • At least one transmission channel used for transmitting information may be determined in a variety of implementation manners, which will be described separately below.
  • the terminal device determines, according to the third information and the second information, the state of the transmission channel corresponding to each of the at least one uplink carrier indicated by the second information, so as to determine at least one transmission channel used for transmitting information in the terminal device .
  • the terminal device may determine the transmission channel corresponding to each uplink carrier in the at least one uplink carrier, and determine the transmission channel state corresponding to the open state of the at least one uplink carrier as the transmission channel state of the at least one uplink carrier. at least one transmit channel for transmitting information.
  • the network device will only configure two carriers for the terminal device to perform concurrent data as an example.
  • the terminal device obtains the status of the three transmission channels.
  • the terminal device obtains the information that the activated carriers are actually scheduled, that is, two of the three carriers are used for actually sending information. Therefore, according to the third information and the second information, the state of the transmission channel corresponding to each of the three uplink carriers is determined, so that at least one transmission channel used for transmitting information in the terminal device can be determined.
  • the terminal device may determine the transmission channel corresponding to each uplink carrier in the at least one uplink carrier, and determine the transmission channel state corresponding to the open state of the at least one uplink carrier as a at least one transmit channel for transmitting information.
  • the terminal device may determine, according to the third information and the first information, a state of a transmission channel corresponding to each antenna port in the at least one uplink carrier, thereby determining at least one transmission channel used for transmitting information in the terminal device.
  • the terminal device may determine, according to the third information, an open transmission channel among the L transmission channels, and determine, according to the first information, the transmission corresponding to each of the at least one antenna port. Therefore, the state of the transmission channel corresponding to the open state of the at least one antenna port can be determined as the at least one transmission channel used for transmitting information.
  • the network device will only configure two carriers for the terminal device to perform concurrent data as an example.
  • the terminal device obtains the status of the three transmission channels. That is, the terminal device may determine, according to the third information, the transmission channel in the open state and the transmission channel in the closed state among the L transmission channels.
  • the terminal device obtains the antenna port configuration corresponding to the three carriers, that is to say, the terminal device determines the state of the transmit channel corresponding to the antenna port of each carrier in the three carriers. Therefore, the state of the transmission channel corresponding to the open state of the at least one antenna port can be determined as the at least one transmission channel used for transmitting information.
  • the third information is used to indicate the state of the transmission channel corresponding to each carrier in the at least one carrier in the terminal device.
  • the network device may send a third piece of information in the downlink carrier corresponding to each uplink carrier.
  • the third information is also used to indicate one or more of the following: the state of the transmission channel used by the uplink carrier; The number of transmit channels used.
  • the network device may also send a third piece of information in a downlink carrier, where the third information is also used to indicate one or more of the following: the state of the transmission channel used by each uplink carrier on the X uplink carriers; The number of transmit channels used by each uplink carrier on the X uplink carriers.
  • the third information may include 3 bits, and each bit corresponds to one of the transmission channels and the uplink carrier. If the value of the bit is 1, it means that the uplink carrier is scheduled, and the transmission channel corresponding to the uplink carrier is in an open state; When the value of is 0, it indicates that the uplink carrier is not scheduled, and the transmit channel corresponding to the uplink carrier is in the closed state.
  • the third information is 110, it means that TX1 and TX2 are in an on state, and CC1 and CC2 are scheduled.
  • the terminal device determines at least one transmission channel used for transmitting information in the terminal device according to the state of the transmission channel used by each uplink carrier on the X uplink carriers. Specifically, the terminal device may determine at least one transmission channel used for transmitting information in the terminal device by using at least one transmission channel in an open state among the L transmission channels.
  • ⁇ 1PX, 0P, 0P ⁇ corresponds to ⁇ 2T, 0T, 0T ⁇
  • the network device instruct the terminal device to set the first transmission channel configuration to ⁇ 2T, 0T, 0T ⁇ , or how does the terminal device pass the
  • the antenna port transmission configuration is ⁇ 1P, 0P, 0P ⁇
  • the first transmit channel configuration is set to ⁇ 2T, 0T, 0T ⁇ , which will be described in detail below.
  • the same antenna port is used to send information in one uplink carrier, and at this time, the transmission power of the terminal device can be The information is sent using a power higher than the normal power.
  • the network device may instruct the terminal to use a higher power than the normal power to send the information when configuring the carrier, thereby instructing the terminal device to set the first transmission channel. Configured as ⁇ 2T, 0T, 0T ⁇ .
  • the network device when the terminal reports capability information, the network device is informed that the terminal device supports sending information on a single port through 2TX, and the transmission power can support 3dBm higher than the original conventional transmission power of 23dBm. In this way, the network device can instruct the terminal device to use a power higher than the conventional transmission power to send information on a certain carrier through 1 bit. For example, 1 represents 26 dBm, and 0 represents 23 dBm, thus actually instructing the terminal device to use 2TX to send information on a certain carrier.
  • the network device instructs the terminal device to use M TXs to transmit information on a certain carrier through a single antenna port by indicating the first transmit power.
  • M TXs to transmit information on a certain carrier through a single antenna port by indicating the first transmit power.
  • it may further include the following steps: after the terminal device determines the states of the L transmission channels, it determines to perform transmission channel switching or not to perform transmission channel switching; or, the terminal device determines the configuration of the first transmission channel, and determines to execute the transmission channel Switch or do not perform transmit channel switching.
  • At least one transmission channel used for transmitting information in the terminal device is determined, that is, the terminal device determines the configuration of the first transmission channel. Then the terminal device determines whether to switch the transmission channel: specifically, if the configuration of the first transmission channel and the configuration of the second transmission channel are different, it is determined to switch the transmission channel configuration, that is to say, the transmission channel of the terminal device needs to be switched.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • FIG. 4 a schematic flowchart of a communication method provided by the embodiment of the present application, the method includes:
  • Step 401 The terminal device sends the second power information to the network device.
  • the second power information is used to indicate that the terminal device supports using the first transmit power or the second transmit power to send information on one antenna port; or the first power information is used to indicate that the terminal device supports using the first transmission on one carrier
  • the power or the second transmission power is used for information transmission; wherein the first transmission power is greater than the second transmission power.
  • the terminal device supports information transmission using the first transmission power on one antenna port
  • the terminal device supports information transmission using the first transmission power on one antenna port
  • K is a positive integer
  • the terminal device supports sending using the first transmit power on one carrier: specifically, it can be used to indicate that "the terminal supports sending information on one carrier by using the first transmit power on one antenna port through K transmit channels” send".
  • the second power information includes at least one of the following parameters: a carrier frequency band using the first transmit power, a carrier frequency using the first transmit power, a carrier frequency index using the first transmit power, a carrier frequency identifier using the first transmit power, using The number of antenna ports that transmit information using the first transmission power, the antenna port number that uses the first transmission power to transmit information, the number of transmission channels that use the first transmission power to transmit information, and the multiple-input multiple-output MIMO layer that uses the first transmission power to transmit information number, power gain.
  • the power gain may be, for example, 3dBm.
  • the normal power is the second transmit power
  • the first transmit power is the sum of the second transmit power and the power gain.
  • the terminal device supports multiple transmission channels (for example, it can support 2 TX, 3 TX, 4 TX, etc.) to transmit information using the same antenna port in an uplink carrier, and at this time the terminal device transmits power
  • the information can be sent by using a power higher than the normal power: if the network device can instruct the terminal to use a power higher than the normal power to send the information when configuring the carrier, so as to instruct the terminal device to set the first transmission channel configuration to ⁇ 2T , 0T, 0T ⁇ instead of ⁇ 1T, 0T, 0T ⁇ .
  • Step 402 The network device sends first power information to the terminal device, where the first power information is used to instruct the terminal device to use the first transmission power to send information on the first carrier.
  • the first carrier may refer to any carrier configured or activated for the terminal device.
  • the network device sends the first power information on the downlink carrier 1 to instruct the terminal device to use the first transmission power to send information on the first carrier.
  • the first carrier may be an uplink carrier corresponding to the downlink carrier that transmits the first power information.
  • the network device sends first power information on downlink carrier 1 to instruct the terminal device to use the first transmission power to send information on multiple uplink carriers .
  • the first carrier may be any one of the multiple uplink carriers.
  • the first power information reported by the terminal device is used to indicate that 2TX is supported to send information on one carrier using a single antenna port, and the used transmit power is the first transmit power.
  • Two power information contains x bits. This embodiment is described by taking 3 bits as an example.
  • the second power information is used to indicate power transmission information of the three uplink carriers. For example, 100 indicates that uplink carrier 1 uses the first transmission power to send information, and uplink carrier 2 and uplink carrier 3 use the second transmission power to send information.
  • the network device has actually instructed the terminal device to use 2TX to transmit information on one carrier using a single antenna port through the first power information. Therefore, the terminal device is actually instructed to set the first transmit channel configuration as ⁇ 2T, 0T, 0T ⁇ instead of ⁇ 1T, 0T, 0T ⁇ .
  • Step 403 The terminal device sends information to the network device using the first transmission power on the first carrier.
  • the terminal device uses K transmit channels to transmit information on the at least one carrier using the first transmit power on one antenna port.
  • the terminal device uses K transmit channels to perform information transmission on the ith carrier by using the first transmit power on one antenna port; wherein, i is a positive integer.
  • K is a positive integer.
  • K 2TX. data for one carrier (eg, carrier 1 ), and the data for that carrier 1 is transmitted through 1 antenna port.
  • the first power information reported by the terminal device is used to indicate that 2TX is supported to send information on one carrier using a single antenna port, and the used transmit power is the first transmit power.
  • Two power information contains x bits. This embodiment uses 3 bits as an example to describe the content of the invention.
  • the second power information is used to indicate power transmission information of the three uplink carriers. For example, 100 indicates that uplink carrier 1 uses the first transmission power to send information, and uplink carrier 2 and uplink carrier 3 use the second transmission power to send information.
  • the terminal device receives the second power information, and the terminal device 2TX uses a single antenna port to transmit information on one carrier, and the transmit power is the first transmit power. That is to say, the terminal device sets the first transmission channel configuration to be ⁇ 2T, 0T, 0T ⁇ instead of ⁇ 1T, 0T, 0T ⁇ .
  • the specific values of the first transmit power and the second transmit power are not limited in this embodiment of the present application, for example, the first transmit power is 26 dBm, and the second transmit power is 23 dBm.
  • the terminal device uses K transmit channels to transmit information on the at least one carrier using the first transmit power on one antenna port. Specifically, the network device transmits power indicating 5 carriers, where 5 Among the two carriers, the second carrier and the fifth carrier need to be sent with the first power, and the others need to be sent with the second power. Then, the terminal device uses the first transmit power to send information on the second carrier through K transmit channels on one antenna port, and the terminal device uses the K transmit channels on the fifth carrier to use the first transmit power on one antenna port. The first transmit power transmits the information rate.
  • the terminal device uses K transmit channels to transmit information on the at least one carrier using the first transmit power on one antenna port", which specifically means that the terminal device transmits information on the second carrier through K transmit power
  • the channel transmits information using the first transmit power on one antenna port, and the terminal device transmits the information rate on the fifth carrier by using the first transmit power on one antenna port through K transmit channels.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Step 1 The terminal device sends a first capability message to the network device.
  • the first capability message may include: at least one of capability information and first power information.
  • the capability information is used to indicate one or more of the following:
  • the terminal device can determine the uplink carrier used for sending information in more than L uplink carriers, where L is an integer greater than 0; the terminal device can support determining the uplink carrier used for sending information in at most S uplink carriers, the S is a positive integer greater than said L; L.
  • the first power information is used to indicate that the terminal device supports using the first transmit power or the second transmit power to transmit information on one antenna port; wherein the first transmit power is greater than the first transmit power 2 sending power; or the terminal device sends first power information to the network device, where the first power information is used to indicate that the terminal device supports using the first sending power or the second sending power to send information on one carrier; wherein the first sending The power is greater than the second transmit power.
  • the terminal device supports information transmission using the first transmit power on one antenna port specifically, it is used to instruct the terminal to support the use of the first transmit power to transmit information on one antenna port through K transmit channels; wherein , K is a positive integer.
  • the terminal device supports sending using the first transmit power on one carrier: specifically, it can be used to indicate that the terminal supports sending information on one carrier by using the first transmit power on one antenna port through K transmit channels ; where K is a positive integer.
  • the second power information includes at least one of the following parameters: a carrier frequency band using the first transmit power, a carrier frequency using the first transmit power, a carrier frequency index using the first transmit power, and a carrier frequency identifier using the first transmit power , the number of antenna ports used to send information using the first transmission power, the number of antenna ports used to send information using the first transmission power, the number of transmission channels used to send information using the first transmission power, and the multiple-input multiple-output (MIMO) used to send information using the first transmission power MIMO layers, power gain.
  • MIMO multiple-input multiple-output
  • the power gain may be, for example, 3dBm.
  • the normal power is the second transmit power
  • the first transmit power is the sum of the second transmit power and the power gain.
  • the terminal device supports multiple transmit channels to use the same antenna port to send information in one uplink carrier, and at this time, the terminal device can use a higher power than the conventional power to send information: if the network device can configure When this carrier is used, the terminal is instructed to use a higher power than the conventional power to transmit information, thereby instructing the terminal device to set the first transmission channel configuration to ⁇ 2T, 0T, 0T ⁇ instead of ⁇ 1T, 0T, 0T ⁇ .
  • Step 2 The network device sends configuration information to the terminal device.
  • the configuration information is used to indicate one or more of the following:
  • the network device is the uplink carrier information configured by the terminal device
  • the network device is the uplink carrier information activated by the terminal device
  • uplink carrier information used by the terminal device to transmit information
  • the network device is the number X of uplink carriers configured by the terminal device, where the X is a positive integer greater than L, and the L is the maximum number of uplink carriers that the terminal device can perform uplink transmission simultaneously;
  • the network device is the number X of uplink carriers configured by the terminal device, where the X is a positive integer greater than P, and the P is the maximum number of transmission channels that the terminal device can simultaneously perform uplink transmission;
  • the number m of uplink carriers used by the terminal device to transmit information where m is a positive integer less than or equal to the L.
  • the uplink carrier information may be at least one of the following: an identifier of an uplink carrier; an index of an uplink carrier; a frequency of an uplink carrier, a frequency index of an uplink carrier, a frequency identifier of an uplink carrier, and the like.
  • the network device is an uplink carrier configured by the terminal device
  • the terminal device has performed one or more of synchronization, measurement and power control adjustment on the carrier.
  • This type of carrier also referred to as the carrier is configured, configures a carrier.
  • the carrier is a configuration carrier.
  • other names may also be used, which are not limited in this application.
  • the network device is an uplink carrier activated by the terminal device
  • the terminal device can send information on the carrier at any time, or can communicate on the carrier at any time.
  • the carrier is activated, or a carrier is activated, and it can also be said that the carrier is an activated carrier.
  • other names may also be used, which are not limited in this application.
  • Information of the uplink carrier used by the terminal device to transmit information means that the terminal device sends information on the carrier, or can communicate on the carrier. At this time, it can also be said that the carrier is scheduled, or a carrier is scheduled. At this time, the carrier can also be called a scheduling carrier. Of course, other names may also be used, which are not limited in this application.
  • the network device configures 5 carriers for the terminal device, and activates 3 of them so that the terminal can use the carrier for communication at any time, but during the actual scheduling, the network device only actually uses the 3 carriers. 2 carriers are used for communication. It should be noted that the three carriers are the maximum number of uplink carriers supported by the UE for parallel transmission, or the three carriers are the maximum number of TX transmission channels that the terminal device can support.
  • Step 3 The network device sends third information to the terminal device.
  • the third information is used to indicate the state of the transmission channel corresponding to each carrier in the at least one carrier in the terminal device.
  • the at least one carrier may be a configuration carrier, an activated carrier, or a scheduling carrier, which is not limited in this application.
  • the present application takes an activated carrier as an example, and the third information is used to indicate the state of a transmission channel corresponding to each activated carrier in at least one activated carrier in the terminal device.
  • how the network device sends the third information is not limited in this embodiment of the present application.
  • the third information may be sent through high-layer signaling.
  • the network device is configured with 3 activated carriers for data transmission, and each carrier corresponds to 1 TX.
  • the third information may be represented by X bits to indicate the state of the transmission channel corresponding to each carrier in at least one carrier in the terminal device.
  • the third information may be 110, and the indicated first transmission channel configuration is ⁇ 1T, 1T, 0T ⁇ , indicating that TX1 and TX2 in the terminal device are in an open state.
  • Step 4 The terminal device receives at least one of the third information and the first power information from the network device.
  • the third information is used to indicate the state of the transmission channel corresponding to each carrier in the at least one carrier in the terminal device.
  • the at least one carrier may be a configuration carrier, an activated carrier, or a scheduling carrier, which is not limited in this application.
  • the network device is configured with 3 activated carriers for data transmission, and each carrier corresponds to 1 TX.
  • the third information may be represented by X bits to indicate the state of the transmission channel corresponding to each carrier in at least one carrier in the terminal device.
  • the third information may be 110, and the indicated first transmission channel configuration is ⁇ 1T, 1T, 0T ⁇ , indicating that TX1 and TX2 in the terminal device are in an open state.
  • the first power information is used to instruct the terminal device to use the first transmission power to send information on the first carrier.
  • the network device sends the first power information on the downlink carrier 1, which is used to instruct the terminal device to use the first transmission power to send information on a certain carrier; or Specifically, for a situation where one downlink carrier can indicate scheduling of multiple uplink carriers, the network device sends first power information on downlink carrier 1 to instruct the terminal device to use the first transmission power to send on multiple uplink carriers. information.
  • the second power information reported by the terminal device is used to indicate that 2TX is supported to transmit information on a carrier using a single antenna port, and the transmit power used is the first transmit power.
