WO2019164386A1 - Volante de inercia, unidad y sistema mecánicos-cinéticos que aprovechan la fuerza centrífuga del volante de inercia - Google Patents

Volante de inercia, unidad y sistema mecánicos-cinéticos que aprovechan la fuerza centrífuga del volante de inercia Download PDF

Info

Publication number
WO2019164386A1
WO2019164386A1 PCT/MX2018/000016 MX2018000016W WO2019164386A1 WO 2019164386 A1 WO2019164386 A1 WO 2019164386A1 MX 2018000016 W MX2018000016 W MX 2018000016W WO 2019164386 A1 WO2019164386 A1 WO 2019164386A1
Authority
WO
WIPO (PCT)
Prior art keywords
perforation
pivoted
inertial mass
flywheel
free
Prior art date
Application number
PCT/MX2018/000016
Other languages
English (en)
French (fr)
Inventor
José Guillermo CASTRO GONZÁLEZ
Original Assignee
BARRAZA SÁMANO, María Delia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BARRAZA SÁMANO, María Delia filed Critical BARRAZA SÁMANO, María Delia
Publication of WO2019164386A1 publication Critical patent/WO2019164386A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors
    • F03G3/08Other motors, e.g. gravity or inertia motors using flywheels

Definitions

  • the present invention relates to the technical fields of Mechanics and Kinetics, because it refers to a free flywheel "formed with inertial masses that cause little friction when rotating and has the ability to release its centrifugal force.
  • This invention It is also related to a kinetic mechanical unit and a kinetic mechanical system, which are characterized by having the ability to take advantage of the centrifugal force released by the "free" flywheel, to perform a job, which can be a blow, torque , fluid compression, to name a few examples.
  • a flywheel constitutes a machine that can store kinetic energy, conserve it over time (except friction losses) and restore it to the desired extent.
  • a rotating mass in this regard requires that the mobile element have characteristics that depart from the customary image of the steering wheel used as a stabilizer, generally consisting of a circular crown attached to a hub.
  • the amount of energy stored is a function of the moment of inertia and the speed of rotation, to increase the energy capacity it will be necessary to increase one or both of the mentioned parameters.
  • the increase in inertia of the rotating mass has rigid limits in terms of weight and dimensions of the flywheel, the number of revolutions must be increased.
  • the use of steering wheels for the propulsion of vehicles is considered convenient in the case of electric traction, by coupling a generator motor that can be thrown to the steering wheel when connected to a power source and produce electricity when the steering wheel is in rotation .
  • flywheels To obtain the maximum efficiency of the flywheels, it is essential to minimize friction, which results in a waste of energy.
  • magnetically suspended flyers are used in watertight containers in which partial vacuum is practiced to reduce friction with air, while gyroscopic effects are neutralized with the adoption of two coaxial flywheels that rotate in opposite directions.
  • US2010307285 A1 discloses a kinetic energy accumulator for providing a rotary drive, comprising: (a) a plurality of rotatably mounted accumulator elements arranged adjacent to each other; (b) an input drive mechanism arranged to impart a rotary drive to a first accumulator member; and (c) velocity-sensitive coupling elements arranged to provide a magnetic coupling of the successive accumulator members when an angular velocity equal to or greater than a predetermined velocity is rotated successively between the respective accumulator members.
  • the first accumulator member is imparted (for example, incrementally), the first accumulator member is rotated and its angular velocity progressively increases to the predetermined level.
  • the magnetic coupling is established between the first accumulator member and the next accumulator member (adjacent), whereby it is rotated and its angular velocity is progressively increased to the predetermined level.
  • the kinetic energy in the form of a rotary drive
  • the accumulator can be used to facilitate the coupling of a low inertia energy source or transmitter to a load having a relatively high moment of inertia.
  • the rotary drive can continue to be applied to the charge by the accumulator for a period of time in the absence of kinetic energy that is imparted to the accumulator due to the impulse of the rotating accumulator elements.
  • Said document US2010307285 also describes a kinetic energy transfer system, comprising: (a) an energy accumulator comprising a plurality of rotatably mounted accumulator elements arranged adjacent to each other, an input drive mechanism arranged to impart a drive rotating to one of the accumulator members and velocity-sensitive coupling members arranged to provide a magnetic coupling of one of the successive accumulator members when one of the accumulator members is successively rotated with an angular velocity equal to or greater than a predetermined velocity ; (b) an energy transmitter mechanism arranged to apply the drive from a kinetic energy source to the input drive mechanism of the energy accumulator; and (c) a charging device coupled and arranged to be operated by the energy accumulator when each of the accumulator elements is rotating with a angular velocity equal to
  • Said energy accumulator may comprise as many accumulator members as required (for any given application) to match a charge to the kinetic energy source. It can comprise only two accumulator elements, in which case at least one speed-sensitive coupling member can be mounted on one of the accumulator members. However, the energy accumulator desirably comprises "n" accumulator members (where n ⁇ 3), in which case the coupling elements that respond to speed will desirably be mounted on (n-1) of the accumulator members.
  • the accumulator elements may optionally be mounted for rotation around respective axes, but desirably they are mounted for rotation around a common axis.
  • the velocity-sensitive coupling members may comprise any device or mechanism that functions to provide the magnetic coupling of one accumulator member to another when each of the accumulator members is rotated with an angular velocity equal to a predetermined velocity.
  • each coupling element is desirably arranged to move in its functional position under the influence of the centrifugal force that responds to the rotation of its associated accumulator member at an angular velocity equal to the predetermined speed.
  • each coupling member may optionally be mounted on its associated accumulator member for linear movement or, most desirably, mounted for pivotal movement.
  • Magnetic coupling from one accumulator member to another can optionally be achieved in various ways.
  • a permanent magnet can be mounted on each of the coupling members and the accumulator members can be formed at least in part of a magnetically attracted material (for example, ferromagnetic).
  • permanent magnets can be mounted on the accumulator members and the coupling elements can be formed at least in part of a magnetically attracted material.
  • it permanent magnets can be mounted on both the coupling elements and the accumulator elements with a polarity ratio arranged to allow magnetic coupling (in an attractive or repulsive sense) between the coupling and accumulator members.
  • Permanent magnets desirably comprise rare earth magnets.
  • the magnetic coupling facilitates the sliding and, consequently, the smooth dynamic coupling between the adjacent members of the accumulator members.
  • the drive mechanism may comprise any suitable mechanism to provide a rotary drive to the kinetic energy accumulator.
  • Said document US2010307285 also discloses a drive mechanism for applying a rotary drive to a loading device, comprising: (a) first and second drive means, the second drive means being arranged to drive the rotation of the charging device; (b) a unidirectional clutch; and (c) a drive system to be operated by the energy transmitter and including a first element to drive the rotation of the first drive means and a second element to drive the rotation of the second drive means, the second element being arranged to be rotatably actuated the first element and the first drive means have a higher drive ratio compared to the second element and the second drive means and the first drive means is arranged to drive the rotation of the second element means of drive via unidirectional clutch.
  • the drive system may include an additional unidirectional clutch arranged between the first and second elements, in which the first element is arranged to drive the rotation of the second element through the additional clutch.
  • the drive system may also comprise: a loop transmission band around the first element and the first drive means to effect the rotation of the first drive means; damping means arranged to maintain the tension in the transmission band and pivoting about an axis of rotation of the first drive means from an initial position to an end position when the drive band is driven by the first element, the rotation of the damping means to the final position damping rotation drive applied to the first drive means by the drive band; and return means for pushing the damping means to the initial position and returning the damping means around the pivot axis from the final position to the initial position in the absence of the drive belt that is driven by the first element, the damping means being adapted to pivot back and forth between the initial and final positions at least until the second element has reached an initial angular velocity.
  • first and second elements are rotating pulleys around a common axis of rotation and the first and second drive means are additional pulleys having a different common axis of rotation.
  • first and second pulleys have the same size.
  • gears or other drive elements such as the first and second elements and the first and second drive means or, for example, a combination of gears and pulleys or other suitable drive elements can be used.
  • Pulleys for example, can be jagged or grooved pulleys.
  • the drive belt can be a drive belt when pulleys are used or a drive chain when gears and / or gear pulleys are used.
  • the energy transmitter of a kinetic energy transfer system incorporated by the invention desirably comprises one that functions to convert the linear motion of a kinetic energy source into rotary motion.
  • the linear movement may be in a generally horizontal direction, such as derived from the forward movement of a moving road vehicle, or in a generally vertical direction.
  • the kinetic energy of the source can optionally be supplied by the accumulator to any form of charge, including a rotary pump, but desirably It is supplied to an electric generator.
  • a clutch mechanism which includes one that incorporates the principles of operation of the accumulator, may optionally be interposed between the accumulator and the load.
  • US2010307285 also comprises an energy transmitter to convert the movement of a kinetic energy source into rotational drive, comprising: (a) an actuator to be driven in a substantially linear direction from a neutral position to a position displaced by the source of kinetic energy; (b) at least one pair of radial arms separated from one another and rotatably connected at a distal end of the arms to the actuator, an opposite proximal end of each radial arm being rotatably mounted and at least one of the arms being arranged for rotate a drive shaft around its respective axis of rotation to provide the rotary drive when the actuator is driven in the linear direction by the source of kinetic energy; and (c) an arrangement of magnets with magnets in the arrangement that is positioned in repulsively oriented orientation to return the actuator from the offset position to the neutral position.
  • the energy transmitter may further comprise a support arranged between the radial arms and carrying a plurality of magnets, where in addition to the magnets are mounted on the radial arms, the magnets being arranged on the support to repel the magnets on the radial arms .
  • patent document WO8204468 A details a device for storing kinetic energy in a freewheel; which comprises four upper rotating masses (1) and four lower rotating masses (1a), which are movable under the effect of centrifugal force between two minimum and maximum radial positions with respect to the center of rotation (3).
  • the moment of inertia of the steering wheel (device) also varies between a minimum and a maximum.
