WO2022222158A1 - 直流载波位置上报方法、终端设备和网络设备 - Google Patents

直流载波位置上报方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022222158A1
WO2022222158A1 PCT/CN2021/089457 CN2021089457W WO2022222158A1 WO 2022222158 A1 WO2022222158 A1 WO 2022222158A1 CN 2021089457 W CN2021089457 W CN 2021089457W WO 2022222158 A1 WO2022222158 A1 WO 2022222158A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
terminal device
combination
activated
position corresponding
Prior art date
Application number
PCT/CN2021/089457
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180081223.3A priority Critical patent/CN116530177A/zh
Priority to PCT/CN2021/089457 priority patent/WO2022222158A1/zh
Publication of WO2022222158A1 publication Critical patent/WO2022222158A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and more particularly, to a direct current carrier location reporting method, terminal device and network device.
  • modulation is the main method to accomplish signal spectrum shifting.
  • the input signal and the modulated carrier are nonlinearly operated by the mixer to generate the sum/difference frequency signal of the two signals, and the required high-order frequency signal is screened out, that is, the spectrum transfer from low frequency to high frequency is completed.
  • the modulated carrier of the wideband signal its center frequency point is called the direct current carrier (DC, Direct Current) position.
  • DC Direct Current
  • Orthogonal Frequency Division Multiplexing Orthogonal Frequency Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • RRC Radio Resource Control
  • the terminal equipment reports a DC position for the BWP configured for the carrier, and the position depends on the terminal implementation.
  • the total number of BWPs is also doubled, so there will be multiple possibilities for the DC position of the terminal in the implementation, resulting in signaling overhead for the terminal to report the DC position is too big.
  • the embodiments of the present application provide a direct current carrier (DC) location reporting method, terminal device, and network device, which can reduce reporting signaling overhead.
  • DC direct current carrier
  • An embodiment of the present application proposes a method for reporting a DC carrier position, including:
  • the terminal device determines the active component carrier CC/bandwidth part BWP;
  • the terminal device sends the DC position of the DC carrier corresponding to the CC/BWP in the active state.
  • the embodiment of the present application also proposes a method for receiving a DC carrier position, including:
  • the network device receives the DC position of the DC carrier corresponding to the CC/BWP in the active state from the terminal device.
  • the embodiment of the present application also proposes a terminal device, including:
  • a determining module configured to determine an active component carrier CC/bandwidth part BWP
  • the first sending module is configured to send the DC position of the DC carrier corresponding to the CC/BWP in the active state.
  • the embodiment of the present application also proposes a network device, including:
  • the second receiving module is configured to receive, from the terminal device, the DC position of the DC carrier corresponding to the active CC/BWP.
  • An embodiment of the present application also proposes a terminal device, including: a processor, a memory, and a transceiver, where the memory is used to store a computer program, the processor is used to call and run the computer program stored in the memory, and control the transceiver, The method described in any one of the above-mentioned methods for transmitting the DC carrier position is performed.
  • An embodiment of the present application also proposes a communication device, including: a processor, a memory, and a transceiver, where the memory is used to store a computer program, the processor is used to call and run the computer program stored in the memory, and control the transceiver, A method as described in any one of the above-mentioned methods for receiving a DC carrier position is performed.
  • An embodiment of the present application further proposes a chip, including: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes the method described in any one of the above methods for transmitting a DC carrier position.
  • An embodiment of the present application further proposes a chip, including: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes the method described in any one of the above methods for receiving a DC carrier position.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method described in any one of the above-mentioned methods for transmitting a DC carrier wave position.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method described in any one of the above-mentioned methods for receiving a DC carrier position.
  • An embodiment of the present application further provides a computer program product, including computer program instructions, the computer program instructions enable a computer to execute the method described in any one of the above-mentioned methods for transmitting a DC carrier position.
  • An embodiment of the present application further provides a computer program product, including computer program instructions, the computer program instructions causing a computer to execute the method described in any one of the foregoing methods for receiving a DC carrier position.
  • the embodiment of the present application also provides a computer program, the computer program enables the computer to execute the method described in any one of the above-mentioned methods for transmitting the DC carrier position.
  • the embodiment of the present application also provides a computer program, the computer program enables a computer to execute the method described in any one of the above-mentioned methods for receiving a DC carrier position.
  • the terminal device sends the DC position corresponding to the active CC/BWP to the network. Since the number of activated CCs/BWPs is not greater than the number of CCs/BWPs configured by the network for the terminal device, the number of CCs/BWPs that need to be reported can be reduced. the DC location, thereby reducing the signaling overhead brought about by reporting the DC location.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • Figure 2 is a schematic diagram of a BWP.
  • FIG. 3A is a schematic diagram 1 of DC location reporting based on BWP by a terminal device.
  • FIG. 3B is a schematic diagram 2 of DC location reporting by a terminal device based on BWP.
  • Figure 4 is a schematic diagram of a BWP under CA.
  • FIG. 5 is a schematic flowchart of a method 500 for reporting a DC location according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an activated carrier and a configured carrier involved in the first embodiment.
  • FIG. 7 is a schematic diagram of a scenario with the same number but different activated carriers.
  • Figure 8 is a schematic diagram of activating BWP.
  • FIG. 9 is a schematic diagram of DC location reporting based on activated BWP.
  • FIG. 10 is a schematic flowchart of a method 1000 for receiving a DC position according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device 1100 according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device 1200 according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device 1300 according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a network device 1400 according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device 1500 according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a chip 1600 according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • LTE LTE-based access to unlicensed spectrum
  • LTE-U Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to a standalone (Standalone, SA) scenario ) network deployment scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • This embodiment of the present application does not limit the applied spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • a network device can be a device used to communicate with a mobile device.
  • the network device can be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a WCDMA
  • a base station NodeB, NB
  • it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, wearable device, and network equipment (gNB) in NR networks Or network equipment in the PLMN network that evolves in the future.
  • AP Access Point
  • BTS Base Transceiver Station
  • gNB network equipment
  • a network device provides services for a cell
  • a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network device (for example, a frequency domain resource).
  • the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell), where the small cell can include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc.
  • These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission services.
  • FIG. 1 exemplarily shows one network device 110 and two terminal devices 120.
  • the wireless communication system 100 may include a plurality of network devices 110, and the coverage of each network device 110 may include other numbers
  • the terminal device 120 is not limited in this embodiment of the present application.
  • the embodiments of the present application may be applied to one terminal device 120 and one network device 110 , and may also be applied to one terminal device 120 and another terminal device 120 .
  • the wireless communication system 100 may further include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF). This is not limited.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • the terminal equipment reports the DC location to the base station through RRC signaling.
  • the NR system introduces the concept of Bandwidth Part (BWP, Bandwidth Part).
  • BWP Bandwidth Part
  • the base station In order to save power consumption, the base station usually configures a smaller transmission and reception bandwidth for the terminal, thereby reducing the complexity of the terminal transmitting and receiving signals.
  • Figure 2 is a schematic diagram of a BWP. In Figure 2, there will be multiple channels/carriers in the entire frequency band. After the terminal accesses one channel/carrier, the base station will further configure no more than 4 BWPs for each carrier/channel, and Only one BWP can be activated at the same time, and the subsequent communication of the terminal will work in this activated BWP.
  • the configuration of the BWP is implemented through RRC signaling, such as semi-static configuration using an RRC Reconfiguration (RRC Reconfiguration) message.
  • RRC Reconfiguration RRC Reconfiguration
  • the activation of BWP is activated through the downlink control information (DCI, Downlink Control Information) in the Physical Downlink Control Channel (PDCCH, Physical Downlink Control Channel), which is a dynamic configuration process.
  • DCI Downlink Control Information
  • PDCH Physical Downlink Control Channel
  • the minimum working bandwidth of the terminal's radio frequency reception and transmission paths will be greater than or equal to the width of the BWP, and the specific implementation depends on the terminal.
  • 3A and 3B respectively show schematic diagrams of two BWP-based DC location reporting manners by the terminal device. As shown in FIG. 3A , in the first mode, the terminal adjusts the DC position according to the position of the activated BWP; as shown in FIG. 3B , in the second mode, the terminal adopts the same DC position for all activated BWPs.
  • the BWP based on the configuration reports the DC location.
  • the terminal reports the corresponding DC location through the uplink transmission DC list (uplinkTxDirectCurrentList) message in the RRC Reconfiguration Complete (RRC Reconfiguration Complete) message to adapt to different terminal implementations.
  • uplinkTxDirectCurrentList uplink transmission DC list
  • RRC Reconfiguration Complete RRC Reconfiguration Complete
  • the base station usually configures a component carrier (Component Carrier, CC) for the terminal through RRC signaling to form a carrier aggregation (Carrier Aggregation, CA) or dual connectivity (Dual Connectivity, DC); and further through MAC signaling to
  • the component carrier is activated to bring the component carrier into an active state, or deactivated to bring the component carrier into an inactive state.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • FIG. 4 is a schematic diagram of a BWP under CA. As shown in Figure 4, when the network is configured with two component carriers (CC, Component Carrier) (referred to as carrier), and each carrier is configured with 4 BWPs, then the terminal is in the There will be multiple possibilities for the DC location in the implementation.
  • CC Component Carrier
  • the terminal modulates two activated BWPs together to complete the relocation of the spectrum, that is, there is only one DC position.
  • the reporting of the DC position under the CA composed of two carriers is to report the DC positions corresponding to all BWP combinations in the RRC signaling.
  • FIG. 5 is a schematic flowchart of a DC location reporting method 500 according to an embodiment of the present application, and the method may optionally be applied to the method shown in FIG. 1 . system, but not limited to this.
  • the method includes at least some of the following.
  • the terminal device determines an active component carrier (CC)/bandwidth part (BWP);
  • S520 The terminal device sends the DC position corresponding to the CC/BWP in the activated state.
  • the terminal when the terminal is configured for in-band multi-carrier (carrier 1...carrier n) operation, such as CA (in-band continuous CA or in-band non-contiguous CA) or dual connectivity, the terminal uses All the above BWP combinations report the DC position.
  • the network configures carrier 1 and carrier 2 for the terminal, and 4 BWPs are configured on carrier 1 and 4 BWPs are configured on carrier 2, then the terminal will report the combination of all BWPs on these two carriers (one for each carrier).
  • BWP constitutes a BWP combination, a total of 16 possible BWP combinations) corresponding to all DC positions.
  • This method has little impact on signaling under 2 component carriers, but when the number of component carriers increases (for example, it increases to 8), the BWP combination on all CCs will be very large, so it is difficult to report all configured carriers.
  • the BWP combination corresponds to the DC position.
  • the DC location reporting method proposed in the embodiments of the present application starts with how to reduce BWP combinations, and reduces reporting signaling overhead through a reporting method based on the DC location corresponding to the active CC or BWP.
  • the sending of the DC position corresponding to the CC in the active state in the foregoing step S520 may include:
  • the first BWP combination being the BWP combination of the CC in the active state
  • a DC position corresponding to each first BWP combination in the at least one first BWP combination is sent.
  • This embodiment implements reporting based on the DC position of the CC in the active state.
  • FIG. 6 is a schematic diagram of an activated carrier and a configured carrier involved in the first embodiment.
  • the network device configures n component carriers for the terminal device, but not all the component carriers are actually in an active state. For example, in FIG. 6 only carrier 1 and carrier 2 are activated, then carrier 3 to carrier n will not affect the DC position. In this case, the reporting of the DC position may only consider carrier 1 and carrier 2.
  • the DC position corresponding to carrier 1 + carrier 2 in Figure 6 is based on the DC position under the combination of carrier 1 + carrier 2 + ... + carrier n, and the combination of carrier 1 + carrier 2 is activated. The DC position may be different when only carrier 1 and carrier 2 are configured.
