WO2021164242A1 - 一种利用荧光材料表征粘结砂浆湿度变化的方法 - Google Patents

一种利用荧光材料表征粘结砂浆湿度变化的方法 Download PDF

Info

Publication number
WO2021164242A1
WO2021164242A1 PCT/CN2020/114755 CN2020114755W WO2021164242A1 WO 2021164242 A1 WO2021164242 A1 WO 2021164242A1 CN 2020114755 W CN2020114755 W CN 2020114755W WO 2021164242 A1 WO2021164242 A1 WO 2021164242A1
Authority
WO
WIPO (PCT)
Prior art keywords
rhodamine
humidity
mortar
bonding mortar
characterizing
Prior art date
Application number
PCT/CN2020/114755
Other languages
English (en)
French (fr)
Inventor
姜伟
范震
顾海涛
高国旗
杨正宏
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Publication of WO2021164242A1 publication Critical patent/WO2021164242A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/02Implements for finishing work on buildings for applying plasticised masses to surfaces, e.g. plastering walls
    • E04F21/06Implements for applying plaster, insulating material, or the like

Definitions

  • the invention relates to a method for characterizing changes in the humidity of a bonding mortar, in particular to a method for characterizing changes in the humidity of a bonding mortar by using fluorescent materials.
  • the problem of the bonding force of the bonding mortar in construction has always been a relatively prominent problem. There is no good detection method for the time of failure of the mortar. There are various researches for testing the temperature and humidity changes of mortar, but the testing methods for the temperature and humidity of mortar are developing slowly in the direction of low cost and convenient testing.
  • the current testing method for changes in mortar temperature and humidity is mainly to embed humidity sensors.
  • the sensors embedded in the mortar will be broken after a period of time, the detection cost is high, and at the same time whether it is broken or not. Timely understanding.
  • the thickness of the mortar is generally between 10mm and 20mm, and the size of the embedded sensor is very limited, and its replacement cost is high. Therefore, it is urgent to invent a method for characterizing humidity changes with simple testing methods and good visibility.
  • metal oxide and nano-silica are excellent materials, but the sensor is easily damaged during construction, and its cost is relatively high.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art and provide a method for characterizing the humidity change of the bonding mortar by using fluorescent materials.
  • the humidity change of the mortar is characterized by the humidity sensitivity characteristics of rhodamine, which is convenient and fast, and has good visual effects. .
  • a fluorescent material is used to characterize the humidity change of the bonding mortar, wherein the rhodamine microcapsules are placed in the bonding mortar, and during the service work of the bonding mortar, an infrared transmission camera is used to photograph the real-time rhodamine fluorescence intensity to characterize The humidity of the mortar.
  • the infrared transmission camera can capture the actual fluorescence intensity of rhodamine during the test phase, and characterize the humidity of the mortar according to the fluorescence intensity of the captured rhodamine, and compare the humidity of the mortar at different time nodes to obtain the change of the mortar humidity.
  • the photographed fluorescence intensity is calibrated, and then the change of the internal humidity of the mortar is analyzed through the change of the fluorescence intensity, and the characterization result analysis of the humidity of the mortar is completed.
  • a rhodamine microcapsule holding slot is opened on the bonding mortar, and then the rhodamine microcapsule is placed in the rhodamine microcapsule holding slot.
  • the rhodamine microcapsules include a capsule shell and a reagent coated in the capsule shell.
  • the capsule shell is a TPU waterproof and moisture-permeable membrane.
  • the performance of the TPU waterproof and moisture-permeable membrane is stable and meets the requirements of carrying rhodamine reagent. Its mechanism is: the hard segment of the TPU waterproof and moisture-permeable membrane is hydrophobic, which can prevent water droplets from passing through, thus exhibiting excellent windproof and waterproof effects; TPU waterproof and moisture-permeable The soft segment of the membrane is hydrophilic and can achieve good performance of high moisture permeability.
  • rhodamine shows different fluorescence effects in environments with different humidity.
  • the rhodamine B biological reagent used in the present invention has a bright pink artificially synthesized dye, the aqueous solution is blue-red, and has strong fluorescence after dilution.
  • the fluorescence intensity of rhodamine under different humidity is different, and the intensity is different from the humidity. The relationship between is verified by experiments in the present invention, so the present invention can characterize the humidity of the actual mortar through the fluorescence intensity of rhodamine.
  • the bonding mortar is constructed on the wall sequentially from bottom to top.
  • the bonding mortar is constructed in multiple stages from bottom to top.
  • the said rhodamine microcapsule retaining groove is set on the horizontal dividing line of the bonding mortar area of the adjacent stage.
  • the rhodamine microcapsule slot is provided around the window and at its four corners;
  • Rhodamine microcapsule slots in each horizontal dividing line from top to bottom is 2-1-3-1-2.
  • one side of the bonded mortar is provided with an external thermal insulation board.
