WO2022257793A1 - 一种信息上报的方法与装置 - Google Patents

一种信息上报的方法与装置 Download PDF

Info

Publication number
WO2022257793A1
WO2022257793A1 PCT/CN2022/095809 CN2022095809W WO2022257793A1 WO 2022257793 A1 WO2022257793 A1 WO 2022257793A1 CN 2022095809 W CN2022095809 W CN 2022095809W WO 2022257793 A1 WO2022257793 A1 WO 2022257793A1
Authority
WO
WIPO (PCT)
Prior art keywords
maximum number
carriers
carrier
cell
terminal device
Prior art date
Application number
PCT/CN2022/095809
Other languages
English (en)
French (fr)
Inventor
王�锋
张旭
曲秉玉
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022257793A1 publication Critical patent/WO2022257793A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and more specifically, to a method and device for reporting information in the field of communications.
  • the user equipment (User equipment, UE) supports providing overheating auxiliary information, and is configured by the network device to notify the network device through auxiliary information after detecting internal overheating, then the UE can detect internal overheating or detect abnormal When experiencing an overheating state, report overheating auxiliary information to the network device.
  • UE User equipment
  • the UE can achieve the effect of improving the utilization rate of the radio frequency link by switching the radio frequency link between carriers.
  • UE overheating there is an improved strategy to further reduce UE energy consumption or reduce overheating during the handover process; at the same time, when there are multiple carriers in a cell, and at least two of the multiple carriers
  • MIMO Multiple-Input Multiple-Output
  • the maximum number of MIMO layers configured through the existing protocol and the maximum number of MIMO layers reported when the UE is overheated will not Be applicable. Therefore, there is a need for a method and device for reporting information, so as to alleviate the above problems.
  • the present application provides a method and an apparatus for reporting information, so that a network device obtains information on relatively energy-saving terminal equipment, and then configures relatively energy-saving parameters for the terminal equipment.
  • a method for reporting information includes: receiving first information sent by a network device, where the first information is used to indicate that a terminal device detects an overheating state, and report second information; in the When the terminal device is in the overheating state or ends the overheating state, it sends the second information to the network device, and the second information includes at least one of the following information: the first number of switching carriers, the first maximum simultaneous transmission The number of carriers, the transmission mode, the first switching time, the maximum number of antenna ports of the first carrier, the maximum number of radio frequency links of the first carrier, or the first maximum number of multiple-input multiple-output MIMO layers, wherein the first number of switching carriers is greater than or equal to the first maximum number of carriers that transmit simultaneously.
  • the network device can obtain information that the terminal device can save energy, and then configure more energy-saving parameters for the terminal device.
  • the first switching number of carriers is smaller than the second switching number of carriers, where the second switching number of carriers is The number of switched carriers before sending the second information to the network device.
  • the number of switching carriers is determined according to the first set of carriers.
  • the first set of carriers is a set of carriers configured by the network device for the terminal device to perform radio frequency link switching.
  • the first The number of carriers in the carrier set is the number of carriers of the terminal device that can perform radio frequency link switching.
  • the terminal device may report the preference (Preference), the maximum number of switchable carriers of the reduced configuration (Reduced configuration) (for example, the first number of switchable carriers). That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device adjusts the number of carriers in the first carrier set so that the number of carriers in the first carrier set is less than or equal to the first number of switching carriers .
  • the first switching carrier number is smaller than the second switching carrier number
  • the second switching carrier number is the switching carrier number before the terminal device reports the second information.
  • the maximum number of switchable carriers expected by the terminal device is smaller than the second number of switchable carriers.
  • the terminal device reports the information that it can dynamically switch on fewer carriers, so that the network device can configure parameters for the terminal device based on the above information, so that the terminal device can turn off part of the hardware, reduce energy consumption, and reduce heat generation.
  • the first maximum number of carriers for simultaneous transmission is smaller than the second maximum number of carriers for simultaneous transmission, where , the second maximum number of simultaneous transmission carriers is configured by the network device.
  • the maximum number of carriers that transmit simultaneously is the maximum number of carriers that can simultaneously transmit when the network device schedules or configures the terminal device. Therefore, the terminal device may report a preference (Preference), a reduced configuration (Reduced configuration) of the maximum number of carriers for simultaneous transmission (for example, the first maximum number of carriers for simultaneous transmission). That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device can adjust the maximum number of carriers for simultaneous transmission so that the maximum number of carriers for simultaneous transmission is less than or equal to the first maximum number of simultaneous transmissions. The number of carriers transmitted.
  • Preference Preference
  • Reduced configuration reduced configuration
  • the first maximum number of carriers for simultaneous transmission is smaller than the second maximum number of carriers for simultaneous transmission, where the second maximum number of carriers for simultaneous transmission is the network device before reporting the second information.
  • the maximum number of simultaneous transmission carriers configured by the terminal device In other words, the maximum number of carriers for simultaneous transmission expected by the terminal device (the first maximum number of simultaneous transmission carriers) is smaller than the maximum number of simultaneous transmission carriers configured by the network device for the terminal device (the second maximum number of simultaneous transmission carriers ).
  • the terminal device reports information that can be transmitted simultaneously on fewer carriers, so that the network device can then configure parameters for the terminal device based on the above information, so that the terminal device can turn off part of the hardware, reduce energy consumption, and reduce heat generation.
  • the transmission manner is a manner of performing transmission on at most one carrier.
  • the transmission manner of the terminal device may be a manner of performing transmission on at most one carrier, or a manner of simultaneously performing transmission on multiple carriers.
  • the terminal device can report the transmission mode of preference (Preference) and reduced configuration (Reduced configuration) (for example, the mode of transmission on at most 1 carrier). That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device will adjust the transmission mode of the terminal device so that the transmission mode of the terminal device is a transmission mode on at most one carrier or can The method of transmitting on multiple carriers at the same time.
  • Preference Preference
  • Reduced configuration for example, the mode of transmission on at most 1 carrier
  • the transmission method reported by the terminal device is the transmission method on at most one carrier. Wherein, by performing transmission on at most one carrier, compared with simultaneous transmission on two or more carriers, the energy consumption of the system can be effectively reduced.
  • the terminal device reports the information of the transmission mode with lower power consumption, so that the network device can configure parameters for the terminal device according to the above information, so that the terminal device can reduce energy consumption and heat generation.
  • the first switching time is longer than the second switching time
  • the second switching time is the time configured by the network device switching time
  • the terminal device when the terminal device is in an overheated state, the terminal device can reduce the energy consumption by reporting the preference (Preference) and reducing the first switching time (that is, the switching time) of the carrier of the reduced configuration (Reduced configuration) the goal of. That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device adjusts the switching time so that the switching time is greater than or equal to the first switching time.
  • Preference preference
  • the first switching time that is, the switching time of the carrier of the reduced configuration (Reduced configuration) the goal of. That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device adjusts the switching time so that the switching time is greater than or equal to the first switching time.
  • the terminal device when the terminal device is in an overheated state, can report the preference, or the preferred first switching time, the first switching time is greater than the second switching time, and the second switching time is the network device Configured switching time.
  • the switching time may be at least one of ⁇ 35us, 140us, 210us ⁇ .
  • the second switching time configured by the network device to the terminal device is 35us.
  • the terminal device may report the first switching time as 140us or 210us. That is to say, when the terminal device is in an overheated state, the terminal device hopes that the network device adjusts the switching time of the terminal device (ie, the second switching time) so that the switching time is the first switching time.
  • the terminal device when reporting the capability, may report multiple switching times for the same frequency band set, and the network device may select at least one switching time from the multiple switching times to configure for the terminal device.
  • the terminal device can report a switching time with lower power consumption to the network device among the above multiple switching times, so as to reduce the energy consumption of the terminal device and reduce heat generation Effect.
  • the terminal device reports the information of a relatively long switching time, so that the network device can configure the carrier switching parameters for the terminal device based on the above information, so that the terminal device can turn off part of the hardware, reduce energy consumption, and reduce heat generation.
  • the maximum number of antenna ports of the first carrier is used to indicate the maximum number of antenna ports of each cell of the terminal device in the first frequency range, where, in the When the maximum number of antenna ports of the first carrier is 1, the maximum number of antenna ports of the first carrier corresponds to the maximum number of antenna ports of all carriers in each cell in the first frequency range; or in the maximum number of antenna ports of the first carrier
  • the number of numbers is N, and in the case where the maximum number of carriers of the tth cell in the first frequency range is L, the maximum number of antenna ports of the first L first carriers among the maximum number of antenna ports of the N first carriers Indicates the maximum number of antenna ports of the L carriers of the t-th cell in the first frequency range, where N is the number of carriers of the cell with the largest number of carriers in the first frequency range, L is less than or equal to N, and both t and L are A positive integer, N is a positive integer greater than 1.
  • the maximum number of antenna ports of a carrier is used to indicate the maximum number of antenna ports of a carrier of each cell of the terminal device in the first frequency range.
  • the terminal device may report the preference (Preference), the maximum number of antenna ports of the reduced configuration (Reduced configuration) carrier (for example, the maximum number of antenna ports of the first carrier). That is to say, when the terminal equipment is in the overheating state, or ends the overheating state, the terminal equipment can accurately report or correct the maximum number of antenna ports of each carrier of each carrier in each frequency range, and hope that the network equipment can pass
  • the maximum number of antenna ports of the carrier is adjusted so that the maximum number of antenna ports of the carrier is less than or equal to the maximum number of antenna ports of the first carrier. Therefore, the network device can then configure parameters for the terminal device according to the information, and adjust the maximum number of antenna ports of the carrier of the cell of the terminal device. Therefore, the terminal device can turn off part of the hardware to reduce energy consumption and heat generation.
  • the maximum number of antenna ports of the first carrier is smaller than the maximum number of antenna ports of the second carrier, and the maximum number of antenna ports of the second carrier is the maximum number of antenna ports of the carrier before the terminal device reports the second information.
  • the maximum number of antenna ports of the carrier expected by the terminal device is smaller than the maximum number of antenna ports of the second carrier.
  • the maximum number of antenna ports of the first carrier when the maximum number of antenna ports of the first carrier is 1, the maximum number of antenna ports of the first carrier corresponds to the maximum number of antenna ports of all carriers in each cell in the first frequency range.
  • the maximum number of N first carriers is The maximum number of antenna ports of the first L first carriers in the number of antenna ports indicates the maximum number of antenna ports of the L carriers of the t-th cell in the first frequency range, where N is the number of the cell with the largest number of carriers in the first frequency range.
  • the number of carriers, L is less than or equal to N, both t and L are positive integers, and N is a positive integer greater than 1.
  • the maximum number of antenna ports of the first L first carriers among the maximum number of antenna ports of the N first carriers indicates the tth cell in the first frequency range sorted according to the size of the carrier identifier and/or the frequency of the carrier The maximum number of antenna ports for the L carriers.
  • the terminal device reports the information of the maximum number of antenna ports of the carrier of the cell, so that the network device can configure the parameters of the carrier for the terminal device based on this information, reducing the maximum number of antenna ports of the carrier of the cell of the terminal device, thereby Terminal equipment can turn off part of the hardware to reduce energy consumption and heat generation.
  • the value of the maximum number of antenna ports of the L+1 to Nth first carriers can be a predefined fixed value, or can be a set value between the terminal equipment and the network.
  • the fixed value negotiated by the device may be, for example, 1 or 2, or the first maximum number of antenna ports of the first carrier among the maximum number of antenna ports of the N first carriers, which is not limited in this application.
  • the first maximum number of radio frequency links of the carrier is used to indicate the maximum number of carrier radio frequency links of each cell of the terminal device in the second frequency range, where, In the case where the maximum number of radio frequency links of the first carrier is 1, the maximum number of radio frequency links of the first carrier corresponds to the maximum number of radio frequency links of all carriers in each cell in the second frequency range; or in the second frequency range In the case where the maximum number of radio frequency links of a carrier is P, and the number of all carriers of the i-th cell in the second frequency range is Q, the first Q-th of the maximum number of radio frequency links of the P first carriers
  • the maximum number of radio frequency links of a carrier indicates the maximum number of radio frequency links of Q carriers in the i-th cell in the second frequency range, where P is the number of carriers in the cell with the largest number of carriers in the second frequency range, and Q is less than or Equal to P, i and Q are both positive integers, and P is a positive integer greater than 1.
  • the maximum number of radio frequency links of the carrier is used to indicate the maximum number of radio frequency links of each cell of the terminal device in the second frequency range.
  • the terminal device may report the preference (Preference), the maximum number of radio frequency links of the reduced configuration (Reduced configuration) carrier (for example, the maximum number of radio frequency links of the first carrier). That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device can accurately report or correct the maximum number of radio frequency links of each carrier of each carrier in each cell in each frequency range. It is hoped that the network device By adjusting the maximum number of radio frequency links of the carrier, the maximum number of radio frequency links of the carrier is less than or equal to the maximum number of radio frequency links of the first carrier. In this way, the terminal equipment turns off some devices, thereby reducing the energy consumption of the terminal equipment and reducing heat generation.
  • the maximum number of radio frequency links of the first carrier is less than the maximum number of radio frequency links of the second carrier
  • the maximum number of radio frequency links of the second carrier is the maximum number of radio frequency links of the carrier before the terminal device reports the second information number.
  • the maximum number of radio frequency links of the carrier expected by the terminal device is smaller than the maximum number of radio frequency links of the second carrier.
  • the maximum number of radio frequency links of the first carrier corresponds to the maximum number of radio frequency links of all carriers in each cell in the second frequency range number.
  • the P first carriers when the maximum number of radio frequency links of the first carrier is P, and the maximum number of carriers of the i-th cell in the second frequency range is Q, the P first carriers The maximum number of radio frequency links of the first Q first carriers in the maximum number of radio frequency links indicates the maximum number of radio frequency links of the Q carriers of the i-th cell in the second frequency range, where P is the number of carriers in the first frequency range The number of carriers in the largest cell, Q is less than or equal to P, i and Q are both positive integers, and P is an integer greater than 1.
  • the maximum number of radio frequency links of the first Q first carriers among the maximum number of radio frequency links of the P first carriers means that the i-th frequency range in the second frequency range is sorted according to the size of the carrier identifier and/or the frequency of the carrier.
  • the maximum number of RF links of Q carriers in a cell means that the i-th frequency range in the second frequency range is sorted according to the size of the carrier identifier and/or the frequency of the carrier.
  • the terminal device reports the information of the maximum number of radio frequency links of the carrier of the cell, so that the network device can configure the parameters of the carrier for the terminal device based on this information, which reduces the maximum number of radio frequency links of the carrier of the terminal device. , so that the terminal device can turn off part of the hardware to reduce energy consumption and heat generation.
  • the value of the maximum number of radio frequency links of the Q+1th to Pth first carriers can be a predefined fixed value, or can be a
  • the fixed value negotiated by the network device may be, for example, 1 or 2, or the first maximum number of radio frequency links of the first carrier among the maximum number of radio frequency links of the P first carriers, which is not limited in this application.
  • the first maximum number of MIMO layers is used to indicate the maximum number of MIMO layers of the carrier of each cell in the third frequency range for the terminal device, where, in the When the number of the first maximum number of MIMO layers is 1, the first maximum number of MIMO layers corresponds to the maximum number of MIMO layers of all carriers in each cell in the third frequency range; or in the first maximum number of MIMO layers
  • the first Y first maximum MIMO layers among the W first maximum MIMO layers indicate the third frequency range
  • the maximum number of MIMO layers of Y carriers in the x-th cell where W is the number of carriers in the cell with the largest number of carriers in the third frequency range, Y is less than or equal to W, x and Y are both positive integers, and W is A positive integer greater than 1.
  • the maximum number of MIMO layers is used to indicate to the terminal device the maximum number of MIMO layers of carriers of each cell in the third frequency range.
  • the terminal device may report the preference (Preference), the maximum number of MIMO layers of the carrier of the reduced configuration (Reduced configuration) (for example, the first maximum number of MIMO layers). That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device adjusts the maximum number of MIMO layers of the carrier of the terminal device so that the maximum number of MIMO layers of the carrier is less than or equal to the first maximum MIMO layer number, so that the maximum number of MIMO layers of each carrier of each cell in each frequency range can be accurately reported or corrected.
  • the first maximum number of MIMO layers is smaller than the second maximum number of MIMO layers
  • the second maximum number of MIMO layers is the maximum number of MIMO layers of the carrier before the terminal device reports the second information.
  • the maximum number of MIMO layers of the carrier expected by the terminal device is smaller than the second maximum number of MIMO layers.
  • the first maximum number of MIMO layers corresponds to the maximum number of MIMO layers of all carriers in each cell in the third frequency range.
  • the W first maximum MIMO layers when the number of the first maximum MIMO layers is W, and the maximum number of carriers of the xth cell in the third frequency range is Y, the W first maximum MIMO layers
  • the first Y first maximum MIMO layers in the numbers indicate the maximum number of MIMO layers of the Y carriers of the xth cell in the third frequency range, where W is the number of carriers in the cell with the largest number of carriers in the third frequency range, Y is less than or equal to W, x and Y are both positive integers, and W is a positive integer greater than 1.
  • the first Y first maximum MIMO layer numbers among the W first maximum MIMO layer numbers represent the Y of the xth cell in the third frequency range sorted according to the size of the carrier identifier and/or the frequency of the carrier The maximum number of MIMO layers for a carrier.
  • the terminal device reports the information of the maximum number of MIMO layers of the carrier in each frequency range, so as to support the multi-carrier scenario in a cell
  • the maximum carrier overheat is reported, so that the network device can configure carrier switching parameters for the terminal device based on this information, which is beneficial for the terminal device to turn off some devices involved in these carriers, which is conducive to energy saving and heat generation.
  • the value of the Y+1th to Wth first maximum MIMO layers can be a predefined fixed value, or it can be the The negotiated fixed value may be, for example, 1 or 2, or may be the first first maximum MIMO layer number among the W first maximum MIMO layer numbers, which is not limited in this application.
  • third indication information sent by the network device is received, where the third indication information is used to configure the terminal device.
  • the third information is generated by the network device according to the second information, and is used to indicate that the terminal device can perform parameter configuration through the parameter information reported in the second information.
  • the network device generates third information, the third information is used to configure the terminal device, and the parameter information about the carrier of the terminal device in the third indication information is the same as the parameter information in the second information irrelevant.
  • a method for receiving information includes: sending first information to a terminal device, where the first information is used to indicate that the terminal device reports second information when it detects an overheating state; When the terminal device is in the overheating state, or ends the overheating state, it receives the second information sent by the terminal device, and the second information includes at least one of the following information: the first number of switching carriers, the first maximum simultaneous transmission The number of carriers, the transmission mode, the first switching time, the maximum number of antenna ports of the first carrier, the maximum number of radio frequency links of the first carrier, or the first maximum number of multiple-input multiple-output MIMO layers, wherein the first switching carrier number is greater than Or equal to the first maximum number of carriers for simultaneous transmission.
  • the first switching number of carriers is smaller than the second switching number of carriers, where the second switching number of carriers is The number of switched carriers before the terminal device sends the second information to the network device.
  • the first maximum number of carriers for simultaneous transmission is smaller than the second maximum number of carriers for simultaneous transmission, where , the second maximum number of simultaneous transmission carriers is configured by the network device.
  • the transmission manner is a manner of performing transmission on at most one carrier.
  • the first switching time is longer than the second switching time
  • the second switching time is the time configured by the network device switching time
