WO2021161920A1 - ペースト、基板、ディスプレイ、および基板の製造方法 - Google Patents

ペースト、基板、ディスプレイ、および基板の製造方法 Download PDF

Info

Publication number
WO2021161920A1
WO2021161920A1 PCT/JP2021/004345 JP2021004345W WO2021161920A1 WO 2021161920 A1 WO2021161920 A1 WO 2021161920A1 JP 2021004345 W JP2021004345 W JP 2021004345W WO 2021161920 A1 WO2021161920 A1 WO 2021161920A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste
substrate
wavelength conversion
angular velocity
partition wall
Prior art date
Application number
PCT/JP2021/004345
Other languages
English (en)
French (fr)
Inventor
石塚雅敏
梶野佳範
谷野貴広
早坂惇
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202180009961.7A priority Critical patent/CN114981691A/zh
Priority to KR1020227013628A priority patent/KR20220137866A/ko
Priority to JP2021513474A priority patent/JP7420138B2/ja
Publication of WO2021161920A1 publication Critical patent/WO2021161920A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • H01L33/502
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H01L2933/0041
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to a paste, a substrate, a display, and a method for manufacturing a substrate.
  • wavelength conversion type OLED displays and LED displays are attracting attention as high-performance displays.
  • These displays use an organic light emitting diode (OLED) or a light emitting diode (LED) driven by an active matrix as a light source, and display in full color by changing at least a part of the light with a wavelength conversion material. , Excellent in contrast and color reproducibility.
  • Patent Document 1 As a method of using an OLED as a light source, a method of using an OLED that emits blue light is known (Patent Document 1). In this case, in the blue subpixel, the light from the OLED is transmitted and scattered without wavelength conversion, and in the green and red subpixels, the blue light from the OLED is converted into green and red by the wavelength conversion material, respectively. It is transparent.
  • a blue emitting LED is used as in the OLED, and in addition to a method of converting a part of light into red and green with a wavelength conversion material, an ultraviolet emitting LED is used and a wavelength conversion material is used.
  • a method of converting to blue, green, or red is known (Patent Document 2).
  • wavelength conversion material As the wavelength conversion material, a configuration including a wavelength conversion layer containing quantum dots (also called Quantum Dot, QD, or quantum point) as a light emitting material is attracting attention for the purpose of improving the color reproducibility of display colors.
  • quantum dots also called Quantum Dot, QD, or quantum point
  • Fluorescence by quantum dots has high brightness and a narrow half-value width, so an LCD using quantum dots has excellent color reproducibility.
  • wavelength conversion type displays it is necessary to arrange the wavelength conversion material in a pattern with a size corresponding to the light source OLED and the sub-pixel of the LED.
  • a photolithography method and an inkjet method Patent Document 4 are known.
  • the wavelength conversion material is applied to the entire surface, the predetermined position is exposed, and then most of the wavelength conversion material is removed by development. Therefore, the loss of the wavelength conversion material is large, and the process also repeats the exposure and development a plurality of times.
  • the inkjet method is excellent in material efficiency because the wavelength conversion layer can be formed only at a desired position.
  • FIG. 1 shows a schematic view showing a method of applying a paste using a mouthpiece having a plurality of discharge holes by a nozzle application method.
  • a space for storing the paste 2 is provided inside the mouthpiece 1, and the pressure is controlled through a pressurized pipe 4 connected to the space while moving relative to the substrate 3.
  • This is a method in which the paste 2 is discharged from the discharge hole 5 by introducing compressed air and applied in a striped shape.
  • the paste 2 discharged from the discharge hole 5 is filled in the space separated by the partition wall 6 on the substrate.
  • the method of feeding the paste is not limited to the introduction of compressed air, and other methods such as using a liquid feeding pump may be used.
  • the viscosity of the paste can be from low to high as compared with the inkjet method. Therefore, by designing the viscosity to be high, clogging of the discharge holes due to sedimentation of the particle components can be suppressed.
  • the design of the paste containing the wavelength conversion material for the wavelength conversion type display is the same as that of the existing ink for the inkjet method, there is a problem that the paste cannot be normally ejected from the ejection hole.
  • the present invention provides a paste that can be stably applied with good ejection accuracy by the nozzle coating method even when a mouthpiece having a minute ejection hole having a pore diameter of ⁇ 50 ⁇ m or less is used. Make it an issue.
  • the paste of the present invention has the following constitution. That is, It is a paste containing a wavelength conversion material, a polymer, and a monomer, and characterized in that the relationship of (i) below is established with respect to D ⁇ defined in (1) below.
  • the paste of the present invention has the following constitution. That is, It contains a wavelength conversion material and a polymer, and has G', G "and D ⁇ defined in the above formula (1) and a loss tangent tan ⁇ at a measurement temperature of 25 ° C.
  • the substrate of the present invention has the following configuration. That is, A substrate having a cured product of the paste in a cell partitioned by a partition wall.
  • the display of the present invention has the following configuration. That is, The substrate and a display having an OLED or an LED as a light source.
  • the method for manufacturing a substrate of the present invention has the following configuration. That is, This is a method for manufacturing a substrate, which comprises a step of applying the paste into cells partitioned by partition walls by a nozzle coating method.
  • the paste of the present invention preferably has a ratio of 0.1 to 2 parts by weight of the monomer to 1 part by weight of the polymer.
  • the paste of the present invention preferably has a solid content concentration in the range of 70 to 90 wt%.
  • the wavelength conversion material is an inorganic phosphor.
  • the inorganic phosphor is a quantum dot.
  • the paste of the present invention preferably has a viscosity in the range of 10,000 to 400,000 mPa ⁇ s at a shear rate of 1s-1.
  • nozzles using a mouthpiece having a discharge hole having a hole diameter in the range of 20 ⁇ m to 50 ⁇ m.
  • the paste of the present invention can suppress the swelling of the liquid at the time of discharge and the pulsation of the liquid at the time of application even when the nozzle is applied with a mouthpiece having a discharge hole having a minute hole diameter, and can be applied with high accuracy. It becomes.
  • the paste When the paste is applied by the nozzle coating method, as described above, the paste is filled in the manifold inside the mouthpiece and discharged from the discharge hole by the compressed air introduced through the pressurized pipe.
  • the property that the apparent viscosity that appears as a ratio between the shear stress applied to the paste and the shear rate decreases as the shear stress increases is called thixotropy.
  • Thixotropy is generally used as a parameter that affects the ejection property of nozzle application.
  • the index representing thixotropy is expressed as the TI value (thixotropic index) shown in (4) when the viscosities at arbitrary shear rates a and b (here, a ⁇ b) are ⁇ a and ⁇ b, respectively.
  • TI value thixotropic index
  • TI ⁇ a / ⁇ b
  • the viscosity of the paste does not decrease even if shear stress is applied, so that when the paste is discharged from the discharge hole, the paste viscosity is high, so that there is a problem that the paste is not discharged well. ..
  • the swell effect is that the molecular chain is not completely relaxed when the polymer solution or the polymer melt is extruded from the small pores, and some shearing energy is stored as elastic deformation, and it is relaxed as soon as it comes out of the pores. This is a phenomenon in which a liquid expands as a result.
  • the TI value as described above has been emphasized as an evaluation index of the ejection property of nozzle coating.
  • the paste ejection accuracy cannot be evaluated by thixotropy alone as in the past.
  • the paste ejection property during coating is not stable, the coating becomes unstable, the paste pulsates, and the uniformity of the formed pixel film thickness is impaired.
  • the change behavior of the loss tangent of the paste is important as a factor for determining whether or not the nozzle coating can be ejected and the coating property in a state where a high shear stress is applied (hereinafter referred to as a high shear region). It was used as an index of whether or not ejection was possible and coating stability in a state where the nozzle was vertically ejected while maintaining a constant shape suitable for coating (hereinafter referred to as columnar flow).
  • the viscoelasticity of the paste in the present invention can be represented by the loss elastic modulus G ′′ and the storage elastic modulus G ′, respectively, and the ratio of the storage elastic modulus to the loss elastic modulus is expressed as the loss tangent tan ⁇ . Can be done.
  • viscoelastic parameters can be measured by using a rheometer (HAAKE MARS; manufactured by Thermo Fisher Scientific Co., Ltd.). Specifically, the rheometer is equipped with the company's Plate P35 Ti L, the temperature is set in the range of 5 to 25 ° C, the gap between the plate and the sample table is set to 100 to 200 ⁇ m, and the angular velocity is 1 to 1 to. Measure G', G "and tan ⁇ when changed to 500 rad / s.
  • HAAKE MARS manufactured by Thermo Fisher Scientific Co., Ltd.
  • the resistance of the sample at the time of measurement is large, so the parallel plate
  • the shear rate varies from the center of the plate to the edge of the plate, and the low shear rate and high shear rate during nozzle application and viscoelasticity measurement, which will be described later. Since it is difficult to make the shearing velocities exactly the same, the angular velocity at the time of measurement is used here instead of the shearing velocity.
  • the paste of the present invention has fluidity at room temperature in an unsheared state or in a weakly sheared state (hereinafter referred to as a low shear region). Specifically, at a measurement temperature of 25 ° C., when the angular velocity ⁇ is in the range of 1 rad / s to 100 rad / s, the loss elastic modulus G ′′ ⁇ at the angular velocity ⁇ and the storage elastic modulus G ′ ⁇ at the angular velocity ⁇ are G ′′ ⁇ > G. It is preferable that the relation of ′ ⁇ is satisfied, in other words, the viscosity of the paste is always higher than the elastic modulus.
  • the loss tangent D ⁇ obtained from the equation (1) becomes a value larger than 1.
  • D MIN 25 ° C.
  • the paste after being applied to the substrate, the paste will harden in the applied state without being fluidized, and the openings will not be filled cleanly, and pixels may be formed normally. Can not.
  • the viscosity of the paste in the low shear region is preferably higher than the elasticity.
  • the paste of the present invention preferably has rigidity in addition to having fluidity in a low shear region at room temperature. This is because if the paste is not rigid, the paste will swell and become droplets when discharged from the discharge holes, making it difficult to apply the paste with high accuracy. More specifically, the loss elastic modulus G "1 (25 ° C.) at a measurement temperature of 25 ° C. and an angular velocity ⁇ of 1 rad / s preferably exceeds 10 Pa, and more preferably 20 Pa or more.
  • the paste of the present invention needs to be able to be discharged from the discharge hole when a shear stress is applied.
  • the ejection property changes depending on the viscous component and the elastic component, that is, the instantaneous increase rate of the loss elastic modulus and the storage elastic modulus when the paste is subjected to shear stress.
  • the elastic component of the paste increases sharply when shear stress is applied, the paste may not be discharged well from the discharge holes. That is, a sharp increase in the storage elastic modulus with respect to the loss elastic modulus with the change in the shear rate leads to a discharge failure.
  • the paste in the present invention suppresses the swelling of the paste when the paste is discharged from the discharge hole, becomes a columnar flow, and can be applied with high accuracy.
  • shear stress is applied to the paste when it is discharged from the discharge hole, and the speed of deformation of the paste under the shear stress can be expressed as the shear rate. ..