  • the present invention has the following advantages:
  • the present invention characterizes the humidity change of the mortar through the humidity sensitivity characteristics of rhodamine, is convenient and fast, has good visual effects, can realize efficient monitoring, and can be applied to a large-scale construction process.
  • the Rhodamine B reagent is carried by the TPU waterproof and moisture-permeable membrane, which significantly guarantees the stability of the Rhodamine B reagent.
  • Figure 1 is a schematic diagram of the arrangement of rhodamine microcapsules on a wall with windows;
  • Figure 2 is a schematic diagram of the arrangement of rhodamine microcapsules on a windowless wall
  • Figure 3 is a schematic diagram of the construction phase of the bonded mortar.
  • a fluorescent material is used to characterize the humidity change of the bonding mortar.
  • the rhodamine microcapsules are placed in the bonding mortar.
  • an infrared transmission camera is used to capture the real-time fluorescence intensity of rhodamine. Characterize the humidity of the mortar.
  • the infrared transmission camera can capture the actual fluorescence intensity of rhodamine during the test phase, and characterize the humidity of the mortar according to the fluorescence intensity of the captured rhodamine, and compare the humidity of the mortar at different time nodes to obtain the change of the mortar humidity.
  • a slot for rhodamine microcapsules is opened on the bonding mortar, and then the rhodamine microcapsules are placed in the slot for rhodamine microcapsules.
  • the rhodamine microcapsule includes a capsule shell and a reagent coated in the capsule shell.
  • the capsule shell is a TPU waterproof and moisture-permeable membrane.
  • the performance of the TPU waterproof and moisture-permeable membrane is stable and meets the requirements of carrying rhodamine reagent. Its mechanism is: the hard segment of the TPU waterproof and moisture-permeable membrane is hydrophobic, which can prevent water droplets from passing through, thus exhibiting excellent windproof and waterproof effects.
  • the soft segment of the TPU waterproof and moisture-permeable membrane is hydrophilic and can achieve good performance of high moisture permeability.
  • the rhodamine B biological reagent used in this example has a bright pink artificially synthesized dye, the aqueous solution is blue-red, and it has strong fluorescence after dilution.
  • the fluorescence intensity of rhodamine is different under different humidity, and the relationship between intensity and humidity The present invention has been experimentally verified, so the present invention can characterize the humidity of the actual mortar through the fluorescence intensity of rhodamine.
  • the bonding mortar is constructed on the wall sequentially from bottom to top.
  • the bonding mortar is constructed in multiple stages from bottom to top, see Figure 2.
  • the rhodamine microcapsule card slot is set on the horizontal dividing line of the bonding mortar area of the adjacent stage.
  • One side of the bonding mortar is equipped with an external insulation board wall.
  • the bonding mortar is made of cement, quartz sand, polymer cement and various additives, which are uniformly mixed by machinery. After mixing the bonding mortar, the viscosity of the mortar can be adjusted according to the conditions of the construction site.
  • the invention has no limitation on the type and performance of the mortar, and it can be configured according to actual construction requirements.
  • the layered construction is adopted during the construction of the bonding mortar on the side walls of the floors, and the construction is carried out sequentially from bottom to top.
  • the first stage of completion is the sign that the construction height has reached the lowest level of installation of rhodamine microcapsules. After the installation of the rhodamine microcapsules is completed, the second stage of construction will continue until the entire wall is completed.
  • the mortar construction process of the wall with windows on the front is divided into five stages, see Figure 1.
  • the first stage is the bottom bonding mortar construction, which ends when the first layer of rhodamine microcapsules is installed at the level; the second stage mortar
  • the end height of the construction is the lower edge of the window
  • the end height of the third stage is the middle height of the window
  • the fourth stage is completed to the upper edge of the window
  • the fifth stage is the upper part of the construction.
  • the installation height of the slot should be within the area of 3cm ⁇ 8cm from the lower edge of the window. Ensure that the height of the three slots is the same.
  • the installation position accuracy is high, and the position review must be carried out. .
  • the distance between the slot of the rhodamine microcapsules and the left and right edges of the window is between 3cm and 5cm, which is convenient for measuring the humidity change on the edge of the window.
  • the slot installation position corresponds to the second stage slot position, and the installation height should be within the area of 3cm ⁇ 8cm from the upper edge of the window.
  • the fifth stage of the mortar construction process for the wall with windows on the front is the same as the first stage.
  • an infrared transmission camera can be used to capture the real-time fluorescence intensity of rhodamine to characterize the humidity of the mortar.

