WO2021164311A1 - 一种探测方法和装置 - Google Patents

一种探测方法和装置 Download PDF

Info

Publication number
WO2021164311A1
WO2021164311A1 PCT/CN2020/125351 CN2020125351W WO2021164311A1 WO 2021164311 A1 WO2021164311 A1 WO 2021164311A1 CN 2020125351 W CN2020125351 W CN 2020125351W WO 2021164311 A1 WO2021164311 A1 WO 2021164311A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo
electrical signal
processing unit
detection device
frame
Prior art date
Application number
PCT/CN2020/125351
Other languages
English (en)
French (fr)
Inventor
沈玉杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227031083A priority Critical patent/KR20220136430A/ko
Priority to EP20919721.9A priority patent/EP4095550A4/en
Publication of WO2021164311A1 publication Critical patent/WO2021164311A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present invention relates to the technical field of intelligent driving, in particular to a detection method and device.
  • Automobiles have been redefined as smart mobile terminals, from mechanical products to electronic products. .
  • ultrasonic sensors are common sensors used for parking perception, and are currently widely used in reversing alarms and fully automatic parking. In these usage scenarios, people are involved in driving or real-time monitoring of vehicles, so the requirements for ultrasound are not high. In the future, as the degree of parking automation becomes higher and higher, human drivers will not participate in the driving process at all, so the existing ultrasonic sensor signal processing technology cannot meet the requirements of high reliability.
  • the embodiments of the present application provide a detection method and device, which are used to determine whether the detection signal of an ultrasonic radar has a grounding phenomenon based on the received echo signal, and then adjust the echo threshold sequence to improve the detection accuracy.
  • a detection method is provided, the method is suitable for a detection device in a moving state, and includes: determining that there is ground reflection according to the electrical signal value of N consecutive frames in the echo signal, and N is a positive integer greater than 2; adjusting An echo threshold sequence, the echo threshold sequence is a sequence of electrical signal thresholds used to distinguish a target echo from a ground echo.
  • the echo threshold is adjusted. Sequence, thereby improving the detection accuracy of the detection device.
  • the electrical signal value received in the frame is set as a threshold sequence to determine whether there is an obstacle within the safe distance; if the electrical signal value at the same time in multiple adjacent frames is the same, then there is an obstacle within the safe distance , There is also "ground interference”, then the electrical signal value in the threshold sequence corresponding to the same electrical signal value in time is replaced with the electrical signal value in the current frame that is the same as the electrical signal value of the other multiple frames at the same time. ; If the electrical signal values at the same time in multiple adjacent frames are completely different, there are only obstacles within a safe distance at this time.
  • the method may be executed by a detection device, such as a detection device or a device capable of supporting the detection device to implement the functions required by the method, such as a chip system.
  • a detection device such as a detection device or a device capable of supporting the detection device to implement the functions required by the method, such as a chip system.
  • the detection device is a radar, such as an ultrasonic radar or other radars
  • the detection device may be a radar, or may be a device provided in the radar that can support the functions required by the radar to implement the method, such as a chip system, Or other functional modules.
  • the method further includes: the ground reflection is determined according to driving information and the echo signal, and the driving information includes moving speed information and direction information of the detection device when it is moving.
  • the detection signal of the ultrasonic radar is determined according to the moving speed information, direction information, and multiple frames of echo signals, so as to ensure that the detected ground phenomenon is in the moving process of the target vehicle. Not in a static state, thereby improving accuracy.
  • the determining that there is a ground reflection based on the electrical signal values of N consecutive frames in the echo signal includes: determining that there is a continuous stable echo based on the electrical signal values of the N consecutive frames in the echo signal Signal, the stable echo satisfies that the electrical signal value at time T in the first frame is the same as the electrical signal value at time T in the second frame, and the first frame and the second frame are among the N frames In any frame, the T time is any time in the frame.
  • the adjusting the echo threshold sequence includes: determining the electrical signal value of the first frame in the stable echo as the echo threshold sequence, and the echo threshold sequence is Determined according to the electrical signal value of the first frame in the stable echo.
  • the method further includes: sending first indication information to the ultrasound unit, where the first indication information is used to indicate the echo threshold sequence.
  • the ultrasonic radar after sending instruction information to the ultrasonic radar, after receiving the echo signal, the ultrasonic radar actively filters out the electrical signal below the echo threshold sequence, and sends the electrical signal value that meets the requirements to the detection device, thereby Reduce the computational burden of the detection device.
  • the method before determining that there is ground reflection based on the electrical signal values of N consecutive frames in the echo signal, the method includes: determining that the electrical signal values of the consecutive N frames are greater than a first threshold, and the first The threshold value is the electrical signal value corresponding to the noise in the environment.
  • the ultrasonic radar due to the presence of environmental noise in the air, the ultrasonic radar will inevitably receive the noise signal in the environment. Therefore, a smaller threshold is generally required to filter the bottom noise, thereby improving accuracy.
  • the N is determined according to the moving speed of the detection device.
  • the number of frames for comparing electrical signal values it is necessary to determine the number of frames for comparing electrical signal values according to the driving speed of the target vehicle. If the speed is too fast, the number of frames for comparison is relatively small; if the speed is too slow, the number of frames for comparison is only More. In this way, the number of frames can be obtained flexibly, thereby reducing the computational burden of the detection device.
  • a detection device is provided, for example, the detection device is the aforementioned detection device.
  • the detection device is used to execute the method in the above-mentioned first aspect or any possible implementation manner.
  • the detection device may include a module for executing the method in the first aspect or any possible implementation manner, for example, including a communication unit and a processing unit.
  • the detection device is a detection device, or a chip system or other components provided in the detection device.
  • the detection device is a radar.
  • the communication unit is configured to receive an echo signal;
  • the processing unit is configured to determine that there is ground reflection according to the electrical signal value of N consecutive frames in the echo signal, and N is a positive integer greater than 2; and
  • the echo threshold sequence is adjusted, and the echo threshold sequence is an electrical signal threshold sequence used to distinguish the target echo from the ground echo.
  • the detection device determines whether there is a ground phenomenon in the detection signal after receiving multiple frames of echo signals, and then by judging the electrical signal values corresponding to the echo signals of multiple consecutive frames. Adjust the echo threshold sequence to improve the detection accuracy of the detection device.
  • the processing unit is further configured to determine the ground reflection according to driving information and the echo signal, and the driving information includes moving speed information and direction information of the detection device when it is moving.
  • the processing unit is specifically configured to determine that there is a continuous stable echo signal according to the electrical signal values of N consecutive frames in the echo signal, and the stable echo satisfies the time T in the first frame
  • the electrical signal value of is the same as the electrical signal value at time T in the second frame, the first frame and the second frame are any of the N frames, and the time T is any of the frames time.
  • the processing unit is specifically configured to determine the electrical signal value of the first frame in the stable echo as the echo threshold sequence, and the echo threshold sequence is based on the echo threshold sequence. The electrical signal value of the first frame in the stable echo is determined.
  • the processing unit is specifically configured to send first indication information to the ultrasound unit, where the first indication information is used to indicate the echo threshold sequence.
  • the processing unit is specifically configured to determine that the electrical signal value of the N consecutive frames is greater than a first threshold, where the first threshold is an electrical signal value corresponding to noise in the environment.
  • the N time is determined according to the moving speed of the detection device.
  • a detection device is provided.
  • the detection device is, for example, the aforementioned detection device.
  • the detection device includes a processor and a communication interface.
  • the processor can realize the function of the processing unit as described in the second aspect
  • the communication interface can realize the function of the communication unit as described in the second aspect.
  • the detection device may further include a memory for storing computer instructions.
  • the processor, the communication interface, and the memory are coupled with each other, and are used to implement the methods described in the first aspect or various possible implementation manners.
  • the detection device may not include a memory, and the memory may be located outside the detection device.
  • the detection device when the processor executes the computer instructions stored in the memory, the detection device is caused to execute the method in the first aspect or any one of the implementation manners.
  • the detection device is a detection device, or a chip system or other components provided in the detection device.
  • the detection device is a radar.
  • the communication interface is realized by, for example, the transceiver (or transmitter and receiver) in the detection device, for example, the transceiver is realized by the antenna, feeder, and codec in the detection device. ⁇ , etc. to achieve.
  • the detection device is a chip set in the detection device
  • the communication interface is, for example, the input/output interface of the chip, such as input/output pins, etc., and the communication interface is connected to the radio frequency transceiver component in the detection device to pass the radio frequency.
  • the transceiver component realizes the sending and receiving of information.
  • the radar device and the detection device jointly implement the methods provided in the first aspect or various optional implementation manners.
  • the detection device is a processor provided outside the radar device, or may also be a processor provided in the radar device, such as a central processing unit. Specifically, the radar device is used to execute the content executed by the above-mentioned detector or acquisition module, and the detection device is used to execute the content executed by the above-mentioned processor or processing module. Realize together.
  • a detection system which includes the detection device described in the second aspect or the detection device described in the third aspect.
  • a smart car in a fifth aspect, includes the detection device described in the second aspect or the detection device described in the third aspect.
  • the smart car is the detection device described in the second aspect or the detection device described in the third aspect.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions are executed on a computer, the computer can execute the first aspect or an implementation. The method described in the method.
  • a chip in a seventh aspect, includes a processor and a communication interface, the processor is coupled with the communication interface, and is configured to implement the method provided in the first aspect or any of the optional implementation manners above .
  • the chip may also include a memory.
  • the processor may read and execute a software program stored in the memory to implement the above-mentioned first aspect or any one of the optional implementation manners. method.
  • the memory may not be included in the chip, but located outside the chip, which is equivalent to that the processor can read and execute the software program stored in the external memory to implement the first aspect or Any of the methods provided by the alternative implementations.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the first aspect or any one of the above The methods described in the possible implementations.
  • Figure 1 is a schematic diagram of a working scene of a vehicle-mounted radar on a vehicle
  • FIG. 2 is a schematic diagram of a scene when the pitch angle of the ultrasonic wave emitted by the transmitting end of the target vehicle changes according to an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of a signal detection device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of four different scenarios of the target vehicle provided by the embodiments of the application.
  • FIG. 5 is a schematic flowchart of a signal processing method provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a processing device provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a processing device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a processing device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a processing device provided by an embodiment of the application.
  • the detection device is, for example, a sensor
  • the sensor is, for example, a radar, such as an ultrasonic radar, or other types of radar.
  • the sensor may also be a sensor installed on the radar and used to collect the point cloud of the target object.
  • At least one refers to one or more
  • “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the size, shape, content, and order of multiple objects. , Timing, priority or importance, etc.
  • FIG 1 is a schematic diagram of a working scene of a vehicle-mounted radar on a vehicle.
  • a safety set is installed on the target vehicle.
  • the system includes a processor (not shown in the figure) and an ultrasonic sensor.
  • the ultrasonic sensor includes a transmitter and a receiver. The transmitting end is used to transmit ultrasonic signals, and the receiving end is used to receive ultrasonic signals.
  • the ultrasonic sensor is installed on the shell of the target vehicle, or installed inside the target vehicle, and then the target vehicle shell is punched, and the transmitting end and receiving end of the ultrasonic sensor are embedded in the shell hole to ensure that the ultrasonic sensor is smoothly directed to the target. Transmit and receive ultrasonic signals around the vehicle.
  • the ultrasonic signal sent by the transmitting end When the ultrasonic signal sent by the transmitting end is blocked by obstacles, the ultrasonic signal will be projected back to the receiving end. After the receiving end receives the reflected ultrasonic signal, the processor will transmit the ultrasonic signal according to the time t1 of the transmitting end and the receiving end of the ultrasonic wave. The time t2 of the signal, the distance S between the obstacle and the target vehicle is calculated, and the calculation formula is:
  • v is the propagation speed of the ultrasonic signal in the air
  • t1 is the time when the transmitting end transmits the ultrasonic signal
  • t2 is the time when the receiving end receives the ultrasonic signal.
  • the distance S is less than the set safety distance D. If the calculated distance S is less than the safety distance D, it indicates that the obstacle is close to the target vehicle, and there is a safety hazard; if the calculated distance S is greater than the safety distance D, it indicates the obstacle It is far away from the target vehicle and there is no safety hazard.
  • the safety distance D is the shortest distance required for the target vehicle to avoid obstacles when it finds obstacles when the target vehicle is reversing backwards or moving forward at a low speed.
  • the specific value needs to be determined according to different situations, and the value can also be set for the user.
  • the transmitting end transmits an ultrasonic signal directly behind the target vehicle in a direction parallel to the ground
  • the pitch angle ⁇ range where the ultrasonic signal is transmitted and diffused at the transmitting end
  • ground interference In the prior art, in order to solve the above-mentioned interference of the reflected signal caused by the ultrasonic signal irradiated on the ground (also called ground reflection or “ground interference", for ease of explanation, this interference will be referred to as “ground interference”) ,
  • the pitch angle ⁇ of the ultrasonic signal transmitted by the transmitter is modulated upwards as much as possible, so that the distance d at which the "ground interference” happens is greater than the safety distance D, so that the safety distance D will not be False alarms have occurred due to "ground interference”.