  • Shear stress and shear rate are determined by the hole length and diameter of the discharge hole and the volumetric flow rate of the paste at the time of application, but in order to calculate accurately, the pressure loss due to factors such as the hole length and hole shape of the discharge hole is used. Needs to be corrected. As an example, the apparent shear rate without the correction is shown by the following equation (5). Since the shear rate applied to the paste changes depending on the structure of the base and the discharge hole, the calculation of the shear rate is not necessarily limited to the formula defined below.
  • the loss tangent tan ⁇ is the ratio of the loss elastic modulus G ′′ ⁇ , which indicates the strength of the viscous component of the paste, and the storage elastic modulus G ′ ⁇ , which indicates the strength of the elastic component, and is 1 when both are equal.
  • the loss elastic modulus that is, the ratio of the viscous component is high, and it is easy to be ejected in the form of droplets.
  • the storage elastic modulus that is, the ratio of the elastic component is high, and when pressurized Since the paste is less likely to be deformed, it is less likely to be discharged from the discharge hole.
  • the angular velocity ⁇ when measuring viscoelasticity at room temperature is preferably about 0.1 to 500 rad / s, and it is difficult to perform stable measurement at an angular velocity higher than that.
  • a synthetic curve based on the temperature / frequency conversion law described later is used. Can be evaluated.
  • the temperature / frequency conversion rule (Williams-Landel-Ferry formula) holds, so by changing the temperature, the storage elastic modulus at each measurement temperature can be measured. , A composite curve (master curve) of loss elastic modulus and loss tangent can be created, and viscoelasticity when the frequency is changed can be evaluated. Moreover, since the frequency can be converted into an angular velocity, that is, the viscoelasticity when the angular velocity is changed can be evaluated. In the present invention, as a result of evaluating the viscoelasticity in the shear region higher than the angular velocity in the measurement at room temperature by lowering the measurement temperature from 25 ° C.
  • measurement temperature 5 °C, D MAX (5 °C ) the maximum value of the loss tangent at an angular velocity 100 ⁇ 500rad / s, D MIN (5 °C) ⁇ 0 when the minimum value was expressed as D MIN (5 °C) .7, D MAX (5 ° C) ⁇ 1.3 should be satisfied.
  • the solid content concentration of the paste in the present invention is preferably 70 to 90 wt% from the viewpoint of coating stability.
  • the solid content concentration of the paste is in the above-mentioned preferable range, it is possible to prevent the liquid from swelling due to the influence of the solvent component in the paste at the time of application and to prevent pulsation, so that it becomes easy to maintain the stability at the time of application.
  • the paste fluidity due to the solvent component does not become too low, and the discharge and coatability are improved.
  • the paste can be leveled in the step of drying the solvent component after coating, and a uniform film can be formed. Further, when it is applied to the opening surrounded by the partition wall, it is possible to fill the thick film because the amount of volatile components is small.
  • the ratio of the parts by weight of the monomer to the part 1 by weight of the polymer of the paste in the present invention is preferably 0.1 to 2 from the viewpoint of the solid content concentration of the paste and the coating stability.
  • the ratio of the parts by weight of the monomer to the part by weight of the polymer 1 is in the above preferable range, the ratio of the solvent in the paste does not become too high, the liquid is prevented from swelling due to the influence of the solvent component in the paste at the time of application, and it becomes difficult to pulsate. Therefore, it becomes easy to maintain the stability at the time of application.
  • the influence of the monomer component in the paste is not too strong, the paste fluidity due to the solvent component is prevented from being lowered, and the discharge and coatability are improved.
  • the paste in the present invention preferably has a viscosity of 10,000 to 400,000 mPa ⁇ s at a shear rate of 1s-1.
  • a shear rate of 1s -1 By setting the viscosity of the paste at a shear rate of 1s -1 to 10,000 mPa ⁇ s or more, particle components such as phosphors used as a wavelength conversion material settle and occur even when the paste is stored for a long period of time after preparation. It becomes difficult.
  • the viscosity of the paste at a shear rate of 1s- 1 is more preferably 15,000 mPa ⁇ s or more, and even more preferably 20,000 mPa ⁇ s or more.
  • the viscosity of the paste at a shear rate of 1s- 1 is preferably 300,000 mPa ⁇ s or less, more preferably 200,000 mPa ⁇ s or less, and even more preferably 150,000 mPa ⁇ s or less.
  • the paste of the present invention contains a wavelength conversion material.
  • the wavelength conversion material refers to a material having a wavelength conversion property that absorbs an electromagnetic wave and emits an electromagnetic wave having a wavelength different from the wavelength of the absorbed electromagnetic wave.
  • a full-color display can be obtained by applying the paste of the present invention having a wavelength conversion material and patterning it to prepare a substrate having a wavelength conversion layer and combining it with an OLED light source or an LED light source.
  • the wavelength conversion material it is preferable to use an inorganic phosphor and / or an organic phosphor.
  • the region corresponding to the red subpixel is used for red, which is excited by blue excitation light and emits red fluorescence.
  • a phosphor as a wavelength conversion material
  • a green phosphor that is excited by blue excitation light and emits green fluorescence as a wavelength conversion material. It is preferable not to use a wavelength conversion material in the region corresponding to the blue subpixel.
  • the substrate of the present invention can also be used for a display in which a blue LED or an ultraviolet light emitting LED corresponding to each subpixel is used as a backlight.
  • the light emission of each sub-pixel can be turned ON / OFF by driving an OLED or an active matrix of LEDs.
  • Inorganic phosphors emit various colors such as green and red.
  • the inorganic phosphor one that is excited by excitation light with a wavelength of 400 to 500 nm and has a peak in the emission spectrum in the region of 500 to 700 nm, or a nano that has unique optical characteristics according to the quantum mechanics called quantum dots described above.
  • Examples include scale inorganic semiconductor fine particles.
  • Examples of the shape of the former inorganic phosphor include a spherical shape and a columnar shape.
  • Examples of such inorganic phosphors include YAG-based phosphors, TAG-based phosphors, sialon-based phosphors, Mn 4+ activated fluoride complex phosphors, and the like. Two or more of these may be used.
  • quantum dots are preferable. Since quantum dots have sharper peaks in the emission spectrum than other phosphors, the color reproducibility of the display can be improved.
  • quantum dot material examples include semiconductors of group II-IV, group III-V, group IV-VI, and group IV.
  • examples of these inorganic semiconductors include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeS Examples thereof include SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 .
  • the quantum dots may contain a p-type dopant or an n-type dopant. Further, the quantum dots may have a core-shell structure. In the core-shell structure, any suitable functional layer (single layer or multiple layers) may be formed around the shell depending on the purpose, and the shell surface may be surface-treated and / or chemically modified. ..
  • the shape of the quantum dot examples include a spherical shape, a columnar shape, a flaky shape, a plate shape, an amorphous shape, and the like.
  • the average particle size of the quantum dots can be selected according to the desired emission wavelength, and is preferably 1 to 30 nm. When the average particle size of the quantum dots is 1 to 10 nm, the peaks in the emission spectrum can be sharpened in each of blue, green, and red. For example, when the average particle size of the quantum dots is about 2 nm, blue light is emitted, when it is about 3 nm, green light is emitted, and when it is about 6 nm, red light is emitted.
  • the average particle size of the quantum dots is preferably 2 nm or more, preferably 8 nm or less.
  • the average particle size of quantum dots can be measured by a dynamic light scattering method. Examples of the device for measuring the average particle size include a dynamic light scattering photometer DLS-8000 (manufactured by Otsuka Electronics Co., Ltd.).
  • Examples of the organic phosphor include a pyrromethene derivative having a basic skeleton represented by the following structural formula (I) as a phosphor that is excited by blue excitation light and emits red fluorescence, and a green one that is excited by blue excitation light.
  • Examples of the fluorescent substance that emits fluorescence include a pyrromethene derivative having a basic skeleton represented by the following structural formula (II).
  • Other examples include perylene-based derivatives, porphyrin-based derivatives, oxazine-based derivatives, and pyrazine-based derivatives that emit red or green fluorescence depending on the selection of the substituent. Two or more of these may be contained. Among these, a pyrromethene derivative is preferable because of its high quantum yield.
  • the pyrromethene derivative can be obtained, for example, by the method described in JP-A-2011-241160.
  • the organic phosphor is soluble in a solvent, a layer containing a wavelength conversion material having a desired thickness can be easily formed.
  • the paste of the present invention preferably contains light-scattering particles. Further, the particle size of the light scattering particles is more preferably 100 to 500 nm. By containing the light-scattering particles, the blue light is scattered in the wavelength conversion layer, so that the optical path length becomes long, and the light conversion efficiency of the wavelength conversion material can be improved.
  • the light scattering particles do not have wavelength conversion property.
  • the light scattering particles are preferably titanium oxide.
  • the paste of the present invention contains a polymer.
  • the polymer include silicon resins such as polyvinyl acetate, polyvinyl alcohol, ethyl cellulose, methyl cellulose, polyethylene, polymethyl siloxane or polymethyl phenyl siloxane, polystyrene, butadiene / styrene copolymers, polystyrene, polyvinylpyrrolidone, polyamides and high molecular weight polyethers.
  • a copolymer of ethylene oxide and propylene oxide, polyacrylamide, an acrylic resin and the like are preferably mentioned.
  • the polymer is cellulosic.
  • the wavelength conversion layer is preferably formed by curing the paste.
  • the paste is a paste material containing a wavelength conversion material, and can be easily applied to a substrate with a partition wall by a nozzle coating method by appropriately designing the composition.
  • the method of curing the paste is not particularly limited, and examples thereof include a method of curing a paste containing a polymerizable compound with heat or light, and a method of volatilizing a solvent from a paste containing a solvent by heating to cure the paste.
  • the paste of the present invention contains a monomer.
  • the monomer is preferably a compound having an ethylenically unsaturated double bond in the molecule.
  • the monomer preferably has two or more ethylenically unsaturated double bonds in the molecule.
  • Examples of the monomer include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, diethylene glycol dimethacrylate, and triethylene.
  • Glycoldimethacrylate tetraethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, trimethylolpropandiacrylate, trimethylolpropanetriacrylate, trimethylolpropanedimethacrylate, trimethylolpropanetrimethacrylate, 1,3-butanediol diacrylate, 1, 3-Butanediol dimethacrylate, neopentyl glycol diacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, 1 , 10-decanediol dimethacrylate, dimethylol-tricyclodecanediacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trim
  • the paste of the present invention may appropriately contain a polymerization initiator, a solvent, a dispersant, etc. in addition to the above-mentioned essential components.
  • the paste of the present invention contains a polymerization initiator, for example, a radical initiator or a cation initiator, that is, an active species such as a radical or a cation that reacts with light (including ultraviolet rays and electron beams) or heat. Anything can be used as long as it is generated.
  • a radical initiator is preferable.
  • the polymerization initiator include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-dimethylamino-2- (4-methylbenzyl) -1- (4-).
  • ⁇ -Aminoalkylphenone compounds such as morpholin-4-yl-phenyl) -butane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1; 2,4 , 6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) -phosphine oxide, etc.