  • carrier 1 and carrier 2 each take a BWP to form a first BWP combination, and there are 12 possible combinations, including BWP1+BWPx, BWP1+BWPy, BWP1+BWPz, BWP2+BWPx, BWP2+BWPy, BWP2+ BWPz, BWP3+BWPx, BWP3+BWPy, BWP3+BWPz, BWP4+BWPx, BWP4+BWPy, BWP4+BWPz.
  • the terminal device may report the DC position corresponding to each first BWP combination to the base station. Since the number of active component carriers is limited, the terminal device may report DC positions corresponding to all first BWP combinations of the active component carriers.
  • the terminal device may send the DC position corresponding to each first BWP combination in the above at least one first BWP combination through medium access control (MAC, Medium Access Control) signaling. Since the activation and deactivation of the carrier are realized through MAC signaling, the time interval of the DC location reporting based on the MAC signaling by the terminal device is shorter and more timely than the reporting based on the RRC signaling.
  • MAC Medium Access Control
  • the terminal device may also send the DC position corresponding to each first BWP combination in the above at least one first BWP combination through RRC signaling.
  • each first BWP combination when the terminal device uses N L0s to up-convert all CCs, each first BWP combination corresponds to N DC positions; where N is a positive integer. For example, when the terminal uses one L0 to upconvert all carriers, each first BWP combination corresponds to a DC position; when the terminal uses two L0s to upconvert all carriers, each first BWP combination corresponds to two DC locations.
  • reporting the DC position based on the active CC can reduce the number of DC positions that need to be reported, thus reducing signaling overhead.
  • the location reporting based on all BWPs of the active CCs may not be advantageous.
  • the network may activate and deactivate the carrier more frequently with the needs of the service. At this time, if the terminal frequently reports a large number of DC locations, it may increase the signaling load over time.
  • the terminal device may send the DC position corresponding to each first BWP combination in the at least one first BWP combination. .
  • the corresponding DC positions are reported when there are fewer CCs in the active state.
  • the number of first BWP combinations of the active CCs is small, so the number of reported DC positions is also small.
  • the terminal device can report the DC position corresponding to the second BWP combination of the possible CC combination in the active state at one time.
  • the aforementioned possible CC combination in an active state may be referred to as a first CC combination, and the number of CCs included in the first CC combination is greater than the above-mentioned first threshold.
  • the terminal device determines at least one first CC combination, and the number of CCs included in the first CC combination is greater than the first threshold;
  • the DC position corresponding to each second BWP combination in the at least one second BWP combination is sent.
  • the number of possible activated carriers ranges from 1 to 8. Assuming that the above-mentioned first threshold is 5, then, when the number of carriers activated by the network at a certain time is less than or equal to the first threshold (that is, 5) carriers, taking 4 component carriers activated as an example, the terminal device can pass the MAC Order or RRC signaling to report the DC positions corresponding to all the first BWP combinations of the four CCs in the active state to the base station. Since the 4 carriers activated at this time are known with certainty, that is, which 4 carriers are activated, it is only necessary to report the DC positions corresponding to all BWP combinations in the 4 activated carriers.
  • FIG. 7 shows a situation where the number of active carriers is the same but different.
  • the terminal device is configured with 8 carriers, including carrier 1 to carrier 8 .
  • the carriers activated by the network device for the terminal device include carrier 1, carrier 2, carrier 4 and carrier 5; at the latter moment, the carriers activated by the network device for the terminal device include carrier 1, carrier 2, carrier 3 and carrier 5 4.
  • the number of carriers activated at two moments is the same, but the specific carriers are different, and the terminal equipment needs to report the possible DC positions respectively for these two situations.
  • the terminal equipment may report in advance the possible combinations of the active CCs (as described above).
  • the DC position corresponding to the first CC combination), the number of CCs included in the combination of the CCs in the active state that may appear here is greater than the above-mentioned first threshold.
  • the terminal device can use the RRC Reconfiguration complete message to activate the subsequent possible occurrences.
  • the corresponding DC positions of the CC combination (such as the above-mentioned first CC combination, the number of CCs included in the combination is greater than 5) are reported to the base station together.
  • the terminal device first determines the possible combinations of CCs in the active state, then determines the BWP combination of each CC combination (that is, the second BWP combination described above), and determines the DC position corresponding to each BWP combination, and passes these DC positions through.
  • the RRC Reconfiguration complete message is reported to the base station.
  • each of the foregoing second BWP combinations corresponds to N DC positions; where N is a positive integer.
  • the number reported here is many times larger. Because when the number of active CCs is less than or equal to the first threshold, the reporting of DC is based on the known active carrier; and when the number of active CCs is greater than the first threshold, the reporting of DC is Various possible combinations of active carriers need to be considered.
  • the terminal device can activate all the 6, 7, and 8 component carriers through the RRC reconfiguration complete message.
  • the DC locations may be reported to the network together, and when the number of activated carriers is less than or equal to 5, the terminal will complete the reporting of all DCs corresponding to these activated carriers through MAC signaling or RRC signaling according to the actual activated carriers.
  • the terminal device when the number of active CCs is less than the first threshold, the terminal device sends the DC position corresponding to at least one first BWP combination of the active CCs; The DC position corresponding to the combination of CCs in the active state, wherein the number of CCs included in the combination of the CCs in the active state is greater than or equal to the first threshold.
  • the terminal device can report all possible DC positions with the number of activated carriers of 5, 6, 7, and 8 to the network through the RRC reconfiguration complete message. In the case where the number of activated carriers is less than 5, the terminal will complete the reporting of all DCs corresponding to these activated carriers through MAC signaling or RRC signaling according to the actually activated carriers.
  • the above-mentioned first threshold may be a preset value, or the first threshold may be received by the terminal device from the network device.
  • the terminal device may receive an RRC reconfiguration message for configuring the CC, where the RRC reconfiguration message for configuring the CC carries the first threshold.
  • the above describes the DC location reporting method based on the activated carrier, which can reduce the signaling overhead of reporting the DC location to a certain extent.
  • the active carrier is first determined, and then the DC positions corresponding to all possible BWP combinations are reported to the network under the active carrier.
  • Another more direct way is to report the DC location based on activating the BWP.
  • the terminal device sends the active BWP through a physical uplink control channel (PUCCH, Physical Uplink Control Channel) uplink control information (UCI, Uplink Control Information) message and/or a physical uplink shared channel (PUSCH, Physical Uplink Shared Channel) message (or BWP combination) the corresponding DC position.
  • PUCCH Physical Uplink Control Channel
  • UCI Uplink Control Information
  • PUSCH Physical Uplink Shared Channel
  • Embodiment 2 uses Embodiment 2 to introduce the DC location reporting based on the activated BWP.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the BWP is configured by the base station for each CC through the RRC Reconfiguration message, and dynamically activated and deactivated through the DCI in the PDCCH.
  • Fig. 8 is a schematic diagram of an activated BWP. As shown in Fig. 8, 4 BWPs are configured on the carrier, but only one BWP is activated for an activated carrier at the same time. In Fig. 8, BWP1 is activated.
  • FIG. 9 is a schematic diagram of a DC location reporting manner based on activating BWP.
  • the network device configures 8 CCs for the terminal device, including carrier 1 to carrier 8, but only carrier 1 and carrier 2 are activated.
  • Four BWPs are respectively configured on carrier 1 and carrier 2, but only BWP1 on carrier 1 and BWP2 on carrier 2 are activated at a certain moment.
  • the terminal device only needs to report the DC position corresponding to the combination of BWP1 of carrier 1 + BWP2 of carrier 2 to the network.
  • each of the above-mentioned BWPs in the active state corresponds to N DC positions; wherein, N is a positive integer.
  • the carrier-based DC position reporting method in Embodiment 1 needs to consider the DC positions corresponding to 16 BWP combinations on carrier 1 and carrier 2, and report them to the network. Therefore, the DC location reporting based on the activated BWP combination in this embodiment can greatly reduce signaling overhead.
  • the terminal device after receiving the PDCCH DCI for activating/deactivating the BWP, the terminal device sends the DC position corresponding to the BWP in the activated state.
  • the terminal device may send the DC position corresponding to the BWP in the active state.
  • the terminal device can report all BWP combinations of the possible CC combinations in the active state at one time.
  • the above-mentioned second threshold may be a preset value, and the network device also informs the terminal device when the CC is configured for the terminal device. For example, the terminal device receives an RRC reconfiguration message for configuring the CC, where the RRC reconfiguration message for configuring the CC carries the above-mentioned second threshold.
  • the terminal device can use the RRC Reconfiguration complete message after receiving the RRC signaling for configuring the CCs to
  • the DC positions corresponding to the CC combination in the active state (the number of CCs included in the combination is greater than 5) are reported to the base station together.
  • the terminal device After that, after the network activates the CC and the BWP in the CC for the terminal device, if the number of activated CCs is less than or equal to the second threshold (for example, the number of activated CCs is 1, 2, 3, 4 or 5), the terminal The device reports the DC location corresponding to the active BWP to the network.
  • the second threshold for example, the number of activated CCs is 1, 2, 3, 4 or 5
  • this embodiment can reduce signaling overhead. Since the activation of the BWP by the PDCCH DCI may be more frequent than the activation of the carrier by the MAC signaling, the reporting delay of the DC location based on the activated BWP is required to be higher, and the reporting frequency is also more frequent.
  • the present application proposes the following embodiments.
  • the base station After activating the CC for the terminal device, the base station sends the BWP combination to be activated to the terminal, and the terminal reports the DC location while completing the DC location setting of the BWP combination to be activated. In this way, when the subsequent base station activates a certain BWP combination, the terminal device no longer needs to provide the DC position corresponding to the BWP combination.
  • the terminal device receives the BWP combination to be activated corresponding to the CC in the active state from the network device.
  • the terminal device may receive, from the network device, the combination of BWPs to be activated corresponding to the CC in the activated state through at least one of RRC signaling, MAC signaling, and PDCCH DCI.
  • the terminal device sends the DC position corresponding to the BWP combination to be activated. Specifically, the terminal device may send the DC position corresponding to the to-be-activated BWP combination through at least one of RRC signaling, MAC signaling, PUCCH message, and PUSCH message.
  • each of the foregoing BWP combinations to be activated corresponds to N DC positions; where N is a positive integer.
  • the base station sends the BWP combination of CC1 and CC2 to be activated to the terminal device, and the terminal device feeds back these BWPs to be activated to the base station Combine the corresponding DC positions.
  • the terminal device may send the DC position corresponding to the BWP combination to be activated.
  • the terminal device can report all BWP combinations of the possible CC combinations in the active state at one time.
  • the above-mentioned third threshold may be a preset value, and the network device also informs the terminal device when the CC is configured for the terminal device. For example, the terminal device receives an RRC reconfiguration message for configuring the CC, where the RRC reconfiguration message for configuring the CC carries the above-mentioned third threshold.
  • the terminal device can use the RRC Reconfiguration complete message after receiving the RRC signaling for configuring the CCs to
  • the DC positions corresponding to the CC combination in the active state (the number of CCs included in the combination is greater than 5) are reported to the base station together.
  • the terminal device After the network activates CCs for the terminal device, if the number of activated CCs is less than or equal to the second threshold (for example, the number of activated CCs is 1, 2, 3, 4 or 5), the terminal device reports the activated CCs to the network.
  • this embodiment can reduce signaling overhead, and does not frequently report the DC location due to frequent switching of BWPs by the network, so the requirement for reporting delay is lower.
  • FIG. 10 is a schematic flowchart of a DC position receiving method 1000 according to an embodiment of the present application.
  • the method can optionally be applied to the method shown in FIG. 1 . system shown, but not limited to this.
  • the method includes at least some of the following.
  • the network device receives the DC position corresponding to the CC/BWP in the active state from the terminal device.
  • the above-mentioned network device is a base station.