  • a power information contains x bits. This embodiment uses 3 bits as an example to describe the content of the invention.
  • the first power information is used to indicate power transmission information of three uplink carriers. For example, 100 indicates that uplink carrier 1 uses the first transmission power to send information, and uplink carrier 2 and uplink carrier 3 use the second transmission power to send information.
  • the network device has actually instructed the terminal device to use 2TX to transmit information on one carrier using a single antenna port through the second power information. Therefore, the terminal device is actually instructed to set the first transmit channel configuration as ⁇ 2T, 0T, 0T ⁇ instead of ⁇ 1T, 0T, 0T ⁇ .
  • ⁇ 1PX, 0P, 0P ⁇ corresponds to ⁇ 2T, 0T, 0T ⁇
  • how does the network device instruct the terminal device to set the first transmission channel configuration to ⁇ 2T, 0T, 0T ⁇ , or how does the terminal device transmit through the antenna port The configuration is ⁇ 1P, 0P, 0P ⁇ , and the first transmit channel configuration is set to ⁇ 2T, 0T, 0T ⁇ .
  • the terminal device can use a higher power than conventional power to send information.
  • the network When configuring the carrier, the device may instruct the terminal to use a higher power than normal power to send information, thereby instructing the terminal device to set the first transmission channel configuration to ⁇ 2T, 0T, 0T ⁇ .
  • the network device when the terminal reports capability information, the network device is informed that the terminal device supports sending information on a single port through 2TX, and the transmission power can support 3dBm higher than the original conventional transmission power of 23dBm. In this way, the network device can instruct the terminal device to use a power higher than the conventional transmission power to send information on a certain carrier through 1 bit. For example, 1 represents 26 dBm, and 0 represents 23 dBm, thus actually instructing the terminal device to use 2TX to send information on a certain carrier.
  • the network device instructs the terminal device to use M TXs to transmit information on a certain carrier through a single antenna port by indicating the first transmit power.
  • M TXs to transmit information on a certain carrier through a single antenna port by indicating the first transmit power.
  • step 5 the terminal device determines at least one transmission channel used for transmitting information in the terminal device according to the states of the L transmission channels.
  • the third information is used to indicate the state of the transmission channel corresponding to each carrier in the at least one carrier in the terminal device. Therefore, the terminal determines, according to the third information, a transmission channel state corresponding to each of the L carriers.
  • the following content is similar to the content in the third implementation manner of step 303 in the fifth embodiment.
  • the network device may send a third piece of information in the downlink carrier corresponding to each uplink carrier.
  • the third information is also used to indicate one or more of the following: the state of the transmission channel used by the uplink carrier; the uplink carrier The number of transmit channels used.
  • the network device may also send a third piece of information in a downlink carrier, where the third information is also used to indicate one or more of the following: the state of the transmission channel used by each uplink carrier on the X uplink carriers; The number of transmit channels used by each uplink carrier on the X uplink carriers.
  • the terminal device includes 3 transmit channels, which are denoted as TX1, TX2 and TX3 respectively.
  • the network device activates 3 uplink carriers for the terminal device, namely CC1, CC2 and CC3, where TX1 corresponds to CC1, TX2 corresponds to CC2, and TX3 corresponds to CC3 corresponds.
  • the third information may include 3 bits, and each bit corresponds to one of the transmission channels and the uplink carrier.
  • the value of the bit is 1, it means that the uplink carrier is scheduled, and the transmission channel corresponding to the uplink carrier is in an open state; When the value of is 0, it indicates that the uplink carrier is not scheduled, and the transmit channel corresponding to the uplink carrier is in the closed state.
  • the third information is 110, it means that TX1 and TX2 are in an on state, and CC1 and CC2 are scheduled.
  • the third information is 100, it means that TX1 is in an on state, and CC1 is scheduled for transmission. CC2 and CC3 are not scheduled and are not used to transmit information.
  • the terminal device determines at least one transmission channel used for transmitting information in the terminal device according to the state of the transmission channel used by each uplink carrier on the X uplink carriers. Specifically, the terminal device may determine at least one transmission channel used for transmitting information in the terminal device by using at least one transmission channel in an open state among the L transmission channels.
  • the terminal device can determine the number of TXs used on each carrier.
  • Step 6 After the terminal device determines the states of the L transmission channels, it determines to perform transmission channel switching or not to perform transmission channel switching; or, the terminal device determines the configuration of the first transmission channel, and determines to perform transmission channel switching or not perform transmission channel switching .
  • At least one transmission channel used for transmitting information in the terminal device is determined, that is, the terminal device determines the configuration of the first transmission channel. Then the terminal device determines whether to switch the transmission channel: specifically, if the configuration of the first transmission channel and the configuration of the second transmission channel are different, it is determined to switch the transmission channel configuration, that is to say, the transmission channel of the terminal device needs to be switched.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and operations implemented by the network device can also be implemented by A component (eg, chip or circuit) implementation that can be used in a network device.
  • components such as chips or circuits
  • a component eg, chip or circuit
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between various devices.
  • the terminal device and the network device may include hardware structures and/or software modules, and the above functions are implemented in the form of hardware structures, software modules, or hardware structures plus software modules. . Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides an apparatus 500 for implementing the functions of a terminal device or a network device in the above method.
  • the apparatus may be a software module or a system-on-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 500 may include: a processing unit 501 and a communication unit 502 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, respectively configured to perform the sending and receiving steps of the terminal device or the network device in the above method embodiments.
  • the apparatus 500 may implement steps or processes corresponding to the terminal equipment or network equipment in the above method embodiments, which will be described separately below.
  • a communication unit configured to receive first information from a network device, where the first information is used to indicate an antenna port configuration used by an uplink carrier;
  • a processing unit configured to determine the states of the L transmit channels in the terminal device according to the antenna port configuration; L is an integer greater than 0.
  • the processing unit is specifically used for:
  • the at least one uplink carrier is used to transmit information or the at least one uplink carrier is an uplink carrier that the terminal device is scheduled to use;
  • the antenna port transmission configuration is used to indicate the antenna port corresponding to the at least one uplink carrier
  • the states of the L transmit channels are determined according to the antenna port transmission configuration.
  • the processing unit is further used for:
  • the second transmission channel configuration is the state of L transmission channels when the terminal device receives the first information or before; the first transmission channel configuration is L determined according to the antenna port configuration The state of the transmit channel.
  • the antenna port transmission configuration corresponds to one or more transmission channel configurations
  • the processing unit is specifically configured to: if the antenna port transmission configuration corresponds to only one transmission channel configuration, determine the transmission channel configuration corresponding to the antenna port transmission configuration as the first transmission channel configuration;
  • the terminal device determines the second transmission channel configuration as the selected transmission channel configuration. the first transmit channel configuration; or, if the antenna port transmission configuration corresponds to multiple transmit channel configurations, and the multiple transmit channel configurations do not include the second transmit channel configuration, the terminal device will Among the multiple transmit channel configurations corresponding to the antenna port transmission configuration, select one transmit channel configuration as the first transmit channel configuration; wherein the second transmit channel configuration is when the terminal device receives the first information or before transmit channel configuration.
  • the processing unit is specifically used for:
  • the transmit channel configuration that satisfies the condition is determined from at least one transmit channel configuration, and the transmit channel configuration that meets the condition is used as the first transmit channel configuration; the at least one transmit channel configuration is determined according to the L transmit channels of the terminal device;
  • the transmit channel configuration that satisfies the condition means that one or more antenna port configurations corresponding to the transmit channel configuration include the antenna port transmission configuration.
  • the second transmission channel configuration is located in a first group of transmission channel configurations in the N groups of transmission channel configurations, and the first group of transmission channel configurations includes at least one transmission channel configuration;
  • the processing unit is specifically configured to: if it is determined that there is a transmission channel configuration that satisfies the condition in the first group of transmission channel configurations, the transmission channel configuration that meets the condition is used as the first transmission channel configuration;
  • the transmission channel configuration that meets the condition is determined from the N groups of transmission channel configurations , and use the transmit channel configuration that satisfies the condition as the first transmit channel configuration;
  • the transmit channel configuration that satisfies the condition means that one or more antenna port configurations corresponding to the transmit channel configuration include the antenna port transmission configuration.
  • a communication unit configured to send first information to the terminal device, where the first information is used to indicate the antenna port configuration used by the uplink carrier;
  • a processing unit configured to determine the states of the L transmit channels in the terminal device according to the antenna port configuration; L is an integer greater than 0.
  • a communication unit configured to receive third information from the network device; the third information is used to indicate the state of the transmission channel corresponding to each carrier in the at least one carrier;
  • the processing unit is configured to determine at least one transmission channel used for transmitting information in the terminal device according to the state of the transmission channel corresponding to each carrier in the at least one carrier.
  • a communication unit configured to send third information to the terminal device; the third information is used to indicate the status of the L transmission channels in the terminal device; or, the third information is used to indicate each carrier in the at least one carrier The state of the corresponding transmit channel;
  • a processing unit for receiving information on the at least one carrier.
  • a communication unit configured to receive third information from a network device; the third information is used to indicate the states of the L transmission channels in the terminal device; L is an integer greater than 0;
  • a processing unit configured to determine at least one transmission channel used for transmitting information in the terminal device according to the states of the L transmission channels.
  • a processing unit configured to receive first power information from the network device through the communication unit, where the first power information is used to indicate that the transmit power of at least one carrier is the first transmit power;
  • the processing unit is configured to use the first transmission power to transmit information on the at least one carrier through the communication unit.
  • FIG. 6 which is a schematic diagram of a communication structure provided by an embodiment of the present application
  • the apparatus shown in FIG. 6 may be an implementation manner of a hardware circuit of the apparatus shown in FIG. 5 .
  • the communication apparatus may be adapted to perform the functions of the terminal device or the network device in the foregoing method embodiments.
  • FIG. 6 only shows the main components of the communication device.
  • the apparatus 600 shown in FIG. 6 includes at least one processor 620 , a communication interface 610 and a memory 630 .
  • the processor 620 is used to execute the instructions or programs stored in the memory 630 .
  • the processor 620 is used to perform the operations performed by the processing unit 501 in the above-mentioned embodiments
  • the communication interface 610 is used to perform the operations performed by the communication unit 502 in the above-mentioned embodiments.
  • Memory 630 for storing program instructions and/or data. Memory 630 is coupled to processor 620 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 620 may cooperate with memory 630 .
  • Processor 620 may execute program instructions stored in memory 630 . At least one of the at least one memory may be included in the processor.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processing circuit (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable chips. Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM erasable programmable read-only memory
  • electrically programmable Erase programmable read-only memory electrically EPROM, EEPROM
  • flash memory electrically programmable Erase programmable read-only memory
  • the apparatus 600 may also include a communication interface 610 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 600 may communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver integrating a transceiver function, or an interface circuit.
  • the apparatus 600 may also include a communication line 640 .
  • the communication interface 610, the processor 620 and the memory 630 can be connected to each other through a communication line 640; the communication line 640 can be a peripheral component interconnect (PCI for short) bus or an extended industry standard architecture (extended industry standard architecture). , referred to as EISA) bus and so on.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the communication line 640 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 6, but it does not mean that there is only one bus or one type of bus.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,其中方法包括:终端设备接收来自网络设备的第一信息,所述第一信息用于指示上行载波所使用的天线端口配置;所述终端设备根据所述天线端口配置,确定所述终端设备中L个发射通道的状态;L为大于0的整数。通过上面的方法,终端设备根据第一信息可以确定终端设备中L个发射通道的状态,从而可以确定在发送信息之前,是否需要进行发射通道切换。

Description

一种通信方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
网络设备调度终端设备发送数据时,可以明确指示发送数据时使用的天线端口,但是并不会指示终端设备使用哪些发射通道发送数据。在为终端设备配置的上行载波多于下行载波的情况下,同样的天线端口的配置可以对应多种发射通道的配置,当网络设备向终端设备指示天线端口的配置时,网络设备无法获知终端设备会使用哪些发射通道进行数据发送。
由于终端设备切换到不同的发射通道时需要切换时间,而且不同的发射通道对应的切换时间也不相同。发射通道的切换时间越长,那么所占用的上行发送机会就越多。如果网络设备能够知道终端设备的发射通道的状态,即每次载波调度的时候终端设备会使用哪些发射通道,那么网络设备可以更加灵活且全面地考虑天线端口的配置,促使终端设备可以获得更多上行发送机会。
发明内容
本申请的目的在于提供一种通信方法及装置,用以向终端设备指示发射通道的配置。
第一方面,本申请提供一种通信方法,包括:终端设备接收来自网络设备的第一信息,第一信息用于指示上行载波所使用的天线端口配置;终端设备根据天线端口配置,确定终端设备中L个发射通道的状态;L为大于0的整数。
通过上面的方法,终端设备根据第一信息可以确定终端设备中L个发射通道的状态,从而可以确定在发送信息之前,是否需要进行发射通道切换。
一种可能的实现方式中,终端设备根据天线端口配置,确定终端设备中L个发射通道的状态,包括:终端设备确定至少一个上行载波,至少一个上行载波用于传输信息或者至少一个上行载波为终端设备被调度使用的上行载波;
终端设备根据至少一个上行载波以及天线端口配置,确定天线端口传输配置;天线端口传输配置用于指示至少一个上行载波所对应的天线端口;终端设备根据天线端口传输配置确定L个发射通道的状态。
一种可能的实现方式中,方法还包括:如果第一发射通道配置和第二发射通道配置不同,则确定进行发射通道配置切换;或,如果第一发射通道配置和第二发射通道配置不同,则确定不进行发射通道配置切换;其中,第二发射通道配置为终端设备接收第一信息时或之前的L个发射通道的状态;第一发射通道配置是根据天线端口配置确定的L个发射通道的状态。
一种可能的实现方式中,天线端口传输配置对应一个或多个发射通道配置;终端设备根据天线端口传输配置确定L个发射通道的状态,包括:若天线端口传输配置只对应一个发射通道配置,则将天线端口传输配置对应的发射通道配置确定为第一发射通道配置;或者,若天线端口传输配置对应多个发射通道配置,且多个发射通道配置中包含第二发射通 道配置,则终端设备将第二发射通道配置确定为第一发射通道配置;或者,若天线端口传输配置对应多个发射通道配置,并且多个发射通道配置中不包含第二发射通道配置,则终端设备从天线端口传输配置对应的多个发射通道配置中,选择一个发射通道配置作为第一发射通道配置;其中,第二发射通道配置为终端设备接收第一信息时或之前的发射通道配置。
通过上面的方法,终端设备确定天线端口传输配置对应第二发射通道配置时,优先保持当前的发射通道配置不变,可以避免终端设备频繁的对发射通道进行切换,从而可以减少切换时间,使得终端设备可以获得更多上行发送机会。
一种可能的实现方式中,终端设备从天线端口传输配置对应的多个发射通道配置中,选择一个发射通道配置作为第一发射通道配置,包括:终端设备按照预设顺序,从至少一个发射通道配置中确定出满足条件的发射通道配置,并将满足条件的发射通道配置作为第一发射通道配置;其中,所述至少一个发射通道配置为根据所述终端设备的L个发射通道确定的;满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括天线端口传输配置。
一种可能的实现方式中,第二发射通道配置位于N组发射通道配置中的第一组发射通道配置中,第一组发射通道配置包括至少一个发射通道配置;终端设备从天线端口传输配置对应的多个发射通道配置中,选择一个发射通道配置作为第一发射通道配置,包括:终端设备若确定第一组发射通道配置中,存在满足条件的发射通道配置,则将满足条件的发射通道配置作为第一发射通道配置;或者,终端设备若确定第一组发射通道配置中,不存在满足条件的发射通道配置,则按照预设顺序,从N组发射通道配置中确定出满足条件的发射通道配置,并将满足条件的发射通道配置作为第一发射通道配置;其中,满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括天线端口传输配置。
一种可能的实现方式中,还包括:终端设备根据L个发射通道的状态,确定至少一个上行载波中每个上行载波对应的发射通道的状态;根据至少一个上行载波中每个上行载波对应的发射通道的状态,确定用于传输信息的至少一个发射通道。
一种可能的实现方式中,方法还包括:终端设备接收来自网络设备的第三信息;第三信息用于指示终端设备中L个发射通道的状态;L为大于0的整数;或者,第三信息用于指示终端设备中至少一个载波中每个载波对应的发射通道的状态;
或者,终端设备向网络设备发送第五信息,第五信息用于指示终端设备中L个发射通道的状态;L为大于0的整数;或者,第五信息用于指示终端设备中至少一个载波中每个载波对应的发射通道的状态;或者,终端设备将L个发射通道的状态设置为预配置的状态。
一种可能的实现方式中,方法还包括:终端设备接收来自网络设备的调度信息;调度信息用于指示第一配置组合的索引值,第一配置组合为预先建立的H个配置组合中的一个,H个配置组合中的一个配置组合包括一个天线端口传输配置和一个发射通道配置,H个配置组合包括终端设备对应的天线端口传输配置和发射通道配置构成的所有配置组合。
一种可能的实现方式中,方法还包括:终端设备向网络设备发送能力信息;其中,能力信息用于指示以下一项或多项:
终端设备能够在多于L个的上行载波中确定用于发送信息的上行载波;
终端设备能够支持在最多S个上行载波中确定用于发送信息的上行载波,S是大于L 的正整数;L。
一种可能的实现方式中,方法还包括:终端设备接收来自网络设备的配置信息,配置信息用于指示以下一项或多项:
网络设备为终端设备配置的上行载波信息;
网络设备为终端设备激活的上行载波信息;
终端设备传输信息所使用的上行载波信息;
网络设备为终端设备配置的上行载波数X,X是大于L的正整数,L为终端设备能够同时进行上行传输的最大上行载波个数;
网络设备为终端设备配置的上行载波数X,X是大于P的正整数,P为终端设备能够同时进行上行传输的最大发射通道个数;终端设备传输信息所使用的上行载波数m,m为小于或等于L的正整数。
一种可能的实现方式中,方法还包括:终端设备接收来自网络设备的第一功率信息,第一功率信息用于指示至少一个载波的发送功率为第一发送功率;终端设备使用第一发送功率在至少一个载波上进行信息传输。
一种可能的实现方式中,终端设备接收来自网络设备的第一功率信息之前,包括:终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率;或者终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个载波上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率。
一种可能的实现方式中,终端设备支持在一个天线端口上使用第一发送功率进行信息发送,包括:终端支持通过K个发射通道在一个天线端口上使用第一发送功率进行信息发送;其中,K是正整数。
一种可能的实现方式中,第二功率信息包括以下至少一项参数:使用第一发送功率的载波频段、使用第一发送功率的载波频率,使用第一发送功率的载波频率index,使用第一发送功率的载波频率标识,使用第一发送功率发送信息的天线端口数量、使用第一发送功率发送信息的天线端口号、使用第一发送功率发送信息的发射通道的数量、使用第一发送功率发送信息的多输入多输出MIMO层数、功率增益。
一种可能的实现方式中,终端设备使用第一发送功率在至少一个载波上进行信息传输,包括:终端设备使用K个发射通道在一个天线端口上使用第一发送功率在至少一个载波上进行信息传输;或者,针对至少一个载波中的第i个载波,终端设备使用K个发射通道在一个天线端口上使用第一发送功率在第i个载波上进行信息传输;其中,i是正整数。
第二方面,本申请提供一种通信方法,包括:网络设备向终端设备发送第一信息,第一信息用于指示上行载波所使用的天线端口配置;网络设备根据天线端口配置,确定终端设备中L个发射通道的状态;L为大于0的整数。