  • 2,4,6-trimethylbenzoylphenylphosphine oxide bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6--
  • an acylphosphine oxide-based polymerization initiator such as dimethoxybenzoyl)-(2,4,4-trimethylpentyl) -phosphine oxide.
  • the content of the polymerization initiator in the paste is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, based on the solid content, from the viewpoint of efficiently advancing radical curing.
  • the content of the polymerization initiator is preferably 20% by weight or less, more preferably 10% by weight or less in the solid content.
  • the paste of the present invention contains a solvent, for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol.
  • a solvent for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol.
  • alcohols such as diacetone alcohol
  • glycols such as ethylene glycol and propylene glycol
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, propylene glycol monomethyl ether
  • propylene glycol mono Ethers such as ethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethyl ether; methyl ethyl ketone, acetyl acetone, methyl propyl ketone , Methylbutyl ketone, methylisobutylketone, diisobutylketone, cyclopentanone, 2-heptanone and other ketones; dimethylformamide, dimethyl
  • the dispersant may be, for example, "Disperbyk” (registered trademark) 106, 108, 110, 180, 190, 2001, 2155, 140, 145 (or more, product number, big chemie). Co., Ltd.) and the like are preferably mentioned.
  • the substrate of the present invention can be produced by applying the paste of the present invention and curing it.
  • the partition wall in the present invention preferably has a pattern corresponding to sub-pixels in the pixels of the display.
  • Examples of the number of pixels of the display include 2,000 pixels vertically and 4,000 pixels horizontally.
  • the number of pixels affects the resolution (fineness) of the displayed image. Therefore, it is necessary to form a number of pixels according to the required image resolution and the screen size of the display, and it is preferable to determine the pattern formation dimension of the partition wall accordingly.
  • the substrate has a function as a support in a substrate with a partition wall.
  • the substrate include a glass plate, a resin plate, a resin film, and the like.
  • the material of the glass plate non-alkali glass is preferable.
  • polyester, (meth) acrylic polymer, transparent polyimide, polyether sulfone and the like are preferable.
  • the thickness of the glass plate and the resin plate is preferably 1 mm or less, preferably 0.8 mm or less.
  • the thickness of the resin film is preferably 100 ⁇ m or less.
  • the partition wall has a function of preventing light from being mixed from one sub-pixel to an adjacent sub-pixel when a paste is applied and cured between adjacent partition walls to form a sub-pixel containing a cured product of the paste. It is preferable to have.
  • FIG. 2 shows a cross-sectional view of one aspect of the substrate of the present invention.
  • a patterned partition wall 6 is provided on the substrate 3, and a cured product 7 of the paste of the present invention is contained in a cell partitioned by the partition wall.
  • the partition wall preferably has a reflectance of 60 to 90% per 10 ⁇ m thickness at a wavelength of 550 nm. By setting the reflectance to 20% or more, the brightness of the display can be improved by utilizing the reflection on the side surface of the partition wall. On the other hand, the reflectance is preferably 90% or less from the viewpoint of improving the partition wall pattern forming accuracy.
  • the thickness of the partition wall refers to the length of the partition wall in the direction perpendicular to the substrate (height direction). In the case of the substrate with a partition wall shown in FIG. 2, the thickness of the partition wall 6 is represented by reference numeral H. The length of the partition wall in the horizontal direction is the width of the partition wall. In the case of the substrate with a partition wall shown in FIG. 2, the width of the partition wall 6 is represented by reference numeral L.
  • the thickness of the partition wall is preferably larger than the thickness of the cured product of the paste when the cured product of the paste is contained in the cell of the substrate with the partition wall.
  • the thickness H of the partition wall 6 is preferably 0.5 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the thickness H of the partition wall 6 is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the width L of the partition wall 6 may be sufficient to improve the brightness by utilizing the light reflection on the side surface of the partition wall and suppress the color mixing of the light emitted from the cured product of the adjacent paste due to light leakage.
  • the width L of the partition wall 6 is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the width L of the partition wall 6 is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, from the viewpoint of securing a large filling region of the cured product 7 of the paste and further improving the brightness.
  • the hole diameter of the discharge hole used for nozzle coating is in the range of 20 ⁇ m to 50 ⁇ m. It is preferable to use a base having a certain discharge hole. From the viewpoint of hole workability and variation in processing accuracy for each hole, the hole diameter of the discharge hole is preferably 20 ⁇ m or more, and the hole diameter of the discharge hole is preferably 50 ⁇ m or less in order to apply to a pixel having a small opening area corresponding to high definition.
  • the display of the present invention has the substrate and a light source.
  • a light source selected from a blue OLED, a blue LED, and an ultraviolet light emitting LED capable of driving an active matrix is preferable.
  • the method of manufacturing the display of the present invention will be described with reference to an example of a display having the substrate of the present invention and a blue OLED.
  • a photosensitive polyimide resin is applied onto a glass substrate having a TFT pattern capable of driving an active matrix, and an insulating film is formed by a photolithography method. After sputtering aluminum as the back electrode layer, patterning is performed by a photolithography method to form a back electrode layer in an opening without an insulating film.
  • Alq3 tris (8-quinolinolato) aluminum
  • dicyanomethylenepyrine, quinacridone, and 4,4'-bis (2) were formed on Alq3 as a light emitting layer.
  • 2-Diphenylvinyl Form a white light emitting layer doped with biphenyl.
  • N, N'-diphenyl-N, N'-bis ( ⁇ -naphthyl) -1,1'-biphenyl-4,4'-diamine is formed as a hole transport layer by a vacuum vapor deposition method.
  • ITO Indium Tin Oxide
  • a display can be manufactured by adhering the OLED thus obtained to face the above-mentioned substrate with a sealing agent.
  • Wavelength conversion material A CdSe / ZnS 530 (green emission quantum dot material, manufactured by SIGMA-ALDRICH)
  • Wavelength conversion material B Ce 0.63 Tb 0.37 MgAl 11 O 19 (green light emitting inorganic fluorescent material, manufactured by SIGMA-ALDRICH)
  • Light-scattering particles R-630 (titanium oxide, average particle size 0.24 ⁇ m, manufactured by Ishihara Sangyo Co., Ltd.)
  • Photopolymerization Initiator "Irgacure” (registered trademark) 819 (manufactured by BASF Japan Ltd.)
  • Monomer "Light acrylate 1.9ND-A” (registered trademark) (1,9-nonanediol diacrylate) (manufactured by Kyoeisha Chemical Co., Ltd.)
  • the paste was obtained by filtering with an SHP-400 filter (manufactured by Roki Techno Co., Ltd.) while applying a pressure of 100 to 500 kPa with air. (Adjustment of acrylic resin solution for partition wall) In a 500 mL three-necked flask, 3 g of 2,2'-azobis (isobutyronitrile) and 50 g of propylene glycol monomethyl ether were charged.
  • An acrylic resin solution for partition wall having a concentration of 40% by weight was obtained. (Adjustment of resin composition for partition wall) Disperse using a mill-type disperser filled with zirconia beads, which is a mixture of 5.00 g of titanium dioxide pigment R-960 (manufactured by BASF Japan Ltd.) as a white pigment and 5.00 g of an acrylic resin solution as a resin. , A pigment dispersion was obtained.
  • a resin composition for partition walls was spin-coated on a 10 cm square, 0.5 mm thick non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd.) and hot plate (SCW-636, manufactured by SCREEN Semiconductor Solutions Co., Ltd.). ) was dried at a temperature of 90 ° C. for 2 minutes to prepare a dry film.
  • the prepared dry film is exposed to an exposure amount of 200 mJ / cm 2 (i-line) using a parallel light mask aligner (PLA-501F, manufactured by Canon Inc.) using an ultra-high pressure mercury lamp as a light source and through a photomask. bottom.
  • partition walls in which partition walls were patterned in a grid pattern were formed in a range of 7 cm square.
  • the maximum value D MAX (5 ° C.) and the minimum value D MIN (5 ° C.) were obtained from the measurement results D ⁇ at a measurement temperature of 5 ° C. and an angular velocity of 100 to 500 rad / s.
  • the evaluation was performed based on the following criteria as the criteria for evaluation.
  • As the base 50 discharge holes having a hole diameter (diameter) of 40 ⁇ m and a hole length of 100 ⁇ m were arranged at a pitch of 300 ⁇ m in the longitudinal direction of the base. After filling the manifold of the mouthpiece with the paste, the paste was sealed and a pressure of 500 to 1500 kPa was applied by compressed air, the shape of the liquid discharged from the discharge hole was visually confirmed, and the evaluation was made based on the following criteria.
  • A The paste is discharged downward in a columnar shape and vertically without being connected to the discharge liquid from the adjacent discharge holes.
  • a multi-lab coater manufactured by Toray Engineering Co., Ltd.
  • Toray Engineering Co., Ltd. is used to align the traveling directions of the partition wall and the base on the substrate, and then the gap between the base and the base is maintained at 100 ⁇ m, and air is applied to the base.
  • a nozzle of 500 to 1,500 kPa is applied to the substrate with a partition wall in a direction parallel to the long side direction of the partition wall while the paste is discharged by changing the traveling speed with respect to the substrate within a range of 5 to 300 mm / s.
  • the paste was filled, dried on a hot plate at 100 ° C.
  • the evaluation criteria for coatability is that the paste is discharged onto the substrate with partition while changing the air pressure in various ways, and the substrate immediately after coating is topped with a laser microscope (color 3D laser microscope VK-9710, manufactured by KEYENCE CORPORATION). The optical microscope image was confirmed by observing from the direction in the camera mode. In addition, the vicinity of the discharge hole immediately after application was visually observed, and the liquid adhesion in the vicinity of the discharge hole was confirmed and evaluated based on the following criteria.
  • A The paste does not adhere to the vicinity of the discharge hole, and the paste can be applied linearly without pulsation.
  • B The paste did not adhere to the vicinity of the discharge hole and could be applied in a straight line, but the paste repeatedly expanded and contracted and pulsated.
  • C There is paste adhering to the vicinity of the discharge hole, and the paste is applied so as to rub against the substrate without being discharged in a columnar flow, or the paste is applied intermittently, or the paste is applied. It has not been.
  • Examples 1 to 3 had good fluidity, rigidity, and discharge property, and could be applied with high accuracy.
  • the paste was ejected in the form of droplets, the paste adhered to the vicinity of the ejection holes, and the paste was applied so as to be rubbed against the substrate, so that the ejection property and the coating property were poor.
  • the paste was not discharged well from the discharge hole and slightly became a liquid pool near the discharge hole, and the liquid pool was in contact with the substrate to be applied only intermittently, resulting in poor discharge and coatability. there were.
  • the paste did not form a columnar flow at the time of discharge and pulsated at the time of application, resulting in poor coatability.
  • Comparative Example 4 the paste came out only slightly at the time of ejection, and was applied only intermittently as in Comparative Example 2, and the ejection property and the coatability were poor.
  • Comparative Example 5 the coatability was poor because it was connected to the discharge liquid in the adjacent discharge holes immediately after being discharged and was applied to the adjacent pixels.
  • Comparative Example 6 the paste was not discharged from the discharge holes even slightly and was not applied to the base substrate, so that the discharge property and the coatability were poor.
  • R 2 (25 ° C) D 10 (25 ° C) / D 100 (25 ° C) .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

