WO2021162430A1 - 판형 조화 감속기 - Google Patents

판형 조화 감속기 Download PDF

Info

Publication number
WO2021162430A1
WO2021162430A1 PCT/KR2021/001741 KR2021001741W WO2021162430A1 WO 2021162430 A1 WO2021162430 A1 WO 2021162430A1 KR 2021001741 W KR2021001741 W KR 2021001741W WO 2021162430 A1 WO2021162430 A1 WO 2021162430A1
Authority
WO
WIPO (PCT)
Prior art keywords
spline member
central axis
flex spline
wave generator
toothed portion
Prior art date
Application number
PCT/KR2021/001741
Other languages
English (en)
French (fr)
Inventor
박재흥
유승빈
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US17/797,394 priority Critical patent/US20230088852A1/en
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to JP2022548934A priority patent/JP7441958B2/ja
Publication of WO2021162430A1 publication Critical patent/WO2021162430A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • F16H2049/003Features of the flexsplines therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H2049/006Wave generators producing a non-elliptical shape of flexsplines, i.e. with a qualified different shape than elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • F16H55/0833Flexible toothed member, e.g. harmonic drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a plate-type roughened reducer, and more particularly, to a plate-shaped roughened reducer that can be designed more simply and reduce manufacturing cost.
  • a harmonic reducer is used together with an RV reducer and a planetary gear.
  • FIGS. 1 and 2 are diagrams showing the structure of a conventional harmonic speed reducer. The principle of the conventional harmonic reducer will be described with reference to FIGS. 1 and 2 .
  • Existing harmonic gear reducer consists of three main parts except for shaft and bearing. That is, the outermost circular spline member 10, the flex spline member 20 in the middle, and the wave generator member 30 in the center.
  • the flex spline member 20 is made of a deformable material such as, for example, an elastic metal or an elastic rigid body.
  • the first toothed portion 12 is provided on the inside of the circular spline member 10
  • the second toothed portion 22 is provided on the outside of the flex spline member 20 .
  • the first toothed portion 12 and the second toothed portion 22 have a certain number of teeth with each other, and the number of teeth of the first toothed portion 12 and the number of teeth of the second toothed portion 22 are different from each other.
  • the wave generator member 30 is connected to a predetermined input terminal, and the flex spline member 20 is connected to a predetermined output terminal.
  • the circular spline member 10 may be connected to a predetermined housing.
  • the wave generator member 30 When the input power T1 is input to the wave generator member 30 , the wave generator member 30 may rotate as indicated by an arrow R1 .
  • the first toothed portion 12 and the second toothed portion 22 are meshed with each other at the meshing portions D1 and D2. Therefore, when the wave generator member 30 rotates, due to the difference in the number of teeth between the first toothed portion 12 and the second toothed portion 22, the flex spline member 20 rotates as indicated by the arrow R2 and rotates at the output end.
  • the rotational angular velocity of the output stage is decelerated by a reduction ratio of a certain ratio compared to the rotational angular velocity of the input stage.
  • Such a harmonic reducer is widely used because it has advantages such as high reduction ratio, rotational precision, zero backlash, small size and light weight.
  • the conventional harmonic reducer does not sufficiently solve these problems.
  • the rotation direction of the input end and the rotation direction of the output end are opposite to each other.
  • the conventional harmonic reducer has a flex spline member 20 in the form of a cup, and has a relatively large vertical width (T). Accordingly, there is a problem in that it is difficult to design a thin harmonic reducer.
  • the present invention is to solve the technical limitations of the prior art, and an object of the present invention is to provide a plate-type harmonic reducer in which the design is simpler and the manufacturing cost can be reduced by solving the above problems.
  • the plate-shaped roughening reducer includes: a circular spline member in the form of a disk having a first central axis and a predetermined radius; a flex spline member configured in a disk shape having a second central axis and a predetermined radius and made of an elastic material; and a wave generator member having a third central axis;
  • the flex spline member is positioned on the circular spline member, the wave generator member is positioned on the flex spline member, and the first central axis, the second central axis, and the third central axis are collinear with each other;
  • the circular spline member includes a first toothed portion, wherein the first toothed portion is formed on an upper surface of the circular spline member and is formed along an outer periphery of the circular spline member,
  • the flex spline member includes a second toothed portion, wherein the second toothed portion is formed on a lower surface of the flex-spline member and is formed along an outer periphery of the flex-spline member,
  • the first toothed portion and the second toothed portion are positioned to overlap in the vertical direction
  • the wave generator member presses at least a portion of the flex spline member so that at least a portion of the first toothed portion and at least a portion of the second toothed portion are engaged with each other,
  • the wave generator member is connected to a predetermined input terminal and is rotatable, the flex spline member is connected to a predetermined output terminal, and the rotation speed of the output terminal is a predetermined reduction ratio compared to the rotation speed of the input terminal. and is slowed down
  • the wave generator member is configured in the form of a bar extending in a horizontal direction, and protrudes downward from one end of the wave generator member and the other end in the opposite direction about the third central axis. is provided with a pressing protrusion, the pressing protrusion is positioned on the second gear portion of the flex spline member, the first gear portion and the second gear portion, the portion positioned under the pressing protrusion is meshed with each other.
  • the center shaft further comprising, the center shaft is connected to the second central axis of the flex spline member, the flex spline member and the center shaft rotate integrally.
  • the circular spline member has a first through-hole penetrating vertically through a center thereof, and the center shaft extends downwardly through the first through-hole.
  • a first bearing member through which the center shaft passes vertically is disposed in the first through hole.
  • the wave generator member has a third through-hole penetrating vertically through a center thereof, and the center shaft extends upwardly through the third through-hole.
  • a second bearing member through which the center shaft passes vertically is disposed in the third through hole.
  • the circular spline member has a first inclined surface inclined downward toward the radially outer side with respect to the first central axis on the upper surface thereof.
  • the flex spline member has a 2-1 inclined surface inclined downward toward the radially outward side with respect to the second central axis on the lower surface thereof.
  • the circular spline member has a first inclined surface inclined downward toward the radially outward side with respect to the first central axis on the upper surface
  • the flex spline member is, the second center on the lower surface It has a 2-1 inclination surface that is inclined downward toward an outer side in a radial direction with respect to the axis, and the inclination angles of the first inclined surface and the 2-1 inclined surface are different from each other.
  • the flex spline member has a 2-2 inclined surface inclined downward toward the radial direction outward with respect to the second central axis on the upper surface.
  • the wave generator member is configured in the form of a bar extending in a horizontal direction, and one end and the other end of the wave generator member are provided with a pressing roller, respectively, and the pressing roller is a part of the flex spline member. Located on the second gear, the first gear and the second gear, the portion positioned below the pressing roller meshes with each other.
  • an elliptical wave generator member is positioned at the center.
  • This structure becomes a form which fills all the inside of the circular spline member of a harmonic reducer. Accordingly, the wave generator has a large volume and weight.
  • the elliptical wave generator member of the harmonic reducer according to the prior art has a structure in which deformation is continuously applied to the ball bearing as well as the flex spline member for elastic deformation. Accordingly, the life and precision of the bearing may deteriorate.
  • a cup-shaped flex spline member is required, so there is a limitation in providing a thin roughened reducer.
  • the plate-shaped roughening reducer according to the embodiment of the present invention removes the elliptical wave generator member of the conventional plate-shaped roughening reducer, it is possible to achieve weight reduction and miniaturization.
  • the plate-type roughened reducer according to the embodiment of the present invention profile design is also easier compared to the conventional roughened reducer.
  • the life and precision of the bearing can be constantly maintained.
  • the plate-type roughening reducer according to the embodiment of the present invention removes the cup-shaped flex spline member and uses a plate-shaped flex spline member, it is possible to provide a thin plate-type roughened reducer.
  • the flex spline member of the roughening speed reducer since the flex spline member of the roughening speed reducer according to the prior art is configured in a cylindrical shape, there is a disadvantage in that it is press-fitted into a mold made of a tooth shape to form a tooth while rotating.
  • the flex spline member of the plate-shaped roughening reducer according to the embodiment of the present invention has an advantage in manufacturing that it is completed in one station (one time stamping and molding is completed).
  • the plate-type roughening reducer according to the embodiment of the present invention due to such a manufacturing process, it is possible to control the assembly precision that affects the performance through the axial clearance or preload. Therefore, the plate-shaped roughening reducer according to the embodiment of the present invention has relatively low machining precision required to achieve the same performance standard. That is, the plate-shaped roughening reducer according to the embodiment of the present invention does not have an elliptical shape processing process, and the required precision for each part is also relatively low. Therefore, the plate-shaped roughening reducer according to the embodiment of the present invention has superior production efficiency and can reduce the manufacturing cost during mass production.
  • the harmonic reducer according to the prior art has a disadvantage in that a large deformation must be caused in a local area.
  • the area of the flex spline member causing elastic deformation is large. Therefore, in the plate-shaped roughening reducer according to the embodiment of the present invention, since stress concentration in the elastically deformed region is less, torque efficiency may be improved and metal fatigue accumulation may be reduced.
  • the roughening reducer according to the prior art directly increases the length in the axial direction when the contact surface is increased, it has a disadvantage in that it is difficult to meet the requirements required in the market. This makes it difficult to change the contact angle, contact area, and the like for improving the meshing of the gears.
  • the plate-type roughened reducer according to the embodiment of the present invention since the contact area is determined in the direction from the edge of the circle to the center, it is easy to change the design according to the necessary requirements. Therefore, the plate-type roughened reducer according to the embodiment of the present invention has a strength in terms of tooth design, which is one of the difficult key design issues in designing the plate-type roughened reducer.
  • the plate-shaped roughening reducer according to an embodiment of the present invention is designed to have an inclined plane effect in which a vertical upward and downward force is transmitted as a horizontal rotational force in the process of meshing the circular spline member and the flex spline member. Accordingly, the plate-shaped roughened reducer according to the embodiment of the present invention may have a simple tooth shape design compared to the roughened reducer according to the prior art.
  • 1 and 2 are views showing the structure of a coarse speed reducer according to the prior art.
  • FIG. 3 and 4 are views showing the disassembled structure of the plate roughening speed reducer according to the first embodiment of the present invention from different angles, and FIG. 5 is a cross-sectional view of FIG. 4 .
  • FIG. 6 is a cross-sectional view showing a state in which the flex spline member is placed on the circular spline member of the plate-shaped roughening speed reducer according to the first embodiment of the present invention.
  • FIG. 7 is a view showing the operation of the plate-type roughening reducer according to an embodiment of the present invention
  • FIG. 8 is an enlarged view of part A of FIG. 7 .
  • FIG. 9 and 10 are views showing the disassembled structure of the plate roughening reducer according to the second embodiment of the present invention from different angles, respectively, and FIG. 11 is a coupling view of the plate roughening reducer according to the second embodiment of the present invention.
  • the plate-shaped roughening reducer includes: a circular spline member in the form of a disk having a first central axis and a predetermined radius; a flex spline member configured in a disk shape having a second central axis and a predetermined radius and made of an elastic material; and a wave generator member having a third central axis;
  • the flex spline member is positioned on the circular spline member, the wave generator member is positioned on the flex spline member, and the first central axis, the second central axis, and the third central axis are collinear with each other;
  • the circular spline member includes a first toothed portion, wherein the first toothed portion is formed on an upper surface of the circular spline member and is formed along an outer periphery of the circular spline member,
  • the flex spline member includes a second toothed portion, wherein the second toothed portion is formed on a lower surface of the flex-spline member and is formed along an outer periphery of the flex-spline member,
  • the first toothed portion and the second toothed portion are positioned to overlap in the vertical direction
  • the wave generator member presses at least a portion of the flex spline member so that at least a portion of the first toothed portion and at least a portion of the second toothed portion are engaged with each other,
  • FIG. 3 and 4 are views showing the disassembled structure of the plate roughening speed reducer 1 according to the first embodiment of the present invention from different angles, respectively, and FIG. 5 is a cross-sectional view of FIG. 4 .
  • the circular spline member 100 is configured as a disk-shaped member. Accordingly, the circular spline member 100 has a predetermined radius with the first central axis C1.
  • the first inclined surface 110 inclined downwardly toward the outside in the radial direction with respect to the first central axis C1 as the center may be formed.
  • the first inclined surface 110 may have a predetermined inclination angle.
  • the first through hole 130 penetrating up and down may be formed in the center of the circular spline member 100 .
  • a first bearing member 500 may be inserted into the first through hole 130 .
  • a first toothed portion 120 is formed on the outer periphery of the upper surface of the circular spline member 100 .
  • the first toothed portion 120 is formed along the outer circumference of the upper surface of the circular spline member 100 .
  • the first tooth portion 120 may have a configuration in which upwardly protruding teeth are repeatedly formed along the circumferential direction of the circular spline member 100 .
  • the first toothed portion 120 has a predetermined number of teeth N1 .
  • the flex spline member 200 is configured as a disk-shaped member. Accordingly, the flex spline member 200 has a predetermined radius with the second central axis C2.
  • the flex spline member 200 is formed to be elastically deformable. That is, the flex spline member 200 may be made of an elastically deformable material. For example, the flex spline member 200 may be made of an elastic metal or synthetic resin material.