一种可能的实现方式中,方法还包括:如果第一发射通道配置和第二发射通道配置不同,则确定进行发射通道配置切换;或,如果第一发射通道配置和第二发射通道配置不同,则确定不进行发射通道配置切换;其中,第二发射通道配置为终端设备接收第一信息时或之前的至少一个载波中每个载波对应的发射通道的状态;第一发射通道配置是根据天线端 口配置确定的至少一个载波中每个载波对应的发射通道的状态。
一种可能的实现方式中,方法还包括:终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率;或者,终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个载波上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率。
第三方面,本申请提供一种通信方法,包括:终端设备接收来自网络设备的第三信息;第三信息用于指示终端设备中L个发射通道的状态;L为大于0的整数;终端设备根据L个发射通道的状态,确定终端设备中用于传输信息的至少一个发射通道。
通过上面的方法,终端设备根据第三信息可以直接确定终端设备中L个发射通道的状态,从而可以确定使用哪些发射通道发送信息。
一种可能的实现方式中,发射通道的状态包括开启状态和关闭状态中的至少一项。
一种可能的实现方式中,第三信息用于指示L个发射通道中每个发射通道为开启状态或者关闭状态;或者,第三信息用于指示L个发射通道中开启状态的发射通道;或者,第三信息用于指示L个发射通道中关闭状态的发射通道;或者,所述第三信息用于指示终端设备中至少一个载波中每个载波对应的发射通道的状态。
一种可能的实现方式中,方法还包括:终端设备接收来自网络设备的第二信息;第二信息用于指示与至少一个发射通道中每个发射通道对应的上行载波的信息,或者,第二信息用于指示至少一个上行载波的信息。
一种可能的实现方式中,终端设备根据L个发射通道的状态,确定终端设备中用于传输信息的至少一个发射通道,包括:终端设备根据第三信息确定L个发射通道中处于开启状态的发射通道;终端设备根据第二信息,确定至少一个上行载波中每个上行载波对应的发射通道,并将至少一个上行载波对应开启状态的发射通道状态,确定为用于传输信息的至少一个发射通道;或者,终端设备根据L个发射通道的状态和第二信息,确定至少一个上行载波中每个上行载波对应的发射通道的状态;终端设备确定终端设备中用于传输信息的至少一个发射通道。
一种可能的实现方式中,方法还包括:终端设备接收来自网络设备的第一信息,第一信息用于指示上行载波所使用的天线端口配置;或者,第一信息用于指示为终端设备配置的X个上行载波上每个上行载波所使用的天线端口配置,X是正整数。
一种可能的实现方式中,终端设备根据L个发射通道的状态,确定终端设备中用于传输信息的至少一个发射通道,包括:所述终端设备根据第三信息确定L个发射通道中处于开启状态的发射通道;终端设备根据第一信息,确定至少一个天线端口中每个天线端口对应的发射通道,并将至少一个天线端口对应开启状态的发射通道状态,确定为用于传输信息的至少一个发射通道;或者,终端设备根据L个发射通道的状态和第一信息,确定至少一个上行载波中每个天线端口对应的发射通道的状态;终端设备确定终端设备中用于传输信息的至少一个发射通道。
一种可能的实现方式中,方法还包括:第三信息还用于指示以下一项或多项:上行载波所使用的发射通道的状态;上行载波所使用的发射通道的个数;或者,第三信息还用于指示以下一项或多项:X个上行载波上每个上行载波所使用的发射通道的状态;X个上行 载波上每个上行载波所使用的发射通道的个数;X是正整数。
一种可能的实现方式中,终端设备根据L个发射通道的状态,确定终端设备中用于传输信息的至少一个发射通道,包括:终端设备将L个发射通道中处于开启状态的至少一个发射通道,确定终端设备中用于传输信息的至少一个发射通道;或者,终端设备根据X个上行载波上每个上行载波所使用的发射通道的状态,确定终端设备中用于传输信息的至少一个发射通道。
一种可能的实现方式中,方法还包括:终端设备接收来自网络设备的第一功率信息,第一功率信息用于指示至少一个载波的发送功率为第一发送功率;终端设备使用第一发送功率在至少一个载波上进行信息传输。
一种可能的实现方式中,终端设备接收来自网络设备的第一功率信息之前,包括:终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率;或者终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个载波上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率。
一种可能的实现方式中,终端设备支持在一个天线端口上使用第一发送功率进行信息发送,包括:终端支持通过K个发射通道在一个天线端口上使用第一发送功率进行信息发送;其中,K是正整数。
一种可能的实现方式中,第二功率信息包括以下至少一项参数:使用第一发送功率的载波频段、使用第一发送功率的载波频率,使用第一发送功率的载波频率index,使用第一发送功率的载波频率标识,使用第一发送功率发送信息的天线端口数量、使用第一发送功率发送信息的天线端口号、使用第一发送功率发送信息的发射通道的数量、使用第一发送功率发送信息的多输入多输出MIMO层数、功率增益。
一种可能的实现方式中,终端设备使用第一发送功率在至少一个载波上进行信息传输,包括:终端设备使用K个发射通道在一个天线端口上使用第一发送功率在至少一个载波上进行信息传输;或者,针对至少一个载波中的第i个载波,终端设备使用K个发射通道在一个天线端口上使用第一发送功率在第i个载波上进行信息传输;其中,i是正整数。
第四方面,本申请提供一种通信方法,包括:网络设备向终端设备发送第三信息;第三信息用于指示终端设备中L个发射通道的状态;或者,第三信息用于指示至少一个载波中每个载波对应的发射通道的状态;网络设备根据发射通道的状态,在至少一个载波上接收信息。
一种可能的实现方式中,网络设备向终端设备发送第一功率信息,第一功率信息用于指示至少一个载波的发送功率为第一发送功率。
一种可能的实现方式中,网络设备接收来自终端设备的第二功率信息,第二功率信息用于指示终端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率;第二功率信息用于指示终端设备支持在一个载波上使用第一发送功率或者第二发送功率进行信息发送。
第五方面,本申请提供一种通信方法,包括:终端设备接收来自网络设备的第三信息; 第三信息用于指示至少一个载波中每个载波对应的发射通道的状态;终端设备根据至少一个载波中每个载波对应的发射通道的状态,确定终端设备中用于传输信息的至少一个发射通道。
通过上面的方法,终端设备根据第三信息可以确定每个载波对应的发射通道的状态,从而确定终端设备中L个发射通道的状态,从而可以确定使用哪些发射通道发送信息。
一种可能的实现方式中,发射通道的状态包括开启状态和/或者关闭状态。
一种可能的实现方式中,第三信息包括以下至少一项:上行载波所使用的发射通道的状态;上行载波所使用的发射通道的个数;或者,第三信息包括至少一项:X个上行载波上每个上行载波所使用的发射通道的状态;X个上行载波上每个上行载波所使用的发射通道的个数;X是正整数。
一种可能的实现方式中,如果第一发射通道配置和第二发射通道配置不同,则确定进行发射通道配置切换;或,如果第一发射通道配置和第二发射通道配置不同,则确定不进行发射通道配置切换;其中,第二发射通道配置为终端设备接收第一信息时或之前的至少一个载波中每个载波对应的发射通道的状态;第一发射通道配置是根据天线端口配置确定的至少一个载波中每个载波对应的发射通道的状态。
一种可能的实现方式中,终端设备接收来自网络设备的第一功率信息,第一功率信息用于指示至少一个载波的发送功率为第一发送功率;终端设备使用第一发送功率在至少一个载波上进行信息传输。
一种可能的实现方式中,终端设备接收来自网络设备的第一功率信息之前,包括:终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率;或者终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个载波上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率。
一种可能的实现方式中,终端设备支持在一个天线端口上使用第一发送功率进行信息发送,包括:终端支持通过K个发射通道在一个天线端口上使用第一发送功率进行信息发送;其中,K是正整数。
一种可能的实现方式中,第二功率信息包括以下至少一项参数:使用第一发送功率的载波频段、使用第一发送功率的载波频率,使用第一发送功率的载波频率index,使用第一发送功率的载波频率标识,使用第一发送功率发送信息的天线端口数量、使用第一发送功率发送信息的天线端口号、使用第一发送功率发送信息的发射通道的数量、使用第一发送功率发送信息的多输入多输出MIMO层数、功率增益。
一种可能的实现方式中,终端设备使用第一发送功率在至少一个载波上进行信息传输,包括:终端设备使用K个发射通道在一个天线端口上使用第一发送功率在至少一个载波上进行信息传输;或者,针对至少一个载波中的第i个载波,终端设备使用K个发射通道在一个天线端口上使用第一发送功率在第i个载波上进行信息传输;其中,i是正整数。
第六方面,本申请提供一种通信方法,包括:终端设备接收来自网络设备的第一功率信息,第一功率信息用于指示至少一个载波的发送功率为第一发送功率;终端设备使用第一发送功率在至少一个载波上进行信息传输。
一种可能的实现方式中,终端设备接收来自网络设备的第一功率信息之前,包括:终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率;或者终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个载波上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率。
一种可能的实现方式中,终端设备支持在一个天线端口上使用第一发送功率进行信息发送,包括:终端支持通过K个发射通道在一个天线端口上使用第一发送功率进行信息发送;其中,K是正整数。
一种可能的实现方式中,第二功率信息包括以下至少一项参数:使用第一发送功率的载波频段、使用第一发送功率的载波频率,使用第一发送功率的载波频率index,使用第一发送功率的载波频率标识,使用第一发送功率发送信息的天线端口数量、使用第一发送功率发送信息的天线端口号、使用第一发送功率发送信息的发射通道的数量、使用第一发送功率发送信息的多输入多输出MIMO层数、功率增益。
一种可能的实现方式中,终端设备使用第一发送功率在至少一个载波上进行信息传输,包括:终端设备使用K个发射通道在一个天线端口上使用第一发送功率在至少一个载波上进行信息传输;或者,针对至少一个载波中的第i个载波,终端设备使用K个发射通道在一个天线端口上使用第一发送功率在第i个载波上进行信息传输;其中,i是正整数。
第七方面,本申请提供一种通信方法,包括:终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率;或者,终端设备向网络设备发送第二功率信息,第二功率信息用于指示终端设备支持在一个载波上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率。
一种可能的实现方式中,终端设备支持在一个天线端口上使用第一发送功率进行信息发送,包括:终端支持通过K个发射通道在一个天线端口上使用第一发送功率进行信息发送;其中,K是正整数。
一种可能的实现方式中,第二功率信息包括以下至少一项参数:使用第一发送功率的载波频段、使用第一发送功率的载波频率,使用第一发送功率的载波频率index,使用第一发送功率的载波频率标识,使用第一发送功率发送信息的天线端口数量、使用第一发送功率发送信息的天线端口号、使用第一发送功率发送信息的发射通道的数量、使用第一发送功率发送信息的多输入多输出MIMO层数、功率增益。
一种可能的实现方式中,终端设备接收来自网络设备的第一功率信息,第一功率信息用于指示至少一个载波的发送功率为第一发送功率;终端设备使用第一发送功率在至少一个载波上进行信息传输。
一种可能的实现方式中,终端设备使用第一发送功率在至少一个载波上进行信息传输,包括:终端设备使用K个发射通道在一个天线端口上使用第一发送功率在至少一个载波上进行信息传输;或者,针对至少一个载波中的第i个载波,终端设备使用K个发射通道在一个天线端口上使用第一发送功率在第i个载波上进行信息传输;其中,i是正整数。
第八方面,本申请还提供一种通信装置,该通信装置可以实现上述第一方面至第七方 面中任一方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上任一方面提供的方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上任一方面提供的方法中网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与终端设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第九方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序或指令时,如第一方面所述的方法被执行。
第十方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如第一方面至第七方面中任一方面提供的任一方法。
第十一方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和通信接口,所述通信接口,用于接收信号或者发送信号;所述存储器,用于存储计算机程序或指令;所述处理器,用于从所述存储器调用所述计算机程序或指令执行如第一方面至第七方面中任一方面提供的任一方法。
第十二方面,本申请提供一种通信装置,所述通信装置包括处理器和通信接口,所述通信接口,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面至第七方面中任一方面提供的任一方法。
第十三方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得第一方面至第七方面中任一方面提供的任一方法被实现。
第十四方面,本申请提供一种包括指令的计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得第一方面至第七方面中任一方面提供的任一方法被实现。
第十五方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第一方面至第七方面中任一方面提供的任一方法被实现。
附图说明
图1为适用于本申请实施例的网络架构示意图;
图2为本申请实施例提供的一种通信方法流程示意图;
图3为本申请实施例提供的一种通信方法流程示意图;
图4为本申请实施例提供的一种通信方法流程示意图;
图5为本申请实施例提供的一种通信装置结构示意图;
图6为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统以及LTE时分双工(time division duplex,TDD)等,在此不做限制。
本申请实施例中,终端设备,可以为具有无线收发功能的设备或可设置于任一设备中的芯片,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
网络设备,可以是NR系统中的下一代基站(next Generation node B,gNB),可以是LTE系统中的演进型基站(evolutional node B,eNB),可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB)等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1为适用于本申请实施例的一种无线通信系统的结构示意图。如图1所示,无线通信系统包括终端设备和网络设备。按照传输方向的不同,从终端设备到网络设备的传输链路记为上行链路(uplink,UL),从网络设备到终端设备的传输链路记为下行链路(downlink,DL)。相类似地,上行链路中的数据传输可简记为上行数据传输或上行传输,下行链路中的数据传输可简记为下行数据传输或下行传输。
需要说明的是,图1所示的通信系统的架构不限于仅包含图中所示的设备,还可以包含其它未在图中表示的设备,具体本申请在此处不再一一列举。
下面先给出本申请实施例可能出现的技术术语的定义。
发射通道(transmitter,TX),是一个物理概念,也可以称为射频(radio frequency,RF)发射通道,本申请中均简称为发射通道。在本申请中,发射通道可以是按照如下方式工作的,但不仅限于如下方式:发射通道可接收来自基带芯片的基带信号,对基带信号进行射频处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。具体地,发射通道可以包括天线开关,天线调谐器,低噪声放大器(low noise amplifier,LNA),功率放大器(power amplifier,PA),混频器(mixer),本地振荡器(local oscillator,LO)、滤波器(filter)等电子器件,这些电子器件可以根据需要集成到一个或多个芯片中。天线有时也可以认为是发射通道的一部分。
天线端口(port),是逻辑的概念,在实际发送信号时,会将天线端口映射到对应的发射通道中。目前,网络设备在调度终端设备传输数据时,可以明确指示传输数据所使用的天线端口的端口号。
成员载波(component carrier,CC),是用于承载发射通道输出的信息的频域资源。成员载波有时也被翻译为分量载波,可简称为载波。网络设备可以为终端设备配置多个上行载波和多个下行载波,本申请中,网络设备配置的上行载波的数量可以大于下行载波的数量。
假设终端设备使用一个发射通道在上行载波CC1发送数据,此时该发射通道需要适配CC1的频率。当终端设备切换到上行载波CC 2时,该发射通道也需要适配CC 2的频率。由于CC 1和CC 2的频率不同,终端设备的发射通道所适配的频率从一个频率重新调整到另一个频率需要一定的时间,该时间可记为切换时间(TX switching time),或射频重调谐时间(RF retuning time)等,为了描述方便,以下均统称为切换时间。切换时间和终端设备的软硬件配置有关。
在发射通道切换过程中,数据传输会出现中断。如前所述,数据传输的中断时间包括切换时间。因此,减少切换时间,可以减少数据传输的中断时间,有利于提升系统性能。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中,以终端设备和网络设备之间的交互为例进行说明,本申请实施例提供的方法还可以适用于其他执行主体之间的交互,例如可以是终端设备芯片或模块,与网络设备中的芯片或模块之间的交互,当执行主体为芯片或模块时,可以参考本申请实施例中的描述,在此不再赘述。
本申请实施例中,网络设备为终端设备配置上行载波之前,终端设备可以向网络设备发送能力信息。其中,所述能力信息用于指示以下一项或多项:
终端设备能够在多于L个的上行载波中确定用于发送信息的上行载波,L为大于0的整数;
终端设备能够支持在最多S个上行载波中确定用于发送信息的上行载波,所述S是大于所述L的正整数;
所述L。
相应的,网络设备可以向终端设备发送配置信息,所述配置信息用于指示以下一项或多项:
所述网络设备为终端设备配置的上行载波信息;
所述网络设备为终端设备激活的上行载波信息;
所述终端设备传输信息所使用的上行载波信息;
所述网络设备为终端设备配置的上行载波数X,所述X是大于L的正整数,所述L为所述终端设备能够同时进行上行传输的最大上行载波个数;
所述网络设备为终端设备配置的上行载波数X,所述X是大于P的正整数,所述P为所述终端设备能够同时进行上行传输的最大发射通道个数;
所述终端设备传输信息所使用的上行载波数m,所述m为小于或等于所述L的正整数。
所述上行载波信息可以是以下至少一项:上行载波的标识;上行载波的索引;上行载波的频率,上行载波的频率索引;上行载波的频率标识等。
针对载波:“所述网络设备为终端设备配置的上行载波”表示:这类载波,又可以称为该载波被配置了,配置一个载波。此时,也可以说,该载波是配置载波。当然,还可以是其他名称,本申请不做限定。具体地,该配置载波,可以是终端设备在所述载波上已经做了同步、测量以及功率控制调整中的一项或者多项,或者终端设备在所述载波上做了参考信号发送,或者网络设备只是给终端设备配置了载波,但终端设备不需要在所述载波上做物理下行控制信道(physical downlink control channel,PDCCH)侦听,不需要做随机接入信道(random access channel,RACH)接入,不要做上行同步信道(uplink-synchronization channel,UL-SCH)传输,不需要做信道质量指示(channel quality indicator,CQI)/预编码矩阵(precoding matrix indication,PMI)/秩(rank indicator,RI)/预编码类型指示(precoding type indicator,PTI)/信道状态信息参考信号(channel state information reference signal,CSI-RS)资源指示(CSI-RS resource indicator,CRI)的上报,或者不需要在该载波上发探测参考信号(sounding reference signal,SRS)。总之本发明不做限制。
“所述网络设备为终端设备激活的上行载波”表示:可以称该载波被激活了,或者激活一个载波,也可以说,该载波是激活载波。当然,还可以是其他名称,本申请不做限定。具体地,该激活载波,可以是终端设备在所述载波上执行以下至少一项:发送SRS,发送参考信号,做PDCCH侦听,做物理上行控制信道(physical uplink control channel,PUCCH)/短PUCCH(Short PUCCH,SPUCCH)传输,或做CQI/PMI/RI/PTI/CRI的上报。
“所述终端设备传输信息所使用的上行载波”表示:也可以称该载波被调度了,或者说调度一个载波。此时,也可以称该载波是调度载波。当然,还可以是其他名称,本申请不做限定。调度载波,可以是终端设备在所述载波上发送信息,或者可以在所述载波上进行通信,可以是网络给终端设备分配资源用于终端设备在所述载波上使用该资源发送信息等。
具体地,例如网络设备为终端设备配置了5个载波,激活了其中3个载波用于终端可以随时使用该载波进行通信,但实际调度的时候,网络设备只是实际使用了所述3个载波中的2个载波用于通信。需要说明的是,其中3个载波是UE最大支持的并行发送上行载波的最大个数,或者说3个载波是终端设备能够支持的最大TX发射通道数。
上述内容,可以在步骤203之前执行。
结合前面的描述,如图2所示,为本申请实施例提供的一种通信方法流程示意图。参见图2,该方法包括:
步骤201:网络设备向终端设备发送第一信息。
所述第一信息用于指示天线端口配置,所述天线端口配置为终端设备的上行载波所使用的天线端口配置;或者所述天线端口配置为所述终端设备配置的每个上行载波所使用的天线端口配置。