波長変換材料と、ポリマーと、モノマーを含有し、下記式(1)で定義されるDωについて、下記(i)の関係が成り立つペースト。 (1)Dω=G"ω/G'ω Dω:角剪断速度ωにおける損失正接tanδ G'ω:角剪断速度ωにおける貯蔵弾性率 G"ω :角剪断速度ωにおける損失弾性率  (i)0.7≦Dω≦1.3 (100≦ω≦500rad/s,5℃) ノズル塗布法により安定的に塗布することができる。

Description

ペースト、基板、ディスプレイ、および基板の製造方法
 本発明は、ペースト、基板、ディスプレイ、および基板の製造方法に関する。
 近年、スマートフォンやタブレットなどの情報端末機器の発展や、テレビをはじめとするフラットパネルディスプレイの高精細化に伴い、ディスプレイの高性能化の要求は更に高まっている。中でも、高性能のディスプレイとして、波長変換型のOLEDディスプレイ、およびLEDディスプレイが注目されている。これらのディスプレイは、光源としてアクティブマトリクス駆動される有機発光ダイオード(OLED)や発光ダイオード(LED)を用い、その光の少なくとも一部を波長変換材料により変化させることでフルカラー表示させる方式のディスプレイであり、コントラストや色再現性に優れる。
 光源にOLEDを用いる方法としては、青色発光のOLEDを用いる方法が知られている(特許文献1)。この場合、青色のサブピクセルではOLEDからの光を波長変換することなく透過・散乱させ、緑色、赤色のサブピクセルでは、波長変換材料によりOLEDからの青色光をそれぞれ緑色、赤色に変換して、透過させている。
 光源にLEDを用いる方法としては、OLEDと同様に青色発光のLEDを用い、一部の光を波長変換材料で赤色、緑色に変換させる方式に加え、紫外線発光のLEDを用い、波長変換材料で青色、緑色、赤色に変換させる方式が知られている(特許文献2)。
 波長変換材料には、表示色の色再現性の向上を目的として、量子ドット(Quantum Dot、QD、量子点とも呼ばれる。)を発光材料として含んだ波長変換層を備えた構成が注目されている(特許文献3)。量子ドットによる蛍光は高輝度であり、半値幅が狭いため量子ドットを用いたLCDは色再現性に優れる。
 これらの波長変換型のディスプレイには、光源であるOLEDやLEDのサブピクセルと対応するサイズで、波長変換材料をパターン化して配置する必要がある。波長変換材料のパターン化方法としては、フォトリソグラフィ法、およびインクジェット法(特許文献4)が知られている。
特表2006-501617号 特表2016-523450号 米国特許出願公開第2012/0113672号 国際公開第2018/123103号
 しかしながら、フォトリソグラフィ法では、波長変換材料を全面に塗布し、所定位置を露光した後、大半を現像により除去することから、波長変換材料のロスが大きく、また工程も露光・現像を複数回繰り返す必要があり複雑である課題があった。また、インクジェット法は、所望の位置のみに波長変換層を形成できることから材料効率に優れるが、インクジェットで波長変換材料を含むインクを塗布するには、インクの粘度を低く設計する必要があるため、インク中で波長変換材料などの粒子成分が沈降し、インクジェットノズルが詰まりやすくなる課題があった。
 一方、ペーストの塗布方法として、口金の吐出孔からペーストを連続的に吐出させながら塗布するノズル塗布法が知られている。ノズル塗布法により、複数の吐出孔を有する口金を用いてペーストを塗布する方法を示した模式図を図1に示す。ノズル塗布法とは、口金1の内部にペースト2を貯留する空間(マニホールド)を持ち、基板3に対向し相対的に移動しながら、その空間に接続された加圧配管4を通して圧力を制御された圧縮空気を導入することで吐出孔5からペースト2を吐出してストライプ状に塗布する方法である。吐出孔5から吐出されたペースト2は、基板上の隔壁6で区切られた空間内に充填される。この時、ペーストの送液方法は圧縮空気の導入に限らず、送液ポンプを用いるなどの他の方法を用いても良い。ノズル塗布法では、ペーストの粘度はインクジェット法に比べて低粘度から高粘度まで対応できることから、粘度を高く設計することにより粒子成分の沈降による吐出孔の詰まりを抑制できる。しかしながら、波長変換方式ディスプレイ向けの波長変換材料を含むペーストの設計を、既存のインクジェット法向けのインクと同様の設計とした場合、吐出孔から正常に吐出できない課題があった。また、従来のPDP(プラズマディスプレイパネル)用途のように、孔径80μmより大きい吐出孔を有する口金では吐出できたとしても、φ50μm以下となる微小な吐出孔を有する口金を使用した場合では吐出精度よく安定的に塗布できない課題があった。
 そこで、本発明は、孔径がφ50μm以下となるような微小な吐出孔を有する口金を使用する場合であっても、ノズル塗布法により、吐出精度良く、安定的に塗布できるペーストを提供することを課題とする。
 上記課題を解決するため、本発明のペーストは次の構成を有する。すなわち、
波長変換材料と、ポリマーと、モノマーを含有し、下記(1)で定義されるDωについて、下記(i)の関係が成り立つことを特徴とするペースト、である。
 (1)Dω=G″ω/G′ω 
  Dω:角速度ωにおける損失正接tanδ
  G′ω:角速度ωにおける貯蔵弾性率
  G″ω :角速度ωにおける損失弾性率
 (i)0.7≦Dω≦1.3 (100≦ω≦500rad/s,5℃)
 また、本発明のペーストは次の構成を有することも好ましい。すなわち、
波長変換材料およびポリマーを含有し、前記式(1)で定義されるG′、G″およびDωと、測定温度25℃、角速度ω=1、10、100rad/sの時の損失正接tanδをそれぞれ、D1(25℃)、D10(25℃)およびD100(25℃)としたとき、角速度ωを1rad/sから10rad/sに変化させたときの損失正接の変化率R1(25℃)を下記式(2)で定義し、角速度ωを10rad/sから100rad/sに変化させたときの変化率R2(25℃)を下記式(3)で定義したとき、下記(ii)~(iv)の関係が成り立つことを特徴とする波長変換ペースト、である。
 (2)R1(25℃)=D1(25℃)/D10(25℃)
 (3)R2(25℃)=D10(25℃)/D100(25℃)
 (ii)G″ω>G′ω (1rad/s≦ω≦100rad/s,25℃)
 (iii)G″1(25℃)>10Pa
 (iv)R1(25℃)<R2(25℃)
 また、本発明の基板は、次の構成を有する。すなわち、
上記ペーストの硬化物を隔壁で区画されたセル内に有する基板、である。
 本発明のディスプレイは、次の構成を有する。すなわち、
上記基板と、OLEDまたはLEDを光源として有するディスプレイ、である。
 本発明の基板の製造方法は、次の構成を有する。すなわち、
上記ペーストを、隔壁で区画されたセル内にノズル塗布法により塗布する工程を有する基板の製造方法、である。 
 本発明のペーストは、ポリマー重量部1に対するモノマー重量部の割合が0.1~2となることが好ましい。
 本発明のペーストは、固形分濃度が70~90wt%の範囲内であることが好ましい。
 本発明のペーストは、前記波長変換材料が無機蛍光体であることが好ましい。
 本発明のペーストは、前記無機蛍光体が量子ドットであることが好ましい。
 本発明のペーストは、剪断速度1s-1における粘度が10,000~400,000mPa・sの範囲であることが好ましい。
 本発明の基板の製造方法は、孔径が20μm~50μmの範囲である吐出孔を有する口金を使用してノズル塗布を行うことが好ましい。
 本発明のペーストは、微小な孔径の吐出孔を有する口金にてノズル塗布する場合においても、吐出時の液の膨らみや塗布時の液脈動を抑制することができ、精度よく塗布することが可能となる。
ノズル塗布法によるペースト塗布方法を示した模式図である。 パターン形成された隔壁とペーストの硬化物を有する本発明の基板の一態様を示す断面図である。
 以下、本発明の好ましい実施の形態について説明する。
 本発明についての説明に際し、従来技術における評価指標ならびに本発明における評価指標、粘弾性パラメーターの意義とその測定方法、本発明の効果を奏するために必要となる特性すなわち流動性、剛性、吐出性について順に説明する。 
 ノズル塗布法にてペーストを塗布する際、前述したように、ペーストは口金内のマニホールドに充填され、加圧配管を通じて導入される圧縮空気により吐出孔から吐出される。このとき、ペーストに加わる剪断応力と、剪断速度との比として現れるみかけの粘度が、剪断応力の上昇に伴って低下する性質をチクソトロピーという。チクソトロピーは一般的にノズル塗布の吐出性を左右するパラメーターとして用いられる。チクソトロピーを表す指標は、任意の剪断速度a、b(ここで、a<bとする)における粘度をそれぞれη、ηとしたとき、(4)で示すTI値(Thixotropic Index)として表される。
 (4)TI=η/η
 一般的にTI値が1より小さい場合、剪断応力がかかってもペーストの粘度が下がらないため、ペーストが吐出孔より吐出される際にペースト粘度が高い状態のため、うまく吐出されないという問題が生じる。またTI値が1より大きい場合でも、吐出孔より吐出される際にバラス効果が生じると、ペーストが膨張することで正常に吐出されない、あるいは塗布時に下地基板の隔壁頂部に乗り上げる等の塗布不良を引き起こすことがある。ここでバラス効果とは、高分子溶液や、高分子融液を細い孔から押し出す時に分子鎖が完全に緩和せず、弾性変形として剪断エネルギーが一部蓄えられ、孔から出た途端に緩和されることによって、液体が膨張する現象をいう。
 これまでノズル塗布の吐出性の評価指標として、前述のようなTI値が重視されてきた。しかしディスプレイの高精細化に伴い、孔径がφ50μm以下となるような微小な孔径の吐出孔を有する口金を使用する場合、TI値が同等であってもペースト種類によって吐出可否が分れることがあり、ペーストの吐出精度は従来のようにチクソトロピーだけでは評価できないことが明らかになってきた。また、正常に吐出できた場合においても塗布中のペースト吐出性が安定していないと塗布が不安定となり、ペーストが脈動し、形成される画素膜厚の均一性が損なわれるため、吐出性のみでは塗布性を評価できないことも同時に明らかになってきた。このような、従来よりも孔径が小さい吐出孔を有する口金を使用した塗布に向けた、より解像度の高いディスプレイ向けに用いられるペーストには、新たな評価指標が必要であり、筆者らは鋭意検討した末、ペーストの粘弾性により吐出性および塗布性を評価できることを見出した。
 本発明では、高い剪断応力がかかっている状態(以下、高剪断領域という)におけるノズル塗布の吐出可否および塗布性を決定する要因として、ペーストの損失正接の変化挙動が重要であることを見出し、ノズル塗布に好適な一定の形状を保ったまま垂直に吐出される状態(以下、柱状流という)での吐出可否および塗布安定性の指標とした。
 本発明におけるペーストの粘弾性は、その粘性成分および弾性成分をそれぞれ損失弾性率G″、貯蔵弾性率G′で表すことができ、損失弾性率に対する貯蔵弾性率の比を損失正接tanδとして表すことができる。
 これらの粘弾性パラメーターは、レオメータ(HAAKE MARS;サーモフィッシャーサイエンティフィック(株)製)を用いることで計測することが可能である。具体的には、レオメータに同社製のPlate P35 Ti Lを装着し、温度を5~25℃の範囲で設定し、プレートと試料台とのギャップを100~200μmに設定して、角速度を1~500rad/sに変更したときのG′、G″およびtanδを測定する。なお、本発明のような高粘度ペーストの粘弾性を測定する場合、測定時の試料の抵抗力が大きいため、パラレルプレートを使用することが好ましい。パラレルプレートを使用して測定した場合、剪断速度はプレートの中心からプレート端部に向けて異なり、後述するノズル塗布時の低剪断速度および高剪断速度と粘弾性測定時の剪断速度を厳密に揃えることが難しいため、ここでは剪断速度の代わりに測定時の角速度を用いて定義する。
 次に、本発明の効果を奏するために必要なペーストの粘弾特性について説明する。
 本発明のペーストは、室温かつ剪断がかかっていない状態あるいは弱い剪断がかかっている状態(以下、低剪断領域という)において流動性を有する。具体的には測定温度25℃にて、角速度ωが1rad/sから100rad/sの範囲において、角速度ωにおける損失弾性率G″ωおよび角速度ωにおける貯蔵弾性率G′ωがG″ω>G′ωの関係を満たすこと、換言すれば、ペーストの粘性が弾性よりも常に高くなることが好ましい。前記の関係を満たすとき、式(1)より求められる損失正接Dωは1より大きい値となる。ここで、測定温度25℃、角速度ωが1rad/sから100rad/sの範囲におけるDωの最小値をDMIN(25℃)とすると、G″ω>G′ωの関係を満たすためには、DMIN(25℃)>1となることが好ましい。前述のようにG″ω>G′ωの関係を満たさない場合、吐出孔からペーストを柱状流として精度よく吐出および塗布することが難しい。また、前記の関係を満たさない場合、基板に塗布された後、ペーストが流動性を帯びずに塗布された状態で固まってしまい、開口部内にきれいに充填されず、画素を正常に形成することができない。ノズル塗布に十分必要な流動性の指標として、低剪断領域のペーストの粘性は弾性より高いことが好ましい。