Landscapes

  • Health & Medical Sciences (AREA)
  • Architecture (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Optics & Photonics (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种利用荧光材料表征粘结砂浆湿度变化的方法,其中将罗丹明微胶囊置于粘结砂浆中,在粘结砂浆服役工作期间,利用红外透射相机进行拍摄实时的罗丹明荧光强度,表征砂浆湿度情况。红外透射相机在测试阶段可以拍摄罗丹明的实际荧光强度,根据拍摄到的罗丹明荧光强度表征砂浆湿度情况,对不同时间节点的砂浆湿度进行比较,获得其砂浆湿度变化情况。该方法通过罗丹明的湿度敏感性特点表征砂浆湿度变化,方便快捷,可视效果好;通过TPU防水透湿膜承载罗丹明B试剂,显著的保证了罗丹明B试剂的稳定性。

Description

一种利用荧光材料表征粘结砂浆湿度变化的方法
本申请要求于2020年2月18日提交中国专利局、申请号为202010099892.0、发明名称为“一种利用荧光材料表征粘结砂浆湿度变化的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种表征粘结砂浆湿度变化的方法,尤其涉及一种利用荧光材料表征粘结砂浆湿度变化的方法。
背景技术
建筑中粘结砂浆粘结力问题一直是一个较为突出的问题,砂浆失效的时间没有很好的检测手段,现阶段砂浆粘结力的下降主要和砂浆内部温湿度的变化有直接的关系,集中于测试砂浆温湿度变化的研究各式各样,但对于砂浆温湿度的测试手段向成本低、测试便捷方向发展速度较慢。
目前对砂浆温湿度的变化的测试手段主要是埋设湿度传感器,但是在实际的建筑工程中,埋设在砂浆中的传感器在一段时间之后就会坏掉,检测成本高,同时其是否坏掉也不能及时的了解。
砂浆厚度一般在10mm~20mm之间,埋设传感器的尺寸有很大的限制,同时其更换成本较高,故亟待发明一种测试手段简单,可视性较好的表征湿度变化的方法。在传感器的选用材料中以金属氧化物和纳米二氧化硅是极佳的材料,但是传感器容易在施工中损坏,其成本较为高昂。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种利用荧光材料表征粘结砂浆湿度变化的方法,通过罗丹明的湿度敏感性特点表征砂浆湿度变化,方便快捷,可视效果好。
本发明的目的可以通过以下技术方案来实现:
本发明中利用荧光材料表征粘结砂浆湿度变化的方法,其中将罗丹明微胶囊置于粘结砂浆中,在粘结砂浆服役工作期间,利用红外透射相机进行拍摄实时的罗丹明荧光强度,表征砂浆湿度情况。红外透射相机在测试阶段可以拍摄罗丹明的实际荧光强度,根据拍摄到的罗丹明荧光强度表征砂浆湿度情况,对不同时间节点的砂浆湿度进行比较,获得其砂浆湿度变 化情况。
进一步地,对拍摄到的荧光强度进行标定,之后通过荧光强度变化解析砂浆内部湿度变化情况,完成砂浆湿度情况的表征结果分析。
进一步地,在粘结砂浆上开设罗丹明微胶囊卡槽,之后将罗丹明微胶囊置于罗丹明微胶囊卡槽中。
进一步地,所述的罗丹明微胶囊包括胶囊壳体以及包覆于胶囊壳体中的试剂。
进一步地,所述的胶囊壳体为TPU防水透湿膜。TPU防水透湿膜的性能稳定,符合承载罗丹明试剂的要求,其机理为:TPU防水透湿膜硬链段疏水,可以阻止水滴通过,从而表现出优良的防风和防水作用;TPU防水透湿膜软链段亲水,可以实现高透湿的良好性能。
进一步地,罗丹明作为一种指示剂,在不同的湿度的环境中显示不同的荧光效果。
进一步地,本发明中所使用的罗丹明B生物试剂,有鲜桃红色的人工合成的染料,水溶液为蓝红色,稀释后有强烈荧光,罗丹明的不同湿度下其荧光强度不同,强度与湿度的关系在本发明中已经过实验验证,因此本发明可通过罗丹明荧光强度表征实际砂浆的湿度情况。
进一步地,所述的粘结砂浆由下至上依次施工于墙体上。
进一步地,所述的粘结砂浆由下至上分多个阶段施工。
进一步地,所述的罗丹明微胶囊卡槽设于相邻阶段粘结砂浆区域的水平分界线上。
进一步地,当墙体含窗时,罗丹明微胶囊卡槽设于窗户四周以及其四个拐角处;
