WO2021162539A1 - Masas inerciales y volante de inercia que liberan fuerza centrífuga, para sistemas mecánicos cinéticos - Google Patents

Masas inerciales y volante de inercia que liberan fuerza centrífuga, para sistemas mecánicos cinéticos Download PDF

Info

Publication number
WO2021162539A1
WO2021162539A1 PCT/MX2020/000041 MX2020000041W WO2021162539A1 WO 2021162539 A1 WO2021162539 A1 WO 2021162539A1 MX 2020000041 W MX2020000041 W MX 2020000041W WO 2021162539 A1 WO2021162539 A1 WO 2021162539A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertial
inertial mass
flywheel
mass
sliding
Prior art date
Application number
PCT/MX2020/000041
Other languages
English (en)
French (fr)
Inventor
José Guillermo CASTRO GONZÁLEZ
Original Assignee
Castro Gonzalez Jose Guillermo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Castro Gonzalez Jose Guillermo filed Critical Castro Gonzalez Jose Guillermo
Publication of WO2021162539A1 publication Critical patent/WO2021162539A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors
    • F03G3/08Other motors, e.g. gravity or inertia motors using flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/315Flywheels characterised by their supporting arrangement, e.g. mountings, cages, securing inertia member to shaft

Definitions

  • the present invention is related to the technical fields of Mechanics, due to the fact that it refers to inertial masses; to an inertial disk made up of inertial masses; to an improved flywheel capable of releasing centrifugal force, comprising at least one inertial disk; and to a kinetic mechanical system that takes advantage of the released centrifugal force that comes from! flywheel, to do useful mechanical work.
  • a perforation 10 passes transversely to the curved body through the center of the cavity 9, a rolling element 8 with central perforation 8 'partially inserted in the cavity 9, a clamping means 11 inserted in the duct formed by the perforation 10 and the perforation 8 'of the rolling element 8 to suspend and hold said rolling element 8, allowing it to rotate about its axis of rotation, and an elongated vertical perforation 7 in one of the ends of the curved body.
  • WO2019164386 also discloses a "free" flywheel with low friction in its rotation, which comprises: an inertial mass curved pivoted mass 1, a counterweight curved inertial mass 2, and a rotating support 3 configured to hold, suspend and rotate the inertial masses 1 and 2, which are joined opposite each other, in the rotating support 3 that is configured in one piece with four extremities 52 arranged in such a way as to facilitate their coupling in the entrances 4 and cavities 5, of the ends of the curved inertial masses 1 and 2; a perforation 13 at each end of the extremities of the piece with four extremities 52, except at the tip of one of the extremities; a perforation 15 surrounded by an upper edge 16, in the central part of the four-end piece 52, where in turn said edge 16 is provided with two transverse perforations 17 diametrically opposed; a fixed bolt 14 at the tip of the non-perforated end 13 positioned in such a way that its linear axis is orthogonal to the plane formed by the rotating
  • Document WO2019164386 (A1) also discloses a kinetic mechanical unit, to carry out work by taking advantage of the centrifugal force, configured in a collinear manner, of a "free" flywheel as the one previously described; a pivoted element (pivoted cam) that transforms the continuous circular movement of the "free” flywheel into linear movement; by the thrust made by the rolling element 8 of the pivoting inertial mass
  • the inertial masses of document WO2019164386 (A1) have a "kidney” shaped configuration, while the inertial pieces of the present invention are semi-circular; such parts have too many cavities, entrances, grooves, perforations etc. to be able to be tied to the piece 52 of the rotating support 3 to make them rotate, which makes these pieces 1 and
  • Document WO2017217834 A1 describes (the numerical references correspond to those of said document) an apparatus for converting in-situ rotational inertial energy, to linear motion capable of carrying out work, said apparatus is characterized in that it comprises, (i) a kinetic part 1, whose shape and assembly allows it to rotate in a centrifugal manner with at least one other kinetic piece 1 equal, located and suspended equidistant from each other, in a mechanism that provides them with centrifugal movement; the kinetic piece 1 in turn comprises: a first cavity 2 in one of its lateral sides; a first rolling element 3 is partially housed in the first cavity 2, placed in a plane orthogonal with respect to the central axis of rotation of the mechanism that provides the centrifugal movement, and parallel to the plane of rotation of the kinetic piece 1 itself; a second cavity 4 at one of its ends; at least, a second rolling element 5 is partially housed in the second cavity 4, placed in a plane orthogonal in relation to the central axis of rotation of the mechanism that
  • WO2017217834 A1 also describes a mechanism for compressing gaseous fluids, characterized in that it comprises: at least, two devices for converting rotational inertial energy in situ, into linear motion capable of carrying out work, such as the apparatus described above; where said appliances are placed equidistant from each other; a mechanism that provides centrifugal movement to the kinetic parts 1, of the apparatus to convert in-situ rotational inertial energy, into linear movement with the capacity to perform work; a fixed support 18 that supports the apparatus to convert rotational inertial energy in-situ into linear motion with the capacity to perform work; a compression unit for gaseous fluids of smaller capacity, in each of the gas compression units 12, which is connected to the filling or air supply valves of said compression units 12, to fill with air with the required speed and return the device that transmits linear movement 11 in its initial position; a tank that stores the high pressure air coming from the pressure air outlet valve of the compression unit 12; and an energy source provides the energy to the mechanism that provides the centrifug
  • the mechanism that provides the centrifugal movement to the kinetic parts 1 comprises: a rotating central shaft 28; a rotating support 8 driven by the central arrow 28; the support 8 has a central perforation 17 projecting into a slight tubular extension 47 to be inserted and fixed in the rotating central shaft 28 by means of fastening means 38 that is inserted transversely in the tubular extension 47; the rotating support 8 also comprises at least two transverse cavities 31 equidistant from one another, into which the free ends of the suspension means 7 of the kinetic pieces 1 are inserted; and it also has at least two extremities to push the second rolling element 5; a sliding sleeve 15 inside each transverse cavity 31 suspends the free end of the suspension means 7 that remains inside the transverse cavity 31, with which, said suspension means 7 have radial sliding within the transverse cavities 31 of the center of the support rotary 8, but without contacting the rotary central shaft 28; a rotational actuator rotor 22 provides rotary motion to the center shaft 28; and a toothed coupling 37 connects
  • the fixed support 18 comprises: a first platform 19; a second platform 20 of smaller diameter concentrically on one of the faces of the first platform 19; the second platform 20 has at least two peripheral recesses 21 located equidistant from each other; a ring 23 is provided on the second platform 20 and is of smaller diameter than the second platform 20, to delimit an area 24 in the center of which is a perforation 27; Inside the area 24, the rotating support 8 is housed, locating its perforation 17 that coincides with the perforation 27 of the fixed support 18, to be traversed by the rotating central arrow 28 and the pieces kinetics 1 that are suspended in the rotating support 8 located equidistant from each other; said ring 23 has, at least, two longitudinal grooves 25 in its lower part and located where the recesses 21 are, to place a cam 11 in each groove 25; a pivot bolt 26 attaches in a suspended manner to the cam 11 on the second platform 20, by means of one of the ends of said cam 11, whereby, the cam has angular movement;
  • WO2017217834 A1 discloses a gaseous fluid compression machine comprising: at least two mechanisms for compressing gaseous fluids, as previously described; and an outer stator support structure 34, configured to support at least two mechanisms for compressing gaseous fluids.
  • the apparatus of document WO2017217834 A1 has kinetic parts of complicated construction and several components are required to keep them together and in suspension on the axis that makes them rotate; for example, the mechanism that provides the rotary movement and the fixed support 18, comprise several elements for their construction, making them heavier, and therefore inconvenient.
  • patent document JP2015507720 A discloses a steering wheel assembly 10 that comprises: at least one mass support of the steering wheel 14, the support has an axis 19 that extends along an axis of rotation 18 around which bracket 14 can rotate on its axis, the or each bracket 14 it comprises a plurality of openings 24 that are each offset from the axis of rotation 18; a flywheel mass 12 comprising a plurality of apertures 16 that are each arranged to align with a corresponding aperture in bracket 14; and means 23 for coupling the mass of the flywheel 12 to the or each support 14 so that the mass 12 can rotate with the or each support 14 in use.
  • Coupling means 23 is configured to extend through aligned openings in the or each support 14 and flywheel mass 12.
  • the flywheel mass 12 comprises a plurality of generally flat flywheel mass elements sandwiched between yes to form a stack of elements, each element including a plurality of openings 16 that align with openings 24 in the or each support 14 and with openings in neighboring elements in the stack.
  • the elements of the flywheel are coupled and aligned with each other to form the mass of the flywheel 12 solely by means of the coupling means 23 which extend through the aligned openings in the elements and the or each support 14 (the numerical references correspond to the figures of said document JP2015507720 A.
  • improved inertial masses In order to eliminate the previously mentioned drawbacks that reduce efficiency, they were developed: improved inertial masses; an inertial disk made up of the improved inertial masses; an improved flywheel comprising at least one inertial disk; and a kinetic mechanical system that takes advantage of the centrifugal force released from the flywheel to perform mechanical work.
  • Figure 1 is a conventional perspective view of the solid body of the slidable inertial mass, according to the present invention.
  • Figure 2 is another conventional perspective view of the solid body of the sliding inertial mass illustrated in the previous figure.
  • Figure 3 is a front view of the solid body of the sliding inertial mass, illustrated in the previous figures.
  • Figure 4 is a sagittal section A-A 'of the solid body of the sliding inertial mass, according to the present invention.
  • Figure 5 is an exploded perspective view of the sliding inertial mass, according to the present invention, where the arrangement of its components is observed.
  • Figure 6 is another exploded perspective view of the slidable inertial mass, shown in the previous figure.
  • Figure 7 is a conventional perspective view of the slidable inertial mass of the present invention in an assembled condition.
  • Figure 8 is a front view of the inertial mass illustrated in the previous figure.
  • Figure 9 is a sagittal section B-B 'of the inertial mass illustrated in the previous figure.
  • Figure 10 is a close-up to illustrate the details of the cut illustrated in the preceding figure.
  • Figure 11 is a conventional perspective view of the counterweight inertial mass of the present invention.
  • Figure 12 is another conventional perspective view of the counterweight inertial mass illustrated in the previous figure.
  • Figure 13 is an exploded perspective view of the inertial disk of the present invention, made up of a sliding inertial mass and a counterweight inertial mass.
  • Figure 14 is a top view of the inertial disk according to the present invention, where the correct union of the inertial masses is observed.
  • Figure 15 is a conventional perspective view of said inertial disk, where the arrangement of its joining elements is observed.
  • Figure 16 is a top perspective view of the inertial disk, in its assembled condition.
  • Figure 17 is a bottom perspective view of the inertial disk in question.
  • Figure 18 is a front view of a tubular and rotating shaft that forms part of the flywheel of the present invention, configured to hold and rotate four inertial discs.
  • Figure 19 is a cross section C-C 'of the tubular and rotating shaft at the point where the first inertial disk is placed.
  • Figure 20 is a cross section D-D 'of the tubular and rotating shaft at the point where the second inertial disk is placed.
  • Figure 21 is a cross section F-F 'of the tubular and rotating shaft at the point where the third inertial disk is placed.
  • Figure 22 is a cross section E-E 'of the tubular and rotating shaft at the point where the fourth inertial disk is placed.
  • Figure 23 is a right side view of the tubular and rotating shaft in question.
  • Figure 24 is a rear view of the tubular and rotating shaft of the present invention.
  • Figure 25 is a left side view of said rotary tubular shaft.
  • Figure 26 is an exploded perspective view of the components that make up an inertial flywheel, according to the present invention, in the mode of a single inertial disk.
  • Figure 27 is a conventional perspective view of the flywheel illustrated in the preceding figure, in an assembled condition.
  • Figure 28 is an exploded perspective view of the flywheel of the present invention in a four-disc mode.
  • Figure 29 is a conventional perspective view of the flywheel in its four-disc mode, in an assembled condition.
  • Figure 30 is a bottom perspective view of the assembled condition of the flywheel illustrated in the previous figure.
  • Figure 31 is a top plan view of the flywheel detailed in Figures 29 and 30.
  • Figure 32 is a side view of a kinetic mechanical system, comprising the use of a flywheel, in accordance with the present invention.
  • Figures 33 to 36 are different views in conventional perspectives of the kinetic mechanical system illustrated in the previous figure.
  • Figure 37 is a side view of the kinetic mechanical system in question, where the flywheel and the element that performs mechanical work are inside their respective housings.
  • Figure 38 is an explosive perspective of a general housing to support and protect the kinetic mechanical system.
  • Figure 39 is a conventional perspective view of the general housing illustrated in the preceding figure in its assembled condition.
  • Figure 40 is a conventional perspective view of said kinetic mechanical system, already contained within the general casing.
  • Inertial masses for the configuration of an inertial disk A first object of the present invention is the contribution of modified inertial masses, which can be useful in the configuration of an inertial disk.
  • the inertial masses (1 and 2) are made up, each one, by a solid body in the form of a half disk, which in turn is determined by two flat faces (3), a semicircular side (4) and a diametral side ( 5); in such a way that when joining said inertial masses (1 and 2) by means of their diametrical sides (5) they perfectly form a complete circular disk.
  • One of the inertial masses is slidable (1) to have the ability to release and provide centrifugal force, while the other inertial mass (2) serves as a counterweight.
  • the sliding inertial mass (1) differs from the counterweight mass (2), because it has:
  • a groove (8) that is generated between the two projecting portions (7 and 7 '); a semicircular concave depression (5 ') located in the middle part of the diametral side (5); a duct (14) that receives, stores and conducts a lubricant, originates in the concave depression (5 ') and runs internally and longitudinally through the solid body and branches into two ducts (14'), where a duct runs through the projecting portion upper (7) and the other the lower projecting portion (7 '); a semicircular prominence (13), preferably, on each of its flat faces (3), which is located concentrically near the semicircular depression (5 '); some transverse threaded holes (3a) that are provided in the solid body of the inertial mass (1), but without passing through the solid body, said holes (3a) are strategically distributed on both flat faces (3) for the insertion of some elements clamping; a circular rolling element (6) having a central bore (10) with an annular bearing (12) inserted concentrically in the central bore (10) to
  • the counterweight inertial mass (2) comprises:
  • An embodiment of the present invention is when both inertial masses (1 and 2) also comprise a perimeter edge (4a) on both flat faces (3) on the semicircular perimeter side (4) of their solid bodies.
  • Inertial disk useful in flywheels with the ability to release centrifugal force
  • Another object sought by the present invention is an inertial disk that can be useful in flywheels that have the ability to release centrifugal force, so one of the embodiments of said inertial disk is when it is built from: a sliding inertial mass ( 1) as proposed by the present invention: a counterweight inertial mass (2), in accordance with the present invention, placed next to the sliding inertial mass (1) by means of its diametrical sides (5) in a horizontal plane, where the yoke (16) engages concentrically in the concave depression (5 '); at least one means of fastening and suspension, configured in such a way that, on the one hand, it strongly holds the inertial counterweight piece (2), and on the other hand, it only suspends the sliding inertial mass (1) to allow it a limited slip in a radial direction; fixing elements (22 and 23) that fix the clamping and suspension means with the inertial masses (1 and 2); and two circular flat faces, which are formed by the union of the flat faces (3) of such inertial pieces (1 and
  • the holding and suspension means is a pair of rigid circular plates (18), where a circular plate (18) is fixed on one of the circular flat faces of the inertial disk; Therefore, in this case, said rigid circular plates (18) must comprise: - a central perforation (20) that coincides, in location and diameter, with the central perforation (15) of the counterweight inertial mass (2);
  • Some fixing elements (22) pass through the circular perforations (21) and are housed and fixed in the transverse holes (3b) of the inertial mass of the counterweight (2), in order to firmly fix the circular plates (18) to said inertial mass (2);
  • Some guide elements (23) pass through the elongated perforations (21 ') of the circular plates (18) until they are fixed in the transverse threaded holes (3a) of the sliding inertial mass (1), thereby limiting the sliding of the inertial mass (1) taking advantage of the space of the elongated perforations (21 ') of the plates (18) already strongly attached to the inertial mass of the counterweight (2).
  • Some examples of these guide elements (23) are: screws and / or bolts with a head capable of containing a bearing.
  • a further embodiment of the present invention is when said inertial disc, others comprises, a tubular bearing (24) that surrounds each guide element (23), where said tubular bearing (24) has a length that allows it to be housed in the bore. elongated (21 ') to apply torque force with tangential direction, which makes the sliding inertial mass (1) rotate and simultaneously allows it to have its sliding limited with little friction.
  • the rigid circular plates (18) also comprise some optional perforations (18 ') useful to fine-tune their dynamic balancing, in which, optionally, small type masses can be inserted. bolts (not shown) to increase mass where required.
  • a further object of the present invention is an improved flywheel that has the ability to release centrifugal force to be exploited in mechanical energy, of the conformations of two inertial masses placed in an opposite way on a rotating axis.
  • an embodiment of the improved inertia flywheel proposed by the present invention is when it is configured of: i) at least one inertial disk in accordance with that described in the present invention; ii) a tubular and rotating shaft (25) that supports and rotates the inertial disk; Therefore, said tubular shaft (25) in turn comprises, at least, one set of means for receiving fixing elements, at the point where the inertial disk is fixed, which are able to receive fixing elements that strongly join the inertial disk to the tubular and rotating shaft (25), where said set of receiving means of fixing elements, comprises:
  • first perforation (27) located at approximately 45 ° with respect to the groove (28), which allows the exit of the lubricant coming from the tubular shaft (25), and said first perforation (27) coincides in location and diameter with the central perforation (16a) of the inertial mass (2), so that the lubricant passes into the duct (14) of the sliding inertial mass (1);
  • this circular groove (30) located at approximately 90 ° with respect to the elongated groove (28) and approximately 45 ° with respect to the first perforation (27), this circular groove (30) coincides in location and diameter with the second perforation threaded radial (16c) of the inertial mass (2), to introduce a conventional clamping screw (not illustrated) to fix and strongly hold the inertial disk to the rotating shaft (25); and
  • a second hole (27 ') diametrically opposite to the first hole (27) useful in precisely positioning the inertial mass of the counterweight (2), where a conventional screw (not illustrated) that previously passes through the hole (27) is inserted , to hold said inertial mass of counterweight (2) of the inertial disk, to the tubular shaft (25); iii) a first axial lock (31) fixed at one of the ends of the tubular shaft (25), useful for fixing a conventional toothed coupling (not shown) to connect a source of movement that rotates the tubular shaft (25); iv) a second axial lock (31 ') fixed at the other end of the tubular shaft (25), where it is secured in a well centered manner; v) a gear (26) to synchronize the rotations of the flywheel, with another rotating component of a system, to which the flywheel will become a part; for example, an item that performs work, such as a crankshaft; and vi) a housing (35) configured such that it contains
  • a preferred embodiment of the inertial steering wheel of the present invention is when the tubular and rotating shaft (25) comprises more than one set of receiving means of fixing elements, said sets of receiving means are arranged at the points where the discs are fixed. Inertial, but they are arranged in such a way that the flywheel rotates and controls the application times of the centrifugal force released on the corresponding element.
  • a further embodiment of the flywheel, according to the present invention is when the tubular and rotating shaft (25) is a hollow bar.
  • said inertia flywheel also comprises a lubricant conducting duct (not illustrated), which connects to the first bore (27) of the rotating shaft (25), with the duct (14) of the sliding inertial mass (1), passing through the central transverse bore (16a) of the counterweight inertial mass (2).
  • a lubricant conducting duct (not illustrated), which connects to the first bore (27) of the rotating shaft (25), with the duct (14) of the sliding inertial mass (1), passing through the central transverse bore (16a) of the counterweight inertial mass (2).
  • An example of the lubricant conduit not illustrated may be a short coupling.
  • the axial locks (31 and 31 ') are selected from the following group: rings, rings, wedges, stops, to name a few examples.
  • a further embodiment of the flywheel is when the source of motion is a rotational actuator, not illustrated.
  • the present invention also has as its object, a kinetic mechanical system that performs useful work, taking advantage of the centrifugal force released by the improved flywheel of the present invention;
  • said kinetic mechanical system comprises: an inertia flywheel capable of releasing centrifugal force, such as that already described in the present invention; at least one pivoted element (32) that transforms the continuous circular movement of the flywheel into linear movement through the thrust it receives from the circular rolling element (16) of the sliding inertial mass (1) of an inertial disk; at least one receiving element (33) of the linear movement connected to the pivoted element (32); an element (34) that performs useful mechanical work, by means of the linear movement received from the receiving element (33) of the linear movement; where said element (34) has its own casing (36); a general, robust, and rigid casing (37) configured in such a way that it supports and contains in its interior all the components of the kinetic mechanical system, including its casings (35 and 36), but which in turn allows the kinetic mechanical system interact with other systems, for their use
  • a variant of the kinetic mechanical system of the present invention is when the pivoted element (32) is: a pivoted cam.
  • Another embodiment of said kinetic mechanical system according to this invention is when the receiving element (33) of the linear movement is a linked slide, commonly called a connecting rod.
  • One more embodiment of the kinetic mechanical system according to the present invention is when the element that performs work (34) is: a crankshaft, hammer, and / or compressor, to name a few examples.
  • the general casing (37) comprises a grooved base plate (37a), an upper plate (37b) supported by perimeter posts (37c), and a casing (41) that covers the bottom of slotted base (37a).
  • the pivoted element (32) that transforms the circular movement can be suspended below the upper plate (37b); and more specifically, when it is a pivoted cam, it is suspended by means of at least two bases with perforations (39) that are fixed below said upper plate (37b) to support a bar (40) that suspends said pivoted cam.
  • the general casing comprises at least one fixed shoe (38) between the casing (36) of the element (34) that performs work and the ceiling of the upper plate (37b) of said general casing (37).
  • This shoe (38) has the mission of giving rigidity to the general casing (37) and the entire kinetic mechanical system, for a good mechanical performance of the entire system.
  • the sliding inertial mass (1) uses 100% of its mass to release more useful centrifugal force.
  • the plates (18) that confine the inertial disk only allow the sliding mass (1) to slide in a convenient radial direction, giving it greater stability at high rpm; and the fact of being subject to the inertial mass of the counterweight (2), provides great stability to the flywheel.
  • the center of mass of the sliding inertial mass is very close to its geometric center, which also provides stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Masas inerciales configuradas para formar discos inerciales útiles en la construcción de volantes de inercia con capacidad de liberar fuerza centrífuga. Volante de inercia con capacidad liberar fuerza centrífuga, configurado por: al menos, un disco inercial; un eje tubular que sustenta y hace girar el disco inercial; un primer seguro axial para asegurar el coplee dentado de una fuente de movimiento; y un segundo seguro axial fijo en el otro extremo del eje tubular para asegurar un engrane que sincroniza las rotaciones del volante de inercia. Sistema mecánico cinético para realizar un trabajo mecánico útil mediante el aprovechamiento de la fuerza centrífuga liberada del volante de inercia, que comprende: un volante de inercia; al menos, un elemento pivotado transformador del movimiento circular continuo del volante de inercia a un movimiento lineal; al menos, un elemento receptor del movimiento lineal conectado al elemento pivotado; y un elemento que realiza un trabajo mediante el movimiento lineal recibido del elemento receptor.