网络设备具体如何发送第一信息,本申请实施例并不限定,例如可以通过高层信令发 送第一信息,还可以通过下行控制信息(downlink control information,DCI)发送第一信息。
示例性的,本申请实施例中,网络设备还可以向终端设备指示至少一个上行载波的信息。可选地,所述至少一个上行载波为所述终端设备被激活的上行载波或者被配置的上行载波,或者被调度的上行载波。
需要说明的是,假设网络设备为终端设备配置的上行载波数为X,这X个上行载波不一定全部激活,网络设备会根据终端设备的能力,只激活X个上行载波中的Q个上行载波,Q小于或等于X。
一个上行载波被激活之后,只有该上行载波被调度时,终端设备才能在该上行载波中发送信息,也就是说终端设备被调度使用的至少一个上行载波,为被激活的Q个上行载波中的部分或全部。
本申请实施例中,一种可能的实现方式中,网络设备向终端设备发送第二信息,所述第二信息用于指示上行载波是否被调度或者上行载波是否被激活。
网络设备可以每个上行载波对应的下行载波中发送一个第二信息,第二信息用于指示该上行载波的信息。此时第二信息可以包括以下一项或多项:上行载波的标识;上行载波的索引;上行载波的频率索引;上行载波的频率标识;上行载波是否被调度;上行载波是否被激活。
另一种可能的实现方式中,网络设备可以在一个下行载波中发送一个第二信息,该第二信息用于指示该至少一个上行载波的信息。该实现方式可以应用于终端设备支持是上行载波数多于下行载波数的情况。在该实现方式中,所述第二信息可以包括以下一项或多项:m个上行载波的标识;m个上行载波索引;m个上行载波频率索引;m个上行载波频率标识;m为正整数,m为该被调度的至少一个上行载波的数量;上行载波是否被调度,上行载波是否被激活。
在该实现方式中,第二信息包括A1个比特,每个比特用于指示一个上行载波是否被调度或者被激活使用。举例来说,网络设备配置了5个上行载波,第二信息可以包括5个比特,每个比特对应一个上行载波。假设比特的值为1时,表示上行载波被调度,当比特的值为0时,表示上行载波没有被调度;第二信息为11000时,表示调度了5个上行载波中的2个上行载波。具体地,可以给所述5个载波设置编号,例如所述2个上行载波分别是第1个载波CC1,和第二个载波CC2被调度。
在本申请中,针对步骤201,一种实施方式是,网络设备通过向终端设备发送第一信息,使得终端设备获得了上行载波的天线配置,所述上行载波包含了至少一个上行载波,所述上行载波可以是配置载波或者激活载波。网络设备还向终端设备发送第二信息,使得终端设备通过第二信息获得了调度载波的信息。
在本申请中,针对步骤201,另一种实施方式是,网络设备通过向终端设备发送第一信息,使得终端设备获得了上行载波的天线配置,所述上行载波包含了至少一个上行载波,所述上行载波可以是被调度的载波。
步骤202:终端设备接收来自网络设备的第一信息,所述第一信息用于指示天线端口配置,所述天线端口配置包括为所述终端设备配置的上行载波所使用的天线端口配置。
具体的,如果网络设备为终端设备配置了X个上行载波,那么所述第一信息可以用于指示所述X个上行载波中每个上行载波所使用的天线端口配置,例如天线端口数和/或天 线端口号等信息。第一信息的具体实现方式,本申请实施例对此并不限定,可以参考现有技术中的描述。
在本申请中,针对步骤202,一种实施方式是,网络设备通过向终端设备发送第一信息,使得终端设备获得了上行载波的天线端口配置,所述上行载波包含了至少一个上行载波,所述上行载波可以是配置载波或者激活载波。网络设备还向终端设备发送第二信息,使得终端设备通过第二信息获得了调度载波的信息。通过第一信息和第二信息,终端设备获得为所述终端设备配置的上行载波所使用的天线端口配置。
在本申请中,针对步骤202,另一种实施方式是,网络设备通过向终端设备发送第一信息,使得终端设备获得了上行载波的天线配置,所述上行载波包含了至少一个上行载波,例如,所述上行载波可以是被调度的载波。
步骤203:终端设备根据所述天线端口配置,确定所述终端设备中L个发射通道的状态。
其中,L为大于0的整数。发射通道的状态包括开启状态和关闭状态中的至少一项。处于开启状态的发射通道可以用于发送信息,但具体是否用于发送信息,还需要根据与该发射通道对应的上行载波是否被调度确定;处于关闭状态的发射通道不可以用于发送信息。
进一步的,终端设备中L个发射通道的状态存在多种不同的组合,本申请实施例中,为了描述方便,将L个发射通道的状态的一个组合,称为发射通道配置,也就是说,发射通道配置用于指示终端设备中处于开启状态的发射通道,和/或处于关闭状态的发射通道。本申请主要以发射通道配置用于指示终端设备中处于开启状态的发射通道,以及处于关闭状态的发射通道为例,来说明发明内容。
进一步的,终端设备可以通过一个发射通道在一个上行载波发送信息,也可以通过多个发射通道可以在一个上行载波发送信息,为此,发射通道配置还可以指示出在同一个上行载波中发送信息的发射通道的数量。“一个发射通道在一个上行载波发送信息”可以等同于“在一个发射通道上发送一个上行载波的信息”,或“在一个发射通道上传输一个上行载波的信息”。“多个发射通道可以在一个上行载波发送信息”可以等同于“在多个发射通道上传输同一个上行载波的信息”,即多个通道上传输的信息都是为了服务于同一个上行载波的,都是同一个上行载波的内容。但多个发射通道上传输的信息可以是一样的,也可以是不样的。
举例来说,假设终端设备包括3个发射通道,分别表示为TX1、TX2以及TX3,终端设备可以同时使用其中的2个发射通道发送信息,那么终端设备的发射通道配置可以存在表1所示的情况。
表1
Figure PCTCN2020111535-appb-000001
Figure PCTCN2020111535-appb-000002
本申请实施例中,终端设备还可以根据至少一个上行载波以及所述天线端口配置,确定天线端口传输配置;所述至少一个上行载波是用于传输信息的上行载波,或者所述至少一个上行载波为所述终端设备被调度使用的上行载波,或者所述至少一个上行载波为被激活的上行载波。所述被激活的上行载波为可以随时用于传输信息的载波。所述被激活的上行载波是否会传输信息,取决于该载波是否被实际调度,或者该载波上是否有业务需要传输信息。现有技术中每个载波,都有对应的天线端口配置。本申请实施例中,为了描述方便,将至少一个载波所对应的天线端口,称为天线端口传输配置;或者还可以称为天线端口传输指示,或者还可以称为载波传输指示,或者还可以称为载波传输配置。所述天线端口传输配置用于指示所述至少一个上行载波所对应的天线端口;也就是说,所述天线端口传输配置可以指示出终端设备在发送信息时,需要使用的天线端口。
举例来说,以L=3为例:步骤201和步骤202中网络设备为终端设备激活了3个上行载波,分别为CC1、CC2以及CC3。当只调度CC1时,天线端口传输配置可以表示为{1P,0P,0P},1P表示终端设备需要使用CC1对应的天线端口发送信息,第1个0P表示终端设备不需要使用CC2对应的天线端口发送信息,第2个0P表示终端设备不需要使用CC3对应的天线端口发送信息。因此终端设备根据着3个载波中天线端口配置对应的天线端口传输配置为{1P,0P,0P}。
举例来说,以L=3为例:步骤201和步骤202中网络设备为终端设备激活了3个上行载波,分别为CC1、CC2以及CC3。当只调度CC1时,天线端口传输配置可以表示为{1P,0P,0P},1P表示终端设备需要使用CC1对应的天线端口发送信息,第1个0P表示终端设备不需要使用CC2对应的天线端口发送信息,第2个0P表示终端设备不需要使用CC3对应的天线端口发送信息。因此终端设备根据这3个载波中天线端口配置对应的天线端口传输配置为{1P,0P,0P}。
进一步的,本申请实施例中,终端设备中的发射通道与上行载波之间存在对应关系,该对应关系可以是预先配置的,例如假设终端设备包括3个发射通道,分别表示为TX1、TX2以及TX3,网络设备为终端设备激活了3个上行载波,分别为CC1、CC2以及CC3,那么可以将TX1与CC1对应,将TX2与CC2对应,将TX3与CC3对应。
结合前面的描述,从发射通道的角度,如果终端设备中的一个发射通道处于开启状态,那么该发射通道对应的上行载波可以被调度,也可以不被调度;如果终端设备中的一个发射通道处于关闭状态,那么该发射通道对应的上行载波不会被调度。从上行载波的角度, 如果一个上行载波被调度,那么该上行载波对应的发射通道一定处于开启状态;如果一个上行载波没有被调度,那么该上行载波对应的发射通道可以处于开启状态,也可以处于关闭状态。
结合上面的描述,本申请实施例中,可以预先建立发射通道配置与天线端口传输配置的对应关系,具体建立关系的过程不再赘述。举例来说,当终端设备被激活了3个载波,但实际传输只是使用了2个载波,或者终端设备被配置了3个载波,但实际使用2个载波用于传输信息。结合表1,当终端设备包括3个发射通道,每次最多只能使用2个发射通道发送信息,且网络设备为终端设备激活了3个上行载波时,终端设备根据这3个载波中每个载波的天线端口配置,从而获得1种天线端口传输配置,所述天线端口传输配置可以对应1种发射通道配置。这个意味着终端设备会将3个发射通道状态调整为所述发射通道配置。但是由于多种天线端口传输配置可以对应同一种发射通道配置,因此本申请以此为例,列出发射通道配置与天线端口传输配置的对应关系可以如表2所示。
表2
Figure PCTCN2020111535-appb-000003
结合表2可知,本申请实施例中,一个发射通道配置对应一个或多个天线端口传输配置;相应的,一个天线端口传输配置对应一个或多个发射通道配置。
结合前面的描述,当终端设备确定了被调度的至少一个上行载波,则可以确定天线端口传输配置,终端设备从而可以根据天线端口传输配置,确定终端设备中L个发射通道的状态,下面分别进行描述。具体地,例如被调度的至少一个上行载波可以是用于实际传输信息的至少一个上行载波。
为了描述方便,以下描述中,将根据所述天线端口传输配置确定的L个发射通道的状态称为第一发射通道配置,将终端设备接收所述第一信息时或之前的L个发射通道的状态称为第二发射通道配置。需要说明的是,第二发射通道配置是终端设备中当前的L个发射通道的状态,第一发射通道配置是终端设备发送信息之前需要配置的L个发射通道的状态。
针对步骤203终端设备如何根据天线端口传输配置,确定L个发射通道状态,本申请在后面的实施例中会做更多的描述。
需要说明的是,终端设备在被调度的上行载波中传输信息所使用的天线端口,为该上行载波配置的天线端口。
本申请实施例中,可以支持多个发射通道在一个上行载波中使用不同的天线端口发送信息,也可以支持多个发射通道在一个上行载波中使用相同的天线端口发送信息。
举例来说,结合前面的表2,当第一发射通道配置为{2T,0T,0T},天线端口传输配置为{2P,0P,0P}时,表示通过TX1和TX1在CC1中传输信息,且TX1和TX1分别通过不同天线端口传输信息;当第一发射通道配置为{2T,0T,0T},天线端口传输配置为{1PX,0P,0P}时,表示通过TX1和TX1在CC1中传输信息,且TX1和TX1通过同一个天线端口传输信息。
进一步的,终端设备确定天线端口数小于发射通道数时,即确定通过多个发射通道在一个上行载波中使用相同的天线端口发送信息时,可以采用高功率增益在该天线端口中发送信息。
进一步的,或者网络设备如何指示终端设备设置第一发射通道配置为{2T,0T,0T},或者说,终端设备如何通过天线端口传输配置为{1P,0P,0P},获得将第一发射通道配置设置为{2T,0T,0T},可能存在多种方法。
具体地,针对终端设备支持多个发射通道在一个上行载波中使用相同的天线端口发送信息,而且此时终端设备发送功率可以采用比常规功率要高的功率发送信息,在上述情况下,则网络设备可以在配置该载波时,指示该终端使用比常规功率要高的功率发送信息,从而来指示终端设备设置第一发射通道配置为{2T,0T,0T}。
具体地,例如终端上报能力信息的时候,告知网络设备所述终端设备支持通过2TX在单端口发送信息,并且发送功率可支持比原来常规发送功率23dBm要高3dBm。由此网络设备可以通过1个比特(bit)指示所述终端设备在某个载波上使用比常规发送功率要高的功率发送信息。例如1表示26dBm,0表示23dBm,由此实际上就是指示所述终端设备在某个载波上采用2TX发送信息。
针对本申请的所有实施例中,网络设备通过指示第一发射功率来指示终端设备采用M个TX在某个载波上通过单个天线端口发送信息,具体实施细节,请查看实施例五。
可选的,还可以包括以下步骤:终端设备可以将L个发射通道中,与至少一个上行载波中的上行载波对应,且处于开启状态的发射通道,确定为用于传输信息的至少一个发射通道。
可选的,还可以包括以下步骤:终端设备确定L个发射通道的状态后,确定执行发射通道切换或者不执行发射通道切换;或者,终端设备确定第一发射通道配置,确定执行发射通道切换或者不执行发射通道切换。
具体地,根据所述L个发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道,即终端设备确定出第一发射通道配置。然后终端设备确定是否需要进行发射通道切换:具体的,如果所述第一发射通道配置和第二发射通道配置不同,则确定进行发射通道配置切换,也就是说终端设备的发射通道需要做切换,则需要确定切换时间,然后发送数据;如果所述第一发射通道配置和第二发射通道配置相同,则确定不进行发射通道配置切换,或者可以确定保持当前的发射通道配置不变;也就是说,也就是说针对终端设备的每个发射通道都不需要做切换。
实施例一:
针对步骤203,一种可能的实现方式可以举例如下,其他步骤与上面实施例内容一致,不再一一赘述:
步骤203:终端设备根据所述天线端口配置,确定所述终端设备中L个发射通道的状态。具体地,可以包括步骤A,步骤B,步骤C。3个步骤中,终端设备根据实际情况选 择执行3个步骤中的1个步骤即可。
步骤A:终端设备确定天线端口传输配置之后,终端设备若确定所述天线端口传输配置只能对应的一个发射通道配置,则所述终端设备可以将所述天线端口传输配置对应发射通道配置确定为所述第一发射通道配置。
举例来说,结合上面的表2,如果确定出的天线端口传输配置为{1P,1P,0P}。通过表2可知,{1P,1P,0P}只能对应{1T,1T,0T},则可以直接将{1T,1T,0T}作为第一发射通道配置。这种情况,实际上,第一发射通道配置和天线端口传输配置存在一一对应的关系。
步骤B:终端设备确定天线端口传输配置之后,若确定所述天线端口传输配置对应的多个发射通道配置中,包含第二发射通道配置,则所述终端设备确定第二发射通道配置和第一发射通道配置相同,即可以将所述第二发射通道配置确定为所述第一发射通道配置。
举例来说,结合上面的表2,如果第二发射通道配置为{1T,0T,1T},确定出的天线端口传输配置为{1P,0P,0P}。通过表2可知,{1P,0P,0P}对应{1T,1T,0T}和{1T,0T,1T},其中包括第二发射通道配置,那么可以将第二发射通道配置作为第一发射通道配置,从而保持当前的发射通道配置不变。
步骤C:终端设备确定天线端口传输配置之后,若确定所述天线端口传输配置对应的多个发射通道配置中,不包含第二发射通道配置,则所述终端设备可以从所述天线端口传输配置对应的一个或多个发射通道配置中,选择一个发射通道配置作为所述第一发射通道配置,具体如何选择,后面将详细描述。
如果第二发射通道配置为{1T,0T,1T},确定出的天线端口传输配置为{0P,0P,1P}。通过表2可知,{0P,0P,1P}对应{0T,1T,1T}和{1T,0T,1T},其中不包括第二发射通道配置,那么可以从{0T,1T,1T}和{1T,0T,1T}中选择一个作为第一发射通道配置。
针对步骤C中,关于具体如何选择一个发射通道配置作为所述第一发射通道配置,举例描述如下:针对L个发射通道的状态,可以有N种发射通道配置。
以为终端设备配置3个激活载波,实际使用2个载波并行发送信息为例。终端设备的发射通道配置可以有6种(此时N=6),具体可以参考表3-1所示:
表3-1
Figure PCTCN2020111535-appb-000004
举例来说,结合表3-1,每一组发射通道配置包括一个发射通道配置,对应的索引值可以如表3-1所示。
举例说明,第二发射通道配置位于所述6种发射通道配置中的某个发射通道配置中(例 如索引值是001,{1T,1T,0T}),该发射通道配置被称为第一组发射通道配置。当终端设备确定天线端口传输配置(例如天线端口传输配置是{0P,0P,1P})后,所述天线端口传输配置可以对应多种发射通道配置,但不能对应第二发射通道配置中包含的天线端口传输配置。
此时,可以通过以下方式确定第一发射通道配置:所述终端设备若确定所述第一种发射通道配置中,不存在所述满足条件的发射通道配置,则按照预设顺序,从所述N种发射通道配置中确定出所述满足条件的发射通道配置,并将所述满足条件的发射通道配置作为所述第一发射通道配置。其中,所述满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括所述天线端口传输配置。
需要说明的是,假设N种发射通道配置中每一种发射通道配置对应一个索引值,预设顺序,可以是指按照N种发射通道的索引值从大到小的循环顺序,也可以是按照N种发射通道的索引值从小到大的循环顺序,本申请实施例对此并不限定。预设顺序还可能存在其他实现方式,在此不再一一列举。
结合上面的表3-1,如果第二发射通道配置为{0T,0T,2T},确定出的天线端口传输配置为{0P,0P,1P}。通过表2可知,{0P,0P,1P}不对应{0T,0T,2T},则可以按照索引值从大到小的循环顺序,依次从索引值为001、010、011…101对应的发射通道配置中确定是否存在满足条件的发射通道配置。在该例子中,可以先从010对应的发射通道配置中确定出满足条件的发射通道配置,从而可以将{1T,0T,1T}作为第一发射通道配置。
上面的例子以一个发射通道配置为一组为例,实际应用中,还可以存在其他分组情况,例如将{1T,1T,0T}和{1T,1T,0T}分为一组,将{0T,1T,1T}和{2T,0T,0T}分为一组,将{0T,2T,0T}和{0T,0T,2T}分为一组等,在此不再赘述。
结合表3-1,假设终端设备包括3个发射通道,分别表示为TX1、TX2以及TX3,终端设备可以同时使用其中的2个发射通道发送信息。网络设备为终端设备激活了3个上行载波,分别为CC1、CC2以及CC3,其中TX1与CC1对应,TX2与CC2对应,TX3与CC3对应。在该情况下,不同天线端口传输配置的含义,可以参考表3-2所示。
表3-2
Figure PCTCN2020111535-appb-000005
Figure PCTCN2020111535-appb-000006
注意表中1PX其实和1P表达的含义相同,只是为了说明此时,是终端设备在一个载波上通过两个发射通道通在1个天线端口发送信息。
具体地,针对{1PX,0P,0P}对应{2T,0T,0T}的情况,网络设备如何指示终端设备设置第一发射通道配置为{2T,0T,0T},或者说,终端设备如何通过天线端口传输配置为{1P,0P,0P},获得将第一发射通道配置设置为{2T,0T,0T},下面将详细描述。
具体地,针对终端设备支持多个发射通道(例如可以支持2个TX,3个TX,4个TX等等)在一个上行载波中使用相同的天线端口发送信息,而且此时终端设备发送功率可以采用比常规功率要高的功率发送信息,在上述情况下,则网络设备可以在配置该载波时,指示该终端设备使用比常规功率要高的功率发送信息,从而来指示终端设备设置第一发射通道配置为{2T,0T,0T}。
具体地,例如终端设备上报能力信息的时候,告知网络设备所述终端设备支持通过2TX在单端口发送信息,并且发送功率可支持比原来常规发送功率23dBm要高3dBm。由此网络设备可以通过1个bit指示所述终端设备在某个载波上使用比常规发送功率要高的功率 发送信息。例如1表示26dBm,0表示23dBm,由此实际上就是指示所述终端设备在某个载波上采用2TX发送信息。
因此,针对本申请的所有实施例中,网络设备通过指示第一发射功率来指示终端设备采用M个TX在某个载波上通过单个天线端口发送信息,具体实施细节,请查看实施例五。
实施例二:
针对步骤203,一种可能的实现方式可以举例如下,其他步骤与上面实施例内容一致,不再一一赘述:
步骤203:终端设备根据所述天线端口配置,确定所述终端设备中L个发射通道的状态。
与实施例一不同在于,本申请实施例中可以预先确定N组发射通道配置,N组发射通道配置为根据终端设备中L个发射通道的开启状态和关闭状态确定的。假设终端设备包括3个发射通道,分别表示为TX1、TX2以及TX3,终端设备可以同时使用其中的2个发射通道发送信息,那么终端设备中3个发射通道的开启状态和关闭状态可以存在表1所示的6种发射通道配置,可以根据这6种发射通道配置确定N组发射通道配置。例如将{1T,1T,0T}和{1T,1T,0T}分为一组,将{0T,1T,1T}和{2T,0T,0T}分为一组,将{0T,2T,0T}和{0T,0T,2T}分为一组等。实际应用中,还可以存在其他分组情况,在此不再举例。
需要说明的是,N组发射通道配置中的每一组发射通道配置包括至少一个发射通道配置,N为大于1的整数。
具体地,可以包括步骤A,步骤B,步骤C。3个步骤中,终端设备根据实际情况选择执行3个步骤中的1个步骤即可。
步骤A:一个天线端口传输配置对应一个或多个发射通道配置,如果天线端口传输配置只对应一个发射通道配置,可以不需要与第二发射通道进行比较,直接将天线端口传输配置对应的发射通道配置作为第一发射通道配置。
需要说明的是,由于发射通道配置与天线端口传输配置的对应关系是预先建立的,因此终端设备可以确定每个天线端口传输配置对应的发射通道配置的数量。
具体的,终端设备若确定所述天线端口传输配置对应的一个发射通道配置,则所述终端设备可以将所述天线端口传输配置对应发射通道配置确定为所述第一发射通道配置。
步骤B:若确定所述天线端口传输指示对应多个发射通道配置,且包含第二发射通道配置,则所述终端设备可以将所述第二发射通道配置确定为所述第一发射通道配置。
步骤C:若确定所述天线端口传输配置对应多个发射通道配置,且不包含第二发射通道配置,则所述终端设备可以从所述天线端口传输配置对应的一个或多个发射通道配置中,选择一个发射通道配置作为所述第一发射通道配置。
针对C,就将终端设备的L个发射通道对应的所有发射通道配置划分为N组发射通道配置,每一组发射通道配置包括至少一个发射通道配置,N为大于1的整数。在此情况下,具体如何选择,后面将详细描述。
假设第二发射通道配置位于所述N组发射通道配置中的第一组发射通道配置中,当天线端口传输配置对应多个发射通道配置,不包含第二发射通道配置时,可以通过以下方式确定第一发射通道配置:
终端设备若确定所述第一组发射通道配置中,存在满足条件的发射通道配置,则将所述满足条件的发射通道配置作为所述第一发射通道配置;其中,所述满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括所述天线端口传输配置。
或者,所述终端设备若确定所述第一组发射通道配置中,不存在所述满足条件的发射通道配置,则按照预设顺序,从所述N组发射通道配置中确定出所述满足条件的发射通道配置,并将所述满足条件的发射通道配置作为所述第一发射通道配置;
其中,所述满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括所述天线端口传输配置。