 また、本発明のペーストは、室温、低剪断領域において流動性を有することに加えて、剛性を有することが好ましい。ペーストに剛性が無ければ、吐出孔から吐出された際にペーストが膨らみ液滴状になり、精度よく塗布することが困難となるためである。より具体的には、測定温度25℃、角速度ωが1rad/sのときの損失弾性率G″1(25℃)が10Paを超えることが好ましく、20Pa以上であることがより好ましい。
 また、本発明のペーストは剪断応力をかけた際に、吐出孔から吐出できる必要がある。前述したようなチクソトロピーを有するペーストにおいても、ペーストに剪断応力をかけたときの、粘性成分および弾性成分すなわち損失弾性率と貯蔵弾性率の瞬間的な増加割合によっても吐出性が変化する。剪断応力がかかった際に、ペーストの弾性成分が急峻に増大するとペーストが吐出孔からうまく吐出されないことがある。すなわち、剪断速度変化にともなって貯蔵弾性率が損失弾性率に対して急峻に増大することが吐出不良につながる。具体的には、測定温度25℃において角速度ωを1rad/sから10rad/sに変化させたときの損失正接の変化率と、角速度ωを10rad/sから100rad/sに変化させたときの損失正接の変化率の関係から評価することができる。測定温度25℃、角速度ω=1、10、100rad/sの時の損失正接tanδをそれぞれ、D1(25℃)、D10(25℃)およびD100(25℃)としたとき、角速度ωを1rad/sから10rad/sに変化させたときの損失正接の変化率をR1(25℃)、角速度ωを10rad/sから100rad/sに変化させたときの変化率R2(25℃)を、下記式(2)および(3)でそれぞれ定義した場合、R1(25℃)<R2(25℃)となることが好ましい。
 (2)R1(25℃)=D1(25℃)/D10(25℃)
 (3)R2(25℃)=D10(25℃)/D100(25℃)
 この関係を満たす場合、吐出孔からペーストを精度よく吐出することができる。以上の特性が本発明におけるペーストの効果を発現する際の前提となる諸特性である。
 本発明におけるペーストは、前記(i)の条件を満たす時、吐出孔からペーストが吐出される際に、ペーストの膨らみが抑えられ、柱状流となり、精度よく塗布することが可能となる。口金のマニホールド内に充填されたペーストを加圧すると、吐出孔から吐出される際にペーストに剪断応力がかかり、剪断応力がかかった状態におけるペーストの変形の速さは剪断速度として表すことができる。剪断応力および剪断速度は吐出孔の孔長と孔径および塗布時のペーストの体積流量によって決定されるが、正確に算出するためには吐出孔の孔長や孔形状等の要因による圧力損失分を補正する必要がある。一例として前記補正を行わないみかけの剪断速度を下記式(5)で示す。なお、口金および吐出孔の構造によりペーストにかかる剪断速度は変化するため、剪断速度を算出する場合は、必ずしも以下に定義する式に限らない。
 (5)γ=4Q/πR
  γ:剪断速度(sec-1
  Q:体積流量(mm/sec)
  R:吐出孔半径(mm)
 式(5)より、塗布時のペーストの体積流量が等しいと仮定した場合において、吐出ノズル孔の孔径は小さいほど剪断速度が大きいといえる。前記式にて、孔径が20μm~50μm程度の吐出孔を有する口金を用いてノズル塗布を行った際、塗布速度や充填量により変動するが、剪断速度は約1,000~200,000sec-1程度となる。本発明では、前記のような高剪断領域において、損失正接tanδが1に漸近するほどペーストが吐出孔から吐出される際に柱状流となり安定的に塗布できることを見出した。
 損失正接tanδは、ペーストの粘性成分の強さを示す損失弾性率G″ωと弾性成分の強さを示す貯蔵弾性率G′ωの比であり、双方が等しいとき1となる。損失正接tanδが1より高い場合、損失弾性率すなわち粘性成分の比率が高くなり液滴状に吐出されやすい。また、損失正接tanδが1より低い場合、貯蔵弾性率すなわち弾性成分の比率が高くなり加圧時にペーストが変形しにくくなるために、吐出孔から吐出されにくくなる。
 常温にて粘弾性を測定する際の角速度ωは、0.1~500rad/s程度が好ましくそれより高い角速度では安定して測定することが困難となる。本発明におけるノズル塗布を想定した場合、前述の通り約1,000~200,000s-1程度の高剪断領域における粘弾性を評価するためには、後述する温度・周波数換算則に基づく合成曲線により評価することができる。
 一般的にポリマーを含む材料の粘弾性を測定する場合、温度・周波数換算則(ウィリアムズ・ランデル・フェリー式)が成り立つため、温度を変更して測定を行うことで、各測定温度における貯蔵弾性率、損失弾性率および損失正接の合成曲線(マスターカーブ)を作成し、周波数を変化させた際の粘弾性を評価することができる。また、周波数は角速度に変換することが可能であるため、すなわち角速度を変化させた際の粘弾性を評価することができる。本発明では、測定温度を室温25℃から、5℃まで低下させることにより、室温での測定における角速度より高い剪断領域における粘弾性を評価した結果、測定温度5℃、角速度100~500rad/secにおける損失正接tanδが0.7~1.3の範囲となるペーストが、孔径φ50μm以下の微小な吐出孔を有する口金にて安定的にノズル塗布できることを見出した。換言すると、測定温度5℃、角速度100~500rad/sにおける損失正接の最大値をDMAX(5℃)、最小値をDMIN(5℃)と表したときにDMIN(5℃)≧0.7、DMAX(5℃)≦1.3となる必要がある。
 測定温度5℃、角速度100~500rad/sにおける損失正接tanδが0.7より低い場合、孔径がφ80μmより大きい吐出孔を有する口金を使用する場合では柱状吐出することができる場合もあるが、孔径φ50μm以下の吐出孔を有する口金では吐出することが難しい。また、測定温度5℃、角速度100~500rad/sにおける損失正接tanδが1.3より高い場合、孔径がφ80μmより大きい吐出孔を有する口金を使用する場合では柱状吐出することができる場合もあるが、孔径φ50μm以下の吐出孔を有する口金では液滴状に吐出され、柱状に吐出することが難しい。
 また、本発明におけるペーストの固形分濃度は塗布安定性の観点から、70~90wt%となることが好ましい。ペーストの固形分濃度が上記好ましい範囲であると、塗布時にペースト中の溶剤成分の影響により液が膨らむことを防ぎ、脈動し難くなるために塗布時の安定性を保つことが容易となる。一方、溶剤成分によるペースト流動性が低くなり過ぎず、吐出および塗布性が良好となる。また、塗布後溶剤成分が乾燥する工程においてペーストがレベリングし、均一な膜を形成することができる。さらに、隔壁で囲まれた開口部に塗布した際に、揮発成分が少ないために厚膜充填することが可能となる。
 本発明におけるペーストのポリマー重量部1に対するモノマー重量部の割合は、ペーストの固形分濃度および塗布安定性の観点より、0.1~2となることが好ましい。ポリマー重量部1に対するモノマー重量部の割合が上記好ましい範囲であると、ペースト中の溶剤比率が高くなり過ぎず、塗布時にペースト中の溶剤成分の影響により液が膨らむことを防ぎ、脈動し難くなるために塗布時の安定性を保つことが容易となる。一方、ペースト中のモノマー成分の影響が強過ぎず、溶剤成分によるペースト流動性が低くなることを防ぎ、吐出および塗布性が良好となる。
 また、本発明におけるペーストは、剪断速度1s-1における粘度が10,000~400,000mPa・sであることが好ましい。ペーストの剪断速度1s-1の剪断速度における粘度を10,000mPa・s以上とすることにより、ペーストを作製後に長期保存した場合でも、波長変換材料として用いられる蛍光体等の粒子成分が沈降し生じにくくなる。ペーストの剪断速度1s-1における粘度は15,000mPa・s以上であることがより好ましく、20,000mPa・s以上であることがさらに好ましい。また、ペーストの剪断速度1s-1における粘度を400,000mPa・s以下とすることにより、吐出に好適な送液圧力を選択することができる。ペーストの剪断速度1s-1における粘度は300,000mPa・s以下であることが好ましく、より好ましくは200,000mPa・s以下であり、150,000mPa・s以下であることがさらに好ましい。
 本発明のペーストは、波長変換材料を含有する。本発明において、波長変換材料とは、電磁波を吸収し、吸収した電磁波の波長と異なる波長の電磁波を放射する、波長変換性を有する材料を言う。波長変換材料を有する本発明のペーストを塗布してパターン化し、波長変換層を有する基板を作製し、OLED光源やLED光源と組み合わせることによりフルカラーのディスプレイとすることができる。
 波長変換材料としては、無機蛍光体および/または有機蛍光体を用いることが好ましい。例えば、青色光を発光するOLEDと、波長変換層を有する基板とを組み合わせたディスプレイの場合、赤色のサブピクセルに対応する領域には、青色の励起光により励起されて赤色の蛍光を発する赤色用蛍光体を波長変換材料として用いることが好ましく、緑色のサブピクセルに対応する領域には、青色の励起光により励起されて緑色の蛍光を発する緑色用蛍光体を波長変換材料として用いることが好ましく、青色サブピクセルに対応する領域には、波長変換材料を用いないことが好ましい。同様に、各サブピクセルに対応した青色LEDや紫外線発光LEDをバックライトとして用いる方式のディスプレイにも、本発明の基板を用いることができる。各サブピクセルの発光のON/OFFは、OLEDやLEDのアクティブマトリクス駆動によって可能となる。
 無機蛍光体は、緑色や赤色などの各色を発光する。無機蛍光体としては、波長400~500nmの励起光により励起され、発光スペクトルが500~700nmの領域にピークを有するものや、前述した量子ドットと称される量子力学に従い独特な光学特性を有するナノスケールの無機半導体微粒子などが挙げられる。前者の無機蛍光体の形状としては、例えば、球状、柱状などが挙げられる。かかる無機蛍光体としては、例えば、YAG系蛍光体、TAG系蛍光体、サイアロン系蛍光体、Mn4+付活フッ化物錯体蛍光体等が挙げられる。これらを2種以上用いてもよい。
 これらの中でも、量子ドットが好ましい。量子ドットは他の蛍光体に比較して発光スペクトルにおけるピークがシャープであることから、ディスプレイの色再現性を高めることができる。
 量子ドットの材料としては、例えば、II-IV族、III-V族、IV-VI族、IV族の半導体などが挙げられる。これらの無機半導体としては、例えば、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si、Ge、Alなどが挙げられる。これらを2種以上用いてもよい。
 量子ドットは、p型ドーパントまたはn型ドーパントを含有してもよい。また、量子ドットは、コアシェル構造を有してもよい。コアシェル構造においては、シェルの周囲に目的に応じて任意の適切な機能層(単一層または複数層)が形成されていてもよく、シェル表面に表面処理および/または化学修飾がなされていてもよい。
 量子ドットの形状としては、例えば、球状、柱状、燐片状、板状、不定形等が挙げられる。量子ドットの平均粒子径は、所望の発光波長に応じて選択することができ、1~30nmが好ましい。量子ドットの平均粒子径が1~10nmであれば、青色、緑色および赤色のそれぞれにおいて、発光スペクトルにおけるピークをよりシャープにすることができる。例えば、量子ドットの平均粒子径が約2nmの場合には青色光を、約3nmの場合には緑色光を、約6nmの場合には赤色光を発光する。量子ドットの平均粒子径は2nm以上が好ましく、8nm以下が好ましい。量子ドットの平均粒子径は、動的光散乱法により測定することができる。平均粒子径の測定装置としては、ダイナミック光散乱光度計DLS-8000(大塚電子(株)製)などが挙げられる。
 有機蛍光体としては、例えば、青色の励起光により励起され赤色の蛍光を発する蛍光体として、下記構造式(I)で表される基本骨格を有するピロメテン誘導体、青色の励起光により励起され緑色の蛍光を発する蛍光体として、下記構造式(II)で表される基本骨格を有するピロメテン誘導体などが挙げられる。その他には、置換基の選択により赤色または緑色の蛍光を発するペリレン系誘導体、ポルフィリン系誘導体、オキサジン系誘導体、ピラジン系誘導体などが挙げられる。これらを2種以上含有してもよい。これらの中でも、量子収率が高いことから、ピロメテン誘導体が好ましい。ピロメテン誘導体は、例えば、特開2011-241160号公報に記載の方法により得ることができる。