当墙体不含窗时,罗丹明微胶囊卡槽由上自下在每条水平分界线依次的分布数量为2-1-3-1-2。
进一步地,所述的粘结砂浆的一侧设有外保温板。
与现有技术相比,本发明具有以下优点:
1)本发明通过罗丹明的湿度敏感性特点表征砂浆湿度变化,方便快捷,可视效果好,可实现高效的监控,可应用于大规模的施工过程中。
2)进一步地,本发明通过TPU防水透湿膜承载罗丹明B试剂,显著 的保证了罗丹明B试剂的稳定性。
附图说明
图1为含窗墙体罗丹明微胶囊布置示意图;
图2为无窗墙体罗丹明微胶囊布置示意图;
图3为粘结砂浆施工阶段示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
本实施例中利用荧光材料表征粘结砂浆湿度变化的方法,其中将罗丹明微胶囊置于粘结砂浆中,在粘结砂浆服役工作期间,利用红外透射相机进行拍摄实时的罗丹明荧光强度,表征砂浆湿度情况。红外透射相机在测试阶段可以拍摄罗丹明的实际荧光强度,根据拍摄到的罗丹明荧光强度表征砂浆湿度情况,对不同时间节点的砂浆湿度进行比较,获得其砂浆湿度变化情况。
在粘结砂浆上开设罗丹明微胶囊卡槽,之后将罗丹明微胶囊置于罗丹明微胶囊卡槽中。罗丹明微胶囊包括胶囊壳体以及包覆于胶囊壳体中的试剂。胶囊壳体为TPU防水透湿膜。TPU防水透湿膜的性能稳定,符合承载罗丹明试剂的要求,其机理为:TPU防水透湿膜硬链段疏水,可以阻止水滴通过,从而表现出优良的防风和防水作用。TPU防水透湿膜软链段亲水,可以实现高透湿的良好性能。本实施例中所使用的罗丹明B生物试剂,有鲜桃红色的人工合成的染料,水溶液为蓝红色,稀释后有强烈荧光,罗丹明的不同湿度下其荧光强度不同,强度与湿度的关系在本发明中已经过实验验证,因此本发明可通过罗丹明荧光强度表征实际砂浆的湿度情况。
粘结砂浆由下至上依次施工于墙体上。粘结砂浆由下至上分多个阶段施工,参见图2。罗丹明微胶囊卡槽设于相邻阶段粘结砂浆区域的水平分界线上。粘结砂浆的一侧设有外保温板墙体施工结束之后,进行粘结砂浆的施工,须注意的是粘结砂浆由水泥、石英砂、聚合物胶结料配以多种添加剂经机械混合均匀而成,粘结砂浆在配合比例搅拌后,可根据施工现场情况对砂浆的粘稠度给予调整。本发明对于砂浆的种类及性能没有限定, 根据实际施工要求配置即可。
在楼层侧墙墙体的粘结砂浆施工过程中采用分层施工,由下至上依次施工,第一阶段完成的标志是施工高度达到最下端罗丹明微胶囊安装水平高度。安装完成罗丹明微胶囊之后继续进行第二阶段施工,直到整面墙体全部施工完毕。
墙体砂浆第一阶段施工结束后,进行罗丹明微胶囊卡槽的安装,其高度与第一阶段砂浆高度处于同一高度,卡槽安装要求保证水平并且垂直于墙体。
卡槽安装结束之后进行罗丹明微胶囊的放置,将罗丹明的微胶囊放置在卡槽内之后,检查卡槽及微胶囊是否在砂浆表面有突出,参见图3,保证后期外保温板的安装不影响罗丹明为胶囊的位置,检查砂浆是否均匀分布在墙体表面。粘结砂浆服役工作期间,可利用红外透射相机进行拍摄实时的罗丹明荧光强度,表征砂浆湿度情况。对拍摄到的荧光强度进行标定,通过荧光强度变化了解砂浆内部湿度变化情况。
实施例2
正面有窗户的墙体的砂浆施工过程共分为五个阶段,参见图1,第一阶段为底部粘结砂浆施工,达到第一层罗丹明微胶囊安装位置水平高度时结束;第二阶段砂浆施工结束高度为窗户的下边缘,第三阶段结束高度为窗户的中间高度处,第四阶段施工至窗户上边缘位置结束,第五阶段为上部的施工。
正面有窗户的墙体砂浆施工过程第二阶段结束之后,卡槽的安装高度要处于窗户下边缘3cm~8cm区域内,保证三个卡槽的高度相同,安装位置精度要求高,必须进行位置复查。
正面有窗户的墙体砂浆施工第三阶段结束后,罗丹明微胶囊的卡槽与窗户左右侧边缘距离在3cm~5cm之间,方便测量窗户侧边缘湿度变化。
正面有窗户的墙体砂浆施工第四阶段结束后,卡槽安装位置与第二阶段卡槽位置对应,安装高度要处于窗户上边缘3cm~8cm区域内。
正面有窗户的墙体砂浆施工第五阶段过程与第一阶段施工过程相同。
粘结砂浆服役工作期间,可利用红外透射相机进行拍摄实时的罗丹明荧光强度,表征砂浆湿度情况。
对拍摄到的荧光强度进行标定,通过荧光强度变化了解砂浆内部湿度变化情况。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (14)