  • the DC position corresponding to the CC in the active state includes: a DC position corresponding to a first BWP combination, where the first BWP combination is a BWP combination of the CC in the active state.
  • the above-mentioned first BWP combination may include all possible combinations of activated BWPs of the CC in an activated state.
  • the network device may receive the DC positions corresponding to all the first BWP combinations reported by the terminal device.
  • the network device receives the DC position corresponding to the first BWP combination through MAC signaling. Since the activation and deactivation of the carrier are realized through MAC signaling, the time interval of the DC location reporting based on the MAC signaling by the terminal device is shorter and more timely than the reporting based on the RRC signaling.
  • the network device receives the DC position corresponding to the first BWP combination through RRC signaling.
  • each first BWP combination corresponds to N DC positions; where N is a positive integer.
  • the network device receives the DC positions of the CCs in the active state, which can reduce the number of DC positions that need to be received, and thus can reduce signaling overhead.
  • the network device when the number of active CCs of the terminal device is less than or equal to the first threshold, the network device can receive the DC corresponding to at least one first BWP combination of the active CCs. Location.
  • the network device may receive the DC position reported by the terminal device at one time. For example, the network device receives the DC position corresponding to at least one second BWP combination of the first CC combination from the terminal device; wherein, the number of CCs included in the first CC combination is greater than the above-mentioned first threshold.
  • the network device receives the DC position corresponding to at least one second BWP combination of the first CC combination through an RRC reconfiguration complete message.
  • each of the foregoing second BWP combinations corresponds to N DC positions; where N is a positive integer.
  • the above-mentioned first threshold may be a preset value, or may be sent by the network device to the terminal device.
  • the network device sends an RRC reconfiguration message for configuring the CC to the terminal device, where the RRC reconfiguration message for configuring the CC carries the above-mentioned first threshold.
  • the network device receives the DC position corresponding to the active BWP through a PUCCH UCI message and/or a PUSCH message.
  • the network device before receiving the DC location, the network device sends the PDCCH DCI for activating/deactivating the BWP to the terminal device.
  • the terminal After receiving the PDCCH DCI used to activate/deactivate the BWP, the terminal determines the BWP currently in the active state, and sends the DC position corresponding to the active BWP to the network device through the PUCCH UCI message and/or the PUSCH message.
  • the network device may receive the DC position corresponding to the BWP in the active state.
  • the network device can receive the DC positions corresponding to all BWP combinations of the active component carrier combinations reported by the terminal device at one time; Wherein, the number of CCs included in the aforementioned possible active component carrier combination is greater than the aforementioned second threshold.
  • the network device may send to the terminal device a combination of BWPs to be activated corresponding to the CCs in the activated state. After that, the network device receives from the terminal device the DC positions corresponding to the BWP combinations to be activated. In this way, when the network device subsequently activates a certain BWP combination, it does not need to receive the DC position corresponding to the BWP combination, so that the receiving frequency may be reduced.
  • each of the above-mentioned combinations of BWPs to be activated corresponds to N DC positions; wherein, N is a positive integer.
  • the network device sends, to the terminal device, the combination of BWPs to be activated corresponding to the CCs in the activated state through at least one of RRC signaling, MAC signaling, and PDCCH DCI.
  • the network device receives the DC position corresponding to the BWP combination to be activated through at least one of the RRC signaling, the MAC signaling, the PUCCH message and the PUSCH message.
  • the network device may send the BWP combination to be activated corresponding to the CCs in the active state to the terminal device, and The DC position corresponding to each BWP combination to be activated is received.
  • the network device can receive the DC position reported by the terminal device at one time. For example, the network device receives from the terminal device a DC position corresponding to at least one second BWP combination of a possible combination of CCs in an active state; wherein the number of CCs included in the possible combination of CCs in an active state is the above greater than the third threshold.
  • FIG. 11 is a schematic structural diagram of a terminal device 1100 according to an embodiment of the present application, including:
  • a determining module 1110 configured to determine the active component carrier CC/bandwidth part BWP;
  • the first sending module 1120 is configured to send the DC position of the DC carrier corresponding to the CC/BWP in the active state.
  • the above-mentioned first sending module 1120 is configured to determine at least one first BWP combination, where the first BWP combination is a BWP combination of a CC in an active state; and send each of the at least one first BWP combination The DC position corresponding to the first BWP combination.
  • the above-mentioned first sending module 1120 sends the DC position corresponding to each first BWP combination in the at least one first BWP combination through MAC signaling.
  • the above-mentioned first sending module 1120 sends the DC position corresponding to each first BWP combination in the at least one first BWP combination through RRC signaling.
  • the first sending module 1120 when the number of active CCs is less than or equal to the first threshold, the first sending module 1120 sends the DC position corresponding to each first BWP combination in the at least one first BWP combination .
  • FIG. 12 is a schematic structural diagram of a terminal device 1200 according to an embodiment of the present application, including: a determining module 1110 and a first sending module 1120, and further including:
  • the pre-reporting module 1230 is configured to determine at least one first CC combination, and the number of CCs included in the first CC combination is greater than the above-mentioned first threshold; determine at least one of each first CC combination in the at least one first CC combination.
  • One second BWP combination sending a DC position corresponding to each of the at least one second BWP combination.
  • the pre-reporting module 1230 sends the DC position corresponding to each second BWP combination in the at least one second BWP combination through an RRC reconfiguration complete message.
  • the above-mentioned terminal device further includes:
  • the first receiving module 1240 is configured to receive the first threshold.
  • the above-mentioned first receiving module 1240 receives an RRC reconfiguration message for configuring the CC, where the RRC reconfiguration message for configuring the CC carries the first threshold.
  • the above-mentioned first threshold is a preset value.
  • the above-mentioned first sending module 1120 is configured to send the DC position corresponding to the BWP in the activated state through a PUCCH UCI message and/or a PUSCH message.
  • the first sending module 1120 sends the DC position corresponding to the active BWP.
  • the first sending module 1120 when the number of CCs in the active state is less than or equal to the second threshold, the first sending module 1120 sends the DC position corresponding to the BWP in the active state.
  • the above-mentioned determining module 1110 is configured to receive, from the network device, a combination of BWPs to be activated corresponding to the CC in the active state when the CC in the active state has been determined.
  • the above determining module 1110 receives, from the network device, the combination of BWPs to be activated corresponding to the CC in the activated state through at least one of RRC signaling, MAC signaling, and PDCCH DCI.
  • the above-mentioned first sending module 1120 is configured to send the DC position corresponding to the BWP combination to be activated.
  • the above-mentioned first sending module 1120 sends the DC position corresponding to the to-be-activated BWP combination through at least one of RRC signaling, MAC signaling, PUCCH message, and PUSCH message.
  • the determining module 1110 receives from the network device a combination of BWPs to be activated corresponding to the active CCs.
  • the terminal device uses N L0s to up-convert all CCs
  • the above-mentioned first BWP combination corresponds to N DC positions, where N is a positive integer.
  • the above-mentioned second BWP combination corresponds to N DC positions, where N is a positive integer.
  • the terminal device uses N L0s to up-convert all CCs
  • the above-mentioned BWPs in the activated state correspond to N DC positions; wherein, N is a positive integer.
  • the terminal device uses N L0s to up-convert all CCs
  • the above-mentioned BWP combinations to be activated correspond to N DC positions; where N is a positive integer.
  • FIG. 13 is a schematic structural diagram of a network device 1300 according to an embodiment of the present application, including:
  • the second receiving module 1310 is configured to receive the DC position of the DC carrier corresponding to the active CC/BWP from the terminal device.
  • the DC position corresponding to the CC in the active state includes: a DC position corresponding to a first BWP combination, where the first BWP combination is a BWP combination of the CC in the active state.
  • the above-mentioned second receiving module 1310 receives the DC position corresponding to the first BWP combination through MAC signaling.
  • the above-mentioned second receiving module 1310 receives the DC position corresponding to the first BWP combination through RRC signaling.
  • the above-mentioned second receiving module 1310 receives at least one first BWP combination corresponding to the active CCs DC location.
  • FIG. 14 is a schematic structural diagram of a network device 1400 according to an embodiment of the present application, including a second receiving module 1310, and further including:
  • the pre-receiving module 1420 is configured to receive, from the terminal device, a DC position corresponding to at least one second BWP combination of the first CC combination, wherein the number of CCs included in the first CC combination is greater than a first threshold.
  • the above-mentioned pre-receiving module 1420 receives the DC position corresponding to the second BWP combination through an RRC reconfiguration complete message.
  • the above-mentioned network device further includes: a configuration module 1430, configured to send the first threshold to the terminal device.
  • the above-mentioned configuration module 1430 sends an RRC reconfiguration message for configuring the CC to the terminal device, where the RRC reconfiguration message for configuring the CC carries the first threshold.
  • the above-mentioned first threshold is a preset value.
  • the above-mentioned second receiving module 1310 receives the DC position corresponding to the active BWP through a PUCCH UCI message and/or a PUSCH message.
  • the above network device further includes: a BWP activation module 1440, configured to send the PDCCH DCI for activating/deactivating the BWP to the terminal device.
  • a BWP activation module 1440 configured to send the PDCCH DCI for activating/deactivating the BWP to the terminal device.
  • the second receiving module 1310 when the number of active CCs of the terminal device is less than or equal to the second threshold, the second receiving module 1310 receives the DC position corresponding to the active BWP.
  • the above-mentioned network device further includes: a second sending module 1450, configured to send the BWP combination to be activated corresponding to the CC in the activated state to the terminal device.
  • the above-mentioned second sending module 1450 sends the BWP combination to be activated corresponding to the CC in the activated state to the terminal device through at least one of RRC signaling, MAC signaling and PDCCH DCI.
  • the above-mentioned second receiving module 1310 is configured to receive, from the terminal device, the DC position corresponding to the above-mentioned BWP combination to be activated.
  • the above-mentioned second receiving module 1310 receives the DC position corresponding to the to-be-activated BWP combination through at least one of RRC signaling, MAC signaling, PUCCH message, and PUSCH message.
  • the above-mentioned second sending module 1450 sends to the terminal device corresponding to-be-activated CCs corresponding to the active CCs. BWP combination.
  • the terminal device uses N L0s to up-convert all CCs
  • the above-mentioned first BWP combination corresponds to N DC positions, where N is a positive integer.
  • the above-mentioned second BWP combination corresponds to N DC positions, where N is a positive integer.
  • the terminal device uses N L0s to up-convert all CCs
  • the above-mentioned BWPs in the activated state correspond to N DC positions; wherein, N is a positive integer.
  • the terminal device uses N L0s to up-convert all CCs
  • the above-mentioned BWP combinations to be activated correspond to N DC positions; where N is a positive integer.
  • each module (submodule, unit, or component, etc.) in the terminal device and the network device in the embodiments of this application may be implemented by different modules (submodule, unit, or component, etc.), or It is implemented by the same module (sub-module, unit or component, etc.).
  • the first sending module and the pre-reporting module may be different modules or the same module, which can be implemented in the embodiments of the present application. corresponding functions.
  • the sending module and the receiving module in the embodiments of the present application may be implemented by the transceiver of the device, and some or all of the other modules may be implemented by the processor of the device.
  • FIG. 15 is a schematic structural diagram of a communication device 1500 according to an embodiment of the present application.
  • the communication device 1500 shown in FIG. 15 includes a processor 1510, and the processor 1510 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1500 may also include a memory 1520 .
  • the processor 1510 may call and run a computer program from the memory 1520 to implement the methods in the embodiments of the present application.
  • the memory 1520 may be a separate device independent of the processor 1510, or may be integrated in the processor 1510.
  • the communication device 1500 may further include a transceiver 1530, and the processor 1510 may control the transceiver 1530 to communicate with other devices, specifically, may send information or data to other devices, or Receive information or data sent by other devices.