需要说明的是,假设N组发射通道配置中每一组发射通道配置对应一个索引值,预设顺序,可以是指按照N组发射通道的索引值从大到小的循环顺序,也可以是按照N组发射通道的索引值从小到大的循环顺序,本申请实施例对此并不限定。预设顺序还可能存在其他实现方式,在此不再一一列举。
举例来说,结合表2,每一组发射通道配置包括一个发射通道配置,对应的索引值可以如表4所示。
表4
发射通道配置 索引值
{1T,1T,0T} 001
{1T,1T,0T} 010
{0T,1T,1T} 011
{2T,0T,0T} 100
{0T,2T,0T} 101
{0T,0T,2T} 110
结合上面的表2,如果第二发射通道配置为{0T,0T,2T},确定出的天线端口传输配置为{0P,0P,1P}。通过表2可知,{0P,0P,1P}不对应{0T,0T,2T},则可以按照索引值从大到小的循环顺序,依次从索引值为001、010、011…101对应的发射通道配置中确定是否存在满足条件的发射通道配置。在该例子中,可以先从010对应的发射通道配置中确定出满足条件的发射通道配置,从而可以将{1T,0T,1T}作为第一发射通道配置。
上面的例子以一个发射通道配置为一组为例,实际应用中,还可以存在其他分组情况,例如将{1T,1T,0T}和{1T,1T,0T}分为一组,将{0T,1T,1T}和{2T,0T,0T}分为一组,将{0T,2T,0T}和{0T,0T,2T}分为一组等,在此不再赘述。
可选的,另一种可能的实现方式中,还可以通过以下方式确定第一发射通道配置:
若所述天线端口传输配置只对应一个发射通道配置,则将所述天线端口传输配置对应的发射通道配置确定为所述第一发射通道配置;
或者,若所述天线端口传输配置对应多个发射通道配置,且所述多个发射通道配置中包含所述第二发射通道配置,则所述终端设备将所述第二发射通道配置确定为所述第一发射通道配置;
或者,若所述天线端口传输配置对应多个发射通道配置,并且所述多个发射通道配置中不包含所述第二发射通道配置,则按照预设顺序,从至少一个发射通道配置中确定出所述满足条件的发射通道配置,并将所述满足条件的发射通道配置作为所述第一发射通道配置;所述至少一个发射通道配置为根据所述终端设备的L个发射通道确定的;
其中,所述满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括所述天线端口传输配置。
具体的,所述至少一个发射通道配置为根据终端设备中L个发射通道的开启状态和关闭状态确定的。假设终端设备包括3个发射通道,分别表示为TX1、TX2以及TX3,终端设备可以同时使用其中的2个发射通道发送信息,那么终端设备中3个发射通道的开启状态和关闭状态可以存在表1所示的6种发射通道配置。
针对具体实施方式,或实施例一或实施例二描述内容中,所述步骤201之前,为了保持网络设备与终端设备对终端设备中L个发射通道的状态的理解一致,可选的,终端设备确定第一发射通道配置之前,网络设备与终端设备之间还可以对终端设备中L个发射通道的状态进行同步,同步的方法可以包括但不限于以下任一方式:
方式一:终端设备中L个发射通道的状态设置可以为预配置的状态,具体的,可以预先约定终端设备中L个发射通道的状态,例如当终端设备中有3个发射通道情况,网络设备可以选择一种天线端口传输配置来配置所述终端设备3个载波的天线端口配置,例如所选择天线端口传输配置是只能对应的一个发射通道配置,这样网络设备在没有明确指示TX状态即发射通道传输配置的情况下,就可以和终端设备对齐发射通道传输配置。此时可以理解为初始发射通道配置同步。
方式二:终端设备向网络设备指示终端设备中L个发射通道的状态,举例来说,网络设备可以想终端设备发送第三信息,所述第三信息用于指示所述终端设备中L个发射通道的状态。具体如何指示,本申请实施例对此并不限定。可选地,终端设备向网络设备指示T1时刻所述终端设备中L个发射通道的状态。
方式三:网络设备向终端设备指示终端设备中L个发射通道的状态,举例来说,终端设备向所述网络设备发送第五信息,所述第五信息用于指示所述终端设备中L个发射通道的状态,具体如何指示,本申请实施例对此并不限定。可选地,网络设备指示T2时刻所述终端设备中L个发射通道的状态。
需要说明的是,网络设备与终端设备之间只需要对终端设备中L个发射通道的状态进行一次同步即可,当然同步次数本申请不做限制。
进一步的,如前所述,终端设备的发射通道处于开启状态时,并不一定需要传输信息。本申请实施例中,终端设备确定出第一发射通道配置之后,还可以根据至少一个上行载波中每个上行载波对应的发射通道的状态,确定用于传输信息的至少一个发射通道。其中所述至少一个上行载波用于传输信息或者所述至少一个上行载波为所述终端设备被调度使用的上行载波。
需要说明的是,针对“终端设备的发射通道处于开启状态”,可以理解为:
发射通道可以传输信息;或者,发射通道传输信息;或者,终端设备通过该发射通道在某个载波上已经做好了同步和/或功率控制等调整。
可选的,还可以包括步骤:终端设备可以将L个发射通道中,与至少一个上行载波中的上行载波对应,且处于开启状态的发射通道,确定为用于传输信息的至少一个发射通道。
具体的,终端设备可以将L个发射通道中,与至少一个上行载波中的上行载波对应,且处于开启状态的发射通道,确定为用于传输信息的至少一个发射通道。
举例来说,假设终端设备包括3个发射通道,分别表示为TX1、TX2以及TX3,网络设备为终端设备激活了3个上行载波,分别为CC1、CC2以及CC3,其中TX1与CC1对 应,TX2与CC2对应,TX3与CC3对应。当终端设备确定出的第一发射通道配置为{1T,1T,0T},且调度CC1时,可以确定TX1为用于传输信息的至少一个发射通道。其中TX2虽然处于开启状态,但是其对应的CC2没有被调度,所以不用于传输信息。
可选的,还包括步骤:终端设备确定L个发射通道的状态后,确定执行发射通道切换或者不执行发射通道切换;或者,终端设备确定第一发射通道配置,确定执行发射通道切换或者不执行发射通道切换。
具体地,根据所述L个发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道,即终端设备确定出第一发射通道配置。然后终端设备确定是否需要进行发射通道切换:具体的,如果所述第一发射通道配置和第二发射通道配置不同,则确定进行发射通道配置切换,也就是说终端设备的发射通道需要做切换,则需要确定切换时间,然后发送数据;如果所述第一发射通道配置和第二发射通道配置相同,则确定不进行发射通道配置切换,或者可以确定保持当前的发射通道配置不变;也就是说,也就是说针对终端设备的每个发射通道都不需要做切换。
本申请还涉及关于功率与发射通道配置的内容,下面详细描述:
需要说明的是,终端设备在被调度的上行载波中传输信息所使用的天线端口,为该上行载波配置的天线端口。
本申请实施例中,可以支持多个发射通道在一个上行载波中使用不同的天线端口发送信息,也可以支持多个发射通道在一个上行载波中使用相同的天线端口发送信息。
举例来说,结合前面的表2,当第一发射通道配置为{2T,0T,0T},天线端口传输配置为{2P,0P,0P}时,表示通过TX1和TX1在CC1中传输信息,且TX1和TX1分别通过不同天线端口传输信息;当第一发射通道配置为{2T,0T,0T},天线端口传输配置为{1PX,0P,0P}时,表示通过TX1和TX1在CC1中传输信息,且TX1和TX1通过同一个天线端口传输信息。
进一步的,终端设备确定天线端口数小于发射通道数时,即确定通过多个发射通道在一个上行载波中使用相同的天线端口发送信息时,可以采用高功率增益在该天线端口中发送信息。
进一步的,或者网络设备如何指示终端设备设置第一发射通道配置为{2T,0T,0T},或者说,终端设备如何通过天线端口传输配置为{1P,0P,0P},获得将第一发射通道配置设置为{2T,0T,0T},下面将详细描述。
具体地,针对终端设备支持多个发射通道(例如可以支持2个TX,3个TX,4个TX等等)在一个上行载波中使用相同的天线端口发送信息,而且此时终端设备发送功率可以采用比常规功率要高的功率发送信息,在上述情况下,则网络设备可以在配置该载波时,指示该终端使用比常规功率要高的功率发送信息,从而来指示终端设备设置第一发射通道配置为{2T,0T,0T}。
具体地,例如终端上报能力信息的时候,告知网络设备所述终端设备支持通过2TX在单端口发送信息,并且发送功率可支持比原来常规发送功率23dBm要高3dBm。由此网络设备可以通过1个bit指示所述终端设备在某个载波上使用比常规发送功率要高的功率发送信息。例如1表示26dBm,0表示23dBm,由此实际上就是指示所述终端设备在某个载波上采用2TX发送信息。
针对本申请的所有实施例中,网络设备通过指示第一发送功率来指示终端设备采用M个TX在某个载波上通过单个天线端口发送信息,具体实施细节,请查看实施例五。
实施例三:
前面的实施例中,终端设备需要根据至少一个载波中每个载波的天线端口配置,确定L个射频通道的状态。本申请实施例中,网络设备可以直接指示L个射频通道的状态,下面详细描述。
方式一:前面的表2中,给出了不同发射通道配置对应的天线端口传输配置,为此,本申请可以先确定天线端口传输配置和发射通道配置构成的所有可能的配置组合,然后直接向终端设备指示对应的配置组合。
假设天线端口传输配置和发射通道配置构成的所有可能的配置组合的数量为H,H为大于0的整数。H个配置组合中的每个配置组合包括一个天线端口传输配置和一个发射通道配置,H个配置组合中的每个配置组合对应一个索引值。
当网络设备确定向终端设备指示H个配置组合中的第一配置组合时,网络设备可以向终端设备调度信息,所述调度信息用于指示第一配置组合的索引值。终端设备可以根据调度信息指示的索引值,确定第一配置组合,从而可以确定第一配置组合中包括的天线端口传输配置和发射通道配置,进而可以确定L个射频通道的状态,以及调度的至少一个上行载波。
举例来说,结合表2,如表5所示,为天线端口传输配置和发射通道配置构成的所有可能的配置组合。网络设备通过发送索引值来指示终端设备天线端口配置对应的发射通道状态。由此保证网络设备与终端设备对齐所述终端设备的发射通道状态。
表5
索引值 发射通道配置 天线端口传输配置
0000 {1T,1T,0T} {1P,1P,0P}
0001 {1T,0T,1T} {1P,0P,1P}
0010 {0T,1T,1T} {0P,1P,1P}
0011 {2T,0T,0T} {2P,0P,0P}
0100 {0T,2T,0T} {0P,2P,0P}
0101 {0T,0T,2T} {0P,0P,2P}
0110 {1T,1T,0T} {1P,0P,0P}
0111 {1T,0T,1T} {1P,0P,0P}
1000 {2T,0T,0T} {1PX,0P,0P}
1001 {1T,1T,0T} {0P,1P,0P}
1010 {0T,1T,1T} {0P,1P,0P}
1011 {0T,2T,0T} {0P,1PX,0P}
1100 {1T,0T,1T} {0P,0P,1P}
1101 {0T,1T,1T} {0P,0P,1P}
1110 {0T,0T,2T} {0P,0P,1PX}
结合表5,当网络设备发送的调度信息为0010时,终端设备可以确定第一发射通道配置为{0T,1T,1T},天线端口传输配置为{0P,1P,1P},其他情况不再赘述。
方式二:根据前面的描述可知,有些发射通道配置和天线端口传输配置存在一一对应的关系,对于这种情况,可以不指示第一发射通道配置,而是通过调度的上行载波间接指示第一发射通道配置。具体的,在这种情况下,调度的上行载波对应的发射通道处于开启状态,未被调度的上行载波对应的发射通道处于关闭状态。
举例来说,假设终端设备包括3个发射通道,分别表示为TX1、TX2以及TX3,网络设备为终端设备激活了3个上行载波,分别为CC1、CC2以及CC3,其中TX1与CC1对应,TX2与CC2对应,TX3与CC3对应。当网络设备调度终端设备在CC1、CC2中传输信息时,可以不指示第一发射通道配置。此时终端设备根据调度的上行载波,可以确定第一发射通道配置为{1T,1T,0T}。当网络设备调度终端设备在CC1、CC3中传输信息时,可以不指示第一发射通道配置。此时终端设备根据调度的上行载波,可以确定第一发射通道配置为{1T,0T,1T}。
当天线端口传输配置对应多个发射通道配置时,可以采用方式一中的方法,直接进行指示。举例来说,可以如表6所示。
表6
索引值 发射通道配置 天线端口传输配置
0000 {1T,1T,0T} {1P,0P,0P}
0001 {1T,0T,1T} {1P,0P,0P}
0010 {2T,0T,0T} {1PX,0P,0P}
0011 {1T,1T,0T} {0P,1P,0P}
0100 {0T,1T,1T} {0P,1P,0P}
0101 {0T,2T,0T} {0P,1PX,0P}
0110 {1T,0T,1T} {0P,0P,1P}
0111 {0T,1T,1T} {0P,0P,1P}
1000 {0T,0T,2T} {0P,0P,1PX}
当然,以上指示示例,还可能存在其他实现方式,在此不再赘述。
实施例四:
本申请实施例中,网络设备也可以直接指示终端设备中L个发射通道的状态,下面详细描述。
如图3所示,为本申请实施例提供的一种通信方法流程示意图,该方法包括:
步骤301:网络设备向终端设备发送第三信息。
本申请实施例中,第三信息用于指示所述终端设备中L个发射通道的状态;L为大于0的整数。或者,本申请实施例中,第三信息用于指示所述终端设备中至少一个载波中每个载波对应的发射通道的状态。所述至少一个载波,可以是配置载波,激活载波,调度载波,本申请不做限制。
具体地,本申请以激活载波为例,第三信息用于指示所述终端设备中至少一个激活载波中每个激活载波对应的发射通道的状态。
网络设备具体如何发送第三信息,本申请实施例并不限定,例如可以通过高层信令发送第三信息,还可以通过DCI发送第三信息。
举例来说,{1T,1T,0T}对应110,当网络设备指示终端设备将终端设备中的2个发射通道开启时,发送的第三信息可以为110,指示的第一发射通道配置为{1T,1T,0T}, 表示终端设备中TX1和TX2处于开启状态。
在此之前,可选的,网络设备确定第三信息。网络设备具体如何确定第三信息,本申请实施例对此并不限定。
步骤302:终端设备接收来自网络设备的第三信息。
具体地,本申请以激活载波为例,第三信息用于指示所述终端设备中至少一个激活载波中每个激活载波对应的发射通道的状态。例如终端设备被配置了L=3个激活载波,每个载波都对应了1个TX。
需要说明的是,终端设备还可以接收来自网络设备的第一信息和第二信息,第一信息和第二信息的具体内容可以参考前面的描述,在此不再赘述。
例如,所述第一信息用于指示天线端口配置,所述天线端口配置为终端设备的上行载波所使用的天线端口配置;或者所述天线端口配置为所述终端设备配置的每个上行载波所使用的天线端口配置。
例如,网络设备向终端设备发送第二信息,所述第二信息用于指示上行载波是否被调度或者上行载波是否被激活。
网络设备可以每个上行载波对应的下行载波中发送一个第二信息,第二信息用于指示该上行载波的信息。此时第二信息可以包括以下一项或多项:上行载波的标识;上行载波的索引;上行载波的频率索引;上行载波的频率标识,上行载波是否被调度,上行载波是否被激活。
另一种可能的实现方式中,网络设备可以在一个下行载波中发送一个第二信息,该第二信息用于指示该至少一个上行载波的信息。该实现方式可以应用于终端设备支持是上行载波数多于下行载波数的情况。在该实现方式中,所述第二信息可以包括以下一项或多项:m个上行载波的标识;m个上行载波索引;m个上行载波频率索引;m个上行载波频率标识;m为正整数,m为该被调度的至少一个上行载波的数量,上行载波是否被调度,上行载波是否被激活。
在该实现方式中,第二信息包括A1个比特,每个比特用于指示一个上行载波是否被调度或者被激活使用。举例来说,网络设备配置了5个上行载波,第二信息可以包括5个比特,每个比特对应一个上行载波。假设比特的值为1时,表示上行载波被调度,当比特的值为0时,表示上行载波没有被调度;第二信息为11000时,表示调度了5个上行载波中的2个上行载波。具体地,可以给所述5个载波设置编号,例如所述2个上行载波分别是第1个载波CC1,和第二个载波CC2被调度。
可选的,步骤303:所述终端设备根据所述L个发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道。
本申请实施例中,第三信息用于指示所述终端设备中L个发射通道的状态;L为大于0的整数。
具体的,第三信息可以用于指示所述L个发射通道中每个发射通道为开启状态或者关闭状态;或,第三信息用于指示所述L个发射通道中开启状态的发射通道;或,第三信息用于指示所述L个发射通道中关闭状态的发射通道。
本申请实施例中,可以采用多种实现方式确定用于传输信息的至少一个发射通道,下面分别进行描述。
实现方式一:
终端设备根据第三信息和第二信息,确定第二信息指示的至少一个上行载波中每个上行载波对应的发射通道的状态,从而可以确定所述终端设备中用于传输信息的至少一个发射通道。
具体的,终端设备根据所述L个发射通道的状态,可以确定至少一个上行载波中每个上行载波对应的发射通道,并将所述至少一个上行载波对应开启状态的发射通道状态,确定为用于传输信息的至少一个发射通道。
以终端设备被配置了L=3个激活载波,每个载波都对应了1个TX,实际上网络设备会只配置2个载波用于终端设备进行并发数据为例。终端设备通过第三信息,终端设备获得了3个发射通道的状态。通过第二信息,终端设备获得了激活载波实际被调度的信息,即3个载波中有两个载波被用于实际发送信息。因此根据第三信息和第二信息,确定3个上行载波中每个上行载波对应的发射通道的状态,从而可以确定所述终端设备中用于传输信息的至少一个发射通道。
具体的,终端设备根据所述3个发射通道的状态,可以确定至少一个上行载波中每个上行载波对应的发射通道,并将所述至少一个上行载波对应开启状态的发射通道状态,确定为用于传输信息的至少一个发射通道。
实现方式二:
终端设备可以根据第三信息和第一信息,确定所述至少一个上行载波中每个天线端口对应的发射通道的状态,从而确定所述终端设备中用于传输信息的至少一个发射通道。
具体的,终端设备可以根据所述第三信息确定所述L个发射通道中处于开启状态的发射通道,并根据所述第一信息,确定所述至少一个天线端口中每个天线端口对应的发射通道,从而可以将所述至少一个天线端口对应开启状态的发射通道状态,确定为用于传输信息的至少一个发射通道。
以终端设备被配置了L=3个激活载波,每个载波都对应了1个TX,实际上网络设备会只配置2个载波用于终端设备进行并发数据为例。
终端设备通过第三信息,终端设备获得了3个发射通道的状态。即终端设备可以根据所述第三信息确定所述L个发射通道中处于开启状态的发射通道,和关闭状态的发射通道。终端设备通过第一信息,终端设备获得了3个载波对应的天线端口配置,也就是说终端设备确定所述3个载波中每个载波的天线端口对应的发射通道的状态。从而可以将所述至少一个天线端口对应开启状态的发射通道状态,确定为用于传输信息的至少一个发射通道。
实现方式三:
实现方式三中,第三信息用于指示所述终端设备中至少一个载波中每个载波对应的发射通道的状态。
具体,网络设备可以在每个上行载波对应的下行载波中发送一个第三信息,此时第三信息还用于指示以下一项或多项:上行载波所使用的发射通道的状态;上行载波所使用的发射通道的个数。
或者,网络设备还可以在一个下行载波中发送一个第三信息,此时第三信息还用于指示以下一项或多项:X个上行载波上每个上行载波所使用的发射通道的状态;所述X个上行载波上每个上行载波所使用的发射通道的个数。
举例来说,假设终端设备包括3个发射通道,分别表示为TX1、TX2以及TX3,网络设备为终端设备激活了3个上行载波,分别为CC1、CC2以及CC3,其中TX1与CC1对 应,TX2与CC2对应,TX3与CC3对应。第三信息可以包括3个比特,每个比特与其中一个发射通道以及上行载波对应,假设比特的值为1时,表示上行载波被调度,且该上行载波对应的发射通道处于开启状态;当比特的值为0时,表示上行载波没有被调度,且该上行载波对应的发射通道处于关闭状态。第三信息为110时,表示TX1、TX2处于开启状态,且CC1、CC2被调度。
在实现方式三中,终端设备根据所述X个上行载波上每个上行载波所使用的发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道。具体的,终端设备可以将所述L个发射通道中处于开启状态的至少一个发射通道,确定所述终端设备中用于传输信息的至少一个发射通道。
特别地,针对{1PX,0P,0P}对应{2T,0T,0T}的情况,网络设备如何指示终端设备设置第一发射通道配置为{2T,0T,0T},或者说,终端设备如何通过天线端口传输配置为{1P,0P,0P},获得将第一发射通道配置设置为{2T,0T,0T},下面将详细描述。
具体地,针对终端设备支持多个发射通道(例如可以支持2个TX,3个TX,4个TX等等)在一个上行载波中使用相同的天线端口发送信息,而且此时终端设备发送功率可以采用比常规功率要高的功率发送信息,在上述情况下,则网络设备可以在配置该载波时,指示该终端使用比常规功率要高的功率发送信息,从而来指示终端设备设置第一发射通道配置为{2T,0T,0T}。
具体地,例如终端上报能力信息的时候,告知网络设备所述终端设备支持通过2TX在单端口发送信息,并且发送功率可支持比原来常规发送功率23dBm要高3dBm。由此网络设备可以通过1个bit指示所述终端设备在某个载波上使用比常规发送功率要高的功率发送信息。例如1表示26dBm,0表示23dBm,由此实际上就是指示所述终端设备在某个载波上采用2TX发送信息。
因此,针对本申请的所有实施例中,网络设备通过指示第一发送功率来指示终端设备采用M个TX在某个载波上通过单个天线端口发送信息,具体实施细节,请查看实施例五。
可选的,还可以包括以下步骤:终端设备确定L个发射通道的状态后,确定执行发射通道切换或者不执行发射通道切换;或者,所述终端设备确定第一发射通道配置,确定执行发射通道切换或者不执行发射通道切换。
具体地,根据所述L个发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道,即终端设备确定出第一发射通道配置。然后终端设备确定是否需要进行发射通道切换:具体的,如果所述第一发射通道配置和第二发射通道配置不同,则确定进行发射通道配置切换,也就是说终端设备的发射通道需要做切换,则需要确定切换时间,然后发送数据;如果所述第一发射通道配置和第二发射通道配置相同,则确定不进行发射通道配置切换,或者可以确定保持当前的发射通道配置不变;也就是说,也就是说针对终端设备的每个发射通道都不需要做切换。
实施例五:
本申请实施例中,如图4所示,为本申请实施例提供的一种通信方法流程示意图,该方法包括:
步骤401:终端设备向网络设备发送第二功率信息。
第二功率信息用于指示终端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;或者所述第一功率信息用于指示终端设备支持在一个载波上使用 第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率。
关于“终端设备支持在一个天线端口上使用第一发送功率进行信息发送”:具体地,用于指示“所述终端支持通过K个发射通道在一个天线端口上使用第一发送功率进行信息发送;其中,K是正整数。
关于“终端设备支持在一个载波上使用第一发送功率发送”:具体地,可以用于指示“所述终端支持在一个载波上通过K个发射通道在一个天线端口上使用第一发送功率进行信息发送”。