  • patent document GB2028979 A discloses a rotating device comprising: a flange, a hub, at least one connecting arm with two branches between the flange and the hub with masses of very dense material located at the ends of said branches, Anisotropic masses distributed between the arms, electromechanical means with balancing action and sensors, the set of said means being arranged to: allow rapid clamping by pressure of each arm on the rim, enable rapid clamping by the pressure of the branches of each arm against the hub, keep the circularity of the flange constant, ensure longitudinal stiffness and longitudinal mechanical strength of the flange, and effect static and dynamic balance of the arm frame assembly.
  • Figure 1 is an explosive view of a pivoted inertial mass, which is part of the "free" flywheel, of the present invention.
  • Figure 2 is a conventional-front perspective view of the pivoted inertial mass, in assembled condition.
  • Figure 3 is a conventional-posterior perspective view of the pivoted inertial mass, in assembled condition.
  • Figure 4 is a top plan view of the pivoted inertial mass, in assembled condition.
  • Figure 5 is a conventional-front perspective view of the pivoted inertial mass, according to Figure 2, where a bearing element in exploited condition is observed.
  • Figure 6 is a conventional-front perspective view of the pivoted inertial mass, according to the previous figure, where the bearing element in assembled condition, inserted in the pivoted inertial mass, is observed.
  • Figure 7 is an explosive view of an inertial counterweight mass of the "free" flywheel of the present invention.
  • Figure 8 is a conventional-front perspective view of the inertial counterweight mass of the "free" flywheel of the present invention, in assembled condition.
  • Figure 9 is a conventional-rear perspective view of the counterbalance inertial mass of the "free" flywheel of the present invention, in assembled condition.
  • Figure 10 is a top plan view of the inertial counterweight mass of the "free" flywheel of the present invention, in assembled condition.
  • Figure 11 is an explosive view of a rotating support, which is part of the "free" flywheel, according to the present invention.
  • Figure 12 is a conventional perspective view of the rotating support which is part of the "free" flywheel, according to the present invention, in assembled condition.
  • Figure 13 is an explosive view of the "free" flywheel of the present invention.
  • Figure 14 is a conventional perspective view of the "free" flywheel of the present invention, in assembled condition.
  • Figure 15 is an explosive view of a pivoted cam and its elements, which is part of a kinetic mechanical unit that performs a job, by means of the centrifugal force of the "free" flywheel, according to the present invention.
  • Figure 16 is a top plan view of the pivoted cam and its elements, which is part of the kinetic mechanical unit that performs a work, by means of the centrifugal force of the "free" flywheel, of the present invention, in assembled condition.
  • Figure 17 is an explosive-top view of the kinetic mechanical unit that performs a job, using the centrifugal force of the flywheel
  • Figures 18 and 19 are seen in conventional perspectives of a fixed support that is part of the kinetic mechanical unit that a work performs, by means of the centrifugal force of the "free" flywheel, in accordance with the present invention.
  • Figure 20 is a conventional perspective view of said kinetic mechanical unit, according to the present invention, in assembled condition.
  • Figure 21 is a top plan view of the kinetic mechanical unit of the present invention, in assembled condition.
  • Figure 22 is a top plan view of the kinetic mechanical unit of the present invention, in assembled condition, where the angle of displacement of the pivoted inertial mass is indicated.
  • Figure 23 is a side view! of the kinetic mechanical unit, of the previous figure, where the addition of a lid in a separate condition is observed.
  • Figure 24 is a side view of the kinetic mechanical unit, of the previous figure, where the attached lid is observed.
  • Figure 25 is a side view of an arrangement of four kinetic mechanical units interacting with a crankshaft, thus forming a kinetic mechanical system that produces torque.
  • Figure 26 is a side view of an embodiment of the kinetic mechanical system that performs a mechanical work (torque), according to the present invention.
  • Figure 27 is a side view of the previous figure, where the support rings of the kinetic mechanical units have a sectional cut to see in detail the positions of the 4 pivoted cams, according to the position of the inertial masses.
  • Figure 28 is a conventional perspective view of the kinetic mechanical system that performs mechanical work, according to the present invention, within a housing.
  • Table 1 For a better understanding of the description in the present invention, a list (Table 1) of the components that comprise it is included, which are referenced in the included figures, and in some cases, complementary information that helps an understanding.
  • a first object of the present invention is a "free" flywheel with low friction when rotating and that releases centrifugal force, where said “free” flywheel is formed of two inertial masses (1 and 2), which have a Preferably curved shape, to facilitate rotating movements.
  • Said inertial masses (1 and 2) are joined in a rotating support (3), diametrically opposed to each other; whereby these inertial masses (1 and 2) are made to be coupled to said rotating support (3); for example, said inertial masses are formed of a curved body where any coupling means is provided, such as: inlets (4), cavities (5), perforations (6 and 7), and a combination between them, preferably located at the ends of the curved body, to engage the rotating support (3).
  • One of the inertial masses is pivoted (1) and also has a rolling element (8) partially inserted in its outer side.
  • a rolling element (8) partially inserted in its outer side.
  • it is provided with a cavity (9) where a part of the rolling element (8) is housed with a central perforation (8 '); and to the center of said cavity (9) there is provided a perforation (10) that transverses the curved body transversely to form a duct, where a clamping means (11) is inserted, to hold the rolling element (8) suspended; whereby this clamping means (11) must allow the rolling element (8) to rotate on its axis of rotation.
  • Both inertial masses (1 and 2) have a longitudinal channel (12) that runs along the entire external side of said masses (1 and 2); except in the pivoted inertial mass (1), where said channel (12) is interrupted by the cavity (9) and the rolling element (8); therefore, these inertial masses also form part of the scope of protection of the present invention.
  • the rotating support (3) is a piece suitable for holding, suspending and rotating the curved inertial masses (1 and 2), for example, in this case the support comprises a piece made of four limbs (52), arranged in such a way that it facilitates its coupling in the entrances (4) and cavities (5), of the ends of the curved inertial masses (1 and 2).
  • a perforation (13) is provided at each end of the part of the piece (52), except at the end of one of the extremities, where instead of a perforation, a fixed bolt (14) is provided so that Its linear axis is orthogonal to the plane formed by the rotating support, see figures 11 to 14.
  • the way to join the counterweight inertial mass (2) to the rotating support (3) is to introduce the corresponding ends of the support (3) until the perforations (6) of the inertial mass (2) coincide with the perforations (13) of the ends of the piece (52), forming a duct to introduce a fastener (21).
  • the way to join the pivoted inertial mass (1) to the rotating support (3) is to introduce a pivot bolt (21 ') with its respective bearing (51) that surrounds it, in a duct formed by the perforation (6) of the pivoted inertial mass (1) and the corresponding perforation (13) of the workpiece tip (52); said bearing (51) is located inside the bore (13) of the four-limb piece (52).
  • the fixed bolt (14) is simply inserted into an elongated bore (7) that is located at one end of the curved body of the pivoted inertial mass (1).
  • This elongated perforation (7) has the function of allowing the pivoted inertial mass (1) an angular sliding, whose angular vortex is located in the center of the pivot bolt (21 ') and center of the perforation (6), which is found at the other end of the body of the inertial mass (1).
  • the elongated perforation (7) is not attached to the fixed bolt (14), it only provides space for it to move and is designed to make contact at a point, line or plane with the fixed bolt (14); therefore, the elongated perforation (7) must have a certain geometric shape, dimensions and orientation that allow this angular sliding which is exemplified in Figure 22; said perforation (7) is slightly curved to respect the turning radius of the pivoted inertial mass (1) with respect to the angular vertex located in the center of the pivot bolt (21 '). This way it ensures that the pivoted inertial mass (1) has the capacity to respond to angular sliding when necessary.
  • the most important function of the fixed bolt (14) is to limit, stop or limit the angular displacement to the pivoted inertial mass (1); and thus, both inertial masses (1 and 2) located diametrically opposite, form the flywheel that rotates properly.
  • the contact of the fixed bolt (14) with the pivoted inertial mass (1) is only at one point, line or plane of both parts as appropriate, and the way to make contact will be according to design specifications and these are dictated according to the Used materials.
  • the specifications are to avoid physical deformations of the inertial masses (1 and 2), deformations that may occur due to the reaction forces between them.
  • the important thing is to limit the angular displacement of the pivoted inertial mass (1), so that it does not make contact with the ring (29), and together with the inertial counterweight mass (2), form a "free" flywheel with low Rotational friction, stable without oscillations or vibrations and capable of releasing the centrifugal force of the pivoted inertial mass (1).
  • the flywheel manages to be "free” by drilling clearance
  • both inertial masses (1 and 2) together have the function of acquiring the ability to release the radial centrifugal force that drives the pivoted inertial mass (1), radial force that occurs due to the tangential velocity it acquires, thanks to the circular movement provided by the rotating support (3), where the pivoted inertial mass (1) has the function of actuating an element that allows the transformation of circular motion of the "free" flywheel, to a linear movement, by its rolling element
  • the rotating support (3) obtains the rotating movement by means of an arrow (18), whereby said rotating support (3) is designed to adapt to said arrow (18); for this, the four-limb piece (52) has a central perforation (15) surrounded by an upper edge (16) provided with two diametrically opposite transverse perforations (17).
  • the central perforation (15) one of the ends of the arrow (18) is suspended and fixed, which suspends and rotates said piece (52), which in turn rotates the inertial masses (1 and 2); whereby said end of the arrow (18) also has two diametrically opposed perforations (19) that coincide with the perforations (17) of the rotating support (3), through which a fastening bolt (20) passes transversely.
  • the arrow (18) is connected to a power source by its free end, where at least one element or accessory for coupling with the power source can be adapted.
  • the coupling element or accessory can be a pulley (22), driven with at least one band (49), to be connected to the power source, which can be a rotational actuator (47), or some other element that provides mechanical energy.
  • This "free” flywheel has very little friction in its rotation, thanks to the curved bodies of the inertial masses (1 and 2), and mainly due to the avoidance of contact of the rolling element (8) with some other unnecessary element in The role it plays. We say that it is “free”, because the torque force that rotates the flywheel or the force provided by the rotary actuator (47), is only used to overcome internal friction forces by rotating the flywheel, and in its mechanical performance does not appear another force load that opposes rotation.
  • the torque force or torque provided by the energy source is not counteracted or decreased due to the centrifugal force that occurs in the elements that form the "free” flywheel, this Centrifugal force is related only to the tangential velocity acquired by the pivoted inertial mass (1), and the tangential velocity of the "free” flywheel does not decrease when performing a job, but is only slowed by the friction of the rolling element (8 ), that is, it is only necessary to overcome friction losses.