  • the maximum number of antenna ports of the first carrier is used to indicate the maximum number of antenna ports of the terminal device per cell in the first frequency range, where, in the When the maximum number of antenna ports of the first carrier is 1, the maximum number of antenna ports of the first carrier corresponds to the maximum number of antenna ports of all carriers in each cell in the first frequency range; or in the maximum number of antenna ports of the first carrier
  • the number of numbers is N, and in the case where the maximum number of carriers of the tth cell in the first frequency range is L, the maximum number of antenna ports of the first L first carriers among the maximum number of antenna ports of the N first carriers Indicates the maximum number of antenna ports of the L carriers of the t-th cell in the first frequency range, where N is the number of carriers of the cell with the largest number of carriers in the first frequency range, L is less than or equal to N, and both t and L are A positive integer, N is a positive integer greater than 1.
  • the first maximum number of radio frequency links of the carrier is used to indicate the maximum number of carrier radio frequency links of the terminal device in each cell in the second frequency range, where, In the case where the maximum number of radio frequency links of the first carrier is 1, the maximum number of radio frequency links of the first carrier corresponds to the maximum number of radio frequency links of all carriers in each cell in the second frequency range; or in the second frequency range In the case where the maximum number of radio frequency links of a carrier is P, and the number of all carriers of the i-th cell in the second frequency range is Q, the first Q-th of the maximum number of radio frequency links of the P first carriers
  • the maximum number of radio frequency links of a carrier indicates the maximum number of radio frequency links of Q carriers in the i-th cell in the second frequency range, where P is the number of carriers in the cell with the largest number of carriers in the second frequency range, and Q is less than or Equal to P, i and Q are both positive integers, and P is a positive integer greater than 1.
  • the first maximum number of MIMO layers is used to indicate the maximum number of MIMO layers of the carrier of each cell in the third frequency range for the terminal device, where, in the When the number of the first maximum number of MIMO layers is 1, the first maximum number of MIMO layers corresponds to the maximum number of MIMO layers of all carriers in each cell in the third frequency range; or in the first maximum number of MIMO layers
  • the first Y first maximum MIMO layers among the W first maximum MIMO layers indicate the third frequency range
  • the maximum number of MIMO layers of Y carriers in the x-th cell where W is the number of carriers in the cell with the largest number of carriers in the third frequency range, Y is less than or equal to W, x and Y are both positive integers, and W is A positive integer greater than 1.
  • the network device generates third information, where the third information is used to configure the terminal device.
  • the third information is generated by the network device according to the second information, and is used to indicate that the terminal device can perform parameter configuration through the parameter information reported in the second information.
  • the network device generates third information, the third information is used to configure the terminal device, and the parameter information about the carrier of the terminal device in the third indication information is the same as the parameter information in the second information irrelevant.
  • the network device sends the third information to the terminal device.
  • the terminal device can communicate according to the third information, thereby reducing energy consumption and heat generation.
  • an information reporting device which includes: a receiving module, configured to receive first information sent by a network device, the first information is used to indicate that the terminal device should report the first information when it detects an overheating state.
  • Two information a sending module, configured to send the second information to the network device when the terminal device is in the overheating state or ends the overheating state, and the second information includes at least one of the following information: first switching The number of carriers, the first maximum number of simultaneous transmission carriers, the transmission mode, the first switching time, the maximum number of antenna ports for the first carrier, the maximum number of radio frequency links for the first carrier, or the first maximum number of multiple-input multiple-output MIMO layers, Wherein, the first number of switching carriers is greater than or equal to the first maximum number of carriers performing simultaneous transmission.
  • the first switching number of carriers is smaller than the second switching number of carriers, where the second switching number of carriers is The number of switched carriers before sending the second information to the network device.
  • the first maximum number of carriers for simultaneous transmission is smaller than the second maximum number of carriers for simultaneous transmission, where , the second maximum number of simultaneous transmission carriers is configured by the network device.
  • the transmission manner is a manner of performing transmission on at most one carrier.
  • the first switching time is longer than the second switching time
  • the second switching time is the time configured by the network device switching time
  • the maximum number of antenna ports of the first carrier is used to indicate the maximum number of antenna ports of the terminal device per cell in the first frequency range, where, in the When the maximum number of antenna ports of the first carrier is 1, the maximum number of antenna ports of the first carrier corresponds to the maximum number of antenna ports of all carriers in each cell in the first frequency range; or in the maximum number of antenna ports of the first carrier
  • the number of numbers is N, and in the case where the maximum number of carriers of the tth cell in the first frequency range is L, the maximum number of antenna ports of the first L first carriers among the maximum number of antenna ports of the N first carriers Indicates the maximum number of antenna ports of the L carriers of the t-th cell in the first frequency range, where N is the number of carriers of the cell with the largest number of carriers in the first frequency range, L is less than or equal to N, and both t and L are A positive integer, N is a positive integer greater than 1.
  • the first maximum number of radio frequency links of the carrier is used to indicate the maximum number of carrier radio frequency links of the terminal device in each cell in the second frequency range, where, In the case where the maximum number of radio frequency links of the first carrier is 1, the maximum number of radio frequency links of the first carrier corresponds to the maximum number of radio frequency links of all carriers in each cell in the second frequency range; or in the second frequency range In the case where the maximum number of radio frequency links of a carrier is P, and the number of all carriers of the i-th cell in the second frequency range is Q, the first Q-th of the maximum number of radio frequency links of the P first carriers
  • the maximum number of radio frequency links of a carrier indicates the maximum number of radio frequency links of Q carriers in the i-th cell in the second frequency range, where P is the number of carriers in the cell with the largest number of carriers in the second frequency range, and Q is less than or Equal to P, i and Q are both positive integers, and P is a positive integer greater than 1.
  • the first maximum number of MIMO layers is used to indicate the maximum number of MIMO layers of the carrier of each cell in the third frequency range for the terminal device, where, in the When the number of the first maximum number of MIMO layers is 1, the first maximum number of MIMO layers corresponds to the maximum number of MIMO layers of all carriers in each cell in the third frequency range; or in the first maximum number of MIMO layers
  • the first Y first maximum MIMO layers among the W first maximum MIMO layers indicate the third frequency range
  • the maximum number of MIMO layers of Y carriers in the x-th cell where W is the number of carriers in the cell with the largest number of carriers in the third frequency range, Y is less than or equal to W, x and Y are both positive integers, and W is A positive integer greater than 1.
  • the receiving module is further configured to receive third indication information sent by the network device, where the third indication information is used to configure the terminal device.
  • an information receiving device which includes: a sending module, configured to send first information to a terminal device, where the first information is used to indicate that when the terminal device detects an overheating state, report the first Two information; a receiving module, configured to receive the second information sent by the terminal device when the terminal device is in the overheating state or ends the overheating state, the second information includes at least one of the following information: first The number of switching carriers, the first maximum number of simultaneous transmission carriers, the transmission method, the first switching time, the maximum number of antenna ports for the first carrier, the maximum number of radio frequency links for the first carrier, or the first maximum number of multiple-input multiple-output MIMO layers , wherein the first number of switching carriers is greater than or equal to the first maximum number of carriers performing simultaneous transmission.
  • the first switching number of carriers is smaller than the second switching number of carriers, where the second switching number of carriers is The number of switched carriers before the terminal device sends the second information to the network device.
  • the first maximum number of carriers for simultaneous transmission is smaller than the second maximum number of carriers for simultaneous transmission, where , the second maximum number of simultaneous transmission carriers is configured by the network device.
  • the transmission manner is a manner of performing transmission on at most one carrier.
  • the first switching time is greater than the second switching time
  • the second switching time is the time configured by the network device switching time
  • the maximum number of antenna ports of the first carrier is used to indicate the maximum number of antenna ports of the terminal device per cell in the first frequency range, where, in the When the maximum number of antenna ports of the first carrier is 1, the maximum number of antenna ports of the first carrier corresponds to the maximum number of antenna ports of all carriers in each cell in the first frequency range; or in the maximum number of antenna ports of the first carrier
  • the number of numbers is N, and in the case where the maximum number of carriers of the tth cell in the first frequency range is L, the maximum number of antenna ports of the first L first carriers among the maximum number of antenna ports of the N first carriers Indicates the maximum number of antenna ports of the L carriers of the t-th cell in the first frequency range, where N is the number of carriers of the cell with the largest number of carriers in the first frequency range, L is less than or equal to N, and both t and L are A positive integer, N is a positive integer greater than 1.
  • the first maximum number of radio frequency links of the carrier is used to indicate the maximum number of carrier radio frequency links of the terminal device in each cell in the second frequency range, where, In the case where the maximum number of radio frequency links of the first carrier is 1, the maximum number of radio frequency links of the first carrier corresponds to the maximum number of radio frequency links of all carriers in each cell in the second frequency range; or in the second frequency range In the case where the maximum number of radio frequency links of a carrier is P, and the number of all carriers of the i-th cell in the second frequency range is Q, the first Q-th of the maximum number of radio frequency links of the P first carriers
  • the maximum number of radio frequency links of a carrier indicates the maximum number of radio frequency links of Q carriers in the i-th cell in the second frequency range, where P is the number of carriers in the cell with the largest number of carriers in the second frequency range, and Q is less than or Equal to P, i and Q are both positive integers, and P is a positive integer greater than 1.
  • the first maximum number of MIMO layers is used to indicate the maximum number of MIMO layers of the carrier of each cell in the third frequency range for the terminal device, where, in the When the number of the first maximum number of MIMO layers is 1, the first maximum number of MIMO layers corresponds to the maximum number of MIMO layers of all carriers in each cell in the third frequency range; or in the first maximum number of MIMO layers
  • the first Y first maximum MIMO layers among the W first maximum MIMO layers indicate the third frequency range
  • the maximum number of MIMO layers of Y carriers in the x-th cell where W is the number of carriers in the cell with the largest number of carriers in the third frequency range, Y is less than or equal to W, x and Y are both positive integers, and W is A positive integer greater than 1.
  • the apparatus further includes a processing module configured to generate third information, where the third information is used to configure the terminal device.
  • the sending module is further configured to send the third information to the terminal device.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor implements the method in any possible implementation manner of the foregoing first aspect through a logic circuit or by executing code instructions.
  • a communication device including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or transmit signals from the processor Sending to other communication devices other than the communication device, the processor implements the method in any possible implementation manner of the aforementioned second aspect through a logic circuit or by executing code instructions.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed, any possible implementation manner of the foregoing first aspect is realized. Methods.
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is executed, any possible implementation manner of the foregoing second aspect is realized.
  • a computer program product including instructions is provided, and when the instructions are executed, the method in any possible implementation manner of the aforementioned first aspect is implemented.
  • a computer program product including instructions is provided, and when the instructions are executed, the method in any possible implementation manner of the aforementioned second aspect is implemented.
  • a computer program includes codes or instructions, and when the codes or instructions are executed, the method in any possible implementation manner of the aforementioned first aspect is implemented.
  • a computer program in a twelfth aspect, includes codes or instructions, and when the codes or instructions are executed, the method in any possible implementation manner of the foregoing second aspect is implemented.
  • a chip system includes a processor and may further include a memory, configured to implement the method in any possible implementation manner of the aforementioned first aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a chip system in a fourteenth aspect, includes a processor and may further include a memory, configured to implement the method in any possible implementation manner of the aforementioned second aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a communication system includes the device described in the third aspect or the fourth aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • FIG. 2 is another schematic diagram of a wireless communication system 200 applicable to the embodiment of the present application.
  • Fig. 3 is a schematic diagram of a scene applicable to the embodiment of the present application.
  • Fig. 4 is another schematic diagram of a scene applicable to the embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a method 300 for reporting information provided by an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 7 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a simplified terminal device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a simplified base station provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system, LTE frequency Frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunications system (UMTS), global mobile communication (Global System of Mobile communication, GSM) system , Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Global Internet Microwave Access ( Worldwide Interoperability for Microwave Access, WiMAX) communication system, etc.
  • 5G fifth generation
  • LTE long term evolution
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunications system
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • V2X vehicle to vehicle
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as the network device 111 shown in Figure 1, and the wireless communication system 100 may also include at least one terminal device, such as the terminal device 121 shown in Figure 1 to the terminal device 123. Both the network device and the terminal device can be configured with multiple antennas, and the network device and the terminal device can communicate using the multi-antenna technology.
  • the network device when the network device communicates with the terminal device, the network device may manage one or more cells, and there may be an integer number of terminal devices in one cell.
  • the network device 111 and the terminal device 121 to the terminal device 123 form a single-cell communication system, and the cell is denoted as cell #1 without loss of generality.
  • the network device 111 may be a network device in cell #1, or in other words, the network device 111 may serve a terminal device (such as the terminal device 121) in cell #1.
  • a cell may be understood as an area within the wireless signal coverage of the network device.
  • FIG. 2 is another schematic diagram of a wireless communication system 200 applicable to the embodiment of the present application.
  • the wireless communication system 200 may include a terminal device, such as the terminal device 221 in FIG. .
  • the terminal device 221 in FIG. 2 may communicate with the network device 221 and the network device 212 at the same time; or in other words, the network device 211 and the network device 212 may jointly provide services for the terminal device 221 .
  • FIG. 1 and FIG. 2 are only exemplary illustrations, and the present application is not limited thereto.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), Radio Network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC) , Base Transceiver Station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), wireless fidelity (Wireless Fidelity, WIFI) system in Access point (Access Point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR , a gNB in the system, or, a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • terminal equipment in the wireless communication system may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • user equipment user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • a cell is described by high layers from the perspective of resource management or mobility management or service unit.
  • the coverage area of each network device can be divided into one or more cells, and the cells can be regarded as composed of certain frequency domain resources.
  • a cell may be an area within the coverage of a wireless network of a network device.
  • different cells may correspond to different network devices.
  • the network device in cell #1 and the network device in cell #2 may be different network devices, such as a base station. That is to say, cell #1 and cell #2 may be managed by different base stations. In this case, it may be called that cell #1 and cell #2 are co-sited, or in other words, co-sited.
  • the network device in cell #1 and the network device in cell #2 may also be different radio frequency processing units of the same base station, for example, a radio remote unit (radio remote unit, RRU), that is, cell #1 and cell #2 can be managed by the same base station, with the same baseband processing unit and intermediate frequency processing unit, but different radio frequency processing units.
  • RRU radio remote unit
  • the Primary cell is the cell where the UE establishes the initial connection, and the cell where the Radio resource control (RRC) connection is reestablished, or the primary cell designated during the handover (handover) process.
  • the Pcell is responsible for the RRC communication with the UE, and its corresponding carrier unit is called a primary component carrier (PCC).
  • PCC primary component carrier
  • the downlink carrier of the PCell is called the downlink primary carrier (DL PCC)
  • the uplink carrier of the PCell is called the uplink primary carrier (UL PCC).
  • a secondary cell (Secondary Cell, Scell) is added during RRC reconfiguration to provide additional radio resources.
  • the carrier unit corresponding to the Scell is called a secondary component carrier (SCC).
  • SCC secondary component carrier
  • the downlink carrier of the Scell is called the downlink secondary carrier (DL SCC)
  • the uplink carrier of the SCell is called the uplink secondary carrier (UL SCC).
  • the Pcell is determined when the connection is established, and the Scell is added/modified/released through the RRC connection reconfiguration message after the initial access is completed.
  • CA Carrier aggregation
  • Carrier aggregation In order to efficiently utilize fragmented spectrum, the system supports aggregation between different carrier units.
  • the technology of aggregating two or more carriers to support a larger transmission bandwidth may be called carrier aggregation.
  • the terminal device can be configured with multiple carrier units (component carrier, CC, or component carrier, component carrier, carrier, etc.), and each CC can correspond to an independent cell.
  • One CC can be equivalent to one cell.
  • the primary cell corresponds to the primary CC (or primary carrier), and may be a cell for establishing an initial connection for a terminal, or a cell for reestablishing an RRC connection, or a primary cell designated during a handover (handover) process.
  • the secondary cell corresponds to the secondary CC (or secondary carrier), which may be added during RRC reconfiguration, and is used to provide additional radio resource cells.
  • the terminal device For a terminal device in the connected state, if carrier aggregation is not configured, the terminal device has one serving cell; if carrier aggregation is configured, the terminal device can have multiple serving cells, which can be called serving Community collection.
  • the above-mentioned primary cell and secondary cell constitute a set of serving cells (serving cells) of the terminal device.
  • the set of serving cells includes at least one primary cell and at least one secondary cell.
  • a terminal device configured with carrier aggregation can perform data transmission with one Pcell and multiple Scells.
  • the UE is configured with multiple cells, and each cell includes a downlink carrier and 0 to 2 uplink carriers.
  • the UE can activate some of the cells in the multiple cells, but some UEs have limited uplink capabilities. Configure and activate 2 uplink carriers.
  • Transmitter channel Transmitter, TX
  • a transmit channel is a physical concept, and may also be called a radio frequency (Radio frequency, RF) transmit channel, and is referred to as a transmit channel for short in this application.
  • the transmission channel can work in the following manner, but is not limited to the following manner: the transmission channel can receive the baseband signal from the baseband chip, and perform radio frequency processing (such as up-conversion, amplification and filtering) on the baseband signal to obtain the radio frequency signal , and finally radiate the radio frequency signal into space through the antenna.
  • radio frequency processing such as up-conversion, amplification and filtering
  • the transmit channel may include an antenna switch, an antenna tuner, a low noise amplifier (Low noise amplifier, LNA), a power amplifier (Power amplifier, PA), a mixer (Mixer), a local oscillator (Local oscillator, LO) , and electronic devices such as filters. These electronic devices can be integrated into one or more chips as required, and the antenna can also be considered as a part of the transmission channel.
  • radio frequency link in this application can also be replaced by Tx, radio frequency chain, antenna, radio frequency, transmission channel, transmission port, number of radio frequency chains, number of transmission layers, maximum number of layers of transmission, maximum number of layers supported by transmission, reception Channels or any combination thereof are not limited in this application.
  • Antenna port is a logical concept. When actually sending a signal, the antenna port will be mapped to the corresponding transmission channel. Currently, when a network device schedules a terminal device to transmit data, it may clearly indicate the port number of the antenna port used for data transmission. In the present application, an antenna port may be referred to as a port for short.
  • Uplink RF link switching UplinkTxSwitch
  • R16 proposes a new uplink mode. If the UE supports two uplink carriers, the UE can perform radio frequency link switching on these two carriers to improve the utilization rate of the radio frequency link.
  • the existing protocol defines the transmission behavior of the UE on the two uplink carriers in Table 1 .
  • Case 1 1 RF link exists for carrier 1 and 1 RF link exists for carrier 2
  • Case 2 0 RF links exist for carrier 1 and 2 RF links exist for carrier 2
  • carrier 1 and carrier 2 represent the two uplink carriers respectively. It can be seen that the UE supports a maximum of 1 radio frequency chain on carrier 1, and supports a maximum of 2 radio frequency links on carrier 2. The UE can switch between these two situations, that is, one radio frequency link can be switched between two carriers, and switching between these two situations requires switching time. This switching time may be called an uplink switching gap (Uplink switching gap). The UE does not wish to transmit on any of the two carriers during the uplink handover gap.
  • Uplink switching gap Uplink switching gap