第二功率信息包括以下至少一项参数:使用第一发送功率的载波频段、使用第一发送功率的载波频率,使用第一发送功率的载波频率index,使用第一发送功率的载波频率标识,使用第一发送功率发送信息的天线端口数量、使用第一发送功率发送信息的天线端口号、使用第一发送功率发送信息的发射通道的数量、使用第一发送功率发送信息的多输入多输出MIMO层数、功率增益。
功率增益例如可以是3dBm。例如常规功率是第二发送功率,那么第一发送功率就是第二发送功率与功率增益的总和。
因此针对上述内容,终端设备支持多个发射通道(例如可以支持2个TX,3个TX,4个TX等等)在一个上行载波中使用相同的天线端口发送信息,而且此时终端设备发送功率可以采用比常规功率要高的功率发送信息:如果网络设备可以在配置该载波时,指示该终端使用比常规功率要高的功率发送信息,从而来指示终端设备设置第一发射通道配置为{2T,0T,0T},而不是{1T,0T,0T}。
步骤402:网络设备向终端设备发送第一功率信息,所述第一功率信息用于指示终端设备使用第一发送功率在第一载波上发送信息。
第一载波可以是指为终端设备配置或激活的任一载波。
具体地,针对每个上行载波都有各自对应的不同下行载波情况,网络设备在下行载波1上发送第一功率信息,用于指示终端设备使用第一发送功率在第一载波上发送信息。此时第一载波可以为发送第一功率信息的下行载波对应的上行载波。
具体地,针对1个下行载波可以指示多个上行载波调度的情况,网络设备在下行载波1上发送第一功率信息,用于指示终端设备在多个上行载波中使用第一发送功率上发送信息。此时第一载波可以为所述多个上行载波中的任一载波。
例如,针对终端设备上报第一功率信息用于表示支持2TX在一个载波上使用单天线端口发送信息,所用发送功率是第一发送功率情况,网络设备在下行载波1上发送第二功率信息,第二功率信息包含x比特。本实施例以3比特为例说明。所述第二功率信息用于指示3个上行载波的功率发送信息。例如100表示上行载波1使用第一发送功率发送信息,上行载波2和上行载波3使用第二发送功率发送信息。
由此网络设备通过第一功率信息,实际上已经指示了终端设备使用2TX在一个载波上利用单天线端口发送信息。因此实际上指示终端设备设置在第一发射通道配置为{2T,0T,0T},而不是{1T,0T,0T}。
步骤403:终端设备向网络设备在第一载波上使用第一发送功率发送信息。
所述终端设备使用K个发射通道在一个天线端口上使用所述第一发送功率在所述至少一个载波上进行信息传输。
或者,针对所述至少一个载波中的第i个载波,所述终端设备使用K个发射通道在一个天线端口上使用所述第一发送功率在所述第i个载波上进行信息传输;其中,i是正整数。
具体地,终端设备所述一个载波上通过K个发射通道在一个天线端口上使用第二发送功率进行信息发送;其中,K是正整数”。例如,K=2,表示终端设备通过利用2TX发送某个载波(例如载波1)的数据,并且通过1个天线端口来发送该载波1的数据。
例如,针对终端设备上报第一功率信息用于表示支持2TX在一个载波上使用单天线端口发送信息,所用发送功率是第一发送功率情况,网络设备在下行载波1上发送第二功率信息,第二功率信息包含x比特。本实施例以3比特为例说明发明内容。所述第二功率信息用于指示3个上行载波的功率发送信息。例如100表示上行载波1使用第一发送功率发送信息,上行载波2和上行载波3使用第二发送功率发送信息。
终端设备收到所述第二功率信息,终端设备2TX在一个载波上使用单天线端口发送信息,发送功率是第一发送功率。也就是说终端设备设置第一发射通道配置为{2T,0T,0T},而不是{1T,0T,0T}。
本申请实施例对第一发送功率和第二发送功率的具体取值并不限定,例如,第一发送功率为26dBm,第二发送功率为23dBm。
“所述终端设备使用K个发射通道在一个天线端口上使用所述第一发送功率在所述至少一个载波上进行信息传输”,具体地,网络设备的指示5个载波的功率发送,其中5个载波中第二载波和第五载波是需要用第一功率发送,其他使用第二功率发送。那么终端设备就在第二载波上通过K个发射通道在一个天线端口上使用所述第一发送功率发送信息,终端设备就在第五载波上通过K个发射通道在一个天线端口上使用所述第一发送功率发送信息率。“所述终端设备使用K个发射通道在一个天线端口上使用所述第一发送功率在所述至少一个载波上进行信息传输”,具体地就是指终端设备就在第二载波上通过K个发射通道在一个天线端口上使用所述第一发送功率发送信息,终端设备就在第五载波上通过K个发射通道在一个天线端口上使用所述第一发送功率发送信息率。
实施例六:
步骤1:终端设备向网络设备发送第一能力消息。
所述第一能力消息中可以包含:能力信息和第一功率信息中的至少一项。
其中,所述能力信息用于指示以下一项或多项:
终端设备能够在多于L个的上行载波中确定用于发送信息的上行载波,L为大于0的整数;终端设备能够支持在最多S个上行载波中确定用于发送信息的上行载波,所述S是大于所述L的正整数;L。
其中,所述第一功率信息:具体地,所述第一功率信息用于指示终端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率;或者终端设备向网络设备发送第一功率信息,所述第一功率信息用于指示终端设备支持在一个载波上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率。关于“终端设备支持在一个天线端口上使用第一发送功率进行信息发送”:具体地,用于指示所述终端支持通过K个发射通道在一个天线端口上使用第一发送功率进行信息发送;其中,K是正整数。
关于“终端设备支持在一个载波上使用第一发送功率发送”:具体地,可以用于指示所述终端支持在一个载波上通过K个发射通道在一个天线端口上使用第一发送功率进行信 息发送;其中,K是正整数。
所述第二功率信息包括以下至少一项参数:使用第一发送功率的载波频段、使用第一发送功率的载波频率,使用第一发送功率的载波频率index,使用第一发送功率的载波频率标识,使用第一发送功率发送信息的天线端口数量、使用第一发送功率发送信息的天线端口号、使用第一发送功率发送信息的发射通道的数量、使用第一发送功率发送信息的多输入多输出MIMO层数、功率增益。
功率增益例如可以是3dBm。例如常规功率是第二发送功率,那么第一发送功率就是第二发送功率与功率增益的总和。
因此针对上述内容,终端设备支持多个发射通道在一个上行载波中使用相同的天线端口发送信息,而且此时终端设备发送功率可以采用比常规功率要高的功率发送信息:如果网络设备可以在配置该载波时,指示该终端使用比常规功率要高的功率发送信息,从而来指示终端设备设置第一发射通道配置为{2T,0T,0T},而不是{1T,0T,0T}。
步骤2:网络设备向终端设备发送配置信息。
所述配置信息用于指示以下一项或多项:
所述网络设备为终端设备配置的上行载波信息;
所述网络设备为终端设备激活的上行载波信息;
所述终端设备传输信息所使用的上行载波信息;
所述网络设备为终端设备配置的上行载波数X,所述X是大于L的正整数,所述L为所述终端设备能够同时进行上行传输的最大上行载波个数;
所述网络设备为终端设备配置的上行载波数X,所述X是大于P的正整数,所述P为所述终端设备能够同时进行上行传输的最大发射通道个数;
所述终端设备传输信息所使用的上行载波数m,所述m为小于或等于所述L的正整数。
所述上行载波信息可以是以下至少一项:上行载波的标识;上行载波的索引;上行载波的频率,上行载波的频率索引;上行载波的频率标识等。
针对载波:“所述网络设备为终端设备配置的上行载波”表示:终端设备在所述载波上已经做了同步、测量以及功率控制调整中的一项或者多项。这类载波,又可以称为该载波被配置了,配置一个载波。此时,也可以说,该载波是配置载波。当然,还可以是其他名称,本申请不做限定。
“所述网络设备为终端设备激活的上行载波”表示:终端设备在所述载波上可以随时发送信息,或者可以在所述载波上随时进行通信。此时,可以说该载波被激活了,或者激活一个载波,也可以说,该载波是激活载波。当然,还可以是其他名称,本申请不做限定。
“所述终端设备传输信息所使用的上行载波信息”表示:终端设备在所述载波上发送信息,或者可以在所述载波上进行通信。此时,也可以说该载波被调度了,或者说调度一个载波。此时,也可以称该载波是调度载波。当然,还可以是其他名称,本申请不做限定。
具体地,例如网络设备为终端设备配置了5个载波,激活了其中3个载波用于终端可以随时使用该载波进行通信,但实际调度的时候,网络设备只是实际使用了所述3个载波中的2个载波用于通信。需要说明的是,其中3个载波是UE最大支持的并行发送上行载波的最大个数,或者说3个载波是终端设备能够支持的最大TX发射通道数。
步骤3:网络设备向终端设备发送第三信息。
本申请实施例中,第三信息用于指示所述终端设备中至少一个载波中每个载波对应的 发射通道的状态。所述至少一个载波,可以是配置载波,激活载波,调度载波,本申请不做限制。
具体地,本申请以激活载波为例,第三信息用于指示所述终端设备中至少一个激活载波中每个激活载波对应的发射通道的状态。
具体地,网络设备具体如何发送第三信息,本申请实施例并不限定,例如可以通过高层信令发送第三信息。
举例来说,以L=3,m=2为例,即终端设备有3个TX通道,网络设备配置了3个激活载波用于传输数据,每个载波都对应了1个TX。但实际调度了其中2个载波传输数据:所述第三信息可以是用X个比特来表指示所述终端设备中至少一个载波中每个载波对应的发射通道的状态。具体地,第三信息可以为110,指示的第一发射通道配置为{1T,1T,0T},表示终端设备中TX1和TX2处于开启状态。
步骤4:终端设备接收来自网络设备的第三信息和第一功率信息中的至少一项。
其中,第三信息用于指示所述终端设备中至少一个载波中每个载波对应的发射通道的状态。所述至少一个载波,可以是配置载波,激活载波,调度载波,本申请不做限制。
举例来说,以L=3,m=2为例,即终端设备有3个TX通道,网络设备配置了3个激活载波用于传输数据,每个载波都对应了1个TX。但实际调度了其中2个载波传输数据:所述第三信息可以是用X个比特来表指示所述终端设备中至少一个载波中每个载波对应的发射通道的状态。具体地,第三信息可以为110,指示的第一发射通道配置为{1T,1T,0T},表示终端设备中TX1和TX2处于开启状态。
其中,所述第一功率信息用于指示终端设备使用第一发送功率在第一载波上发送信息。
具体地,针对每个上行载波都有各自对应的不同下行载波情况,网络设备在下行载波1上发送第一功率信息,用于指示终端设备使用第一发送功率在某个载波上发送信息;或者,具体地,针对1个下行载波可以指示多个上行载波调度的情况,网络设备在下行载波1上发送第一功率信息,用于指示终端设备在多个上行载波中使用第一发送功率上发送信息。
例如,针对终端设备上报第二功率信息用于表示支持2TX在一个载波上使用单天线端口发送信息,所用发送功率是第一发送功率情况,网络设备在下行载波1上发送第一功率信息,第一功率信息包含x比特。本实施例以3比特为例说明发明内容。所述第一功率信息用于指示3个上行载波的功率发送信息。例如100表示上行载波1使用第一发送功率发送信息,上行载波2和上行载波3使用第二发送功率发送信息。
由此网络设备通过第二功率信息,实际上已经指示了指示终端设备使用2TX在一个载波上利用单天线端口发送信息。因此实际上指示终端设备设置在第一发射通道配置为{2T,0T,0T},而不是{1T,0T,0T}。
特别地说明引入第二功率信息:
针对{1PX,0P,0P}对应{2T,0T,0T}的情况,网络设备如何指示终端设备设置第一发射通道配置为{2T,0T,0T},或者说,终端设备如何通过天线端口传输配置为{1P,0P,0P},获得将第一发射通道配置设置为{2T,0T,0T}。
具体地,针对终端设备支持多个发射通道在一个上行载波中使用相同的天线端口发送信息,而且此时终端设备发送功率可以采用比常规功率要高的功率发送信息,在上述情况下,则网络设备可以在配置该载波时,指示该终端使用比常规功率要高的功率发送信息, 从而来指示终端设备设置第一发射通道配置为{2T,0T,0T}。
具体地,例如终端上报能力信息的时候,告知网络设备所述终端设备支持通过2TX在单端口发送信息,并且发送功率可支持比原来常规发送功率23dBm要高3dBm。由此网络设备可以通过1个bit指示所述终端设备在某个载波上使用比常规发送功率要高的功率发送信息。例如1表示26dBm,0表示23dBm,由此实际上就是指示所述终端设备在某个载波上采用2TX发送信息。
因此,针对本申请的所有实施例中,网络设备通过指示第一发送功率来指示终端设备采用M个TX在某个载波上通过单个天线端口发送信息,具体实施细节,请查看实施例五。
可选的,步骤5:所述终端设备根据所述L个发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道。
具体地,第三信息用于指示所述终端设备中至少一个载波中每个载波对应的发射通道的状态。因此所述终端根据所述第三信息,确定L个载波中每个载波对应得发射通道状态。
下述内容雷同实施例5中步骤303实现方式三中内容。
具体地,网络设备可以在每个上行载波对应的下行载波中发送一个第三信息,此时第三信息还用于指示以下一项或多项:上行载波所使用的发射通道的状态;上行载波所使用的发射通道的个数。
或者,网络设备还可以在一个下行载波中发送一个第三信息,此时第三信息还用于指示以下一项或多项:X个上行载波上每个上行载波所使用的发射通道的状态;所述X个上行载波上每个上行载波所使用的发射通道的个数。
举例来说,举例来说,以L=3,m=2为例。终端设备包括3个发射通道,分别表示为TX1、TX2以及TX3,网络设备为终端设备激活了3个上行载波,分别为CC1、CC2以及CC3,其中TX1与CC1对应,TX2与CC2对应,TX3与CC3对应。第三信息可以包括3个比特,每个比特与其中一个发射通道以及上行载波对应,假设比特的值为1时,表示上行载波被调度,且该上行载波对应的发射通道处于开启状态;当比特的值为0时,表示上行载波没有被调度,且该上行载波对应的发射通道处于关闭状态。第三信息为110时,表示TX1、TX2处于开启状态,且CC1、CC2被调度。第三信息为100时,表示TX1处于开启状态,CC1被调度,用于传输。CC2和CC3没有被调度,不用于传输信息。
终端设备根据所述X个上行载波上每个上行载波所使用的发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道。具体的,终端设备可以将所述L个发射通道中处于开启状态的至少一个发射通道,确定所述终端设备中用于传输信息的至少一个发射通道。
特别地,通过第一功率信息,终端设备可以确定在每个载波上使用TX的个数。
步骤6:终端设备确定L个发射通道的状态后,确定执行发射通道切换或者不执行发射通道切换;或者,所述终端设备确定第一发射通道配置,确定执行发射通道切换或者不执行发射通道切换。
具体地,根据所述L个发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道,即终端设备确定出第一发射通道配置。然后终端设备确定是否需要进行发射通道切换:具体的,如果所述第一发射通道配置和第二发射通道配置不同,则确定进行发射通道配置切换,也就是说终端设备的发射通道需要做切换,则需要确定切换时间,然后发送数据;如果所述第一发射通道配置和第二发射通道配置相同,则确定不进行发射通道 配置切换,或者可以确定保持当前的发射通道配置不变;也就是说,也就是说针对终端设备的每个发射通道都不需要做切换。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备与网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图5所示,本申请实施例还提供一种装置500用于实现上述方法中终端设备或网络设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置500可以包括:处理单元501和通信单元502。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中终端设备或网络设备发送和接收的步骤。
以下,结合图5至图6详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
在一种可能的设计中,该装置500可实现对应于上文方法实施例中的终端设备或者网络设备执行的步骤或者流程,下面分别进行描述。
示例性地,当该装置500实现本申请实施例中终端设备的功能时:
通信单元,用于接收来自网络设备的第一信息,所述第一信息用于指示上行载波所使用的天线端口配置;
处理单元,用于根据所述天线端口配置,确定所述终端设备中L个发射通道的状态;L为大于0的整数。
一种可能的实现方式中,所述处理单元具体用于:
确定至少一个上行载波,所述至少一个上行载波用于传输信息或者所述至少一个上行载波为所述终端设备被调度使用的上行载波;
根据所述至少一个上行载波以及所述天线端口配置,确定天线端口传输配置;所述天线端口传输配置用于指示所述至少一个上行载波所对应的天线端口;
根据所述天线端口传输配置确定所述L个发射通道的状态。
一种可能的实现方式中,所述处理单元还体用于:
如果所述第一发射通道配置和第二发射通道配置不同,则确定进行发射通道配置切换; 或,如果所述第一发射通道配置和第二发射通道配置不同,则确定不进行发射通道配置切换;其中,所述第二发射通道配置为所述终端设备接收所述第一信息时或之前的L个发射通道的状态;所述第一发射通道配置是根据所述天线端口配置确定的L个发射通道的状态。
一种可能的实现方式中,所述天线端口传输配置对应一个或多个发射通道配置;
所述处理单元具体用于:若所述天线端口传输配置只对应一个发射通道配置,则将所述天线端口传输配置对应的发射通道配置确定为所述第一发射通道配置;
或者,若所述天线端口传输配置对应多个发射通道配置,且所述多个发射通道配置中包含所述第二发射通道配置,则所述终端设备将所述第二发射通道配置确定为所述第一发射通道配置;或者,若所述天线端口传输配置对应多个发射通道配置,并且所述多个发射通道配置中不包含所述第二发射通道配置,则所述终端设备从所述天线端口传输配置对应的多个发射通道配置中,选择一个发射通道配置作为所述第一发射通道配置;其中,所述第二发射通道配置为所述终端设备接收所述第一信息时或之前的发射通道配置。
一种可能的实现方式中,所述处理单元具体用于:
按照预设顺序,从至少一个发射通道配置中确定出所述满足条件的发射通道配置,并将所述满足条件的发射通道配置作为所述第一发射通道配置;所述至少一个发射通道配置为根据所述终端设备的L个发射通道确定的;
其中,所述满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括所述天线端口传输配置。
一种可能的实现方式中,所述第二发射通道配置位于所述N组发射通道配置中的第一组发射通道配置中,所述第一组发射通道配置包括至少一个发射通道配置;
所述处理单元具体用于:若确定所述第一组发射通道配置中,存在满足条件的发射通道配置,则将所述满足条件的发射通道配置作为所述第一发射通道配置;
或者,若确定所述第一组发射通道配置中,不存在所述满足条件的发射通道配置,则按照预设顺序,从所述N组发射通道配置中确定出所述满足条件的发射通道配置,并将所述满足条件的发射通道配置作为所述第一发射通道配置;
其中,所述满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括所述天线端口传输配置。
示例性地,当该装置500实现本申请实施例中网络设备的功能时:
通信单元,用于向终端设备发送第一信息,所述第一信息用于指示上行载波所使用的天线端口配置;
处理单元,用于根据所述天线端口配置,确定所述终端设备中L个发射通道的状态;L为大于0的整数。
示例性地,当该装置500实现本申请实施例中终端设备的功能时:
通信单元,用于接收来自网络设备的第三信息;所述第三信息用于指示至少一个载波中每个载波对应的发射通道的状态;
处理单元,用于根据所述至少一个载波中每个载波对应的发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道。
示例性地,当该装置500实现本申请实施例中网络设备的功能时:
通信单元,用于向终端设备发送第三信息;所述第三信息用于指示所述终端设备中L个发射通道的状态;或者,所述第三信息用于指示至少一个载波中每个载波对应的发射通 道的状态;
处理单元,用于在所述至少一个载波上接收信息。
示例性地,当该装置500实现本申请实施例中终端设备的功能时:
通信单元,用于接收来自网络设备的第三信息;所述第三信息用于指示所述终端设备中L个发射通道的状态;L为大于0的整数;
处理单元,用于根据所述L个发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道。
示例性地,当该装置500实现本申请实施例中终端设备的功能时:
处理单元,用于通过通信单元接收来自所述网络设备的第一功率信息,所述第一功率信息用于指示至少一个载波的发送功率为第一发送功率;
所述处理单元,用于通过通信单元使用所述第一发送功率在所述至少一个载波上进行信息传输。
如图6所示,为本申请实施例提供的一种通信结构示意图,图6所示的装置可以为图5所示的装置的一种硬件电路的实现方式。该通信装置可适用于执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图6仅示出了该通信装置的主要部件。
图6所示的装置600包括至少一个处理器620,通信接口610以及存储器630。处理器620用于执行存储器630中存储的指令或程序。存储器630中存储的指令或程序被执行时,该处理器620用于执行上述实施例中处理单元501执行的操作,通信接口610用于执行上述实施例中通信单元502执行的操作。
存储器630,用于存储程序指令和/或数据。存储器630和处理器620耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器620可能和存储器630协同操作。处理器620可能执行存储器630中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理电路(digital signal processor,DSP)、专用集成芯片(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM, EEPROM)或闪存。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
装置600还可以包括通信接口610,用于通过传输介质和其它设备进行通信,从而用于装置600中的装置可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
装置600还可以包括通信线路640。其中,通信接口610、处理器620以及存储器630可以通过通信线路640相互连接;通信线路640可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路640可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (31)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第一信息,所述第一信息用于指示上行载波所使用的天线端口配置;