  • a detection device in order to solve the false alarm situation caused by the above-mentioned pitch angle ⁇ position due to non-standard installation or changes during the driving of the vehicle, a detection device is provided, as shown in FIG. 3, the device includes The processing unit 31, the detection unit 32, and the ultrasonic sensor 33. Among them, the ultrasonic sensor includes a transmitting terminal 331 and a receiving terminal 332. The detection device can be installed inside the smart car to detect the target. During the driving of the smart car, the detection device is also in the same driving state as the smart car.
  • the detection unit 32 is used to determine driving information.
  • the driving information includes driving direction information and driving speed information.
  • the detection unit 32 may include an accelerometer and a gyroscope.
  • the detection unit 32 sends the driving information to the processing unit 31 after determining the driving information of the vehicle.
  • the detection unit 32 is an optional component of the detection device.
  • the detection unit 32 is integrated outside the detection device, and the driving information is sent to the detection device through a communication interface.
  • the processing unit 31 can determine whether the vehicle is driving forward or backward, and the speed of the vehicle according to the driving information, and then determine whether to turn on the ultrasonic sensor 33 to work .
  • the processing unit 31 determines that the vehicle is traveling forward and the speed is lower than the set threshold speed, it indicates that the vehicle is traveling slowly. In order to prevent a rear-end collision of the target vehicle during slow traveling, the ultrasonic sensor 33 is turned on. working.
  • the processing unit 31 determines that the vehicle is traveling backward and the speed is lower than the set threshold speed, it indicates that the vehicle is reversing. In order to prevent the target vehicle from hitting an obstacle during the backward reversing process, Turn on the ultrasonic sensor 33 to work.
  • the situation of turning on the ultrasonic sensor 33 to work in the embodiment of the present application is not limited to the above two situations, and the processing unit 31 may actively enable the ultrasonic sensor 33 to work according to user needs to meet the user's needs for specific scenarios.
  • the processing unit 31 can also choose to turn on a specific ultrasonic sensor 33 on the target vehicle according to a specific scene. For example, in a "slow-forward" scenario, turn on the ultrasonic sensors 33 at the front and rear positions of the target vehicle to prevent Crash into a vehicle in front and rear-end collision by a vehicle behind; in the “reversing” scenario, turn on the ultrasonic sensor 33 at the rear of the target vehicle to prevent the vehicle from hitting obstacles during reversing.
  • the processing unit 31 is configured to determine that there is a ground reflection according to the electrical signal values of N consecutive frames from the echo signal, and N is a positive integer greater than 2. Specifically, the processing unit 31 first calculates the time t D according to the safety distance D and the formula (1) before turning on the ultrasonic sensor 33 for work. The time t D at this time is expressed as the time t D is expressed as the ultrasonic signal from the transmitter 331 to the ultrasonic signal. The obstacle encountered at the safety distance D is reflected back to the time received by the receiving end 332.
  • the processing unit 31 controls the transmitting end 331 of the ultrasonic sensor 33 to periodically transmit ultrasonic signals, and controls the receiving end 332 to receive the ultrasonic signals from the start of transmitting the ultrasonic signal to the time t D in each frame.
  • the receiving end 332 is prevented from receiving the ultrasonic signal without limitation, so as to reduce the workload of the processing unit 31.
  • the continuous diffusion of the ultrasonic signal is avoided, so that the receiving end 332 receives the ultrasonic signal reflected back by the obstacle that does not hinder the target vehicle, thereby causing interference.
  • the processing unit 31 controls the time difference T between the frames in which the ultrasonic sensor 33 transmits the ultrasonic signal should be greater than the time t D , that is:
  • T is the time difference between the frames in which the ultrasonic sensor 33 transmits the ultrasonic signal
  • D is the safety distance
  • v is the speed of the ultrasonic signal propagating in the air.
  • the ultrasonic signal sent in the previous frame will reach the receiving end 332 in the next frame after being reflected back, which will cause the processing unit 31 to be disordered when calculating the obstacle distance. .
  • the processing unit 31 After receiving the ultrasonic signal at the receiving end 332 of the ultrasonic sensor 33, it is converted into an electrical signal of corresponding strength according to the strength of the received ultrasonic signal, and then sent to the processing unit 31.
  • the processing unit 31 determines whether there are obstacles and "ground interference" within the safety distance D according to the value of the received electrical signal and the value of the corresponding electrical signal at the same time in each frame.
  • the processing unit 31 also needs to determine that the electrical signal value of consecutive N frames is greater than a first threshold, and the first threshold is the electrical signal value corresponding to noise in the environment. Specifically, when the value of the electrical signal received by the processing unit 31 is zero or not greater than the set first threshold, it indicates that the receiving end 332 has not received the ultrasonic signal, that is, there are no obstacles and “grounding” within the safety distance D. Interference” situation; if the electrical signal value received by the processing unit 31 is greater than the set first threshold, it indicates that the receiving end 332 has received the ultrasonic signal. At this time, the processing unit 31 compares the electrical signals corresponding to the same time in multiple adjacent frames. Whether the signal value is the same or close to the same.
  • the electrical signal values corresponding to all the same moments in multiple consecutive frames are exactly the same or nearly the same, that is, the echo signals received in multiple consecutive frames are exactly the same, it indicates that the "photograph" appears at this time. Ground interference” situation. Because in the moving process of the target vehicle, the existence of obstacles keeping a fixed distance from the target vehicle is not considered. That is, during the movement of the target vehicle, the distance between the obstacle and the target vehicle will definitely change. Among them, close to the same can be considered, set a threshold first, if the difference between the electrical signal values corresponding to the same time in multiple consecutive frames does not exceed the set threshold, then it is considered that all the same time in multiple consecutive frames corresponds to the same time. The electrical signal value of is close to the same.
  • the processing unit 31 adjusts the echo threshold sequence, which is an electrical signal threshold sequence used to distinguish the target echo from the ground echo. Specifically, the electrical signal values corresponding to different moments in the current frame are set as the first threshold sequence as a criterion for judging whether it is greater than the first threshold sequence as there is no obstacle within the safety distance D, wherein the current frame is at In the process of determining "ground interference", the electrical signal values corresponding to all the same moments are exactly the same or close to the same in one of the multiple consecutive frames, that is, the processing unit 31 is determining the current frame and the continuous current frame.
  • the echo threshold sequence which is an electrical signal threshold sequence used to distinguish the target echo from the ground echo.
  • the processing unit 31 may set the electrical signal values corresponding to all the moments in the current frame as the first threshold sequence .
  • the first threshold is the noise floor threshold. Due to the noise floor (ie, ambient noise in the air), the receiving end 332 will inevitably receive the noise signal in the environment. Therefore, a smaller threshold is generally required to filter the noise floor. noise.
  • the first threshold sequence is each electrical signal value at a corresponding time in a frame.
  • the processing unit 31 sends instruction information to the ultrasonic sensor 33 to indicate the echo threshold sequence, so that the ultrasonic sensor 33 actively filters out the echo threshold value below the echo threshold at the corresponding time after receiving the echo signal.
  • the electrical signal of the sequence sends the electrical signal value that meets the requirements to the detection device, thereby reducing the calculation burden of the processing unit 31.
  • the processing unit 31 sets the electrical signal value corresponding to the same time in other frames in the current frame as the first
  • the threshold value sequence is used as a criterion for judging whether it is greater than the first threshold value sequence as there is no obstacle within the safety distance D.
  • the electrical signal values corresponding to the same time are different, there is an obstacle at the distance corresponding to the time within the safety distance D at this time.
  • the method of setting the electrical signal value corresponding to the same time in other frames as the first threshold sequence in the current frame is as follows: the length of one frame is T, if in one frame, it is between 0 and t1 (t1 is any time within T)
  • the electrical signal value within the time period is the same as the electrical signal value within the time 0 ⁇ t1 of other adjacent frames, and the electrical signal value within the time t1 ⁇ T is the same as the time t1 ⁇ T of other adjacent frames.
  • the processing unit 31 replaces the electrical signal value in the first threshold sequence from 0 to t1 with the electrical signal value in the current frame from 0 to t1, and the first threshold sequence is in The electrical signal value during t1 ⁇ T remains unchanged.
  • the processing unit 31 When the processing unit 31 detects an obstacle within the safety distance D, it sends a warning signal to the corresponding device to allow the target vehicle to automatically avoid the obstacle or to let the driver know that there is an obstacle behind the vehicle, and promptly operate the vehicle to avoid the obstacle.
  • the processing unit 31 needs to compare the electrical signal values of multiple adjacent frames at various moments.
  • the processing unit 31 of the present application needs to detect the target vehicle speed based on the detection unit 32. Make a decision. If the speed is too fast, the number of frames for comparison will be less; if the speed is too slow, the number of frames for comparison will be more. In this way, the number of frames is flexibly acquired, thereby reducing the computational burden of the processing unit 31.
  • the embodiment of the present application will take the target vehicle backing up at a certain speed as an example to describe the specific process of the processing unit 31 of the present application controlling the ultrasonic sensor 33 to perform work.
  • the processing unit 31 controls the transmitting end 331 of the ultrasonic sensor 33 to transmit an ultrasonic signal, and at the same time records the time of transmitting the ultrasonic signal, because the pitch angle ⁇ of the transmitting end 331 is downward.
  • the processing unit 31 controls the transmitting end 331 of the ultrasonic sensor 33 to transmit an ultrasonic signal, and at the same time records the time of transmitting the ultrasonic signal, because the pitch angle ⁇ of the transmitting end 331 is downward.
  • the processing unit 31 controls the transmitting end 331 of the ultrasonic sensor 33 to transmit an ultrasonic signal, and at the same time records the time of transmitting the ultrasonic signal, because the pitch angle ⁇ of the transmitting end 331 is downward.
  • the processing unit 31 controls the transmitting end 331 of the ultrasonic sensor 33 to transmit an ultrasonic signal, and at the same time records the time of transmitting the ultrasonic signal, because the pitch angle ⁇ of the transmitting end 331 is downward.
  • the ultrasonic signal propagates backward,
  • the ultrasonic sensor 33 converts the ultrasonic signals of different intensities received at different times into corresponding voltage values, and sends them to the processing unit 31.
  • the relationship between the voltage values at different times received by the processing unit 31 is shown on the right side of Figure 4(1). The two-dimensional coordinate system is shown.
  • the processing unit 31 determines whether an echo is generated within the safety distance D according to whether the received voltage values at different moments are greater than the set first threshold value. If the received voltage value is greater than the first threshold, it indicates that there is an object generating echo within the safety distance D. At this time, the processing unit 31 cannot determine whether the echo is generated due to an obstacle within the safety distance D or the echo is generated due to the occurrence of "ground interference". Therefore, the processing unit 31 controls the ultrasonic sensor 33 to continue to emit ultrasonic signals.
  • the processing unit 31 controls the transmitter 331 of the ultrasonic sensor 33 to transmit the ultrasonic signal for the second time.
  • the ultrasonic sensor 33 converts the ultrasonic signals of different intensities received at different times into corresponding voltage values, and sends them to the processing unit 31.
  • the relationship between the voltage values at different times received by the processing unit 31 is shown on the right side of Figure 4(2). The two-dimensional coordinate system is shown.
  • the processing unit 31 compares the voltage value received when the ultrasonic signal is transmitted for the first time with the voltage value received when the ultrasonic signal is transmitted for the second time, and judges that the voltage value of the ultrasonic signal transmitted for the first time at the same time is compared with the voltage value received at the same time. Whether the voltage value of the second ultrasonic signal is the same. Combined with Figure 4 (1) and Figure 4 (2), the voltage value at each time when the ultrasonic signal is transmitted for the first time and the voltage value at each time when the ultrasonic signal is transmitted for the second time (or subsequent multiple times) It is exactly the same. At this time, the processing unit 31 will determine that this situation is that there is no obstacle within the safety distance D, and it is an echo generated by the "ground interference" situation.
  • the processing unit 31 uses the maximum voltage value received when the ultrasonic signal is transmitted for the first time or the ultrasonic signal is transmitted for the second time as the threshold to determine whether there is within the safety distance D obstacle.
  • the processing unit 31 controls the transmitter 331 of the ultrasonic sensor 33 to transmit ultrasonic signals for the third time. Since the obstacle has just reached the safety distance D, the Echoes are reflected back from the ground and obstacles.
  • the distance from the transmitting terminal 331 to point d is between the distance from transmitting terminal 331 to point a and the distance from transmitting terminal 331 to point b, and the distance from transmitting terminal 331 to point c is the same as the distance from transmitting terminal 331 to point b. Therefore, the ultrasonic signal received by the receiving end 332 between time td and tb(tc) is reflected back by the ground and obstacles at the same time. Therefore, the voltage value received by the processing unit 31 between time td and tb(tc) needs to be It is greater than the voltage value in the same time period when the ultrasonic signal is transmitted for the first or second time, and the relationship is shown in the two-dimensional coordinate system on the right side of Figure 4(3).
  • the processing unit 31 can determine When the ultrasonic signal is transmitted for the third time, the obstacle starts to enter the safety distance D at time td, and then a warning signal is sent to the corresponding equipment.
  • the distance between the transmitting terminal 331 and the point e and the distance between the transmitting terminal 331 and the point f are less than the distance between the transmitting terminal 331 and the point a, so the voltage value received by the processing unit 31 between time tf and te is greater than that in the first
  • the relationship between the voltage values in the same time period when the ultrasonic signal is transmitted for the second, second or third time is shown in the two-dimensional coordinate system on the right side of Figure 4(4).
  • the processing unit 31 can determine that only the obstacles reflect the echo during the current transmission of the ultrasonic signal.
  • the processing unit 31 can determine that when the ultrasonic signal is transmitted this time, the obstacle starts to enter the safety distance D at time tf, and then sends a warning signal to the corresponding device.
  • the processing unit 31 controls the ultrasonic sensor 33 to periodically emit ultrasonic signals.
  • the ultrasonic signals of different intensities are converted into electrical signals of corresponding values, and then passed Compare whether the electrical signal values at the same time in multiple adjacent frames are the same. If they are exactly the same, it indicates that the echo is generated due to the occurrence of "ground interference".
  • the embodiment of the present application takes an ultrasonic sensor installed at the rear of the target vehicle as an example to illustrate the technical solution of the present application. It is easy for those skilled in the art to think that multiple ultrasonic sensors can be installed on the target vehicle, and then multiple Acoustic wave sensors are installed at various positions of the target vehicle to meet the needs of the target vehicle in various situations.
  • the signal processing method provided by the embodiments of this application is applied to a vehicle to illustrate the technical solution of this application. It is easy for those skilled in the art to think that the signal processing method provided in this application can also be applied to terminal devices such as smart robots and smart vacuum cleaners. , It can even be applied to mobile devices such as airplanes and ships, and this application is not limited here.