Description

MASAS INERCIALES Y VOLANTE DE INERCIA QUE LIBERAN FUERZA CENTRÍFUGA, PARA SISTEMAS MECÁNICOS CINÉTICOS
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se relaciona con los campos técnicos de la Mecánica, debido a que se refiere a unas masas inerciales; a un disco inercial conformado por las masas inerciales; a un volante de inercia mejorado con capacidad de liberar fuerza centrífuga, que comprende, al menos, un disco inercial; y a un sistema mecánico cinético que aprovecha la fuerza centrífuga liberada que proviene de! volante de inercia, para realizar un trabajo mecánico útil.
ANTECEDENTES DE LA INVENCIÓN
Actualmente, ya existen volantes de inercia conformados de masas inerciales, como por ejemplo en el documento de patente WO2019164386 A1 divulga (las referencias numéricas corresponden a ¡as del documento WO2019164386) una masa inercia! curvada 2 conformada de un cuerpo curvado con un canal longitudinal 12 que recorre todo el costado externo del cuerpo curvado, y medios de acoplamiento (entradas 4, cavidades 5, y perforaciones 6) integrados en el cuerpo curvado. También divulga una masa inercial pivotada 1 con las mismas características técnicas de la masa inercial curvada, pero una cavidad 9 en el costado externo donde está el cana! longitudinal 12, del cuerpo curvado, una perforación 10 traspasa transversalmente al cuerpo curvado por el centro de la cavidad 9, un elemento rodante 8 con perforación central 8’ insertado parcialmente en la cavidad 9, un medio de sujeción 11 insertado en el ducto formado por la perforación 10 y la perforación 8’ del elemento rodante 8 para suspender y sujetar a dicho elemento rodante 8, permitiéndole girar sobre su eje de giro, y una perforación vertical alargada 7 en uno de los extremos del cuerpo curvado.
Dicho documento WO2019164386 (A1) también divulga un volante de inercia “libre” con baja fricción en su rotación, el cual comprende: una masa inercial pivotada curvada 1 , una masa ¡nercial curvada 2 de contrapeso, y un soporte giratorio 3 configurado para sujetar, suspender y hacer girar a las masas inerciales 1 y 2, las cuales se unen opuestas entre sí, en el soporte giratorio 3 que está configurado de una pieza con cuatro extremidades 52 dispuestas de tal manera que facilite su acoplamiento en las entradas 4 y cavidades 5, de los extremos de las masas inerciales curvadas 1 y 2; una perforación 13 en cada punta de las extremidades de la pieza con cuatro extremidades 52, excepto en la punta de una de las extremidades; una perforación 15 circundada con un borde superior 16, en la parte central de la pieza de cuatro extremidades 52, donde a su vez dicho borde 16 es provisto de dos perforaciones transversales 17 diametralmente opuestas; un perno fijo 14 en la punta de la extremidad sin perforación 13 colocado de tal manera que su eje lineal queda en posición ortogonal al plano formado por el soporte giratorio 3, donde los extremos del perno fijo 14 están insertados en la perforación alargada 7 de la masa inercial pivotada 1 ; un perno pivote 21’ con su respectivo rodamiento 51 que lo circunda, insertado en un ducto formado por la perforación 6 del cuerpo curvado de la masa inercial pivotada 1 y la perforación 13 de la pieza de cuatro extremidades 52, donde dicho rodamiento 51 queda alojado en la perforación 13 de la pieza 52; un elemento de sujeción 21 insertado en cada ducto formado por la perforación 6 del cuerpo curvado de la masa inercial 2 y la perforación 13 de la extremidad de la pieza 52, para sujetar a dicha masa inercial 2; una flecha 18 que proporciona el movimiento giratorio a la pieza de cuatro extremidades 52, se fija por medio de uno de sus extremos, en la perforación central 15, el cual también tiene dos perforaciones 19 diametralmente opuestas que coinciden con las perforaciones 17 del borde circular 16; un perno 20 de sujeción pasa transversalmente por las perforaciones 17 y 19, para sujetar la flecha 18 con la pieza de cuatro extremidades; una fuente de energía que proporciona el movimiento giratorio a la flecha 18; y al menos, un elemento de acople 22 conecta la flecha 18 con la fuente de energía.
El documento WO2019164386 (A1) también divulga una unidad mecánica cinética, para realiza un trabajo mediante el aprovechamiento de la fuerza centrífuga, configurada de manera colineal de, un volante de inercia “libre” como el antes descrito; un elemento pivotado (leva pivotada) que transforma el movimiento circular continuo, del volante de inercia “libre”, a movimiento lineal; mediante el empuje que hace el elemento rodante 8 de la masa inercial pivotante
1 , al elemento pivotado transformador de movimiento; un elemento receptor del movimiento lineal conectado al elemento transformador de movimiento; y un soporte fijo 27 que sustenta a: el volante de inercia libre, elemento pivotado transformador de movimiento y elemento receptor de movimiento lineal.
Como se puede ver, las masas inerciales del documento WO2019164386 (A1 ) tienen una configuración en forma de “riñón”, mientras que las piezas inerciales de la presente invención son semicirculares; tales piezas tienen demasiadas cavidades, entradas, ranuras, perforaciones etc. para poder ser atadas a la pieza 52 del soporte giratorio 3 para hacerlas girar, lo cual hace que estas piezas 1 y
2, y el soporte giratorio 3 tengan una configuración complicada, y se requieren de varios elementos de sujeción, haciendo a estas piezas pesadas, y por lo tanto haciendo su rotación un tanto difícil y no se aprovecha al máximo la fuerza centrífuga. Además, se tiene la desventaja de no disponer del 100% de su masa para ser utilizada en fuerza centrífuga, la masa alrededor del pivote no se aprovecha para aporte de fuerza centrífuga, se nulifica junto al pivote, no libera fuerza centrífuga; otra desventaja es la distancia que existe entre el centro de masa de la masa pivotada al pivote que la impulsa, esa distancia no es buena para dar estabilidad al volante de inercia; una desventaja más, es la necesidad de hacerle una perforación alargada para introducir el perno que detiene la masa pivotada cuando ésta no hace contacto con la leva pivotada, esa perforación sacrifica masa que pudiera ser útil para aporte de fuerza centrífuga; y otra desventaja más, es que el perno pivote y el perno que detienen la masa inercial en el otro extremo, resultan ser elementos críticos cuando se aumentan las rpm, limitan el desempeño mecánico del volante de inercia.
El documento WO2017217834 A1 describe (las referencias numéricas corresponden a las de dicho documento) un aparato para convertir in-situ energía inercial rotacional, a movimiento lineal con capacidad para realizar un trabajo, dicho aparato se caracteriza porque comprende, (i) una pieza cinética 1 , cuya forma y ensamble le permita girar de manera centrífuga con, al menos, otra pieza cinética 1 igual, ubicadas y suspendidas equidistantemente entre sí, en un mecanismo que les proporcione el movimiento centrífugo; la pieza cinética 1 a su vez comprende: una primera cavidad 2 en uno de sus costados laterales; un primer elemento rodante 3 se aloja parcialmente en la primera cavidad 2, colocado en un plano ortogonal con respecto al eje de rotación central del mecanismo que proporciona el movimiento centrífugo, y paralelo al plano de rotación de la propia pieza cinética 1 ; una segunda cavidad 4 en uno de sus extremos; al menos, un segundo elemento rodante 5 se aloja parcialmente en la segunda cavidad 4, colocado en un plano ortogonal en relación al eje de rotación central del mecanismo que proporciona el movimiento centrífugo, y paralelo al plano de rotación de la propia pieza cinética 1 ; una tercera cavidad 6 en su otro costado lateral; y parte de un elemento de sujeción y suspensión 7 se aloja y sujeta en la tercera cavidad 6, mientras que la otra parte se inserta en el mecanismo que da el movimiento giratorio, para unir de manera suspendida a dicha pieza cinética 1 con tal mecanismo; (i¡) un dispositivo que transmite movimiento lineal 11 , cuya configuración es apta para ser accionado por la pieza cinética 1 , mediante el contacto directo con el primer medio rodante 3; y (iii) un dispositivo 12 que recibe el movimiento lineal proveniente del dispositivo que transmite movimiento lineal 11 , por lo que el dispositivo que recibe el movimiento lineal 12 está en contacto con el dispositivo 11 , más específicamente en uno de los extremos del dispositivo 11 .
Dicho documento WO2017217834 A1 también describe un mecanismo para comprimir fluidos gaseosos, caracterizado porque comprende: al menos, dos aparatos para convertir in situ energía inercial rotacional, en movimiento lineal con capacidad de realizar un trabajo, como el aparato antes descrito; donde dichos aparatos se colocan equidistantemente entre sí; un mecanismo que proporciona movimiento centrífugo a las piezas cinéticas 1 , de los aparatos para convertir in-situ energía inercial rotacional, en movimiento lineal con capacidad de realizar un trabajo; un soporte fijo 18 que sustenta a los aparatos para convertir in-situ energía inercial rotacional, en movimiento lineal con capacidad de realizar un trabajo; una unidad de compresión de fluidos gaseosos de menor capacidad, en cada una de las unidades de compresión de gases 12, la cual se conecta a las válvulas de llenado o suministro de aire de dichas unidades de compresión 12, para llenar de aire con la rapidez requerida y regresar el dispositivo que transmite movimiento lineal 11 en su posición inicial; un tanque que almacena el aire a alta presión que proviene la válvula de salida de aire a presión de la unidad de compresión 12; y una fuente de energía aporta la energía al mecanismo que proporciona el movimiento centrífugo.