  • the centrifugal force component that is presented is released, and it is possible to transfer it with the direct contact of the rolling element (8) to an element that transforms the circular movement of the "free” flywheel in linear motion, in order to transmit the force to an element that takes advantage of said force.
  • the "free” flywheel has three advantages, the first is the fact that it is “free” which means that in its turns only the forces overcome friction losses; the second advantage is that it generates little friction when rotating; and the third is its ability to release the centrifugal force outward from the "free” flywheel. This last capacity is acquired thanks to the rolling element (8) of the pivoted inertial mass (1) possessed by said flywheel.
  • the present invention also has as its object a kinetic mechanical unit, to perform a work by exploiting the centrifugal force provided by the "free" flywheel designed in the present invention. Therefore, said kinetic mechanical unit comprises collinearly in the same plane: a “free” flywheel, in accordance with the present invention; a pivoted element that transforms the circular motion of the "free” flywheel into linear motion; where the pivoted motion transformer element is pushed by the rolling element (8) of the pivoted inertial mass (1) of the "free” flywheel.
  • An embodiment of the kinetic mechanical unit is when the transformer pivoted element of circular motion to linear motion is a cam, more specifically a pivoted cam (23), among similar ones.
  • a preferred embodiment of the kinetic mechanical unit is when the pivoted cam (23) is formed of a curved body, which has a high extension (24) at one of its ends and a first perforation (25) crosses the extension length (24); and in the curved body, a second perforation (26) is provided, located in the most convenient place for the correct mechanical performance of the pivoted cam (23), see figure 15. That second perforation (26) can be located from from the middle part of the pivoted cam body (23) towards the opposite end of the perforation (25).
  • the kinetic mechanical unit of the present invention also comprises a linear motion receiver element, which is connected to the pivoted motion transformer element.
  • the motion receiving element in this example, is a crawler slide (37), which is merely a connecting rod, bar or "arm” that is properly attached at one end of the pivoted motion transformer element (23). More specifically, the connection of the crawler slide (37) and the pivoted cam (23), is by means of a pivot bolt (39) with its respective radial bearing (40), which is housed in the second bore (26) of the pivoted cam (23) and in a hole (38) that is in the proper place of the crawler (37).
  • the other end of the crawler (37) is made to join a mechanical element that can take advantage of the linear movement provided by the centrifugal force of the "free" flywheel; in this case it is provided with a perforation (41).
  • the receiver element of the linear movement is any element that can take advantage of the linear movement; wherein said linear motion receiver element is connected to the motion transformer element.
  • the receiver element of the linear movement can be a pneumatic element, such as a piston (not illustrated) that connected to the pivoted cam (23), can take advantage of the linear movement to compress fluids.
  • the kinetic mechanical unit in question comprises a fixed support (27) to sustain, in a linear manner, a: a "free" flywheel, a transformer element of circular motion to linear motion, and a motion receptor element linear, in accordance with the present invention.
  • An embodiment of the fixed support (27) is when it is formed of a rectangular flat base (28) that at one of its ends has a ring (29), where a circular cavity is formed that houses the "free" flywheel.
  • the ring (29) has a rectangular groove (30), which is located towards the free end of the base (28).
  • a semi-circular projection (31) is projected, to form a guide groove where the rolling element (8) makes contact with the movement transformer element, which is placed on the base flat (28) very close to the ring (29), so that a portion of said element (23) is introduced into the guide groove.
  • the area of the base (28) that is surrounded by the ring (29) has a central perforation (32) through which the end of the arrow (18) that holds the four-limb piece (52) passes.
  • the flat base (28) of the fixed support (27) has an extension (33) at its free end, and a perforation (43) at a central point at the junction of the flat base (28) and the extension (33 ).
  • the way to interact, the "free" flywheel and the pivoted cam (23), is as illustrated in figure 17, where the flywheel is placed inside the ring (29), see figures 20, 21 and 22.
  • the arrow (18) passes through the central hole (32); and its element or accessory (22) that couples said arrow (18) with the power source, in this case, the rotary actuator (47) is placed below the fixed support (27), as seen in figures 23 and 24.
  • An upper cover (28 ') is required to cover at least the upper part of the ring (29), once the "free" flywheel and the motion transformer element have been placed, see figures 23 and 24. Therefore, said upper cover (28 ') can be of the same dimensions and shape of the rectangular flat base (28) and its extension (33). To fasten the top cover (28 ') with the flat base (28) it can be done with any fastening means, such as compression bars (46).
  • the curved pivoted cam (23) is positioned so that it can enter the groove (30), being located longitudinally between the projections (31) that form the guide groove; where only an appropriate portion of the pivoted cam (23) is introduced into the ring (29), passing through the longitudinal groove (30), such that the rolling element (8) when making contact with said portion of the cam (23), pushes it out of the ring (29); converting in this way, the circular movement of the "free" flywheel, in linear motion, thanks to the fact that the cam is pivoted, that is, has angular movement with respect to its axis of rotation, located in the pivot bar (35) .
  • said pivoted cam (23) is suspended between the flat base (28) of the fixed support (27) and the upper cover (28 '), by means of the extension (24), where its perforation (25) coincides with the perforations (34) of the flat base (28) and the upper cover (28 '), where a pivot bar (35) with its respective radial bearing (36) is inserted.
  • the present invention also comprises a kinetic mechanical system, useful for performing work by harnessing the centrifugal force coming from the flywheel of free inertia; where an embodiment of the kinetic mechanical system of the present invention is when it is made up of: i) a first kinetic mechanical unit, to perform work by utilizing the centrifugal force, in accordance with the present invention;
  • a second kinetic mechanical unit to perform a job by taking advantage of the centrifugal force, in accordance with the present invention, but without an upper cover (28 '), arrow (18), or energy source; longitudinally connected to the rectangular flat base (28) and extension (33), of the first kinetic mechanical unit; such that the rectangular flat base (28) together with the extension (33), of the first kinetic mechanical unit, serve as a cover for the second kinetic mechanical unit; wherein the arrow (18) of the first kinetic mechanical unit passes through the perforations (15) and (32) of the second kinetic mechanical unit to rotate the "free" flywheel of said second kinetic unit; however, it should be clarified that if the cover is not removed from the second kinetic mechanical unit, the kinetic mechanical system in question may work;
  • crankshaft (42) is driven by the motion receiving element; for this, the axes of rotation of the crankshaft (42) pass through the perforation (43); and the crawler slides (37) are connected to the crankshaft fist (42), by means of its perforation (41); Y
  • a housing (50) contains and protects the components of the kinetic mechanical system.
  • One modality of the kinetic mechanical system in question is that the number of kinetic mechanical units that perform a job by taking advantage of the centrifugal force may be greater than 2 kinetic mechanical units; and the way of joining it together, is as explained above and as seen in Figures 25 to 28, and there may be different ways of coupling several kinetic mechanical units, as appropriate.
  • the length of the arrow (18) will be according to the number of kinetic mechanical units; and the energy source will also depend on the number of "free" inertia volates that will be spun.
  • a further embodiment of the mechanical system arrangement is that the energy source, such as the rotary actuator (47), be placed at the free end of the arrow (18) to rotate it on its longitudinal axis, and thereby rotate the free flywheel, where the inertial mass (1) pushes out the ring (29), the end of the pivoted cam (23) that is inside the ring itself (29) through the groove (30); where in turn the pivoted cam (23) pushes the crawler (37) and it in turn is responsible for driving the crankshaft (42) turning it, so that it performs a useful mechanical work, such as a torque; whereby the crankshaft (42) is placed in the perforations (43) that are between the flat base (28) and its extension (33), where said perforations (43) coincide with the perforation (41) of the crawler ( 37) to give way to the crankshaft cuffs (42), such that the crankshaft (42) is driven by the centrifugal force that comes from the pivoted inertial mass (1) of the free "inertial flywheel".
  • the kinetic mechanical system of the present invention also comprises a housing (50) for containing and protecting the kinetic mechanical units and the crankshaft (42), see figure 28. It should be noted that to provide better lubrication between the crankshaft (42) and The flat base (28) is provided with a small hole (44) where a lubricant is applied.
  • the kinetic mechanical system may have a more complex configuration, since it may comprise more than one group of kinetic mechanical units; since, in this detailed description of the invention only a kinetic mechanical system with a single group of kinetic mechanical units has been described. Therefore, said kinetic mechanical system may comprise at least one group of kinetic mechanical units and each group may in turn comprise at least two kinetic mechanical units.
  • the groups of kinetic mechanical units can be located equidistant from each other and have different positions within the kinetic mechanical system. It is obvious that each group of mechanical units will be provided with their respective accessories so that they can function properly, such as their respective arrows (18), crankshafts (52), among others.
  • a kinetic mechanical system which can function as a kinetic motor, where its energy is obtained from the centrifugal force that comes from the pivoted inertial mass (1) of the "free" flywheel.
  • This kinetic mechanical system can be complementary to increase efficiency in rotating mechanical systems.
  • the most attractive energy sources to power the kinetic mechanical system are wind and sun. In wind farms it can be connected to the rotor arrow, thereby making this energy source more efficient, and the Stirling engine will be a more viable utilitarian reality by connecting its output torque to the kinetic motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission Devices (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Masas inerciales (1 y 2) para formar un volante de inercia "libre" con capacidad de liberar fuerza centrífuga, conformado de: una masa inercial pivotada (1), una masa inercial (2) de contrapeso, y un soporte giratorio (3) que sujeta, suspende y hace girar, diametralmente opuestas, a las masas inerciales. Una unidad mecánica cinética para realizar un trabajo mediante el aprovechamiento de la fuerza centrífuga que libera el volante de inercia "libre", que comprende: un volante de inercia "libre", un elemento pivotado transformador de movimiento, un elemento receptor del movimiento lineal conectado al elemento pivotado transformador de movimiento; un soporte fijo (27) que sustenta a: el volante de inercia "libre", elemento pivotado transformador de movimiento y elemento receptor de movimiento lineal; una flecha (18) que proporciona movimiento giratorio a los volantes de inercia "libre", y una fuente de energía hace girar a la flecha. Un sistema mecánico cinético, para realizar un trabajo mediante el aprovechamiento de la fuerza centrífuga que libera el volante de inercia "libre", conformado de: al menos, dos unidades mecánicas cinéticas, un cigüeñal (42) unido al elemento receptor de movimiento, y una carcasa (50) protege a los componentes del sistema mecánico cinético.