  • FIG. 5 is a flowchart of the working process of the processing unit provided by an embodiment of the application. As shown in Fig. 5, the specific working process of the processing unit 31 in the embodiment of the present application is as follows:
  • step S501 the processing unit 31 receives the driving information of the target vehicle sent by the detection unit 32.
  • step S502 the processing unit 31 analyzes the received driving information to determine whether to turn on the detection function of the ground reflection of the ultrasonic sensor 33; if the ultrasonic sensor 33 is turned on, step S503 is executed; if the ultrasonic sensor 33 is not turned on, then Return to step S501.
  • the processing unit 31 judges whether to enable the detection function of the ground reflection of the ultrasonic sensor 33 according to the driving information sent by the detection unit 32:
  • the processing unit 31 judges that the vehicle is moving forward, and the speed is lower than the set threshold speed, it indicates that the vehicle is moving slowly;
  • the situation of turning on the detection function of the ground reflection of the ultrasonic sensor 33 is not limited to the above two cases, and the processing unit 31 can actively enable the detection function of the ground reflection of the ultrasonic sensor 33 according to user needs to meet the user's specific requirements. The needs of the scene.
  • the processing unit 31 can also choose to turn on a specific ultrasonic sensor 33 on the target vehicle according to a specific scene. For example, in a "slow-forward" scenario, turn on the ultrasonic sensors 33 at the front and rear positions of the target vehicle to prevent Crash into a vehicle in front and rear-end collision by a vehicle behind; in the “reversing” scenario, turn on the ultrasonic sensor 33 at the rear of the target vehicle to prevent the vehicle from hitting obstacles during reversing.
  • the process of controlling whether the ultrasonic sensor 33 is turned on by the processing unit 31 is an optional step, and the processing unit 31 can also keep the ultrasonic sensor 33 in a working state.
  • step S503 the processing unit 31 controls the transmitting end 331 of the ultrasonic sensor 33 to transmit an ultrasonic signal, and records the time of transmitting the ultrasonic signal.
  • Step S504 After the receiving end 332 of the ultrasonic sensor 33 receives the ultrasonic signal, it converts the ultrasonic signals of different intensities into electrical signals of corresponding values, and then sends them to the processing unit 31.
  • the processing unit 31 also records the ultrasonic signal received by the ultrasonic sensor 33 time.
  • step S505 the processing unit 31 determines whether the received electrical signal value is greater than the first threshold value, if it is greater than the first threshold value, step S506 is executed; if it is not greater than the first threshold value, step S501 is executed.
  • the first threshold is the noise floor threshold. Due to the noise floor (ie, ambient noise in the air), the receiving end 332 will inevitably receive the noise signal in the environment. Therefore, a smaller threshold is generally required to filter the noise floor. noise.
  • the process of filtering the bottom noise by the processing unit 31 is an optional step. If the bottom noise signal is much smaller than the echo information received by the ultrasonic sensor 33, you can also choose not to filter the bottom noise.
  • step S506 the processing unit 31 saves the electric signal value received in this cycle, and then executes step S501 and step S507.
  • Step S507 When the electrical signal values of at least two frames are stored, the processing unit 31 determines whether the electrical signal values corresponding to the same time in the stored at least two consecutive frames are the same; if they are the same, perform step S508; , Step S509 is executed.
  • step S508 the processing unit 31 considers that the ultrasonic signal echo is generated due to the "ground interference" situation at this time, and uses the electrical signal values corresponding to different moments in the current frame as the first threshold sequence to determine whether there is an echo within the safety distance D. Obstacles, and then step S501 is executed.
  • step S509 the processing unit 31 considers that the part of the electrical signal corresponding to the same time in different frames with different values appears within the safety distance D. There is an obstacle at the distance corresponding to that time, and sends a warning signal to the corresponding device, and then executes step S501 .
  • the embodiment of the present application may divide the processing unit 31 into functional modules.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one functional module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 6 shows a schematic diagram of a possible structure of the detection device involved in the foregoing embodiment of the present application.
  • the detection device 6 is, for example, the processing unit 31 in the detection device involved in the embodiment shown in FIG. , Radar device).
  • the detection device 6 may include a processing module 601 and a transceiver module 602.
  • the processing module 601 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more central processing units (CPU), and the transceiver module 602 may be a transceiver. Including antennas and radio frequency circuits.
  • the processing module 601 may be a processor, such as a baseband processor, and the transceiver module 602 may be a radio frequency unit.
  • the processing module 601 may be a processor of the chip system and may include one or more central processing units, and the transceiver module 602 may be an input and output interface of the chip system (for example, a baseband chip).
  • the processing module 601 may be used to perform all operations of the processing unit 31 in the embodiment shown in FIG. 3, and/or used to support other processes of the technology described herein.
  • the transceiver module 602 may be used to perform all the collection operations performed by the detection device 6 in the embodiment shown in FIG. 3, such as the operation of collecting ultrasonic signals, and/or other processes used to support the technology described herein.
  • the transceiver module 602 may be a functional module that can perform both sending and receiving operations.
  • the transceiver module 602 may be used to perform all the sending and receiving operations performed by the detection device 6, for example, in When performing a sending operation, the transceiver module 602 can be considered as a sending module, and when performing a receiving operation, the transceiver module 602 can be considered as a receiving module; or, the transceiver module 602 can also be a collective term for two functional modules. They are a sending module and a receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform all the sending operations performed by the detection device 6, and the receiving module is used to complete the receiving operation.
  • the receiving module can be used to perform All receiving operations performed by the detection device 10.
  • the transceiver module 602 may not belong to the detection device 6.
  • the transceiver module 602 and the detection device 6 are both located in the same vehicle.
  • the transceiver module 602 is, for example, a communication unit in the vehicle, and the transceiver module 602 and the detection device 6 can communicate.
  • the detection device 6 may not need to actively detect the target, and only perform processing based on the electrical signal data received by the transceiver module 602.
  • the transceiver module 602 is used to receive echo signals
  • the processing module 601 is used to determine the presence of ground reflections according to the electrical signal values of N consecutive frames in the echo signal, where N is a positive integer greater than 2; adjust the echo threshold sequence, the echo threshold sequence is used to distinguish between the target echo and A sequence of electrical signal thresholds for ground echoes.
  • the processing module 601 is also used to determine ground reflection according to the driving information and the echo signal.
  • the driving information includes the moving speed information and direction information of the detecting device 6 when it is moving.
  • the processing module 601 is further configured to determine that there is a continuous stable echo signal according to the electrical signal values of N consecutive frames in the echo signal. Among them, the stable echo satisfies that the electrical signal value at time T in the first frame is the same as the electrical signal value at time T in the second frame, the first frame and the second frame are any of the N frames, and the time T is the frame Any moment in.
  • the processing module 601 is further configured to determine the electrical signal value of the first frame in the stable echo as the echo threshold sequence.
  • the echo threshold sequence is determined according to the electrical signal value of the first frame in the stable echo.
  • the processing module 601 is further configured to send first instruction information to the ultrasonic unit.
  • the first indication information is used to indicate the echo threshold sequence.
  • the processing module 601 is further configured to determine that the electrical signal value of N consecutive frames is greater than the first threshold.
  • the first threshold is the electrical signal value corresponding to the noise in the environment.
  • N time is determined according to the moving speed of the detection device 6.
  • FIG. 7 is a schematic diagram of another possible structure of the detection device provided by an embodiment of the application.
  • the detection device 7 may include a processor 701 and a transceiver 702, the functions of which may correspond to the specific functions of the processing module 901 and the transceiver module 902 shown in FIG. 6, and will not be repeated here.
  • the detection device 7 may further include a memory 703 for storing program instructions and/or data for the processor 701 to read.
  • the detection device 7 may not include the memory 703, and the memory 703 may be located outside the detection device 7.
  • Fig. 8 provides a schematic diagram of another possible structure of the detection device.
  • the detection device provided in FIGS. 6 to 8 can realize the function of the detection device in the above-mentioned embodiment.
  • the detection device provided in Figures 6 to 8 can be part or all of the radar device in the actual communication scenario, or can be a functional module integrated in the radar device or located outside the radar device, such as a chip system, specifically to achieve the corresponding
  • the function of the detection device shall prevail, and the structure and composition of the detection device shall not be specifically limited.
  • the detection device 8 includes a transmitting antenna 801, a receiving antenna 802, and a processor 803. Further optionally, the detection device 8 further includes a mixer 804 and/or an oscillator 805. Further optionally, the detection device 8 may also include a low-pass filter and/or a directional coupler. Among them, the transmitting antenna 801 and the receiving antenna 802 are used to support the detection device 8 for radio communication, the transmitting antenna 801 supports the transmission of radar signals, and the receiving antenna 802 supports the reception of radar signals and/or the reception of reflected signals to finally realize the detection function.
  • the processor 803 performs some possible determination and/or processing functions. Further, the processor 803 also controls the operation of the transmitting antenna 801 and/or the receiving antenna 802.
  • the signal to be transmitted is transmitted by the processor 803 controlling the transmitting antenna 801, and the signal received through the receiving antenna 802 can be transmitted to the processor 803 for corresponding processing.
  • the various components included in the detection device 8 can be used to cooperate with the implementation of the method provided in the embodiment shown in FIG. 5.
  • the detection device 8 may also include a memory for storing program instructions and/or data.
  • the transmitting antenna 801 and the receiving antenna 802 may be set independently, or may be integratedly set as a transmitting and receiving antenna to perform corresponding transmitting and receiving functions.
  • FIG. 9 is a schematic structural diagram of a device 9 provided by an embodiment of this application.
  • the device 9 shown in FIG. 9 may be the detection device itself, or may be a chip or circuit capable of completing the function of the detection device, for example, the chip or circuit may be provided in a radar device.
  • the device 9 shown in FIG. 9 may include a processor 901 (for example, the processing module 1001 may be implemented by the processor 901, and the processor 1101 and the processor 901 may be the same component, for example) and an interface circuit 902 (for example, the transceiver module 1002 may be implemented by the interface circuit 902 implementation, the transceiver 1102 and the interface circuit 902 are, for example, the same component).
  • a processor 901 for example, the processing module 1001 may be implemented by the processor 901, and the processor 1101 and the processor 901 may be the same component, for example
  • an interface circuit 902 for example, the transceiver module 1002 may be implemented by the interface circuit 902 implementation, the transceiver 1
  • the processor 901 can enable the device 9 to implement the steps performed by the detection device in the method provided in the embodiment shown in FIG. 5.
  • the device 9 may further include a memory 903, and the memory 903 may be used to store instructions.
  • the processor 901 executes the instructions stored in the memory 903 to enable the device 9 to implement the steps performed by the detection device in the method provided in the embodiment shown in FIG. 5.
  • the processor 901, the interface circuit 902, and the memory 3303 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 903 is used to store a computer program.
  • the processor 901 can call and run the computer program from the memory 903 to control the interface circuit 902 to receive signals or send signals, and complete the execution of the detection device in the method provided by the embodiment shown in FIG. 5 A step of.
  • the memory 903 may be integrated in the processor 901, or may be provided separately from the processor 901.
  • the interface circuit 902 may include a receiver and a transmitter.
  • the receiver and the transmitter may be the same component or different components.
  • the component can be called a transceiver.
  • the interface circuit 902 may include an input interface and an output interface, and the input interface and the output interface may be the same interface, or may be different interfaces respectively.
  • the device 9 may not include the memory 903, and the processor 901 can read instructions (programs or codes) in the memory outside the chip or circuit to implement the implementation shown in FIG. 5. The steps performed by the detection device in the method provided in the example.
  • the device 9 may include a resistor, a capacitor, or other corresponding functional components, and the processor 901 or the interface circuit 902 may be implemented by corresponding functional components.
  • the function of the interface circuit 902 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 901 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer can be considered to implement the detection device provided in the embodiment of the present application. That is, the program codes that realize the functions of the processor 901 and the interface circuit 902 are stored in the memory 903, and the processor 901 implements the functions of the processor 901 and the interface circuit 902 by executing the program codes stored in the memory 3303.
  • the functions and actions of the modules or units in the device 9 listed above are only exemplary descriptions, and the functional units in the device 9 can be used to execute the actions or processing procedures performed by the detection device in the embodiment shown in FIG. 3. In order to avoid repetitive descriptions, detailed descriptions are omitted here.
  • the detection device when implemented by software, it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the processor included in the detection device used to execute the method provided in the embodiment of the present application may be a central processing unit (CPU), a general-purpose processor, or a digital signal processor. DSP), application-specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), erasable programmable read-only Memory (erasable programmable read-only memory, EPROM), electrically erasable programmable read-only memory (EEPROM), register, hard disk, mobile hard disk, compact disc (read-only memory) , CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the detection device.
  • the processor and the storage medium may also exist as discrete components in the detection device.
  • Figures 6-9 only show the simplified design of the detection device.
  • the detection device can include any number of transceivers, processors, controllers, memories, and other possible components.
  • an embodiment of the application also provides a detection system, which includes the detection device and a communication unit that executes the detection device and a communication unit mentioned in the foregoing embodiment of the application, and the communication unit is used to execute the detection device in the foregoing detection device.
  • the steps performed by the transceiver module (for example, the transceiver module 602).
  • the detection system may be a device, and each device is located in the device as a functional module of the device, or the detection system may also include multiple devices, and the detection device and the communication unit are located in different devices.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种探测方法和装置,应用于智能驾驶技术领域。该方法适用于移动状态的探测装置,根据回波信号中连续N个帧的电信号值确定存在地面反射;调整回波阈值序列,回波阈值序列为用于区分目标回波和地面回波的电信号阈值的序列。根据接收到的回波信号,判断超声波雷达的探测信号是否存在地面反射,然后调整回波阈值序列,从而提高探测准确率。