  • the UE is not directly instructed to switch the radio frequency link on the carrier, but indirectly instructs the UE to switch the radio frequency link by sending the port number of the uplink transmission on the carrier to determine the current uplink transmission rate. Whether the transmission needs to switch the radio frequency link, that is, whether there is a switching time. Because there is a mapping relationship between the radio frequency link and the uplink transmission port.
  • Table 2 shows a mapping relationship between a radio frequency link and an uplink transmission port of a UE supporting switched uplink transmission (SwitchedUL) uplink carrier aggregation. Wherein, in the mode supporting switchable uplink transmission, the UE cannot be scheduled or configured to perform uplink transmission on two carriers at the same time.
  • SwitchchedUL switched uplink transmission
  • Table 3 shows the mapping relationship between radio frequency links and uplink transmission ports of UEs supporting concurrent uplink transmission (DualUL) uplink carrier aggregation. Wherein, in the two-way uplink transmission mode, the UE can be scheduled or configured to perform uplink transmission on two carriers at the same time.
  • UE can transmit uplink transmission of 1 antenna port on carrier 1, and simultaneously No uplink transmission (1P+0P); or, transmit uplink transmission of 1 antenna port on carrier 1, and simultaneously transmit uplink transmission of 1 antenna port on carrier 2 (1P+1P); or, transmit 1 antenna port on carrier 2 Uplink transmission of the port, and no uplink transmission on carrier 1 (0P+1P).
  • UE can send uplink transmission of 2 antenna ports on carrier 2, while there is no uplink transmission on carrier 1 (0P+2P); Or, the uplink transmission of one antenna port is sent on the carrier 2, and there is no uplink transmission on the carrier 1 (OP+1P). During this period, it can be judged whether switching time is needed according to the antenna port conditions of the UE's upcoming uplink transmission on the two carriers, the antenna port conditions of the last uplink transmission, and the supported uplink transmission antenna ports.
  • the transmission is to be transmitted on two antenna ports of one carrier, and the uplink transmission of this carrier is one antenna port before, and the transmission of two antenna ports is not supported on this carrier (for example, case 1 in Table 3 OP+1P in case 2 is switched to OP+2P in case 2), at this time UE needs to perform radio frequency link switching, and does not want to transmit on any one of the two carriers during the uplink switching gap.
  • the transmission is to be transmitted on one antenna port of one carrier, and the previous uplink transmission on another carrier is one antenna port, and the transmission of two antenna ports is supported on this carrier (for example, case 2 in Table 3 0P+1P in Case 1 is switched to 1P+XP in Case 1), at this time, the UE needs to perform radio frequency link switching, and does not want to transmit on any one of the two carriers during the uplink switching gap.
  • case 1 and case 2 both have the state of 0P+1P, and both support 0P+1P transmission. Therefore, if the UE does not transmit on carrier 1 and transmits a transmission on one antenna port on carrier 2, the state of the radio frequency link of the UE is the state of the radio frequency link of the last uplink transmission. That is, the state of the radio frequency link of the UE does not change, therefore, the UE does not need switching time.
  • the transmission of 2 antenna ports is about to be sent on one carrier, and the previous uplink transmission on another carrier is 1 antenna port (for example, 1P+OP in case 1 in Table 3 is switched to OP+2P in case 2) , at this time, the UE needs to perform radio frequency link switching, and does not want to transmit on any one of the two carriers during the uplink switching gap.
  • the transmission of 1 antenna port is about to be sent on one carrier, and the previous uplink transmission on another carrier is 2 antenna ports (for example, OP+2P in case 2 in Table 3 is switched to 1P+OP in case 1) , at this time, the UE needs to perform radio frequency link switching, and does not want to transmit on any one of the two carriers during the uplink switching gap.
  • the radio frequency link state of the UE is the radio frequency link state of the last uplink transmission. That is, the state of the radio frequency link of the UE does not change.
  • the base station needs to specify whether the carrier is carrier 1 or carrier 2 when configuring a carrier for the UE, so as to distinguish.
  • the UE supports the provision of overheating assistance information, and is configured by the base station to notify the base station through the assistance information after the UE detects internal overheating, then the UE can detect internal overheating or no longer experience the overheating state. Report overheating auxiliary information.
  • the way of reporting the overheating assistance information on the terminal equipment is as follows: In the LTE and NR systems, the reporting of user assistance information (UE assistance information) is introduced due to factors such as terminal overheating (Overheating).
  • the overheating auxiliary information reported by the terminal equipment mainly includes parameters that affect the rate of the terminal equipment, such as the carrier supported by the terminal equipment, bandwidth, and multi-input multi-output (MIMO) layer (layer).
  • MIMO multi-input multi-output
  • the terminal device will actively report when it detects overheating or ends the overheating state.
  • the overheating assistance information may include the maximum number of carriers (ReducedMaxCCs, and divided into reducedCCsDL and reducedCCsUL), the maximum bandwidth (reducedBW-FR1 and reducedBW-FR2), and the maximum number of MIMO layers (reducedMaxMIMO-LayersFR1 and reducedMaxMIMO-LayersFR2).
  • the maximum number of MIMO layers is configured for each cell, and only applies to all BWPs of the normal uplink (NUL) carrier of the cell, while the maximum MIMO layer of the auxiliary uplink (Supplementary uplink, SUL) carrier
  • NUL normal uplink
  • SUL auxiliary uplink
  • the UE when the UE works on multiple carriers, it may cause internal overheating or excessive energy consumption of the UE; at the same time, when there are multiple carriers in a cell, and at least two of the multiple carriers support
  • the maximum number of MIMO layers is greater than or equal to 2
  • the maximum number of MIMO layers configured through the existing protocol and the maximum number of MIMO layers reported when the UE is overheated will not apply. Therefore, there is a need for a method and device for information transmission, so as to alleviate the above problems.
  • this application provides a solution.
  • the UE can report the information to reduce the energy consumption of the UE to the network equipment, or the information of the maximum number of MIMO layers can be reported.
  • the maximum number of MIMO layers for other carriers except NUL in the cell is beneficial for the UE to turn off some devices involved in these carriers, which is beneficial for the UE to save energy and reduce the heat generation of the UE.
  • the second information may represent overheating assistance information, or may include parameter information that the terminal device sends to the network device when it detects internal overheating or detects that it is no longer experiencing an overheating state.
  • the second information reported by the terminal device to the network device can assist the network device in scheduling the terminal device, and the second information can be detected when the terminal device is in an overheating state or ends the overheating state Reporting to the network device under certain circumstances, or reporting under the condition of receiving instruction information sent by the network device, the reporting method is not limited in this application.
  • FIG. 3 is a schematic diagram of a scene applicable to this embodiment of the present application.
  • the embodiment of the present application can be applied to the scenario of multiple auxiliary uplink carriers.
  • multiple auxiliary uplink carriers and the NUL carrier belong to the same cell, or have the same carrier identifier, or share the same hybrid automatic repeat request (HARQ) entity.
  • HARQ hybrid automatic repeat request
  • Fig. 4 is another schematic diagram of a scene applicable to the embodiment of the present application.
  • the embodiment of the present application may also be applied to a scenario where there are multiple cells with only uplink carriers but no downlink carriers (that is, carrier aggregation mode).
  • FIG. 5 is a schematic block diagram of a method 500 for reporting information provided by an embodiment of the present application.
  • Method 500 may include the following steps.
  • the network device sends first information to the terminal device, and correspondingly, the terminal device receives the first information sent by the network device.
  • the network device may send the first information to the terminal device, where the first information is used to instruct the terminal device to report the second information when it detects the overheating state or ends the overheating state.
  • the network device can send the first information to the terminal device, so that the terminal device can report the second information to the network device when it detects that the terminal device is in an overheated state or ends the overheated state.
  • the second information includes the terminal Parameter information when the device is in the overheating state or ends the overheating state.
  • the terminal device When the terminal device is in the overheating state or ends the overheating state, the terminal device sends second information to the network device, and correspondingly, the network device receives the second information sent by the terminal device.
  • the terminal device when it detects that it is in the overheating state or ends in the overheating state, it can send the second information to the network device, where the second information includes at least one of the following information: the first switching carrier number, the first The maximum number of simultaneous transmission carriers, the transmission method, the first switching time, the maximum number of antenna ports for the first carrier, the maximum number of radio frequency links for the first carrier, or the first maximum number of multiple-input multiple-output MIMO layers, where the first switching The number of carriers is greater than or equal to the first maximum number of carriers for simultaneous transmission.
  • the number of switching carriers is determined according to the first set of carriers.
  • the first set of carriers is a set of carriers configured by the network device for the terminal device to perform radio frequency link switching.
  • the first The number of carriers in the carrier set is the number of carriers of the terminal device that can perform radio frequency link switching.
  • the terminal device may report the preference (Preference), the maximum number of switchable carriers of the reduced configuration (Reduced configuration) (for example, the first number of switchable carriers). That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device adjusts the number of carriers in the first carrier set so that the number of carriers in the first carrier set is less than or equal to the first number of switching carriers .
  • the first switching carrier number is smaller than the second switching carrier number
  • the second switching carrier number is the switching carrier number before the terminal device reports the second information.
  • the maximum number of switchable carriers expected by the terminal device is smaller than the second number of switchable carriers.
  • the network device configures the terminal device to dynamically switch on A 1 carrier, and the terminal device is scheduled or configured to transmit on at most B 1 carriers at the same time, when the terminal device is overheated, the terminal device It may be reported that dynamic switching is performed on C carriers, where both B 1 and C are smaller than A 1 , and C is greater than or equal to B 1 . That is, B 1 ⁇ [1, A 1 ), C ⁇ [B 1 , A 1 ).
  • radio frequency link switching, dynamic switching, and uplink dynamic switching may be replaced with each other.
  • the terminal device is currently configured by the network device to perform dynamic switching on 4 carriers, and the terminal device is scheduled or configured to transmit on a maximum of 2 carriers at the same time.
  • the terminal device can report to dynamically switch between 2 or 3 carriers.
  • the terminal device reports the information that it can dynamically switch on fewer carriers, so that the network device can configure parameters for the terminal device based on the above information, so that the terminal device can turn off part of the hardware, reduce energy consumption, and reduce heat generation.
  • the number of switching carriers reported by the terminal device is greater than the first switching carrier number reported by the terminal device in the overheating state, so that the terminal device can resume high performance status.
  • the maximum number of carriers that transmit simultaneously is the maximum number of carriers that can simultaneously transmit when the network device schedules or configures the terminal device. Therefore, the terminal device may report a preference (Preference), a reduced configuration (Reduced configuration) of the maximum number of carriers for simultaneous transmission (for example, the first maximum number of carriers for simultaneous transmission). That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device can adjust the maximum number of carriers for simultaneous transmission so that the maximum number of carriers for simultaneous transmission is less than or equal to the first maximum number of simultaneous transmissions. The number of carriers transmitted.
  • Preference Preference
  • Reduced configuration reduced configuration
  • the first maximum number of carriers for simultaneous transmission is smaller than the second maximum number of carriers for simultaneous transmission, where the second maximum number of carriers for simultaneous transmission is the network device before reporting the second information.
  • the maximum number of simultaneous transmission carriers configured by the terminal device In other words, the maximum number of carriers for simultaneous transmission expected by the terminal device (the first maximum number of simultaneous transmission carriers) is smaller than the maximum number of simultaneous transmission carriers configured by the network device for the terminal device (the second maximum number of simultaneous transmission carriers ).
  • the network device configures the terminal device to dynamically switch on A 2 carriers, and the terminal device is scheduled or configured to transmit on at most B 2 carriers at the same time, when the terminal device is overheated, the terminal device It can be reported that transmission is performed on up to D carriers at the same time, where both B 2 and D are smaller than A 2 , and D is smaller than or equal to B 2 . That is, B 2 ⁇ [1, A 2 ), D ⁇ [1, B 2 ).
  • the terminal device can report that it is transmitting on 1 or 2 carriers simultaneously.
  • the terminal device reports information that can be transmitted simultaneously on fewer carriers, so that the network device can then configure parameters for the terminal device based on the above information, and then the terminal device can turn off some hardware to reduce energy consumption and heat generation.
  • the maximum number of carriers for simultaneous transmission reported by the terminal device should be greater than the first maximum number of carriers for simultaneous transmission reported by the terminal device in the overheating state, so that the terminal The device can return to a high-performance state after the overheating state ends.
  • the transmission manner of the terminal device may be a manner of performing transmission on at most one carrier, or a manner of simultaneously performing transmission on multiple carriers.
  • the terminal device can report the transmission mode of preference (Preference) and reduced configuration (Reduced configuration) (for example, the mode of transmission on at most 1 carrier). That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device will adjust the transmission mode of the terminal device so that the transmission mode of the terminal device is a transmission mode on at most one carrier or can The method of transmitting on multiple carriers at the same time.
  • Preference Preference
  • Reduced configuration for example, the mode of transmission on at most 1 carrier
  • the transmission mode reported by the terminal device is a transmission mode on at most one carrier.
  • the energy consumption of the system can be effectively reduced.
  • the transmission mode may include concurrent mode and switching mode.
  • concurrent mode terminal devices can be scheduled or configured to perform uplink transmission on two carriers at the same time.
  • handover mode terminal equipment cannot be scheduled or configured to perform uplink transmission on two carriers at the same time.
  • the terminal device can report the transmission mode of preference (Preference) and reduced configuration (Reduced configuration) (for example, switch mode). That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device will adjust the transmission mode of the terminal device so that the transmission mode of the terminal device is a switching mode or a concurrent mode.
  • the transmission mode reported by the terminal device is the switching mode.
  • the switching mode can effectively reduce system energy consumption compared with the concurrent mode.
  • the network device configures the terminal device with a concurrent mode (or, it can transmit on two or more carriers at the same time) transmission mode through configuration information.
  • the terminal device can report a preference or a preferred switching mode (or transmit on at most one carrier) as a transmission mode, so as to reduce heat generation.
  • the terminal device when the terminal device is in an overheated state, the terminal device can directly report the preference, or the preferred switching mode (or transmit at most 1 carrier) as the transmission method, so as to reduce the purpose of fever.
  • the terminal device reports the information of the transmission mode with lower power consumption, so that the network device can configure parameters for the terminal device according to the above information, so that the terminal device can reduce energy consumption and heat generation.
  • the terminal device when the terminal device ends the overheating state or recovers from overheating, the terminal device can report the transmission mode in the concurrent mode (or, can transmit on two or more carriers at the same time), so that it can simultaneously transmit on two ( (or two or more) carriers for uplink transmission, so that the terminal device can resume the high-performance state after the overheating state ends.
  • the terminal device when the terminal device is in an overheated state, the terminal device can reduce the energy consumption by reporting the preference (Preference) and reducing the first switching time (that is, the switching time) of the carrier of the reduced configuration (Reduced configuration) the goal of. That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device adjusts the switching time so that the switching time is greater than or equal to the first switching time.
  • Preference preference
  • the first switching time that is, the switching time of the carrier of the reduced configuration (Reduced configuration) the goal of. That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device adjusts the switching time so that the switching time is greater than or equal to the first switching time.
  • the terminal device when the terminal device is in an overheated state, can report the preference, or the preferred first switching time, the first switching time is greater than the second switching time, and the second switching time is the network device Configured switching time.
  • the switching time may be at least one of ⁇ 35us, 140us, 210us ⁇ .
  • the second switching time configured by the network device to the terminal device is 35us.
  • the terminal device may report the first switching time as 140us or 210us. That is to say, when the terminal device is in an overheated state, the terminal device hopes that the network device adjusts the switching time of the terminal device (ie, the second switching time) so that the switching time is the first switching time.
  • the terminal device reports the information of a relatively long switching time, so that the network device can configure parameters for the terminal device based on the above information, so that the terminal device can turn off part of the hardware, reduce energy consumption, and reduce heat generation.
  • the terminal device when reporting the capability, may report multiple switching times for the same frequency band set, and the network device may select at least one switching time from the multiple switching times to configure for the terminal device.
  • the terminal device can report a switching time with lower power consumption to the network device among the above multiple switching times, so as to reduce the energy consumption of the terminal device and reduce heat generation Effect.
  • the switching time reported by the terminal device should be less than the first switching time reported by the terminal device in the overheating state, so that the terminal device can resume high performance after the overheating state ends state.
  • the maximum number of antenna ports of a carrier is used to indicate the maximum number of antenna ports of a carrier of each cell of the terminal device in the first frequency range.
  • the terminal device may report the preference (Preference), the maximum number of antenna ports of the reduced configuration (Reduced configuration) carrier (for example, the maximum number of antenna ports of the first carrier). That is to say, when the terminal equipment is in the overheating state, or ends the overheating state, the terminal equipment can accurately report or correct the maximum number of antenna ports of each carrier of each carrier in each frequency range, and hope that the network equipment can pass
  • the maximum number of antenna ports of the carrier is adjusted so that the maximum number of antenna ports of the carrier is less than or equal to the maximum number of antenna ports of the first carrier. Therefore, the network device can then configure parameters for the terminal device according to the information, and adjust the maximum number of antenna ports of the carrier of the cell of the terminal device. Therefore, the terminal device can turn off part of the hardware to reduce energy consumption and heat generation.
  • the maximum number of antenna ports of the first carrier is smaller than the maximum number of antenna ports of the second carrier, and the maximum number of antenna ports of the second carrier is the maximum number of antenna ports of the carrier before the terminal device reports the second information.
  • the maximum number of antenna ports of the carrier expected by the terminal device is smaller than the maximum number of antenna ports of the second carrier.
  • the maximum number of antenna ports of a carrier is the maximum number of ports for uplink transmission on the carrier.
  • the maximum number of antenna ports of the carrier is the maximum number of antenna ports of channel sounding reference signal (Sounding Reference Signal, SRS) resources on the carrier configured by the network device for the terminal device.
  • SRS Sounding Reference Signal
  • the maximum number of antenna ports in the SRS resource is equal to the maximum number of antenna ports in all periodic SRS, semi-static SRS and aperiodic SRS resources configured by the network device.
  • the maximum number of antenna ports of the SRS resource is equal to the maximum number of antenna ports in all periodic SRS, activated semi-static SRS and aperiodic SRS resources configured by the network device.
  • the maximum number of antenna ports of the first carrier when the maximum number of antenna ports of the first carrier is 1, the maximum number of antenna ports of the first carrier corresponds to the maximum number of antenna ports of all carriers in each cell in the first frequency range.
  • the maximum number of antenna ports of the first carrier is 1, and the maximum number of antenna ports of the first carrier is 2, then the maximum number of antenna ports of all carriers in each cell in the first frequency range is 2 .
  • the maximum number of N first carriers is The maximum number of antenna ports of the first L first carriers in the number of antenna ports indicates the maximum number of antenna ports of the L carriers of the t-th cell in the first frequency range, where N is the number of the cell with the largest number of carriers in the first frequency range.
  • the number of carriers, L is less than or equal to N, both t and L are positive integers, and N is a positive integer greater than 1.
  • the maximum number of antenna ports of the first L first carriers among the maximum number of antenna ports of the N first carriers indicates the tth cell in the first frequency range sorted according to the size of the carrier identifier and/or the frequency of the carrier The maximum number of antenna ports for the L carriers.
  • the number of carriers in the cell with the largest number of carriers in the first frequency range is 5, and the number of maximum antenna ports of the first carrier is 5, wherein the maximum number of carriers in the first cell in the first frequency range is 3,
  • the maximum number of antenna ports of the first three first carriers out of the maximum number of antenna ports of the five first carriers is the maximum number of antenna ports of the three carriers of the first cell in the first frequency range.
  • the maximum number of antenna ports of the first three first carriers out of the five maximum number of antenna ports of the first carrier indicates the number of the first cell in the first frequency range sorted according to the size of the carrier identifier and/or the frequency of the carrier Maximum number of antenna ports for 3 carriers.
  • the maximum number of antenna ports of the first first carrier of the five first carrier maximum numbers is the maximum number of antenna ports with the smallest (or largest) carrier identifier of the first cell within the first frequency range.
  • the terminal device reports the information about the maximum number of antenna ports of the carrier of the cell, so that the network device can configure the parameters of the carrier for the terminal device based on this information, and reduce the maximum number of antenna ports of the carrier of the terminal device, so that the terminal The device can turn off part of the hardware to reduce energy consumption and heat generation.
  • the value of the maximum number of antenna ports of the L+1 to Nth first carriers can be a predefined fixed value, or can be a set value between the terminal equipment and the network.