Description

VOLANTE DE INERCIA, UNIDAD Y SISTEMA MECÁNICOS-CINÉTICOS QUE APROVECHAN LA FUERZA CENTRÍFUGA DEL VOLANTE DE
INERCIA CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se relaciona con los campos técnicos de la Mecánica y la Cinética, debido a que se refiere a un volante de inercia libre" formado con masas inerciaies que causan poca fricción al rotar y tiene la capacidad de liberar su fuerza centrífuga. Esta invención también se relaciona con una unidad mecánica cinética y con un sistema mecánico cinético, que se caracterizan por tener la capacidad de aprovechar la fuerza centrífuga liberada por el volante de inercia "libre", para realizar un trabajo, el cual puede ser un golpe, torque, compresión de fluidos, por citar algunos ejemplos.
ANTECEDENTES DE LA INVENCIÓN
La capacidad de una masa giratoria para acumular energía mecánica por inercia puede aprovecharse para producir trabajo mecánico y, en especial, para la propulsión de vehículos. Actualmente, un volante de inercia constituye una máquina que puede almacenar energía cinética, conservarla a lo largo del tiempo (salvo las pérdidas por rozamiento) y restituirla en la medida deseada.
El empleo de una masa giratoria en este sentido requiere que el elemento móvil posea unas características que se aparten de la acostumbrada imagen del volante empleado como estabilizador, constituido generalmente por una corona circular unida a un cubo. En efecto, como la cantidad de energía almacenada es función del momento de inercia y de la velocidad de rotación, para incrementar la capacidad energética se necesitará aumentar uno o ambos de los parámetros mencionados. Como el aumento de la inercia de la masa giratoria posee unos límites rígidos en cuanto al peso y a las dimensiones del volante, habrá que aumentar el número de revoluciones. El empleo de volantes para la propulsión de vehículos se considera conveniente en el caso de tracción eléctrica, acoplando a la masa giratoria un motor generador que puede lanzar al volante cuando se conecta a una fuente de corriente y producir electricidad cuando el volante se halla en rotación. Esta solución, ya experimentada y objeto de diversos estudios, se ha demostrado que permite almacenar, con relación a las baterías de acumuladores corrientes, la misma cantidad de energía con un peso muy inferior.
Para obtener la máxima eficiencia de los volantes de inercia, es indispensable minimizar los rozamientos, que se traducen en un derroche de energía. Con dicha finalidad se recurre a volantes suspendidos magnéticamente en recipientes estancos en los que se practica el vacío parcial para reducir el rozamiento con el aire, mientras que los efectos giroscópicos se neutralizan con la adopción de dos volantes coaxiales que giran en sentidos opuestos.
Otro antecedente está en los volantes de inercia para cizallas, en estos volantes se acumula energía potencial cinética para ser utilizada en un impacto. En las cizallas aprovechamos la energía cinética almacenada poco a poco y descargamos su energía en un instante, provocando de esta manera un gran Impacto mecánico; en estos mecanismos, el volante de inercia de la cizalla sacrifica su rotación al transmitir su energía cinética rotativa.
El documento de patente US2010307285 A1 describe un acumulador de energía cinética para proporcionar un accionamiento rotativo, que comprende: (a) una pluralidad de elementos acumuladores montados giratoriamente dispuestos adyacentes entre sí; (b) un mecanismo de accionamiento de entrada dispuesto para impartir un accionamiento rotativo a un primer miembro de acumulador; y (c) elementos de acoplamiento sensibles a la velocidad dispuestos para proporcionar un acoplamiento magnético de los sucesivos miembros de acumulador cuando se hacen girar sucesivamente entre los miembros acumuladores respectivos una velocidad angular igual o superior a una velocidad predeterminada. En el funcionamiento del acumulador definido en US2010307285, a medida que se imparte (por ejemplo, de forma incremental) al primer miembro de acumulación, se hace girar el primer miembro acumulador y su velocidad angular aumenta progresivamente hasta el nivel predeterminado. Habiendo alcanzado el nivel predeterminado de velocidad angular, el acoplamiento magnético se establece entre el primer miembro acumulador y el siguiente miembro acumulador (adyacente), con lo que se hace girar y su velocidad angular se incrementa progresivamente hasta el nivel predeterminado. Cuando se alcanza una condición de estado estacionario y ambos miembros acumuladores están girando con la velocidad angular predeterminada, la energía cinética (en forma de accionamiento rotativo) puede transferirse a una carga del acumulador para el tiempo en que se imparte energía cinética al primer miembro acumulador. De este modo, el acumulador puede ser empleado para facilitar el acoplamiento de una fuente o transmisor de energía de baja inercia a una carga que tiene un momento de inercia relativamente alto. Además, el accionamiento rotativo puede seguir siendo aplicado a la carga por el acumulador durante un período de tiempo en ausencia de energía cinética que se imparte al acumulador debido al impulso de los elementos acumuladores giratorios. Dicho documento US2010307285 también describe un sistema de transferencia cinética de energía, que comprende: (a) un acumulador de energía que comprende una pluralidad de elementos acumuladores montados de forma giratoria dispuestos adyacentes entre sí, un mecanismo de accionamiento de entrada dispuesto para impartir un accionamiento rotativo a uno de los miembros acumuladores y miembros de acoplamiento sensibles a la velocidad dispuestos para proporcionar un acoplamiento magnético de uno de los sucesivos miembros acumuladores cuando se hacen girar sucesivamente a unos de los miembros acumuladores con una velocidad angular igual o superior a una velocidad predeterminada; (b) un mecanismo transmisor de energía dispuesto para aplicar el accionamiento desde una fuente de energía cinética al mecanismo de accionamiento de entrada del acumulador de energía; y (c) un dispositivo de carga acoplado y dispuesto para ser accionado por el acumulador de energía cuando cada uno de los elementos acumuladores está girando con una velocidad angular igual o superior a la velocidad predeterminada. Dicho acumulador de energía puede comprender tantos miembros de acumulador como se requiere (para cualquier aplicación dada) para que coincida con una carga a la fuente de energía cinética. Puede comprender tan sólo dos elementos acumuladores, en cuyo caso al menos un miembro de acoplamiento sensible a la velocidad se puede montar en uno de los miembros acumuladores. Sin embargo, el acumulador de energía comprende deseablemente "n" miembros acumuladores (donde n≥ 3), en cuyo caso los elementos de acoplamiento que responden a la velocidad se montarán deseablemente en (n-1) de los miembros acumuladores. Los elementos acumuladores pueden montarse opcionalmente para rotación alrededor de ejes respectivos, pero deseablemente están montados para rotación alrededor de un eje común.
Los miembros de acoplamiento sensibles a la velocidad pueden comprender cualquier dispositivo o mecanismo que funcione para proporcionar el acoplamiento magnético de un miembro acumulador a otro cuando cada uno de los miembros acumuladores se hace girar con una velocidad angular igual a una velocidad predeterminada. Sin embargo, cada elemento de acoplamiento está dispuesto deseablemente para moverse en su posición funcional bajo la influencia de la fuerza centrífuga que responde a la rotación de su miembro acumulador asociado a una velocidad angular igual a la velocidad predeterminada. En este último caso, cada miembro de acoplamiento puede estar opcionalmente montado en su miembro acumulador asociado para movimiento lineal o, lo más deseable, montado para movimiento pivotante.
El acoplamiento magnético de un miembro acumulador a otro se puede conseguir opcionalmente de diversas maneras. Por ejemplo, un imán permanente puede montarse en cada uno de los miembros de acoplamiento y los miembros acumuladores pueden estar formados al menos en parte de un material atraído magnéticamente (por ejemplo, ferromagnético). Alternativamente, se pueden montar imanes permanentes en los miembros acumuladores y los elementos de acoplamiento pueden formarse al menos en parte de un material atraído magnéticamente. Como una alternativa adicional, se pueden montar imanes permanentes tanto en los elementos de acopiamiento como en los elementos acumuladores con una relación de polaridad dispuesta para permitir el acoplamiento magnético (en un sentido atractivo o repulsivo) entre los miembros de acoplamiento y acumulador. Los imanes permanentes comprenden deseablemente imanes de tierras raras. El acoplamiento magnético facilita el deslizamiento y, consecuentemente, el acoplamiento dinámico suave entre los miembros adyacentes de los miembros acumuladores. El mecanismo de accionamiento puede comprender cualquier mecanismo adecuado para proporcionar un accionamiento rotativo al acumulador de energía cinética.
Dicho documento US2010307285 también divulga un mecanismo de accionamiento para aplicar un accionamiento rotativo a un dispositivo de carga, que comprende: (a) primeros y segundos medios de accionamiento, estando dispuestos los segundos medios de accionamiento para accionar la rotación del dispositivo de carga; (b) un embrague unidireccional; y (c) un sistema de accionamiento para ser accionado por el transmisor de energía e incluyendo un primer elemento para accionar el giro de los primeros medios de accionamiento y un segundo elemento para accionar el giro de los segundos medios de accionamiento, estando el segundo elemento dispuesto para ser accionado giratoriamente el primer elemento y los primeros medios de accionamiento tienen una relación de accionamiento más alta en comparación con el segundo elemento y el segundo medio de accionamiento y el primer medio de accionamiento está dispuesto para accionar la rotación del segundo elemento medios de accionamiento mediante el embrague unidireccional.
El sistema de accionamiento puede incluir un embrague unidireccional adicional dispuesto entre el primer y segundo elementos, en el que el primer elemento está dispuesto para impulsar la rotación del segundo elemento a través del embrague adicional. En al menos algunas realizaciones, el sistema de accionamiento puede comprender también: una banda de transmisión en bucle alrededor del primer elemento y los primeros medios de accionamiento para efectuar la rotación de los primeros medios de accionamiento; medios amortiguadores dispuestos para mantener la tensión en la banda de transmisión y pivotar alrededor de un eje de rotación de los primeros medios de accionamiento desde una posición inicial hasta una posición final cuando la banda de accionamiento es accionada por el primer elemento, el giro de los medios amortiguadores a la final accionamiento de rotación de amortiguación de posición aplicado a los primeros medios de accionamiento por la banda de accionamiento; y medios de retorno para empujar los medios amortiguadores a la posición inicial y devolver los medios amortiguadores alrededor del eje de pivote desde la posición final a la posición inicial en ausencia de la banda motriz que es accionada por el primer elemento, estando adaptados los medios amortiguadores para pivotar de nuevo y hacia delante entre las posiciones inicial y final al menos hasta que el segundo elemento ha alcanzado una velocidad angular inicial.