Description

一种探测方法和装置
本申请要求于2020年02月17日提交中国专利局、申请号为202010097884.2、申请名称为“一种探测方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及智能驾驶技术领域,尤其涉及一种探测方法和装置。
背景技术
随着人工智能的发展,越来越多的产品开始朝着网联化、智能化、无人化方向发展,尤其是汽车行业,汽车已经重新被定义为智能移动终端,从机械产品转向电子产品。
针对智能驾驶汽车来讲,超声波传感器是用于泊车感知的常见传感器,目前在倒车报警、全自动泊车中被广泛使用。这些使用场景都有人参与驾驶或对车辆进行实时监控,因而对超声波的要求并不高。后续随着泊车自动化程度越来越高,人类司机将完全不参与驾驶过程,那么现有的超声波传感器信号处理技术就满足不了高可靠性的要求。
发明内容
本申请实施例提供一种探测方法和装置,用于根据接收到的回波信号,判断超声波雷达的探测信号是否存在照地现象,然后调整回波阈值序列,从而提高探测准确性。
第一方面,提供一种探测方法,所述方法适用于移动状态的探测装置,包括:根据回波信号中连续N个帧的电信号值确定存在地面反射,N为大于2的正整数;调整回波阈值序列,所述回波阈值序列为用于区分目标回波和地面回波的电信号阈值的序列。
本发明中,通过接收多个帧的回波信号后,通过判断连续多个帧的回波信号对应的电信号值,来确定探测信号是否存在照地现象,如果确定有,则调整回波阈值序列,从而提高探测装置的探测准确性。
其中,如果相邻多个帧中的相同时刻的电信号数值完全相同,则表明由于出现“照地干扰”情况导致产生回波,为了避免“照地干扰”情况导致出现的误报,将当前帧中接收到的电信号值设置为阈值序列,来判断在安全距离内是否有障碍物;如果相邻多个帧中的相同时刻的电信号数值部分相同,此时在安全距离内有障碍物,也有“照地干扰”情况,则将阈值序列中与相同电信号值对应的时间上的电信号值,替换为当前帧中与其它多个帧在相同时刻的电信号值相同的电信号值;如果相邻多个帧中的相同时刻的电信号数值完全不同,此时在安全距离内只有障碍物。
该方法可以由探测装置执行,探测装置例如为探测设备或能够支持探测设备实现该方法所需的功能的装置,例如芯片系统。示例性地,所述探测设备为雷达,例如超声波雷达或其他雷达,那么探测装置可以是雷达,或者可以是设置在雷达中的能够支持雷达实现该方法所需的功能的装置,例如芯片系统,或其他功能模块。
在一种实施方式中,所述方法还包括:所述地面反射是根据行驶信息和所述回波信号确定的,所述行驶信息包括所述探测装置在移动时的移动速度信息和方向信息。
本发明中,通过根据移动速度信息、方向信息以及多个帧的回波信号,确定超声波雷达的探测信号是否存在照地现象,从而保证检测到的照地现象是在目标车辆移动过程中,而非在静止状态,从而提高准确性。
在一种实施方式中,所述根据回波信号中连续N个帧的电信号值确定存在地面反射,包括:根据所述回波信号中连续N个帧的电信号值确定存在连续稳定回波信号,所述稳定回波满足第一帧中T时刻的电信号值与第二帧中T时刻的电信号值相同,所述第一帧和所述第二帧为所述N个帧中的任一帧,所述T时刻为帧中的任一时刻。
在一种实施方式中,所述调整回波阈值序列,包括:将所述稳定回波中的所述第一帧的电信号值确定为所述回波阈值序列,所述回波阈值序列是根据所述稳定回波中的所述第一帧的电信号值确定的。
在一种实施方式中,所述方法还包括:向超声波单元发送第一指示信息,所述第一指示信息用于指示所述回波阈值序列。
本发明中,通过向超声波雷达发送指示信息后,让超声波雷达在接收到回波信号后,主动过滤掉低于回波阈值序列的电信号,将符合要求的电信号值发送给探测装置,从而减少探测装置的计算负担。
在一种实施方式中,所述根据回波信号中连续N个帧的电信号值确定存在地面反射之前,包括:确定所述连续N个帧的电信号值大于第一阈值,所述第一阈值为环境中噪音对应的电信号值。
在本发明中,由于空气中的环境噪声的存在,所以超声波雷达不可避免的会接收到环境中噪音信号,因此一般需要一个较小的阈值来过滤底噪,从而提高准确度。
在一种实施方式中,所述N是根据所述探测装置的移动速度确定的。
在本发明中,需要根据目标车辆行驶速度来决定进行比对电信号值的帧数量,如果速度过快,进行比对的帧数量就比较少;如果速度过慢,进行比对的帧数量就比较多。这样灵活获取帧的数量,从而减少探测装置的计算负担。
第二方面,提供一种探测装置,例如该探测装置为如前所述的探测装置。所述探测装置用于执行上述第一方面或任一可能的实施方式中的方法。具体地,所述探测装置可以包括用于执行第一方面或任一可能的实施方式中的方法的模块,例如包括通信单元和处理单元。示例性地,所述探测装置为探测设备,或者为设置在探测设备中的芯片系统或其他部件。示例性地,所述探测设备为雷达。其中,所述通信单元,用于接收回波信号;所述处理单元,用于根据所述回波信号中连续N个帧的电信号值确定存在地面反射,N为大于2的正整数;和调整回波阈值序列,所述回波阈值序列为用于区分目标回波和地面回波的电信号阈值序列。
在本发明中,探测装置通过接收多个帧的回波信号后,然后通过判断连续多个帧的回波信号对应的电信号值,来确定探测信号是否存在照地现象,如果确定有,则调整回波阈值序列,从而提高探测装置的探测准确性。
在一种实施方式中,所述处理单元,还用于根据行驶信息和所述回波信号确定所述地面反射,所述行驶信息包括所述探测装置在移动时的移动速度信息和方向信息。
在一种实施方式中,所述处理单元具体用于,根据所述回波信号中连续N个帧的电信号值确定存在连续稳定回波信号,所述稳定回波满足第一帧中T时刻的电信号值与第二帧中T时刻的电信号值相同,所述第一帧和所述第二帧为所述N个帧中的任一帧,所述T时刻为帧中的任一时刻。
在一种实施方式中,所述处理单元具体用于,将所述稳定回波中的所述第一帧的电信号值确定为所述回波阈值序列,所述回波阈值序列是根据所述稳定回波中的所述第一帧的电信号值确定的。
在一种实施方式中,所述处理单元具体用于,向超声波单元发送第一指示信息,所述第一指示信息用于指示所述回波阈值序列。
在一种实施方式中,所述处理单元具体用于,确定所述连续N个帧的电信号值大于第一阈值,所述第一阈值为环境中噪音对应的电信号值。
在一种实施方式中,所述N时根据所述探测装置的移动速度确定的。
第三方面,提供一种探测装置,该探测装置例如为如前所述的探测装置。该探测装置包括处理器和通信接口,例如处理器可实现如第二方面所述的处理单元的功能,通信接口可实现如第二方面所述的通信单元的功能。可选的,该探测装置还可以包括存储器,用于存储计算机指令。处理器、通信接口和存储器相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。或者,探测装置也可以不包括存储器,存储器可以位于探测装置外部。例如,当处理器执行所述存储器存储的计算机指令时,使探测装置执行上述第一方面或任意一种实施方式中中的方法。示例性地,所述探测装置为探测设备,或者为设置在探测设备中的芯片系统或其他部件。示例性的,所述探测设备为雷达。
其中,如果探测装置为探测设备,通信接口例如通过所述探测设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述探测设备中的天线、馈线和编解码器等实现。或者,如果探测装置为设置在探测设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与探测设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
在一种实施方式中,由雷达装置和探测装置共同实现第一方面或各种可选的实施方式所提供的方法。所述探测装置为设置在雷达装置之外的处理器,或者也可以是设置在雷达装置内的处理器,例如中央处理器等。具体的,雷达装置用于执行上述探测器或采集模块所执行的内容,探测装置用于执行上述处理器或处理模块所执行的内容,也就是说本申请提供的方法可以由雷达装置和探测装置共同实现。
第四方面,提供一种探测系统,该探测系统包括第二方面所述的探测装置或第三方面所述的探测装置。
第五方面,提供一种智能车,所述智能车包括第二方面所述的探测装置或第三方面所述的探测装置。或者,所述智能车为第二方面所述的探测装置或第三方面所述的探测装置。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或一种实施方式中所述的方法。
第七方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器与所述通信接口耦合,用于实现上述第一方面或任一种可选的实施方式所提供的方法。
可选的,所述芯片还可以包括存储器,例如,所述处理器可以读取并执行所述存储器所存储的软件程序,以实现上述第一方面或任一种可选的实施方式所提供的方法。或者,所述存储器也可以不包括在所述芯片内,而是位于所述芯片外部,相当于,所述处理器可以读取并执行外部存储器所存储的软件程序,以实现上述第一方面或任一种可选的实施方式所提供的方法。
第八方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或的任意一种可能的实施方式中所述的方法。
附图说明
下面对实施例或现有技术描述中所需使用的附图作简单地介绍。
图1为一种车载雷达在车辆上工作场景示意图;
图2为本申请实施例提供的目标车辆的发射端发射超声波的俯仰角发生变化时的场景示意图;
图3为本申请实施例提供的一种信号探测装置的结构示意图;
图4为本申请实施例提供的目标车辆所处的四种不同情况的场景示意图;
图5为本申请实施例提供的一种信号处理方法的流程示意图;
图6为本申请实施例提供的处理装置的一种结构示意图;
图7为本申请实施例提供的处理装置的一种结构示意图;
图8为本申请实施例提供的处理装置的一种结构示意图;
图9为本申请实施例提供的处理装置的一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)探测装置,例如为传感器,该传感器例如为雷达,例如超声波雷达,或其他类型的雷达。或者,该传感器也可以是设置在雷达上的,用于采集目标对象的点云的传感器。
2)本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、形状、内容、顺序、时序、优先级或者重要程度等。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
图1为一种车载雷达在车辆上工作场景示意图。如图1所示,为了防止目标车辆在倒车、低速前行等情况下,有人、动物、路障、其它车辆等障碍物过于靠近目标车辆而带来的安全隐患,在目标车辆上安装一套安全系统,该系统包括处理器(图中未示出)和超声波传感器。其中,超声波传感器包括发射端和接收端。发射端用于发射超声波信号,接收端用于接收超声波信号。一般超声波传感器安装在目标车辆的外壳上,或安装在目标车辆内部,然后在目标车辆外壳上打孔,将超声波传感器的发射端和接收端嵌入在外壳孔中,以保证超声波传感器顺利的向目标车辆周围发射超声波信号和接收超声波信号。