    所述终端设备根据所述天线端口配置,确定所述终端设备中L个发射通道的状态;L为大于0的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述天线端口配置,确定所述终端设备中L个发射通道的状态,包括:
    所述终端设备确定至少一个上行载波,所述至少一个上行载波用于传输信息或者所述至少一个上行载波为所述终端设备被调度使用的上行载波;
    所述终端设备根据所述至少一个上行载波以及所述天线端口配置,确定天线端口传输配置;所述天线端口传输配置用于指示所述至少一个上行载波所对应的天线端口;
    所述终端设备根据所述天线端口传输配置确定所述L个发射通道的状态。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    如果所述第一发射通道配置和第二发射通道配置不同,则确定进行发射通道配置切换;或,如果所述第一发射通道配置和第二发射通道配置不同,则确定不进行发射通道配置切换;
    其中,所述第二发射通道配置为所述终端设备接收所述第一信息时或之前的L个发射通道的状态;所述第一发射通道配置是根据所述天线端口配置确定的L个发射通道的状态。
  4. 根据权利要求2所述的方法,其特征在于,所述天线端口传输配置对应一个或多个发射通道配置;
    所述终端设备根据所述天线端口传输配置确定所述L个发射通道的状态,包括:
    若所述天线端口传输配置只对应一个发射通道配置,则将所述天线端口传输配置对应的发射通道配置确定为所述第一发射通道配置;
    或者,若所述天线端口传输配置对应多个发射通道配置,且所述多个发射通道配置中包含所述第二发射通道配置,则所述终端设备将所述第二发射通道配置确定为所述第一发射通道配置;
    或者,若所述天线端口传输配置对应多个发射通道配置,并且所述多个发射通道配置中不包含所述第二发射通道配置,则所述终端设备从所述天线端口传输配置对应的多个发射通道配置中,选择一个发射通道配置作为所述第一发射通道配置;
    其中,所述第二发射通道配置为所述终端设备接收所述第一信息时或之前的发射通道配置。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备从所述天线端口传输配置对应的多个发射通道配置中,选择一个发射通道配置作为所述第一发射通道配置,包括:
    所述终端设备按照预设顺序,从至少一个发射通道配置中确定出所述满足条件的发射通道配置,并将所述满足条件的发射通道配置作为所述第一发射通道配置;所述至少一个发射通道配置为根据所述终端设备的L个发射通道确定的;
    其中,所述满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括所述天线端口传输配置。
  6. 根据权利要求2或4所述的方法,其特征在于,所述第二发射通道配置位于所述N组发射通道配置中的第一组发射通道配置中,所述第一组发射通道配置包括至少一个发射通道配置;
    所述终端设备从所述天线端口传输配置对应的多个发射通道配置中,选择一个发射通道配置作为所述第一发射通道配置,包括:
    所述终端设备若确定所述第一组发射通道配置中,存在满足条件的发射通道配置,则将所述满足条件的发射通道配置作为所述第一发射通道配置;
    或者,所述终端设备若确定所述第一组发射通道配置中,不存在所述满足条件的发射通道配置,则按照预设顺序,从所述N组发射通道配置中确定出所述满足条件的发射通道配置,并将所述满足条件的发射通道配置作为所述第一发射通道配置;
    其中,所述满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括所述天线端口传输配置。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述方法还包括:
    终端设备接收来自网络设备的第三信息;所述第三信息用于指示所述终端设备中L个发射通道的状态;L为大于0的整数;或者,所述第三信息用于指示所述终端设备中至少一个载波中每个载波对应的发射通道的状态;
    或者,所述终端设备向所述网络设备发送第五信息,所述第五信息用于指示所述终端设备中L个发射通道的状态;L为大于0的整数;或者,所述第五信息用于指示所述终端设备中至少一个载波中每个载波对应的发射通道的状态;
    或者,所述终端设备将L个发射通道的状态设置为预配置的状态。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第一功率信息,所述第一功率信息用于指示至少一个载波的发送功率为第一发送功率;
    所述终端设备使用所述第一发送功率在所述至少一个载波上进行信息传输。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备使用所述第一发送功率在所述至少一个载波上进行信息传输,包括:
    所述终端设备使用K个发射通道在一个天线端口上使用所述第一发送功率在所述至少一个载波上进行信息传输;或者,
    针对所述至少一个载波中的第i个载波,所述终端设备使用K个发射通道在一个天线端口上使用所述第一发送功率在所述第i个载波上进行信息传输;其中,i是正整数。
  10. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送第一信息,所述第一信息用于指示上行载波所使用的天线端口配置;
    所述网络设备根据所述天线端口配置,确定所述终端设备中L个发射通道的状态;L为大于0的整数。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    网络设备向终端设备发送第一功率信息,所述第一功率信息用于指示至少一个载波的发送功率为第一发送功率。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第二功率信息,所述第二功率信息用于指示终 端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率;所述第二功率信息用于指示终端设备支持在一个载波上使用第一发送功率或者第二发送功率进行信息发送。
  13. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第三信息;所述第三信息用于指示至少一个载波中每个载波对应的发射通道的状态;
    所述终端设备根据所述至少一个载波中每个载波对应的发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    如果所述第一发射通道配置和第二发射通道配置不同,则确定进行发射通道配置切换;或,如果所述第一发射通道配置和第二发射通道配置不同,则确定不进行发射通道配置切换;
    其中,所述第二发射通道配置为所述终端设备接收所述第一信息时或之前的至少一个载波中每个载波对应的发射通道的状态;所述第一发射通道配置是根据所述天线端口配置确定的至少一个载波中每个载波对应的发射通道的状态。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备发送第二功率信息,所述第二功率信息用于指示终端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率;或者,
    所述终端设备向网络设备发送第二功率信息,所述第二功率信息用于指示终端设备支持在一个载波上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率。
  16. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送第三信息;所述第三信息用于指示所述终端设备中L个发射通道的状态;或者,所述第三信息用于指示至少一个载波中每个载波对应的发射通道的状态;
    所述网络设备在所述至少一个载波上接收信息。
  17. 根据权利要求16所述的方法,其特征在于,还包括:
    网络设备向终端设备发送第一功率信息,所述第一功率信息用于指示至少一个载波的发送功率为第一发送功率。
  18. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第三信息;所述第三信息用于指示所述终端设备中L个发射通道的状态;L为大于0的整数;
    所述终端设备根据所述L个发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道。
  19. 一种通信方法,其特征在于,所述方法包括:
    所述终端设备接收来自所述网络设备的第一功率信息,所述第一功率信息用于指示至少一个载波的发送功率为第一发送功率;
    所述终端设备使用所述第一发送功率在所述至少一个载波上进行信息传输。
  20. 一种通信方法,其特征在于,所述方法包括:
    终端设备向网络设备发送第二功率信息,所述第二功率信息用于指示终端设备支持在一个天线端口上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率;或者,
    终端设备向网络设备发送第二功率信息,所述第二功率信息用于指示终端设备支持在一个载波上使用第一发送功率或者第二发送功率进行信息发送;其中第一发送功率大于第二发送功率。
  21. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的第一信息,所述第一信息用于指示上行载波所使用的天线端口配置;
    处理单元,用于根据所述天线端口配置,确定所述终端设备中L个发射通道的状态;L为大于0的整数。
  22. 根据权利要求21所述的装置,其特征在于,所述处理单元具体用于:
    确定至少一个上行载波,所述至少一个上行载波用于传输信息或者所述至少一个上行载波为所述终端设备被调度使用的上行载波;
    根据所述至少一个上行载波以及所述天线端口配置,确定天线端口传输配置;所述天线端口传输配置用于指示所述至少一个上行载波所对应的天线端口;
    根据所述天线端口传输配置确定所述L个发射通道的状态。
  23. 根据权利要求21或22所述的装置,其特征在于,所述处理单元还体用于:
    如果所述第一发射通道配置和第二发射通道配置不同,则确定进行发射通道配置切换;或,如果所述第一发射通道配置和第二发射通道配置不同,则确定不进行发射通道配置切换;
    其中,所述第二发射通道配置为所述终端设备接收所述第一信息时或之前的L个发射通道的状态;所述第一发射通道配置是根据所述天线端口配置确定的L个发射通道的状态。
  24. 根据权利要求22所述的装置,其特征在于,所述天线端口传输配置对应一个或多个发射通道配置;
    所述处理单元具体用于:
    若所述天线端口传输配置只对应一个发射通道配置,则将所述天线端口传输配置对应的发射通道配置确定为所述第一发射通道配置;
    或者,若所述天线端口传输配置对应多个发射通道配置,且所述多个发射通道配置中包含所述第二发射通道配置,则所述终端设备将所述第二发射通道配置确定为所述第一发射通道配置;
    或者,若所述天线端口传输配置对应多个发射通道配置,并且所述多个发射通道配置中不包含所述第二发射通道配置,则所述终端设备从所述天线端口传输配置对应的多个发射通道配置中,选择一个发射通道配置作为所述第一发射通道配置;
    其中,所述第二发射通道配置为所述终端设备接收所述第一信息时或之前的发射通道配置。
  25. 根据权利要求24所述的装置,其特征在于,所述处理单元具体用于:
    按照预设顺序,从至少一个发射通道配置中确定出所述满足条件的发射通道配置,并将所述满足条件的发射通道配置作为所述第一发射通道配置;所述至少一个发射通道配置为根据所述终端设备的L个发射通道确定的;
    其中,所述满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括所述天线端口传输配置。
  26. 根据权利要求22或24所述的装置,其特征在于,所述第二发射通道配置位于所述N组发射通道配置中的第一组发射通道配置中,所述第一组发射通道配置包括至少一个发射通道配置;
    所述处理单元具体用于:
    若确定所述第一组发射通道配置中,存在满足条件的发射通道配置,则将所述满足条件的发射通道配置作为所述第一发射通道配置;
    或者,若确定所述第一组发射通道配置中,不存在所述满足条件的发射通道配置,则按照预设顺序,从所述N组发射通道配置中确定出所述满足条件的发射通道配置,并将所述满足条件的发射通道配置作为所述第一发射通道配置;
    其中,所述满足条件的发射通道配置是指发射通道配置对应的一个或多个天线端口配置中包括所述天线端口传输配置。
  27. 一种通信装置,其特征在于,包括:
    通信单元,用于向终端设备发送第一信息,所述第一信息用于指示上行载波所使用的天线端口配置;
    处理单元,用于根据所述天线端口配置,确定所述终端设备中L个发射通道的状态;L为大于0的整数。
  28. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的第三信息;所述第三信息用于指示至少一个载波中每个载波对应的发射通道的状态;
    处理单元,用于根据所述至少一个载波中每个载波对应的发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道。
  29. 一种通信装置,其特征在于,包括:
    通信单元,用于向终端设备发送第三信息;所述第三信息用于指示所述终端设备中L个发射通道的状态;或者,所述第三信息用于指示至少一个载波中每个载波对应的发射通道的状态;
    处理单元,用于在所述至少一个载波上接收信息。
  30. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的第三信息;所述第三信息用于指示所述终端设备中L个发射通道的状态;L为大于0的整数;
    处理单元,用于根据所述L个发射通道的状态,确定所述终端设备中用于传输信息的至少一个发射通道。
  31. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于通过通信单元接收来自所述网络设备的第一功率信息,所述第一功率信息用于指示至少一个载波的发送功率为第一发送功率;
    所述处理单元,用于通过通信单元使用所述第一发送功率在所述至少一个载波上进行信息传输。
PCT/CN2020/111535 2020-08-26 2020-08-26 一种通信方法及装置 WO2022041020A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023513320A JP2023540903A (ja) 2020-08-26 2020-08-26 通信方法及び装置
EP20950692.2A EP4195766A4 (en) 2020-08-26 2020-08-26 COMMUNICATION METHOD AND DEVICE
PCT/CN2020/111535 WO2022041020A1 (zh) 2020-08-26 2020-08-26 一种通信方法及装置
CN202080104611.4A CN116250293A (zh) 2020-08-26 2020-08-26 一种通信方法及装置
US18/173,638 US20230199667A1 (en) 2020-08-26 2023-02-23 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111535 WO2022041020A1 (zh) 2020-08-26 2020-08-26 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/173,638 Continuation US20230199667A1 (en) 2020-08-26 2023-02-23 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022041020A1 true WO2022041020A1 (zh) 2022-03-03

Family

ID=80352245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111535 WO2022041020A1 (zh) 2020-08-26 2020-08-26 一种通信方法及装置

Country Status (5)

Country Link
US (1) US20230199667A1 (zh)
EP (1) EP4195766A4 (zh)
JP (1) JP2023540903A (zh)
CN (1) CN116250293A (zh)
WO (1) WO2022041020A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193792A1 (zh) * 2022-04-08 2023-10-12 华为技术有限公司 上行传输的方法和通信装置
WO2023193758A1 (zh) * 2022-04-08 2023-10-12 华为技术有限公司 一种通信方法和通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050390A (zh) * 2018-10-12 2020-04-21 电信科学技术研究院有限公司 一种上行功率控制方法、终端设备及网络设备
CN111200853A (zh) * 2018-11-19 2020-05-26 华为技术有限公司 一种上行链路切换的方法、通信装置和通信系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050390A (zh) * 2018-10-12 2020-04-21 电信科学技术研究院有限公司 一种上行功率控制方法、终端设备及网络设备
CN111200853A (zh) * 2018-11-19 2020-05-26 华为技术有限公司 一种上行链路切换的方法、通信装置和通信系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on the remaining issues of supporting Tx switching between two uplink carriers", 3GPP DRAFT; R1-2002661, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online Meeting ;20200420 - 20200430, 11 April 2020 (2020-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875743 *
ZTE: "Maintenance of full power UL transmission", 3GPP DRAFT; R1-2001598, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online Meeting ;20200420 - 20200430, 11 April 2020 (2020-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875189 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193792A1 (zh) * 2022-04-08 2023-10-12 华为技术有限公司 上行传输的方法和通信装置
WO2023193758A1 (zh) * 2022-04-08 2023-10-12 华为技术有限公司 一种通信方法和通信装置

Also Published As

Publication number Publication date
JP2023540903A (ja) 2023-09-27
EP4195766A4 (en) 2023-10-04
EP4195766A1 (en) 2023-06-14
CN116250293A (zh) 2023-06-09
US20230199667A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
WO2023092468A1 (zh) 一种智能中继服务链路的波束指示方法及其装置
CN110572877B (zh) 一种信息发送、接收的方法及装置
KR20220062589A (ko) 데이터 송신 방법 및 장치
TW202013924A (zh) 無線通訊方法、終端設備發射上行信號的方法及設備
US20230199667A1 (en) Communication method and apparatus
WO2022082386A1 (zh) 一种无线通信的方法与装置
US20230188197A1 (en) Data Transmission Method and Communication Apparatus
US20230199586A1 (en) Cell State Switching Method and Apparatus
US20230079322A1 (en) Communication method and apparatus
WO2022188115A1 (zh) 一种最大传输层数的调整的方法及其装置
TWI771502B (zh) 計算通道品質指示cqi的方法、終端設備和網路設備
WO2023050234A1 (zh) 一种探测参考信号srs资源的调整方法及其装置
WO2022082775A1 (zh) 一种信道状态信息上报方法及装置
WO2021022498A1 (zh) 一种信息处理方法、网络设备、用户设备
WO2022214032A1 (zh) 一种信息发送、接收的方法和通信装置
WO2022077394A1 (zh) 一种通信方法及装置
WO2023039837A1 (zh) 终端多输入多输出mimo传输层数的调整方法及装置
WO2023050235A1 (zh) 一种探测参考信号srs的发送方法及其装置
WO2021159447A1 (zh) 跟踪参考信号的方法和装置
WO2024073894A1 (zh) 上行天线切换的准备时间的确定方法和装置
WO2022257793A1 (zh) 一种信息上报的方法与装置
CN115250463B (zh) 终端能力上报方法、用户终端和通信系统
WO2023035225A1 (zh) 能力信息的上报方法、接收方法、装置、设备及存储介质
WO2023011529A1 (zh) 一种波束生效时间确定方法、装置、终端和网络设备
WO2024077620A1 (zh) 物理下行共享信道pdsch传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023513320

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020950692

Country of ref document: EP

Effective date: 20230308

NENP Non-entry into the national phase

Ref country code: DE