  • the fixed value negotiated by the device may be, for example, 1 or 2, or the first maximum number of antenna ports of the first carrier among the maximum number of antenna ports of the N first carriers, which is not limited in this application.
  • the maximum number of antenna ports of the carrier reported by the terminal device should be greater than the maximum number of antenna ports of the first carrier reported by the terminal device in the overheating state, so that the terminal device is overheated.
  • the high-performance state can be restored after the state ends.
  • the maximum number of radio frequency links of the carrier is used to indicate the maximum number of radio frequency links of each cell of the terminal device in the second frequency range.
  • the terminal device may report the preference (Preference), the maximum number of radio frequency links of the reduced configuration (Reduced configuration) carrier (for example, the maximum number of radio frequency links of the first carrier). That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device can accurately report or correct the maximum number of radio frequency links of each carrier of each carrier in each cell in each frequency range. It is hoped that the network device By adjusting the maximum number of radio frequency links of the carrier, the maximum number of radio frequency links of the carrier is less than or equal to the maximum number of radio frequency links of the first carrier. In this way, the terminal equipment turns off some devices, thereby reducing the energy consumption of the terminal equipment and reducing heat generation.
  • the maximum number of radio frequency links of the first carrier is less than the maximum number of radio frequency links of the second carrier
  • the maximum number of radio frequency links of the second carrier is the maximum number of radio frequency links of the carrier before the terminal device reports the second information number.
  • the maximum number of radio frequency links of the carrier expected by the terminal device is smaller than the maximum number of radio frequency links of the second carrier.
  • the maximum number of radio frequency links of the first carrier corresponds to the maximum number of radio frequency links of all carriers in each cell in the second frequency range number.
  • the maximum number of radio frequency links of the first carrier is 1, and the maximum number of radio frequency links of the first carrier is 2, the maximum number of radio frequency links of all carriers in each cell in the second frequency range Both are 2.
  • the maximum number of uplink transmission ports of a carrier is less than or equal to the maximum number of radio frequency links of the carrier. For example, if the maximum number of radio frequency links of a carrier is 2, then the maximum number of uplink transmission ports of this carrier is less than or equal to 2.
  • the P first carriers when the maximum number of radio frequency links of the first carrier is P, and the maximum number of carriers of the i-th cell in the second frequency range is Q, the P first carriers The maximum number of radio frequency links of the first Q first carriers in the maximum number of radio frequency links indicates the maximum number of radio frequency links of the Q carriers of the i-th cell in the second frequency range, where P is the number of carriers in the first frequency range The number of carriers in the largest cell, Q is less than or equal to P, i and Q are both positive integers, and P is an integer greater than 1.
  • the maximum number of radio frequency links of the first Q first carriers among the maximum number of radio frequency links of the P first carriers means that the i-th frequency range in the second frequency range is sorted according to the size of the carrier identifier and/or the frequency of the carrier.
  • the maximum number of RF links of Q carriers in a cell means that the i-th frequency range in the second frequency range is sorted according to the size of the carrier identifier and/or the frequency of the carrier.
  • the number of carriers in the cell with the largest number of carriers in the first frequency range is 4, and the number of the maximum number of radio frequency links of the first carrier is 4, where the maximum number of carriers in the second cell in the second frequency range is 2 , then the maximum number of radio frequency links of the first two first carriers out of the maximum number of radio frequency links of the four first carriers is the maximum number of radio frequency links of the two carriers of the second cell in the second frequency range. Further, the maximum number of radio frequency links of the first two first carriers among the four first carrier maximum radio frequency links indicates that the second frequency range in the second frequency range is sorted according to the size of the carrier identifier and/or the frequency of the carrier The maximum number of RF links of two carriers in a cell. For example, the maximum number of radio frequency links of the first first carrier of the maximum number of radio frequency links of the four first carriers is the maximum number of radio frequency links with the smallest (or largest) carrier identifier of the second cell within the second frequency range.
  • the terminal device reports the information of the maximum number of radio frequency links of the carrier of the cell, so that the network device can configure the parameters of the carrier for the terminal device according to the information, and reduce the maximum number of radio frequency links of the carrier of the terminal device's cell, Therefore, the terminal device can turn off part of the hardware to reduce energy consumption and heat generation.
  • the value of the maximum number of radio frequency links of the Q+1th to Pth first carriers can be a predefined fixed value, or can be a
  • the fixed value negotiated by the network device may be, for example, 1 or 2, or the first maximum number of radio frequency links of the first carrier among the maximum number of radio frequency links of the P first carriers, which is not limited in this application.
  • the maximum number of radio frequency links of the carrier reported by the terminal device should be greater than the maximum number of radio frequency links of the first carrier reported by the terminal device in the overheating state, so that the terminal device The high performance state can be restored after the overheat state is over.
  • the maximum number of MIMO layers is used to indicate to the terminal equipment the maximum number of MIMO layers of carriers of each cell in the third frequency range.
  • the terminal device may report the preference (Preference), the maximum number of MIMO layers of the carrier of the reduced configuration (Reduced configuration) (for example, the first maximum number of MIMO layers). That is to say, when the terminal device is in the overheating state or ends the overheating state, the terminal device hopes that the network device adjusts the maximum number of MIMO layers of the carrier of the terminal device so that the maximum number of MIMO layers of the carrier is less than or equal to the first maximum MIMO layer number, so that the maximum number of MIMO layers of each carrier of each cell in each frequency range can be accurately reported or corrected.
  • the first maximum number of MIMO layers is smaller than the second maximum number of MIMO layers
  • the second maximum number of MIMO layers is the maximum number of MIMO layers of the carrier before the terminal device reports the second information.
  • the maximum number of MIMO layers of the carrier expected by the terminal device is smaller than the second maximum number of MIMO layers.
  • the first maximum number of MIMO layers corresponds to the maximum number of MIMO layers of all carriers in each cell in the third frequency range.
  • the maximum number of MIMO layers of all carriers in each cell in the third frequency range is 2.
  • the W first maximum MIMO layers when the number of the first maximum MIMO layers is W, and the maximum number of carriers of the xth cell in the third frequency range is Y, the W first maximum MIMO layers
  • the first Y first maximum MIMO layers in the numbers indicate the maximum number of MIMO layers of the Y carriers of the xth cell in the third frequency range, where W is the number of carriers in the cell with the largest number of carriers in the third frequency range, Y is less than or equal to W, x and Y are both positive integers, and W is a positive integer greater than 1.
  • the first Y first maximum MIMO layer numbers among the W first maximum MIMO layer numbers represent the Y of the xth cell in the third frequency range sorted according to the size of the carrier identifier and/or the frequency of the carrier The maximum number of MIMO layers for a carrier.
  • the number of carriers in the cell with the largest number of carriers in the first frequency range is 4, then the number of the first maximum number of MIMO layers is 4, wherein the third cell in the third frequency range has the largest number of carriers It is 3, then
  • the first three first maximum MIMO layer numbers among the four first maximum MIMO layer numbers are the maximum MIMO layer numbers of the three carriers of the third cell within the third frequency range.
  • the first three first maximum MIMO layers of the four first maximum MIMO layers represent 3 of the third cell in the third frequency range sorted according to the size of the carrier identifier and/or the frequency of the carrier The maximum number of MIMO layers for a carrier.
  • the first first maximum MIMO layer number of the four first maximum MIMO layer numbers is the smallest (or largest) maximum MIMO layer number of the carrier identifier of the third cell within the third frequency range.
  • the terminal device reports the information of the maximum number of MIMO layers of the carrier in each frequency range, so as to support the multi-carrier scenario in a cell
  • the maximum carrier overheat is reported, so that the network device can configure the parameters of the carrier for the terminal device based on the information, which is beneficial for the terminal device to turn off some devices involved in these carriers, which is conducive to energy saving and heat generation.
  • the value of the Y+1th to Wth first maximum MIMO layers can be a predefined fixed value, or it can be the The negotiated fixed value may be, for example, 1 or 2, or may be the first first maximum MIMO layer number among the W first maximum MIMO layer numbers, which is not limited in this application.
  • the maximum MIMO layer number of the carrier reported by the terminal device should be greater than the first maximum MIMO layer number reported by the terminal device in the overheating state, so that the terminal device is in the overheating state. High performance state can be resumed after the end.
  • the second information may be reported by any one of the first message (Meassage 1, Msg1), the third message (Meassage 3, Msg3), and the fifth message (Meassage 5, Msg5) in the random access process .
  • the second information can be distinguished through different preambles (Preamble) or preamble groups in Msg1.
  • the second information may be carried in Msg3.
  • the second information may be carried in Msg5.
  • the above second information may also be reported through existing terminal equipment assistance information (UE assistance information).
  • UE assistance information terminal equipment assistance information
  • the network device generates third information.
  • the network device may generate third information, where the third information is used to configure the terminal device.
  • the third information is generated by the network device according to the second information, and is used to indicate that the terminal device can perform parameter configuration through the parameter information reported in the second information.
  • the network device generates third information, the third information is used to configure the terminal device, and the parameter information about the carrier of the terminal device in the third indication information is the same as the parameter information in the second information irrelevant.
  • the network device sends third information to the terminal device, and correspondingly, the terminal device receives the third information sent by the network device.
  • the network device may send third information to the terminal device for configuring parameters of the terminal device.
  • the third information indicates that the terminal device can perform parameter configuration through the parameter information reported in the second information.
  • the third indication information is used to configure parameters for the terminal device, and the parameter information about the carrier of the terminal device in the third indication information has nothing to do with the parameter information in the second information.
  • the behavior of the terminal device being in the overheating state may also be equivalent to the behavior of the terminal device wishing to save energy, or wishing to be in the energy saving state.
  • the second information is sent to the network device, the second information includes the information reported by the terminal device that the energy can be reduced
  • the configuration information of power consumption and heat reduction, and the accurate maximum number of MIMO layers of the carrier the network device can generate the third information according to the second information, and send the third information to the terminal device, where the third information is used to indicate the terminal
  • the device can communicate through the parameter information reported in the second information. Therefore, the terminal device can turn off some devices during the communication process, so as to reduce heat generation and energy consumption.
  • the methods and operations implemented by the terminal equipment may also be implemented by components (such as chips or circuits) that can be used for the terminal equipment, and the methods and operations implemented by the network equipment may also be implemented by A component (such as a chip or a circuit) implementation that can be used in a network device.
  • components such as chips or circuits
  • a component such as a chip or a circuit
  • each network element such as a transmitting end device or a receiving end device, includes a corresponding hardware structure and/or software module for performing each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • Fig. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 600 includes a receiving unit 610 , a sending unit 620 and a processing unit 630 .
  • the receiving unit 610 and the sending unit 620 can implement corresponding communication functions, and the processing unit 630 is used for data processing.
  • the receiving unit 610 and the sending unit 620 may also be referred to as communication interfaces or communication units.
  • the communication device 600 may further include a storage unit, which may be used to store instructions and/or data, and the processing unit 630 may read the instructions and/or data in the storage unit, so that the communication device implements the aforementioned method Example.
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 630 may read the instructions and/or data in the storage unit, so that the communication device implements the aforementioned method Example.
  • the communication device 600 can be used to perform the actions performed by the terminal device in the above method embodiments.
  • the communication device 600 can be a terminal device or a component that can be configured in the terminal device.
  • the receiving unit 610 and the sending unit 620 are used to Perform operations related to transceiving on the terminal device side in the above method embodiments, and the processing unit 630 is configured to perform processing related operations on the terminal device side in the above method embodiments.
  • the communication device 600 can be used to perform the actions performed by the network device in the above method embodiments.
  • the communication device 600 can be a network device or a component that can be configured in the network device.
  • the receiving unit 610 and the sending unit 620 The processing unit 630 is configured to perform operations related to processing on the network device side in the above method embodiments.
  • the communication device 600 is configured to perform the actions performed by the terminal device in the embodiment shown in FIG. 5 above, the receiving unit 610 is used for: S501, S504; the sending unit 620 is used for: S502.
  • the communication device 600 may implement the steps or procedures corresponding to the execution of the terminal device in the method 500 according to the embodiment of the present application, and the communication device 600 may include a unit for executing the method performed by the terminal device in the method 500 in FIG. 5 . Moreover, each unit in the communication device 600 and the above-mentioned other operations and/or functions are to implement a corresponding flow of the method 500 in FIG. 5 .
  • the receiving unit 610 may be used to execute steps 501 and 504 in the method 500
  • the sending unit 620 may be used to execute step 502 in the method 500 .
  • the communication device 600 is used to execute the actions performed by the network equipment in the embodiment shown in FIG. 5 above, the receiving unit 610 is used for: S502; In: S503.
  • the communication apparatus 600 may implement the steps or processes corresponding to the execution of the network equipment in the method 500 according to the embodiment of the present application, and the communication apparatus 600 may include a unit for executing the method executed by the network equipment in the method 500 in FIG. 5 . Moreover, each unit in the communication device 600 and the above-mentioned other operations and/or functions are to implement a corresponding flow of the method 500 in FIG. 5 .
  • Steps 501 and 504 in the method 500 are executed.
  • the processing unit 630 in the above embodiments may be implemented by at least one processor or processor-related circuits.
  • the receiving unit 610 and the sending unit 620 may be implemented by a receiver/receiver-related circuit, or a transmitter/transmitter-related circuit.
  • the receiving unit 610 and the sending unit 620 may also be referred to as a communication unit or a communication interface.
  • the storage unit can be realized by at least one memory.
  • receiving unit 610 and the sending unit 620 in the communication device 600 may also be coupled as a transceiver unit, which is not limited in this application.
  • the embodiment of the present application further provides a communication device 700 .
  • the communication device 700 includes a processor 710, the processor 710 is coupled with a memory 720, the memory 720 is used to store computer programs or instructions and/or data, and the processor 710 is used to execute the computer programs or instructions and/or data stored in the memory 720, The methods in the above method embodiments are executed.
  • the communication device 700 includes one or more processors 710 .
  • the communication device 700 may further include a memory 720 .
  • the communication device 700 may include one or more memories 720 .
  • the memory 720 may be integrated with the processor 710, or set separately.
  • the communication device 700 may further include a receiver 730 and a transmitter 740 , the receiver 730 is used for receiving signals, and the transmitter 740 is used for sending signals.
  • the processor 710 is configured to control the receiver 730 and the transmitter 740 to receive and/or send signals.
  • the communication apparatus 700 is used to implement the operations performed by the terminal device in the above method embodiments.
  • the receiver 730 and the transmitter 740 are used to implement operations related to sending and receiving performed by the terminal device in the above method embodiments.
  • the communications apparatus 700 is configured to implement the operations performed by the network device in the above method embodiments.
  • the processor 710 is used to implement processing-related operations performed by the network device in the above method embodiments
  • the receiver 730 and transmitter 740 are used to implement operations related to sending and receiving performed by the network device in the above method embodiments.
  • the embodiment of the present application also provides a communication device 800, and the communication device 800 may be a terminal device or a chip.
  • the communication apparatus 800 may be configured to perform the operations performed by the terminal device in the foregoing method embodiments.
  • FIG. 8 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, process data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • a memory may also be called a storage medium or a storage device. The memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function may be regarded as the transceiver unit of the terminal device, and the processor with the processing function may be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 810 and a processing unit 820 .
  • the transceiver unit 810 may also be called a transceiver, a transceiver, a transceiver device, and the like.
  • the processing unit 820 may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 810 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 810 can be regarded as a sending unit, that is, the transceiver unit 810 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiving unit 810 is configured to perform the transceiving operations in steps 501, 502, and 504 in FIG. 5 .
  • FIG. 8 is only an example rather than a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 8 .
  • the chip When the communication device 800 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 900, and the communication device 900 may be a network device or a chip.
  • the communication apparatus 900 may be configured to perform the operations performed by the network device in the foregoing method embodiments.
  • FIG. 9 shows a simplified structure diagram of a base station.
  • the base station includes part 910 and part 920 .
  • Part 910 is mainly used for transmitting and receiving radio frequency signals and conversion between radio frequency signals and baseband signals; part 920 is mainly used for baseband processing and controlling base stations.
  • Part 910 may generally be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the part 920 is generally the control center of the base station, which can generally be referred to as a processing unit, and is used to control the base station to perform processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 910 may also be referred to as a transceiver or transceiver, etc., and includes an antenna and a radio frequency circuit, wherein the radio frequency circuit is mainly used for radio frequency processing.
  • the device used to realize the receiving function in part 910 can be regarded as a receiving unit
  • the device used to realize the sending function can be regarded as a sending unit, that is, part 910 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, or receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • Section 920 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to realize baseband processing functions and control the base station. If there are multiple single boards, each single board can be interconnected to enhance the processing capability. As an optional implementation, it is also possible that multiple single boards share one or more processors, or that multiple single boards share one or more memories, or that multiple single boards share one or more processors at the same time. device.
  • the transceiver unit in part 910 is used to execute the steps related to sending and receiving performed by the network device in the embodiment shown in FIG. 5; processing related steps.
  • FIG. 9 is only an example rather than a limitation, and the foregoing network device including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 9 .
  • the chip When the communication device 900 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • the embodiments of the present application also provide a computer program product including instructions, which, when executed by a computer, enable the computer to implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • An embodiment of the present application further provides a communication system, where the communication system includes the network device and the terminal device in the foregoing embodiments.
  • a terminal device or a network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (central processing unit, CPU), a memory management unit (memory management unit, MMU), and memory (also called main memory).
  • the operating system of the operating system layer can be any one or more computer operating systems that realize business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer may include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of the present application, as long as the program that records the code of the method provided in the embodiment of the present application can be executed according to the method provided in the embodiment of the present application Just communicate.
  • the subject of execution of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • Usable media may include, but are not limited to, magnetic media or magnetic storage devices (for example, floppy disks, hard disks (such as removable hard disks), magnetic tapes), optical media (for example, optical disks, compact discs, etc.) , CD), digital versatile disc (digital versatile disc, DVD, etc.), smart cards and flash memory devices (such as erasable programmable read-only memory (EPROM), card, stick or key drive, etc. ), or semiconductor media (such as solid state disk (SSD), U disk, read-only memory (ROM), random access memory (RAM), etc. can store programs The medium of the code.
  • SSD solid state disk
  • U disk read-only memory
  • RAM random access memory
  • Various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to implement the solutions provided in this application.
  • each functional unit in each embodiment of the present application may be integrated into one unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • a computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer can be a personal computer, a server, or a network device, etc.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g. Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • DSL digital subscriber line
  • wireless such as infrared, wireless, microwave, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息上报的方法和装置,该信息上报的方法包括:接收网络设备发送的第一信息,第一信息指示终端设备检测到过热状态的情况下,上报第二信息;在终端设备处于过热状态,或结束过热状态的情况下,向网络设备发送第二信息,第二信息包括以下至少一项信息:第一切换载波数、第一最大同时进行传输的载波数、传输方式、第一切换时间、第一载波最大天线端口数、第一载波最大射频链路数,或第一最大多输入多输出层数。从而,终端设备在过热状态或结束过热状态的情况下,上报可以降低能耗与发热的载波切换的信息与准确的载波的多输入多输出层数,使得网络设备获取终端设备较为节能的信息,进而为终端设备配置较为节能的参数。