Típicamente, los elementos primero y segundo son poleas giratorias alrededor de un eje de rotación común y los medios de accionamiento primero y segundo son poleas adicionales que tienen un eje de rotación común diferente. Generalmente también, las poleas primera y segunda tienen el mismo tamaño. Sin embargo, como se comprenderá, se pueden emplear engranajes u otros elementos de accionamiento como el primer y el segundo elementos y los primeros y segundos medios de accionamiento o, por ejemplo, una combinación de engranajes y poleas u otros elementos de accionamiento adecuados. Las poleas, por ejemplo, pueden ser poleas dentadas o ranuradas. La banda de accionamiento puede ser una correa de transmisión cuando se usan poleas o una cadena de transmisión cuando se emplean engranajes y/o poleas dentadas.
El transmisor de energía de un sistema de transferencia de energía cinética incorporado por la invención comprende deseablemente uno que funcione para convertir el movimiento lineal de una fuente de energía cinética en movimiento rotatorio. El movimiento lineal puede estar en una dirección generalmente horizontal, tal como derivada del movimiento hacia adelante de un vehículo de carretera en movimiento, o en una dirección generalmente vertical. La energía cinética de la fuente puede ser suministrada opcionalmente por el acumulador a cualquier forma de carga, incluyendo una bomba rotativa, pero deseablemente se suministra a un generador eléctrico. Un mecanismo de embrague, que incluye uno que incorpora ios principios de funcionamiento del acumulador, puede estar opcionalmente interpuesto entre el acumulador y la carga. Por lo tanto, el documento US2010307285 también comprende un transmisor de energía para convertir el movimiento de una fuente de energía cinética en accionamiento rotacional, que comprende: (a) un actuador para ser accionado en una dirección sustancialmente lineal desde una posición neutra a una posición desplazada por la fuente de energía cinética; (b) al menos, un par de brazos radiales separados entre sí y conectados de forma giratoria en un extremo distal de los brazos al accionador, estando montado giratoriamente un extremo proximal opuesto de cada brazo radial y estando dispuesto al menos uno de los brazos para girar un eje de accionamiento alrededor de su respectivo eje de rotación para proporcionar el accionamiento giratorio cuando el accionador es accionado en la dirección lineal por la fuente de energía cinética; y (c) una disposición de imanes con imanes en la disposición que está colocada en orientación orientada repulsivamente para devolver el actuador desde la posición desplazada a la posición neutra. El transmisor de energía puede comprender además un soporte dispuesto entre los brazos radiales y que lleva una pluralidad de imanes, en donde además de los imanes están montados en los brazos radiales, estando dispuestos los imanes en el soporte para repeler los imanes en los brazos radiales. Por su parte el documento de patente WO8204468 A detalla un dispositivo para el almacenamiento de energía cinética en una rueda libre; el cual comprende cuatro masas giratorias superiores (1) y cuatro masas giratorias inferiores (1a), que son desplazables bajo el efecto de la fuerza centrífuga entre dos posiciones radiales mínimas y máximas con respecto al centro de rotación (3). Así, el momento de inercia del volante (dispositivo) también varía entre un mínimo y un máximo. En los volantes conocidos, el momento de inercia permanece constante y determina el valor del par motor necesario. Por el contrario, el volante propuesto debe superar -al arrancar o cuando la velocidad aumenta- sólo un momento de inercia reducido, y por lo tanto un par de motor reducido es suficiente. A la inversa, para un momento de inercia dado, se obtiene una mayor cantidad de energía almacenada al final de la operación. Dicho método y volante están destinados especialmente a motores eléctricos accionados por baterías o acumuladores.
En cambio el documento de patente GB2028979 A divulga un dispositivo giratorio que comprende: un reborde, un cubo, al menos un brazo de unión con dos ramas entre el reborde y el cubo con masas de material muy denso localizadas en los extremos de dichas ramas, masas anisotrópicas distribuidas entre los brazos, medios electromecánicos con acción de equilibrio y sensores, estando dispuesto el conjunto de dichos medios para: permitir la sujeción rápida por presión de cada brazo sobre la llanta, habilitar la sujeción rápida por la presión de las ramas de cada brazo contra el cubo, mantener constante la circularidad del reborde, asegurar la rigidez longitudinal y la resistencia mecánica longitudinal del reborde, y efectuar el equilibrio estático y dinámico del conjunto de bastidor de brazo.
Como se puede ver, los inconvenientes que tienen los volantes convencionales, es que tienen un mayor número de masas giratorias, siendo el mínimo de 4 masas giratorias; y sus masas inerciaies tienen mayor fricción en su movimiento giratorio, debido a la configuración que éstas tienen.
Con la finalidad de contrarrestar los inconvenientes antes mencionados, se desarrolló un volante de inercia "libre", que por su configuración especial, reduce la fricción ai rotar y es capaz de liberar la fuerza centrífuga. También, se desarrolló una unidad mecánica cinética y un sistema mecánico cinético, los cuales realizan trabajos mecánicos, mediante el aprovechamiento de la fuerza centrífuga liberada por el volante de inercia "libre"; logrando de esta manera mejorar en mucho la eficiencia de sistemas que aportan trabajo mecánico, como por ejemplo, torque, compresión, golpe, etc. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Las características y ventajas adicionales de la presente invención se comprenden más claramente en la presente descripción detallada de algunas realizaciones preferida de la misma, ilustradas por medio de figuras y ejemplos, no limitativos.
Breve descripción de las figuras: Figura 1 es una vista explosiva de una masa inercial pivotada, que forma parte del volante de inercia "libre", de la presente invención.
Figura 2 es una vista en perspectiva convencional-frontal, de la masa inercial pivotada, en condición ensamblada.
Figura 3 es una vista en perspectiva convencional-posterior, de la masa inercial pivotada, en condición ensamblada.
Figura 4 es una vista en planta superior de la masa inercial pivotada, en condición ensamblada.
Figura 5 es una vista en perspectiva convencional-frontal, de la masa inercial pivotada, según la figura 2, donde se observa un elemento de rodamiento en condición explotada.
Figura 6 es una vista en perspectiva convencional-frontal, de la masa inercial pivotada, según la figura anterior, donde se observa el elemento de rodamiento en condición ensamblada, inserto en la masa inercial pivotada.
Figura 7 es una vista explosiva de una masa inercial de contrapeso del volante de inercia "libre", de la presente invención.
Figura 8 es una vista en perspectiva convencional-frontal de la masa inercial de contrapeso del volante de inercia "libre", de la presente invención, en condición ensamblada.
Figura 9 es una vista en perspectiva convencional-posterior de la masa inercial de contrapeso del volante de inercia "libre", de la presente invención, en condición ensamblada. Figura 10 es una vista en planta superior de la masa inercial de contrapeso del volante de inercia "libre", de la presente invención, en condición ensamblada.
Figura 11 es una vista explosiva de un soporte giratorio, el cual es parte del volante de inercia "libre", según la presente invención.
Figura 12 es una vista en perspectiva convencional del soporte giratorio que es parte del volante de inercia "libre", según la presente invención, en condición ensamblada.
Figura 13 es una vista explosiva del volante de inercia "libre", de la presente invención.
Figura 14 es una vista en perspectiva convencional del volante de inercia "libre", de la presente invención, en condición ensamblada.
Figura 15 es una vista en explosiva de una leva pivotada y sus elementos, que forma parte de una unidad mecánica cinética que realiza un trabajo, mediante la fuerza centrífuga del volante de inercia "libre", según la presente invención.
Figura 16 es una vista en planta superior de la leva pivotada y sus elementos, que forma parte de la unidad mecánica cinética que realiza un trabajo, mediante la fuerza centrífuga del volante de inercia "libre", de la presente invención, en condición ensamblada.
Figura 17 es una vista explosiva-superior de la unidad mecánica cinética que realiza un trabajo, mediante la fuerza centrífuga del volante de inercia
"libre", de la presente invención.
Figuras 18 y 19, son vistas en perspectivas convencionales de un soporte fijo que forma parte de la unidad mecánica cinética que un realiza un trabajo, mediante la fuerza centrífuga del volante de inercia "libre", de acuerdo con la presente invención.
Figura 20 es una vista en perspectiva convencional de dicha unidad mecánica cinética, de acuerdo con la presente invención, en condición ensamblada.
Figura 21 es una vista en planta superior de la unidad mecánica cinética, de la presente invención, en condición ensamblada. Figura 22 es una vista en planta superior de la unidad mecánica cinética, de la presente invención, en condición ensamblada, donde se indica el ángulo de desplazamiento de la masa inercial pivotada.
Figura 23 es una vista latera! de la unidad mecánica cinética, de la figura anterior, donde se observa la adición de una tapa en condición separada.
Figura 24 es una vista lateral de la unidad mecánica cinética, de la figura anterior, donde se observa la tapa adherida.
Figura 25 es una vista lateral de un arreglo de cuatro unidades mecánicas cinéticas interactuando con un cigüeñal, conformándose así un sistema mecánico cinético que produce torque.
Figura 26 es una vista lateral de una modalidad del sistema mecánico cinético que realiza un trabajo mecánico (torque), según la presente invención. Figura 27 es una vista lateral de la figura anterior, donde los anillos de soportes de las unidades mecánicas cinéticas, tienen un corte seccional para ver a detalle las posiciones de las 4 levas pivotadas, según la posición de las masas inerciales.
Figura 28 es una vista en perspectiva convencional del sistema mecánico cinético que realiza un trabajo mecánico, según la presente invención, dentro de una carcasa.
Para un mejor entendimiento de la descripción en la presente invención, se incluye un listado (Cuadro 1) de los componentes que la conforman, los cuales se encuentran referenciados en las figuras incluidas, y en algunos casos, información complementaria que ayuda a una comprensión.
Cuadro 1. Relación de los componentes y sus referencias que forman parte de la presente invención.
Figure imgf000013_0001
Cuadro 1. Continuación...
Figure imgf000014_0001
Figure imgf000015_0001
Volante de inercia "libre" con baia fricción v con la capacidad de liberar fuerza centrifuga
Un primer objeto de la presente invención es un volante de inercia "libre" con baja fricción al rotar y que libera fuerza centrífuga, donde dicho volante de Inercia "libre" se forma de dos masas inerciales (1 y 2), las cuales tienen una forma curvada preferentemente, para facilitar tener movimientos giratorios. Dichas masas inerciales (1 y 2) están unidas en un soporte giratorio (3), diametralmente opuestas entre sí; por lo que estas masas inerciales (1 y 2) están confeccionadas para ser acopladas a dicho soporte giratorio (3); por ejemplo, dichas masas inerciales están conformadas de un cuerpo curvado en donde se provee de cualquier medio de acoplamiento, tales como: entradas (4), cavidades (5), perforaciones (6 y 7), y una combinación entre ellos, preferentemente ubicados en los extremos del cuerpo curvado, para acoplarse al soporte giratorio (3).