  1. 一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,将罗丹明微胶囊置于粘结砂浆中,在粘结砂浆服役工作期间,利用红外透射相机进行拍摄实时的罗丹明荧光强度,表征砂浆湿度情况。
  2. 根据权利要求1所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,对拍摄到的罗丹明荧光强度进行标定,之后通过荧光强度变化解析砂浆内部湿度变化情况,完成砂浆湿度情况的表征结果分析。
  3. 根据权利要求1所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,在粘结砂浆中开设罗丹明微胶囊卡槽,之后将罗丹明微胶囊置于罗丹明微胶囊卡槽中。
  4. 根据权利要求1所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,所述的罗丹明微胶囊包括胶囊壳体以及包覆于胶囊壳体中的罗丹明试剂。
  5. 根据权利要求4所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,所述罗丹明试剂为罗丹明B生物试剂。
  6. 根据权利要求4所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,所述的胶囊壳体为TPU防水透湿膜。
  7. 根据权利要求1所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,所述粘结砂浆由水泥、石英砂、聚合物胶结料配以添加剂经机械混合均匀而成。
  8. 根据权利要求3或7所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,所述的粘结砂浆由下至上依次施工于墙体上。
  9. 根据权利要求8所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,所述的粘结砂浆由下至上分多个阶段施工。
  10. 根据权利要求9所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,所述的罗丹明微胶囊卡槽设于相邻阶段粘结砂浆区域的水平分界线上。
  11. 根据权利要求9所述的一种利用荧光材料表征粘结砂浆湿度变化 的方法,其特征在于,所述卡槽水平安装并且垂直于墙体。
  12. 根据权利要求10所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,当墙体含窗时,罗丹明微胶囊卡槽设于窗户四周以及窗户四个拐角处;
    当墙体不含窗时,罗丹明微胶囊卡槽由上自下在每条水平分界线依次的分布数量为2-1-3-1-2。
  13. 根据权利要求12所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,当墙体含窗时,罗丹明微胶囊卡槽与窗下边缘距离为3~8cm,与窗左、右侧边缘距离独立为3~5cm,与窗上边缘距离为3~8cm。
  14. 根据权利要求1所述的一种利用荧光材料表征粘结砂浆湿度变化的方法,其特征在于,所述的粘结砂浆的一侧设有外保温板。
PCT/CN2020/114755 2020-02-18 2020-09-11 一种利用荧光材料表征粘结砂浆湿度变化的方法 WO2021164242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010099892.0A CN111351774B (zh) 2020-02-18 2020-02-18 一种利用荧光材料表征粘结砂浆湿度变化的方法
CN202010099892.0 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021164242A1 true WO2021164242A1 (zh) 2021-08-26