Figure JPOXMLDOC01-appb-C000001
 有機蛍光体は溶媒に可溶なため、所望の厚みの波長変換材料を含有する層を容易に形成することができる。
 本発明のペーストは、波長変換材料に量子ドットを用いる場合、光散乱性粒子を含有することが好ましい。また、光散乱性粒子の粒子径は100~500nmであることが更に好ましい。光散乱性粒子を含有することにより、波長変換層内で青色光が散乱されることにより光路長が長くなり、波長変換材料による光変換効率を向上させることができる。なお、本発明において光散乱性粒子は、波長変換性を有しない。本発明において、光散乱性粒子は、酸化チタンであることが好ましい。
 本発明のペーストは、ポリマーを含有する。前記ポリマーとして、例えば、ポリビニルアセテート、ポリビニルアルコール、エチルセルロース、メチルセルロース、ポリエチレン、ポリメチルシロキサン若しくはポリメチルフェニルシロキサン等のシリコン樹脂、ポリスチレン、ブタジエン/スチレンコポリマー、ポリスチレン、ポリビニルピロリドン、ポリアミド、高分子量ポリエーテル、エチレンオキサイドとプロピレンオキサイドとの共重合体、ポリアクリルアミド又はアクリル樹脂などが好ましく挙げられる。本発明のペーストは、前記ポリマーがセルロース系であることが好ましい。本発明において、波長変換層は、ペーストを硬化させて形成することが好ましい。ペーストは、波長変換材料を含有するペースト材料であり、適切に組成設計することによりノズル塗布法で隔壁付き基板に容易に塗布できる。ペーストを硬化させる方法は特に限定されないが、重合性化合物を含有するペーストを熱や光で硬化させる方法や、溶媒を含有するペーストから加熱により溶媒を揮発させて硬化させる方法などが挙げられる。
 本発明のペーストは、モノマーを含有する。モノマーとしては、分子中にエチレン性不飽和二重結合を有する化合物であることが好ましい。モノマーは、分子中に2つ以上のエチレン性不飽和二重結合を有することが好ましい。
 モノマーとしては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、ペンタペンタエリスリトールウンデカアクリレート、ペンタペンタエリスリトールドデカアクリレート、トリペンタエリスリトールヘプタメタクリレート、トリペンタエリスリトールオクタメタクリレート、テトラペンタエリスリトールノナメタクリレート、テトラペンタエリスリトールデカメタクリレート、ペンタペンタエリスリトールウンデカメタクリレート、ペンタペンタエリスリトールドデカメタクリレート、ジメチロール-トリシクロデカンジアクリレート等が挙げられる。これらを2種以上含有してもよい。
 本発明のペーストは、上記の必須成分に加え、重合開始剤、溶媒、分散剤などを適宜含んでいても良い。
 本発明のペーストに重合開始剤を含む場合には、例えば、ラジカル開始剤やカチオン開始剤、すなわち、光(紫外線、電子線を含む)、または熱により反応し、ラジカルやカチオンなどの活性種を発生させるものであればどのようなものでもよい。これらの中でも、ラジカル開始剤であることが好ましい。重合開始剤としては、例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1などのα-アミノアルキルフェノン化合物;2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-ホスフィンオキサイドなどのアシルホスフィンオキサイド化合物;1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン=2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)などのオキシムエステル化合物;ベンジルジメチルケタールなどのベンジルケタール化合物;2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトンなどのα-ヒドロキシケトン化合物;ベンゾフェノン、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、O-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アルキル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン化合物;2,2-ジエトキシアセトフェノン、2,3-ジエトキシアセトフェノン、4-t-ブチルジクロロアセトフェノン、ベンザルアセトフェノン、4-アジドベンザルアセトフェノンなどのアセトフェノン化合物;2-フェニル-2-オキシ酢酸メチルなどの芳香族ケトエステル化合物;4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(2-エチル)ヘキシル、4-ジエチルアミノ安息香酸エチル、2-ベンゾイル安息香酸メチルなどの安息香酸エステル化合物などが挙げられる。これらを2種以上含有してもよい。
 本発明のペーストは、重合開始剤による着色を抑制するため、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-ホスフィンオキサイド等のアシルホスフィンオキサイド系重合開始剤を含むことが好ましい。ペースト中における重合開始剤の含有量は、ラジカル硬化を効率的に進める観点から、固形分中、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、残留した重合開始剤の溶出等を抑制し、黄変をより向上させる観点から、重合開始剤の含有量は、固形分中、20重量%以下が好ましく、10重量%以下がより好ましい。
 本発明のペーストに溶媒を含む場合には、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブタノール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族または脂肪族炭化水素;γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどが好ましく挙げられる。このうち、前記溶媒が、アセテート類であるのがさらに好ましい。
 本発明のペーストに分散剤を含む場合には、分散剤として、例えば、“Disperbyk”(登録商標)106、108、110、180、190、2001、2155、140、145(以上、品番、ビックケミー(株)製)などが好ましく挙げられる。
 本発明の基板は、本発明のペーストを塗布し、硬化することにより作製できる。この場合、隔壁で区画されたセルを有する基板、すなわち隔壁付き基板のセル内に本発明のペーストを塗布し、硬化することで作製することが好ましい。特に、後述の隔壁を有する、隔壁付き基板にノズル塗布し、硬化することで作製することが好ましい。
 本発明における隔壁とは、ディスプレイの画素中のサブピクセルに応じたパターンを有することが好ましい。ディスプレイの画素数としては、例えば、縦に2,000個、横に4,000個が挙げられる。画素数は、表示される画像の解像度(きめ細かさ)に影響する。そのため、要求される画像の解像度とディスプレイの画面サイズに応じた数の画素を形成する必要があり、それに併せて、隔壁のパターン形成寸法を決定することが好ましい。
 基板は、隔壁付き基板における支持体としての機能を有する。基板としては、例えば、ガラス板、樹脂板、樹脂フイルムなどが挙げられる。ガラス板の材質としては、無アルカリガラスが好ましい。樹脂板および樹脂フイルムの材質としては、ポリエステル、(メタ)アクリルポリマ、透明ポリイミド、ポリエーテルスルフォン等が好ましい。ガラス板および樹脂板の厚みは、1mm以下が好ましく、0.8mm以下が好ましい。樹脂フイルムの厚みは、100μm以下が好ましい。
 隔壁は、隣接する隔壁間に、ペーストを塗布・硬化し、ペーストの硬化物を含有するサブピクセルを構成した場合に、あるサブピクセルから隣接するサブピクセルに光が混色するのを防止する機能を有することが好ましい。
 図2に、本発明の基板の一態様の断面図を示す。基板3上に、パターン形成された隔壁6を有し、隔壁で区画されたセル内に本発明のペーストの硬化物7を有する。
 隔壁は、波長550nmにおける厚み10μmあたりの反射率が60~90%であることが好ましい。反射率を20%以上とすることにより、隔壁側面における反射を利用してディスプレイの輝度を向上させることができる。一方で、隔壁パターン形成精度を向上させる観点から、反射率は、90%以下が好ましい。ここで、隔壁の厚みとは、基板に対して垂直方向(高さ方向)の隔壁の長さを指す。図2に示す隔壁付き基板の場合、隔壁6の厚みは符号Hで表される。なお、隔壁の基板に水平方向の長さは、隔壁の幅とする。図2に示す隔壁付き基板の場合、隔壁6の幅は符号Lで表される。
 隔壁の厚みは、隔壁付き基板のセル内にペーストの硬化物を有する場合、ペーストの硬化物の厚みよりも大きいことが好ましい。具体的には、隔壁6の厚みHは、0.5μm以上が好ましく、5μm以上がより好ましい。一方、色変換発光材料を含有する層の底部における発光をより効率良く取り出す観点から、隔壁6の厚みHは、100μm以下が好ましく、50μm以下がより好ましく、20μm以下がさらにより好ましい。また、隔壁6の幅Lは、隔壁側面における光反射を利用し輝度を向上させ、光漏れによる隣接するペーストの硬化物からの発光の混色を抑制するために十分なものであればよい。具体的には、隔壁6の幅Lは、5μm以上が好ましく、10μm以上がより好ましい。一方、ペーストの硬化物7の充填領域を多く確保して輝度をより向上させる観点から、隔壁6の幅Lは、50μm以下が好ましく、30μm以下がより好ましい。
 また、前述のような画素数の高解像度なディスプレイを作製する場合、ノズル塗布に使用する吐出孔の孔径は小さいほど高解像度に対応することが容易となるため、孔径が20μm~50μmの範囲である吐出孔を有する口金を使用することが好ましい。孔加工性および孔毎の加工精度バラツキの観点より、吐出孔の孔径は20μm以上が好ましく、高精細に対応した開口面積の小さい画素に塗布するために吐出孔の孔径は50μm以下が好ましい。
 次に、本発明のディスプレイについて説明する。本発明のディスプレイは、前記基板と、光源とを有する。光源としては、アクティブマトリックス駆動が可能な青色OLED、青色LED、紫外発光LEDから選ばれた光源が好ましい。
 本発明のディスプレイの製造方法について、本発明の基板と青色OLEDを有するディスプレイの一例を挙げて説明する。アクティブマトリックス駆動が可能なTFTパターンを有するガラス基板上に、感光性ポリイミド樹脂を塗布し、フォトリソグラフィ法により絶縁膜を形成する。背面電極層としてアルミニウムをスパッタした後、フォトリソグラフィ法によりパターニングを行い、絶縁膜の無い開口部に背面電極層を形成する。続いて、電子輸送層としてトリス(8-キノリノラト)アルミニウム(以下、Alq3と略す)を真空蒸着法により成膜した後、発光層としてAlq3にジシアノメチレンピラン、キナクリドン、4,4’-ビス(2,2-ジフェニルビニル)ビフェニルをドーピングした白色発光層を形成する。次に、正孔輸送層としてN,N’-ジフェニル-N,N’-ビス(α-ナフチル)-1,1’-ビフェニル-4,4’-ジアミンを真空蒸着法にて成膜する。最後に、透明電極としてITO(Indium Tin Oxide)をスパッタリングにて成膜し、青色発光層を有するOLEDを作製する。このようにして得られたOLEDを前述の基板と対向させて封止剤により貼り合せることにより、ディスプレイを作製できる。
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。なお、次の化合物について、以下の略語を使用した。
PGMEA:プロピレングリコールモノメチルエーテルアセテート
DAA:ジアセトンアルコール
 (ペーストの原料)
 ペーストの作製に用いた原料は次のとおりである。
波長変換材料A:CdSe/ZnS 530(緑色発光量子ドット材料、SIGMA-ALDRICH社製)
波長変換材料B:Ce0.63Tb0.37MgAl1119(緑色発光無機蛍光体材料、SIGMA-ALDRICH社製)
光散乱性粒子:R-630(酸化チタン、平均粒子径0.24μm、石原産業(株)製)
光重合開始剤:“イルガキュア”(登録商標)819(BASFジャパン(株)製)