Description

一种信息上报的方法与装置
本申请要求于2021年6月9日提交中国专利局、申请号为202110642202.6、申请名称为“一种信息上报的方法与装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信领域中的信息上报的方法与装置。
背景技术
当前,如果用户设备(User equipment,UE)支持提供过热辅助信息,且被网络设备配置了可以在检测到内部过热后通过辅助信息通知网络设备,那么,UE可以在检测到内部过热或者检测到不再经历过热状态时,向网络设备上报过热辅助信息。
UE可以通过在载波间进行射频链路的切换,以达到提高射频链路利用率的效果。但是,在UE过热的情况下,在切换的过程中,还存在进一步地降低UE能耗或减小过热的改进策略;同时,当一个小区存在多个载波,且多个载波中的至少两个载波支持的最大多输入多输出(Multiple-Input Multiple-Out-put,MIMO)层数大于或者等于2时,通过现有协议配置的最大MIMO层数以及UE过热时上报的最大MIMO层数将不适用。因此,需要一种信息上报的方法与装置,从而能够缓解上述问题。
发明内容
本申请提供一种信息上报的方法和装置,使得网络设备获取终端设备较为节能的信息,进而为终端设备配置较为节能的参数。
第一方面,提供了一种信息上报的方法,该方法包括:接收网络设备发送的第一信息,该第一信息用于指示终端设备检测到过热状态的情况下,上报第二信息;在该终端设备处于该过热状态,或结束该过热状态的情况下,向该网络设备发送该第二信息,该第二信息包括以下至少一项信息:第一切换载波数、第一最大同时进行传输的载波数、传输方式、第一切换时间、第一载波最大天线端口数、第一载波最大射频链路数,或第一最大多输入多输出MIMO层数,其中,该第一切换载波数大于或者等于该第一最大同时进行传输的载波数。
基于上述方案,通过终端设备在过热状态或结束过热状态的情况下,上报第二信息,可以使得网络设备获取终端设备可以较为节能的信息,进而为终端设备配置较为节能的参数。
结合第一方面,在第一方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一切换载波数小于第二切换载波数,其中,该第二切换载波数为向所述网络设备发送所述第二信息之前的切换载波数。
举例而言,切换载波数,或者说可切换载波数,是根据第一载波集合确定的,第一载波集合是网络设备为终端设备配置的可以进行射频链路切换的载波组成的集合,第一载波集合中的载波数即为终端设备的可以进行射频链路切换的载波数。终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的最大可切换载波数(例如,第一切换载波数)。也就是说,在终端设备处于过热状态,或结束过热状态时,终端设备希望网络设备通过调整第一载波集合中的载波数量,使得第一载波集合中的载波数小于或者等于第一切换载波数。
在终端设备处于过热状态的情况下,第一切换载波数小于第二切换载波数,第二切换载波数为终端设备上报第二信息之前的切换载波数。或者说,终端设备期望的最大可切换载波数小于第二切换载波数。
基于上述方案,终端设备上报了可以在较少的载波上进行动态切换的信息,使得此后网络设备可以根据上述信息为终端设备配置参数,从而终端设备可以关闭部分硬件,减少能耗,降低发热。
结合第一方面,在第一方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一最大同时进行传输的载波数小于第二最大同时进行传输的载波数,其中,该第二最大同时进行传输的载波数为网络设备配置的。
举例而言,最大同时进行传输的载波数为网络设备调度或者配置终端设备的,可以同时进行传输的载波的最大数量。从而,终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的最大同时进行传输的载波数(例如,第一最大同时进行传输的载波数)。也就是说,在终端设备处于过热状态,或结束过热状态的情况下,终端设备希望网络设备通过调整最大同时进行传输的载波数,使得最大同时进行传输的载波数小于或者等于第一最大同时进行传输的载波数。
在终端设备处于过热状态的情况下,第一最大同时进行传输的载波数小于第二最大同时进行传输的载波数,其中,第二最大同时进行传输的载波数为上报第二信息之前网络设备为终端设备配置的最大同时进行传输的载波数。或者说,终端设备期望的最大同时进行传输的载波数(第一最大同时进行传输的载波数)小于网络设备为终端设备配置的最大同时进行传输的载波数(第二最大同时进行传输的载波数)。
基于上述方案,终端设备上报了可以在较少的载波上进行同时传输的信息,使得此后网络设备可以根据上述信息为终端设备配置参数,从而终端设备可以关闭部分硬件,减少能耗,降低发热。
结合第一方面,在第一方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该传输方式为在至多1个载波进行传输的方式。
举例而言,终端设备的传输方式可以为在至多1个载波进行传输的方式,或可以同时在多个载波进行传输的方式。终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的传输方式(例如,在至多1个载波进行传输的方式)。也就是说,在终端设备处于过热状态,或结束过热状态的情况下,终端设备希望网络设备通过调整终端设备的传输方式,使得终端设备的传输方式为在至多1个载波进行传输的方式或可以同时在多个载波进行传输的方式。
在终端设备处于过热状态的情况下,终端设备上报的的传输方式为在至多1个载波进 行传输的方式。其中,通过在至多1个载波进行传输,相较于可以同时在两个及以上的载波进行传输可以有效降低系统能耗。
基于上述方案,终端设备上报了较低功耗的传输方式的信息,使得此后网络设备可以根据上述信息为终端设备配置参数,从而终端设备可以减少能耗,降低发热。
结合第一方面,在第一方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一切换时间大于第二切换时间,该第二切换时间为该网络设备配置的切换时间。
举例而言,在终端设备处于过热状态的情况下,终端设备可以通过上报偏好(Preference)、减小配置(Reduced configuration)的载波的第一切换时间(即,切换时间),从而达到降低能耗的目的。也就是说,在终端设备处于过热状态,或结束过热状态时,终端设备希望网络设备通过调整切换时间,使得切换时间大于或者等于第一切换时间。
在可能实现的一种方式中,在终端设备处于过热状态的情况下,终端设备可以上报偏好,或优选的第一切换时间,第一切换时间大于第二切换时间,第二切换时间为网络设备配置的切换时间。例如,切换时间可以是{35us,140us,210us}中的至少一个。例如,网络设备向终端设备配置的第二切换时间为35us,在终端设备处于过热的情况下,终端设备可以上报值为140us或210us的第一切换时间。也就是说,在终端设备处于过热状态时的情况下,终端设备希望网络设备通过调整终端设备的切换时间(即,第二切换时间),使得该切换时间为第一切换时间。
在可能实现的另一种方式中,终端设备在能力上报时,可以针对同一个频段集合上报多个切换时间,网络设备可以从多个切换时间中选择至少一个切换时间为终端设备配置。UE在过热时,在终端设备处于过热状态的情况下,终端设备可以在上述多个切换时间中上报一个功耗较低的切换时间至网络设备,从而达到减小终端设备的能耗,降低发热的效果。
基于上述方案,终端设备上报了较长时间的切换时间的信息,使得此后网络设备可以根据上述信息为终端设备配置切换载波的参数,从而终端设备可以关闭部分硬件,减少能耗,降低发热。
结合第一方面,在第一方面的某些实现方式中,该第一载波最大天线端口数用于指示该终端设备在第一频率范围中每个小区的载波最大天线端口数,其中,在该第一载波最大天线端口数的数量为1的情况下,该第一载波最大天线端口数对应该第一频率范围中每个小区的所有载波最大天线端口数;或在该第一载波最大天线端口数的数量为N,且在该第一频率范围内第t个小区的最大载波数为L的情况下,该N个第一载波最大天线端口数中的前L个第一载波最大天线端口数指示第一频率范围内第t个小区的L个载波的最大天线端口数,其中,N为该第一频率范围内载波数最大的小区的载波数,L小于或者等于N,t、L均为正整数,N为大于1的正整数。
举例而言,载波最大天线端口数用于指示终端设备在第一频率范围中每个小区的载波最大天线端口数。终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的载波最大天线端口数(例如,第一载波最大天线端口数)。也就是说,在终端设备处于过热状态,或结束过热状态的情况下,终端设备可以准确上报或修正每个频率范围内的每个小区的每个载波的载波最大天线端口数,希望网络设备通过调整载波最大天线端口数,使得载波最大天线端口数小于或者等于第一载波最大天线端口数。从而使得此后网络设备 可以根据该信息为终端设备配置参数,调整终端设备的小区的载波的最大天线端口数。从而终端设备可以关闭部分硬件,减少能耗,降低发热。
在终端设备处于过热状态的情况下,第一载波最大天线端口数小于第二载波最大天线端口数,第二载波最大天线端口数为终端设备上报第二信息之前的载波最大天线端口数。或者说,终端设备期望的载波最大天线端口数小于第二载波最大天线端口数。
在可能实现的一种方式中,在第一载波最大天线端口数的数量为1的情况下,第一载波最大天线端口数对应第一频率范围中每个小区的所有载波最大天线端口数。
在可能实现的另一种方式中,在第一载波最大天线端口数的数量为N,且在第一频率范围内第t个小区的最大载波数为L的情况下,N个第一载波最大天线端口数中的前L个第一载波最大天线端口数指示第一频率范围内第t个小区的L个载波的最大天线端口数,其中,N为第一频率范围内载波数最大的小区的载波数,L小于或者等于N,t、L均为正整数,N为大于1的正整数。进一步地,N个第一载波最大天线端口数中的前L个第一载波最大天线端口数,表示按照载波标识的大小,和/或载波的频率大小排序的第一频率范围内第t个小区的L个载波的最大天线端口数。
基于上述方案,终端设备上报了小区的载波的最大天线端口数的信息,使得此后网络设备可以根据该信息为终端设备配置载波的参数,减少了终端设备的小区的载波的最大天线端口数,从而终端设备可以关闭部分硬件,减少能耗,降低发热。
应理解,在上述方案中,在L小于N的情况下,第L+1至第N个第一载波最大天线端口数的取值,可以为预定义的固定值,也可以为终端设备与网络设备协商的固定值,例如,可以是1或2,也可以是N个第一载波最大天线端口数中的第1个第一载波最大天线端口数,本申请在此不做限定。
结合第一方面,在第一方面的某些实现方式中,该第一载波最大射频链路数用于指示该终端设备在第二频率范围中每个小区的载波最大射频链路数,其中,在该第一载波最大射频链路数的数量为1的情况下,该第一载波最大射频链路数对应该第二频率范围中每个小区的所有载波最大射频链路数;或在该第一载波最大射频链路数的数量为P,且该第二频率范围内第i个小区的所有载波数为Q的情况下,该P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数指示第二频率范围内第i个小区的Q个载波的最大射频链路数,其中,P为该第二频率范围内载波数最大的小区的载波数,Q小于或者等于P,i、Q均为正整数,P为大于1的正整数。
举例而言,载波最大射频链路数用于指示终端设备在第二频率范围中每个小区的载波最大射频链路数。终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的载波最大射频链路数(例如,第一载波最大射频链路数)。也就是说,在终端设备处于过热状态,或结束过热状态的情况下,终端设备可以准确上报或修正每个频率范围内的每个小区的每个载波的载波最大射频链路数,希望网络设备通过调整载波最大射频链路数,使得载波最大射频链路数小于或者等于第一载波最大射频链路数。从而使得终端设备关闭部分器件,减少终端设备的能耗,降低发热。
在终端设备处于过热状态的情况下,第一载波最大射频链路数小于第二载波最大射频链路数,第二载波最大射频链路数为终端设备上报第二信息之前的载波最大射频链路数。或者说,终端设备期望的载波最大射频链路数小于第二载波最大射频链路数。
在可能实现的一种方式中,在第一载波最大射频链路数的数量为1的情况下,第一载波最大射频链路数对应第二频率范围中每个小区的所有载波最大射频链路数。
在可能实现的另一种方式中,在第一载波最大射频链路数的数量为P,且在第二频率范围内第i个小区的最大载波数为Q的情况下,P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数指示第二频率范围内第i个小区的Q个载波的最大射频链路数,其中,P为第一频率范围内载波数最大的小区的载波数,Q小于或者等于P,i、Q均为正整数,P为大于1的整数。进一步地,P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数,表示按照载波标识的大小,和/或载波的频率大小排序的第二频率范围内第i个小区的Q个载波的最大射频链路数。
基于上述方案,终端设备上报了小区的载波的最大射频链路数的信息,使得此后网络设备可以根据该信息为终端设备配置载波的参数,减少了终端设备的小区的载波的最大射频链路数,从而终端设备可以关闭部分硬件,减少能耗,降低发热。
应理解,在上述方案中,在Q小于P的情况下,第Q+1至第P个第一载波最大射频链路数的取值,可以为预定义的固定值,也可以为终端设备与网络设备协商的固定值,例如,可以是1或2,也可以是P个第一载波最大射频链路数中的第1个第一载波最大射频链路数,本申请在此不做限定。
结合第一方面,在第一方面的某些实现方式中,该第一最大MIMO层数用于指示该终端设备在第三频率范围中每个小区的载波的最大MIMO层数,其中,在该第一最大MIMO层数的数量为1的情况下,该第一最大MIMO层数对应该第三频率范围中每个小区的所有载波的最大MIMO层数;或在该第一最大MIMO层数的数量为W,且该第三频率范围内第x个小区的所有载波数为Y的情况下,该W个第一最大MIMO层数中的前Y个第一最大MIMO层数指示第三频率范围内第x个小区的Y个载波的最大MIMO层数,其中,W为该第三频率范围内载波数最大的小区的载波数,Y小于或者等于W,x、Y均为正整数,W为大于1的正整数。
举例而言,最大MIMO层数用于指示终端设备在第三频率范围中每个小区的载波的最大MIMO层数。终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的载波最大MIMO层数(例如,第一最大MIMO层数)。也就是说,在终端设备处于过热状态,或结束过热状态的情况下,终端设备希望网络设备通过调整终端设备的载波的最大MIMO层数,使得载波最大MIMO层数小于或者等于第一最大MIMO层数,从而可以准确上报或修正每个频率范围内的每个小区的每个载波的最大MIMO层数。
在终端设备处于过热状态的情况下,第一最大MIMO层数小于第二最大MIMO层数,第二最大MIMO层数为终端设备上报第二信息之前的载波最大MIMO层数。或者说,终端设备期望的载波最大MIMO层数小于第二最大MIMO层数。
在可能实现的一种方式中,在第一最大MIMO层数的数量为1的情况下,第一最大MIMO层数对应第三频率范围中每个小区的所有载波的最大MIMO层数。
在可能实现的另一种方式中,在第一最大MIMO层数的数量为W,且在第三频率范围内第x个小区的最大载波数为Y的情况下,W个第一最大MIMO层数中的前Y个第一最大MIMO层数指示第三频率范围内第x个小区的Y个载波的最大MIMO层数,其中,W为第三频率范围内载波数最大的小区的载波数,Y小于或者等于W,x、Y均为正整数, W为大于1的正整数。进一步地,W个第一最大MIMO层数中的前Y个第一最大MIMO层数,表示按照载波标识的大小,和/或载波的频率大小排序的第三频率范围内第x个小区的Y个载波的最大MIMO层数。
基于上述方案,在支持一个小区多载波场景的最大载波过热上报的情况下,终端设备上报了每个频率范围内的小区的载波的最大MIMO层数的信息,从而支持一个小区内多载波场景的最大载波过热上报,使得此后网络设备可以根据该信息为终端设备配置载波切换的参数,有利于终端设备关闭这些载波涉及的部分器件,有利于节能,减少发热。
应理解,在上述方案中,在Y小于W的情况下,第Y+1至第W个第一最大MIMO层数的取值,可以为预定义的固定值,也可以为终端设备与网络设备协商的固定值,例如,可以是1或2,也可以是W个第一最大MIMO层数中的第1个第一最大MIMO层数,本申请在此不做限定。
结合第一方面,在第一方面的某些实现方式中,接收该网络设备发送的第三指示信息,该第三指示信息用于对终端设备进行配置。
在可能实现的一种方式中,该第三信息为网络设备根据第二信息生成的,用于指示终端设备可以通过第二信息中上报的参数信息,进行参数配置。
在可能实现的另一种方式中,网络设备生成第三信息,该第三信息用于对终端设备进行配置,且第三指示信息中关于终端设备载波的参数信息与第二信息中的参数信息无关。
第二方面,提供了一种信息接收的方法,该方法包括:向终端设备发送第一信息,该第一信息用于指示该终端设备检测到过热状态的情况下,上报第二信息;在该终端设备处于该过热状态,或结束该过热状态的情况下,接收该终端设备发送的该第二信息,该第二信息包括以下至少一项信息:第一切换载波数、第一最大同时进行传输的载波数、传输方式、第一切换时间、第一载波最大天线端口数、第一载波最大射频链路数,或第一最大多输入多输出MIMO层数,其中,该第一切换载波数大于或者等于该第一最大同时进行传输的载波数。
上述方案带来的有益效果,可以参考第一方面的相关描述。为了简洁,本申请在此不再赘述。
结合第二方面,在第二方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一切换载波数小于第二切换载波数,其中,该第二切换载波数为所述终端设备向所述网络设备发送所述第二信息之前的切换载波数。
结合第二方面,在第二方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一最大同时进行传输的载波数小于第二最大同时进行传输的载波数,其中,该第二最大同时进行传输的载波数为网络设备配置的。
结合第二方面,在第二方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该传输方式为在至多1个载波进行传输的方式。
结合第二方面,在第二方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一切换时间大于第二切换时间,该第二切换时间为该网络设备配置的切换时间。
结合第二方面,在第二方面的某些实现方式中,该第一载波最大天线端口数用于指示该终端设备在第一频率范围中每个小区的载波最大天线端口数,其中,在该第一载波最大天线端口数的数量为1的情况下,该第一载波最大天线端口数对应该第一频率范围中每个 小区的所有载波最大天线端口数;或在该第一载波最大天线端口数的数量为N,且在该第一频率范围内第t个小区的最大载波数为L的情况下,该N个第一载波最大天线端口数中的前L个第一载波最大天线端口数指示第一频率范围内第t个小区的L个载波的最大天线端口数,其中,N为该第一频率范围内载波数最大的小区的载波数,L小于或者等于N,t、L均为正整数,N为大于1的正整数。
结合第二方面,在第二方面的某些实现方式中,该第一载波最大射频链路数用于指示该终端设备在第二频率范围中每个小区的载波最大射频链路数,其中,在该第一载波最大射频链路数的数量为1的情况下,该第一载波最大射频链路数对应该第二频率范围中每个小区的所有载波最大射频链路数;或在该第一载波最大射频链路数的数量为P,且该第二频率范围内第i个小区的所有载波数为Q的情况下,该P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数指示第二频率范围内第i个小区的Q个载波的最大射频链路数,其中,P为该第二频率范围内载波数最大的小区的载波数,Q小于或者等于P,i、Q均为正整数,P为大于1的正整数。
结合第二方面,在第二方面的某些实现方式中,该第一最大MIMO层数用于指示该终端设备在第三频率范围中每个小区的载波的最大MIMO层数,其中,在该第一最大MIMO层数的数量为1的情况下,该第一最大MIMO层数对应该第三频率范围中每个小区的所有载波的最大MIMO层数;或在该第一最大MIMO层数的数量为W,且该第三频率范围内第x个小区的所有载波数为Y的情况下,该W个第一最大MIMO层数中的前Y个第一最大MIMO层数指示第三频率范围内第x个小区的Y个载波的最大MIMO层数,其中,W为该第三频率范围内载波数最大的小区的载波数,Y小于或者等于W,x、Y均为正整数,W为大于1的正整数。
结合第二方面,在第二方面的某些实现方式中,网络设备生成第三信息,该第三信息用于对终端设备进行配置。
在可能实现的一种方式中,该第三信息为网络设备根据第二信息生成的,用于指示终端设备可以通过第二信息中上报的参数信息,进行参数配置。
在可能实现的另一种方式中,网络设备生成第三信息,该第三信息用于对终端设备进行配置,且第三指示信息中关于终端设备载波的参数信息与第二信息中的参数信息无关。
结合第二方面,在第二方面的某些实现方式中,网络设备向终端设备发送该第三信息。
在该第三信息为网络设备根据第二信息生成的情况下,终端设备可以根据第三信息进行通信,从而达到降低能耗、减少发热的效果。
第三方面,提供了一种信息上报的装置,该装置包括:接收模块,用于接收网络设备发送的第一信息,该第一信息用于指示终端设备检测到过热状态的情况下,上报第二信息;发送模块,用于在该终端设备处于该过热状态,或结束该过热状态的情况下,向该网络设备发送该第二信息,该第二信息包括以下至少一项信息:第一切换载波数、第一最大同时进行传输的载波数、传输方式、第一切换时间、第一载波最大天线端口数、第一载波最大射频链路数,或第一最大多输入多输出MIMO层数,其中,该第一切换载波数大于或者等于该第一最大同时进行传输的载波数。
上述方案带来的有益效果,可以参考第一方面的相关描述。为了简洁,本申请在此不再赘述。
结合第三方面,在第三方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一切换载波数小于第二切换载波数,其中,该第二切换载波数为向所述网络设备发送所述第二信息之前的切换载波数。
结合第三方面,在第三方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一最大同时进行传输的载波数小于第二最大同时进行传输的载波数,其中,该第二最大同时进行传输的载波数为网络设备配置的。
结合第三方面,在第三方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该传输方式为在至多1个载波进行传输的方式。
结合第三方面,在第三方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一切换时间大于第二切换时间,该第二切换时间为该网络设备配置的切换时间。
结合第三方面,在第三方面的某些实现方式中,该第一载波最大天线端口数用于指示该终端设备在第一频率范围中每个小区的载波最大天线端口数,其中,在该第一载波最大天线端口数的数量为1的情况下,该第一载波最大天线端口数对应该第一频率范围中每个小区的所有载波最大天线端口数;或在该第一载波最大天线端口数的数量为N,且在该第一频率范围内第t个小区的最大载波数为L的情况下,该N个第一载波最大天线端口数中的前L个第一载波最大天线端口数指示第一频率范围内第t个小区的L个载波的最大天线端口数,其中,N为该第一频率范围内载波数最大的小区的载波数,L小于或者等于N,t、L均为正整数,N为大于1的正整数。
结合第三方面,在第三方面的某些实现方式中,该第一载波最大射频链路数用于指示该终端设备在第二频率范围中每个小区的载波最大射频链路数,其中,在该第一载波最大射频链路数的数量为1的情况下,该第一载波最大射频链路数对应该第二频率范围中每个小区的所有载波最大射频链路数;或在该第一载波最大射频链路数的数量为P,且该第二频率范围内第i个小区的所有载波数为Q的情况下,该P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数指示第二频率范围内第i个小区的Q个载波的最大射频链路数,其中,P为该第二频率范围内载波数最大的小区的载波数,Q小于或者等于P,i、Q均为正整数,P为大于1的正整数。
结合第三方面,在第三方面的某些实现方式中,该第一最大MIMO层数用于指示该终端设备在第三频率范围中每个小区的载波的最大MIMO层数,其中,在该第一最大MIMO层数的数量为1的情况下,该第一最大MIMO层数对应该第三频率范围中每个小区的所有载波的最大MIMO层数;或在该第一最大MIMO层数的数量为W,且该第三频率范围内第x个小区的所有载波数为Y的情况下,该W个第一最大MIMO层数中的前Y个第一最大MIMO层数指示第三频率范围内第x个小区的Y个载波的最大MIMO层数,其中,W为该第三频率范围内载波数最大的小区的载波数,Y小于或者等于W,x、Y均为正整数,W为大于1的正整数。
结合第三方面,在第三方面的某些实现方式中,该接收模块还用于接收该网络设备发送的第三指示信息,该第三指示信息用于对终端设备进行配置。
第四方面,提供了一种信息接收的装置,该装置包括:发送模块,用于向终端设备发送第一信息,该第一信息用于指示该终端设备检测到过热状态的情况下,上报第二信息;接收模块,用于在该终端设备处于该过热状态,或结束该过热状态的情况下,接收该终端 设备发送的该第二信息,该第二信息包括以下至少一项信息:第一切换载波数、第一最大同时进行传输的载波数、传输方式、第一切换时间、第一载波最大天线端口数、第一载波最大射频链路数,或第一最大多输入多输出MIMO层数,其中,该第一切换载波数大于或者等于该第一最大同时进行传输的载波数。
上述方案带来的有益效果,可以参考第一方面的相关描述。为了简洁,本申请在此不再赘述。