  • the transceiver 1530 may include a transmitter and a receiver.
  • the transceiver 1530 may further include an antenna, and the number of the antenna may be one or more.
  • the communication device 1500 may be a terminal device of an embodiment of the present application, and the communication device 1500 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity. Repeat.
  • the communication device 1500 may be a network device of an embodiment of the present application, and the communication device 1500 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not omitted here for brevity. Repeat.
  • FIG. 16 is a schematic structural diagram of a chip 1600 according to an embodiment of the present application.
  • the chip 1600 shown in FIG. 16 includes a processor 1610, and the processor 1610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 1600 may also include a memory 1620 .
  • the processor 1610 may call and run a computer program from the memory 1620 to implement the methods in the embodiments of the present application.
  • the memory 1620 may be a separate device independent of the processor 1610, or may be integrated in the processor 1610.
  • the chip 1600 may also include an input interface 1630 .
  • the processor 1610 can control the input interface 1630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1600 may also include an output interface 1640 .
  • the processor 1610 can control the output interface 1640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiments of the present application, which is not repeated here for brevity.
  • the chip can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiments of the present application, which is not repeated here for brevity.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the processor mentioned above may be a general-purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the memory mentioned above may be either volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提出直流载波位置上报方法、终端设备和网络设备,其中方法包括:终端设备确定处于激活状态的成员载波(CC)/带宽部分(BWP);终端设备发送该处于激活状态的CC/BWP对应的直流载波(DC)位置。本申请实施例可以降低上报DC位置的信令开销。

Description

直流载波位置上报方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,涉及直流载波位置上报方法、终端设备和网络设备。
背景技术
在无线通信中,调制是完成信号频谱搬移的主要方法。通过混频器将输入信号与调制载波进行非线性操作,产生两个信号的和/差频率信号,从中筛选出需要的高阶频率信号,即完成了从低频到高频的频谱搬移。通常对于宽带信号的调制载波来说,其中心频点称为直流载波(DC,Direct Current)位置。
在正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)调制方式中,通常DC位置会有比较强的信号干扰,在接收机中需要将这个载波去掉以提高接收信噪比,因此接收机需要知道这个DC的准确位置。DC位置通常是通过发射端告知接收端。以上行通信为例,终端需要告知基站其发射信号的准确DC位置,便于基站准确地将DC位置的子载波去掉。在新空口(NR,New Radio)技术中,DC位置由终端设备通过无线资源控制(RRC,Radio Resource Control)信令上报给基站的。
在单载波情况下,终端设备针对该载波配置的BWP分别上报一个DC位置,该位置取决于终端实现。对于带内多载波同时工作的情况,随着载波数量的增加,总的BWP数量也在成倍增加,那么终端在实现中的DC位置将存在多种可能,造成终端上报DC位置的信令开销过大。
发明内容
本申请实施例提供直流载波(DC)位置上报方法、终端设备和网络设备,能够减少上报信令开销。
本申请实施例提出一种直流载波位置上报方法,包括:
终端设备确定处于激活状态的成员载波CC/带宽部分BWP;
该终端设备发送该处于激活状态的CC/BWP对应的直流载波DC位置。
本申请实施例还提出一种直流载波位置接收方法,包括:
网络设备从终端设备接收处于激活状态的CC/BWP对应的直流载波DC位置。
本申请实施例还提出一种终端设备,包括:
确定模块,用于确定处于激活状态的成员载波CC/带宽部分BWP;
第一发送模块,用于发送该处于激活状态的CC/BWP对应的直流载波DC位置。
本申请实施例还提出一种网络设备,包括:
第二接收模块,用于从终端设备接收处于激活状态的CC/BWP对应的直流载波DC位置。
本申请实施例还提出一种终端设备,包括:处理器、存储器及收发器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,并控制该收发器,执行如上述直流载波位置发送方法中任一项所述的方法。
本申请实施例还提出一种通信设备,包括:处理器、存储器及收发器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,并控制该收发器,执行如上述直流载波位置接收方法中任一项所述的方法。
本申请实施例还提出一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述直流载波位置发送方法中任一项所述的方法。
本申请实施例还提出一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述直流载波位置接收方法中任一项所述的方法。
本申请实施例还提出一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行如上述直流载波位置发送方法中任一项所述的方法。
本申请实施例还提出一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行如上述直流载波位置接收方法中任一项所述的方法。
本申请实施例还提出一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如上述直流载波位置发送方法中任一项所述的方法。
本申请实施例还提出一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如上述直流载波位置接收方法中任一项所述的方法。
本申请实施例还提出一种计算机程序,该计算机程序使得计算机执行如上述直流载波位置发送方法中任一项所述的方法。
本申请实施例还提出一种计算机程序,该计算机程序使得计算机执行如上述直流载波位置接收方法中任一项所述的方法。
本申请实施例由终端设备向网络发送处于激活状态的CC/BWP对应的DC位置,由于被激活的CC/BWP的数量不大于网络为终端设备配置的CC/BWP的数量,因此能够减少需要上报的DC位置, 从而降低上报DC位置带来的信令开销。
附图说明
图1是本申请实施例的应用场景的示意图。
图2是一种BWP示意图。
图3A是终端设备基于BWP的DC位置上报示意图一。
图3B是终端设备基于BWP的DC位置上报示意图二。
图4是一种CA下的BWP示意图。
图5是根据本申请实施例的一种DC位置上报方法500的示意性流程图。
图6是实施例一涉及的激活载波与配置载波示意图。
图7是一种数量相同但激活载波不同的场景示意图。
图8是一种激活BWP的示意图。
图9是基于激活BWP的DC位置上报示意图。
图10是根据本申请实施例的一种DC位置接收方法1000的示意性流程图。
图11是根据本申请实施例的终端设备1100的结构示意图。
图12是根据本申请实施例的终端设备1200的结构示意图。
图13是根据本申请实施例的网络设备1300的结构示意图。
图14是根据本申请实施例的网络设备1400的结构示意图。
图15是根据本申请实施例的通信设备1500示意性结构图。
图16是根据本申请实施例的芯片1600的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
需要说明的是,本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。同时描述的“第一”、“第二”描述的对象可以相同,也可以不同。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施方式中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携 式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备110和两个终端设备120,可选地,该无线通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。本申请实施例可以应用于一个终端设备120与一个网络设备110,也可以应用于一个终端设备120与另一个终端设备120。
可选地,该无线通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在NR系统中,以上行通信为例,终端设备通过RRC信令向基站上报DC位置。
NR系统引入了带宽部分(BWP,Bandwidth Part)的概念,为节省耗电,基站通常会给终端配置一个较小的发射和接收带宽,从而减少终端发射和接收信号的复杂度。图2是一种BWP示意图,在图2中,整个频段内会有多个信道/载波,终端接入一个信道/载波后,基站会进一步为每个载波/信道配置不超过4个BWP,并且同一时间只能激活一个BWP,终端后续的通信将在这个激活的BWP中工作。BWP的配置是通过RRC信令实现的,如采用RRC重配置(RRC Reconfiguration)消息进行半静态配置。BWP的激活是通过物理下行控制信道(PDCCH,Physical Downlink Control Channel)中的下行控制信息(DCI,Downlink Control Information)来激活的,是动态配置过程。
基站通过RRC Reconfiguration消息配置BWP后,终端的射频接收和发射通路的最小工作带宽会大于或等于BWP的宽度,具体实现情况取决于终端。图3A和3B分别显示了终端设备基于BWP的两种DC位置上报方式示意图。如图3A所示,在方式一中,终端会随着激活BWP的位置而调整DC位置;如图3B所示,在方式二中,终端对所有的激活BWP都采用相同的DC位置。
可见,相关技术中基于配置的BWP上报DC位置。例如,针对每个BWP,终端均通过RRC重配置完成(RRC Reconfiguration Complete)消息中的上行传输DC列表(uplinkTxDirectCurrentList)消息上报对应的DC位置,以适应不同的终端实现方式。对于单载波来说,终端最多向基站上报4个激活BWP时的DC位置。
在NR中,基站通常通过RRC信令来给终端配置成员载波(Component Carrier,CC),以构成载波聚合(Carrier Aggregation,CA)或双连接(Dual Connectivity,DC);并进一步通过MAC信令来对成员载波进行激活以使该成员载波进入工作状态,或进行去激活来使该成员载波进入不工作的状态。可以看出,CA或DC中的成员载波需要经过RRC信令配置与MAC信令激活/去激活两个操作过程。这主要为了兼顾信令开销与时效性,RRC信令将完成对成员载波信息的配置过程,通常该过程携带较多的信令消息,且速度较慢;而MAC信令的激活或去激活两个操作则更加快速和便捷,并视实际情况需要 来快速响应业务需求。
前面提到,目前终端的单载波DC位置上报是针对配置的BWP分别上报一个DC位置,该位置取决于终端实现。对于带内多载波同时工作来说,随着载波数量的增加,总的BWP数量也在成倍增加。以带内CA为例,通常终端会采用一个PA来支持整个带宽。图4是一种CA下的BWP示意图,如图4所示,当网络配置了两个成员载波(CC,Component Carrier)(简称载波),每个载波上分别配置了4个BWP,那么终端在实现中的DC位置将存在多种可能。
通常来说,对于采用单PA来支持带内CA(载波聚合)的情况,终端对两个激活BWP进行一起调制,完成频谱的搬移,也即只有一个DC位置。以图4为例,在图4所示的两个载波情况下,潜在的BWP组合就会有4x4=16种组合,对应的潜在DC位置也就有16种可能。目前,对2个载波构成的CA下DC位置的上报是在RRC信令中上报所有BWP组合对应的DC位置。
随着CA中载波数量的增加,同时激活的BWP组合的数量也会成倍增加。如果依然按照上述基于BWP(或BWP组合)的上报方式,那么潜在的DC位置也将会成倍增加,导致信令设计难以承担。因此,需要研究如何在保持一定信令复杂度的情况下,解决如何上报多载波下的DC位置的问题。