  • a 2-1 inclined surface 210 that is inclined downwardly toward the outside in the radial direction with respect to the second central axis C2 as a center may be formed.
  • the 2-1 inclined surface 210 may have a predetermined inclination angle.
  • a 2-2 inclined surface 212 that is inclined downwardly toward the outside in the radial direction with respect to the second central axis C2 as a center may be formed on the upper surface of the circular spline member 100 .
  • the 2-2nd inclined surface 212 may have a predetermined inclination angle.
  • the inclination angles of the second-first inclined surface 210 and the second-second inclined surface 212 may be the same. According to an embodiment, the inclination angles of the second-first inclined surface 210 and the second-second inclined surface 212 may be different from each other.
  • the inclination angles of the first inclined surface 110 and the 2-1 inclined surface 210 may be the same or different.
  • a second through hole 230 penetrating up and down may be formed in the center of the flex spline member 200 .
  • a center shaft 400 to be described later may be connected to the second through hole 230 .
  • a second toothed portion 220 is formed on the outer periphery of the lower surface of the flex spline member 200 .
  • the second gear 220 is formed along the outer circumference of the lower surface of the flex spline member 200 .
  • the second gear unit 220 may have a configuration in which gears protruding in the downward direction are repeatedly formed along the circumferential direction of the flex spline member 200 .
  • the second gear portion 220 has a predetermined number of teeth N2.
  • the wave generator member 300 may be configured as a bar-shaped member extending with a predetermined length in a horizontal direction.
  • a third central axis C3 may be provided at the longitudinal center of the wave generator member 300 .
  • a pressing protrusion 320 protruding downward may be provided at one end and the other end in the horizontal direction (length direction) of the wave generator member 300 .
  • the pressing protrusion 320 is composed of a portion that more protrudes downward than the other portions.
  • the third inclined surface 322 may be formed on the lower surface of the wave generator member 300 . That is, the lower surface of the wave generator member 300 may be configured as an inclined surface that descends from the third central axis C3 of the wave generator member 300 toward the outer end. Accordingly, an outer end portion of the wave generator member 300 may protrude downward than other portions, and the protruding portion may constitute the pressing protrusion 320 .
  • a third through hole 310 penetrating in the vertical direction may be formed in the longitudinal center of the wave generator member 300 .
  • a second bearing member 600 may be provided in the third through hole 310 .
  • the center shaft 400 is a predetermined shaft extending in the vertical direction.
  • the center shaft 400 may be connected to the second central axis C2 of the flex spline member 200 to extend in the vertical direction. Accordingly, the center shaft 400 rotates integrally with the flex spline member 200 .
  • the center shaft 400 may be provided with a predetermined fixing means 410 that can be fixed to the flex spline member 200 .
  • the flex spline member 200 is positioned on the circular spline member 100 , and the wave generator member 300 is positioned on the flex spline member 200 .
  • the second toothed portion 220 of the flex spline member 200 is positioned on the first toothed portion 120 of the circular spline member 100 .
  • FIG. 6 is a cross-sectional view showing a state in which the flex spline member 200 is placed on the circular spline member 100 of the plate-shaped roughening reducer 1 according to the first embodiment of the present invention.
  • the inclination angle ⁇ 1 of the first inclined surface 110 and the inclination angle ⁇ 2 of the 2-1 inclined surface 210 may be different from each other.
  • the first central axis C1 and the second central axis C2 are positioned on the same line.
  • the gap S may become larger toward the radially outward side from the central axes C1 and C2. .
  • the contact friction between the circular spline member 100 and the flex spline member 200 is minimized, and the design is simpler. can be done
  • the pressing protrusion 320 of the wave generator member 300 is positioned over a portion of the second tooth 220 of the flex spline member 200 .
  • the center shaft 400 may be inserted into and coupled to the second through hole 230 of the flex spline member 200 .
  • the center shaft 400 and the flex spline member 200 may rotate integrally.
  • the center shaft 400 extends in the vertical direction of the flex spline member 200 at the same time, but the present invention is not limited thereto.
  • the center shaft 400 may extend upward, downward, or vertically of the flex spline member 200 .
  • the center shaft 400 When the center shaft 400 extends upward of the flex spline member 200 , it may pass through the third through hole 310 and the second bearing member 600 of the wave generator member 300 .
  • the center shaft 400 When the center shaft 400 extends downward of the flex spline member 200 , it may pass through the first through hole 130 and the first bearing member 500 of the circular spline member 100 .
  • first central axis C1 of the circular spline member 100 the second central axis C2 of the flex spline member 200 , and the third central axis C3 of the wave generator member 300 are collinear It can be located in the coaxial configuration.
  • FIG. 7 is a view showing the operation of the plate-shaped roughening reducer 1 according to an embodiment of the present invention
  • FIG. 8 is an enlarged view of part A of FIG. 7 .
  • FIG. 8 is illustrated somewhat exaggeratedly for clear understanding.
  • the wave generator member 300 is connected to a predetermined input terminal.
  • the input terminal is connected to a rotary power unit such as a predetermined motor. Accordingly, the wave generator member 300 may rotate at a predetermined angular velocity about the third central axis C3 by the input power input from the rotational power unit.
  • the flex spline member 200 is connected to a predetermined output terminal. More precisely, the flex spline member 200 may be connected to the center shaft 400 and may be connected to an output terminal through the center shaft 400 . Of course, the center shaft 400 itself may be an output terminal.
  • the center shaft 400 may extend upwardly, downwardly, or vertically of the flex spline member 200 . Accordingly, the output stage may be located above or below the plate-shaped harmonic reducer 1 .
  • the pressing protrusion 320 of the wave generator member 300 deforms at least a portion (deformation portion) of the flex spline member 200 by pressing the flex spline member 200 .
  • the deformable portion is a portion of a portion where the second toothed portion 220 is formed.
  • the deformable portion meshes with the first toothed portion 120 of the circular spline member 100 positioned below.
  • the portions positioned below the pressing protrusion 320 are meshing portions D1 and D2 that are meshed with each other. ) becomes In addition, power may be transmitted by the meshing portions D1 and D2.
  • the second gear portion 220 of the flex spline member 200 is located below the pressing protrusion 320 of the wave generator member 300 . Only a portion is elastically partially engaged with the first toothed portion 120 of the circular spline member 100 .
  • the wave generator member 300 is connected to a predetermined input terminal.
  • the input terminal is connected to a rotary power unit such as a predetermined motor. Accordingly, by the input power T1 transmitted from the rotary power unit, the wave generator member 300 may rotate at a predetermined angular speed as indicated by the arrow R1 about the third central axis C3.
  • the pressing protrusion 320 presses and deforms the flex spline member 200 to form a portion of the first toothed portion 120 and the second toothed portion 220 (the portion below the pressing protrusion 320). meshing, and generating meshing portions D1 and D2.
  • the meshing portions D1 and D2 where the first toothed portion 120 and the second toothed portion 220 are meshed with each other circulate along the rotational direction of the wave generator.
  • the number of teeth (N2) of the second toothed portion 220 of the flex spline member 200 is 52
  • the number of teeth (N1) of the first toothed portion 120 of the circular spline member 100 is 50.
  • the wave generator member 300 rotates on the circular spline member 100 by one will be considered. Since the circular spline member 100 is relatively fixed, the pressing protrusion 320 of the wave generator member 300 has the same tooth position of the circular spline member 100 when 50 teeth of the first toothed portion 120 pass. will return to However, the flex spline member 200 does not come to the same gear position, which is located at the position where the rotation started, even after passing 50 gears. In order to resolve this discrepancy, the flex spline member 200 and the center shaft 400 connected to the flex spline member 200 rotate the wave generator by an angle corresponding to two teeth of the flex spline member 200 for each rotation of the axis of rotation. rotates in the direction of rotation.
  • the flex spline member 200 is coupled to the center shaft 400 , and an output terminal is connected to the center shaft 400 .
  • N2 of the second toothed portion 220 of the flex spline member 200 is 52
  • N1 of the first toothed portion 120 of the circular spline member 100 is 50
  • one rotation of the center shaft 400 is performed every 26 rotations of the wave generator connected to the input terminal. Therefore, rotational power transmission with a large reduction ratio of 1/26 is achieved.
  • the reduction ratio may be selected by selecting the number of teeth of the second toothed portion 220 of the flex spline member 200 and the number of teeth of the first toothed portion 120 of the circular spline member 100, respectively. For example, if the second toothed portion 220 of the flex spline member 200 has 102 teeth, and the first toothed portion 120 of the circular spline member 100 has 100 teeth, 1/50 of Reduction ratio can be implemented.
  • an elliptical wave generator member is positioned at the center.
  • This structure becomes a form which fills all the inside of the circular spline member of a harmonic reducer. Accordingly, the wave generator has a large volume and weight.
  • the elliptical wave generator member of the harmonic reducer according to the prior art has a structure in which deformation is continuously applied to the ball bearing as well as the flex spline member for elastic deformation. Accordingly, the life and precision of the bearing may deteriorate.
  • the plate-shaped roughening reducer 1 removes the wave generator member 300 having an elliptical shape in the prior art, it is possible to achieve weight reduction and miniaturization.
  • the profile design is also easier compared to the conventional plate-type coarse gear reducer (1).
  • the life and precision of the ball bearing can be kept constant.
  • the plate-shaped roughening reducer 1 having a thin thickness can be provided.
  • the flex spline member of the roughening speed reducer since the flex spline member of the roughening speed reducer according to the prior art is configured in a cylindrical shape, there is a disadvantage in that it is press-fitted into a mold made of a tooth shape to form a tooth while rotating.
  • the flex spline member 200 of the plate-shaped roughening reducer 1 has an advantage in manufacturing that it is completed in one station (one time stamping and molding is completed).
  • this manufacturing process it is possible to control assembly precision, which affects performance through axial clearance or preload. Therefore, the required machining precision to achieve the same performance standard is relatively low. That is, there is no oval shape processing process, and the required precision for each part is also relatively low. Therefore, in mass production, the production efficiency is superior and the manufacturing cost can be reduced.
  • the harmonic reducer according to the prior art has a disadvantage in that a large deformation must be caused in a local area.
  • the area of the flex spline member 200 causing elastic deformation is large. Therefore, the torque efficiency can be improved and the fatigue accumulation of the metal can be reduced because the stress concentration in the elastically deformed region is less.
  • the roughening reducer according to the prior art directly increases the length in the axial direction when the contact surface is increased, it has a disadvantage in that it is difficult to meet the requirements required in the market. This makes it difficult to change the contact angle, contact area, etc. for improving the meshing of the gears.
  • the plate-shaped roughening reducer 1 since the contact area is determined in the direction from the edge of the circle to the center, it is easy to change the design according to the required requirements. Therefore, it has strength in the tooth design, which is one of the difficult key design issues in the design of the harmonic reducer.
  • the vertical upward and downward force is transmitted as a horizontal rotational force. designed to be effective. Accordingly, the tooth design can be simplified as compared to the harmonic reducer according to the prior art.
  • the rotation direction of the input terminal and the rotation direction of the output terminal may be the same.
  • the input shaft of the input terminal and the output shaft of the output terminal may be positioned on the same straight line. Therefore, the plate-type roughening reducer 1 according to the embodiment of the present invention can be installed and used where power transmission is required in the same rotational direction with a high reduction ratio.
  • FIG. 9 and 10 are views showing the disassembled structure of the plate-shaped roughening reducer 2 according to the second embodiment of the present invention from different angles, respectively, and Fig. 11 is the plate-shaped roughening reducer 2 according to the second embodiment of the present invention. is a drawing of a combination of
  • the plate-shaped roughening reducer 2 according to the second embodiment corresponds to the plate-shaped roughening reducer 1 according to the first embodiment, and a circular spline member 100 , a flex spline member 200 , and a wave generator member 700 . , and a center shaft 400 .
  • the configuration of the circular spline member 100 , the flex spline member 200 , and the center shaft 400 may be the same as that of the first embodiment. Therefore, the overlapping description will be described, and only the description of the wave generator member 700 having a configuration different from that of the first embodiment will be described.
  • the wave generator member 700 of the plate-shaped roughening reducer 2 according to the second embodiment may include a rotating body 710 and a pressing roller 720 .
  • the rotating body 710 may be formed of a bar-shaped member extending with a predetermined length in the horizontal direction.
  • a third central axis C3 may be provided at the longitudinal center of the rotating body 710 .
  • a connection shaft 714 protruding in the longitudinal direction of the rotating body 710 may be provided at one end and the other end in the longitudinal direction of the rotating body 710 .
  • the pressing roller 720 is connected to the connecting shaft 714 .
  • the pressing roller 720 is rotatable about a central axis extending in the longitudinal direction of the rotating body 710 .
  • the pressing roller 720 may include a rolling bearing 730 connected to the connecting shaft 714 , and a roller body 740 coupled to an outer periphery of the rolling bearing 730 .
  • the bottom surface of the pressing roller 720 protrudes downward than the bottom surface of the rotating body 710 .
  • the pressing roller 720 moves the flex spline member 200 downward.
  • the pressing roller 720 is a radial roller rotating about a radial axis extending in a direction orthogonal to the third central axis while applying pressure in the direction of the third central axis C3 as another concept. (radial roller).
  • the pressing roller 720 may be positioned on the second toothed portion 220 of the flex spline member 200 to mesh the second toothed portion 220 and the first toothed portion 120 with each other.
  • the pressing roller 720 rolls and revolves on the flex spline member 200 about the third central axis C3 .
  • the pressing roller 720 achieves substantially the same function as the pressing protrusion 320 of the wave generator member 300 of the plate-shaped roughening reducer 1 according to the first embodiment. However, since the pressing roller 720 rolls and revolves on the flex spline member 200, friction may occur less.