モノマー:“ライトアクリレート1.9ND-A”(登録商標)(1,9-ノナンジオールジアクリレート)(共栄社化学(株)製)
ポリマーA:“ETHOCEL”(登録商標)STD4(I)(エチルセルロース)
(DDPスペシャルティ・プロダクツ・ジャパン(株)製)
ポリマーB:SLEC SV-12(積水化学工業(株)製)
ポリマーC: “DOWSIL”(登録商標)RSN-0249 Flake Resin(ダウ・東レ(株)製)
ポリマーD:ポリジメチルシロキサン(富士フイルム和光純薬(株)製)
溶媒:PGMEA(富士フイルム和光純薬(株)製)
 (ペーストの調製)
 表1記載の重量分率で各材料をフラスコに秤量し、フラスコを80℃のオイルバスに浸けて120分間加熱撹拌した後、ハイブリッドミキサーARE-310((株)THINKY製)で1分間脱泡し、空気によって100~500kPaの圧力をかけながらSHP-400フィルター((株)ロキテクノ製)でろ過し、ペーストを得た。
(隔壁用アクリル樹脂溶液の調整)
 500mLの三口フラスコに、2,2’-アゾビス(イソブチロニトリル)を3g、プロピレングリコールモノメチルエーテルを50g仕込んだ。その後、メタクリル酸を30g、ベンジルメタクリレートを35g、トリシクロ[5.2.1.02,6]デカン-8-イルメタクリレートを35g仕込み、室温でしばらく撹拌し、フラスコ内を窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを15g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、プロピレングリコールモノメチルエーテルアセテートを100g添加し、90℃で4時間加熱撹拌し、固形分濃度が40重量%となる隔壁用アクリル樹脂溶液を得た。
(隔壁用樹脂組成物の調整)
 白色顔料として、二酸化チタン顔料R-960(BASFジャパン(株)製)5.00gに、樹脂として、アクリル樹脂溶液5.00gを混合したジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液を得た。
 次に、顔料分散液10.00g、アクリル樹脂溶液1.15g、光重合開始剤として、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(“イルガキュア”(登録商標)907(BASFジャパン(株)製)0.100g、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(“イルガキュア”(登録商標)819(BASFジャパン(株)製)0.200g、光重合性化合物として、ペンタエリスリトールアクリレート“ライトアクリレート”(登録商標)PE-3A(共栄社化学(株)製)1.50g、光重合性フッ素含有化合物“メガファック”(登録商標)RS-76-E(DIC(株)製)の40重量%PGMEA希釈溶液1.00g、シランカップリング剤の20重量%PGMEA希釈溶液0.500g、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(“セロキサイド”(登録商標)2021P(ダイセル(株)製)0.200g、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート](“イルガノックス”(登録商標)1010(BASFジャパン(株)製)0.300g、アクリル系界面活性剤“BYK”(登録商標)352、(ビックケミー・ジャパン(株)製)のPGMEA10重量%希釈溶液0.100g(濃度500ppmに相当)を、DAA1.000gとPGMEA4.200gの混合溶媒に溶解させ、撹拌した。次いで、5.0μmのフィルターでろ過を行い、ネガ型感光性着色組成物を得た。
 (隔壁付き基板の作製)
 10cm角、厚み0.5mmの無アルカリガラス基板(AGCテクノグラス(株)製)上に隔壁用樹脂組成物をスピンコートし、ホットプレート(SCW-636、(株)SCREENセミコンダクータソリュージョンズ製)を用いて、温度90℃で2分間乾燥し乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量200mJ/cm(i線)で露光した。その後、自動現像装置(AD-2000、滝沢産業(株)製)を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。さらに、オーブン(IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ20μm、幅20μmの隔壁が、短辺100μm、長辺300μmのピッチ間隔で、7cm角の範囲に隔壁が格子状にパターン形成された隔壁を形成した。
(粘度の評価方法)
 レオメータ(HAAKE MARS;サーモフィッシャーサイエンティフィック(株)製)に、同社製のPlate P35 Ti Lを装着し、測定温度25℃、ギャップを200μmに設定し、各実施例、各比較例のペーストについて、剪断速度1s-1における粘度を測定した。また、剪断速度a=1s-1における粘度ηと剪断速度b=100s-1における粘度η100を測定し、式(4)に代入してTI値を計算した。
(粘弾性の評価方法)
 レオメータ(HAAKE MARS;サーモフィッシャーサイエンティフィック(株)製)を用いて、粘度評価と同様に同社製のPlate P35 Ti Lを装着し、測定温度5~25℃、ギャップを100μmに設定し、各実施例、比較例のペーストについて、100~500rad/sの角速度範囲における貯蔵弾性率G′、損失弾性率G″および損失正接tanδを測定した。
 測定温度5℃、角速度100~500rad/sにおける測定結果Dωより、最大値DMAX(5℃)および最小値DMIN(5℃)を求めた。
 同様に、測定温度25℃、角速度1~100rad/sにおける測定結果より、1~100rad/sの角速度範囲におけるDMIN(25℃)および、G″1(25℃)の値を求めた。また測定温度25℃、ω=1、10、100rad/sにおける各損失正接の値を用いて、前記式(2)および(3)に従い、R1(25℃)(=D1(25℃)/D10(25℃))およびR2(25℃)(=D10(25℃)/D100(25℃))を求めた。
(流動性の評価方法)
 室温(25℃)環境下において、ペーストを100mL容器中に20mL秤量し、容器を傾け1分間保持して、低剪断領域のペーストの流動性を目視観察した。観察結果より、流動性を以下の基準に基づいて評価した。
A:ペーストが容易に流動する。
B:ペーストが僅かに流動する。
C:目視では流動を確認できない。
(剛性の評価方法)
 室温(25℃)環境下において、ペーストを100mL容器中に20mL秤量し、ペーストにスポイトを挿した際の抵抗により、低剪断領域のペーストの剛性を評価した。なお、評価の基準として下記の基準に基づいて評価を行った。
A:スポイトを挿した際に、抵抗がある。
B:スポイトを挿した際に、弱い抵抗がある。
C:スポイトを挿した際に、水のように殆ど抵抗がない。
(吐出性の評価方法)
 口金として、孔径(直径)40μm、孔長100μmの吐出孔を口金の長手方向に300μmピッチで50個配列して有するものを用いた。ペーストを前記口金のマニホールドに充填した後、密閉して圧縮空気により500~1500kPaの圧力をかけ、吐出孔から吐出される液の形状を目視で確認し、以下の基準に基づいて評価した。
A:ペーストが隣接する吐出孔からの吐出液と連なることなく、柱状にかつ垂直に下方へ吐出される。
B:ペーストが吐出孔から垂直に下方へ吐出されるが、柱状ではなく液滴状であり、吐出が不安定である。
C:吐出孔からペーストが僅かにしか出てこない、あるいは吐出された直後に、隣接する吐出孔の吐出液と連なる、あるいはうまく吐出されずに吐出孔付近に液だまりができる、あるいは、吐出孔から吐出されない。
(ペーストの塗布方法)
 塗布装置としては、マルチラボコータ(東レエンジニアリング(株)製)を用いて、基板上の隔壁と口金の進行方向をアライメントした後、口金と基板とのギャップを100μmに保持し、前記口金に空気によって500~1,500kPaの圧力をかけ、基板に対する進行速度を5~300mm/sの範囲内で変化させてペーストを吐出させながら、前記隔壁付き基板に、隔壁の長辺方向と平行方向にノズル塗布することにより、ペーストを充填した後、ホットプレート上で100℃10分乾燥し、さらに超高圧水銀灯により露光量150mJ/cm(i線)で露光して硬化させた。
(塗布性の評価方法)
 塗布性の評価基準は、前記隔壁付き基板に空気の圧力を種々変化させながらペーストを吐出し、塗布した直後の基板をレーザー顕微鏡(カラー3Dレーザー顕微鏡 VK-9710、(株)キーエンス製)で上面方向からカメラモードで観察し、光学顕微鏡像を確認した。また、塗布直後の吐出孔付近を目視で観察し、吐出孔付近の液付着を確認して以下の基準に基づいて評価した。
A:吐出孔付近へのペーストの付着が無く、ペーストが脈動することなく直線状に塗布できている。
B:吐出孔付近へのペーストの付着は無く、直線状に塗布できているが、ペーストが膨張と収縮を繰り返し脈動している。
C:吐出孔付近へのペーストの付着があり、ペーストが柱状流で吐出されずに基板にこすりつけるように塗布されている、または、ペーストが断続的に塗布されている、または、ペーストが塗布されていない。
 評価結果を表1に示す。実施例1~3は流動性、剛性、吐出性が良好であり、精度よく塗布が可能であった。比較例1は、ペーストが液滴状に吐出されてしまい、吐出孔付近へペーストが付着し、基板にこすりつけるように塗布されたため、吐出性および塗布性が不良であった。比較例2では、ペーストが吐出孔からうまく吐出されずに吐出孔付近にわずかに液だまりとなり、液だまりが基板に接触することで断続的にしか塗布されず、吐出性および塗布性が不良であった。比較例3は、吐出時にペーストが柱状流とならず、塗布時に脈動しており、塗布性が不良であった。比較例4では、ペーストが吐出時にわずかにしか出てこず、比較例2と同様に断続的にしか塗布されず、吐出性および塗布性が不良であった。比較例5では、吐出された直後隣接する吐出孔の吐出液と連なり、隣接画素にまで塗布されてしまったため塗布性が不良であった。比較例6では、ペーストが吐出孔から僅かにも吐出されず、下地基板へも塗布されなかったため吐出性および塗布性が不良であった。
Figure JPOXMLDOC01-appb-T000002
 表1中の注は次のとおりである。
※1)“ライトアクリレート1.9ND-A”(登録商標)(1, 9-ノナンジオールジアクリレート)(共栄社化学(株)製)                  
※2)CdSe/ZnS 530(緑色発光量子ドット材料、SIGMA-ALDRICH社製)         
※3)Ce0.63Tb0.37MgAl1119(緑色発光無機蛍光体材料、SIGMA-ALDRICH社製)
※4)ポリマー重量部1に対するモノマー重量部の比   
※5)R-630(酸化チタン、平均粒子径0.24μm、石原産業(株)製)、                                  
※6)“イルガキュア”(登録商標)819(BASFジャパン(株)製)、             
※7)プロピレングリコールメチルエーテルアセテート(富士フイルム和光純薬(株)製)
※8)剪断速度1.0[s-1](25℃)での粘度[mPa・s]
※9)TI=η/η100。ここで、η:剪断速度a=1.0[s-1](25℃)での粘度、η100:剪断速度b=100.0[s-1](25℃)における粘度
※10)角速度1≦ω≦100[rad/s]のときの損失正接tanδの最小値(25℃)
※11)角速度ω=1[rad/s]のときの損失弾性率G”[Pa](25℃)
※12)1(25℃):D1(25℃)/D10(25℃)。ここで、D1(25℃):角速度ω=1[rad/s]での損失弾性率tanδ(25℃)、D10(25℃):角速度ω=10[rad/s]での損失弾性率tanδ(25℃)。
※13)2(25℃):D10(25℃)/D100(25℃)。ここで、D10(25℃):角速度ω=10[rad/s]での損失弾性率tanδ(25℃)、D100(25℃):角速度ω=100[rad/s]での損失弾性率tanδ(25℃)。
※14)角速度100≦ω≦500[rad/s]のときの損失正接tanδの最大値(5℃)
※15)角速度100≦ω≦500[rad/s]のときの損失正接tanδの最小値(5℃)
1 口金
2 ペースト
3 基板
4 加工配管
5 吐出孔
6 隔壁
7 ペーストの硬化物
 本発明によれば、微小な孔径の吐出孔を有する口金でのノズル塗布に適したペーストを実現することが可能となり、マイクロLEDディスプレイなどの高精細な波長変換型表示デバイスなどに有用である。