结合第四方面,在第四方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一切换载波数小于第二切换载波数,其中,该第二切换载波数为所述终端设备向所述网络设备发送所述第二信息之前的切换载波数。
结合第四方面,在第四方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一最大同时进行传输的载波数小于第二最大同时进行传输的载波数,其中,该第二最大同时进行传输的载波数为网络设备配置的。
结合第四方面,在第四方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该传输方式为在至多1个载波进行传输的方式。
结合第四方面,在第三方面的某些实现方式中,在该终端设备处于该过热状态的情况下,该第一切换时间大于第二切换时间,该第二切换时间为该网络设备配置的切换时间。
结合第四方面,在第四方面的某些实现方式中,该第一载波最大天线端口数用于指示该终端设备在第一频率范围中每个小区的载波最大天线端口数,其中,在该第一载波最大天线端口数的数量为1的情况下,该第一载波最大天线端口数对应该第一频率范围中每个小区的所有载波最大天线端口数;或在该第一载波最大天线端口数的数量为N,且在该第一频率范围内第t个小区的最大载波数为L的情况下,该N个第一载波最大天线端口数中的前L个第一载波最大天线端口数指示第一频率范围内第t个小区的L个载波的最大天线端口数,其中,N为该第一频率范围内载波数最大的小区的载波数,L小于或者等于N,t、L均为正整数,N为大于1的正整数。
结合第四方面,在第四方面的某些实现方式中,该第一载波最大射频链路数用于指示该终端设备在第二频率范围中每个小区的载波最大射频链路数,其中,在该第一载波最大射频链路数的数量为1的情况下,该第一载波最大射频链路数对应该第二频率范围中每个小区的所有载波最大射频链路数;或在该第一载波最大射频链路数的数量为P,且该第二频率范围内第i个小区的所有载波数为Q的情况下,该P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数指示第二频率范围内第i个小区的Q个载波的最大射频链路数,其中,P为该第二频率范围内载波数最大的小区的载波数,Q小于或者等于P,i、Q均为正整数,P为大于1的正整数。
结合第四方面,在第四方面的某些实现方式中,该第一最大MIMO层数用于指示该终端设备在第三频率范围中每个小区的载波的最大MIMO层数,其中,在该第一最大MIMO层数的数量为1的情况下,该第一最大MIMO层数对应该第三频率范围中每个小区的所有载波的最大MIMO层数;或在该第一最大MIMO层数的数量为W,且该第三频率范围内第x个小区的所有载波数为Y的情况下,该W个第一最大MIMO层数中的前Y个第一最大MIMO层数指示第三频率范围内第x个小区的Y个载波的最大MIMO层数,其中,W为该第三频率范围内载波数最大的小区的载波数,Y小于或者等于W,x、Y均 为正整数,W为大于1的正整数。
结合第四方面,在第四方面的某些实现方式中,该装置还包括处理模块,用于生成第三信息,该第三信息用于对终端设备进行配置。
结合第四方面,在第四方面的某些实现方式中,该发送模块还用于向终端设备发送该第三信息。
第五方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种通信装置,包括处理器和接口电路,该接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第一方面的任意可能的实现方式中的方法。
第十二方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第二方面的任意可能的实现方式中的方法。
第十三方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面的任意可能的实现方式中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第二方面的任意可能的实现方式中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十五方面,提供一种通信系统,该通信系统包括第三方面或者第四方面所述的装置。
附图说明
图1是适用于本申请实施例的无线通信系统100的一示意图。
图2是适用于本申请实施例的无线通信系统200的另一示意图。
图3为适用于本申请实施例的场景的一示意图。
图4为适用于本申请实施例的场景的另一示意图。
图5是本申请实施例提供的信息上报的方法300的一种示意性框图。
图6是本申请实施例提供的通信装置的一示意性框图。
图7是本申请实施例提供的通信装置的另一示意性框图。
图8是本申请实施例提供的一种简化的终端设备的结构示意图。
图9是本申请实施例提供的一种简化的基站结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等。
本申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车联网系统中的通信。其中,车联网系统中的通信方式统称为V2X(X代表任何事物),例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)通信,车辆与路边基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
为便于理解本申请实施例,首先结合图1和图2详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的无线通信系统100的一示意图。如图1所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备111,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121至终端设备123。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
其中,网络设备和终端设备通信时,网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选地,网络设备111和终端设备121至终端设备123组成一个单小区通信系统,不失一般性,将小区记为小区#1。网络设备111可以是小区#1中的网络设备,或者说,网络设备111可以为小区#1中的终端设备(例如终端设备121)服务。
需要说明的是,小区可以理解为网络设备的无线信号覆盖范围内的区域。
图2是适用于本申请实施例的无线通信系统200的另一示意图。如图2所示,该无线通信系统200可以包括一个终端设备,例如图2中的终端设备221;该无线通信系统200还可以多个网络设备,例如图2中的网络设备211和网络设备212。图2中的终端设备221可以同时与网络设备221和网络设备212进行通信;或者说,网络设备211和网络设备212可以联合为终端设备221提供服务。
应理解,上述图1和图2仅是示例性说明,本申请并未限定于此。
还应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、小区(cell)
小区是高层从资源管理或移动性管理或服务单元的角度来描述的。每个网络设备的覆盖范围可以被划分为一个或多个小区,且该小区可以看作由一定频域资源组成。小区可以为网络设备的无线网络的覆盖范围内的区域。在本申请实施例中,不同的小区可以对应不同的网络设备。例如,小区#1中的网络设备和小区#2中的网络设备可以是不同的网络设备,如,基站。也就是说,小区#1和小区#2可以由不同的基站来管理,这种情况下,可 以称为小区#1和小区#2共站,或者说,同站。小区#1中的网络设备和小区#2中的网络设备也可以是同一基站的不同的射频处理单元,例如,射频拉远单元(radio remote unit,RRU),也就是说,小区#1和小区#2可以由同一基站管理,具有相同的基带处理单元和中频处理单元,但具有不同的射频处理单元。本申请对此不做特别限定。
主小区(Primary cell,Pcell)是UE进行初始连接建立的小区,和进行重建无线资源控制(Radio resource control,RRC)连接的小区,或是在切换(handover)过程中指定的主小区。Pcell负责与UE之间的RRC通信,其对应的载波单元称为主载波(Primary component carrier,PCC)。其中,Pcell的下行载波称为下行主载波(DL PCC),PCell的上行载波称为上行主载波(UL PCC)。
辅小区(Secondary Cell,Scell)是在RRC重配置时添加的,用于提供额外的无线资源。Scell对应的载波单元称为辅载波(Secondary component carrier,SCC)。其中,Scell的下行载波称为下行辅载波(DL SCC),SCell的上行载波称为上行辅载波(UL SCC)。
其中,Pcell是在连接建立时确定的,Scell是在初始接入完成之后,通过RRC连接重配置消息添加/修改/释放的。
2、载波聚合(carrier aggregation,CA)
载波聚合(carrier aggregation,CA):为了高效地利用零碎的频谱,系统支持不同载波单元之间的聚合。将2个或2个以上的载波聚合在一起以支持更大的传输带宽的技术可以称为载波聚合。
载波聚合技术中,终端设备可以配置多个载波单元(component carrier,CC,或者称,成员载波、组成载波、载波等),每个CC可以对应于一个独立的小区。可以将一个CC等同于一个小区。例如,主小区对应主CC(或者称,主载波),可以是为终端进行初始连接建立的小区,或进行RRC连接重建的小区,或是在切换(handover)过程中指定的主小区。辅小区对应辅CC(或者称,辅载波),可以是在RRC重配置时添加的,用于提供额外的无线资源的小区。
对于处于连接态的终端设备来说,若未配置载波聚合,则该终端设备有一个服务小区;若配置了载波聚合,则该终端设备可以有多个服务小区(serving cell),可以称为服务小区集合。例如,上文所述的主小区和辅小区组成了该终端设备的服务小区(serving cell)集合。换句话说,配置载波聚合的场景下,服务小区集合包括至少一个主小区和至少一个辅小区。或者说,配置了载波聚合的终端设备可与1个Pcell和多个Scell进行数据传输。
其中,UE被配置多个小区,每个小区内包括一个下行载波,和0个到2个上行载波,UE可以激活多个小区中的部分小区,但有些UE的上行能力受限,最多只能配置和激活2个上行载波。
3、发射通道(Transmitter,TX)
发射通道(transmitter,TX)是一个物理概念,也可以称为射频(Radio frequency,RF)发射通道,本申请中均简称为发射通道。在本申请中,发射通道可以是按照如下方式工作的,但不仅限于如下方式:发射通道可接收来自基带芯片的基带信号,对基带信号进行射频处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。具体地,发射通道可以包括天线开关、天线调谐器、低噪声放大器(Low noise amplifier,LNA)、功率放大器(Power amplifier,PA)、混频器(Mixer)、本地振荡器(Local  oscillator,LO),以及滤波器(Filter)等电子器件。这些电子器件可以根据需要集成至一个或多个芯片中,并且,天线也可以认为是发射通道的一部分。
应理解,本申请中射频链路也可以替换为Tx、射频链、天线、射频、发射通道、发送端口、射频链数量、传输层数、传输的最大层数、传输支持的最大层数、接收通道或者它们的任意组合,本申请在此不做限定。
4、天线端口(Port)
天线端口(Port)是一个逻辑概念,在实际发送信号时,会将天线端口映射到对应的发射通道中。目前,网络设备在调度终端设备传输数据时,可以明确指示传输数据所使用的天线端口的端口号。本申请中,天线端口可以简称为端口。
5、上行射频链路切换(UplinkTxSwitch)
R16提出了一种新的上行模式,如果UE支持2个上行载波,那么UE可以在这两个载波上进行射频链路切换,提高射频链路的利用率。
对于支持在两个上行载波中存在两个射频链路,并且支持射频链路在两个载波进行切换的UE,现有协议通过表1对UE在这两个上行载波上的发送行为进行了定义。
表1
情况1 载波1存在1个射频链路以及载波2存在1个射频链路
情况2 载波1存在0个射频链路以及载波2存在2个射频链路
如表1所述,载波1和载波2分别表示这两个上行载波。可以看出,UE在载波1最大支持1个射频链,在载波2最大支持2个射频链路。UE可以在这两个情况之间进行切换,即,可以将1个射频链路在两个载波之间进行切换,而这两个情况之间切换需要切换时间。这个切换时间可以称为上行切换间隙(Uplink switching gap)。UE在上行切换间隙期间内不希望在两个载波中的任何一个上面进行传输。
在现有协议中,并不直接指示UE对于载波上的射频链路进行切换,而是通过UE在载波上发送上行传输的端口数以间接指示UE进行射频链路的切换,进而确定本次上行传输是否需要进行射频链路的切换,即,是否存在切换时间。因为,射频链路和上行传输端口存在映射关系。
表2示出了支持切换上行传输(SwitchedUL)的上行载波聚合的UE,其射频链路与上行传输端口的映射关系。其中,在支持可切换上行传输的模式中,UE不能被调度或者被配置同时在两个载波上进行上行传输。
表2
Figure PCTCN2022095809-appb-000001
从表2可以看出,在情况1中,载波1上有1个射频链路,载波2上有1个射频链路,UE可以在载波1发送1个天线端口的上行传输,同时在载波2没有上行传输(1P+0P)。 在情况2中,载波1没有射频链路,载波2上有2个射频链路,UE可以在载波2发送2个天线端口的上行传输,同时在载波1没有上行传输(0P+2P);或,在载波2上发送1个天线端口的上行传输,同时在载波1没有上行传输(0P+1P)。在此期间,可以依据UE在2个载波上即将发送的上行传输的天线端口的情况,与上一次上行传输的天线端口的情况判断是否需要切换时间。
表3示出了支持并发上行传输(DualUL)的上行载波聚合的UE,其射频链路与上行传输端口的映射关系。其中,在两路上行传输的模式中,UE能被调度或配置同时在两个载波上进行上行传输。
表3
Figure PCTCN2022095809-appb-000002
从表3可以看出,在情况1中,载波1上有1个射频链路,载波2上有1个射频链路,UE可以在载波1发送1个天线端口的上行传输,同时在载波2没有上行传输(1P+0P);或,在载波1发送1个天线端口的上行传输,同时在载波2发送1个天线端口的上行传输(1P+1P);或,在载波2发送1个天线端口的上行传输,同时在载波1没有上行传输(0P+1P)。在情况2中,载波1上没有射频链路,载波2上有2个射频链路,UE可以在载波2发送2个天线端口的上行传输,同时在载波1没有上行传输(0P+2P);或,在载波2发送1个天线端口的上行传输,同时在载波1没有上行传输(0P+1P)。在此期间,可以依据UE在两个载波上的即将发送的上行传输的天线端口情况,与上一次上行传输的天线端口情况,以及所支持的上行传输天线端口的情况判断是否需要切换时间。
例如,即将发送在1个载波的2个天线端口进行传输,之前在这个载波的上行传输为1个天线端口,且在这个载波上不支持2个天线端口的传输(例如,表3的情况1中的0P+1P切换到情况2中的0P+2P),此时UE需要进行射频链路切换,在上行切换间隙内不希望在2个载波的任何一个进行传输。
例如,即将发送在1个载波的1个天线端口进行传输,之前在另一个载波的上行传输是1个天线端口,且在这个载波上支持2个天线端口的传输(例如,表3的情况2中的0P+1P切换到情况1中的1P+XP),此时UE需要进行射频链路切换,在上行切换间隙内不希望在2个载波的任何一个进行传输。
例如,在表2中,情况1和情况2均有0P+1P的状态,均支持0P+1P的发送。所以,如果UE在载波1没有发送传输,在载波2发送1个天线端口的传输,那么UE的射频链路的状态是上一次上行传输的射频链路的状态。即,UE的射频链路的状态不发生改变,因此,UE不需要切换时间。
此外,无论是支持切换上行传输的UE,还是支持并发上行传输的UE,在符合以下两个条件下都会有切换时间:
例如,即将在一个载波发送2个天线端口的传输,之前在另一个载波的上行传输是1个天线端口(例如,表3的情况1中的1P+0P切换至情况2中的0P+2P),此时UE需要进行射频链路切换,在上行切换间隙内不希望在2个载波的任何一个进行传输。
例如,即将在一个载波发送1个天线端口的传输,之前在另一个载波的上行传输是2个天线端口(例如,表3的情况2中的0P+2P切换至情况1中的1P+0P),此时UE需要进行射频链路切换,在上行切换间隙内不希望在2个载波的任何一个进行传输。
此外,如果UE不进行上行传输,那么UE的射频链路状态是上一次上行传输的射频链路状态。即,UE的射频链路状态不发生改变。
应理解,在同一个情况内的不同天线端口之间的上行发送,不需要切换,所以不需要切换时间。
还应理解,由于载波1和载波2上支持的最大天线端口数不同,所以基站给UE配置载波时需要指定该载波为载波1还是载波2,以便于进行区分。
6、过热辅助信息
当前,如果UE支持提供过热辅助信息,且被基站配置了可以在UE检测到内部过热后通过辅助信息通知基站,那么,UE可以在检测到内部过热或者检测到不再经历过热状态时,给基站上报过热辅助信息。
其中,关于终端设备上报过热辅助信息的方式如下:在LTE和NR系统中,由于终端过热(Overheating)等因素引入了用户辅助信息(UE assistance information)的上报。目前,终端设备上报的过热辅助信息主要包括终端设备支持载波、带宽、多天线多输入多输出(Multi-input Multi-output,MIMO)层数(layer)等影响终端设备速率的参数,而且只有在终端设备检测到过热,或结束过热状态的情况下才会主动上报。
例如,过热辅助信息可以包括最大载波数(ReducedMaxCCs,且分为reducedCCsDL和reducedCCsUL)、最大带宽(reducedBW-FR1和reducedBW-FR2),以及最大MIMO层数(reducedMaxMIMO-LayersFR1和reducedMaxMIMO-LayersFR2)。
应理解,现有协议中,最大MIMO层数是每个小区配置的,只应用于小区的正常上行(Normal uplink,NUL)载波的所有BWP,而辅助上行(Supplementary uplink,SUL)载波的最大MIMO层数始终是1,网络不再单独进行配置。
然而,当UE在多个载波上进行工作时,可能会导致UE存在内部过热或能耗过大的情况;同时,当一个小区存在多个载波,且多个载波中的至少两个载波支持的最大MIMO层数大于或者等于2时,通过现有协议配置的最大MIMO层数以及UE过热时上报的最大MIMO层数将不适用。因此,需要一种信息传输的方法与装置,从而能够缓解上述问题。
鉴于此,本申请提供一种方案,在UE处于过热状态或结束过热状态的情况下,可以通过向网络设备上报使得UE减小能耗的信息,或者通过上报最大MIMO层数的信息使得UE上报小区中除NUL之外的其他载波的最大MIMO层数,有利于UE关闭这些载波涉及的部分器件,有利于UE节能,减少UE发热。
应理解,下文实施例,为不失一般性,第二信息可以表示过热辅助信息,也可以表示包括终端设备在检测到内部过热或检测不再经历过热状态时,向网络设备发送的参数信息。
还应理解,本申请实施例中,终端设备向网络设备上报的第二信息可以辅助网络设备对终端设备进行调度,该第二信息既可以在终端设备检测到处于过热状态,或结束过热状态的情况下向网络设备上报,也可以在接收到网络设备发送的指示信息的情况下上报,其上报的方式本申请在此不做限制。
示例性地,图3为适用于本申请实施例的场景的一示意图。如图3所示,本申请实施 例可以应用于多个辅助上行载波的场景。可选的,图3的场景中,多个辅助上行载波与NUL载波属于相同的小区,或者有相同的载波标识,或者共用相同的混合自动重传请求(Hybrid automatic repeat request,HARQ)实体。图4为适用于本申请实施例的场景的另一示意图。如图4所示,本申请实施例也可以应用于多个只有上行载波没有下行载波的小区(即,载波聚合方式)的场景。
图5是本申请实施例提供的信息上报的方法500的一种示意性框图。方法500可以包括如下步骤。
S501,网络设备向终端设备发送第一信息,对应地,终端设备接收网络设备发送的第一信息。
示例地,网络设备可以向终端设备发送第一信息,该第一信息用于指示终端设备检测到过热状态,或结束过热状态的情况下,上报第二信息。
具体地,网络设备可以通过向终端设备发送第一信息,使得终端设备可以在检测到内部处于过热状态,或结束过热状态的情况下,向网络设备上报第二信息,该第二信息包括了终端设备在过热状态,或结束过热状态的情况下的参数信息。
S502,在终端设备处于过热状态,或结束过热状态的情况下,终端设备向网络设备发送第二信息,对应地,网络设备接收终端设备发送的第二信息。
示例地,终端设备在经过检测内部处于过热状态,或结束过热状态的情况下,可以向网络设备发送第二信息,其中,第二信息包括以下至少一项信息:第一切换载波数、第一最大同时进行传输的载波数、传输方式、第一切换时间、第一载波最大天线端口数、第一载波最大射频链路数,或第一最大多输入多输出MIMO层数,其中,第一切换载波数大于或者等于第一最大同时进行传输的载波数。
举例而言,切换载波数,或者说可切换载波数,是根据第一载波集合确定的,第一载波集合是网络设备为终端设备配置的可以进行射频链路切换的载波组成的集合,第一载波集合中的载波数即为终端设备的可以进行射频链路切换的载波数。终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的最大可切换载波数(例如,第一切换载波数)。也就是说,在终端设备处于过热状态,或结束过热状态时,终端设备希望网络设备通过调整第一载波集合中的载波数量,使得第一载波集合中的载波数小于或者等于第一切换载波数。
在终端设备处于过热状态的情况下,第一切换载波数小于第二切换载波数,第二切换载波数为终端设备上报第二信息之前的切换载波数。或者说,终端设备期望的最大可切换载波数小于第二切换载波数。
具体地,如果网络设备为终端设备配置在A 1个载波上进行动态切换,且终端设备被调度或配置可以同时在最多B 1个载波上进行传输,在终端设备处于过热的情况下,终端设备可以上报在C个载波上进行动态切换,其中,B 1、C均小于A 1,且C大于或者等于B 1。即,B 1∈[1,A 1),C∈[B 1,A 1)。
应理解,本申请中,射频链路切换与动态切换、上行动态切换可以相互替换。例如,如果终端设备当前被网络设备配置可以在4个载波上进行动态切换,且终端设备被调度或配置可以同时在最多2个载波上进行传输。在终端设备处于过热的情况下,终端设备可以上报在2个或3个载波上进行动态切换。
基于上述方案,终端设备上报了可以在较少的载波上进行动态切换的信息,使得此后网络设备可以根据上述信息为终端设备配置参数,从而终端设备可以关闭部分硬件,减少能耗,降低发热。
应理解,在终端设备结束过热状态,或过热恢复的情况下,终端设备上报的切换载波数大于终端设备在过热状态时上报的第一切换载波数,从而终端设备在过热状态结束后可以恢复高性能状态。
举例而言,最大同时进行传输的载波数为网络设备调度或者配置终端设备的,可以同时进行传输的载波的最大数量。从而,终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的最大同时进行传输的载波数(例如,第一最大同时进行传输的载波数)。也就是说,在终端设备处于过热状态,或结束过热状态的情况下,终端设备希望网络设备通过调整最大同时进行传输的载波数,使得最大同时进行传输的载波数小于或者等于第一最大同时进行传输的载波数。
在终端设备处于过热状态的情况下,第一最大同时进行传输的载波数小于第二最大同时进行传输的载波数,其中,第二最大同时进行传输的载波数为上报第二信息之前网络设备为终端设备配置的最大同时进行传输的载波数。或者说,终端设备期望的最大同时进行传输的载波数(第一最大同时进行传输的载波数)小于网络设备为终端设备配置的最大同时进行传输的载波数(第二最大同时进行传输的载波数)。
具体地,如果网络设备为终端设备配置在A 2个载波上进行动态切换,且终端设备被调度或配置可以同时在最多B 2个载波上进行传输,在终端设备处于过热的情况下,终端设备可以上报同时在最多D个载波上进行传输,其中,B 2、D均小于A 2,且D小于或者等于B 2。即,B 2∈[1,A 2),D∈[1,B 2)。
例如,如果终端设备当前被网络设备配置可以在4个载波上进行动态切换,且终端设备被调度或配置可以同时在最多3个载波上进行传输。在终端设备处于过热的情况下,终端设备可以上报在1个或2个载波上同时进行传输。
基于上述方案,终端设备上报了可以在较少的载波上进行同时传输的信息,使得此后网络设备可以根据上述信息为终端设备配置参数,进而终端设备可以关闭部分硬件,减少能耗,降低发热。
应理解,在终端设备结束过热状态,或过热恢复的情况下,终端设备上报的最大同时进行传输的载波数应大于终端设备在过热状态时上报的第一最大同时进行传输的载波数,从而终端设备在过热状态结束后可以恢复高性能状态。
举例而言,终端设备的传输方式可以为在至多1个载波进行传输的方式,或可以同时在多个载波进行传输的方式。终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的传输方式(例如,在至多1个载波进行传输的方式)。也就是说,在终端设备处于过热状态,或结束过热状态的情况下,终端设备希望网络设备通过调整终端设备的传输方式,使得终端设备的传输方式为在至多1个载波进行传输的方式或可以同时在多个载波进行传输的方式。
在终端设备处于过热状态的情况下,终端设备上报的的传输方式为在至多1个载波进行传输的方式。其中,通过在至多1个载波进行传输,相较于可以同时在两个及以上的载波进行传输可以有效降低系统能耗。