Abstract

본 발명은, 판형 조화 감속기에 관한 것으로서, 보다 상세하게는 설계가 보다 간단하고 제조 단가가 절감될 수 있는 판형 조화 감속기에 관한 것이다.

Description

판형 조화 감속기
본 발명은, 판형 조화 감속기에 관한 것으로서, 보다 상세하게는 설계가 보다 간단하고 제조 단가가 절감될 수 있는 판형 조화 감속기에 관한 것이다.
로봇의 제어 및 작동에 사용되는 감속기로서, RV 감속기, 유성 기어와 함께 조화 감속기(harmonic reducer)가 사용되고 있다.
도 1, 2 는 기존의 조화 감속기의 구조를 나타낸 도면이다. 도 1, 2 를 참조하여 기존의 조화 감속기의 원리를 설명하면 이하와 같다.
기존의 조화 감속기는, 샤프트와 베어링을 제외하면 세 가지 주요 부품으로 구성된다. 즉, 최 외측의 서큘러 스플라인 부재(10), 가운데의 플렉스 스플라인 부재(20), 및 중심부의 웨이브 제네레이터 부재(30)이다. 플렉스 스플라인 부재(20)는, 예컨대 탄성 금속, 탄성 강체 등과 같이 변형 가능한 재질로 구성된다.
서큘러 스플라인 부재(10)의 내측에는 제1 치차부(12)가 구비되며, 플렉스 스플라인 부재(20)의 외측에는 제2 치차부(22)가 구비된다.
제1 치차부(12)와 제2 치차부(22)는 서로 일정 수의 치차수를 가지며, 제1 치차부(12)의 치차수와 제2 치차부(22)의 치차수는 서로 차이를 갖는다.
웨이브 제네레이터 부재(30)는 소정의 입력단에 연결되며, 플렉스 스플라인 부재(20)는 소정의 출력단에 연결된다. 아울러, 서큘러 스플라인 부재(10)는 소정의 하우징에 연결될 수 있다.
웨이브 제네레이터 부재(30)에 입력 동력(T1)이 입력되면, 웨이브 제네레이터 부재(30)가 화살표 R1 과 같이 회전할 수 있다. 제1 치차부(12)와 제2 치차부(22)는 치합 부분(D1, D2)에서 서로 치합된다. 따라서, 웨이브 제네레이터 부재(30)가 회전하면, 제1 치차부(12)와 제2 치차부(22) 사이의 치차수 차이로 인해서, 플렉스 스플라인 부재(20)가 화살표 R2 와 같이 회전하며 출력단에 출력 동력(T2)을 출력한다.
이때, 제1 치차부(12)와 제2 치차부(22) 사이의 치차수 차이로 인해서, 출력단의 회전 각속도는 입력단의 회전 각속도에 비해서 일정한 비율의 감속비로 감속된다.
이와 같은 조화 감속기는, 고감속비, 회전정밀도, Zero backlash, 소형 및 경량화 등의 장점을 가지고 있기 때문에 폭넓게 사용되고 있다.
그러나 타원형의 웨이브 제네레이터 부재(30)의 프로파일 설계가 어렵고, 제조 공정이 복잡한 단점이 있다. 또한, 로봇 관절부는 경량화되고 부피가 작을수록 제어가 용이하며, 우수한 토크 효율이나 저소음 등 추구해야 할 해결 과제가 많은데, 종래의 조화 감속기는 이러한 해결 과제를 충분히 해결해 주지 못하는 실정이다. 아울러, 종래의 조화 감속기는, 입력단의 회전 방향과 출력단의 회전 방향이 서로 반대이다.
또한, 기존의 조화 감속기는, 도 1 에 도시된 바와 같이, 플렉스 스플라인 부재(20)가 컵 형태로서, 비교적 큰 상하 폭(T)을 갖는다. 따라서, 박형의 조화 감속기 설계가 어려운 문제가 있다.
따라서, 상기 문제를 해결할 수 있는 조화 감속기의 개발이 필요하다.
본 발명은 전술한 종래기술의 기술적 한계를 해결하기 위한 것으로서, 본 발명의 목적은, 상기 문제점을 해결하여 설계가 보다 간단하고 제조 단가가 절감될 수 있는 판형 조화 감속기를 제공하는 것이다.
본 발명의 일 실시예에 의한 판형 조화 감속기는, 제1 중심축과 소정의 반경을 갖는 원반 형태의 서큘러 스플라인 부재; 제2 중심축과 소정의 반경을 갖는 원반 형태로 구성되며 탄성 재질로 구성되는 플렉스 스플라인 부재; 및 제3 중심축을 갖는 웨이브 제네레이터 부재;를 포함하고,
상기 플렉스 스플라인 부재는 상기 서큘러 스플라인 부재 상에 위치하며, 상기 웨이브 제네레이터 부재는 상기 플렉스 스플라인 부재 상에 위치하고, 상기 제1 중심축과 제2 중심축, 및 제3 중심축은 서로 동일 선상에 위치하고,
상기 서큘러 스플라인 부재는 제1 치차부를 포함하고, 상기 제1 치차부는 상기 서큘러 스플라인 부재의 상면에 형성되며 상기 서큘러 스플라인 부재의 외측 둘레를 따라서 형성되고,
상기 플렉스 스플라인 부재는 제2 치차부를 포함하고, 상기 제2 치차부는 상기 플렉스 스플라인 부재의 하면에 형성되며 상기 플렉스 스플라인 부재의 외측 둘레를 따라서 형성되며,
상기 제1 치차부와 상기 제2 치차부는 상하 방향으로 겹쳐지게 위치하고,
상기 웨이브 제네레이터 부재는, 상기 플렉스 스플라인 부재의 적어도 일 부분을 가압하여, 상기 제1 치차부의 적어도 일 부분과 상기 제2 치차부의 적어도 일 부분이 서로 치합되도록 하며,
상기 웨이브 제네레이터 부재가 상기 제3 중심축을 중심으로 하여 회전하면 상기 제1 치차부와 상기 제2 치차부가 서로 치합되는 부분이 가변하며, 상기 제1 치차부의 치차수와 상기 제2 치차부의 치차수는 서로 상이하다.
일 실시예에 의하면, 상기 웨이브 제네레이터 부재는 소정의 입력단과 연결되어 회전 가능하고, 상기 플렉스 스플라인 부재는 소정의 출력단과 연결되며, 상기 출력단의 회전 속도는 상기 입력단의 회전 속도에 비해 소정의 감속비를 가지며 감속된다.
일 실시예에 의하면, 상기 웨이브 제네레이터 부재는, 수평 방향으로 연장되는 바 형태로 구성되며, 상기 제3 중심축을 중심으로 하여, 상기 웨이브 제네레이터 부재의 일 단부와, 반대 방향 타 단부에는 하방향으로 돌출되는 프레싱 돌부가 구비되고, 상기 프레싱 돌부는 상기 플렉스 스플라인 부재의 제2 치차부 위에 위치하여, 상기 제1 치차부와 상기 제2 치차부는, 상기 프레싱 돌부 아래에 위치하는 부분이 서로 치합된다.
일 실시예에 의하면, 센터 샤프트;를 더 포함하고, 상기 센터 샤프트는 상기 플렉스 스플라인 부재의 상기 제2 중심축에 연결되어, 상기 플렉스 스플라인 부재와 상기 센터 샤프트가 일체로 회전한다.
일 실시예에 의하면, 상기 서큘러 스플라인 부재는 중심에 상하로 관통된 제1 관통공을 갖고, 상기 센터 샤프트는 상기 제1 관통공을 관통하여 하방향으로 연장된다.
일 실시예에 의하면, 상기 제1 관통공 내에는, 상기 센터 샤프트가 상하로 관통되는 제1 베어링 부재가 배치된다.
일 실시예에 의하면, 상기 웨이브 제네레이터 부재는 중심에 상하로 관통된 제3 관통공을 갖고, 상기 센터 샤프트는 상기 제3 관통공을 관통하여 상방향으로 연장된다.
일 실시예에 의하면, 상기 제3 관통공 내에는, 상기 센터 샤프트가 상하로 관통되는 제2 베어링 부재가 배치된다.
일 실시예에 의하면, 상기 서큘러 스플라인 부재는, 상면에 상기 제1 중심축을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제1 경사면을 갖는다.
일 실시예에 의하면, 상기 플렉스 스플라인 부재는, 하면에 상기 제2 중심축을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제2-1 경사면을 갖는다.
일 실시예에 의하면, 상기 서큘러 스플라인 부재는, 상면에 상기 제1 중심축을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제1 경사면을 갖고, 상기 플렉스 스플라인 부재는, 하면에 상기 제2 중심축을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제2-1 경사면을 가지며, 상기 제1 경사면과 상기 제2-1 경사면의 경사각은 서로 상이하다.
일 실시예에 의하면, 상기 플렉스 스플라인 부재는, 상면에 상기 제2 중심축을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제2-2 경사면을 갖는다.
일 실시예에 의하면, 상기 웨이브 제네레이터 부재는, 수평 방향으로 연장되는 바 형태로 구성되며, 상기 웨이브 제네레이터 부재의 일 단과 타 단에는 각각 프레싱 롤러가 구비되고, 상기 프레싱 롤러는, 상기 플렉스 스플라인 부재의 제2 치차부 위에 위치하여, 상기 제1 치차부와 상기 제2 치차부는, 상기 프레싱 롤러 아래에 위치하는 부분이 서로 치합된다.
종래 기술에 의한 조화 감속기의 경우, 중심부에 타원 형태의 웨이브 제네레이터 부재가 위치하였다. 이러한 구조는, 조화 감속기의 서큘러 스플라인 부재의 내부를 모두 채우는 형태가 된다. 따라서, 웨이브 제네레이터가 큰 부피와 무게를 갖게 된다. 또한, 종래 기술에 의한 조화 감속기의 경우, 타원의 프로파일 설계가 쉽지 않은 문제점도 있다. 또한, 종래 기술에 의한 조화 감속기의 타원형 웨이브 제네레이터 부재는, 탄성 변형을 위한 플렉스 스플라인 부재 뿐만 아니라, 볼 베어링에 대해서도 지속적으로 변형이 가해지는 구조이다. 따라서, 베어링의 수명과 정밀도가 악화될 수 있다. 아울러, 종래 기술에 의한 조화 감속기의 경우, 컵형의 플렉스 스플라인 부재가 필요하여 박형의 조화 감속기를 제공하는 데 한계가 있었다.