本申请实施例提出一种直流载波(DC)位置上报方法,图5是根据本申请实施例的一种DC位置上报方法500的示意性流程图,该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S510:终端设备确定处于激活状态的成员载波(CC)/带宽部分(BWP);
S520:该终端设备发送该处于激活状态的CC/BWP对应的DC位置。
如上述背景部分所述,当终端配置为带内多载波(载波1…载波n)工作,如CA(带内连续CA或带内非连续CA)或双连接时,终端采用了针对所有配置载波上BWP组合都进行DC位置上报的方式。比如网络为终端配置了载波1和载波2,且载波1上配置了4个BWP,载波2配置了4个BWP,那么终端将上报这两个载波上所有BWP的组合(每个载波各取一个BWP构成一个BWP组合,共16个可能的BWP组合)对应的所有DC位置。这种方式在2个成员载波下对信令的影响并不大,但是当成员载波数量增加(如增加到8个)时,所有CC上的BWP组合将会非常庞大,因此难以上报所有配置载波的BWP组合对应的DC位置。
为了解决这个问题,本申请实施例提出的DC位置上报方式从如何减少BWP组合入手,通过基于处于激活状态的CC或BWP对应的DC位置的上报方式来减少上报信令开销。
在一些实施方式中,在终端设备已确定处于激活状态的CC后,上述步骤S520中的发送处于激活状态的CC对应的DC位置可以包括:
确定至少一个第一BWP组合,该第一BWP组合为处于激活状态的CC的BWP组合;
发送该至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
以下采用实施例一详细介绍上述实现方式。
实施例一:
本实施例实现基于处于激活状态的CC的DC位置上报。
图6是实施例一涉及的激活载波与配置载波示意图。如图6所示,网络设备为终端设备配置了n个成员载波,但实际并不是所有的成员载波都会处于激活状态。比如图6中只有载波1和载波2被激活,那么载波3~载波n就不会对DC位置产生影响。在这种情况下,DC位置的上报可以仅考虑载波1和载波2。需要注意的是,图6中载波1+载波2对应的DC位置是基于配置了载波1+载波2+…+载波n、并且激活了载波1+载波2这个组合下的DC位置,它与网络只配置载波1和载波2时的DC位置可能会不同。
以图6中的成员载波为例,比如处于激活状态的成员载波包括载波1和载波2,则载波1和载波2的BWP组合(即上述第一BWP组合)共有4*3=12种。具体地,载波1和载波2各取一个BWP构成一个第一BWP组合,共有12种可能的组合方式,包括BWP1+BWPx、BWP1+BWPy、BWP1+BWPz、BWP2+BWPx、BWP2+BWPy、BWP2+BWPz、BWP3+BWPx、BWP3+BWPy、BWP3+BWPz、BWP4+BWPx、BWP4+BWPy、BWP4+BWPz。
终端设备可以向基站上报各个第一BWP组合对应的DC位置。由于处于激活状态的成员载波数量有限,因此终端设备可以上报处于激活状态的成员载波的所有第一BWP组合所对应的DC位置。
在一些实施方式中,终端设备可以通过媒体接入控制(MAC,Medium Access Control)信令发送上述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。由于载波的激活与去激活是通过MAC信令实现的,因此终端设备基于MAC信令的DC位置上报相比基于RRC信令的上报,其时间间隔更短且更及时。
或者,终端设备也可以通过RRC信令发送上述至少一个第一BWP组合中的每个第一BWP组合对 应的DC位置。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,每个第一BWP组合对应N个DC位置;其中,N为正整数。例如,当终端采用一个L0来对所有载波进行上变频时,每个第一BWP组合对应一个DC位置;当终端采用两个L0来对所有载波进行上变频时,每个第一BWP组合对应两个DC位置。
由上述内容可见,基于处于激活状态的CC上报DC位置,能够减少需要上报的DC位置的数量,因此能够减少信令开销。处于激活状态的CC的数量越少,这种优势就越明显。但是,当网络为终端设备激活的CC超过一定数量时,基于处于激活状态下的CC的所有BWP的位置上报可能并不具有优势,首先是因为激活载波数量较大时其所有BWP组合的数量已经很庞大,再加上随着业务的需要网络可能对载波的激活与去激活会比较频繁,此时终端如频繁地上报数量较大的DC位置可能随着时间的拉长而加重信令负荷。
鉴于此,本申请实施例可以在处于激活状态的CC的个数小于或等于第一门限的情况下,由终端设备发送上述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。采用这种方式,在处于激活状态的CC较少时上报对应的DC位置,此时处于激活状态的CC的第一BWP组合的数量较少,因此上报的DC位置数量也较少。
进一步地,在处于激活状态的CC的个数较多,如大于上述第一门限的情况下,终端设备可以一次性上报可能出现的处于激活状态的CC组合的第二BWP组合所对应的DC位置;其中,前述可能出现的处于激活状态的CC组合可以称为第一CC组合,第一CC组合中包含的CC个数大于上述第一门限。
具体地可以包括以下步骤:
终端设备确定至少一个第一CC组合,该第一CC组合中包含的CC个数大于所述第一门限;
确定上述至少一个第一CC组合中的每个第一CC组合的至少一个第二BWP组合;
发送上述至少一个第二BWP组合中的每个第二BWP组合对应的DC位置。
以下以网络为终端设备配置8个CC为例来进行说明:
在网络为终端设备配置8个成员载波后,其可能的激活载波数量包括了从1个到8个。假设上述第一门限为5,那么,当网络在某一时刻激活的载波数量小于或等于第一门限(即5)个载波时,以激活了4个成员载波为例,终端设备可以通过MAC信令或RRC信令将处于激活状态的4个CC的所有第一BWP组合对应的DC位置上报至基站。由于此时激活的4个载波是确知的,也即知道是激活了哪4个载波,所以只需要上报这4个激活载波中所有BWP组合对应的DC位置即可。
当激活载波的数量相同,但激活的载波不相同时,需要重新上报处于激活状态的载波对应的所有DC位置。图7示出了一种数量相同但激活载波不同的的情况,在图7中,终端设备被配置了8个载波,包括载波1至载波8。在前一时刻,网络设备为终端设备激活的载波包括载波1、载波2、载波4和载波5;在后一时刻,网络设备为终端设备激活的载波包括载波1、载波2、载波3和载波4。两个时刻激活的载波数量相同,但具体的载波不同,终端设备需要针对这两种情况分别上报可能的DC位置。
对于处于激活状态的载波数量大于上述第一门限的情况,本申请实施例可以在网络通过RRC信令初始配置成员载波后,由终端设备提前上报可能出现的处于激活状态的CC的组合(如上述第一CC组合)对应的DC位置,这里可能出现的处于激活状态的CC的组合中包含的CC个数大于上述第一门限。
以配置了8个CC、并且第一门限等于5为例,终端设备可以在接收到配置CC的RRC信令之后,通过RRC重配置完成(RRC Reconfiguration complete)消息,将后续可能出现的处于激活状态的CC组合(如上述第一CC组合,该组合中包含的CC个数大于5)对应的DC位置一并上报至基站。
例如,以配置8个CC为例,包含6个激活CC的CC组合有28种,包含7个激活CC的CC组合有8种,包含8个激活CC的CC组合有1种。终端设备首先确定这些可能出现的处于激活状态的CC的组合,之后确定每个CC组合的BWP组合(即上述第二BWP组合),并确定每个BWP组合对应的DC位置,将这些DC位置通过RRC Reconfiguration complete消息上报至基站。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述每个第二BWP组合对应N个DC位置;其中,N为正整数。
可以看出,相比于处于激活状态的CC的数量小于或等于第一门限的情况,这里上报的数量要多很多倍。因为在处于激活状态的CC的数量小于或等于第一门限时,DC的上报是基于确知的激活载波进行上报的;而在处于激活状态的CC的数量大于第一门限时,DC的上报则需要考虑各种可能的激活载波组合。
综上,当网络通过RRC reconfiguration信令为终端配置了8个成员载波,并且设定的第一门限等于5时,终端设备可以通过RRC reconfiguration complete消息将激活载波数量为6、7、8的所有可能DC位置一并上报给网络,而对于激活载波数量小于或等于5的情况,终端将根据实际激活的载波通过MAC 信令或RRC信令完成这些激活载波对应的所有DC的上报。
上述成员载波的数量、第一门限的值等具体数值仅为举例,本申请对此不作限制。
并且,上述对第一门限的使用方式也仅为举例,本申请实施例可以采用其他方式。例如,当处于激活状态的CC的个数小于第一门限的情况下,终端设备发送处于激活状态的CC的至少一个第一BWP组合对应的DC位置;并且,终端设备向基站一次性发送可能出现的处于激活状态的CC的组合对应的DC位置,其中该处于激活状态的CC的组合中包含的CC个数大于或等于第一门限。以配置8个成员载波、并且设定的第一门限等于5为例,终端设备可以通过RRC reconfiguration complete消息将激活载波数量为5、6、7、8的所有可能DC位置一并上报给网络,而对于激活载波数量小于5的情况,终端将根据实际激活的载波通过MAC信令或RRC信令完成这些激活载波对应的所有DC的上报。
此外,上述第一门限可以是预先设置的值,或者由终端设备从网络设备接收该第一门限。在一些实施方式中,终端设备可以接收用于配置CC的RRC重配置消息,该用于配置CC的RRC重配置消息中携带该第一门限。
以上介绍了基于激活载波的DC位置上报方式,能够在一定程度上减少上报DC位置的信令开销。这种方式首先确定激活载波,然后在激活载波下将所有可能的BWP组合对应的DC位置上报给网络。另外一种更加直接的方式是基于激活BWP来进行DC位置的上报。例如,终端设备通过物理上行控制信道(PUCCH,Physical Uplink Control Channel)上行控制信息(UCI,Uplink Control Information)消息和/或物理上行共享信道(PUSCH,Physical Uplink Shared Channel)消息发送处于激活状态的BWP(或BWP组合)对应的DC位置。
以下采用实施例二介绍基于激活BWP的DC位置上报。
实施例二:
在相关技术中,BWP是基站通过RRC Reconfiguration消息针对每个CC进行配置,并通过PDCCH中的DCI来进行动态激活与去激活的。图8是一种激活BWP示意图,如图8所示,在该载波上配置了4个BWP,但同一时刻对于一个激活载波只有一个BWP被激活,图8中激活了BWP1。
图9是基于激活BWP的DC位置上报方式示意图。在图9中,网络设备为终端设备配置了8个CC,包括载波1至载波8,但只激活了载波1和载波2。在载波1和载波2上分别配置了4个BWP,但某一时刻只激活了载波1上的BWP1和载波2上的BWP2。此时,终端设备只需要向网络上报载波1的BWP1+载波2的BWP2组合对应的DC位置即可。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述每个处于激活状态的BWP对应N个DC位置;其中,N为正整数。
相比之下,在上述情况下,实施例一中基于载波的DC位置上报方式需要考虑载波1和载波2上的16种BWP组合对应的DC位置,并将其上报给网络。因此本实施例中基于激活BWP组合的DC位置上报能大幅减少信令开销。
在一些实施方式中,终端设备在接收到用于激活/去激活BWP的PDCCH DCI后,发送处于激活状态的BWP对应的DC位置。
此外,本实施例还可以在处于激活状态的CC的个数小于或等于第二门限的情况下,由终端设备发送处于激活状态的BWP对应的DC位置。
与实施例一类似,进一步地,在处于激活状态的CC的个数较多,如大于上述第二门限的情况下,终端设备可以一次性上报可能出现的处于激活状态的CC组合的所有BWP组合所对应的DC位置;其中,前述可能出现的处于激活状态的CC组合中包含的CC个数大于上述第二门限。
上述第二门限可以为预先设定的值,也由网络设备在为终端设备配置CC时通知终端设备。例如,终端设备接收用于配置CC的RRC重配置消息,该用于配置CC的RRC重配置消息中携带上述第二门限。
以网络为终端设备配置8个CC,并且第二门限等于5为例,终端设备可以在接收到配置CC的RRC信令之后,通过RRC重配置完成(RRC Reconfiguration complete)消息,将后续可能出现的处于激活状态的CC组合(该组合中包含的CC个数大于5)对应的DC位置一并上报至基站。
之后,网络在为终端设备激活CC和CC中的BWP后,如果被激活的CC的数量小于或等于第二门限(如激活的CC数量为1、2、3、4或5个),则终端设备向网络上报处于激活状态的BWP对应的DC位置。
本实施例相比实施例一能够减少信令开销。由于PDCCH DCI对BWP的激活相对于MAC信令对载波的激活可能会更为频繁,因此对基于激活BWP的DC位置上报时延要求较高,上报频次也较频繁。对此,本申请提出以下实施方式。
实施三:
基站在为终端设备激活CC之后,将即将被激活的BWP组合发送给终端,终端完成对这些即将被激活的BWP组合的DC位置设置的同时上报DC位置。这样,后续基站激活其中的某个BWP组合时,终端设备不再需要提供该BWP组合对应的DC位置。
具体地,在已确定处于激活状态的CC的情况下,终端设备从网络设备接收处于激活状态的CC对应的即将被激活的BWP组合。
在一些实施方式中,终端设备可以通过RRC信令、MAC信令和PDCCH DCI中的至少一种,从网络设备接收该处于激活状态的CC对应的即将被激活的BWP组合。
之后,终端设备发送即将被激活的BWP组合对应的DC位置。具体地,终端设备可以通过RRC信令、MAC信令、PUCCH消息及PUSCH消息中的至少一项,发送该即将被激活的BWP组合对应的DC位置。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述每个即将被激活的BWP组合对应N个DC位置;其中,N为正整数。
以表1为例:
表1
Figure PCTCN2021089457-appb-000001
如表1所示,在终端设备处于激活状态的成员载波包括CC1和CC2的情况下,基站向终端设备发送CC1和CC2的即将被激活的BWP组合,终端设备向基站反馈这些即将被激活的BWP组合对应的DC位置。
此外,本实施例还可以在处于激活状态的CC的个数小于或等于第三门限的情况下,由终端设备发送即将被激活的BWP组合对应的DC位置。
与实施例一类似,进一步地,在处于激活状态的CC的个数较多,如大于上述第三门限的情况下,终端设备可以一次性上报可能出现的处于激活状态的CC组合的所有BWP组合所对应的DC位置;其中,前述可能出现的处于激活状态的CC组合中包含的CC个数大于上述第三门限。
上述第三门限可以为预先设定的值,也由网络设备在为终端设备配置CC时通知终端设备。例如,终端设备接收用于配置CC的RRC重配置消息,该用于配置CC的RRC重配置消息中携带上述第三门限。