Donde el mecanismo que proporciona el movimiento centrífugo a las piezas cinéticas 1 comprende: una flecha central giratoria 28; un soporte giratorio 8 accionado por la flecha central 28; el soporte 8 tiene una perforación central 17 que se proyecta en una ligera prolongación tubular 47 para insertarse y fijarse en la flecha central giratoria 28 mediante un medio de sujeción 38 que se inserta transversalmente en la prolongación tubular 47; el soporte giratorio 8 comprende también, al menos, dos cavidades transversales 31 equidistantes entre sí, en las cuales se introducen los extremos libres de los medios de suspensión 7 de las piezas cinéticas 1 ; y también tiene, al menos, dos extremidades para empujar al segundo elemento rodante 5; una funda deslizante 15 dentro de cada cavidad transversal 31 suspende al extremo libre del medio de suspensión 7 que queda dentro de la cavidad transversal 31 , con lo cual, dichos medios de suspensión 7 tienen deslizamiento radial dentro de las cavidades transversales 31 del centro del soporte giratorio 8, pero sin hacer contacto con la flecha central giratoria 28; un rotor actuador rotacional 22 proporciona movimiento giratorio a la flecha central 28; y un coplee dentado 37 conecta a la flecha central giratoria 28 con la flecha 39 del rotor actuador 22. Y El soporte fijo 18 comprende: una primera plataforma 19; una segunda plataforma 20 de menor diámetro de manera concéntrica sobre una de las caras de la primera plataforma 19; la segunda plataforma 20 tiene, al menos, dos resaques periféricos 21 ubicados equidistantes entre ellos; un anillo 23 se provee sobre la segunda plataforma 20 y es de menor diámetro que la segunda plataforma 20, para delimitar una área 24 en cuyo centro hay una perforación 27; dentro del área 24 se alojan, el soporte giratorio 8, ubicando su perforación 17 que coincida con la perforación 27 del soporte fijo 18, para ser atravesadas por la flecha central giratoria 28 y las piezas cinéticas 1 que quedan suspendidas en el soporte giratorio 8 ubicada equidistantes entre sí; dicho anillo 23 tiene, al menos, dos ranuras longitudinales 25 en su parte inferior y ubicadas donde están los resaques 21 , para colocar una leva 11 en cada ranura 25; un perno pivote 26 une de manera suspendida a la leva 11 en la segunda plataforma 20, por medio de uno de los extremos de dicha leva 11 , con lo cual, la leva tiene movimiento angular; un tope 40 controla el movimiento angular de la leva 11 , por lo que es colocado externamente del anillo 23 en el resaque 21 de la segunda plataforma 20; un contenedor 30 donde se aloja el dispositivo que recibe el movimiento lineal, en este caso la unidad de compresión 12; por lo que dicho contenedor 30 se fija en la superficie libre de la cara de la primera plataforma 19, y en una posición que facilite el deslizamiento del émbolo 16 con su respectivo brazo 13, de la unidad de compresión 12; y una tapa 29 con una perforación central 43, para cubrir el área 24 donde se alojan las piezas cinéticas 1 suspendidas del soporte giratorio 8, por lo que dicha tapa 29 se fija en el borde superior del anillo 23.
También dicho documento WO2017217834 A1 divulga una máquina compresora de fluidos gaseosos que comprende: al menos, dos mecanismos para comprimir fluidos gaseosos, como anteriormente descrito; y una estructura de soporte exterior estator 34, configurada para sustentar a, al menos, dos mecanismos para comprimir fluidos gaseosos.
Como se pudo ver, el aparato del documento WO2017217834 A1 , tiene piezas cinéticas de complicada construcción y se requieren de varios componentes para mantenerlas unidas y en suspensión en el eje que las hace girar; por ejemplo, el mecanismo que proporciona el movimiento giratorio y el soporte fijo 18, comprenden varios elementos para su construcción, haciéndolos más pesados, y por ello inconvenientes.
Por su parte el documento de patente JP2015507720 A, divulga un conjunto de volante 10 que comprende: al menos un soporte de masa del volante 14, el soporte tiene un eje 19 que se extiende a lo largo de un eje de rotación 18 alrededor del cual el soporte 14 puede girar en su eje, el o cada soporte 14 comprende una pluralidad de aberturas 24 que están desplazados cada uno del eje de rotación 18; una masa de volante 12 que comprende una pluralidad de aberturas 16 que están dispuestas cada una para alinearse con una abertura correspondiente en el soporte 14; y medios 23 para acoplar la masa del volante 12 al o a cada soporte 14 de modo que la masa 12 pueda girar con el o cada soporte 14 en uso. El medio de acoplamiento 23 está configurado para extenderse a través de las aberturas alineadas en el o cada soporte 14 y la masa del volante 12. La masa del volante de inercia 12 comprende una pluralidad de elementos de masa del volante de inercia generalmente planos intercalados entre sí para formar una pila de elementos, cada elemento que incluye una pluralidad de aberturas 16 que se alinean con las aberturas 24 en el o cada soporte 14 y con aberturas en elementos vecinos en el apilar. Los elementos del volante están acoplados y alineados entre sí para formar la masa del volante 12 únicamente por medio de los medios de acoplamiento 23 que se extienden a través de las aberturas alineadas en los elementos y el o cada soporte 14 (las referencias numéricas corresponden a las figuras de dicho documento JP2015507720 A.
Es por eso que, con la finalidad de suprimir los inconvenientes que quitan eficiencia, antes mencionados, se desarrollaron: unas masas inerciales mejoradas; un disco inercial conformado por las masas inerciales mejoradas; un volante de inercia mejorado que comprende, al menos, un disco inercial; y un sistema mecánico cinético que aprovecha la fuerza centrífuga liberada que proviene del volante de inercia, para realizar un trabajo mecánico.
Las características y ventajas técnicas de la presente invención se muestran más claramente en la siguiente descripción detallada de algunas realizaciones preferidas de la misma, ilustrando por medio de figuras y ejemplos, no limitativos, donde:
La figura 1 es una vista en perspectiva convencional del cuerpo sólido de la masa inercial deslizable, de acuerdo con la presente invención. La figura 2 es otra vista en perspectiva convencional del cuerpo sólido de la masa inercial deslizable ilustrada en la figura anterior.
La figura 3 es una vista una vista frontal del cuerpo sólido de la masa inercial deslizable, ilustrada en las figuras anteriores.
La figura 4 es un corte sagital A-A’ del cuerpo sólido de la masa inercial deslizable, según la presente invención.
La figura 5 es una vista en perspectiva explotada de la masa inercial deslizable, de acuerdo con la presente invención, donde se observan la disposición de sus componentes.
La figura 6 es otra vista en perspectiva explotada de la masa inercial deslizable, mostrada en la figura anterior.
La figura 7 es una vista en perspectiva convencional de la masa inercial deslizable, de la presente invención, en una condición ensamblada.
La figura 8 es una vista frontal de la masa inercial ilustrada en la figura anterior.
La figura 9 es un corte sagital B-B’ de la masa inercial ilustrada en la figura anterior.
La figura 10 es un acercamiento para ilustrar los detalles del corte ¡lustrado en la figura precedente.
La figura 11 es una vista en perspectiva convencional de la masa inercial de contrapeso, de la presente invención.
La figura 12 es otra vista en perspectiva convencional de la masa inercial de contrapeso ilustrada en la figura anterior.
La figura 13 es una vista en perspectiva explotada del disco inercial de la presente invención, conformado por una masa inercial deslizable y una masa inercial de contrapeso.
La figura 14 es una vista superior del disco inercial de acuerdo con la presente invención, donde se observa la unión correcta de las masas inerciales.
La figura 15 es una vista en perspectiva convencional de dicho disco inercial, donde se observa la disposición de sus elementos de unión.
La figura 16 es una vista en perspectiva superior del disco inercial, en su condición ensamblada.
La figura 17 es una vista en perspectiva inferior del disco inercial en cuestión. La figura 18 es una vista frontal de un eje tubular y giratorio que forma parte del volante de inercia de la presente invención, configurado para sujetar y hacer girar a cuatro discos inerciales.
La figura 19 es un corte transversal C-C’ del eje tubular y giratorio en el punto donde se coloca el primer disco ¡nercial.
La figura 20 es un corte transversal D-D’ del eje tubular y giratorio en el punto donde se coloca el segundo disco inercial.
La figura 21 es un corte transversal F-F’ del eje tubular y giratorio en el punto donde se coloca el tercer disco inercial.
La figura 22 es un corte transversal E-E’ del eje tubular y giratorio en el punto donde se coloca el cuarto disco inercial.
La figura 23 es una vista lateral derecha del eje tubular y giratorio en cuestión.
La figura 24 es una vista posterior del eje tubular y giratorio, de la presente invención.
La figura 25 es una vista lateral izquierda de dicho eje tubular y giratorio.
La figura 26 es una vista en perspectiva explotada de los componentes que conforman a un volante inercial, de acuerdo con la presente invención, en la modalidad de un solo disco inercial.
La figura 27 es una vista es perspectiva convencional del volante de inercia ilustrado en la figura anterior, en una condición ensamblada.
La figura 28 es una vista en perspectiva explotada del volante de inercia, de la presente invención en una modalidad de cuatro discos inerciales.
La figura 29 es una vista en perspectiva convencional del volante de inercia en su modalidad de cuatro discos, en una condición ensamblada.
La figura 30 es una vista en perspectiva inferior de la condición ensamblada del volante de inercia ilustrado en la figura anterior.
La figura 31 es una vista en planta superior del volante de inercia detallado en las figuras 29 y 30.
La figura 32 es una vista lateral de un sistema mecánico cinético, que comprende el uso de un volante de inercial, de acuerdo con la presente invención.
Las figuras 33 a la 36 son distintas vistas en perspectivas convencionales del sistema mecánico cinético ilustrado en la figura anterior. La figura 37 es una vista lateral del sistema mecánico cinético en cuestión, donde el volante de inercia y el elemento que desempeña un trabajo mecánico, están dentro de sus respectivas carcasas.
La figura 38 es una perspectiva explosiva de una carcasa general para sustentar y proteger al sistema mecánico cinético.
La figura 39 es una vista en perspectiva convencional de la carcasa general ilustrada en la figura anterior en su condición ensamblada.
La figura 40 es una vista en perspectiva convencional de dicho sistema mecánico cinético, ya contenido dentro de la carcasa general.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Masas ¡nerciales, para la configuración de un disco inercial Un primer objeto de la presente invención, es la aportación de unas masas inerciales modificadas, las cuales pueden ser útiles en la configuración de un disco inercial.