본 발명의 실시예에 의한 판형 조화 감속기는, 종래 기술의 판형 조화 감속기가 갖는 타원 형태의 웨이브 제네레이터 부재를 제거하였으므로, 경량화와 소형화를 달성할 수 있다. 또한, 본 발명의 실시예에 의한 판형 조화 감속기는, 프로파일 설계도 기존의 조화 감속기에 비해 용이하다. 아울러, 본 발명의 실시예에 의한 판형 조화 감속기는, 베어링의 수명과 정밀도가 일정하게 유지될 수 있다. 또한, 본 발명의 실시예에 의한 판형 조화 감속기는, 컵형의 플렉스 스플라인 부재를 제거하고 판형(plate)의 플렉스 스플라인 부재를 사용하였으므로, 얇은 두께의 판형 조화 감속기를 제공할 수 있다.
또한, 종래 기술에 의한 조화 감속기의 플렉스 스플라인 부재는, 원통형으로 구성되므로, 치형상으로 만들어진 금형에 압입하여 회전하면서 치차를 형성하는 단점이 있었다.
반면에, 본 발명의 실시예에 의한 판형 조화 감속기의 플렉스 스플라인 부재는 한 스테이션(한 번 찍어서 성형 완료)으로 완성되는 제조상의 장점이 있다. 아울러, 본 발명의 실시예에 의한 판형 조화 감속기는, 이러한 제조 공정으로 인해, 축 방향 틈새 또는 예압을 통해 성능에 영향을 주는 조립 정밀도를 제어할 수 있다. 따라서, 본 발명의 실시예에 의한 판형 조화 감속기는, 동일한 성능 기준을 달성하기 위한 요구 기계 가공 정밀도가 상대적으로 낮다. 즉, 본 발명의 실시예에 의한 판형 조화 감속기는, 타원 형상 가공 공정이 없고 각 부품별 요구 정밀도 또한 상대적으로 낮다. 따라서, 본 발명의 실시예에 의한 판형 조화 감속기는, 대량 생산시 생산 효율이 월등하며 제조 단가가 절감될 수 있다.
종래 기술에 의한 조화 감속기는, 국소 부위에서 큰 변형을 일으켜야 하는 단점을 갖는다.
반면에, 본 발명의 실시예에 의한 판형 조화 감속기는, 탄성 변형을 일으키는 플렉스 스플라인 부재의 면적이 크다. 따라서, 본 발명의 실시예에 의한 판형 조화 감속기는, 탄성 변형 부위에서의 응력 집중이 덜하기 때문에 토크 효율이 개선되고 금속의 피로 누적이 적어질 수 있다.
또한, 종래 기술에 의한 조화 감속기는, 접촉면을 증가시키면 축 방향으로 길이가 직접적으로 늘어나므로, 시장에서 필요로 하는 요구 조건을 맞추기 어려운 단점을 갖는다. 이는, 기어의 치합 개선을 위한 접촉각, 접촉 면적 등의 변환을 어렵게 한다.
반면에, 본 발명의 실시예에 의한 판형 조화 감속기는 원의 테두리에서 중심부로 향하는 방향으로 접촉 면적이 결정되기 때문에, 필요한 요구 조건에 따라서 설계 변경이 용이하다. 따라서, 본 발명의 실시예에 의한 판형 조화 감속기는, 판형 조화 감속기 설계에 있어서 어려운 핵심 설계 사항 중 하나인 치형 설계 면에서 강점을 갖는다.
또한, 본 발명의 실시예에 의한 판형 조화 감속기는, 서큘러 스플라인 부재와 플렉스 스플라인 부재의 치합 과정에서 수직으로 위 아래로 누르는 힘이 수평의 회전 힘으로 전달되는 빗면 효과를 갖도록 설계된다. 따라서, 본 발명의 실시예에 의한 판형 조화 감속기는, 종래 기술에 의한 조화 감속기에 비하여 치형 설계가 단순해질 수 있다.
도 1, 2 는, 종래 기술에 의한 조화 감속기의 구조를 나타낸 도면이다.
도 3, 4 는 본 발명의 제1 실시 형태에 의한 판형 조화 감속기의 분해 구조를 각각 다른 각도에서 나타낸 도면이며, 도 5 는 도 4 의 단면도를 나타낸 도면이다.
도 6 은 본 발명의 제1 실시 형태에 의한 판형 조화 감속기의 서큘러 스플라인 부재 상에 플렉스 스플라인 부재가 놓인 상태를 나타낸 단면도이다.
도 7 은 본 발명의 일 실시예에 의한 판형 조화 감속기의 작동을 나타낸 도면이며, 도 8 은 도 7 의 A 부분의 확대도이다.
도 9, 10 은 본 발명의 제2 실시 형태에 의한 판형 조화 감속기의 분해 구조를 각각 다른 각도에서 나타낸 도면이며, 도 11 은 본 발명의 제2 실시 형태에 의한 판형 조화 감속기의 결합 도면이다.
본 발명의 일 실시예에 의한 판형 조화 감속기는, 제1 중심축과 소정의 반경을 갖는 원반 형태의 서큘러 스플라인 부재; 제2 중심축과 소정의 반경을 갖는 원반 형태로 구성되며 탄성 재질로 구성되는 플렉스 스플라인 부재; 및 제3 중심축을 갖는 웨이브 제네레이터 부재;를 포함하고,
상기 플렉스 스플라인 부재는 상기 서큘러 스플라인 부재 상에 위치하며, 상기 웨이브 제네레이터 부재는 상기 플렉스 스플라인 부재 상에 위치하고, 상기 제1 중심축과 제2 중심축, 및 제3 중심축은 서로 동일 선상에 위치하고,
상기 서큘러 스플라인 부재는 제1 치차부를 포함하고, 상기 제1 치차부는 상기 서큘러 스플라인 부재의 상면에 형성되며 상기 서큘러 스플라인 부재의 외측 둘레를 따라서 형성되고,
상기 플렉스 스플라인 부재는 제2 치차부를 포함하고, 상기 제2 치차부는 상기 플렉스 스플라인 부재의 하면에 형성되며 상기 플렉스 스플라인 부재의 외측 둘레를 따라서 형성되며,
상기 제1 치차부와 상기 제2 치차부는 상하 방향으로 겹쳐지게 위치하고,
상기 웨이브 제네레이터 부재는, 상기 플렉스 스플라인 부재의 적어도 일 부분을 가압하여, 상기 제1 치차부의 적어도 일 부분과 상기 제2 치차부의 적어도 일 부분이 서로 치합되도록 하며,
상기 웨이브 제네레이터 부재가 상기 제3 중심축을 중심으로 하여 회전하면 상기 제1 치차부와 상기 제2 치차부가 서로 치합되는 부분이 가변하며, 상기 제1 치차부의 치차수와 상기 제2 치차부의 치차수는 서로 상이하다.
이하, 본 발명의 실시예를 나타내는 첨부 도면을 참조하여 본 발명을 더욱 상세히 설명한다.
도 3, 4 는 본 발명의 제1 실시 형태에 의한 판형 조화 감속기(1)의 분해 구조를 각각 다른 각도에서 나타낸 도면이며, 도 5 는 도 4 의 단면도를 나타낸 도면이다.
서큘러 스플라인 부재(100)는, 원반 형태의 부재로 구성된다. 따라서, 서큘러 스플라인 부재(100)는 제1 중심축(C1)과 소정의 반경을 갖는다.
실시예에 의하면, 서큘러 스플라인 부재(100)의 상면에는 제1 중심축(C1)을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제1 경사면(110)이 형성될 수 있다. 제1 경사면(110)은 소정의 경사 각도를 가질 수 있다.
실시예에 의하면, 서큘러 스플라인 부재(100)의 중심에는 상하로 관통된 제1 관통공(130)이 형성될 수 있다. 상기 제1 관통공(130) 내에는 제1 베어링 부재(500)가 투입될 수 있다.
서큘러 스플라인 부재(100)의 상면의 외측 둘레부에는 제1 치차부(120)가 형성된다.
상기 제1 치차부(120)는 상기 서큘러 스플라인 부재(100)의 상면의 외측 둘레를 따라서 형성된다. 상기 제1 치차부(120)는, 상방향으로 돌출된 치차가 서큘러 스플라인 부재(100)의 원주 방향을 따라서 반복적으로 형성되는 구성을 가질 수 있다.
상기 제1 치차부(120)는 소정의 치차수(N1)를 갖는다.
플렉스 스플라인 부재(200)는, 원반 형태의 부재로 구성된다. 따라서, 플렉스 스플라인 부재(200)는 제2 중심축(C2)과 소정의 반경을 갖는다.
플렉스 스플라인 부재(200)는 신축 변형 가능하게(flexible) 형성된다. 즉, 플렉스 스플라인 부재(200)는 탄성 변형 가능한 재질로 구성될 수 있다. 예컨대, 플렉스 스플라인 부재(200)는, 탄성적인 금속이나 합성수지 재질로 이루어질 수 있다.
실시예에 의하면, 서큘러 스플라인 부재(100)의 하면에는 제2 중심축(C2)을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제2-1 경사면(210)이 형성될 수 있다. 제2-1 경사면(210)은 소정의 경사 각도를 가질 수 있다.
실시예에 의하면, 서큘러 스플라인 부재(100)의 상면에는 제2 중심축(C2)을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제2-2 경사면(212)이 형성될 수 있다. 제2-2 경사면(212)은 소정의 경사 각도를 가질 수 있다.
일 실시예에 의하면, 상기 제2-1 경사면(210)과 제2-2 경사면(212)의 경사 각도는 동일할 수 있다. 실시예에 따르면, 상기 제2-1 경사면(210)과 제2-2 경사면(212)의 경사 각도가 서로 상이한 것도 가능하다.
아울러, 상기 제1 경사면(110)과 제2-1 경사면(210)의 경사 각도는 동일하거나 상이할 수 있다.
실시예에 의하면, 플렉스 스플라인 부재(200)의 중심에는 상하로 관통된 제2 관통공(230)이 형성될 수 있다. 상기 제2 관통공(230) 내에는 후술하는 센터 샤프트(400)가 연결될 수 있다.
플렉스 스플라인 부재(200)의 하면의 외측 둘레부에는 제2 치차부(220)가 형성된다.
상기 제2 치차부(220)는 상기 플렉스 스플라인 부재(200)의 하면의 외측 둘레를 따라서 형성된다. 상기 제2 치차부(220)는 하방향으로 돌출된 치차가 플렉스 스플라인 부재(200)의 원주 방향을 따라서 반복적으로 형성되는 구성을 가질 수 있다.
상기 제2 치차부(220)는 소정의 치차수(N2)를 갖는다.