Claims (10)

  1.  波長変換材料と、ポリマーと、モノマーを含有し、下記(1)で定義されるDωについて、下記(i)の関係が成り立つペースト。
     (1)Dω=G″ω/G′ω
      Dω:角速度ωにおける損失正接tanδ
      G′ω:角速度ωにおける貯蔵弾性率
      G″ω :角速度ωにおける損失弾性率
      (i)0.7≦Dω≦1.3 (100≦ω≦500rad/s,5℃)
  2. ポリマー重量部1に対するモノマー重量部の割合が0.1~2となる請求項1記載のペースト。
  3. 固形分濃度が70~90wt%の範囲内である請求項1または2に記載のペースト。
  4. 前記波長変換材料が無機蛍光体である請求項1~3のいずれかに記載のペースト。
  5. 前記無機蛍光体が量子ドットである請求項1~4のいずれかに記載のペースト。
  6. 剪断速度1s-1における粘度が10,000~400,000mPa・sの範囲である請求項1~5のいずれかに記載のペースト。
  7. 請求項1~6のいずれかに記載のペーストまたはペーストの硬化物の少なくとも一方を隔壁で区画されたセル内に有することを特徴とする基板。
  8. 請求項7に記載の基板と、OLEDまたはLEDを光源として有するディスプレイ。
  9. 請求項1~6のいずれかに記載のペーストを、隔壁で区画されたセル内にノズル塗布法により塗布する工程を有する基板の製造方法。
  10. 孔径が20μm~50μmの範囲である吐出孔を有する口金を使用してノズル塗布を行う請求項9に記載の基板の製造方法。
PCT/JP2021/004345 2020-02-13 2021-02-05 ペースト、基板、ディスプレイ、および基板の製造方法 WO2021161920A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180009961.7A CN114981691A (zh) 2020-02-13 2021-02-05 糊剂、基板、显示器及基板的制造方法
KR1020227013628A KR20220137866A (ko) 2020-02-13 2021-02-05 페이스트, 기판, 디스플레이, 및 기판의 제조 방법
JP2021513474A JP7420138B2 (ja) 2020-02-13 2021-02-05 ペースト、基板、ディスプレイ、および基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020022110 2020-02-13
JP2020-022110 2020-02-13

Publications (1)

Publication Number Publication Date
WO2021161920A1 true WO2021161920A1 (ja) 2021-08-19

Family

ID=77292289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004345 WO2021161920A1 (ja) 2020-02-13 2021-02-05 ペースト、基板、ディスプレイ、および基板の製造方法

Country Status (5)

Country Link
JP (1) JP7420138B2 (ja)
KR (1) KR20220137866A (ja)
CN (1) CN114981691A (ja)
TW (1) TW202146626A (ja)
WO (1) WO2021161920A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203386A (ja) * 1984-03-26 1985-10-14 Nippon Genma:Kk クリ−ムはんだおよびその製造法
JP2010513649A (ja) * 2006-12-21 2010-04-30 イーストマン コダック カンパニー 水性インクジェット流体
US20170045651A1 (en) * 2015-08-13 2017-02-16 Samsung Display Co., Ltd. Color mirror substrate, method of manufacturing the same and color mirror display device having the same
US20190097150A1 (en) * 2017-09-22 2019-03-28 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Quantum dot light-emitting diode and display device
US20190367804A1 (en) * 2018-06-05 2019-12-05 Samsung Electronics Co., Ltd. Quantum dots, a composition or composite including the same, and an electronic device including the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854103B2 (ja) * 2001-06-28 2006-12-06 住友ベークライト株式会社 導電性ペースト及び該ペーストを用いてなる半導体装置
KR20050072424A (ko) 2002-10-01 2005-07-11 코닌클리케 필립스 일렉트로닉스 엔.브이. 광 출력이 향상된 전기발광 디스플레이
CN100510799C (zh) * 2004-10-08 2009-07-08 富士胶片株式会社 滤色器,用于制造滤色器的方法和液晶显示装置
JP5605832B2 (ja) * 2010-07-15 2014-10-15 Fdk株式会社 電子部品の製造方法
WO2012064562A1 (en) 2010-11-10 2012-05-18 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
JP6243872B2 (ja) * 2014-05-19 2017-12-06 富士フイルム株式会社 量子ドット含有積層体の製造方法、量子ドット含有積層体、バックライトユニット、液晶表示装置および量子ドット含有組成物
CN106459725B (zh) * 2014-06-11 2020-08-28 日本化药株式会社 触控面板用紫外线固化型树脂组合物、使用了该组合物的贴合方法和物品
KR20190060900A (ko) * 2016-09-26 2019-06-04 히타치가세이가부시끼가이샤 경화성 조성물, 파장 변환재, 백라이트 유닛, 및 화상 표시 장치
KR102317627B1 (ko) 2016-12-28 2021-10-26 디아이씨 가부시끼가이샤 잉크 조성물, 광변환층 및 컬러 필터
TW201835297A (zh) * 2017-01-06 2018-10-01 日商Jsr股份有限公司 含螢光體粒子組成物、波長轉換層及波長轉換層的製造方法
JP2019113759A (ja) * 2017-12-25 2019-07-11 東京応化工業株式会社 波長変換基材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203386A (ja) * 1984-03-26 1985-10-14 Nippon Genma:Kk クリ−ムはんだおよびその製造法
JP2010513649A (ja) * 2006-12-21 2010-04-30 イーストマン コダック カンパニー 水性インクジェット流体
US20170045651A1 (en) * 2015-08-13 2017-02-16 Samsung Display Co., Ltd. Color mirror substrate, method of manufacturing the same and color mirror display device having the same
US20190097150A1 (en) * 2017-09-22 2019-03-28 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Quantum dot light-emitting diode and display device
US20190367804A1 (en) * 2018-06-05 2019-12-05 Samsung Electronics Co., Ltd. Quantum dots, a composition or composite including the same, and an electronic device including the same

Also Published As

Publication number Publication date
JPWO2021161920A1 (ja) 2021-08-19
JP7420138B2 (ja) 2024-01-23
KR20220137866A (ko) 2022-10-12
CN114981691A (zh) 2022-08-30
TW202146626A (zh) 2021-12-16

Similar Documents

Publication Publication Date Title
JP7484457B2 (ja) マイクロledディスプレイ装置
TWI816371B (zh) 帶隔離壁的基板及顯示裝置
JP7034908B2 (ja) 感光性組成物および色変換フィルム
JP7216642B2 (ja) 量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法
US20220002574A1 (en) Solvent-free formulations and nanocomposites
EP3491101B1 (en) A photosensitive composition, color converting medium, optical devices and method for producing same
WO2020156262A1 (zh) 投影屏幕光学涂料
JP2019112575A (ja) 水性インキ組成物、および発光機能膜
JPWO2015186521A1 (ja) 半導体ナノ粒子含有硬化性組成物、硬化物、光学材料および電子材料
WO2021161920A1 (ja) ペースト、基板、ディスプレイ、および基板の製造方法
JP7211378B2 (ja) 波長変換基板、ディスプレイ、および波長変換基板の製造方法
WO2021162024A1 (ja) 波長変換基板の製造方法、波長変換基板、およびディスプレイ
TW201905024A (zh) 有機el顯示元件用密封劑
WO2022138197A1 (ja) 隔壁付き基板、波長変換基板、および、ディスプレイ、ならびに、波長変換基板の製造方法
JP2021096412A (ja) 波長変換ペースト、波長変換基板、ディスプレイ、および波長変換基板の製造方法
TW202313738A (zh) 密封組成物以及發光元件
JP2023539909A (ja) デバイス
JP2007086772A (ja) パターン形成方法、平面ディスプレイ用部材の製造方法ならびにプラズマディスプレイ用部材およびフィールドエミッションディスプレイ用部材。
WO2019111748A1 (ja) 基板、光拡散防止用樹脂組成物および画像表示装置
JPWO2019188812A1 (ja) 有機el表示素子用封止剤
JP2023066925A (ja) 青色蛍光体感光性組成物
JP2023544444A (ja) 組成物
JP5251069B2 (ja) インクジェットインキ
TW202307018A (zh) 具高折射性質的光固化組合物及使用其的有機發光二極體顯示器
JP2014012754A (ja) 蛍光体ペースト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021513474

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753764

Country of ref document: EP

Kind code of ref document: A1