Una de las masas inerciales es pivotada (1) y tiene además, un elemento rodante (8) insertado parcialmente en su costado externo. Para ello, a ésta se le provee de una cavidad (9) donde se aloja una parte del elemento rodante (8) con una perforación central (8'); y al centro de dicha cavidad (9) se provee una perforación (10) que traspasa transversalmente el cuerpo curvado para formar un ducto, donde se inserta un medio de sujeción (11 ), para sujetar de manera suspendida al elemento rodante (8); por lo que este medio de sujeción (11) debe permitir que el elemento rodante (8) gire sobre su eje de giro. Ambas masas inerciales (1 y 2) tienen un canal longitudinal (12) que recorre todo el costado externo de dichas masas (1 y 2); excepto en la masa inercial pivotada (1), donde dicho canal (12) es interrumpido por la cavidad (9) y el elemento rodante (8); por lo tanto, estas masas inerciales, también forman parte del alcance de protección de la presente invención.
El soporte giratorio (3) es una pieza apta para sujetar, suspender y hacer girar a las masas inerciales curvadas (1 y 2), por ejemplo, en este caso el soporte comprende una pieza confeccionada con cuatro extremidades (52), dispuestas de tal manera que facilite su acoplamiento en las entradas (4) y cavidades (5), de los extremos de las masas inerciales curvadas (1 y 2). En cada punta de las extremidades de la pieza (52) se provee una perforación (13), excepto en la punta de una de las extremidades, donde en lugar de perforación, se provee de un perno fijo (14) colocado de tal manera que su eje lineal queda en posición ortogonal al plano formado por el soporte giratorio, ver figuras 11 a la 14.
La manera de unir la masa inercial de contrapeso (2) al soporte giratorio (3), es introduciendo las extremidades correspondientes del soporte (3) hasta hacer coincidir las perforaciones (6) de la masa inercial (2) con las perforaciones (13) de las extremidades de la pieza (52), formando un ducto para introducir un elemento de sujeción (21).
La manera de unir la masa inercial pivotada (1) al soporte giratorio (3), es introduciendo un perno pivote (21') con su respectivo rodamiento (51) que lo circunda, en un ducto formado por la perforación (6) de la masa inercial pivotada (1) y la perforación (13) correspondiente de la punta de la pieza (52); dicho rodamiento (51) queda ubicado dentro de la perforación (13) de la pieza de cuatro extremidades (52). El perno fijo (14) simplemente se introduce en una perforación alargada (7) que se encuentra en uno de los extremos del cuerpo curvado de ia masa inercial pivotada (1).
Esta perforación alargada (7) tiene la función de permitir a la masa inercial pivotada (1) un deslizamiento angular, cuyo vórtice angular se localiza en el centro del perno pivote (21') y centro de la perforación (6), misma que se encuentra en el otro extremo del cuerpo de la masa inercial (1). La perforación alargada (7) no sujeta al perno fijo (14), sólo le proporciona espacio para que se pueda desplazar y está diseñada para hacer contacto en un punto, linea o plano con el perno fijo (14); por lo tanto, la perforación alargada (7) debe tener cierta forma geométrica, dimensiones y orientación que permitan ese deslizamiento angular el cual se ejemplifica en la figura 22; dicha perforación (7) es ligeramente curva para respetar el radio de giro de la masa inercial pivotada (1) respecto al vértice angular ubicado en el centro del perno pivote (21'). De esta manera se logra que la masa inercial pivotada (1) tenga capacidad de responder a un deslizamiento angular cuando sea necesario. La función más importante del perno fijo (14) es acotar, detener o limitar, el desplazamiento angular a la masa inercial pivotada (1); y de esta manera, ambas masas inerciales (1 y 2) ubicadas diametralmente opuestas, forman el volante de inercia que gira apropiadamente. El contacto del perno fijo (14) con la masa inercial pivotada (1) es sólo en un punto, línea o plano de ambas piezas según convenga, y la forma de hacer contacto será según especificaciones de diseño y éstas se dictan de acuerdo a los materiales utilizados. Las especificaciones son para evitar deformaciones físicas a las masas inerciales (1 y 2), deformaciones que pueden presentarse por las fuerzas de reacción entre ellas mismas. Lo importante es limitar el desplazamiento angular de la masa inercial pivotada (1), para que no haga contacto con el anillo (29), y junto con la masa inercial de contrapeso (2), formen un volante de inercia "libre" con baja fricción al rotar, estable sin oscilaciones ni vibraciones y con capacidad de liberar la fuerza centrífuga de la masa inercial pivotada (1 ). El volante de inercia logra ser "libre" por la holgura de la perforación
(7) , por la ubicación del perno pivote (21 ') y por la forma de como hace contacto el perno fijo (14) con la masa inercial pivotada (1). Cabe señalar que ambas masas inerciales (1 y 2) juntas, tienen la función de adquirir la capacidad de liberar la fuerza centrífuga radial que acciona la masa inercial pivotada (1), fuerza radial que se presenta por causa de la velocidad tangencial que adquiere, gracias al movimiento circular que le proporciona el soporte giratorio (3), donde la masa inercial pivotada (1) tiene la función de accionar a un elemento que permita la transformación de movimiento circular del volante de inercia "libre", a un movimiento lineal, mediante su elemento rodante
(8) ; esto lo hace aprovechando la fuerza centrífuga que se aplica por medio del elemento rodante (8), mientras que la masa inercial (2) tiene la función de hacer contrapeso al volante de inercia "libre".
El soporte giratorio (3) obtiene el movimiento giratorio por medio de una flecha (18), por lo que dicho soporte giratorio (3) está diseñado para adaptarse a dicha flecha (18); para ello, a la pieza de cuatro extremidades (52) tiene una perforación central (15) circundada por un borde superior (16) provisto de dos perforaciones transversales (17) diametralmente opuestas. En la perforación central (15) se aloja y fija uno de los extremos de la flecha (18) que suspende y hace girar a dicha pieza (52), la cual a su vez hace girar a las masas inerciales (1 y 2); por lo que dicho extremo de la flecha (18) también tiene dos perforaciones (19) diametralmente opuestas que coinciden con las perforaciones (17) del soporte giratorio (3), por donde pasa transversalmente un perno de sujeción (20).
La flecha (18) se conecta a una fuente de energía mediante su extremo libre, donde se le puede adaptar, al menos, un elemento o accesorio de acople con la fuente de energía. El elemento o accesorio de acople puede ser una polea (22), accionada con al menos, una banda (49), para conectarse a la fuente de energía, la cual puede ser un actuador rotacional (47), o algún otro elemento que aporte energía mecánica.
Este volante de inercia "libre" tiene muy poca fricción en su rotación, gracias a los cuerpos curvados de las masas inerciales (1 y 2), y principalmente por el hecho de evitar contacto del elemento rodante (8) con algún otro elemento innecesario en la función que desempeña. Decimos que es "libre", porque la fuerza de torque que hace rotar al volante de inercia o la fuerza que aporta el actuador rotacional (47), sólo se utiliza para vencer las fuerzas de fricción interna al rotar el volante de inercia, y en su desempeño mecánico no aparece otra carga de fuerza que se oponga a la rotación. La fuerza de torque o par de fuerza aportada por la fuente de energía (actuador rotacional (47)), no se contrarresta ni disminuye por motivo de la fuerza centrífuga que se presenta en los elementos que forman el volante de inercia "libre", esta fuerza centrífuga está relacionada sólo con la velocidad tangencial que adquiere la masa inercial pivotada (1), y la velocidad tangencial del volante de inercia "libre" no disminuye al desempeñar un trabajo, sino que se frena únicamente por la fricción del elemento rodante (8), o sea que sólo se requiere vencer las pérdidas por fricción. La componente de fuerza centrífuga que se presenta se libera, y es posible transferirla con el contacto directo del elemento rodante (8) a un elemento que transforme el movimiento circular del volante de inercia "libre" en movimiento lineal, con el fin de transmitir la fuerza a un elemento que aproveche dicha fuerza.
En resumen, podemos decir que el volante de inercia "libre" posee tres ventajas, la primera es el hecho de ser "libre" lo cual significa que en sus giros sólo vence las fuerzas por pérdidas de fricción; la segunda ventaja es que genera poca fricción al rotar; y la tercera consiste en su capacidad de liberar la fuerza centrífuga hacia el exterior del volante de inercia "libre". Esta última capacidad la adquiere gracias al elemento rodante (8) de la masa inercial pivotada (1) que posee dicho volante.
Unidad mecánica cinética, para realizar un trabajo mediante el aprovechamiento de la fuerza centrífuga liberada por el volante de inercia "libre"
La presente invención también tiene como objeto una unidad mecánica cinética, para realizar un trabajo mediante el aprovechamiento de la fuerza centrífuga que proporciona el volante de inercia "libre" concebido en la presente invención. Por lo que dicha unidad mecánica cinética comprende colinealmente en un mismo plano: un volante de inercia "libre", de conformidad con la presente invención; un elemento pivotado que transforma el movimiento circular del volante de inercia "libre", a movimiento lineal; donde el elemento pivotado transformador de movimiento es empujado por el elemento rodante (8) de la masa inercial pivotada (1) del volante de inercia "libre".
Una realización de la unidad mecánica cinética, es cuando el elemento pivotado transformador de movimiento circular a movimiento lineal es una leva, más específicamente una leva pivotada (23), entre otros similares.
Una modalidad preferida de la unidad mecánica cinética es cuando la leva pivotada (23) se configura de un cuerpo curvado, el cual tiene una prolongación elevada (24) en uno de sus extremos y una primera perforación (25) atraviesa la longitud de la prolongación (24); y en el cuerpo curvado, se le provee una segunda perforación (26), ubicada en el lugar más conveniente para el correcto desempeño mecánico de la leva pivotada (23), ver figura 15. Esa segunda perforación (26) se puede ubicar a partir de la parte media del cuerpo de la leva pivotada (23) hacia el extremo opuesto a la perforación (25).
La unidad mecánica cinética de la presente invención, también comprende un elemento receptor del movimiento lineal, el cual está conectado con el elemento pivotado transformador de movimiento. El elemento receptor de movimiento, en este ejemplo, es una corredera eslabonada (37), la cual es meramente una biela, barra o "brazo" que se une apropiadamente en uno de los extremos del elemento pivotado transformador de movimiento (23). Más específicamente, la unión de la corredera eslabonada (37) y la leva pivotada (23), es mediante un perno pivote (39) con su respectivo rodamiento radial (40), el cual se aloja en la segunda perforación (26) de la leva pivotada (23) y en una perforación (38) que está en el lugar apropiado de la corredera eslabonada (37). El otro extremo de la corredera eslabonada (37) está confeccionado para unirse a un elemento mecánico que pueda aprovechar el movimiento lineal proporcionado por la fuerza centrífuga del volante de inercia "libre"; en este caso se le provee de una perforación (41).
Cabe agregar que el elemento receptor del movimiento lineal, es cualquier elemento que pueda aprovechar el movimiento lineal; donde dicho elemento receptor del movimiento lineal se conecta al elemento transformador de movimiento. Por ejemplo, el elemento receptor del movimiento lineal, puede ser un elemento neumático, como un pistón (no ilustrado) que conectado a la leva pivotada (23), puede aprovechar el movimiento lineal para comprimir fluidos.
Ahora bien, la unidad mecánica cinética en cuestión, comprende un soporte fijo (27) para sustentar, de manera lineal, a: un volante de inercia "libre", un elemento transformador de movimiento circular a movimiento lineal, y un elemento receptor de movimiento lineal, de acuerdo con la presente invención. Una realización del soporte fijo (27) es cuando se conforma de una base plana rectangular (28) que en uno de sus extremos tiene un anillo (29), donde se conforma una cavidad circular que aloja el volante de inercia "libre". El anillo (29) tiene una ranura rectangular (30), la cual queda ubicada hacia el extremo libre de la base (28). En ambos bordes longitudinales de la ranura (30) se proyecta una saliente semi circular (31), para formar una ranura-guía por donde hace contacto el elemento rodante (8) con el elemento transformador de movimiento, el cual se coloca sobre la base plana (28) muy cerca al anillo (29), de tai manera que una porción de dicho elemento (23) se introduce en la ranura-guía. El área de la base (28) que queda circundada por el anillo (29) tiene una perforación central (32) por donde pasa el extremo de la flecha (18) que sujeta a la pieza de cuatro extremidades (52).
Opcionalmente, la base plana (28) del soporte fijo (27) tiene una extensión (33) en su extremo libre, y una perforación (43) en un punto central en la unión de la base plana (28) y la extensión (33).
Específicamente, la manera de interactuar, el volante de inercia "libre" y la leva pivotada (23), es como se ilustra en la figura 17, donde el volante de inercia queda colocado dentro del anillo (29), ver figuras 20, 21 y 22. La flecha (18) pasa por la perforación central (32); y su elemento o accesorio (22) que acopla dicha flecha (18) con la fuente de energía, en este caso, el actuador rotacional (47) se coloca más abajo del soporte fijo (27), como se observa en las figuras 23 y 24. De esta manera obtenemos una unidad mecánica cinética que realiza un trabajo mediante el aprovechamiento de la fuerza centrífuga que proviene del volante de inercia "libre", donde ninguno de sus elementos hace contacto con el anillo (29) del soporte fijo (27); esto se logra mediante la ranura rectangular (30) por la cual ingresa una parte del extremo libre de la leva pivotada (23), único elemento que debe hacer contacto con el elemento rodante (8). La perforación alargada
(7) , también interviene al acotar el radio de giro a la masa ¡nercial (1) con respecto al perno pivote (21'), evitando de esta manera que el elemento rodante
(8) haga contacto con el anillo (29), y sólo permite el contacto con la parte convexa de la leva pivotada (23) para empujaría hacia fuera del anillo (29), ver figuras 21 y 22.
Una tapa superior (28') se requiere para cubrir, al menos, la parte superior del anillo (29), una vez que se ha colocado el volante de inercia "libre" y el elemento transformador de movimiento, ver figuras 23 y 24. Por lo que dicha tapa superior (28') puede ser de las mismas dimensiones y forma de la base plana rectangular (28) y su extensión (33). Para sujetar la tapa superior (28') con la base plana (28) se puede hacer con cualquier medio de sujeción, como por ejemplo barras de compresión (46).
La leva pivotada curvada (23) se coloca de manera que pueda ingresar a la ranura (30), quedando ubicada longitudinalmente entre las salientes (31) que forman la ranura-guía; donde solamente se introduce hacia el interior del anillo (29) una porción apropiada de la leva pivotada (23), pasando por la ranura longitudinal (30), de tal manera que el elemento rodante (8) al hacer contacto con dicha porción de la leva (23), la empuja hacia el exterior del anillo (29); convirtiendo de esta manera, el movimiento circular del volante de inercia "libre", en movimiento lineal, gracias a que la leva es pivotada, o sea, tiene movimiento angular con respecto a su eje de giro, ubicado en la barra pivote (35). Para ello, dicha leva pivotada (23) se suspende entre la base plana (28) del soporte fijo (27) y la tapa superior (28'), por medio de la prolongación (24), donde su perforación (25) coincide con las perforaciones (34) de la base plana (28) y la tapa superior (28'), donde se inserta una barra pivote (35) con su respectivo rodamiento radial (36).
Sistema mecánico cinético para realizar un trábajo, mediante el aprovechamiento de la fuerza centrífuga liberada por el volante de inercia "libre"
La presente invención también comprende un sistema mecánico cinético, útil para realizar un trabajo mediante el aprovechamiento de la fuerza centrífuga proveniente del volante de inercia libre; donde una realización del sistema mecánico cinético de la presente invención, es cuando se conforma de: i) una primera unidad mecánica cinética, para realizar un trabajo mediante el aprovechamiento de la fuerza centrífuga, de conformidad con la presente invención;
ii) una segunda unidad mecánica cinética, para realizar un trabajo mediante el aprovechamiento de la fuerza centrífuga, de conformidad con la presente invención, pero sin tapa superior (28'), flecha (18), ni fuente de energía; unida longitudinalmente a la base plana rectangular (28) y extensión (33), de la primera unidad mecánica cinética; de tal manera que la base plana rectangular (28) junto con la extensión (33), de la primera unidad mecánica cinética, sirven de tapa para la segunda unidad mecánica cinética; donde la flecha (18) de la primera unidad mecánica cinética pasa por las perforaciones (15) y (32) de la segunda unidad mecánica cinética para dar movimiento giratorio al volante de inercia "libre" de dicha segunda unidad cinética; sin embargo, cabe aclarar que si no se le retira la tapa a la segunda unidad mecánica cinética, el sistema mecánico cinético en cuestión, puede funcionar;
iii) al menos, dos perforaciones (45) en las bases planas (28) de las unidades mecánicas cinéticas y en la tapa superior (28'), ubicadas diametralmente opuestas fuera del anillo (29);
iv) al menos, dos barras de compresión (46) con sus respectivos tornillos que aprietan y comprimen, se insertan una en cada perforación (45) de las bases planas (28) y de la tapa superior (28'), para unir a presión las unidades mecánicas cinéticas;
v) un cigüeñal (42) es accionado por el elemento receptor de movimiento; para ello, los ejes de giro del cigüeñal (42) pasan por la perforación (43); y las correderas eslabonadas (37) se conectan en el puño del cigüeñal (42), por medio de su perforación (41 ); y
vi) una carcasa (50) contiene y protege a los componentes del sistema mecánico cinético. Una modalidad del sistema mecánico cinético en cuestión, es que el número de unidades mecánicas cinéticas que realizan un trabajo mediante el aprovechamiento de la fuerza centrífuga, puede ser mayor a 2 unidades mecánicas cinéticas; y la manera de unirla entre sí, es como se ha explicado anteriormente y como se observa en las figuras 25 a la 28, y puede haber diferentes formas de acoplar varias unidades mecánicas cinéticas, según convenga. La longitud de la flecha (18) será de acuerdo al número de unidades mecánica cinéticas; y la fuente de energía también dependerá del número de volates de inercia "libre" que se harán girar.
La manera del arreglo del sistema mecánico cinético cuando se conforma de 4 unidades mecánicas cinéticas, se puede ver con detalle en las figuras 25 a la 28, donde se colocan las unidades mecánicas cinéticas, una sobre la otra de manera longitudinal, donde la base plana (28) y extensión (33) de la unidad mecánica cinética superior (o primera unidad mecánica cinética), sirve de tapa de la unidad mecánica cinética inferior (o segunda unidad mecánica cinética); y así sucesivamente se colocan las otras dos unidades mecánicas cinéticas; y la flecha (18) atraviesa por las perforaciones (15) y (32) de las unidades mecánicas cinéticas, para hacer girar sus respectivos volante de inercia "libre". Para fijar las bases planas (28) de las unidades mecánicas cinéticas, se hace por medio de las barras de compresión (46), las cuales pasan por las perforaciones (45) que se proveen en las bases planas (28) y la tapa superior (28'), fuera del anillo (29), y se aprietan mediante tornillos (no ilustrados) que tienen la función de comprimir para unir de forma compacta las cuatro unidades mecánicas cinéticas, conformando así el sistema mecánico cinético de la presente invención.
Una modalidad más del arreglo del sistema mecánico, es que la fuente de energía, como el actuador rotacional (47), se coloque en el extremo libre de la flecha (18) para hacerla girar sobre su eje longitudinal, y con ello hacer girar el volante de inercia libre, donde la masa inercial (1 ) empuja hacia afuera del anillo (29), el extremo de la leva pivotada (23) que está dentro del propio anillo (29) por la ranura (30); donde a su vez la leva pivotada (23) empuja la corredera eslabonada (37) y ésta a su vez se encarga de accionar al cigüeñal (42) haciéndolo girar, para que realice un trabajo mecánico útil, como un torque; por lo que el cigüeñal (42) se coloca en las perforaciones (43) que están entre la base plana (28) y su extensión (33), donde dichas perforaciones (43) coinciden con la perforación (41 ) de la corredera eslabonada (37) para dar paso a los puños del cigüeñal (42), de tal manera que el cigüeñal (42) es accionado por la fuerza centrífuga que viene desde la masa inercial pivotada (1 ) del volante inercial "libre.
Otra modalidad del arreglo del sistema mecánico cinético, se ilustra en las figuras 26, 27 y 28, donde la fuente de energía o actuador rotacional (47), se coloca en uno de los extremos del cigüeñal (42). En este caso, se utiliza un copie dentado
(48) para unir la flecha del actuador rotacional (47) con uno de los extremos del cigüeñal (42) y otra polea (22') se coloca en esta conexión, para transferir movimiento giratorio a la flecha (18), por medio de su polea (22) y una banda
(49) conecta a ambas poleas (22 y 22').
El sistema mecánico cinético de la presente invención, comprende también una carcasa (50) para contener y proteger las unidades mecánicas cinéticas y al cigüeñal (42), ver figura 28. Cabe señalar que para proporcionar una mejor lubricación entre el cigüeñal (42) y la base plana (28) se provee una pequeña perforación (44) donde se aplica un lubricante.
Cabe agregar que el sistema mecánico cinético puede tener una configuración más compleja, toda vez que puede comprender más de un grupo de unidades mecánicas cinéticas; ya que, en esta descripción detallada de la invención sólo se ha descrito un sistema mecánico cinético con un solo grupo de unidades mecánicas cinéticas. Por lo tanto, dicho sistema mecánico cinético puede comprender al menos, un grupo de unidades mecánicas cinéticas y cada grupo puede comprender a su vez al menos, dos unidades mecánicas cinéticas. Los grupos de unidades mecánicas cinéticas pueden estar ubicados de manera equidistantes entre sí y tener distintas posiciones dentro del sistema mecánico cinético. Es obvio que a cada grupo de unidades mecánicas se les proveerá de sus respectivos accesorios para que puedan funcionar apropiadamente, tales como sus respectivas flechas (18), cigüeñales (52), entre otros.
De esta manera obtenemos un sistema mecánico cinético, que puede funcionar como un motor cinético, donde su energía la obtiene de la fuerza centrífuga que proviene de la masa inercial pivotada (1) del volante de inercia "libre". Este sistema mecánico cinético puede ser complementario para aumentar la eficiencia en sistemas mecánicos rotativos. Las fuentes de energía más atractivas para alimentar el sistema mecánico cinético, son el viento y el sol. En granjas eólicas éste se puede conectar a la flecha rotor, logrando con ello hacer más eficiente esta fuente de energía, y el motor Stirling será una realidad utilitaria más viable al conectar su torque de salida al motor cinético.