웨이브 제네레이터 부재(300)는, 수평 방향으로 소정의 길이를 갖고 연장되는 바(bar) 형태의 부재로 구성될 수 있다. 웨이브 제네레이터 부재(300)의 길이 방향 중심에는 제3 중심축(C3)이 구비될 수 있다.
상기 웨이브 제네레이터 부재(300)의 수평 방향(길이 방향) 일 단과 타 단에는 하방향으로 돌출되는 프레싱 돌부(320)가 구비될 수 있다. 프레싱 돌부(320)는, 다른 부분에 비해서 하방향으로 더 돌출된 부분으로 구성된다.
예컨대, 도면에 도시된 바와 같이, 웨이브 제네레이터 부재(300)의 하면에 제3 경사면(322)이 형성되는 것도 가능하다. 즉, 웨이브 제네레이터 부재(300)의 하면이 웨이브 제네레이터 부재(300)의 제3 중심축(C3)으로부터 외측 단부 방향으로 갈수록 하향하는 경사면으로 구성될 수 있다. 따라서, 상기 웨이브 제네레이터 부재(300)의 외측 단부 부분이 다른 부분보다 하방향으로 돌출되며, 상기 돌출된 부분이 상기 프레싱 돌부(320)를 구성하는 실시 형태를 가질 수 있다.
실시예에 의하면, 웨이브 제네레이터 부재(300)의 길이 방향 중심에는 상하 방향으로 관통된 제3 관통공(310)이 형성될 수 있다. 제3 관통공(310) 내에는 제2 베어링 부재(600)가 구비될 수 있다.
센터 샤프트(400)는 상하 방향으로 연장되는 소정의 샤프트이다. 센터 샤프트(400)는 플렉스 스플라인 부재(200)의 제2 중심축(C2)에 연결되어 상하 방향으로 연장될 수 있다. 따라서, 센터 샤프트(400)는 플렉스 스플라인 부재(200)와 일체로 회전한다.
센터 샤프트(400)에는 플렉스 스플라인 부재(200)에 고정될 수 있는 소정의 고정 수단(410)이 구비될 수 있다.
이하에서는 서큘러 스플라인 부재(100), 플렉스 스플라인 부재(200), 웨이브 제네레이터 부재(300), 및 센터 샤프트(400)의 결합 관계에 대해서 설명한다.
서큘러 스플라인 부재(100) 위에 플렉스 스플라인 부재(200)가 위치하며, 플렉스 스플라인 부재(200) 위에 웨이브 제네레이터 부재(300)가 위치한다. 서큘러 스플라인 부재(100)의 제1 치차부(120) 위에, 플렉스 스플라인 부재(200)의 제2 치차부(220)가 위치한다.
도 6 은 본 발명의 제1 실시 형태에 의한 판형 조화 감속기(1)의 서큘러 스플라인 부재(100) 상에 플렉스 스플라인 부재(200)가 놓인 상태를 나타낸 단면도이다.
상기 서큘러 스플라인 부재(100)의 상면과 플렉스 스플라인 부재(200)의 하면 사이에는 간극(S)이 있을 수 있다. 따라서, 상기 서큘러 스플라인 부재(100)와 플렉스 스플라인 부재(200)는 제1 치차부(120)와 제2 치차부(220)외의 다른 부분의 접촉이 최소화될 수 있다.
이때, 앞서 설명한 바와 같이, 상기 제1 경사면(110)의 경사각 θ1 과 제2-1 경사면(210)의 경사각 θ2는 상이할 수 있다.
일 예로, 도 6 과 같이, 상기 제1 경사면(110)과 제2-1 경사면(210)의 경사 각도가 상이한 경우에 대해서 설명하면 이하와 같다.
서큘러 스플라인 부재(100) 상에 플렉스 스플라인 부재(200)가 놓였을 때, 제1 중심축(C1)과 제2 중심축(C2)이 서로 동일 선상에 위치한다. 상기 제1 경사면(110)의 경사각 θ1 이 제2-1 경사면(210)의 경사각 θ2 보다 클 경우에는, 상기 간극(S)은 중심축(C1, C2)에서 반경 방향 외측으로 갈수록 더 커질 수 있다. 이와 같이, 제1 경사면(110)과 제2-1 경사면(210)의 경사 각도가 상이한 경우, 서큘러 스플라인 부재(100)와 플렉스 스플라인 부재(200) 사이의 접촉 마찰이 최소화되며, 설계가 더욱 간단해질 수 있다.
웨이브 제네레이터 부재(300)의 프레싱 돌부(320)는 플렉스 스플라인 부재(200)의 제2 치차부(220)의 일 부분 위에 위치한다.
센터 샤프트(400)는 플렉스 스플라인 부재(200)의 제2 관통공(230)에 투입되어 결합될 수 있다. 센터 샤프트(400)와 플렉스 스플라인 부재(200)는 일체로 회전할 수 있다.
도면에서는 센터 샤프트(400)가 플렉스 스플라인 부재(200)의 상하 방향으로 동시에 연장되었으나, 이에 반드시 한정하는 것은 아니다. 센터 샤프트(400)는 플렉스 스플라인 부재(200)의 상방향, 또는 하방향, 또는 상하 방향으로 연장될 수 있다.
상기 센터 샤프트(400)가 플렉스 스플라인 부재(200)의 상방향으로 연장되면, 상기 웨이브 제네레이터 부재(300)의 제3 관통공(310) 및 제2 베어링 부재(600)를 관통할 수 있다.
상기 센터 샤프트(400)가 플렉스 스플라인 부재(200)의 하방향으로 연장되면, 상기 서큘러 스플라인 부재(100)의 제1 관통공(130) 및 제1 베어링 부재(500)를 관통할 수 있다.
아울러, 서큘러 스플라인 부재(100)의 제1 중심축(C1), 플렉스 스플라인 부재(200)의 제2 중심축(C2), 및 웨이브 제네레이터 부재(300)의 제3 중심축(C3)은 동일 선상에 위치하여 동축의 구성을 가질 수 있다.
이하에서는 본 발명의 실시예에 의한 판형 조화 감속기(1)와 입력단 및 출력단 간의 연결, 웨이브 제네레이터 부재(300)에 의한 제1 치차부(120)와 제2 치차부(220)의 치합 관계에 대해서 설명한다.
도 7 은 본 발명의 일 실시예에 의한 판형 조화 감속기(1)의 작동을 나타낸 도면이며, 도 8 은 도 7 의 A 부분의 확대도이다. 단, 도 8 은 명확한 파악을 위해서 다소 과장되게 도시되어 있다.
웨이브 제네레이터 부재(300)는 소정의 입력단과 연결된다. 입력단은 소정의 모터와 같은 회전 동력기와 연결된다. 따라서, 웨이브 제네레이터 부재(300)는 상기 회전 동력기에서 입력되는 입력 동력에 의해서 제3 중심축(C3)을 중심으로 하여 소정의 각속도로 회전할 수 있다.
플렉스 스플라인 부재(200)는 소정의 출력단과 연결된다. 보다 정확하게는, 플렉스 스플라인 부재(200)는 센터 샤프트(400)와 연결되며, 센터 샤프트(400)를 통해 출력단과 연결될 수 있다. 물론, 센터 샤프트(400) 자체가 출력단일 수도 있다.
앞서 설명한 바와 같이, 센터 샤프트(400)는 플렉스 스플라인 부재(200)의 상방향, 또는 하방향, 또는 상하 방향으로 연장될 수 있다. 이에 따라서, 출력단은 판형 조화 감속기(1)의 위쪽, 또는 아래쪽에 위치할 수 있다.
웨이브 제네레이터 부재(300)의 프레싱 돌부(320)는, 플렉스 스플라인 부재(200)를 눌러 가압하여 플렉스 스플라인 부재(200)의 적어도 일 부분(변형 부분)을 변형시킨다. 상기 변형 부분은, 제2 치차부(220)가 형성된 부분의 일 부분이다. 상기 변형 부분은, 아래에 위치하는 서큘러 스플라인 부재(100)의 제1 치차부(120)와 치합된다.
따라서, 도 7 에 도시된 바와 같이, 제1 치차부(120)와 제2 치차부(220)의 각 부분 중, 프레싱 돌부(320) 아래에 위치하는 부분은 서로 치합되는 치합 부분(D1, D2)이 된다. 또한, 상기 치합 부분(D1, D2)에 의해서 동력을 전달할 수 있다.
한편, 상기 치합 부분(D1, D2) 외의 다른 부분은, 도 8 에 도시된 바와 같이, 제1 치차부(120)와 제2 치차부(220)가 서로 이격되어, 서로 치합되지 않는 비 치합 부분이 된다.
따라서, 본 발명의 실시예에 의한 판형 조화 감속기(1)에 있어서, 플렉스 스플라인 부재(200)의 제2 치차부(220)는, 웨이브 제네레이터 부재(300)의 프레싱 돌부(320) 아래에 위치하는 부분만이, 탄력적으로, 서큘러 스플라인 부재(100)의 제1 치차부(120)와 부분 치합된다.
이하에서는, 다시 도 7 및 8 을 참조하여, 본 발명의 일 실시예에 의한 판형 조화 감속기(1)의 작동에 대해서 보다 상세하게 설명한다.
상기 설명한 바와 같이, 웨이브 제네레이터 부재(300)는 소정의 입력단과 연결된다. 입력단은 소정의 모터와 같은 회전 동력기와 연결된다. 따라서, 회전 동력기에서 전달된 입력 동력(T1)에 의해서, 웨이브 제네레이터 부재(300)는 제3 중심축(C3)을 중심으로 하여 화살표 R1 과 같이 소정의 각속도로 회전할 수 있다.
입력단에서 전달되는 회전력에 의해서 상기 웨이브 제네레이터 부재(300)가 상기 제3 중심축(C3)을 중심으로 하여 자전하면, 웨이브 제네레이터 부재(300)의 프레싱 돌부(320)가 제3 중심축(C3)을 중심으로 하여 공전한다.
앞서 설명한 바와 같이, 프레싱 돌부(320)는, 플렉스 스플라인 부재(200)를 가압 변형시켜서 제1 치차부(120)와 제2 치차부(220)의 일 부분(프레싱 돌부(320) 아래 부분)을 치합시키며, 치합 부분(D1, D2)을 발생시킨다.
따라서, 상기 제1 치차부(120)와 상기 제2 치차부(220)가 서로 치합되는 치합 부분(D1, D2)이 상기 웨이브 제네레이터의 회전 방향을 따라서 순회하게 된다.
이때, 제1 치차부(120)의 치차수와 제2 치차부(220)의 치차수가 서로 상이하므로, 플렉스 스플라인 부재(200)가 소정의 각속도로 화살표 R2 와 같이 회전하게 된다. 따라서, 출력 동력(T2)이 발생한다.