举例而言,传输方式可以包括并发模式与切换模式。在并发模式中,终端设备可以被调度或配置同时在两个载波进行上行传输。在切换模式中,终端设备不能被调度或者配置同时在两个载波进行上行传输。终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的传输方式(例如,切换模式)。也就是说,在终端设备处于过热状态,或结束过热状态的情况下,终端设备希望网络设备通过调整终端设备的传输方式,使得终端设备的传输方式为切换模式或者并发模式。
在终端设备处于过热状态的情况下,终端设备上报的传输方式为切换模式。其中,切换模式相较于并发模式可以有效降低系统能耗。
在可能实现的一种方式中,网络设备通过配置信息,向终端设备配置了并发模式(或者,可以同时在两个及以上的载波进行传输)的传输方式,在终端设备处于过热的状态下,终端设备可以通过上报偏好,或优选的切换模式(或者,在至多1个载波进行传输)作为传输方式,从而达到降低发热的目的。
在可能实现的另一种方式中,在终端设备处于过热的状态下,终端设备可以直接通过上报偏好,或优选的切换模式(或者,在至多1个载波进行传输)作为传输方式,从而达到降低发热的目的。
基于上述方案,终端设备上报了较低功耗的传输方式的信息,使得此后网络设备可以根据上述信息为终端设备配置参数,从而终端设备可以减少能耗,降低发热。
应理解,在终端设备结束过热状态,或过热恢复的情况下,终端设备可以通过上报并发模式(或者,可以同时在两个及以上的载波进行传输)的传输方式,从而能够同时在两个(或两个及以上的)载波进行上行传输,使得终端设备在过热状态结束后可以恢复高性能状态。
举例而言,在终端设备处于过热状态的情况下,终端设备可以通过上报偏好(Preference)、减小配置(Reduced configuration)的载波的第一切换时间(即,切换时间),从而达到降低能耗的目的。也就是说,在终端设备处于过热状态,或结束过热状态时,终端设备希望网络设备通过调整切换时间,使得切换时间大于或者等于第一切换时间。
在可能实现的一种方式中,在终端设备处于过热状态的情况下,终端设备可以上报偏好,或优选的第一切换时间,第一切换时间大于第二切换时间,第二切换时间为网络设备配置的切换时间。例如,切换时间可以是{35us,140us,210us}中的至少一个。例如,网络设备向终端设备配置的第二切换时间为35us,在终端设备处于过热的情况下,终端设备可以上报值为140us或210us的第一切换时间。也就是说,在终端设备处于过热状态时的情况下,终端设备希望网络设备通过调整终端设备的切换时间(即,第二切换时间),使得该切换时间为第一切换时间。
基于上述方案,终端设备上报了较长时间的切换时间的信息,使得此后网络设备可以根据上述信息为终端设备配置参数,从而终端设备可以关闭部分硬件,减少能耗,降低发热。
在可能实现的另一种方式中,终端设备在能力上报时,可以针对同一个频段集合上报多个切换时间,网络设备可以从多个切换时间中选择至少一个切换时间为终端设备配置。UE在过热时,在终端设备处于过热状态的情况下,终端设备可以在上述多个切换时间中上报一个功耗较低的切换时间至网络设备,从而达到减小终端设备的能耗,降低发热的效 果。
应理解,在终端设备结束过热状态,或过热恢复的情况下,终端设备上报的切换时间应小于终端设备在过热状态时上报的第一切换时间,使得终端设备在过热状态结束后可以恢复高性能状态。
举例而言,载波最大天线端口数用于指示终端设备在第一频率范围中每个小区的载波最大天线端口数。终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的载波最大天线端口数(例如,第一载波最大天线端口数)。也就是说,在终端设备处于过热状态,或结束过热状态的情况下,终端设备可以准确上报或修正每个频率范围内的每个小区的每个载波的载波最大天线端口数,希望网络设备通过调整载波最大天线端口数,使得载波最大天线端口数小于或者等于第一载波最大天线端口数。从而使得此后网络设备可以根据该信息为终端设备配置参数,调整终端设备的小区的载波的最大天线端口数。从而终端设备可以关闭部分硬件,减少能耗,降低发热。
在终端设备处于过热状态的情况下,第一载波最大天线端口数小于第二载波最大天线端口数,第二载波最大天线端口数为终端设备上报第二信息之前的载波最大天线端口数。或者说,终端设备期望的载波最大天线端口数小于第二载波最大天线端口数。
可选的,载波的最大天线端口数是在该载波上进行上行传输的最大端口数。
可选的,载波的最大天线端口数是网络设备为终端设备配置的在该载波上的信道探测参考信号(Sounding Reference Signal,SRS)资源的最大天线端口数。
在一种可能的情况中,SRS资源的最大天线端口数等于网络设备配置的所有周期SRS、半静态SRS和非周期SRS资源中的最大天线端口数。在另一种可能的情况中,SRS资源的最大天线端口数等于网络设备配置的所有周期SRS、激活的半静态SRS和非周期SRS资源中的最大天线端口数。
在可能实现的一种方式中,在第一载波最大天线端口数的数量为1的情况下,第一载波最大天线端口数对应第一频率范围中每个小区的所有载波最大天线端口数。
具体地,在第一载波最大天线端口数的数量为1的情况下,且第一载波最大天线端口数为2,则第一频率范围中每个小区的所有载波的最大天线端口数均为2。
在可能实现的另一种方式中,在第一载波最大天线端口数的数量为N,且在第一频率范围内第t个小区的最大载波数为L的情况下,N个第一载波最大天线端口数中的前L个第一载波最大天线端口数指示第一频率范围内第t个小区的L个载波的最大天线端口数,其中,N为第一频率范围内载波数最大的小区的载波数,L小于或者等于N,t、L均为正整数,N为大于1的正整数。进一步地,N个第一载波最大天线端口数中的前L个第一载波最大天线端口数,表示按照载波标识的大小,和/或载波的频率大小排序的第一频率范围内第t个小区的L个载波的最大天线端口数。
具体地,第一频率范围内载波数最大的小区的载波数为5,则第一载波最大天线端口数的数量为5,其中,第一频率范围内第1个小区的最大载波数为3,则5个第一载波最大天线端口数的前3个第一载波最大天线端口数,为第一频率范围内第1个小区的3个载波的最大天线端口数。进一步地,5个第一载波最大天线端口数的前3个第一载波最大天线端口数,表示按照载波标识的大小,和/或载波的频率大小排序的第一频率范围内第1个小区的3个载波的最大天线端口数。例如,5个第一载波最大天线端口数的第1个第一 载波最大天线端口数,为第一频率范围内第1个小区的载波标识最小(或最大)的最大天线端口数。
基于上述方案,终端设备上报了小区的载波的最大天线端口数的信息,使得此后网络设备可以根据该信息为终端设备配置载波的参数,减少终端设备的小区的载波的最大天线端口数,从而终端设备可以关闭部分硬件,减少能耗,降低发热。
应理解,在上述方案中,在L小于N的情况下,第L+1至第N个第一载波最大天线端口数的取值,可以为预定义的固定值,也可以为终端设备与网络设备协商的固定值,例如,可以是1或2,也可以是N个第一载波最大天线端口数中的第1个第一载波最大天线端口数,本申请在此不做限定。
还应理解,在终端设备结束过热状态,或过热恢复的情况下,终端设备上报的载波最大天线端口数应大于终端设备在过热状态时上报的第一载波最大天线端口数,使得终端设备在过热状态结束后可以恢复高性能状态。
举例而言,载波最大射频链路数用于指示终端设备在第二频率范围中每个小区的载波最大射频链路数。终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的载波最大射频链路数(例如,第一载波最大射频链路数)。也就是说,在终端设备处于过热状态,或结束过热状态的情况下,终端设备可以准确上报或修正每个频率范围内的每个小区的每个载波的载波最大射频链路数,希望网络设备通过调整载波最大射频链路数,使得载波最大射频链路数小于或者等于第一载波最大射频链路数。从而使得终端设备关闭部分器件,减少终端设备的能耗,降低发热。
在终端设备处于过热状态的情况下,第一载波最大射频链路数小于第二载波最大射频链路数,第二载波最大射频链路数为终端设备上报第二信息之前的载波最大射频链路数。或者说,终端设备期望的载波最大射频链路数小于第二载波最大射频链路数。
在可能实现的一种方式中,在第一载波最大射频链路数的数量为1的情况下,第一载波最大射频链路数对应第二频率范围中每个小区的所有载波最大射频链路数。
具体地,在第一载波最大射频链路数的数量为1的情况下,且第一载波最大射频链路数为2,则第二频率范围中每个小区的所有载波的最大射频链路数均为2。
可选的,一个载波的上行传输的最大端口数小于或者等于这个载波的最大射频链路数。例如,如果一个载波的最大射频链路数为2,那么这个载波的上行传输的最大端口数小于或者等于2。
在可能实现的另一种方式中,在第一载波最大射频链路数的数量为P,且在第二频率范围内第i个小区的最大载波数为Q的情况下,P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数指示第二频率范围内第i个小区的Q个载波的最大射频链路数,其中,P为第一频率范围内载波数最大的小区的载波数,Q小于或者等于P,i、Q均为正整数,P为大于1的整数。进一步地,P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数,表示按照载波标识的大小,和/或载波的频率大小排序的第二频率范围内第i个小区的Q个载波的最大射频链路数。
具体地,第一频率范围内载波数最大的小区的载波数为4,则第一载波最大射频链路数的数量为4,其中,第二频率范围内第2个小区的最大载波数为2,则4个第一载波最大射频链路数的前2个第一载波最大射频链路数,为第二频率范围内第2个小区的2个载 波的最大射频链路数。进一步地,4个第一载波最大射频链路数的前2个第一载波最大射频链路数,表示按照载波标识的大小,和/或载波的频率大小排序的第二频率范围内第2个小区的2个载波的最大射频链路数。例如,4个第一载波最大射频链路数的第1个第一载波最大射频链路数,为第二频率范围内第2个小区的载波标识最小(或最大)的最大射频链路数。
基于上述方案,终端设备上报了小区的载波的最大射频链路数的信息,使得此后网络设备可以根据该信息为终端设备配置载波的参数,减少终端设备的小区的载波的最大射频链路数,从而终端设备可以关闭部分硬件,减少能耗,降低发热。
应理解,在上述方案中,在Q小于P的情况下,第Q+1至第P个第一载波最大射频链路数的取值,可以为预定义的固定值,也可以为终端设备与网络设备协商的固定值,例如,可以是1或2,也可以是P个第一载波最大射频链路数中的第1个第一载波最大射频链路数,本申请在此不做限定。
还应理解,在终端设备结束过热状态,或过热恢复的情况下,终端设备上报的载波最大射频链路数应大于终端设备在过热状态时上报的第一载波最大射频链路数,使得终端设备在过热状态结束后可以恢复高性能状态。
举例而言,最大MIMO层数用于指示终端设备在第三频率范围中每个小区的载波的最大MIMO层数。终端设备可以上报偏好(Preference)、减小配置(Reduced configuration)的载波最大MIMO层数(例如,第一最大MIMO层数)。也就是说,在终端设备处于过热状态,或结束过热状态的情况下,终端设备希望网络设备通过调整终端设备的载波的最大MIMO层数,使得载波最大MIMO层数小于或者等于第一最大MIMO层数,从而可以准确上报或修正每个频率范围内的每个小区的每个载波的最大MIMO层数。
在终端设备处于过热状态的情况下,第一最大MIMO层数小于第二最大MIMO层数,第二最大MIMO层数为终端设备上报第二信息之前的载波最大MIMO层数。或者说,终端设备期望的载波最大MIMO层数小于第二最大MIMO层数。
在可能实现的一种方式中,在第一最大MIMO层数的数量为1的情况下,第一最大MIMO层数对应第三频率范围中每个小区的所有载波的最大MIMO层数。
具体地,在第一最大MIMO层数的数量为1的情况下,且第一最大MIMO层数为2,则第三频率范围中每个小区的所有载波的最大MIMO层数均为2。
在可能实现的另一种方式中,在第一最大MIMO层数的数量为W,且在第三频率范围内第x个小区的最大载波数为Y的情况下,W个第一最大MIMO层数中的前Y个第一最大MIMO层数指示第三频率范围内第x个小区的Y个载波的最大MIMO层数,其中,W为第三频率范围内载波数最大的小区的载波数,Y小于或者等于W,x、Y均为正整数,W为大于1的正整数。进一步地,W个第一最大MIMO层数中的前Y个第一最大MIMO层数,表示按照载波标识的大小,和/或载波的频率大小排序的第三频率范围内第x个小区的Y个载波的最大MIMO层数。
具体地,第一频率范围内载波数最大的小区的载波数为4,则第一最大MIMO层数的数量为4,其中,第三频率范围内第3个小区的最大载波数为3,则4个第一最大MIMO层数的前3个第一最大MIMO层数,为第三频率范围内第3个小区的3个载波的最大MIMO层数。进一步地,4个第一最大MIMO层数的前3个第一最大MIMO层数,表示 按照载波标识的大小,和/或载波的频率大小排序的第三频率范围内的第3个小区的3个载波的最大MIMO层数。例如,4个第一最大MIMO层数的第1个第一最大MIMO层数,为第三频率范围内第3个小区的载波标识最小(或最大)的最大MIMO层数。
基于上述方案,在支持一个小区多载波场景的最大载波过热上报的情况下,终端设备上报了每个频率范围内的小区的载波的最大MIMO层数的信息,从而支持一个小区内多载波场景的最大载波过热上报,使得此后网络设备可以根据该信息为终端设备配置载波的参数,有利于终端设备关闭这些载波涉及的部分器件,有利于节能,减少发热。
应理解,在上述方案中,在Y小于W的情况下,第Y+1至第W个第一最大MIMO层数的取值,可以为预定义的固定值,也可以为终端设备与网络设备协商的固定值,例如,可以是1或2,也可以是W个第一最大MIMO层数中的第1个第一最大MIMO层数,本申请在此不做限定。
还应理解,在终端设备结束过热状态,或过热恢复的情况下,终端设备上报的载波最大MIMO层数应大于终端设备在过热状态时上报的第一最大MIMO层数,使得终端设备在过热状态结束后可以恢复高性能状态。
可选地,第二信息可以通过随机接入过程中的第一消息(Meassage 1,Msg1)、第三消息(Meassage 3,Msg3)、第五消息(Meassage 5,Msg5)中的任一消息上报。
在上述第二信息通过Msg1上报的情况下,第二信息可通过Msg1中不同的前导码(Preamble)或者前导码分组区分。
在上述第二信息通过Msg3上报的情况下,可在Msg3中携带该第二信息。
在上述第二信息通过Msg5上报的情况下,可在Msg5中携带该第二信息。
此外,上述第二信息还可通过现有的终端设备辅助信息(UE assistance information)进行上报。
S503,网络设备生成第三信息。
可选地,网络设备可以生成第三信息,该第三信息用于对终端设备进行配置。
在可能实现的一种方式中,该第三信息为网络设备根据第二信息生成的,用于指示终端设备可以通过第二信息中上报的参数信息,进行参数配置。
在可能实现的另一种方式中,网络设备生成第三信息,该第三信息用于对终端设备进行配置,且第三指示信息中关于终端设备载波的参数信息与第二信息中的参数信息无关。
S504,网络设备向终端设备发送第三信息,对应地,终端设备接收网络设备发送的第三信息。
可选地,网络设备可以向终端设备发送第三信息,用于对终端设备进行参数配置。
在可能实现的一种方式中,该第三信息指示终端设备可以通过第二信息中上报的参数信息,进行参数配置。
在可能实现的另一种方式中,该第三指示信息用于对终端设备进行参数配置,且第三指示信息中关于终端设备载波的参数信息与第二信息中的参数信息无关。
应理解,在上述方案中,终端设备处于过热状态中的行为,也可以等同于终端设备希望进行节能,或希望处于节能状态的行为。
基于上述方案,在接收网络设备发送的第一信息之后,在终端设备处于过热状态,或结束过热状态的情况下,向网络设备发送第二信息,该第二信息包括终端设备上报的可以 降低能耗、减少发热的配置的信息,以及准确的载波的最大MIMO层数,网络设备可以根据该第二信息生成第三信息,并向终端设备发送第三信息,其中,第三信息用于指示终端设备可以通过第二信息中上报的参数信息,进行通信。从而,终端设备可以在通信过程中,关闭部分器件,减少发热,降低能耗。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图5详细说明了本申请实施例提供的方法。以下,结合图6至图9详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图6是本申请实施例提供的通信装置的示意性框图。该通信装置600包括接收单元610、发送单元620和处理单元630。接收单元610与发送单元620可以实现相应的通信功能,处理单元630用于进行数据处理。接收单元610与发送单元620还可以称为通信接口或通信单元。
可选地,该通信装置600还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元630可以读取存储单元中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置600可以用于执行上文方法实施例中终端设备所执行的动作,这时,该通信装置600可以为终端设备或者可配置于终端设备的部件,接收单元610与发送单元620用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元630用于执行上文方法实施例中终端设备侧的处理相关的操作。
或者,该通信装置600可以用于执行上文方法实施例中网络设备所执行的动作,这时,该通信装置600可以为网络设备或者可配置于网络设备的部件,接收单元610与发送单元620用于执行上文方法实施例中网络设备侧的收发相关的操作,处理单元630用于执行上 文方法实施例中网络设备侧的处理相关的操作。
作为一种设计,该通信装置600用于执行上文图5所示实施例中终端设备所执行的动作,接收单元610用于:S501、S504;发送单元620用于:S502。
该通信装置600可实现对应于根据本申请实施例的方法500中的终端设备执行的步骤或者流程,该通信装置600可以包括用于执行图5中的方法500中的终端设备执行的方法的单元。并且,该通信装置600中的各单元和上述其他操作和/或功能为了实现图5中的方法500的相应流程。
其中,当该通信装置600用于执行图5中的方法500时,接收单元610可用于执行方法500中的步骤501、504,发送单元620可用于执行方法500中的步骤502。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
作为另一种设计,通信装置600用于执行上文图5所示实施例中网络设备所执行的动作,接收单元610用于:S502;发送单元620用于:S501、S504;处理单元630用于:S503。
该通信装置600可实现对应于根据本申请实施例的方法500中的网络设备执行的步骤或者流程,该通信装置600可以包括用于执行图5中的方法500中的网络设备执行的方法的单元。并且,该通信装置600中的各单元和上述其他操作和/或功能为了实现图5中的方法500的相应流程。
其中,当该通信装置600用于执行图5中的方法500时,接收单元610可用于执行方法600中的步骤502;发送单元620可用于执行方法500中的步骤501、504;处理单元620可用于执行方法500中的步骤501、504。
上文实施例中的处理单元630可以由至少一个处理器或处理器相关电路实现。接收单元610与发送单元620可以由接收器/接收器相关电路,或发送器/发送器相关电路实现。接收单元610与发送单元620还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
应理解,该通信装置600中的接收单元610与发送单元620也可以耦合为一个收发单元,本申请在此不做限定。
如图7所示,本申请实施例还提供一种通信装置700。该通信装置700包括处理器710,处理器710与存储器720耦合,存储器720用于存储计算机程序或指令和/或数据,处理器710用于执行存储器720存储的计算机程序或指令和/或数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置700包括的处理器710为一个或多个。
可选地,如图7所示,该通信装置700还可以包括存储器720。
可选地,该通信装置700包括的存储器720可以为一个或多个。
可选地,该存储器720可以与该处理器710集成在一起,或者分离设置。
可选地,如图7所示,该通信装置700还可以包括接收器730与发送器740,接收器730用于信号的接收,发送器740用于信号的发送。例如,处理器710用于控制接收器730与发送器740进行信号的接收和/或发送。
作为一种方案,该通信装置700用于实现上文方法实施例中由终端设备执行的操作。
例如,接收器730与发送器740用于实现上文方法实施例中由终端设备执行的收发相 关的操作。
作为另一种方案,该通信装置700用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器710用于实现上文方法实施例中由网络设备执行的处理相关的操作,接收器730与发送器740用于实现上文方法实施例中由网络设备执行的收发相关的操作。
本申请实施例还提供一种通信装置800,该通信装置800可以是终端设备也可以是芯片。该通信装置800可以用于执行上述方法实施例中由终端设备所执行的操作。
当该通信装置800为终端设备时,图8示出了一种简化的终端设备的结构示意图。如图8所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图8中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图8所示,终端设备包括收发单元810和处理单元820。收发单元810也可以称为收发器、收发机、收发装置等。处理单元820也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元810中用于实现接收功能的器件视为接收单元,将收发单元810中用于实现发送功能的器件视为发送单元,即收发单元810包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元810用于执行图5中的步骤501、502、504中的收发操作。
应理解,图8仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图8所示的结构。
当该通信装置800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置900,该通信装置900可以是网络设备也可以是芯片。该通信装置900可以用于执行上述方法实施例中由网络设备所执行的操作。
当该通信装置900为网络设备时,例如为基站。图9示出了一种简化的基站结构示意图。基站包括910部分以及920部分。910部分主要用于射频信号的收发以及射频信号与基带信号的转换;920部分主要用于基带处理,对基站进行控制等。910部分通常可以称为收发单元、收发机、收发电路、或者收发器等。920部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
910部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将910部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即910部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
920部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,910部分的收发单元用于执行图5所示实施例中由网络设备执行的收发相关的步骤;920部分用于执行图5所示实施例中由网络设备执行的处理相关的步骤。
应理解,图9仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图9所示的结构。
当该通信装置900为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备与终端设备。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、 即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。
其中,计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质(或者说计算机可读介质)例如可以包括但不限于:磁性介质或磁存储器件(例如,软盘、硬盘(如移动硬盘)、磁带)、光介质(例如,光盘、压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等)、智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等、U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)等各种可以存储程序代码的介质。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存 储器。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,计算机可以是个人计算机,服务器,或者网络设备等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。关于计算机可读存储介质,可以参考上文描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求和说明书的保护范围为准。

Claims (37)

  1. 一种信息上报的方法,其特征在于,包括:
    接收网络设备发送的第一信息,所述第一信息用于指示终端设备检测到过热状态的情况下,上报第二信息;
    在所述终端设备处于所述过热状态,或结束所述过热状态的情况下,向所述网络设备发送所述第二信息,所述第二信息包括以下至少一项信息:
    第一切换载波数、第一最大同时进行传输的载波数、传输方式、第一切换时间、第一载波最大天线端口数、第一载波最大射频链路数,或第一最大多输入多输出MIMO层数,其中,所述第一切换载波数大于或者等于所述第一最大同时进行传输的载波数。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一切换载波数小于第二切换载波数,其中,所述第二切换载波数为向所述网络设备发送所述第二信息之前的切换载波数。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一最大同时进行传输的载波数小于第二最大同时进行传输的载波数,其中,所述第二最大同时进行传输的载波数为网络设备配置的。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,在所述终端设备处于所述过热状态的情况下,所述传输方式为在至多1个载波进行传输的方式。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一切换时间大于第二切换时间,所述第二切换时间为所述网络设备配置的切换时间。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一载波最大天线端口数用于指示所述终端设备在第一频率范围中每个小区的载波最大天线端口数,其中,
    在所述第一载波最大天线端口数的数量为1的情况下,所述第一载波最大天线端口数对应所述第一频率范围中每个小区的所有载波最大天线端口数;或
    在所述第一载波最大天线端口数的数量为N,且在所述第一频率范围内第t个小区的最大载波数为L的情况下,所述N个第一载波最大天线端口数中的前L个第一载波最大天线端口数指示第一频率范围内第t个小区的L个载波的最大天线端口数,其中,N为所述第一频率范围内载波数最大的小区的载波数,L小于或者等于N,t、L均为正整数,N为大于1的正整数。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一载波最大射频链路数用于指示所述终端设备在第二频率范围中每个小区的载波最大射频链路数,其中,
    在所述第一载波最大射频链路数的数量为1的情况下,所述第一载波最大射频链路数对应所述第二频率范围中每个小区的所有载波最大射频链路数;或
    在所述第一载波最大射频链路数的数量为P,且所述第二频率范围内第i个小区的所有载波数为Q的情况下,所述P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数指示第二频率范围内第i个小区的Q个载波的最大射频链路数,其中,P为所述第二频率范围内载波数最大的小区的载波数,Q小于或者等于P,i、Q均为正整数,P为 大于1的正整数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一最大MIMO层数用于指示所述终端设备在第三频率范围中每个小区的载波的最大MIMO层数,其中,
    在所述第一最大MIMO层数的数量为1的情况下,所述第一最大MIMO层数对应所述第三频率范围中每个小区的所有载波的最大MIMO层数;或
    在所述第一最大MIMO层数的数量为W,且所述第三频率范围内第x个小区的所有载波数为Y的情况下,所述W个第一最大MIMO层数中的前Y个第一最大MIMO层数指示第三频率范围内第x个小区的Y个载波的最大MIMO层数,其中,W为所述第三频率范围内载波数最大的小区的载波数,Y小于或者等于W,x、Y均为正整数,W为大于1的正整数。
  9. 一种信息接收的方法,其特征在于,包括:
    向终端设备发送第一信息,所述第一信息用于指示所述终端设备检测到过热状态的情况下,上报第二信息;
    在所述终端设备处于所述过热状态,或结束所述过热状态的情况下,接收所述终端设备发送的所述第二信息,所述第二信息包括以下至少一项信息:
    第一切换载波数、第一最大同时进行传输的载波数、传输方式、第一切换时间、第一载波最大天线端口数、第一载波最大射频链路数,或第一最大多输入多输出MIMO层数,其中,所述第一切换载波数大于或者等于所述第一最大同时进行传输的载波数。
  10. 根据权利要求9所述的方法,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一切换载波数小于第二切换载波数,其中,所述第二切换载波数为所述终端设备向所述网络设备发送所述第二信息之前的切换载波数。
  11. 根据权利要求9或10所述的方法,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一最大同时进行传输的载波数小于第二最大同时进行传输的载波数,其中,所述第二最大同时进行传输的载波数为网络设备配置的。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,在所述终端设备处于所述过热状态的情况下,所述传输方式为在至多1个载波进行传输的方式。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一切换时间大于第二切换时间,所述第二切换时间为所述网络设备配置的切换时间。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述第一载波最大天线端口数用于指示所述终端设备在第一频率范围中每个小区的载波最大天线端口数,其中,
    在所述第一载波最大天线端口数的数量为1的情况下,所述第一载波最大天线端口数对应所述第一频率范围中每个小区的所有载波最大天线端口数;或
    在所述第一载波最大天线端口数的数量为N,且在所述第一频率范围内第t个小区的最大载波数为L的情况下,所述N个第一载波最大天线端口数中的前L个第一载波最大天线端口数指示第一频率范围内第t个小区的L个载波的最大天线端口数,其中,N为所述第一频率范围内载波数最大的小区的载波数,L小于或者等于N,t、L均为正整数,N为大于1的正整数。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述第一载波最大射 频链路数用于指示所述终端设备在第二频率范围中每个小区的载波最大射频链路数,其中,
    在所述第一载波最大射频链路数的数量为1的情况下,所述第一载波最大射频链路数对应所述第二频率范围中每个小区的所有载波最大射频链路数;或
    在所述第一载波最大射频链路数的数量为P,且所述第二频率范围内第i个小区的所有载波数为Q的情况下,所述P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数指示第二频率范围内第i个小区的Q个载波的最大射频链路数,其中,P为所述第二频率范围内载波数最大的小区的载波数,Q小于或者等于P,i、Q均为正整数,P为大于1的正整数。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述第一最大MIMO层数用于指示所述终端设备在第三频率范围中每个小区的载波的最大MIMO层数,其中,
    在所述第一最大MIMO层数的数量为1的情况下,所述第一最大MIMO层数对应所述第三频率范围中每个小区的所有载波的最大MIMO层数;或
    在所述第一最大MIMO层数的数量为W,且所述第三频率范围内第x个小区的所有载波数为Y的情况下,所述W个第一最大MIMO层数中的前Y个第一最大MIMO层数指示第三频率范围内第x个小区的Y个载波的最大MIMO层数,其中,W为所述第三频率范围内载波数最大的小区的载波数,Y小于或者等于W,x、Y均为正整数,W为大于1的正整数。
  17. 一种信息上报的装置,其特征在于,包括:
    接收模块,用于接收网络设备发送的第一信息,所述第一信息用于指示终端设备检测到过热状态的情况下,上报第二信息;
    发送模块,用于在所述终端设备处于所述过热状态,或结束所述过热状态的情况下,向所述网络设备发送所述第二信息,所述第二信息包括以下至少一项信息:
    第一切换载波数、第一最大同时进行传输的载波数、传输方式、第一切换时间、第一载波最大天线端口数、第一载波最大射频链路数,或第一最大多输入多输出MIMO层数,其中,所述第一切换载波数大于或者等于所述第一最大同时进行传输的载波数。
  18. 根据权利要求17所述的装置,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一切换载波数小于第二切换载波数,其中,所述第二切换载波数为向所述网络设备发送所述第二信息之前的切换载波数。
  19. 根据权利要求17或18所述的装置,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一最大同时进行传输的载波数小于第二最大同时进行传输的载波数,其中,所述第二最大同时进行传输的载波数为网络设备配置的。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,在所述终端设备处于所述过热状态的情况下,所述传输方式为在至多1个载波进行传输的方式。
  21. 根据权利要求17至20中任一项所述的装置,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一切换时间大于第二切换时间,所述第二切换时间为所述网络设备配置的切换时间。
  22. 根据权利要求17至21中任一项所述的装置,其特征在于,所述第一载波最大天线端口数用于指示所述终端设备在第一频率范围中每个小区的载波最大天线端口数,其中,
    在所述第一载波最大天线端口数的数量为1的情况下,所述第一载波最大天线端口数 对应所述第一频率范围中每个小区的所有载波最大天线端口数;或
    在所述第一载波最大天线端口数的数量为N,且在所述第一频率范围内第t个小区的最大载波数为L的情况下,所述N个第一载波最大天线端口数中的前L个第一载波最大天线端口数指示第一频率范围内第t个小区的L个载波的最大天线端口数,其中,N为所述第一频率范围内载波数最大的小区的载波数,L小于或者等于N,t、L均为正整数,N为大于1的正整数。
  23. 根据权利要求17至22中任一项所述的装置,其特征在于,所述第一载波最大射频链路数用于指示所述终端设备在第二频率范围中每个小区的载波最大射频链路数,其中,
    在所述第一载波最大射频链路数的数量为1的情况下,所述第一载波最大射频链路数对应所述第二频率范围中每个小区的所有载波最大射频链路数;或
    在所述第一载波最大射频链路数的数量为P,且所述第二频率范围内第i个小区的所有载波数为Q的情况下,所述P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数指示第二频率范围内第i个小区的Q个载波的最大射频链路数,其中,P为所述第二频率范围内载波数最大的小区的载波数,Q小于或者等于P,i、Q均为正整数,P为大于1的正整数。
  24. 根据权利要求17至23中任一项所述的装置,其特征在于,所述第一最大MIMO层数用于指示所述终端设备在第三频率范围中每个小区的载波的最大MIMO层数,其中,
    在所述第一最大MIMO层数的数量为1的情况下,所述第一最大MIMO层数对应所述第三频率范围中每个小区的所有载波的最大MIMO层数;或
    在所述第一最大MIMO层数的数量为W,且所述第三频率范围内第x个小区的所有载波数为Y的情况下,所述W个第一最大MIMO层数中的前Y个第一最大MIMO层数指示第三频率范围内第x个小区的Y个载波的最大MIMO层数,其中,W为所述第三频率范围内载波数最大的小区的载波数,Y小于或者等于W,x、Y均为正整数,W为大于1的正整数。
  25. 一种信息接收的装置,其特征在于,包括:
    发送模块,用于向终端设备发送第一信息,所述第一信息用于指示所述终端设备检测到过热状态的情况下,上报第二信息;
    接收模块,用于在所述终端设备处于所述过热状态,或结束所述过热状态的情况下,接收所述终端设备发送的所述第二信息,所述第二信息包括以下至少一项信息:
    第一切换载波数、第一最大同时进行传输的载波数、传输方式、第一切换时间、第一载波最大天线端口数、第一载波最大射频链路数,或第一最大多输入多输出MIMO层数,其中,所述第一切换载波数大于或者等于所述第一最大同时进行传输的载波数。
  26. 根据权利要求25所述的装置,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一切换载波数小于第二切换载波数,其中,所述第二切换载波数为所述终端设备向所述网络设备发送所述第二信息之前的切换载波数。
  27. 根据权利要求25或26所述的装置,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一最大同时进行传输的载波数小于第二最大同时进行传输的载波数,其中,所述第二最大同时进行传输的载波数为网络设备配置的。
  28. 根据权利要求25至27中任一项所述的装置,其特征在于,在所述终端设备处于 所述过热状态的情况下,所述传输方式为在至多1个载波进行传输的方式。
  29. 根据权利要求25至28中任一项所述的装置,其特征在于,在所述终端设备处于所述过热状态的情况下,所述第一切换时间大于第二切换时间,所述第二切换时间为所述网络设备配置的切换时间。
  30. 根据权利要求25至29中任一项所述的装置,其特征在于,所述第一载波最大天线端口数用于指示所述终端设备在第一频率范围中每个小区的载波最大天线端口数,其中,
    在所述第一载波最大天线端口数的数量为1的情况下,所述第一载波最大天线端口数对应所述第一频率范围中每个小区的所有载波最大天线端口数;或
    在所述第一载波最大天线端口数的数量为N,且在所述第一频率范围内第t个小区的最大载波数为L的情况下,所述N个第一载波最大天线端口数中的前L个第一载波最大天线端口数指示第一频率范围内第t个小区的L个载波的最大天线端口数,其中,N为所述第一频率范围内载波数最大的小区的载波数,L小于或者等于N,t、L均为正整数,N为大于1的正整数。
  31. 根据权利要求25至30中任一项所述的装置,其特征在于,所述第一载波最大射频链路数用于指示所述终端设备在第二频率范围中每个小区的载波最大射频链路数,其中,
    在所述第一载波最大射频链路数的数量为1的情况下,所述第一载波最大射频链路数对应所述第二频率范围中每个小区的所有载波最大射频链路数;或
    在所述第一载波最大射频链路数的数量为P,且所述第二频率范围内第i个小区的所有载波数为Q的情况下,所述P个第一载波最大射频链路数中的前Q个第一载波最大射频链路数指示第二频率范围内第i个小区的Q个载波的最大射频链路数,其中,P为所述第二频率范围内载波数最大的小区的载波数,Q小于或者等于P,i、Q均为正整数,P为大于1的正整数。
  32. 根据权利要求25至31中任一项所述的装置,其特征在于,所述第一最大MIMO层数用于指示所述终端设备在第三频率范围中每个小区的载波的最大MIMO层数,其中,
    在所述第一最大MIMO层数的数量为1的情况下,所述第一最大MIMO层数对应所述第三频率范围中每个小区的所有载波的最大MIMO层数;或
    在所述第一最大MIMO层数的数量为W,且所述第三频率范围内第x个小区的所有载波数为Y的情况下,所述W个第一最大MIMO层数中的前Y个第一最大MIMO层数指示第三频率范围内第x个小区的Y个载波的最大MIMO层数,其中,W为所述第三频率范围内载波数最大的小区的载波数,Y小于或者等于W,x、Y均为正整数,W为大于1的正整数。
  33. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求1至8,或,9至16中任一项所述的方法。
  34. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至8,或,9至16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指 令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至8,或,9至16中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被计算机运行时,实现如权利要求1至8,或,9至16中任一项所述的方法。
  37. 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求1至8,或,9至16中任一项所述的方法。
PCT/CN2022/095809 2021-06-09 2022-05-28 一种信息上报的方法与装置 WO2022257793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110642202.6 2021-06-09
CN202110642202.6A CN115460626A (zh) 2021-06-09 2021-06-09 一种信息上报的方法与装置

Publications (1)

Publication Number Publication Date
WO2022257793A1 true WO2022257793A1 (zh) 2022-12-15

Family

ID=84294839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095809 WO2022257793A1 (zh) 2021-06-09 2022-05-28 一种信息上报的方法与装置

Country Status (2)

Country Link
CN (1) CN115460626A (zh)
WO (1) WO2022257793A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110049563A (zh) * 2019-03-15 2019-07-23 华为技术有限公司 一种过热指示方法以及相关设备
CN111565464A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 传输信息的方法和装置
US20210051585A1 (en) * 2019-08-14 2021-02-18 Samsung Electronis Co., Ltd. Method and apparatus for reconfiguring terminal based on state of terminal in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565464A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 传输信息的方法和装置
CN110049563A (zh) * 2019-03-15 2019-07-23 华为技术有限公司 一种过热指示方法以及相关设备
US20210051585A1 (en) * 2019-08-14 2021-02-18 Samsung Electronis Co., Ltd. Method and apparatus for reconfiguring terminal based on state of terminal in wireless communication system

Also Published As

Publication number Publication date
CN115460626A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN111345050B (zh) 对无线通信设备能力的临时处理
US11601248B2 (en) Communication method and communications apparatus
EP3930377B1 (en) Bwp management method and device
US11751278B2 (en) Cell state management method and apparatus, terminal device, and network device
US11962387B2 (en) Wireless communication method and apparatus
US8494453B2 (en) Method of handling measurement and related communication device
US11877167B2 (en) Measurement management method and terminal device
WO2022028361A1 (zh) 一种无线接入的方法以及装置
US20240023096A1 (en) Communication method and communication apparatus
EP3737164A1 (en) Method and device for determining scheduling delay
WO2020061804A1 (zh) 一种载波处理方法、终端、网络设备和存储介质
WO2022257793A1 (zh) 一种信息上报的方法与装置
WO2021142661A1 (zh) 控制小区状态的方法及装置、终端设备、网络设备
EP3624523B1 (en) Wireless communication method and terminal device
WO2024131570A1 (zh) 一种通信方法及相关装置
WO2021159378A1 (zh) 一种反馈方法及装置、终端设备、网络设备
WO2024020822A1 (zh) 上行功率控制方法、装置、设备及存储介质
WO2022222158A1 (zh) 直流载波位置上报方法、终端设备和网络设备
CN115021881B (zh) 对无线通信设备能力的临时处理
WO2020087533A1 (zh) 无线通信方法、网络设备和终端设备
JP2020535669A (ja) 無線通信方法及びネットワークノード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22819391

Country of ref document: EP

Kind code of ref document: A1