Claims

REIVINDICACIONES
1. Una masa inercial curvada, caracterizada porque comprende: i) un cuerpo curvado;
¡i) un canal longitudinal (12) que recorre todo el costado externo del cuerpo curvado; y
iii) medios de acoplamiento integrados en el cuerpo curvado.
2. La masa inercial de la reivindicación anterior, donde los medios de acoplamiento son: entradas (4), cavidades (5), perforaciones (6), y una combinación entre ellos.
3. La masa inercial de la reivindicación anterior, donde los medios de acoplamiento se ubican en los extremos del cuerpo curvado.
4. Una masa inercial pivotada, caracterizada porque comprende: i) las mismas características técnicas de la masa inercial de las reivindicaciones anteriores;
ii) una cavidad (9) en el costado externo, donde está el canal longitudinal (12), del cuerpo curvado;
iii) una perforación (10) traspasa transversalmente al cuerpo curvado, por el centro de la cavidad (9);
iv) un elemento rodante (8) con perforación central (8"), insertado parcialmente en la cavidad (9);
v) un medio de sujeción (11) insertado en el ducto formado por la perforación (10) y la perforación (8') del elemento rodante (8), para suspender y sujetar a dicho elemento rodante (8), permitiéndole girar sobre su eje de giro; y
vi) una perforación vertical alargada (7) en uno de los extremos del cuerpo curvado.
5. La masa inercial pivotada de la reivindicación anterior, donde la perforación alargada (7) tiene cierta forma geométrica, dimensiones y orientación, que permitan a la masa inercial pivotada (1) tener un deslizamiento angular; por lo que el vértice angular de dicha masa inercial pivotada (1) se localiza en el centro de su perforación (6) que se encuentra en el otro extremo del cuerpo curvado de la misma masa inercial pivotada (1).
6. La masa inercial pivotada según la reivindicación precedente, donde la perforación (7) es ligeramente curva para respetar el radio de giro de la masa inercial pivotada (1) respecto al vértice angular ubicado en el centro de su perforación (6).
7. Un volante de inercia "libre" con baja fricción en su rotación, caracterizado porque comprende: i) una masa inercial pivotada curvada (1), de conformidad con cualquiera de las reivindicaciones 4 a la 6;
ii) una masa inercial curvada (2) de contrapeso, de conformidad con cualquiera de las reivindicaciones 1 a la 3; y
iii) un soporte giratorio (3) configurado para sujetar, suspender y hacer girar a las masas inerciales (1 y 2), las cuales se unen opuestas entre sí, en el soporte giratorio (3).
8. El volante de la reivindicación anterior, donde el soporte giratorio (3) comprende: i) una pieza con cuatro extremidades (52) dispuestas de tal manera que facilite su acoplamiento en las entradas (4) y cavidades (5), de los extremos de las masas inerciales curvadas (1 y 2);
ii) una perforación (13) en cada punta de las extremidades de la pieza con cuatro extremidades (52), excepto en la punta de una de las extremidades; iii) una perforación (15) circundada con un borde superior (16), en la parte central de la pieza de cuatro extremidades (52), donde a su vez dicho borde (16) es provisto de dos perforaciones transversales (17) diametralmente opuestas;
iv) un perno fijo (14) en la punta de la extremidad sin perforación (13), el cual es colocado de tal manera que su eje lineal queda en posición ortogonal al plano formado por el soporte giratorio, donde los extremos del perno fijo (14) están insertados en la perforación alargada (7) de la masa inercial pivotada (1);
v) un perno pivote (21') con su respectivo rodamiento (51) que lo circunda, insertado en un ducto formado por la perforación (6) del cuerpo curvado de la masa inercial pivotada (1) y la perforación (13) de la pieza de cuatro extremidades (52), donde dicho rodamiento (51 ) queda alojado en la perforación (13) de la pieza (52);
vi) un elemento de sujeción (21 ) insertado en cada ducto formado por la perforación (6) del cuerpo curvado de la masa inercial (2) y la perforación (13) de la extremidad de la pieza (52), para sujetar a dicha masa inercial (2);
vii) una flecha (18) que proporciona el movimiento giratorio a la pieza de cuatro extremidades (52), se fija por medio de uno de sus extremos, en la perforación central (15), el cual también tiene dos perforaciones (19) diametralmente opuestas que coinciden con las perforaciones (17) del borde circular (16);
viii) un perno (20) de sujeción pasa transversalmente por las perforaciones (17) y (19), para sujetar la flecha (18) con la pieza de cuatro extremidades;
ix) una fuente de energía que proporciona el movimiento giratorio a la flecha (18); y
x) al menos, un elemento de acople (22) conecta la flecha (18) con la fuente de energía.
9. El volante de la reivindicación precedente, donde la fuente de energía es un actuador rotacional (47).
10. Una unidad mecánica cinética, para realiza un trabajo mediante el aprovechamiento de la fuerza centrífuga, caracterizada porque comprende, de manera colineal: i) un volante de inercia libre", de conformidad con cualquiera de las reivindicaciones 7 a la 9;
ii) un elemento pivotado que transforma el movimiento circular continuo, del volante de inercia "libre", a movimiento lineal; mediante el empuje que hace el elemento rodante (8) de la masa inercial pivotante (1), al elemento pivotado transformador de movimiento;
iii) un elemento receptor del movimiento lineal conectado al elemento transformador de movimiento; y
iv) un soporte fijo (27) que sustenta a: el volante de inercia libre, elemento pivotado transformador de movimiento y elemento receptor de movimiento lineal.
11. La unidad de la reivindicación anterior, donde el elemento pivotado transformador de movimiento es una leva.
12. La unidad de la reivindicación precedente, donde la leva, es una leva pivotada y curvada (23), la cual comprende: i) una prolongación elevada (24) en uno de sus extremos;
ii) una primera perforación (25) atraviesa longitudinalmente a la prolongación elevada (24);
iii) una barra pivote (35) con su respectivo rodamiento radial (36) insertada en la perforación (25), para fijar la leva pivotada (23) al soporte fijo (28), pero permitiendo a la dicha leva pivotada (23) tener movimiento angular; y
iv) una segunda perforación (26) ubicada a partir de la parte media de la leva pivotada (23) hacia el extremo opuesto a la perforación (25), para unir el elemento receptor del movimiento lineal.
13. La unidad de acuerdo con la reivindicación 10, donde el elemento receptor del movimiento lineal, es una corredera eslabonada (37).
14. La unidad de la reivindicación anterior, donde la corredera eslabonada (37) es: una biela, barra o "brazo" que se une a la leva pivotada (23), mediante un perno pivote (39) con su respectivo rodamiento radial (40), el cual se inserta en la perforación (26) de la leva pivotada (23) y en una perforación (38) que está en uno de los extremos de la corredera eslabonada (37); y el otro extremo de la corredera eslabonada (37) se le provee de una perforación (41).
15. La unidad de la reivindicación 10, donde el soporte fijo (27) comprende: i) una base plana rectangular (28);
ii) un anillo (29) fijo sobre uno de los extremos de la base plana rectangular (28), para conformar una cavidad circular donde se aloja el volante de inercia "libre" sin hacer contacto con las paredes internas del anillo (29); el anillo (29) tiene una ranura rectangular (30), en cuyos bordes longitudinales se proyecta perpendicularmente, una saliente semi circular (31), para formar una ranura-guía por donde hacen contacto el elemento rodante (8) y el elemento pivotado transformador de movimiento, el cual se ubica sobre la base plana (28) y muy cerca al anillo (29), de tal manera que una porción de dicho elemento pivotado se introduce en la ranura-guía;
iii) una perforación central (32) se localiza en el área de la base (28) que queda circundada por el anillo (29) por donde pasa el extremo de la flecha (18) que la sujeta a la pieza de cuatro extremidades (52); y
iv) una tapa superior (28') se requiere para cubrir, al menos, la parte superior del anillo (29) y al elemento pivotado transformador de movimiento (23).
16. La unidad de conformidad con la reivindicación anterior, caracterizada porque comprende: una extensión (33) en el extremo libre de la base plana (28) del soporte fijo (27); y una perforación (43) en un punto central en la unión de la base plana (28) y la extensión (33).
17. La unidad según las reivindicaciones 15 y 16, donde la tapa (28') tiene las mismas dimensiones y forma de la base plana rectangular (28) y su extensión (33).
18. Un sistema mecánico cinético, para realizar un trabajo mediante el aprovechamiento de la fuerza centrífuga, caracterizado porque comprende: i) una primera unidad mecánica cinética, para realiza un trabajo mediante el aprovechamiento de la fuerza centrífuga, de conformidad con las reivindicaciones 10 a la 17;
ii) una segunda unidad mecánica cinética, para realiza un trabajo mediante el aprovechamiento de la fuerza centrífuga, de conformidad con las reivindicaciones 10 a la 17, pera sin tapa superior (28'), sin flecha (18), ni fuente de energía; unida longitudinalmente a la base plana rectangular (28) y extensión (33), de la primera unidad mecánica cinética; donde la flecha (18) de la primera unidad mecánica cinética pasa por las perforaciones (15) y (32) de la segunda unidad mecánica cinética para dar movimiento giratorio al volante de inercia "libre" de la segunda unidad mecánica cinética;
iii) al menos, dos perforaciones (45) en las bases planas (28) de las unidades mecánicas cinéticas y en la tapa superior (28'), ubicadas de manera opuestas entre sí fuera del anillo (29);
iv) al menos, dos barras de compresión (46) con sus respectivos tornillos que aprietan y comprimen, se insertan cada una, en las perforaciones (45) de las bases planas (28) y de la tapa superior (28), para unir a presión a las unidades mecánicas cinéticas;
v) un cigüeñal (42) unido al elemento receptor de movimiento; para ello, los ejes de giro del cigüeñal (42) se insertan en las perforaciones (43), y las correderas eslabonadas (37) se conectan por medio de su perforación (41) en los puños del cigüeñal (42); y
vi) una carcasa (50) contiene y protege a los componentes del sistema mecánico cinético.
19. El sistema de la reivindicación anterior, donde el número de unidades mecánicas cinéticas es mayor a 2.
20. El sistema de acuerdo con la reivindicación 18, donde la fuente de energía está unida a la flecha (18).
21. El sistema según las reivindicaciones 18 y 20, donde la fuente de energía es un actuador rotacional (47).
22. El sistema de conformidad con las reivindicaciones 18 y 21 , donde la fuente de energía se coloca en uno de los extremos del cigüeñal (42), para ello, un copie dentado (48) une la flecha del actuador rotacional (47) con uno de los extremos del cigüeñal (42) y otra polea (22') se coloca en esta conexión, para transferir movimiento giratorio a la flecha (18), por medio de su polea (22) y una banda (49) conecta a ambas poleas (22 y 22').
23. El sistema de acuerdo con la reivindicación 18, caracterizado porque comprende una perforación (44) en la extensión (33), donde se introduce un lubricante para proporcionar una mejor lubricación al cigüeñal (42).
24. El sistema tal y como se reclama en las reivindicaciones 18 y 19, caracterizado porque comprende, más de un grupo de unidades mecánicas cinéticas.
25. El sistema de acuerdo con la reivindicación 18, donde el trabajo que realiza dicho sistema mecánico cinético es producir torque mediante el cigüeñal (42).
PCT/MX2018/000016 2018-02-22 2018-02-26 Volante de inercia, unidad y sistema mecánicos-cinéticos que aprovechan la fuerza centrífuga del volante de inercia WO2019164386A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2018/002258 2018-02-22
MX2018002258A MX2018002258A (es) 2018-02-22 2018-02-22 Volante de inercia, unidad y sistema mecánicos-cinéticos que aprovechan la fuerza centrífuga del volante de inercia.

Publications (1)

Publication Number Publication Date
WO2019164386A1 true WO2019164386A1 (es) 2019-08-29

Family

ID=67688425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2018/000016 WO2019164386A1 (es) 2018-02-22 2018-02-26 Volante de inercia, unidad y sistema mecánicos-cinéticos que aprovechan la fuerza centrífuga del volante de inercia

Country Status (2)

Country Link
MX (1) MX2018002258A (es)
WO (1) WO2019164386A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162539A1 (es) * 2020-02-11 2021-08-19 Castro Gonzalez Jose Guillermo Masas inerciales y volante de inercia que liberan fuerza centrífuga, para sistemas mecánicos cinéticos

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104948397A (zh) * 2014-03-28 2015-09-30 吴献桐 动力产生装置
WO2017217834A1 (es) * 2016-06-14 2017-12-21 BARRAZA SÁMANO, María Delia Aparato, mecanismo y máquina para comprimir fluidos gaseosos

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104948397A (zh) * 2014-03-28 2015-09-30 吴献桐 动力产生装置
WO2017217834A1 (es) * 2016-06-14 2017-12-21 BARRAZA SÁMANO, María Delia Aparato, mecanismo y máquina para comprimir fluidos gaseosos

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162539A1 (es) * 2020-02-11 2021-08-19 Castro Gonzalez Jose Guillermo Masas inerciales y volante de inercia que liberan fuerza centrífuga, para sistemas mecánicos cinéticos

Also Published As

Publication number Publication date
MX2018002258A (es) 2019-08-23

Similar Documents

Publication Publication Date Title
ES2377656B1 (es) Dispositivo para generar energía eléctrica a partir de pequeños movimientos.
CN101836013B (zh) 动能积蓄器和包括动能积蓄器的能量传输系统
WO2019164386A1 (es) Volante de inercia, unidad y sistema mecánicos-cinéticos que aprovechan la fuerza centrífuga del volante de inercia
ES2237174T3 (es) Transmision continuamente variable.
ES2629761B1 (es) Dispositivo para transformar energía del oleaje en energía eléctrica
US20050039556A1 (en) Rotational apparatus
BR112017012463B1 (pt) Isolador amortecedor e sistema de acionamento de acessórios por correia frontal
JP2008202726A (ja) レシプロエンジン用のバランサ機構
WO2003005801A1 (es) Dispositivo equilibrador y multiplicador de fuerzas aplicable a un vareador recolector mecánico portátil
JP7312466B2 (ja) 回転装置のための改善された機構
WO2020035747A1 (es) Mecanismo de acople para amplificación de torque
RU2004135713A (ru) Электрический генератор
US9059608B2 (en) Rotation assistance device, rotation assistance method, and power generation device
US20200076289A1 (en) Magnetic coupling and method
ES2583828B2 (es) Dispositivo para generar electricidad con medios magnéticos, mejorado
WO2017129843A1 (es) Dispositivo para generar electricidad
US20070137420A1 (en) Method and device for self-contained inertial vehicular propulsion
RU2076241C1 (ru) Инерционное движущее устройство иду-4
WO2018178421A2 (es) Mecanismo de accionamiento de un volante de inercia
ES2389791B1 (es) Dispositivo generador de movimiento de giro
US20050022620A1 (en) Propulsion device employing conversion of rotary motion into a unidirectional linear force
JP4535361B2 (ja) 回転動力伝達装置
WO1999057462A1 (en) Modulated diameter mass slider propulser
ES2304877B1 (es) Actuador de un elemento de trabajo principalmente de un robot movil para el transporte sobre una plataforma especial de personas y/o cosas ysu metodo de control.
JP2024523427A (ja) 動力生成、送達、増幅、および/または蓄積、のためのシステムおよび方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907363

Country of ref document: EP

Kind code of ref document: A1