예를 들어, 플렉스 스플라인 부재(200)의 제2 치차부(220)의 치차수(N2)는 52개이고, 서큘러 스플라인 부재(100)의 제1 치차부(120)의 치차수(N1)는 50개인 경우를 고려하면 아래와 같다.
웨이브 제네레이터 부재(300)가 서큘러 스플라인 부재(100) 상을 1 회전 하는 경우를 고찰한다. 서큘러 스플라인 부재(100)는 상대적으로 고정된 것이므로, 웨이브 제네레이터 부재(300)의 프레싱 돌부(320)는, 제1 치차부(120)의 치차 50개를 지나면 서큘러 스플라인 부재(100)의 같은 치차 위치에 돌아오게 된다. 그러나, 플렉스 스플라인 부재(200)는, 치차 50개를 지나도, 회전이 시작된 위치에 위치하는 같은 치차 위치에 오지 못하게 된다. 이런 불일치를 해소하기 위해 플렉스 스플라인 부재(200), 및 플렉스 스플라인 부재(200)에 연결된 센터 샤프트(400)는 회전축 1 회전마다 플렉스 스플라인 부재(200)의 치차 2개에 해당하는 각도만큼 웨이브 제네레이터의 회전 방향으로 회전하게 된다.
플렉스 스플라인 부재(200)는 센터 샤프트(400)와 결합되어 있고, 센터 샤프트(400)에는 출력단이 연결된다. 결국, 앞서와 같이, 플렉스 스플라인 부재(200)의 제2 치차부(220)의 치차수(N2)는 52개이고, 서큘러 스플라인 부재(100)의 제1 치차부(120)의 치차수(N1)는 50개인 경우에는, 입력단과 연결된 웨이브 제네레이터가 26회전할 때마다 센터 샤프트(400)의 1회전이 이루어진다. 따라서, 1/26 의 큰 감속비를 가진 회전동력 전달이 이루어진다.
물론, 플렉스 스플라인 부재(200)의 제2 치차부(220)의 치차수와 서큘러 스플라인 부재(100)의 제1 치차부(120)의 치차수를 각각 선택함에 따라서 감속비가 선택될 수 있다. 예컨대, 플렉스 스플라인 부재(200)의 제2 치차부(220)가 102 개의 치차수를 가지고, 서큘러 스플라인 부재(100)의 제1 치차부(120)가 100 개의 치차수를 가지면, 1/50 의 감속비를 구현할 수 있다.
이하에서는 본 발명의 실시예에 의한 판형 조화 감속기(1)의 효과에 대해서 설명한다.
종래 기술에 의한 조화 감속기의 경우, 중심부에 타원 형태의 웨이브 제네레이터 부재가 위치하였다. 이러한 구조는, 조화 감속기의 서큘러 스플라인 부재의 내부를 모두 채우는 형태가 된다. 따라서, 웨이브 제네레이터가 큰 부피와 무게를 갖게 된다. 또한, 타원의 프로파일 설계가 쉽지 않은 문제점도 있다. 또한, 종래 기술에 의한 조화 감속기의 타원형 웨이브 제네레이터 부재는, 탄성 변형을 위한 플렉스 스플라인 부재 뿐만 아니라, 볼 베어링에 대해서도 지속적으로 변형이 가해지는 구조이다. 따라서, 베어링의 수명과 정밀도가 악화될 수 있다.
본 발명의 실시예에 의한 판형 조화 감속기(1)는, 종래 기술의 타원 형태의 웨이브 제네레이터 부재(300)를 제거하였으므로, 경량화와 소형화를 달성할 수 있다. 또한, 프로파일 설계도 기존의 판형 조화 감속기(1)에 비해 용이하다. 아울러, 볼 베어링의 수명과 정밀도가 일정하게 유지될 수 있다. 또한, 컵형의 플렉스 스플라인 부재를 제거하고 판형(plate)의 플렉스 스플라인 부재(200)를 사용하였으므로, 얇은 두께의 판형 조화 감속기(1)를 제공할 수 있다.
또한, 종래 기술에 의한 조화 감속기의 플렉스 스플라인 부재는, 원통형으로 구성되므로, 치형상으로 만들어진 금형에 압입하여 회전하면서 치차를 형성하는 단점이 있었다.
반면에, 본 발명의 실시예에 의한 판형 조화 감속기(1)의 플렉스 스플라인 부재(200)는 한 스테이션(한 번 찍어서 성형 완료)으로 완성되는 제조상의 장점이 있다. 아울러, 이러한 제조 공정으로 인해, 축 방향 틈새 또는 예압을 통해 성능에 영향을 주는 조립 정밀도를 제어할 수 있다. 따라서, 동일한 성능 기준을 달성하기 위한 요구 기계 가공 정밀도가 상대적으로 낮다. 즉, 타원 형상 가공 공정이 없고 각 부품별 요구 정밀도 또한 상대적으로 낮다. 따라서, 대량 생산시 생산 효율이 월등하며 제조 단가가 절감될 수 있다.
종래 기술에 의한 조화 감속기는, 국소 부위에서 큰 변형을 일으켜야 하는 단점을 갖는다.
반면에, 본 발명의 실시예에 의한 판형 조화 감속기(1)는, 탄성 변형을 일으키는 플렉스 스플라인 부재(200)의 면적이 크다. 따라서, 탄성 변형 부위에서의 응력 집중이 덜하기 때문에 토크 효율이 개선되고 금속의 피로 누적이 적어질 수 있다.
또한, 종래 기술에 의한 조화 감속기는, 접촉면을 증가시키면 축 방향으로 길이가 직접적으로 늘어나므로, 시장에서 필요로 하는 요구 조건을 맞추기 어려운 단점을 갖는다. 이는, 기어의 치합 개선을 위한 접촉각, 접촉 면적 등의 변환을 어렵게 한다.
반면에, 본 발명의 실시예에 의한 판형 조화 감속기(1)는 원의 테두리에서 중심부로 향하는 방향으로 접촉 면적이 결정되기 때문에, 필요한 요구 조건에 따라서 설계 변경이 용이하다. 따라서, 조화 감속기 설계에 있어서 어려운 핵심 설계 사항 중 하나인 치형 설계 면에서 강점을 갖는다.
또한, 본 발명의 실시예에 의한 판형 조화 감속기(1)는, 서큘러 스플라인 부재(100)와 플렉스 스플라인 부재(200)의 치합 과정에서 수직으로 위 아래로 누르는 힘이 수평의 회전 힘으로 전달되는 빗면 효과를 갖도록 설계된다. 따라서, 종래 기술에 의한 조화 감속기에 비하여 치형 설계가 단순해질 수 있다.
또한, 실시예에 의하면, 입력단의 회전 방향과 출력단의 회전 방향을 같은 방향으로 할 수 있다. 또한, 입력단의 입력축과 출력단의 출력축을 같은 직선상에 위치하도록 할 수 있다. 따라서, 본 발명의 실시예에 의한 판형 조화 감속기(1)는, 높은 감속비를 갖고 동일한 회전방향으로 동력 전달이 필요한 곳에 설치하여 사용할 수 있다.
도 9, 10 은 본 발명의 제2 실시 형태에 의한 판형 조화 감속기(2)의 분해 구조를 각각 다른 각도에서 나타낸 도면이며, 도 11 은 본 발명의 제2 실시 형태에 의한 판형 조화 감속기(2)의 결합 도면이다.
제2 실시 형태에 의한 판형 조화 감속기(2)는, 제1 실시 형태에 의한 판형 조화 감속기(1)와 대응하여, 서큘러 스플라인 부재(100), 플렉스 스플라인 부재(200), 웨이브 제네레이터 부재(700), 및 센터 샤프트(400)를 포함한다. 여기서, 서큘러 스플라인 부재(100), 플렉스 스플라인 부재(200), 센터 샤프트(400)의 구성은 제1 실시 형태와 동일할 수 있다. 따라서, 중복되는 설명은 설명하며, 제1 실시 형태와 차이가 있는 구성인 웨이브 제네레이터 부재(700)에 관한 설명만을 기술한다.
제2 실시 형태에 의한 판형 조화 감속기(2)의 웨이브 제네레이터 부재(700)는, 회전 바디(710), 및 프레싱 롤러(720)를 포함할 수 있다.
회전 바디(710)는 수평 방향으로 소정의 길이를 갖고 연장되는 바 형태의 부재로 구성될 수 있다. 회전 바디(710)의 길이 방향 중심에는 제3 중심축(C3)이 구비될 수 있다.
상기 회전 바디(710)의 길이 방향 일 단과 타 단에는, 회전 바디(710)의 길이 방향으로 돌출되는 연결 축(714)이 구비될 수 있다.
프레싱 롤러(720)는 상기 연결 축(714)에 연결된다. 프레싱 롤러(720)는 회전 바디(710)의 길이 방향으로 연장되는 중심 축을 중심으로 하여 회전 가능하다. 프레싱 롤러(720)는, 연결 축(714)에 연결되는 구름 베어링(730)과, 상기 구름 베어링(730)의 외주부에 결합되는 롤러 바디(740)를 포함할 수 있다.
프레싱 롤러(720)의 밑면은, 회전 바디(710)의 밑면보다 하방향으로 돌출되어 있다.
따라서, 제2 실시 형태에 의한 판형 조화 감속기(2)의 웨이브 제네레이터 부재(700)가 플렉스 스플라인 부재(200) 상에 결합되면, 프레싱 롤러(720)는, 하방향으로 플렉스 스플라인 부재(200)를 가압할 수 있다. 따라서, 프레싱 롤러(720)는, 다른 개념으로는 제3 중심축(C3) 방향으로 압력을 가하며 상기 제3 중심축과 직교하는 방향으로 연장되는 축(radial axis)을 중심으로 회전하는 경방향 롤러(radial roller)일 수 있다.
이에 따라서, 프레싱 롤러(720)가 플렉스 스플라인 부재(200)의 제2 치차부(220) 상에 위치하여 제2 치차부(220)와 제1 치차부(120)를 서로 치합시킬 수 있다. 웨이브 제네레이터 부재(700)가 플렉스 스플라인 부재(200) 상에서 회전하면, 프레싱 롤러(720)는 플렉스 스플라인 부재(200) 상에서 제3 중심축(C3)을 중심으로 하여 굴러서 공전한다.
따라서, 상기 프레싱 롤러(720)는, 제1 실시 형태에 의한 판형 조화 감속기(1)의 웨이브 제네레이터 부재(300)의 프레싱 돌부(320)와 실질적으로 동일한 기능을 달성한다. 다만, 프레싱 롤러(720)는 플렉스 스플라인 부재(200) 상을 굴러서 공전하므로, 마찰이 덜 발생할 수 있다.
이상에서는 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (13)

  1. 제1 중심축과 소정의 반경을 갖는 원반 형태의 서큘러 스플라인 부재;
    제2 중심축과 소정의 반경을 갖는 원반 형태로 구성되며 탄성 재질로 구성되는 플렉스 스플라인 부재; 및
    제3 중심축을 갖는 웨이브 제네레이터 부재;를 포함하고,
    상기 플렉스 스플라인 부재는 상기 서큘러 스플라인 부재 상에 위치하며,
    상기 웨이브 제네레이터 부재는 상기 플렉스 스플라인 부재 상에 위치하고,
    상기 제1 중심축과 제2 중심축, 및 제3 중심축은 서로 동일 선상에 위치하고,
    상기 서큘러 스플라인 부재는 제1 치차부를 포함하고,
    상기 제1 치차부는 상기 서큘러 스플라인 부재의 상면에 형성되며 상기 서큘러 스플라인 부재의 외측 둘레를 따라서 형성되고,
    상기 플렉스 스플라인 부재는 제2 치차부를 포함하고,
    상기 제2 치차부는 상기 플렉스 스플라인 부재의 하면에 형성되며 상기 플렉스 스플라인 부재의 외측 둘레를 따라서 형성되며,
    상기 제1 치차부와 상기 제2 치차부는 상하 방향으로 겹쳐지게 위치하고,
    상기 웨이브 제네레이터 부재는,
    상기 플렉스 스플라인 부재의 적어도 일 부분을 가압하여, 상기 제1 치차부의 적어도 일 부분과 상기 제2 치차부의 적어도 일 부분이 서로 치합되도록 하며,
    상기 웨이브 제네레이터 부재가 상기 제3 중심축을 중심으로 하여 회전하면 상기 제1 치차부와 상기 제2 치차부가 서로 치합되는 부분이 가변하며,
    상기 제1 치차부의 치차수와 상기 제2 치차부의 치차수는 서로 상이한 판형 조화 감속기.
  2. 제1항에 있어서,
    상기 웨이브 제네레이터 부재는 소정의 입력단과 연결되어 회전 가능하고,
    상기 플렉스 스플라인 부재는 소정의 출력단과 연결되며,
    상기 출력단의 회전 속도는 상기 입력단의 회전 속도에 비해 소정의 감속비를 가지며 감속되는 판형 조화 감속기.
  3. 제1항에 있어서,
    상기 웨이브 제네레이터 부재는,
    수평 방향으로 연장되는 바 형태로 구성되며,
    상기 제3 중심축을 중심으로 하여, 상기 웨이브 제네레이터 부재의 일 단부와, 반대 방향 타 단부에는 하방향으로 돌출되는 프레싱 돌부가 구비되고,
    상기 프레싱 돌부는 상기 플렉스 스플라인 부재의 제2 치차부 위에 위치하여,
    상기 제1 치차부와 상기 제2 치차부는,
    상기 프레싱 돌부 아래에 위치하는 부분이 서로 치합되는 판형 조화 감속기.
  4. 제1항에 있어서,
    센터 샤프트;를 더 포함하고,
    상기 센터 샤프트는 상기 플렉스 스플라인 부재의 상기 제2 중심축에 연결되어,
    상기 플렉스 스플라인 부재와 상기 센터 샤프트가 일체로 회전하는 판형 조화 감속기.
  5. 제4항에 있어서,
    상기 서큘러 스플라인 부재는 중심에 상하로 관통된 제1 관통공을 갖고,
    상기 센터 샤프트는 상기 제1 관통공을 관통하여 하방향으로 연장되는 판형 조화 감속기.
  6. 제5항에 있어서,
    상기 제1 관통공 내에는,
    상기 센터 샤프트가 상하로 관통되는 제1 베어링 부재가 배치되는 판형 조화 감속기.
  7. 제4항에 있어서,
    상기 웨이브 제네레이터 부재는 중심에 상하로 관통된 제3 관통공을 갖고,
    상기 센터 샤프트는 상기 제3 관통공을 관통하여 상방향으로 연장되는 판형 조화 감속기.
  8. 제7항에 있어서,
    상기 제3 관통공 내에는,
    상기 센터 샤프트가 상하로 관통되는 제2 베어링 부재가 배치되는 판형 조화 감속기.
  9. 제1항에 있어서,
    상기 서큘러 스플라인 부재는,
    상면에 상기 제1 중심축을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제1 경사면을 갖는 판형 조화 감속기.
  10. 제1항에 있어서,
    상기 플렉스 스플라인 부재는,
    하면에 상기 제2 중심축을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제2-1 경사면을 갖는 판형 조화 감속기.
  11. 제1항에 있어서,
    상기 서큘러 스플라인 부재는,
    상면에 상기 제1 중심축을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제1 경사면을 갖고,
    상기 플렉스 스플라인 부재는,
    하면에 상기 제2 중심축을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제2-1 경사면을 가지며,
    상기 제1 경사면과 상기 제2-1 경사면의 경사각은 서로 상이한 판형 조화 감속기.
  12. 제1항에 있어서,
    상기 플렉스 스플라인 부재는,
    상면에 상기 제2 중심축을 중심으로 하여 반경 방향 외측으로 갈수록 하방향으로 경사진 제2-2 경사면을 갖는 판형 조화 감속기.
  13. 제1항에 있어서,
    상기 웨이브 제네레이터 부재는,
    수평 방향으로 연장되는 바 형태로 구성되며,
    상기 웨이브 제네레이터 부재의 일 단과 타 단에는
    각각 프레싱 롤러가 구비되고,
    상기 프레싱 롤러는, 상기 플렉스 스플라인 부재의 제2 치차부 위에 위치하여,
    상기 제1 치차부와 상기 제2 치차부는,
    상기 프레싱 롤러 아래에 위치하는 부분이 서로 치합되는 판형 조화 감속기.
PCT/KR2021/001741 2020-02-11 2021-02-09 판형 조화 감속기 WO2021162430A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/797,394 US20230088852A1 (en) 2020-02-11 2020-02-09 Plate-shaped harmonic reducer
JP2022548934A JP7441958B2 (ja) 2020-02-11 2021-02-09 板状調和減速機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200016640A KR102399888B1 (ko) 2020-02-11 2020-02-11 판형 조화 감속기
KR10-2020-0016640 2020-02-11

Publications (1)

Publication Number Publication Date
WO2021162430A1 true WO2021162430A1 (ko) 2021-08-19

Family

ID=77292380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001741 WO2021162430A1 (ko) 2020-02-11 2021-02-09 판형 조화 감속기

Country Status (4)

Country Link
US (1) US20230088852A1 (ko)
JP (1) JP7441958B2 (ko)
KR (1) KR102399888B1 (ko)
WO (1) WO2021162430A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102605516B1 (ko) * 2022-02-14 2023-11-23 블루로빈 주식회사 조화 감속기 및 이를 포함하는 동력 전달 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201144A (ja) * 1984-03-24 1985-10-11 Matsushita Electric Works Ltd 動力伝達装置
JPH0544794A (ja) * 1991-08-08 1993-02-23 Hitachi Ltd 揺動回転板を用いた減速装置
KR960023919A (ko) * 1994-12-27 1996-07-20 미따라이 후지오 감속기
KR20100049916A (ko) * 2008-11-04 2010-05-13 삼익에이치디에스(주) 탄성디스크형 조화 구동 감속기
US20190264791A1 (en) * 2018-02-27 2019-08-29 The Boeing Company Optimized harmonic drive

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2849897A (en) * 1956-11-06 1958-09-02 Leendert Prins Drive for a step-up or step-down gear
US3187605A (en) * 1962-03-26 1965-06-08 William L Ericson Strain wave drive
US3525890A (en) * 1968-02-16 1970-08-25 Gen Motors Corp Face planocentric speed reduction unit and motor
US3532005A (en) * 1968-02-16 1970-10-06 Gen Motors Corp Gear reduction unit
FR2544435B1 (fr) * 1983-04-12 1989-06-09 Assistance Indle Dauphinoise Dispositif de transmission d'un mouvement de rotation entre un arbre menant et un arbre mene
US8210070B2 (en) * 2009-05-22 2012-07-03 National University Corporation Fukushima University Modified crown reduction gear
US9494223B2 (en) * 2014-08-12 2016-11-15 The Boeing Company Harmonic drive apparatus
KR102133443B1 (ko) 2016-11-29 2020-07-14 주식회사 에스비비테크 하모닉 감속기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201144A (ja) * 1984-03-24 1985-10-11 Matsushita Electric Works Ltd 動力伝達装置
JPH0544794A (ja) * 1991-08-08 1993-02-23 Hitachi Ltd 揺動回転板を用いた減速装置
KR960023919A (ko) * 1994-12-27 1996-07-20 미따라이 후지오 감속기
KR20100049916A (ko) * 2008-11-04 2010-05-13 삼익에이치디에스(주) 탄성디스크형 조화 구동 감속기
US20190264791A1 (en) * 2018-02-27 2019-08-29 The Boeing Company Optimized harmonic drive

Also Published As

Publication number Publication date
KR20210101984A (ko) 2021-08-19
US20230088852A1 (en) 2023-03-23
JP2023524923A (ja) 2023-06-14
KR102399888B1 (ko) 2022-05-20
JP7441958B2 (ja) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2012057410A1 (ko) 동력전달장치
KR100301120B1 (ko) 내접식 유성치차 감속기
WO2013062376A2 (ko) 분리형 엑츄에이터
WO2021162430A1 (ko) 판형 조화 감속기
KR200450505Y1 (ko) 감속기
WO2015023080A1 (ko) 감속기
WO2013085288A1 (ko) 변속장치와 이를 포함하여 구성되는 차량용 인휠구동 시스템 및 변속장치 제작방법
WO2014069696A1 (ko) 액츄에이터 어셈블리
EP3270003B1 (en) Gear device
EP2543909B1 (en) Gear device
JPH10138062A (ja) 遊星歯車減速装置の組立方法及び遊星歯車減速装置
WO2023054900A1 (ko) 감속기
EP0945650A1 (en) Silk hat flexible engagement gear device
WO2022065584A1 (ko) 싸이클로이드 감속기
WO2022173235A1 (ko) 싸이클로이드 감속기
WO2012060609A1 (ko) 조화감속기
WO2023153870A1 (ko) 조화 감속기 및 이를 포함하는 동력 전달 시스템
JP7472599B2 (ja) 遊星減速機
WO2018012725A1 (ko) 모듈 베어링 및 그를 구비하는 동력전달장치
WO2017159971A1 (ko) 동력전달장치
WO2018043914A1 (ko) 초고 감속용 유성치차 감속장치
US6186019B1 (en) Drive pinion for rim gear/pinion drive
CN112145549A (zh) 旋转机构、减速器以及旋转机构的制造方法
WO2024049083A1 (ko) 피니온 기어유닛 및 이를 이용한 스위블 액추에이터
JP2001323971A (ja) 内歯歯車の保持構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753573

Country of ref document: EP

Kind code of ref document: A1