Family

ID=71194085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114755 WO2021164242A1 (zh) 2020-02-18 2020-09-11 一种利用荧光材料表征粘结砂浆湿度变化的方法

Country Status (2)

Country Link
CN (1) CN111351774B (zh)
WO (1) WO2021164242A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351774B (zh) * 2020-02-18 2021-09-03 同济大学 一种利用荧光材料表征粘结砂浆湿度变化的方法
CN112326621A (zh) * 2020-11-17 2021-02-05 同济大学 利用近红外荧光染料表征砌筑砂浆含湿量变化的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138045A (en) * 1978-04-18 1979-10-26 Matsushita Electric Ind Co Ltd Hygroscopic resin composition
CN101603937A (zh) * 2009-07-23 2009-12-16 河海大学 水泥基材料内部相对湿度测试装置及其测试方法
CN104342123A (zh) * 2014-10-21 2015-02-11 淄博职业学院 能反映环境湿度的荧光薄膜材料及其制备方法
CN105259336A (zh) * 2015-11-04 2016-01-20 长安大学 一种路面水泥混凝土内养生水分迁移轨迹测试方法
CN109880623A (zh) * 2019-03-15 2019-06-14 浙江工业大学 一种水敏感上转换荧光材料及其制备方法和检测方法
CN111351774A (zh) * 2020-02-18 2020-06-30 同济大学 一种利用荧光材料表征粘结砂浆湿度变化的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320950A (ja) * 1991-04-19 1992-11-11 Dainippon Printing Co Ltd 濡れ検出あるいは湿度測定用インキ組成物
DE19942317C2 (de) * 1999-09-05 2003-03-20 Wolfgang Kowalsky Verfahren zur Feuchtebestimmung, Sensor zur Durchführung des Verfahrens und Meßanordnung
US8911681B2 (en) * 2011-09-12 2014-12-16 Kimberly-Clark Worldwide, Inc. Wetness indicator having varied hues
CN105043955B (zh) * 2015-06-04 2018-06-26 济南大学 采用荧光染料测定水泥基材料表面防护剂的渗透深度及渗透量的方法
CN107328748B (zh) * 2017-08-03 2020-03-24 陕西师范大学 一种测定样品中亚硫酸氢盐的检测方法及应用
CN108226115B (zh) * 2017-12-29 2020-09-08 华南师范大学 一种用于甲醛气体、湿度和温度多功能检测的纳米复合敏感膜及其制备
CN108982444A (zh) * 2018-07-04 2018-12-11 浙江大学 一种led激发的短波红外荧光显微成像系统
CN109912251A (zh) * 2019-02-27 2019-06-21 南昌大学 用于水泥基材裂纹检测修复的荧光标记微胶囊及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138045A (en) * 1978-04-18 1979-10-26 Matsushita Electric Ind Co Ltd Hygroscopic resin composition
CN101603937A (zh) * 2009-07-23 2009-12-16 河海大学 水泥基材料内部相对湿度测试装置及其测试方法
CN104342123A (zh) * 2014-10-21 2015-02-11 淄博职业学院 能反映环境湿度的荧光薄膜材料及其制备方法
CN105259336A (zh) * 2015-11-04 2016-01-20 长安大学 一种路面水泥混凝土内养生水分迁移轨迹测试方法
CN109880623A (zh) * 2019-03-15 2019-06-14 浙江工业大学 一种水敏感上转换荧光材料及其制备方法和检测方法
CN111351774A (zh) * 2020-02-18 2020-06-30 同济大学 一种利用荧光材料表征粘结砂浆湿度变化的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU FENG ,ZHANG SHU-JUAN ,LIU TAI-HONG ,DING LI-PING ,FANG YU: "Research Progress of Fluorescent Humidity Sensor", TRANSDUCER AND MICROSYSTEM TECHNOLOGIES, vol. 31, no. 9, 20 September 2012 (2012-09-20), CN, pages 5 - 9+17, XP055838506, ISSN: 1000-9787, DOI: 10.13873/j.1000-97872012.09.032 *