以网络为终端设备配置8个CC,并且第二门限等于5为例,终端设备可以在接收到配置CC的RRC信令之后,通过RRC重配置完成(RRC Reconfiguration complete)消息,将后续可能出现的处于激活状态的CC组合(该组合中包含的CC个数大于5)对应的DC位置一并上报至基站。
网络在为终端设备激活CC后,如果被激活的CC的数量小于或等于第二门限(如激活的CC数量为1、2、3、4或5个),则终端设备向网络上报被激活的CC的即将被激活的BWP组合对应的DC位置。
可见,本实施例能够减少信令开销,又不会因网络频繁切换BWP而频繁上报DC位置,因此对上报时延的要求较低。
本申请实施例还提出一种直流载波(DC)位置接收方法,图10是根据本申请实施例的一种DC位置接收方法1000的示意性流程图,该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S1010:网络设备从终端设备接收处于激活状态的CC/BWP对应的DC位置。
在一些实施方式中,上述网络设备为基站。
在一些实施方式中,上述处于激活状态的CC对应的DC位置包括:第一BWP组合对应的DC位置,其中,所述第一BWP组合为处于激活状态的CC的BWP组合。
其中,上述第一BWP组合可以包括处于激活状态的CC的所有可能的激活BWP的组合。例如,终端设备的成员载波中,CC1和CC2处于激活状态,CC1中被配置了4个BWP,CC2中被配置了3个BWP;则CC1和CC2各取一个BWP构成一个第一BWP组合,共存在4*3=12种第一BWP组合。网络设备可以接收终端设备上报的所有第一BWP组合对应的DC位置。
在一些实施方式中,网络设备通过MAC信令接收该第一BWP组合对应的DC位置。由于载波的激活与去激活是通过MAC信令实现的,因此终端设备基于MAC信令的DC位置上报相比基于RRC 信令的上报,其时间间隔更短且更及时。
或者,网络设备通过RRC信令接收第一BWP组合对应的DC位置。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,每个第一BWP组合对应N个DC位置;其中,N为正整数。
由上述内容可见,网络设备接收处于激活状态的CC的DC位置,能够减少需要接收的DC位置的数量,因此能够减少信令开销。处于激活状态的CC的数量越少,这种优势就越明显。
进一步地,本申请实施例可以在终端设备的处于激活状态的CC的个数小于或等于第一门限的情况下,由网络设备接收该处于激活状态的CC的至少一个第一BWP组合对应的DC位置。
进一步地,在处于激活状态的CC的个数较多,如大于上述第一门限的情况下,网络设备可以接收终端设备一次性上报的DC位置。例如,网络设备从终端设备接收接收第一CC组合的至少一个第二BWP组合对应的DC位置;其中,该第一CC组合中包含的CC个数大于上述第一门限。
在一些实施方式中,网络设备通过RRC重配置完成消息接收上述第一CC组合的至少一个第二BWP组合对应的DC位置。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述每个第二BWP组合对应N个DC位置;其中,N为正整数。
上述第一门限可以是预先设定的值,也可以由网络设备发送至终端设备。在一些实施方式中,网络设备向终端设备发送用于配置CC的RRC重配置消息,该用于配置CC的RRC重配置消息中携带上述第一门限。
在一些实施方式中,网络设备通过PUCCH UCI消息和/或PUSCH消息接收处于激活状态的BWP对应的DC位置。
例如,在接收DC位置之前,网络设备向终端设备发送用于激活/去激活BWP的PDCCH DCI。终端在接收到用于激活/去激活BWP的PDCCH DCI之后,确定当前处于激活状态的BWP,并通过PUCCH UCI消息和/或PUSCH消息向网络设备发送处于激活状态的BWP对应的DC位置。
此外,本实施例还可以在终端设备的处于激活状态的CC的个数小于或等于第二门限的情况下,由网络设备接收处于激活状态的BWP对应的DC位置。在处于激活状态的成员载波的个数较多,如大于上述第二门限的情况下,网络设备可以一次性接收终端设备上报的处于激活状态的成员载波组合的所有BWP组合所对应的DC位置;其中,前述可能出现的处于激活状态的成员载波组合中包含的CC个数大于上述第二门限。
为了避免激活BWP频繁切换造成的频繁接收DC位置的问题,在一些实施方式中,网络设备可以向终端设备发送处于激活状态的CC对应的即将被激活的BWP组合。之后,网络设备从终端设备接收这些即将被激活的BWP组合对应的DC位置。这样,网络设备在后续激活某个BWP组合时,不需要再接收该BWP组合对应的DC位置,从而可能减少接收频率。
其中,在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述每个即将被激活的BWP组合对应N个DC位置;其中,N为正整数。
在一些实施方式中,网络设备通过RRC信令、MAC信令和PDCCH DCI中的至少一种,向终端设备发送处于激活状态的CC对应的即将被激活的BWP组合。
网络设备通过RRC信令、MAC信令、PUCCH消息及PUSCH消息中的至少一项,接收即将被激活的BWP组合对应的DC位置。
本申请实施例可以在终端设备的处于激活状态的CC的个数小于或等于第三门限的情况下,由网络设备向该终端设备发送处于激活状态的CC对应的即将被激活的BWP组合,并接收各个即将被激活的BWP组合对应的DC位置。
进一步地,在处于激活状态的CC的个数较多,如大于上述第三门限的情况下,网络设备可以接收终端设备一次性上报的DC位置。例如,网络设备从终端设备接收可能出现的处于激活状态的CC的组合的至少一个第二BWP组合对应的DC位置;其中,该可能出现的处于激活状态的CC的组合中包含的CC个数上述大于第三门限。
本申请实施例还提出一种终端设备,图11是根据本申请实施例的终端设备1100的结构示意图,包括:
确定模块1110,用于确定处于激活状态的成员载波CC/带宽部分BWP;
第一发送模块1120,用于发送该处于激活状态的CC/BWP对应的直流载波DC位置。
在一些实施方式中,上述第一发送模块1120用于,确定至少一个第一BWP组合,该第一BWP组合为处于激活状态的CC的BWP组合;发送该至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
在一些实施方式中,上述第一发送模块1120通过MAC信令发送至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
在一些实施方式中,上述第一发送模块1120通过RRC信令发送至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
在一些实施方式中,在处于激活状态的CC的个数小于或等于第一门限的情况下,上述第一发送模块1120发送至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
图12是根据本申请实施例的终端设备1200的结构示意图,包括:确定模块1110和第一发送模块1120,还包括:
预先上报模块1230,用于确定至少一个第一CC组合,该第一CC组合中包含的CC个数大于上述第一门限;确定该至少一个第一CC组合中的每个第一CC组合的至少一个第二BWP组合;发送该至少一个第二BWP组合中的每个第二BWP组合对应的DC位置。
在一些实施方式中,上述预先上报模块1230通过RRC重配置完成消息发送上述至少一个第二BWP组合中的每个第二BWP组合对应的DC位置。
在一些实施方式中,上述终端设备还包括:
第一接收模块1240,用于接收该第一门限。
在一些实施方式中,上述第一接收模块1240接收用于配置CC的RRC重配置消息,该用于配置CC的RRC重配置消息中携带该第一门限。
在一些实施方式中,上述第一门限为预先设定的值。
在一些实施方式中,上述第一发送模块1120用于,通过PUCCH UCI消息和/或PUSCH消息发送该处于激活状态的BWP对应的DC位置。
在一些实施方式中,上述第一发送模块1120在终端设备接收到用于激活/去激活BWP的物理下行控制信道PDCCH下行控制信息DCI后,发送上述处于激活状态的BWP对应的DC位置。
在一些实施方式中,在处于激活状态的CC的个数小于或等于第二门限的情况下,上述第一发送模块1120发送该激活状态的BWP对应的DC位置。
在一些实施方式中,上述确定模块1110用于,在已确定处于激活状态的CC的情况下,从网络设备接收处于激活状态的CC对应的即将被激活的BWP组合。
在一些实施方式中,上述确定模块1110通过RRC信令、MAC信令和PDCCH DCI中的至少一种,从网络设备接收该处于激活状态的CC对应的即将被激活的BWP组合。
在一些实施方式中,上述第一发送模块1120,用于发送该即将被激活的BWP组合对应的DC位置。
在一些实施方式中,上述第一发送模块1120通过RRC信令、MAC信令、PUCCH消息及PUSCH消息中的至少一项,发送该即将被激活的BWP组合对应的DC位置。
在一些实施方式中,在处于激活状态的CC的个数小于或等于第三门限的情况下,上述确定模块1110从网络设备接收该处于激活状态的CC对应的即将被激活的BWP组合。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述第一BWP组合对应N个DC位置;其中,N为正整数。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述第二BWP组合对应N个DC位置;其中,N为正整数。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述处于激活状态的BWP对应N个DC位置;其中,N为正整数。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述即将被激活的BWP组合对应N个DC位置;其中,N为正整数。
应理解,根据本申请实施例的终端设备中的模块的上述及其他操作和/或功能分别为了实现图5的方法500中的终端设备的相应流程,为了简洁,在此不再赘述。
本申请实施例还提出一种网络设备,图13是根据本申请实施例的网络设备1300结构示意图,包括:
第二接收模块1310,用于从终端设备接收处于激活状态的CC/BWP对应的直流载波DC位置。
在一些实施方式中,上述处于激活状态的CC对应的DC位置包括:第一BWP组合对应的DC位置,其中,该第一BWP组合为处于激活状态的CC的BWP组合。
在一些实施方式中,上述第二接收模块1310通过MAC信令接收第一BWP组合对应的DC位置。
在一些实施方式中,上述第二接收模块1310通过RRC信令接收第一BWP组合对应的DC位置。
在一些实施方式中,在终端设备的处于激活状态的CC的个数小于或等于第一门限的情况下,上述第二接收模块1310接收该处于激活状态的CC的至少一个第一BWP组合对应的DC位置。
图14是根据本申请实施例的网络设备1400的结构示意图,包括第二接收模块1310,还包括:
预先接收模块1420,用于从终端设备接收第一CC组合的至少一个第二BWP组合对应的DC位置;其中,该第一CC组合中包含的CC个数大于第一门限。
在一些实施方式中,上述预先接收模块1420通过RRC重配置完成消息接收该第二BWP组合对应的DC位置。
在一些实施方式中,上述网络设备还包括:配置模块1430,用于向终端设备发送该第一门限。
在一些实施方式中,上述配置模块1430向该终端设备发送用于配置CC的RRC重配置消息,该用于配置CC的RRC重配置消息中携带该第一门限。
在一些实施方式中,上述第一门限为预先设定的值。
在一些实施方式中,上述第二接收模块1310通过PUCCH UCI消息和/或PUSCH消息接收该处于激活状态的BWP对应的DC位置。
在一些实施方式中,上述网络设备还包括:BWP激活模块1440,用于向终端设备发送用于激活/去激活BWP的PDCCH DCI。
在一些实施方式中,在终端设备的处于激活状态的CC的个数小于或等于第二门限的情况下,上述第二接收模块1310接收上述处于激活状态的BWP对应的DC位置。
在一些实施方式中,上述网络设备还包括:第二发送模块1450,用于向终端设备发送处于激活状态的CC对应的即将被激活的BWP组合。
在一些实施方式中,上述第二发送模块1450通过RRC信令、MAC信令和PDCCH DCI中的至少一种,向终端设备发送该处于激活状态的CC对应的即将被激活的BWP组合。
在一些实施方式中,上述第二接收模块1310用于,从终端设备接收上述即将被激活的BWP组合对应的DC位置。
在一些实施方式中,上述第二接收模块1310通过RRC信令、MAC信令、PUCCH消息及PUSCH消息中的至少一项,接收该即将被激活的BWP组合对应的DC位置。
在一些实施方式中,在终端设备的处于激活状态的CC的个数小于或等于第三门限的情况下,上述第二发送模块1450向该终端设备发送处于激活状态的CC对应的即将被激活的BWP组合。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述第一BWP组合对应N个DC位置;其中,N为正整数。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述第二BWP组合对应N个DC位置;其中,N为正整数。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述处于激活状态的BWP对应N个DC位置;其中,N为正整数。
在一些实施方式中,在终端设备采用N个L0对所有CC进行上变频的情况下,上述即将被激活的BWP组合对应N个DC位置;其中,N为正整数。
应理解,根据本申请实施例的网络设备中的模块的上述及其他操作和/或功能分别为了实现图10的方法1000中的网络设备的相应流程,为了简洁,在此不再赘述。
需要说明,关于本申请实施例的终端设备和网络设备中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,第一发送模块与预先上报模块可以是不同的模块,也可以是同一个模块,均能够实现其在本申请实施例中的相应功能。此外,本申请实施例中的发送模块和接收模块,可通过设备的收发机实现,其余各模块中的部分或全部可通过设备的处理器实现。
图15是根据本申请实施例的通信设备1500示意性结构图。图15所示的通信设备1500包括处理器1510,处理器1510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施方式中,如图15所示,通信设备1500还可以包括存储器1520。其中,处理器1510可以从存储器1520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1520可以是独立于处理器1510的一个单独的器件,也可以集成在处理器1510中。
在一些实施方式中,如图15所示,通信设备1500还可以包括收发器1530,处理器1510可以控制该收发器1530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1530可以包括发射机和接收机。收发器1530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施方式中,该通信设备1500可为本申请实施例的终端设备,并且该通信设备1500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施方式中,该通信设备1500可为本申请实施例的网络设备,并且该通信设备1500可以实 现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图16是根据本申请实施例的芯片1600的示意性结构图。图16所示的芯片1600包括处理器1610,处理器1610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施方式中,如图16所示,芯片1600还可以包括存储器1620。其中,处理器1610可以从存储器1620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1620可以是独立于处理器1610的一个单独的器件,也可以集成在处理器1610中。
在一些实施方式中,该芯片1600还可以包括输入接口1630。其中,处理器1610可以控制该输入接口1630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施方式中,该芯片1600还可以包括输出接口1640。其中,处理器1610可以控制该输出接口1640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施方式中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施方式中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (98)

  1. 一种直流载波位置上报方法,包括:
    终端设备确定处于激活状态的成员载波CC/带宽部分BWP;
    所述终端设备发送所述处于激活状态的CC/BWP对应的直流载波DC位置。
  2. 根据权利要求1所述的方法,其中,所述终端设备发送所述处于激活状态的CC对应的DC位置,包括:
    确定至少一个第一BWP组合,所述第一BWP组合为处于激活状态的CC的BWP组合;
    发送所述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
  3. 根据权利要求2所述的方法,其中,所述发送所述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置,包括:
    终端设备通过媒体接入控制层MAC信令发送所述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
  4. 根据权利要求2所述的方法,其中,所述发送所述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置,包括:
    终端设备通过无线资源控制RRC信令发送所述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
  5. 根据权利要求2至4任一所述的方法,其中,
    在处于激活状态的CC的个数小于或等于第一门限的情况下,所述终端设备发送所述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
  6. 根据权利要求5所述的方法,还包括:
    确定至少一个第一CC组合,所述第一CC组合中包含的CC个数大于所述第一门限;
    确定所述至少一个第一CC组合中的每个第一CC组合的至少一个第二BWP组合;
    发送所述至少一个第二BWP组合中的每个第二BWP组合对应的DC位置。
  7. 根据权利要求6所述的方法,其中,所述发送所述至少一个第二BWP组合中的每个第二BWP组合对应的DC位置,包括:
    终端设备通过RRC重配置完成消息发送所述至少一个第二BWP组合中的每个第二BWP组合对应的DC位置。
  8. 根据权利要求5至7任一所述的方法,还包括:终端设备接收所述第一门限。
  9. 根据权利要求8所述的方法,其中,所述终端设备接收所述第一门限包括:
    终端设备接收用于配置CC的RRC重配置消息,所述用于配置CC的RRC重配置消息中携带所述第一门限。
  10. 根据权利要求5至7任一所述的方法,其中,第一门限为预先设定的值。
  11. 根据权利要求1所述的方法,其中,所述终端设备发送所述处于激活状态的BWP对应的DC位置,包括:
    所述终端设备通过物理上行控制信道PUCCH上行控制信息UCI消息和/或物理上行共享信道PUSCH消息发送所述处于激活状态的BWP对应的DC位置。
  12. 根据权利要求11所述的方法,其中,所述终端设备在接收到用于激活/去激活BWP的物理下行控制信道PDCCH下行控制信息DCI后,发送所述处于激活状态的BWP对应的DC位置。
  13. 根据权利要求11或12所述的方法,其中,在处于激活状态的CC的个数小于或等于第二门限的情况下,所述终端设备发送所述处于激活状态的BWP对应的DC位置。
  14. 根据权利要求1所述的方法,其中,所述终端设备确定处于激活状态的BWP,包括:
    在已确定处于激活状态的CC的情况下,终端设备从网络设备接收所述处于激活状态的CC对应的即将被激活的BWP组合。
  15. 根据权利要求14所述的方法,其中,所述终端设备从网络设备接收所述处于激活状态的CC对应的即将被激活的BWP组合,包括:
    所述终端设备通过RRC信令、MAC信令和PDCCH DCI中的至少一种,从网络设备接收所述处于激活状态的CC对应的即将被激活的BWP组合。
  16. 根据权利要求14或15所述的方法,其中,所述终端设备发送所述处于激活状态的BWP对应的DC位置,包括:
    终端设备发送所述即将被激活的BWP组合对应的DC位置。
  17. 根据权利要求16所述的方法,其中,所述终端设备发送所述即将被激活的BWP组合对应的DC 位置,包括:
    终端设备通过RRC信令、MAC信令、PUCCH消息及PUSCH消息中的至少一项,发送所述即将被激活的BWP组合对应的DC位置。
  18. 根据权利要求14至17任一所述的方法,其中,在处于激活状态的CC的个数小于或等于第三门限的情况下,所述终端设备从网络设备接收所述处于激活状态的CC对应的即将被激活的BWP组合。
  19. 根据权利要求2至5任一所述的方法,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述第一BWP组合对应N个DC位置;其中,所述N为正整数。
  20. 根据权利要求6或7所述的方法,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述第二BWP组合对应N个DC位置;其中,所述N为正整数。
  21. 根据权利要求11至13任一所述的方法,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述处于激活状态的BWP对应N个DC位置;其中,所述N为正整数。
  22. 根据权利要求14至18任一所述的方法,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述即将被激活的BWP组合对应N个DC位置;其中,所述N为正整数。
  23. 一种直流载波位置接收方法,包括:
    网络设备从终端设备接收处于激活状态的CC/BWP对应的直流载波DC位置。
  24. 根据权利要求23所述的方法,其中,所述处于激活状态的CC对应的DC位置包括:
    第一BWP组合对应的DC位置,其中,所述第一BWP组合为处于激活状态的CC的BWP组合。
  25. 根据权利要求24所述的方法,其中,所述网络设备通过MAC信令接收所述第一BWP组合对应的DC位置。
  26. 根据权利要求24所述的方法,其中,所述网络设备通过RRC信令接收所述第一BWP组合对应的DC位置。
  27. 根据权利要求24至26任一所述的方法,其中,
    在所述终端设备的处于激活状态的CC的个数小于或等于第一门限的情况下,所述网络设备接收所述第一BWP组合对应的DC位置。
  28. 根据权利要求27所述的方法,还包括:
    网络设备从所述终端设备接收第一CC组合的至少一个第二BWP组合对应的DC位置;其中,所述第一CC组合中包含的CC个数大于第一门限。
  29. 根据权利要求28所述的方法,其中,所述网络设备通过RRC重配置完成消息接收所述第二BWP组合对应的DC位置。
  30. 根据权利要求27至29任一所述的方法,还包括:网络设备向所述终端设备发送所述第一门限。
  31. 根据权利要求30所述的方法,其中,所述网络设备向所述终端设备发送所述第一门限,包括:
    网络设备向所述终端设备发送用于配置CC的RRC重配置消息,所述用于配置CC的RRC重配置消息中携带所述第一门限。
  32. 根据权利要求27至29任一所述的方法,其中,第一门限为预先设定的值。
  33. 根据权利要求23所述的方法,其中,所述网络设备从终端设备接收处于激活状态的BWP对应的DC位置,包括:
    网络设备通过PUCCH UCI消息和/或PUSCH消息接收所述处于激活状态的BWP对应的DC位置。
  34. 根据权利要求33所述的方法,其中,所述网络设备从终端设备接收处于激活状态的BWP对应的DC位置之前,还包括:
    网络设备向终端设备发送用于激活/去激活BWP的PDCCH DCI。
  35. 根据权利要求33或34所述的方法,其中,在所述终端设备的处于激活状态的CC的个数小于或等于第二门限的情况下,所述网络设备接收所述处于激活状态的BWP对应的DC位置。
  36. 根据权利要求23所述的方法,还包括:
    网络设备向所述终端设备发送处于激活状态的CC对应的即将被激活的BWP组合。
  37. 根据权利要求36所述的方法,其中,网络设备通过RRC信令、MAC信令和PDCCH DCI中的至少一种,向所述终端设备发送所述处于激活状态的CC对应的即将被激活的BWP组合。
  38. 根据权利要求36或37所述的方法,其中,所述网络设备从终端设备接收处于激活状态的CC对应的DC位置,包括:
    网络设备从终端设备接收所述即将被激活的BWP组合对应的DC位置。
  39. 根据权利要38所述的方法,其中,所述网络设备通过RRC信令、MAC信令、PUCCH消息及PUSCH消息中的至少一项,接收所述即将被激活的BWP组合对应的DC位置。
  40. 根据权利要求36至39任一所述的方法,其中,在所述终端设备的处于激活状态的CC的个数小于或等于第三门限的情况下,所述网络设备向所述终端设备发送处于激活状态的CC对应的即将被激活的BWP组合。
  41. 根据权利要求24至27任一所述的方法,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述第一BWP组合对应N个DC位置;其中,所述N为正整数。
  42. 根据权利要求28或29所述的方法,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述第二BWP组合对应N个DC位置;其中,所述N为正整数。
  43. 根据权利要求33至35任一所述的方法,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述处于激活状态的BWP对应N个DC位置;其中,所述N为正整数。
  44. 根据权利要求36至40任一所述的方法,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述即将被激活的BWP组合对应N个DC位置;其中,所述N为正整数。
  45. 一种终端设备,包括:
    确定模块,用于确定处于激活状态的成员载波CC/带宽部分BWP;
    第一发送模块,用于发送所述处于激活状态的CC/BWP对应的直流载波DC位置。
  46. 根据权利要求45所述的终端设备,其中,所述第一发送模块用于,确定至少一个第一BWP组合,所述第一BWP组合为处于激活状态的CC的BWP组合;发送所述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
  47. 根据权利要求46所述的终端设备,其中,所述第一发送模块通过MAC信令发送所述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
  48. 根据权利要求46所述的终端设备,其中,所述第一发送模块通过RRC信令发送所述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
  49. 根据权利要求46至48任一所述的终端设备,其中,
    在处于激活状态的CC的个数小于或等于第一门限的情况下,所述第一发送模块发送所述至少一个第一BWP组合中的每个第一BWP组合对应的DC位置。
  50. 根据权利要求49所述的终端设备,还包括:
    预先上报模块,用于确定至少一个第一CC组合,所述第一CC组合中包含的CC个数大于所述第一门限;确定所述至少一个第一CC组合中的每个第一CC组合的至少一个第二BWP组合;发送所述至少一个第二BWP组合中的每个第二BWP组合对应的DC位置。
  51. 根据权利要求50所述的终端设备,其中,所述预先上报模块通过RRC重配置完成消息发送所述至少一个第二BWP组合中的每个第二BWP组合对应的DC位置。
  52. 根据权利要求47至51任一所述的终端设备,还包括:
    第一接收模块,用于接收所述第一门限。
  53. 根据权利要求52所述的终端设备,其中,所述第一接收模块接收用于配置CC的RRC重配置消息,所述用于配置CC的RRC重配置消息中携带所述第一门限。
  54. 根据权利要求47至51任一所述的终端设备,其中,第一门限为预先设定的值。
  55. 根据权利要求45所述的终端设备,其中,所述第一发送模块用于,通过PUCCH UCI消息和/或PUSCH消息发送所述处于激活状态的BWP对应的DC位置。
  56. 根据权利要求55所述的终端设备,其中,所述第一发送模块在所述终端设备接收到用于激活/去激活BWP的物理下行控制信道PDCCH下行控制信息DCI后,发送所述处于激活状态的BWP对应的DC位置。
  57. 根据权利要求55或56所述的终端设备,其中,在处于激活状态的CC的个数小于或等于第二门限的情况下,所述第一发送模块发送所述处于激活状态的BWP对应的DC位置。
  58. 根据权利要求55所述的终端设备,其中,所述确定模块用于,在已确定处于激活状态的CC的情况下,从网络设备接收所述处于激活状态的CC对应的即将被激活的BWP组合。
  59. 根据权利要求58所述的终端设备,其中,所述确定模块通过RRC信令、MAC信令和PDCCH DCI中的至少一种,从网络设备接收所述处于激活状态的CC对应的即将被激活的BWP组合。
  60. 根据权利要求58或59所述的终端设备,其中,所述第一发送模块,用于发送所述即将被激活的BWP组合对应的DC位置。
  61. 根据权利要求60所述的终端设备,其中,所述第一发送模块通过RRC信令、MAC信令、PUCCH消息及PUSCH消息中的至少一项,发送所述即将被激活的BWP组合对应的DC位置。
  62. 根据权利要求58至61任一所述的终端设备,其中,在处于激活状态的CC的个数小于或等于第三门限的情况下,所述确定模块从网络设备接收所述处于激活状态的CC对应的即将被激活的BWP 组合。
  63. 根据权利要求46至49任一所述的终端设备,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述第一BWP组合对应N个DC位置;其中,所述N为正整数。
  64. 根据权利要求50或51所述的终端设备,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述第二BWP组合对应N个DC位置;其中,所述N为正整数。
  65. 根据权利要求55至57任一所述的终端设备,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述处于激活状态的BWP对应N个DC位置;其中,所述N为正整数。
  66. 根据权利要求58至62任一所述的终端设备,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述即将被激活的BWP组合对应N个DC位置;其中,所述N为正整数。
  67. 一种网络设备,包括:
    第二接收模块,用于从终端设备接收处于激活状态的CC/BWP对应的直流载波DC位置。
  68. 根据权利要求67所述的网络设备,其中,所述处于激活状态的CC对应的DC位置包括:
    第一BWP组合对应的DC位置,其中,所述第一BWP组合为处于激活状态的CC的BWP组合。
  69. 根据权利要求68所述的网络设备,其中,所述第二接收模块通过MAC信令接收所述第一BWP组合对应的DC位置。
  70. 根据权利要求68所述的网络设备,其中,所述第二接收模块通过RRC信令接收所述第一BWP组合对应的DC位置。
  71. 根据权利要求68至70任一所述的网络设备,其中,
    在所述终端设备的处于激活状态的CC的个数小于或等于第一门限的情况下,所述第二接收模块接收所述处于激活状态的CC的至少一个第一BWP组合对应的DC位置。
  72. 根据权利要求71所述的网络设备,还包括:
    预先接收模块,用于从所述终端设备接收第一CC组合的至少一个第二BWP组合对应的DC位置;其中,所述第一CC组合中包含的CC个数大于第一门限。
  73. 根据权利要求72所述的网络设备,其中,所述预先接收模块通过RRC重配置完成消息接收所述第二BWP组合对应的DC位置。
  74. 根据权利要求71至73任一所述的网络设备,还包括:配置模块,用于向所述终端设备发送所述第一门限。
  75. 根据权利要求74所述的网络设备,其中,所述配置模块向所述终端设备发送用于配置CC的RRC重配置消息,所述用于配置CC的RRC重配置消息中携带所述第一门限。
  76. 根据权利要求71至73任一所述的网络设备,其中,第一门限为预先设定的值。
  77. 根据权利要求67所述的网络设备,其中,所述第二接收模块通过PUCCH UCI消息和/或PUSCH消息接收所述处于激活状态的BWP对应的DC位置。
  78. 根据权利要求77所述的网络设备,其中,还包括:
    BWP激活模块,用于向终端设备发送用于激活/去激活BWP的PDCCH DCI。
  79. 根据权利要求77或78所述的网络设备,其中,在所述终端设备的处于激活状态的CC的个数小于或等于第二门限的情况下,所述第二接收模块接收所述处于激活状态的BWP对应的DC位置。
  80. 根据权利要求77所述的网络设备,还包括:
    第二发送模块,用于向所述终端设备发送处于激活状态的CC对应的即将被激活的BWP组合。
  81. 根据权利要求80所述的网络设备,其中,所述第二发送模块通过RRC信令、MAC信令和PDCCH DCI中的至少一种,向所述终端设备发送所述处于激活状态的CC对应的即将被激活的BWP组合。
  82. 根据权利要求80或81所述的网络设备,其中,所述第二接收模块用于,从终端设备接收所述即将被激活的BWP组合对应的DC位置。
  83. 根据权利要82所述的网络设备,其中,所述第二接收模块通过RRC信令、MAC信令、PUCCH消息及PUSCH消息中的至少一项,接收所述即将被激活的BWP组合对应的DC位置。
  84. 根据权利要求80至83任一所述的网络设备,其中,在所述终端设备的处于激活状态的CC的个数小于或等于第三门限的情况下,所述第二发送模块向所述终端设备发送处于激活状态的CC对应的即将被激活的BWP组合。
  85. 根据权利要求68至71任一所述的网络设备,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述第一BWP组合对应N个DC位置;其中,所述N为正整数。
  86. 根据权利要求72或73所述的网络设备,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述第二BWP组合对应N个DC位置;其中,所述N为正整数。
  87. 根据权利要求77至79任一所述的网络设备,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述处于激活状态的BWP对应N个DC位置;其中,所述N为正整数。
  88. 根据权利要求80至84任一所述的网络设备,其中,在所述终端设备采用N个L0对所有CC进行上变频的情况下,所述即将被激活的BWP组合对应N个DC位置;其中,所述N为正整数。
  89. 一种终端设备,包括:处理器、存储器及收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,并控制所述收发器,执行如权利要求1至22中任一项所述的方法。
  90. 一种通信设备,包括:处理器、存储器及收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,并控制所述收发器,执行如权利要求23至44中任一项所述的方法。
  91. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至22中任一项所述的方法。
  92. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求23至44中任一项所述的方法。
  93. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  94. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求23至44中任一项所述的方法。
  95. 一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至22中任一项所述的方法。
  96. 一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求23至44中任一项所述的方法。
  97. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  98. 一种计算机程序,所述计算机程序使得计算机执行如权利要求23至44中任一项所述的方法。
PCT/CN2021/089457 2021-04-23 2021-04-23 直流载波位置上报方法、终端设备和网络设备 WO2022222158A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180081223.3A CN116530177A (zh) 2021-04-23 2021-04-23 直流载波位置上报方法、终端设备和网络设备
PCT/CN2021/089457 WO2022222158A1 (zh) 2021-04-23 2021-04-23 直流载波位置上报方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/089457 WO2022222158A1 (zh) 2021-04-23 2021-04-23 直流载波位置上报方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2022222158A1 true WO2022222158A1 (zh) 2022-10-27

Family

ID=83723417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089457 WO2022222158A1 (zh) 2021-04-23 2021-04-23 直流载波位置上报方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN116530177A (zh)
WO (1) WO2022222158A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111954994A (zh) * 2018-04-10 2020-11-17 高通股份有限公司 新无线电(nr)中的直流(dc)频调位置的上行链路信令

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111954994A (zh) * 2018-04-10 2020-11-17 高通股份有限公司 新无线电(nr)中的直流(dc)频调位置的上行链路信令

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "DC location reporting for intra-band UL CA", 3GPP DRAFT; R2-2010048, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20201102 - 20201113, 22 October 2020 (2020-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942768 *
HUAWEI, HISILICON: "Introduction of additional DC location reporting for CA", 3GPP DRAFT; R2-2010228, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942907 *
NOKIA, NOKIA SHANGHAI BELL: "DC location reporting for UL CA", 3GPP DRAFT; R2-2009167, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942187 *

Also Published As

Publication number Publication date
CN116530177A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
US20220369214A1 (en) Method for indicating antenna switching capability, terminal device and communication device
WO2019242670A1 (zh) 通信方法、通信设备、网络设备及通信系统
WO2020147131A1 (zh) 无线通信方法、终端设备和网络设备
CA3053919C (en) Communication method, network device, terminal device, computer readable storage medium, computer program product, processing apparatus and communication system
WO2021087678A1 (zh) 一种小区状态管理方法及装置、终端设备、网络设备
WO2019096232A1 (zh) 通信方法和通信装置
WO2023030514A1 (zh) 无线通信方法和通信装置
US20220173845A1 (en) Communication method and apparatus
WO2020119615A1 (zh) 一种通信方法、装置及计算机可读存储介质
US11895045B2 (en) Transmission method and apparatus
US11381288B2 (en) Communication method, network device, and terminal device
US20200374915A1 (en) Scheduling latency determining method and apparatus
US20230021791A1 (en) Method for configuring multiple carriers, terminal device, and network device
WO2022213872A1 (zh) 通信方法和通信装置
WO2020000142A1 (zh) 无线通信方法、网络设备和终端设备
WO2022021136A1 (zh) 无线通信方法、终端设备和网络设备
WO2022222158A1 (zh) 直流载波位置上报方法、终端设备和网络设备
WO2022104650A1 (zh) 上报直流载波位置的方法、终端设备和网络设备
WO2021142661A1 (zh) 控制小区状态的方法及装置、终端设备、网络设备
WO2020147040A1 (zh) 数据复制传输配置方法、装置、芯片及计算机程序
US20240040655A1 (en) Parameter configuration method, terminal device and network device
US20220248267A1 (en) Wireless communication method, terminal device, and network device
US11570837B2 (en) Communication method and communications device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180081223.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937386

Country of ref document: EP

Kind code of ref document: A1