当发射端发送的超声波信号被障碍物阻挡后,超声波信号将返回投射到接收端上,接收端接收到反射的超声波信号后,处理器根据发送端发射超声波信号的时间t1和接收端接收到超声波信号的时间t2,计算得到障碍物与目标车辆的距离S,计算公式为:
S=v(t2-t1)/2         (1)
其中,v为超声波信号在空气中传播的速度,t1为发送端发射超声波信号的时间,t2为接收端接收到超声波信号的时间。
然后判断该距离S是否小于设定的安全距离D,如果计算的距离S小于安全距离D,则表明障碍物靠近目标车辆,有安全隐患;如果计算的距离S大于安全距离D,则表明障碍物离目标车辆比较远,无安全隐患。
其中,安全距离D为目标车辆在向后倒车、低速前行等情况下,在发现有障碍物时进行规避障碍物所需最短距离。其具体数值需根据不同情况来确定,还可以为用户自己设定值。
示例性的,如图1所示,当发射端以与地面相平行的方向向目标车辆正后方发射超声波信号时,随着超声波信号的传播,在发射端发射超声波信号进行扩散的俯仰角α范围内的靠近俯角处的超声波信号会照射在地面上,如果发射端与照射在地面上的距离d(图中d=d1cos<α/2>)小于安全距离D时,此时反射回的超声波信号被接收端接收,处理器根据时间差计算后,也会认为在安全距离D内有障碍物,从而导致误报。
现有技术中,为了解决上述因超声波信号照射在地面带来的反射信号的干扰(又称地面反射或“照地干扰”,为了便于阐述,后续将这种干扰称为“照地干扰”),在安装超声波传感器时,将发射端发射超声波信号进行扩散的俯仰角α尽量向上调制,使得正好出现“照地干扰”情况的距离d大于安全距离D,这样就可以在安全距离D内不会出现因“照地干扰”导致误报的情况。
但是,随着车辆的出厂后,用户在驾驶车辆过程中发生碰撞、长期使用过程中用于固定超声波传感器的支架出现松动、变形等情况,都会使得超声波传感器的发射端发射超声波信号进行扩散的俯仰角α位置发生变化。如图2所示,当俯仰角α位置向下移动β度后,出现照地干扰情况的距离d(图中d=d2cos<α/2>)将小于安全距离D,这样处理器仍会认为在安全距离D内有障碍物,从而导致误报。
本申请实施例中,为了解决上述俯仰角α位置因安装不标准或在车辆行驶过程中发生变化等情况带来的误报情况,提供了一种探测装置,如图3所示,该装置包括处理单元31、 检测单元32和超声波传感器33。其中,超声波传感器包括发射端331和接收端332。所述探测装置可以装置于智能车内部,用于探测目标,在智能车行驶过程中,探测装置也处于与智能车相同的行驶状态。
检测单元32用于确定行驶信息,具体的,行驶信息包括行驶方向信息和行驶速度信息,例如,检测单元32可以包括加速度计、陀螺仪。检测单元32在确定车辆行驶信息之后后将行驶信息发送给处理单元31。需要说明的是,检测单元32为探测装置中的可选组成,在一种可能的实现中,检测单元32集成在探测装置的外部,通过通信接口将行驶信息发送给探测装置。
可选的,处理单元31接收到检测单元32发送的行驶信息后,可以根据行驶信息判断车辆是向前行驶还是向后倒车,以及判断车辆行驶的速度,然后再确定是否开启超声波传感器33进行工作。
在一个实施例中,处理单元31判断车辆向前行驶,且速度低于设定的阈值速度时,则表明车辆在缓慢行驶,为了防止目标车辆在缓慢行驶过程中发生追尾事故,开启超声波传感器33进行工作。
在另一个实施例中,处理单元31判断车辆向后行驶,且速度低于设定的阈值速度时,则表明车辆在向后倒车,为了防止目标车辆在向后倒车过程中撞上障碍物,开启超声波传感器33进行工作。
当然,本申请实施例中开启超声波传感器33进行工作的情况不仅限于上述两种情况,还可以根据用户需求,主动让处理单元31开启超声波传感器33进行工作,以满足用户对特定场景的需求。
另外,处理单元31还可以根据特定的场景,选择开启目标车辆上特定的超声波传感器33,如在“慢速前行”场景下,开启目标车辆车头位置和车尾位置的超声波传感器33,以防止撞上前方车辆和被后方车辆追尾;在“向后倒车”场景下,开启目标车辆车尾位置的超声波传感器33,以防止倒车过程中撞上障碍物。
本申请实施例中,处理单元31用于根据从回波信号中连续N个帧的电信号值确定存在地面反射,N为大于2的正整数。具体的,处理单元31在开启超声波传感器33进行工作之前,先根据安全距离D和公式(1)计算出时间t D,此时的时间t D表示为从发射端331发射超声波信号到超声波信号在安全距离D处遇到障碍物反射回被接收端332接收到的时间。然后处理单元31控制超声波传感器33的发射端331周期性的发射超声波信号,并控制接收端332在每个帧中,接收从发射超声波信号开始到t D时间内的超声波信号。这样避免接收端332无限制的接收超声波信号,以减少处理单元31工作量。同时,避免超声波信号不断的扩散,让接收端332接收到不妨碍目标车辆的障碍物反射回的超声波信号,从而造成干扰。
另外,处理单元31控制超声波传感器33发射超声波信号的帧之间的时间差T应该要大于时间t D,也即:
T>t D=2D/v         (2)
其中,T为超声波传感器33发射超声波信号的帧之间的时间差,D为安全距离,v为超声波信号在空气中传播的速度。
如果帧之间的时间差T不大于时间t D,会造成上一帧发送的超声波信号在反射回后,会在下个帧内到达接收端332,从而造成处理单元31在计算障碍物距离时发生紊乱。
在超声波传感器33的接收端332接收到超声波信号后,根据接收到的超声波信号强弱,转换为对应强度的电信号,然后发送给处理单元31。处理单元31根据接收到的电信号的数值和每个帧中相同时间上对应的电信号的数值关系,来判断在安全距离D内是否有障碍物和“照地干扰”情况。
在一个实施例中,处理单元31还需要确定连续N个帧的电信号值大于第一阈值,所述第一阈值为环境中噪音对应的电信号值。具体的,处理单元31接收到的电信号值为零或不大于设定的第一阈值时,则表明接收端332未接收到超声波信号,也即在安全距离D内没有障碍物和“照地干扰”情况;如果处理单元31接收到的电信号值大于设定的第一阈值时,则表明接收端332接收到超声波信号,此时处理单元31比较相邻多个帧中相同时刻对应的电信号值是否相同或接近相同。
在目标车辆运动过程中,如果连续多个帧中所有相同时刻对应的电信号值完全相同或接近相同,也即连续多个帧中接收到的回波信号完全相同,则表明此时出现“照地干扰”情况。因为在目标车辆移动过程中,不考虑存在与目标车辆保持固定距离的障碍物。也即在目标车辆移动的过程中,障碍物与目标车辆之间的距离一定会发生变化的。其中,接近相同可以认为,先设定一个阈值,如果连续多个帧中所有相同时刻对应的电信号值之间的差值不超过该设定阈值,则认为连续多个帧中所有相同时刻对应的电信号值接近相同。
为了减少“照地干扰”现象对目标探测的影响,处理单元31调整回波阈值序列,所述回波阈值序列为用于区分目标回波和地面回波的电信号阈值序列。具体的,将当前帧中的不同时刻对应的电信号值设置为第一阈值序列,作为判断是否大于第一阈值序列作为在安全距离D内没有障碍物的基准,其中,所述当前帧为在确定“照地干扰”过程中,所有相同时刻对应的电信号值完全相同或接近相同的所述连续多个帧中的一个帧,也就是说,处理单元31在确定当前帧以及与当前帧连续的帧在所有相同时刻对应的电信号值完全相同或接近相同时,可以确定存在“照地干扰”,进一步,处理单元31可以将当前帧中所有时刻对应的电信号值设置为第一阈值序列。其中,第一阈值为底噪阈值,由于底噪(即空气中的环境噪声)的存在,所以接收端332不可避免的会接收到环境中噪音信号,因此一般需要一个较小的阈值来过滤底噪。而第一阈值序列为在一个帧中对应时刻上各个电信号值。
一个可能实现的实施例中,处理单元31向超声波传感器33发送指示信息,用于指示回波阈值序列,让超声波传感器33在接收到回波信号后,主动过滤掉对应时刻上低于回波阈值序列的电信号,将符合要求的电信号值发送给探测装置,从而减少处理单元31的计算负担。
如果相邻帧中相同时刻对应的电信号值部分不相同,则表明此时在安全距离D内有障碍物,也有“照地干扰”情况。此时,在多个帧中相同时刻对应的电信号值相同的部分,表明出现“照地干扰”情况,处理单元31将当前帧中的与其他帧相同时刻对应的电信号值设置为第一阈值序列,作为判断是否大于第一阈值序列作为在安全距离D内没有障碍物的基准。而在多个帧中相同时刻对应的电信号值不相同的部分,此时在安全距离D内该时刻对应的距离上有障碍物。
一个可能实现的实施例中,将当前帧中的与其他帧相同时刻对应的电信号值设置为第一阈值序列的方式为:将一个帧时间长为T,如果一个帧中,在0~t1(t1为T内任意一时刻)时间内电信号值与相邻其它帧的0~t1时间内的电信号值相同,在t1~T时间内电信号值与相 邻其它帧的t1~T时间内的电信号值不相同时,处理单元31将第一阈值序列中在0~t1时间内的电信号值替换为当前帧中0~t1时间内的电信号值,而第一阈值序列中在t1~T时间内的电信号值保持不变。
如果相邻多个帧中相同时刻对应的电信号值完全不相同,则表明此时在安全距离D内有障碍物。
处理单元31在检测到在安全距离D内有障碍物时,发送警告信号给相应的设备,以让目标车辆自动避让障碍物或让驾驶员知道车后有障碍物,及时操作车辆避让障碍物。
上述提到的,处理单元31需要通过接收相邻多个帧的各个时刻的电信号值来进行比对,一种实施例中,本申请处理单元31需要根据从检测单元32检测目标车辆行驶速度进行决定。如果速度过快,进行比对的帧数量就比较少;如果速度过慢,进行比对的帧数量就比较多。这样灵活获取帧的数量,从而减少处理单元31的计算负担。
本申请实施例将以目标车辆以一定速度向后倒车为例,来讲述本申请处理单元31控制超声波传感器33进行工作的具体过程。
示例性地,如图4(1)所示,处理单元31控制超声波传感器33的发射端331发射超声波信号,同时记录发射超声波信号的时间,由于发射端331发射超声波信号的俯仰角α位置向下偏移,随着超声波信号向后传播,在点a和点b之间的地面上会发生反射,反射回超声波信号被接收端332接收。由于点a到点b之间的各个位置与超声波传感器33之间的距离不同,所以接收端332接收到从点a到点b之间的各个位置反射的超声波信号的时间也是不同的。
此时超声波传感器33将不同时刻接收到的不同强度的超声波信号转换对应电压值,发送给处理单元31,处理单元31接收到的不同时刻的电压值之间的关系如图4(1)右侧的二维坐标系所示。然后处理单元31根据接收到的不同时刻的电压值是否大于设定第一阈值,来判断在安全距离D内是否产生回波。如果接受到的电压值有大于第一阈值,则表明在安全距离D内有产生回波的物体。此时处理单元31还不能确定是由于在安全距离D内有障碍物导致产生回波,还是由于出现“照地干扰”情况导致产生回波。所以处理单元31控制超声波传感器33继续发射超声波信号。
如图4(2)所示,随着目标车辆继续向后倒车,处理单元31控制超声波传感器33的发射端331第二次发射超声波信号,此时由于障碍物未到达安全距离D内,所以反射回的超声波信号仍是由地面反射回去的。此时超声波传感器33将不同时刻接收到的不同强度的超声波信号转换对应电压值,发送给处理单元31,处理单元31接收到的不同时刻的电压值之间的关系如图4(2)右侧的二维坐标系所示。