Las masas inerciales (1 y 2) se conforman, cada una, por un cuerpo sólido en forma de medio disco, el cual a su vez está determinado por dos caras planas (3), un lado semicircular (4) y un lado diametral (5); de tal manera que al unir dichas masas inerciales (1 y 2) por medio de sus lados diametrales (5) forman perfectamente un disco circular completo. Una de las masas inerciales es deslizable (1 ) para tener capacidad de liberar y aportar fuerza centrífuga, mientras que la otra masa inercial (2) sirve de contrapeso. La masa inercial deslizable (1) se diferencia de la masa de contrapeso (2), porque tiene:
- una porción saliente superior (7) y una porción saliente inferior (7’), que se originan de los bordes superior e inferior, respectivamente, de la parte media del lado perimetral semicircular (4) del cuerpo sólido;
- una perforación transversal (9) que traspasa a los extremos de las porciones salientes (7 y 7’);
- una ranura (8) que se genera entre las dos porciones salientes (7 y 7’); una depresión cóncava semicircular (5’) que se ubica en la parte media del lado diametral (5); un ducto (14) que recibe, almacena y conduce un lubricante, se origina en la depresión cóncava (5’) y recorre interna y longitudinalmente el cuerpo sólido y se ramifica en dos ductos (14’), donde un ducto recorre la porción saliente superior (7) y el otro la porción saliente inferior (7’); una prominencia semicircular (13), preferentemente, sobre cada una de sus caras planas (3), que se ubica concéntricamente cerca de la depresión semicircular (5’); unos barrenos transversales roscados (3a) que se proveen en el cuerpo sólido de la masa inercial (1), pero sin traspasar al cuerpo sólido, dichos barrenos (3a) están distribuidos estratégicamente en ambas caras planas (3) para la inserción de unos elementos de sujeción; un elemento rodante circular (6) que tiene una perforación central (10) con un cojinete anular (12) insertado concéntricamente en la perforación central (10) para dar suspensión al elemento rodante circular (6), el cual se introduce parcialmente en la ranura (8), y para fijarlo al cuerpo de la masa inercial (1 ), se hace coincidir el cojinete anular (12) insertado en la perforación (10) con la perforación transversal (9) de las porciones salientes (7 y T) para introducir; un eje fijo (11), el cual puede ser un perno (11 ) que tiene, al menos, un ducto interno longitudinal y central (11a); al menos, un ducto interno transversal (11b) que reciben el lubricante de los ductos (14’) y lo conducen al ducto interno longitudinal (11 a); y al menos un ducto de salida (11c) que conduce el lubricante del ducto central (11a) hacia el exterior del perno (11 ) para lubricar y reducir la fricción entre la porción del perno (11) que queda alojada en el cojinete anular (12) y la superficie interna de dicho cojinete (12) cuando el elemento rodante (6) gira sobre el perno (11); y un tapón (11 d) sella los extremos del ducto longitudinal central (11a); y unos elementos de sujeción convencionales (no ilustrados), fijan al eje fijo (11) en, al menos, una de las porciones salientes (7 y 7’). Una realización de la masa inercial deslizable (1) de acuerdo con la presente invención es cuando comprende, una tapa (29) para cubrir cada una de las perforaciones (9) una vez insertado el eje fijo (11 ).
Por su parte, la masa inercial de contrapeso (2) comprende:
- una perforación circular central (15) en el lado diametral (5), donde dicha perforación central (15) es delimitada por una horquilla semicircular (16), la cual tiene una ubicación y configuración necesaria para acoplarse concéntricamente en la depresión cóncava semicircular (5’) de la masa inercial deslizable (1 );
- una perforación transversal central (16a) que traspasa el grosor de la horquilla (16), para permitir el paso del lubricante hacia el ducto (14) de la masa inercial deslizable (1);
- un barreno roscado (16d) en el cuerpo sólido de la masa (2) que se ubica diametralmente opuesto a la perforación transversal central (16a);
- una ranura interna (17) que recorre la altura del cuerpo de la horquilla (16), se ubica entre la perforación central (16a) y el lado diametral (5) de la masa inercial (2);
- una primera perforación con rosca (16b) que se provee en dirección radial a la ranura interna (17), donde dicha primera perforación (16b) traspasa el cuerpo de la horquilla (16) hasta la ranura interna (17);
- una segunda perforación con rosca (16c) que traspasa el cuerpo de la horquilla (16), ubicada radialmente entre la perforación central (16a) y el otro extremo del lado diametral (5) con respecto a la ubicación de la primera perforación radial (16b); y
- unos barrenos transversales, roscados o lisos (3b) traspasan o no, el cuerpo sólido de la masa inercial (2), los cuales están distribuidos estratégicamente en ambas caras planas (3) para la inserción de unos de elementos de sujeción.
Una realización de la presente invención es cuando ambas masas inerciales (1 y 2), además comprenden, un borde perimetral (4a) en ambas caras planas (3) sobre el lado perimetral semicircular (4) de sus cuerpos sólidos. Disco inercial útil en volantes de inercia con capacidad de liberar fuerza centrífuga
Otro objeto que pretende la presente invención es un disco inercial que puede ser útil en volantes de inercia que tienen la capacidad de liberar fuerza centrífuga, por lo que una de las realizaciones de dicho disco inercial es cuando se construye de: una masa inercial deslizable (1) como la que propone la presente invención: una masa inercial de contrapeso (2), de conformidad con la presente invención, colocada junto a la masa inercial deslizable (1) por medio de sus lados diametrales (5) en un plano horizontal, donde la horquilla (16) se acopla concéntricamente en la depresión cóncava (5’); al menos, un medio de sujeción y suspensión, configurado de manera tal que, por un lado, sujete fuertemente a la pieza inercial de contrapeso (2), y por otro lado, solamente suspenda a la masa inercial deslizable (1) para permitirle un deslizamiento acotado en una dirección radial; unos elementos de fijación (22 y 23) que fijan al medio de sujeción y suspensión con las masas inerciales (1 y 2); y dos caras planas circulares, que se conforman por la unión de las caras planas (3) de tales piezas inerciales (1 y 2).
Una realización del disco inercial de la presente invención, es cuando el medio de sujeción y suspensión es un par de placas circulares rígidas (18), donde una placa circular (18) se fija sobre una de las caras planas circulares del disco inercial; por lo que, en este caso, dichas placas circulares rígidas (18) deben comprender: - una perforación central (20) que coincide, en ubicación y diámetro, a la perforación central (15) de la masa inercial de contrapeso (2);
- una perforación semicircular (19) preferentemente, con dimensiones suficientes para permitir de manera holgada el alojamiento y deslizamiento de la prominencia semicircular (13) de la masa inercial deslizable (1 );
- unas perforaciones circulares (21) distribuidas estratégicamente en la mitad de la placa (18) que queda sobre la cara plana (3) de la masa inercial de contrapeso (2), por lo que dichas perforaciones circulares (21) deben coincidir en ubicación y diámetro con los barrenos transversales (3b) del cuerpo sólido de la masa inercial de contrapeso (2);
- unos elementos de fijación (22) traspasan por las perforaciones circulares (21) y quedan alojados y fijos en los barrenos transversales (3b) de la masa inercial de contrapeso (2), con el fin de fijar fuertemente las placas circulares (18) a dicha masa inercial (2);
- unas perforaciones alongadas (21’) distribuidas estratégicamente en la mitad de la placa (18) que queda sobre la cara plana (3) de la masa inercial deslizable (1 ), las cuales deben coincidir sólo en ubicación con los barrenos transversales roscados (3a) del cuerpo sólido de la masa inercial (1), ya que estas perforaciones (21 ’) son alongadas para guiar y permitir deslizamiento acotado a la masa inercial (1 ) en dirección radial apropiada, por lo que tales perforaciones alongadas (21 ’) quedan proyectadas en dirección paralela a la línea radial que va del centro de la perforación central (20) al centro del elemento rodante (6); y
- unos elementos guías (23) traspasan por las perforaciones alongadas (21’) de las placas circulares (18) hasta quedar fijos en los barrenos transversales roscados (3a) de la masa inercial deslizable (1 ), logrando con ello acotar el deslizamiento de la masa inercial (1 ) aprovechando el espacio de las perforaciones alongadas (21 ’) de las placas (18) ya unidas fuertemente a la masa inercial de contrapeso (2). Algunos ejemplos de estos elementos guías (23) son: tornillos y/o pernos con cabeza capaz de contener un rodamiento.
Una realización más de la presente invención es cuando dicho disco inercial, demás comprende, un rodamiento tubular (24) que circunda a cada elemento guía (23), donde dicho rodamiento tubular (24) tiene una longitud que le permite quedar alojado en la perforación alongada (21’) para aplicar la fuerza de torque con dirección tangencial, misma que hace rotar a la masa inercial deslizable (1) y simultáneamente le permite tener su deslizamiento acotado con poca fricción.
Otra modalidad del disco inercial en cuestión, es cuando la placa circular rígida (18) queda comprendida de manera holgada, dentro la superficie delimitada por los bordes (4a), cuando éstos están presentes.
Cabe señalar una realización más del disco inercial de la presente invención, es cuando las placas circulares rígidas (18) además comprenden, unas perforaciones discrecionales (18’) útiles para afinar su balanceo dinámico, en las cuales, opcionalmente se pueden insertar pequeñas masas tipo tornillos (no ilustrados) para aumentar masa en los puntos donde se requiera.
Volante de inercia mejorado con capacidad de liberar fuerza centrífuga
Un objeto más de la presente invención es un volante de inercia mejorado que tiene la capacidad de liberar fuerza centrífuga para ser aprovechada en energía mecánica, de los conformados de dos masas inerciales colocadas de manera contrapuesta en un eje giratorio.
Por lo que, en este caso, una realización del volante de inercia mejorado que propone la presente invención, es cuando se configura de: i) al menos, un disco inercial de conformidad con el descrito en la presente invención; ii) un eje tubular y giratorio (25) que sustenta y hace girar al disco inercial; por lo que dicho eje tubular (25) a su vez comprende, al menos, un conjunto de medios receptores de elementos de fijación, en el punto donde se fija el disco inercial, los cuales son aptos para recibir unos elementos de fijación que unen fuertemente el disco inercial al eje tubular y giratorio (25), donde dicho conjunto de medios receptores de elementos de fijación, comprende:
- una hendidura alongada longitudinal (28), cuya ubicación coincide con la ranura interna (17) y la primera perforación radial con rosca (16b) de la masa inercial de contrapeso (2) del disco inercial, para insertar una cuña convencional (no ilustrada) para unir fuertemente el disco inercial al eje tubular (25), proporcionando así el torque necesario para el giro;
- una primera perforación (27) ubicada a 45° aproximadamente con respecto a la hendidura (28), que permite la salida del lubricante que viene del eje tubular (25), y dicha primera perforación (27) coincide en ubicación y diámetro con la perforación central (16a) de la masa inercial (2), para que el lubricante pase al ducto (14) de la masa inercial deslizable (1 );
- una hendidura circular (30) ubicada a 90° aproximadamente con respecto a la hendidura alongada (28) y 45° aproximadamente con respecto a la primera perforación (27), esta hendidura circular (30) coincide en ubicación y diámetro con la segunda perforación radial con rosca (16c) de la masa inercial (2), para introducir un tornillo opresor convencional (no ilustrado) para fijar y sujetar fuertemente el disco inercial al eje giratorio (25); y
- una segunda perforación (27’) diametralmente opuesta a la primera perforación (27) útil en la colocación precisa de la masa inercial de contrapeso (2), donde se insertar tornillo convencional (no ilustrado) que pasa previamente por la perforación (27), para sujetar a dicha masa inercial de contrapeso (2) del disco inercial, al eje tubular (25); iii) un primer seguro axial (31 ) fijo en uno de los extremos del eje tubular (25), útil para fijar un coplee dentado convencional (no mostrado) para conectar una fuente de movimiento que hace girar al eje tubular (25); iv) un segundo seguro axial (31’) fijo en el otro extremo del eje tubular (25), donde se asegura de manera bien centrada; v) un engrane (26) para sincronizar las rotaciones del volante de inercia, con otro componente giratorio de un sistema, al cual, el volante de inercia llegaré formar parte; por ejemplo, un elemento que realice un trabajo, como un cigüeñal; y vi) una carcasa (35) configurada de tal manera que contenga y sustente los componentes del volante de inercia mejorado, y les permita interactuar con otros componentes.
Una modalidad preferente del volante ¡nercial de la presente invención, es cuando el eje tubular y giratorio (25) comprende más de un conjunto de medios receptores de elementos de fijación, dichos conjuntos de medios receptores se disponen en los puntos donde se fijan los discos inerciales, pero se disponen de una manera tal que, el volante de inercia gire y controle los tiempos de aplicación de la fuerza centrífuga liberada sobre el elemento que corresponda.
Una modalidad más del volante de inercia, según la presente invención, es cuando el eje tubular y giratorio (25) es una barra hueca.
Otra modalidad de dicho volante de inercia, es cuando además comprende, un ducto conductor de lubricante (no ilustrado), que conecta a la primera perforación (27) del eje giratorio (25), con el ducto (14) de la masa inercial deslizable (1 ), pasando por la perforación transversal central (16a) de la masa inercial de contrapeso (2). Un ejemplo del ducto conductor de lubricante no ilustrado, puede ser un coplee corto.
Otra modalidad más del volante de inercia en cuestión es que los seguros axiales (31 y 31’) se seleccionan del siguiente grupo: aros, anillos, cuñas, topes, por citar algunos ejemplos.
Una realización más del volante de inercia es cuando la fuente de movimiento es un actuador rotacional, no ilustrado.
De esta manera se tiene un volante de inercia mejorado, debido a que se retiran masas lastres que tienen los volantes de inercia del estado de la técnica; y se aumenta masa cinética deslizable con capacidad de liberar mayor fuerza centrífuga, logrando con ello un volante de inercia mejorado más eficiente, el cual no se había logrado antes de la concepción de la presente invención. Sistema mecánico cinético para realizar un trabajo útil, aprovechando la fuerza centrífuga liberada por el volante de inercia mejorado
Por lo tanto, la presente invención también tiene como objeto, un sistema mecánico cinético que realiza un trabajo útil, aprovechando la fuerza centrífuga liberada por el volante de inercia mejorado de la presente invención; dicho sistema mecánico cinético comprende: un volante de inercia con capacidad de liberar fuerza centrífuga, como el ya descrito en la presente invención; al menos, un elemento pivotado (32) que transforma el movimiento circular continuo del volante de inercia, a movimiento lineal mediante el empuje que recibe del elemento rodante circular (16) de la masa inercial deslizable (1) de un disco inercial; al menos, un elemento receptor (33) del movimiento lineal conectado al elemento pivotado (32); un elemento (34) que realiza un trabajo mecánico útil, mediante el movimiento lineal recibido del elemento receptor (33) del movimiento lineal; donde dicho elemento (34) tiene su propia carcasa (36); una carcasa general, robusta, y rígida (37) configurada de tal manera que sustente y contenga en su interior a todos los componentes del sistema mecánico cinético, incluyendo sus carcasas (35 y 36), pero que a su vez permita al sistema mecánico cinético interactuar con otros sistemas, para su utilización; y unas anclas (no ilustradas) se proveen de manera estratégica en la carcasa general (37), para dar estabilidad y fijar en una posición al sistema mecánico cinético sobre un cimiento apropiado.
Una variante del sistema del sistema mecánico cinético de la presente invención, es cuando el elemento pivotado (32) es: una leva pivotada. Otra realización de dicho sistema mecánico cinético según esta invención, es cuando el elemento receptor (33) del movimiento lineal es una corredera eslabonada, comúnmente llamada biela.
Una modalidad más del sistema mecánico cinético de acuerdo con la presente invención, es cuando el elemento que realiza un trabajo (34) es: un cigüeñal, martillo, y/o compresor, por citar algunos ejemplos.
Una realización del sistema mecánico cinético en cuestión, es cuando la carcasa general (37) comprende, una placa base ranurada (37a), una placa superior (37b) sustentada por postes perimetrales (37c), y un cárter (41) que cubre la parte inferior de la base ranurada (37a). En esta realización, el elemento pivotado (32) que transforma el movimiento circular se puede suspender por debajo de la placa superior (37b); y más específicamente, cuando se trata de una leva pivotada, ésta se suspende por medio de, al menos, dos bases con perforaciones (39) que se fijan por debajo de dicha placa superior (37b) para sostener a una barra (40) que suspende a dicha leva pivotada.
Otra realización más del sistema mecánico cinético, es cuando la carcasa general comprende, al menos, una zapata (38) fija entre la carcasa (36) del elemento (34) que realiza un trabajo y el techo de la placa superior (37b) de dicha carcasa general (37). Esta zapata (38) tiene la misión de dar rigidez a la carcasa general (37) y todo el sistema mecánico cinético, para un buen desempeño mecánico de todo el sistema.
De esta manera se obtiene un volante de inercia libre con una masa inercial deslizable (1), donde algunas de sus ventajas son las siguientes:
Aprovechamiento del 100% de la fuerza centrífuga liberada. La masa inercial deslizable (1) aprovecha el 100% de su masa para liberar mayor fuerza centrífuga útil. Con la masa inercial pivotada descritas en los documentos de patentes PCT/MX2016/0060 y MX/a/2018/002258, no se libera el 100 % de la fuerza centrífuga debido a que la masa que se encuentra en torno del pivote no tiene desplazamiento en dirección radial, además, la propia presencia del pivote contribuye a disminuir la masa que aporta fuerza centrífuga liberada en dirección radial.
Mayor estabilidad dinámica en el volante de inercia. La presencia de las dos placas (18) que sujetan con firmeza a la masa inercial de contrapeso (2) y suspenden apropiadamente la masa inercial deslizable (1 ), aportan mayor estabilidad dinámica al volante de inercia. Los volantes de inercia con masas inerciales pivotadas, ya conocidos en el estado del arte, presentan inestabilidad dinámica debido a la lejanía del centro de masa de las masas inerciales con el pivote que les permite tener deslizamiento angular.
Evitar contacto de la masa de contrapeso (2) con la leva pivotada. La prominencia (7 y T) para insertar el rodamiento (6) a mayor distancia del eje de giro del volante de inercia, evita el contacto de la masa de contrapeso (2) con una leva pivotada. Al evitar el contacto se logra mayor simetría entre las dos masas inerciales (1 y 2), y no se hace resaque a la masa de contrapeso, facilitando por esta razón, la fabricación y el diseño para lograr estabilidad dinámica entre ambas masas inerciales.
Se aprovecha el 100% de la masa inercial deslizable (1) para aportar fuerza centrífuga.
Las placas (18) que confinan al disco inercial sólo permiten deslizar en dirección radial conveniente a la masa deslizable (1 ), dándole mayor estabilidad en altas rpm; y el hecho de estar sujetas a la masa inercial de contrapeso (2), aporta gran estabilidad al volante de inercia.
El centro de masa de la masa inercial deslizable, se encuentra muy próximo a su centro geométrico, lo cual también aporta estabilidad.
Las prominencias (13) de ambas caras planas de la masa inercial deslizable (1 ) y las placas (18) que hacen contacto con ellas, admiten grandes esfuerzos mecánicos y ello permiten aumentar las rpm sin problemas que limiten desempeño mecánico.

Claims

REIVINDICACIONES
1. Una masa inercial deslizable (1), caracterizada por que comprende: i) un cuerpo sólido en forma de medio disco, que a su vez comprende, dos caras planas (3), un lado perimetral semicircular (4) y un lado diametral (5); ii) una porción saliente superior (7) y una porción saliente inferior (7’), que se originan de los bordes superior e inferior, respectivamente, de la parte media del lado perimetral semicircular (4) del cuerpo sólido; iii) una perforación transversal (9) que traspasa a los extremos de las porciones salientes (7 y 7’); iv) una ranura (8) que se genera entre las dos porciones salientes (7 y 7’); v) una depresión cóncava semicircular (5’) que se ubica en la parte media del lado diametral (5); vi) un ducto (14) que recibe, almacena y conduce un lubricante, se origina en la depresión cóncava (5’) y recorre interna y longitudinalmente el cuerpo sólido y se ramifica en dos ductos (14’), donde un ducto recorre la porción saliente superior (7) y el otro la porción saliente inferior (7’); vii) una prominencia semicircular (13) sobre cada una de sus caras planas (3), que se ubica concéntricamente cerca de la depresión semicircular (5’); viii) unos barrenos transversales roscados (3a) que se proveen en el cuerpo sólido de la masa inercial (1), pero sin traspasar al cuerpo sólido, dichos barrenos (3a) están distribuidos estratégicamente en ambas caras planas (3) para la inserción de unos elementos de sujeción; ix) un elemento rodante circular (6) que tiene una perforación central (10) con un cojinete anular (12) insertado concéntricamente en la perforación central (10) para dar suspensión al elemento rodante (6), el cual se introduce parcialmente en la ranura (8), donde su perforación central (10) con el cojinete anular (12) insertado, coincide con la perforación transversal (9) de las porciones salientes (7 y 7’) para introducir; x) un eje fijo (11) que sujeta el elemento rodante (6) al cuerpo sólido de la masa inercial (1 ); donde dicho eje fijo (11 ) es un perno (11) que tiene, al menos, un ducto interno longitudinal y central (11 a); al menos, un ducto interno transversal (11b) que reciben el lubricante de los ductos (14’) y lo conducen al ducto interno longitudinal (11a); y al menos, un ducto de salida (11c) que conduce el lubricante del ducto central (11a) hacia el exterior del perno (11 ) para lubricar y reducir la fricción entre la porción del perno (11 ) que queda alojada en el cojinete anular (12) y la superficie interna de dicho cojinete (12) cuando el elemento rodante (6) gira sobre el eje fijo (11 ); y un tapón (11 d) sella los extremos del ducto longitudinal central (11a); y xi) unos elementos de sujeción fijan al eje fijo (11 ) en, al menos, una de las porciones salientes (7 y 7’).
2. La masa inercial deslizable de la reivindicación anterior, caracterizada por, que además comprende, una tapa (29) para cubrir cada una de las perforaciones (9) una vez insertado el eje fijo (11).
3. La masa inercial deslizable según la reivindicación 1 , donde el lado perimetral semicircular (4) del cuerpo sólido, comprende un borde perimetral (4a) en ambas caras planas (3).
4. Una masa inercial de contrapeso (2), caracterizada por que comprende: i) un cuerpo sólido en forma de medio disco, que a su vez comprende, dos caras planas (3), un lado perimetral semicircular (4) y un lado diametral (5); ii) una perforación circular central (15) en el lado diametral (5), donde dicha perforación central (15) es delimitada por una horquilla semicircular (16), la cual tiene una ubicación y configuración necesaria para acoplarse concéntricamente en la depresión cóncava semicircular (5’) de la masa inercial deslizable (1);
MI) una perforación transversal central (16a) que traspasa el grosor de la horquilla (16), para permitir el paso del lubricante hacia el ducto (14) de la masa inercial deslizable (1);
¡v) un barreno roscado (16d) en el cuerpo sólido de la masa (2) que se ubica diametralmente opuesto a la perforación transversal central (16a); v) una ranura interna (17) que recorre la altura del cuerpo de la horquilla (16), se ubica entre la perforación central (16a) y el lado diametral (5) de la masa inercial (2); vi) una primera perforación con rosca (16b) que se provee en dirección radial a la ranura interna (17), donde dicha primera perforación (16b) traspasa el cuerpo de la horquilla (16) hasta la ranura interna (17); vii) una segunda perforación con rosca (16c) que traspasa el cuerpo de la horquilla (16), ubicada radialmente entre la perforación central (16a) y el otro extremo del lado diametral (5) con respecto a la ubicación de la primera perforación radial (16b); y viii) unos barrenos transversales y roscados o lisos (3b) traspasan o no, el cuerpo sólido de la masa inercial (2), los cuales están distribuidos estratégicamente en ambas caras planas (3) para la inserción de unos de elementos de sujeción.
5. La masa inercia! de contrapeso de la reivindicación anterior, donde ei lado perimetral semicircular (4) del cuerpo sólido, comprende un borde perimetral (4a) en ambas caras planas (3).
6. Un disco inercial, útil en volantes de inercia que liberan fuerza centrífuga, caracterizado por, que comprende: i) una masa inercial deslizable (1 ), de conformidad con las reivindicaciones 1 a la 3; ii) una masa ¡nercial de contrapeso (2), de conformidad con las reivindicaciones 4 y 5; colocada junto a la masa inercial deslizable (1) por medio de sus lados diametrales (5) en un plano horizontal, donde la horquilla (16) se acopla concéntricamente en la depresión cóncava (5’); iii) al menos, un medio de sujeción y suspensión configurado de manera tal que, por un lado, sujete fuertemente a la pieza inercial de contrapeso (2), y por otro lado, solamente suspenda a la masa inercial deslizable (1 ) para permitirle que tenga un deslizamiento acotado en una dirección radial; iv) unos elementos de fijación (22 y 23) que fijan al medio de sujeción y suspensión con las masas inerciales (1 y 2); y v) dos caras planas circulares, que se conforman por la unión de las caras planas (3) de las piezas inerciales (1 y 2).
7. El disco inercial de la reivindicación anterior, donde el medio de sujeción y suspensión es un par de placas circulares rígidas (18), y una placa (18) se fija sobre una de las caras planas circulares del disco inercial; dichas placas circulares rígidas (18) comprenden: i) una perforación central (20) que coincide, en ubicación y diámetro, a la perforación central (15) de la masa inercial de contrapeso (2); ii) una perforación semicircular (19) con dimensiones suficientes para permitir de manera holgada el alojamiento y deslizamiento de la prominencia semicircular (13) de la masa inercial deslizable (1 ); iii) unas perforaciones circulares (21 ) distribuidas estratégicamente en la mitad de la placa (18) que queda sobre la cara plana (3) de la masa inercial de contrapeso (2), dichas perforaciones circulares (21) coinciden en ubicación y diámetro con los barrenos transversales (3b) del cuerpo sólido de la masa inercial de contrapeso (2); iv) unos elementos de fijación (22) traspasan por las perforaciones circulares (21) y quedan alojados y fijos en los barrenos transversales (3b) de la masa inercial de contrapeso (2), con el fin de fijar fuertemente las placas circulares (18) a dicha masa inercial (2); v) unas perforaciones alongadas (21’) distribuidas estratégicamente en la mitad de la placa (18) que queda sobre la cara plana (3) de la masa inercial deslizable (1 ), las cuales deben coincidir sólo en ubicación con los barrenos transversales roscados (3a) del cuerpo sólido de la masa inercial (1 ), ya que estas perforaciones (21 ’) son alongadas para guiar y permitir deslizamiento acotado a la masa inercial (1 ) en dirección radial a su eje de giro, por lo que tales perforaciones alongadas (21) quedan proyectadas en dirección paralela a la línea radial que va del centro de la perforación central (20) al centro del elemento rodante (6); y vi) unos elementos guías (23) traspasan por las perforaciones alongadas (21’) de las placas circulares (18) hasta quedar fijos en los barrenos transversales roscados (3a) de la masa inercial deslizable (1), logrando con ello acotar el deslizamiento de la masa inercial (1 ) aprovechando el espacio de las perforaciones alongadas (21’).
8. El disco inercial de la reivindicación anterior, donde los elementos guías (23) se seleccionan del siguiente grupo: tornillos y/o pernos con cabeza capaz de contener un rodamiento.
9. El disco inercial de la reivindicación 7, caracterizado por, que además comprende, un rodamiento tubular (24) que circunda a cada elemento de guía (23), donde dicho rodamiento tubular (24) tiene una longitud que le permite quedar alojado en la perforación alongada (21’) para aplicar la fuerza de torque con dirección tangencial que hace rotar a la masa inercial deslizable (1 ) y simultáneamente le permite tener su deslizamiento acotado con poca fricción.
10. El disco inercial de la reivindicación anterior, donde la placa circular rígida (18) queda comprendida de manera holgada, dentro la superficie delimitada por los bordes (4a), cuando están presentes.
11. El disco inercial de la reivindicación 7, donde las placas circulares rígidas (18) además comprenden, unas perforaciones discrecionales (18’) donde se insertan pequeñas masas tipo tornillo, para incrementar masa en el punto donde se requiera, con el propósito de afinar un balanceo dinámico.
12. Un volante de inercia con capacidad liberar fuerza centrífuga, caracterizado por, que comprende: i) al menos, un disco inercial de conformidad con las reivindicaciones 6 a la 11 ; ii) un eje tubular y giratorio (25) que sustenta y hace girar al disco inercial; por lo que dicho eje tubular (25) a su vez comprende, al menos, un conjunto de medios receptores de elementos de fijación, en el punto donde se fija el disco inercial, aptos para recibir unos medios de fijación que unen fuertemente el disco inercial al eje tubular y giratorio (25), donde dicho conjunto de medios receptores de elementos de fijación comprende:
- una hendidura alongada longitudinal (28), cuya ubicación coincide con la ranura interna (17) y la primera perforación radial con rosca (16b) de la masa inercial de contrapeso (2) del disco inercial, para insertar una cuña convencional y unir fuertemente el disco inercial al eje tubular (25), proporcionando así el torque necesario para el giro;
- una primera perforación (27) ubicada a 45° aproximadamente con respecto a la hendidura (28), que permite la salida del lubricante que viene del eje tubular (25), y coincide en ubicación y diámetro con la perforación central (16a) de la masa inercial (2) para permitir el paso del lubricante al ducto (14) de la masa inercial deslizable (1 );
- una hendidura circular (30) ubicada a 90° aproximadamente con respecto a la hendidura alongada (28) y 45° aproximadamente con respecto a la primera perforación (27), esta hendidura circular (30) coincide en ubicación y diámetro con la segunda perforación radial con rosca (16c), para introducir un tornillo opresor convencional para fijar y sujetar fuertemente el disco inercial al eje giratorio (25); y
- una segunda perforación (27’) diametralmente opuesta a la primera perforación (27) útil en la colocación precisa de la masa inercial de contrapeso (2), donde se inserta un tornillo convencional que pasa previamente por la perforación (27) para sujetar a dicha masa inercial de contrapeso (2) del disco inercial, al eje tubular (25); iii) un primer seguro axial (31 ) fijo en uno de los extremos del eje tubular (25), útil para fijar un coplee dentado convencional para conectar una fuente de movimiento para hacer girar al eje tubular (25); iv) un segundo seguro axial (31’) fijo en el otro extremo del eje tubular (25), donde se asegura de manera bien centrada; v) un engrane (26) que sincroniza las rotaciones del volante de inercia con algún otro elemento giratorio de un sistema, al cual, el volante de inercia llegare a formar parte; y vi) una carcasa (35) configurada de tal manera que contenga y sustente los componentes del volante de inercial, y les permita interactuar con otros componentes.
13. El volante inercial de la reivindicación anterior, caracterizado por, que cuando el eje tubular y giratorio (25) comprende más de un conjunto de medios receptores de elementos de fijación, dichos conjuntos de medios receptores se disponen en los puntos donde se fijan los discos inerciales, pero se disponen de una manera tal que, el volante inercial gire y controle los tiempos de aplicación de la fuerza centrífuga liberada sobre el elemento que corresponda.
14. El volante de las reivindicaciones 12 y 13, donde el eje tubular y giratorio (25) es una barra hueca.
15. El volante según la reivindicación 12, caracterizado por, que además comprende, un ducto conductor de lubricante, que conecta a la primera perforación (27) del eje giratorio (25), con el ducto (14) de la masa inercial deslizable (1), pasando por la perforación transversal central (16a) de la masa inercial de contrapeso (2).
16. El volante de la reivindicación precedente, donde el ducto conductor de lubricante, es un coplee corto.
17. El volante según la reivindicación 12, donde los seguros axiales (31 y 31’) se seleccionan del siguiente grupo: aros, anillos, cuñas, y/o topes.
18. El volante tal y como se reclama en la reivindicación 12, donde la fuente de movimiento es un actuador rotacional.
19. Un sistema mecánico cinético para realizar un trabajo, mediante el aprovechamiento de la fuerza centrífuga liberada, caracterizado por, que comprende: i) un volante de inercia que libera fuerza centrífuga, de conformidad con cualquiera de las reivindicaciones 12 a la 18; ii) al menos, un elemento pivotado (32) que transforma el movimiento circular continuo del volante de inercia, a movimiento lineal mediante el empuje que recibe del elemento rodante circular (6) de la masa inercial deslizable (1 ) de un disco inercial; iii) al menos, un elemento receptor (33) del movimiento lineal conectado al elemento pivotado (32); iv) un elemento (34) que realiza un trabajo mecánico útil, mediante el movimiento lineal recibido del elemento receptor (33) del movimiento lineal; donde dicho elemento (34) tiene su propia carcasa (36); v) una carcasa general, robusta y rígida (37) configurada de tal manera que sustente y contenga en su interior a todos los componentes del sistema mecánico cinético, incluyendo sus carcasas (35 y 36), pero que a su vez permita al sistema mecánico cinético interactuar con otros sistemas, para su utilización; y vi) unas anclas se proveen de manera estratégica en la carcasa general (37), para dar estabilidad y fijar en una posición al sistema mecánico cinético sobre un cimiento apropiado.
20. El sistema mecánico cinético de la reivindicación anterior, donde el elemento pivotado (32) es: una leva pivotada.
21. El sistema mecánico cinético según la reivindicación 19, donde elemento que receptor (33) del movimiento lineal es una corredera eslabonada, comúnmente llamada biela.
22. El sistema mecánico cinético de acuerdo con la reivindicación 19, donde el elemento que realiza un trabajo (34) es: un cigüeñal, martillo, y/o compresor.
23. El sistema mecánico cinético conforme a la reivindicación 19, donde la carcasa general (37) se conforma de, una placa base ranurada (37a), una placa superior (37b) sustentada por postes perimetrales (37c), y un cárter (41 ) que cubre la parte inferior de la base ranurada (37a); donde las bases con perforación (39) del elemento pivotado (32) se fijan por debajo de la placa superior (37b), para sustentar a una barra (40) que suspende a dicho elemento pivotado (32).
24. El sistema mecánico cinético de conformidad con la reivindicación 19, caracterizado por, que además comprende: al menos, una zapata (38) fija entre la carcasa (36) del elemento (34) que realiza un trabajo y el techo de dicha carcasa general (37), con el fin de dar rigidez a la carcasa (37) y a todo el sistema mecánico cinético, para un buen desempeño mecánico.
PCT/MX2020/000041 2020-02-11 2020-10-23 Masas inerciales y volante de inercia que liberan fuerza centrífuga, para sistemas mecánicos cinéticos WO2021162539A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2020/001677 2020-02-11
MX2020001677A MX2020001677A (es) 2020-02-11 2020-02-11 Masas inerciales y volante de inercia que liberan fuerza centrifuga, para sistemas mecanicos cineticos.