Also Published As

Publication number Publication date
CN111351774B (zh) 2021-09-03
CN111351774A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2021164242A1 (zh) 一种利用荧光材料表征粘结砂浆湿度变化的方法
Edis et al. Passive thermographic detection of moisture problems in façades with adhered ceramic cladding
ES2773471T3 (es) Aparato de ensayo para el biomarcador cardiaco ST2
US5816703A (en) Method of detecting defects of a structure
US20140013833A1 (en) Water absorption test method and water absorption test device for concrete surface
JP2003535326A (ja) 透過性の材料における透過性又は歪みの測定の装置及び方法。
CN204405678U (zh) 用于联合检测心肌肌钙蛋白i-肌红蛋白-肌酸激酶同工酶的试纸条
Riggio et al. Moisture monitoring data of mass timber elements during prolonged construction exposure: The case of the Forest Science complex (Peavy Hall) at Oregon State University
Duarte et al. Variability of in-situ testing in wall coating systems-Karsten tube and moisture meter techniques
CN105301050A (zh) 大型透光围护结构传热系数检测设备及方法
CN108548764A (zh) 一种建筑结构防水智能测试装置及其测试方法
CN111077290A (zh) 一种埋入式混凝土湿度测试装置及其应用方法
CN106525664B (zh) 一种毛细效应自动测定设备
Jeong et al. Development and assessment of Nile blue-immobilized pH sensor to monitor the early stage of concrete carbonation
JPS61277774A (ja) 建造物の診断方法
CN106706498A (zh) 一种混凝土类材料稳态水渗透系数的测试装置及方法
CN108627631A (zh) 一种适用于砂土介质一维管路溃砂模拟试验装置及方法
Smith Avoidance and diagnosis of problems associated with internal wall insulation
McPolin et al. Development and longer term in situ evaluation of fiber-optic sensors for monitoring of structural concrete
Nordström et al. Structural safey of cracked concrete dams
Sun et al. The driving mechanism of cement hydrated products leaching on as-built cement concrete bridge deck pavements
Hooton Development of standard test methods for measuring fluid penetration and ion transport rates
CN112326621A (zh) 利用近红外荧光染料表征砌筑砂浆含湿量变化的方法
Lehmann et al. Wireless impedance measurements to monitor moisture and salt migration in natural stone
CN104880451B (zh) 用于检测唾液酒精的荧光试纸及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920269

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20920269

Country of ref document: EP

Kind code of ref document: A1