然后处理单元31将第一次发射超声波信号时接收到的电压值和第二次发射超声波信号时接收到的电压值进行比较,判断在相同时刻上在第一次发射超声波信号的电压值与在第二次发射超声波信号的电压值是否相同。结合图4(1)和图4(2)所示,第一次发射超声波信号时的各个时刻上的电压值与第二次(或后续多次)发射超声波信号时的各个时刻上的电压值完全相同,此时处理单元31将认定这种情况为在安全距离D内没有障碍物,是由于“照地干扰”情况产生的回波。
处理单元31为了避免“照地干扰”情况导致出现的误报,将第一次发射超声波信号或第二次发射超声波信号时接收到的最大电压值作为阈值,来判断在安全距离D内是否有障 碍物。
如图4(3)所示,随着目标车辆继续向后倒车,处理单元31控制超声波传感器33的发射端331第三次发射超声波信号,由于障碍物刚到达安全距离D内,此时产生的回波有地面反射回去的,也有障碍物反射回去的。
此时发射端331到点d的距离在发射端331到点a的距离与发射端331到点b的距离之间,发射端331到点c的距离和发射端331到点b的距离相同,所以接收端332在时间td到tb(tc)之间接收到的超声波信号是由地面和障碍物同时反射回去的,因此处理单元31在时间td到tb(tc)之间接收到的电压值要大于在第一次或第二次发射超声波信号时相同时间段内电压值,关系如图4(3)右侧的二维坐标系所示。
由于在时间td到tb(tc)之间接收到的电压值大于第一阈值,且与第二次发射超声波信号对应时刻内接收电压值不同(说明存在部分不相同),所以处理单元31可以认定在第三次发射超声波信号时,在td时刻障碍物开始进入安全距离D内,然后发送警告信号给相应的设备。
如图4(4)所示,随着目标车辆继续向后倒车,由于障碍物已完全到达安全距离D内,产生的回波只有障碍物反射回去的。
此时发射端331到点e的距离和发射端331到点f的距离小于发射端331到点a的距离,所以处理单元31在时间tf到te之间接收到的电压值要大于在第一次、第二次或第三次发射超声波信号时相同时间段内电压值,关系如图4(4)右侧的二维坐标系所示。
由于在时间tf到te之间接收到的电压值与第一次发射超声波信号接收的电压值完全不同,所以处理单元31可以认定在此次发射超声波信号是只有障碍物反射回波的。
所以处理单元31可以认定在此次发射超声波信号时,在tf时刻障碍物开始进入安全距离D内,然后发送警告信号给相应的设备。
本申请实施例通过处理单元31控制超声波传感器33周期性的发射超声波信号,在有因障碍物阻挡让超声波传感器33接收超声波信号后,将不同强度的超声波信号转换为对应数值的电信号,然后通过比较相邻多个帧中的相同时刻的电信号数值是否相同,如果完全相同,则表明由于出现“照地干扰”情况导致产生回波,为了避免“照地干扰”情况导致出现的误报,将当前帧中接收到的电信号值设置为阈值序列,来判断在安全距离D内是否有障碍物;如果部分相同,此时在安全距离D内有障碍物,也有“照地干扰”情况,则将阈值序列中与相同电信号值对应的时间上的电信号值,替换为当前帧中与其它多个帧在相同时刻的电信号值相同的电信号值;如果完全不同,此时在安全距离D内只有障碍物。
需要特别说明的是,本申请实施例以一个超声波传感器设置在目标车辆的尾部为例进行说明本申请技术方案,本领域人员很容易想到可以在目标车辆上设置多个超声波传感器,然后将多个传声波传感器设置在目标车辆的各个位置,以满足目标车辆在各种情况下的需求。
另外,本申请实施例提供的信号处理方法是以应用在车辆上进行说明本申请技术方案,本领域人员很容易想到本申请提供的信号处理方法也可以应用到智能机器人、智能吸尘器等终端设备上,甚至可以应用到飞机、船舶等移动设备上,本申请在此不作限定。
图5为本申请实施例提供的处理单元工作过程流程图。如图5所示,本申请实施例中的 处理单元31具体工作过程如下:
步骤S501,处理单元31接收检测单元32发送的目标车辆的行驶信息。
步骤S502,处理单元31根据接收到的行驶信息进行分析,判断是否开启超声波传感器33的照地反射的检测功能;如果开启超声波传感器33工作,则执行步骤S503;如果不开启超声波传感器33工作,则返回执行步骤S501。
其中,处理单元31根据检测单元32发送的行驶信息,判断是否开启超声波传感器33的照地反射的检测功能情况有:
(1)慢速前行,处理单元31判断车辆向前行驶,且速度低于设定的阈值速度时,则表明车辆在缓慢行驶;
(2)向后倒车,处理单元31判断车辆向后行驶,且速度低于设定的阈值速度时,则表明车辆在向后倒车。
当然,开启超声波传感器33的照地反射的检测功能的情况不仅限于上述两种情况,还可以根据用户需求,主动让处理单元31开启超声波传感器33的照地反射的检测功能,以满足用户对特定场景的需求。
另外,处理单元31还可以根据特定的场景,选择开启目标车辆上特定的超声波传感器33,如在“慢速前行”场景下,开启目标车辆车头位置和车尾位置的超声波传感器33,以防止撞上前方车辆和被后方车辆追尾;在“向后倒车”场景下,开启目标车辆车尾位置的超声波传感器33,以防止倒车过程中撞上障碍物。
需要说明的是,处理单元31控制超声波传感器33是否开启工作过程为可选步骤,处理单元31也可以让超声波传感器33一直处在工作状态。
步骤S503,处理单元31控制超声波传感器33的发射端331发射超声波信号,并记录发射超声波信号的时间。
步骤S504,当超声波传感器33的接收端332接收到超声波信号后,将不同强度的超声波信号转换为对应数值的电信号,然后发送给处理单元31,处理单元31同时记录超声波传感器33接收超声波信号的时间。
步骤S505,处理单元31判断接收到的电信号值是否大于第一阈值,如果大于第一阈值,则执行步骤S506;如果不大于第一阈值,则执行步骤S501。
其中,第一阈值为底噪阈值,由于底噪(即空气中的环境噪声)的存在,所以接收端332不可避免的会接收到环境中噪音信号,因此一般需要一个较小的阈值来过滤底噪。
需要说明的是,处理单元31过滤底噪的过程为可选地步骤,如果底噪信号比超声波传感器33接收到的回波信息要小很多,也可以选择不对底噪进行过滤。
步骤S506,处理单元31将保存此次周期接收到的电信号值,然后执行步骤S501和步骤S507。
步骤S507,处理单元31在存储有至少两个帧的电信号值时,判断存储的连续至少两个帧中相同时刻对应的电信号值是否相同;如果相同,则执行步骤S508;如果不相同同,则执行步骤S509。
步骤S508,处理单元31认为此时由于“照地干扰”情况导致产生超声波信号回波,将当前帧中的不同时刻对应的电信号值作为第一阈值序列,来判断在安全距离D内是否有障碍物,然后执行步骤S501。
步骤S509,处理单元31认为在不同帧中相同时刻对应的电信号值不相同的部分出现在安全距离D内该时刻对应的距离上有障碍物,发送警告信号给相应的设备,然后执行步骤S501。
本申请实施例可以对处理单元31进行功能模块的划分,例如,可对应各个功能划分各个功能模块,也可将两个或两个以上的功能集成在一个功能模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
例如,以采用集成的方式划分处理单元31各个功能模块的情况下,图6示出了本申请上述实施例中所涉及的探测装置的一种可能的结构示意图。该探测装置6例如为图3所示的实施例所涉及的探测装置中的处理单元31,或者探测装置6也可以是设置在探测设备中的芯片或其他功能部件,探测设备例如为雷达(或,雷达装置)。该探测装置6可以包括处理模块601和收发模块602。当探测设备是雷达时,处理模块601可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU),收发模块602可以是收发器,可以包括天线和射频电路等。当探测设备是具有上述雷达功能的部件时,处理模块601可以是处理器,例如基带处理器,收发模块602可以是射频单元。当探测设备是芯片系统时,处理模块601可以是芯片系统的处理器,可以包括一个或多个中央处理单元,收发模块602可以是芯片系统(例如基带芯片)的输入输出接口。
其中,处理模块601可以用于执行图3所示的实施例中由处理单元31的全部操作,和/或用于支持本文所描述的技术的其它过程。收发模块602可以用于执行图3所示的实施例中由探测装置6所执行的全部采集操作,例如采集超声波信号的操作,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块602可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块602可以用于执行由探测装置6所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块602是发送模块,而在执行接收操作时,可以认为收发模块602是接收模块;或者,收发模块602也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行由探测装置6所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行由探测装置10所执行的全部接收操作。
或者,收发模块602也可以不属于探测装置6,例如收发模块602和探测装置6都位于同一个车辆中,收发模块602例如为该车辆中的通信单元,收发模块602和探测装置6可以通信,此时探测装置6可以不需要主动探测目标,仅基于收发模块602接收到的电信号数据进行处理。
例如,收发模块602,用于接收回波信号;
处理模块601,用于根据回波信号中连续N个帧的电信号值确定存在地面反射,N为大于2的正整数;调整回波阈值序列,回波阈值序列为用于区分目标回波和地面回波的电信号阈值序列。
处理模块601,还用于根据行驶信息和回波信号确定地面反射。其中,行驶信息包括探测装置6在移动时的移动速度信息和方向信息。
处理模块601,还用于根据回波信号中连续N个帧的电信号值确定存在连续稳定回波信号。其中,稳定回波满足第一帧中T时刻的电信号值与第二帧中T时刻的电信号值相同,第一帧和第二帧为N个帧中的任一帧,T时刻为帧中的任一时刻。
处理模块601,还用于将稳定回波中的第一帧的电信号值确定为回波阈值序列。其中,回波阈值序列是根据稳定回波中的第一帧的电信号值确定的。
处理模块601,还用于向超声波单元发送第一指示信息。其中,第一指示信息用于指示回波阈值序列。
处理模块601,还用于确定连续N个帧的电信号值大于第一阈值。其中,第一阈值为环境中噪音对应的电信号值。
另外,N时根据探测装置6的移动速度确定的。
图7为本申请实施例提供的探测装置的另一种可能的结构示意图。该探测装置7可以包括处理器701和收发器702,其功能可分别与图6所展示的处理模块901和收发模块902的具体功能相对应,此处不再赘述。可选的,探测装置7还可以包含存储器703,用于存储程序指令和/或数据,以供处理器701读取。当然,探测装置7也可以不包括存储器703,存储器703可以位于探测装置7外部。