Publications (1)

Publication Number Publication Date
WO2021162539A1 true WO2021162539A1 (es) 2021-08-19

Family

ID=77292477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2020/000041 WO2021162539A1 (es) 2020-02-11 2020-10-23 Masas inerciales y volante de inercia que liberan fuerza centrífuga, para sistemas mecánicos cinéticos

Country Status (2)

Country Link
MX (1) MX2020001677A (es)
WO (1) WO2021162539A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494783A (en) * 2011-09-18 2013-03-20 Univ City A flywheel assembly
WO2017217834A1 (es) * 2016-06-14 2017-12-21 BARRAZA SÁMANO, María Delia Aparato, mecanismo y máquina para comprimir fluidos gaseosos
WO2019164386A1 (es) * 2018-02-22 2019-08-29 BARRAZA SÁMANO, María Delia Volante de inercia, unidad y sistema mecánicos-cinéticos que aprovechan la fuerza centrífuga del volante de inercia

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494783A (en) * 2011-09-18 2013-03-20 Univ City A flywheel assembly
WO2017217834A1 (es) * 2016-06-14 2017-12-21 BARRAZA SÁMANO, María Delia Aparato, mecanismo y máquina para comprimir fluidos gaseosos
WO2019164386A1 (es) * 2018-02-22 2019-08-29 BARRAZA SÁMANO, María Delia Volante de inercia, unidad y sistema mecánicos-cinéticos que aprovechan la fuerza centrífuga del volante de inercia

Also Published As

Publication number Publication date
MX2020001677A (es) 2021-08-12

Similar Documents

Publication Publication Date Title
ES2257837T3 (es) Maquina electrica cuyo rotor esta especialmente adaptado a las altas velocidades.
ES2763403T3 (es) Alabe para turbomáquina
ES2485296T3 (es) Rodete de turbina con palas desajustadas que incluye un dispositivo de amortiguación
ES2664294T3 (es) Conjunto de estanqueidad de cara axial
EP1867836A2 (en) Enhanced bucket vibration damping system
ES2687410T3 (es) Rotor de máquina eléctrica giratoria
ES2728518T3 (es) Elementos de flexión planos y actuadores que los utilizan
ES2354247T3 (es) Aparato de acoplamiento de accionamiento.
WO2021162539A1 (es) Masas inerciales y volante de inercia que liberan fuerza centrífuga, para sistemas mecánicos cinéticos
ES2891084T3 (es) Conjunto de paletas de turbomaquinaria
ES2897686T3 (es) Mecanismo de bloqueo automático para accionador de válvula
MX167830B (es) Sistema impulsor para la espiral orbitante de un cmpresor de fluido de tipo de espiral
ES2774806T3 (es) Compresor
CN100362239C (zh) 用于防止涡旋式压缩机反向旋转的装置
ES2282795T3 (es) Freno controlado mediante par de torsion.
JP2008063973A (ja) 2気筒回転圧縮機、冷凍サイクル装置
JP5502893B2 (ja) ハンマークランプブレードの取付け装置、関連する圧縮機ハブ、圧縮機、およびタービンエンジン
ES2258963T3 (es) Junta de transmision y limitadora de par apta para acoplar los elementos conductores y conducidos siempre en una misma posicion angular.
WO2017217834A1 (es) Aparato, mecanismo y máquina para comprimir fluidos gaseosos
JP5179586B2 (ja) 一体式流体交換回転ディスクバルブを備えた往復ピストンシリンダヘッドカバー
US1409986A (en) Packing for rotary engines and compressors
JPS603999Y2 (ja) 真空ベ−ンポンプ
ES2271807T3 (es) Parada en rotacion de sectores de alabes de rectificadores en los planos de union del carter.
JP6757102B2 (ja) ジェットファンの支持構造
ES2691639B2 (es) Unión giratoria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918724

Country of ref document: EP

Kind code of ref document: A1