图8提供了探测装置的再一种可能的结构示意图。图6~图8所提供的探测装置可以实现上述实施例中的探测装置的功能。图6~图8所提供的探测装置可以为实际通信场景中雷达装置的部分或者全部,或者可以是集成在雷达装置中或者位于雷达装置外部的功能模块,例如可以是芯片系统,具体以实现相应的功能为准,不对探测装置结构和组成进行具体限定。
该可选的方式中,探测装置8包括发射天线801、接收天线802以及处理器803。进一步可选的,探测装置8还包括混频器804和/或振荡器805。进一步可选的,探测装置8还可以包括低通滤波器和/或定向耦合器等。其中,发射天线801和接收天线802用于支持探测装置8进行无线电通信,发射天线801支持雷达信号的发射,接收天线802支持雷达信号的接收和/或反射信号的接收,以最终实现探测功能。处理器803执行一些可能的确定和/或处理功能。进一步,处理器803还控制发射天线801和/或接收天线802的操作。具体的,需要发射的信号通过处理器803控制发射天线801进行发射,通过接收天线802接收到的信号可以传输给处理器803进行相应的处理。探测装置8所包含的各个部件可用于配合执行图5所示的实施例所提供的方法。可选的,探测装置8还可以包含存储器,用于存储程序指令和/或数据。其中,发射天线801和接收天线802可以是独立设置的,也可以集成设置为收发天线,执行相应的收发功能。
图9为本申请实施例提供的一种装置9的结构示意图。图9所示的装置9可以是探测装置本身,或者可以是能够完成探测装置的功能的芯片或电路,例如该芯片或电路可以设置在雷达装置中。图9所示的装置9可以包括处理器901(例如处理模块1001可以通过处理器901实现,处理器1101与处理器901例如可以是同一部件)和接口电路902(例如收发模块1002可以通过接口电路902实现,收发器1102与接口电路902例如为同一部件)。该处理器901可以使得装置9实现图5所示的实施例所提供的方 法中探测装置所执行的步骤。可选的,装置9还可以包括存储器903,存储器903可用于存储指令。处理器901通过执行存储器903所存储的指令,使得装置9实现图5所示的实施例所提供的方法中探测装置所执行的步骤。
进一步的,处理器901、接口电路902和存储器3303之间可以通过内部连接通路互相通信,传递控制和/或数据信号。存储器903用于存储计算机程序,处理器901可以从存储器903中调用并运行计算机程序,以控制接口电路902接收信号或发送信号,完成图5所示的实施例所提供的方法中探测装置所执行的步骤。存储器903可以集成在处理器901中,也可以与处理器901分开设置。
可选地,若装置9为设备,接口电路902可以包括接收器和发送器。其中,接收器和发送器可以为相同的部件,或者为不同的部件。接收器和发送器为相同的部件时,可以将该部件称为收发器。
可选地,若装置9为芯片或电路,则接口电路902可以包括输入接口和输出接口,输入接口和输出接口可以是相同的接口,或者可以分别是不同的接口。
可选地,若装置9为芯片或电路,装置9也可以不包括存储器903,处理器901可以读取该芯片或电路外部的存储器中的指令(程序或代码)以实现图5所示的实施例所提供的方法中探测装置执行的步骤。
可选地,若装置9为芯片或电路,则装置9可以包括电阻、电容或其他相应的功能部件,处理器901或接口电路902可以通过相应的功能部件实现。
作为一种实现方式,接口电路902的功能可以考虑通过收发电路或收发的专用芯片实现。处理器901可以考虑通过专用处理芯片、处理电路、处理器或通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的探测装置。即,将实现处理器901、接口电路902的功能的程序代码存储在存储器903中,处理器901通过执行存储器3303存储的程序代码来实现处理器901、接口电路902的功能。
其中,以上列举的装置9中各模块或单元的功能和动作仅为示例性说明,装置9中各功能单元可用于执行图3所示的实施例中探测装置所执行的各动作或处理过程。这里为了避免赘述,省略其详细说明。
再一种可选的方式,当使用软件实现探测装置时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地实现本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
需要说明的是,用于执行本申请实施例提供的方法的上述探测装置中所包含的处理器可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请实施例所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)存储器、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、电可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于探测装置中。当然,处理器和存储介质也可以作为分立组件存在于探测装置中。
可以理解的是,图6~图9仅仅示出了探测装置的简化设计。在实际应用中,探测装置可以包含任意数量的收发器,处理器,控制器,存储器以及其他可能存在的元件。
如果探测装置不包括收发模块,那么本申请实施例还提供一种探测系统,其包含执行本申请上述实施例所提到的探测装置和通信单元,通信单元就用于执行上述的探测装置中的收发模块(例如收发模块602)所执行的步骤。该探测系统可以是一个设备,各个装置都位于该设备中,作为该设备的功能模块,或者,该探测系统也可以包括多个设备,探测装置和通信单元等分别位于不同的设备中。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种探测方法,所述方法适用于移动状态的探测装置,其特征在于,包括:
    根据回波信号中连续N个帧的电信号值确定存在地面反射,N为大于2的正整数;
    调整回波阈值序列,所述回波阈值序列为用于区分目标回波和地面回波的电信号阈值的序列。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述地面反射是根据行驶信息和所述回波信号确定的,所述行驶信息包括所述探测装置在移动时的移动速度信息和方向信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据回波信号中连续N个帧的电信号值确定存在地面反射,包括:
    根据所述回波信号中连续N个帧的电信号值确定存在连续稳定回波信号,所述稳定回波满足第一帧中T时刻的电信号值与第二帧中T时刻的电信号值相同,所述第一帧和所述第二帧为所述N个帧中的任一帧,所述T时刻为帧中的任一时刻。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述调整回波阈值序列,包括:
    将所述稳定回波中的所述第一帧的电信号值确定为所述回波阈值序列,所述回波阈值序列是根据所述稳定回波中的所述第一帧的电信号值确定的。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    向超声波单元发送第一指示信息,所述第一指示信息用于指示所述回波阈值序列。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据回波信号中连续N个帧的电信号值确定存在地面反射之前,包括:
    确定所述连续N个帧的电信号值大于第一阈值,所述第一阈值为环境中噪音对应的电信号值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述N是根据所述探测装置的移动速度确定的。
  8. 一种探测装置,其特征在于,包括:通信单元和处理单元,
    所述通信单元,用于接收回波信号;
    所述处理单元,用于根据所述回波信号中连续N个帧的电信号值确定存在地面反射,N为大于2的正整数;和
    调整回波阈值序列,所述回波阈值序列为用于区分目标回波和地面回波的电信号阈值序列。
  9. 根据权利要求8所述的装置,其特征在于,所述处理单元,还用于根据行驶信息和所述回波信号确定所述地面反射,所述行驶信息包括所述探测装置在移动时的移动速度信息和方向信息。
  10. 根据权利要求8所述的装置,其特征在于,所述处理单元具体用于,根据所述回波信号中连续N个帧的电信号值确定存在连续稳定回波信号,所述稳定回波满足第一帧中T时刻的电信号值与第二帧中T时刻的电信号值相同,所述第一帧和所述第二帧为所述N个帧中的任一帧,所述T时刻为帧中的任一时刻。
  11. 根据权利要求8-10任一项所述的装置,其特征在于,所述处理单元具体用于,将 所述稳定回波中的所述第一帧的电信号值确定为所述回波阈值序列,所述回波阈值序列是根据所述稳定回波中的所述第一帧的电信号值确定的。
  12. 根据权利要求8-11任一项所述的装置,其特征在于,所述处理单元具体用于,向超声波单元发送第一指示信息,所述第一指示信息用于指示所述回波阈值序列。
  13. 根据权利要求8-12任一项所述的装置,其特征在于,所述处理单元具体用于,确定所述连续N个帧的电信号值大于第一阈值,所述第一阈值为环境中噪音对应的电信号值。
  14. 根据权利要求8-13任一项所述的装置,其特征在于,所述N时根据所述探测装置的移动速度确定的。
  15. 一种装置,其特征在于,包括检测单元、超声波传感器和处理单元,
    所述检测单元,用于检测所述终端设备在行驶的过程中的速度和方向;
    所述超声波传感器,用于发射超声波信号和接收超声波信号,并将所述接收到的超声波信号转换为电信号;
    所述处理单元用于执行如权利要求1-7中的任一项所述的方法。
  16. 一种汽车,用于执行如权利要求1-7任一所述的方法。
  17. 一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序在计算机中执行时,令计算机执行权利要求1-7中任一项的所述的方法。
  18. 一种计算设备,包括存储器和处理器,其特征在于,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现权利要求1-7中任一项所述的方法。
PCT/CN2020/125351 2020-02-17 2020-10-30 一种探测方法和装置 WO2021164311A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227031083A KR20220136430A (ko) 2020-02-17 2020-10-30 검출 방법 및 장치
EP20919721.9A EP4095550A4 (en) 2020-02-17 2020-10-30 DETECTION METHOD AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010097884.2 2020-02-17
CN202010097884.2A CN113267768B (zh) 2020-02-17 2020-02-17 一种探测方法和装置

Publications (1)

Publication Number Publication Date
WO2021164311A1 true WO2021164311A1 (zh) 2021-08-26

Family

ID=77227517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125351 WO2021164311A1 (zh) 2020-02-17 2020-10-30 一种探测方法和装置

Country Status (4)

Country Link
EP (1) EP4095550A4 (zh)
KR (1) KR20220136430A (zh)
CN (1) CN113267768B (zh)
WO (1) WO2021164311A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118381303A (zh) * 2024-03-28 2024-07-23 江西联创电子有限公司 电源电路、超声波雷达及车辆

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917397A (zh) * 2021-09-17 2022-01-11 深圳市睿联技术股份有限公司 测距方法、装置、系统及计算机可读存储介质
CN116946010B (zh) * 2023-09-19 2023-12-26 浙江吉利控股集团有限公司 一种基于超声波信号的静音鸣笛方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101322044A (zh) * 2005-12-05 2008-12-10 罗伯特·博世有限公司 用于超声波传感器的功能检验的方法
CN102116860A (zh) * 2009-12-31 2011-07-06 株式会社万都 用于调整垂直传感器对准的装置与传感器
CN104412121A (zh) * 2012-06-29 2015-03-11 罗伯特·博世有限公司 用于运行车辆的周围环境检测系统的方法和周围环境检测系统
CN105705963A (zh) * 2013-09-17 2016-06-22 株式会社电装 物体检测装置及物体检测系统
DE102018103414A1 (de) * 2018-02-15 2019-08-22 Valeo Schalter Und Sensoren Gmbh Verfahren zur Charakterisierung eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs mit Höhenschätzung anhand einer seitlichen Ableitung eines Empfangssignals eines Ultraschallsensors, Recheneinrichtung sowie Ultraschallsensorvorrichtung
DE102018204996A1 (de) * 2018-04-04 2019-10-10 Robert Bosch Gmbh Verfahren zur verbesserten Detektion eines Bodenechosignals bei einem Ultraschallsensor eines Fahrzeugs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010033207B4 (de) * 2010-08-03 2022-07-14 Valeo Schalter Und Sensoren Gmbh Verfahren und Vorrichtung zur Umfeldüberwachung für ein Fahrzeug
US10025890B2 (en) * 2014-07-11 2018-07-17 Advanced Testing Technologies, Inc. Phase noise simulation model for pulse doppler radar target detection
DE102015209878B3 (de) * 2015-05-29 2016-02-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erfassung von Objekten im Umfeld eines Fahrzeugs
KR102397095B1 (ko) * 2017-11-17 2022-05-12 삼성전자주식회사 차량의 레이더를 이용한 오브젝트 검출 방법 및 장치
CN110619764B (zh) * 2018-06-19 2021-08-17 上海汽车集团股份有限公司 一种探测障碍物的方法和装置
US11644555B2 (en) * 2018-07-27 2023-05-09 Texas Instruments Incorporated Threshold generation for coded ultrasonic sensing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101322044A (zh) * 2005-12-05 2008-12-10 罗伯特·博世有限公司 用于超声波传感器的功能检验的方法
CN102116860A (zh) * 2009-12-31 2011-07-06 株式会社万都 用于调整垂直传感器对准的装置与传感器
CN104412121A (zh) * 2012-06-29 2015-03-11 罗伯特·博世有限公司 用于运行车辆的周围环境检测系统的方法和周围环境检测系统
CN105705963A (zh) * 2013-09-17 2016-06-22 株式会社电装 物体检测装置及物体检测系统
DE102018103414A1 (de) * 2018-02-15 2019-08-22 Valeo Schalter Und Sensoren Gmbh Verfahren zur Charakterisierung eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs mit Höhenschätzung anhand einer seitlichen Ableitung eines Empfangssignals eines Ultraschallsensors, Recheneinrichtung sowie Ultraschallsensorvorrichtung
DE102018204996A1 (de) * 2018-04-04 2019-10-10 Robert Bosch Gmbh Verfahren zur verbesserten Detektion eines Bodenechosignals bei einem Ultraschallsensor eines Fahrzeugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095550A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118381303A (zh) * 2024-03-28 2024-07-23 江西联创电子有限公司 电源电路、超声波雷达及车辆

Also Published As

Publication number Publication date
EP4095550A1 (en) 2022-11-30
CN113267768B (zh) 2024-09-17
CN113267768A (zh) 2021-08-17
KR20220136430A (ko) 2022-10-07
EP4095550A4 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
WO2021164311A1 (zh) 一种探测方法和装置
US11679745B2 (en) Rear-end collision avoidance apparatus and method, and vehicle control apparatus including same
CN105549021B (zh) 对象检测装置
CN101303410B (zh) 单方发射暨多方接收的障碍物检测方法及其装置
WO2020199010A1 (zh) 毫米波雷达的跟踪检测方法、毫米波雷达和车辆
US11754668B2 (en) Detection method, detection apparatus, and system
US11288964B2 (en) Driving assistance device and driving assistance method
US9869765B2 (en) Alarm system and method for vehicle
US20190126893A1 (en) Autonomous emergency braking system and method of controlling same
US20210356583A1 (en) Object detection apparatus and object detection method
JP7122101B2 (ja) 車両用障害物検知装置
WO2020156084A1 (zh) 无线电信号发送方法和装置
WO2021184183A1 (zh) 信号处理方法、装置及存储介质
JP2010256198A (ja) 車両用物体検知装置および車両用走行制御装置
WO2020177647A1 (zh) 一种利用无线电信号进行目标物探测的方法及相关装置
CN117310670B (zh) 基于超声波雷达的测量方法、装置、车载终端和存储介质
WO2018112888A1 (zh) 一种激光雷达扫描方法及激光雷达
CN109229015B (zh) 基于超声波传感器实现车辆360度障碍物报警提示的方法
CN114648882A (zh) 一种车位检测方法及装置
US11698456B2 (en) Object detection system
CN113050099B (zh) 一种自动泊车障碍物距离检测方法及其系统、检测设备
KR20200040178A (ko) 후방 충돌 방지 장치 및 방법과 그를 포함하는 차량 제어 장치
US20220404465A1 (en) Target Detection Method and Radar Apparatus
Gurav et al. Obstacle Collision Warning Using Ultrasonic and LiDAR Sensor Fusion
CN110967689B (zh) 一种目标对象高度的确定方法、装置及车载雷达设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020919721

Country of ref document: EP

Effective date: 20220822

ENP Entry into the national phase

Ref document number: 20227031083

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE