WO2021161441A1 - 通信装置及びエラー検出方法 - Google Patents

通信装置及びエラー検出方法 Download PDF

Info

Publication number
WO2021161441A1
WO2021161441A1 PCT/JP2020/005494 JP2020005494W WO2021161441A1 WO 2021161441 A1 WO2021161441 A1 WO 2021161441A1 JP 2020005494 W JP2020005494 W JP 2020005494W WO 2021161441 A1 WO2021161441 A1 WO 2021161441A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
error
communication
communication device
monitoring unit
Prior art date
Application number
PCT/JP2020/005494
Other languages
English (en)
French (fr)
Inventor
健太 伊藤
利至 花野
俊 森嶋
真良 関口
隆義 田代
聡志 嶌津
遥 名越
久保田 学
智暁 吉田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2021577782A priority Critical patent/JP7477780B2/ja
Priority to US17/798,300 priority patent/US11863230B2/en
Priority to PCT/JP2020/005494 priority patent/WO2021161441A1/ja
Publication of WO2021161441A1 publication Critical patent/WO2021161441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0799Monitoring line transmitter or line receiver equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • the present invention relates to a communication device and an error detection method.
  • FIG. 10 is a schematic configuration diagram showing an example of a conventional communication device.
  • the communication device is an ONU (Optical Network Unit).
  • the ONU includes a main signal processing unit and a control unit / device monitoring unit.
  • the main signal processing unit performs processing such as mutual conversion between an optical signal and an electric signal for the main signal flowing between the OLT (Optical Line Terminal) and the user terminal.
  • the control unit / device monitoring unit detects an error by checking the integrity of the data flowing inside its own communication device. For example, the control unit / device monitoring unit monitors the main signal flowing through the main signal processing unit to detect an error. Then, the control unit / device monitoring unit corrects the detected error.
  • the conventional communication device can detect an error by providing a control unit / device monitoring unit.
  • the conventional communication device detects an error that causes the device that monitors its own communication device (that is, the device that has the control unit / device monitoring unit) to run away or stop operating. There is a problem that it cannot be done.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a technique capable of detecting an error even when an error occurs in a device that monitors its own communication device. And.
  • One aspect of the present invention comprises a plurality of devices, each said device comprising a monitoring unit that monitors at least one other device and detects an error occurring in the other device. Is a communication device monitored by at least one other device.
  • one aspect of the present invention is an error detection method by a communication device including a plurality of devices, each of which is monitored by at least one other device, and monitors at least one other device.
  • An error detection method comprising a step of detecting an error that has occurred in the other device.
  • the error can be detected even when an error occurs in a device that monitors its own communication device.
  • FIG. 1 is an overall configuration diagram of a communication system 1 according to a first embodiment of the present invention.
  • Communication system 1 shown in FIG. 1 is a 10G-EPON (10 Gigabit-Ethernet Passive Optical Network) system.
  • the communication system 1 includes a plurality of ONUs 100, a plurality of user terminals 200 communicated and connected to each ONU 100, an OLT 300, and an optical splitter 400.
  • the communication system 1 is a system in which one OLT 300 and a plurality of ONU 100s are communicated and connected in a Point-to-Multipoint type via an optical splitter 400.
  • the communication system 1 may be a system in which the OLT 300 and the ONU 100 are one each, and are connected by communication in a Point-to-Point type.
  • the user terminal 200 is, for example, an information processing device such as a personal computer or a home gateway.
  • FIG. 2 is a schematic block diagram showing a functional configuration of the ONU 100 according to the first embodiment of the present invention.
  • the ONU 100 includes a device 110a, a device 110b, an optical power receiving unit 120, a UNI (User Network Interface) 130, and a power supply unit 140.
  • the solid arrow represents the communication line through which the main signal flows.
  • the broken line arrow represents the control signal line through which the control signal flows.
  • the device 110a includes a main signal processing unit 111a and a control unit / device monitoring unit 112a. Further, the device 110b includes a main signal processing unit 111b and a control unit / device monitoring unit 112b. As described above, the device 110a and the device 110b have the same configuration. When it is not necessary to distinguish between the device 110a and the device 110b, the device 110a and the device 110b are hereinafter simply referred to as “device 110”. When it is not necessary to distinguish between the main signal processing unit 111a and the main signal processing unit 111b, the main signal processing unit 111a and the main signal processing unit 111b are hereinafter simply referred to as “main signal processing unit 111”.
  • control unit / device monitoring unit 112 when it is not necessary to distinguish between the control unit / device monitoring unit 112a and the control unit / device monitoring unit 112b, the term “control unit / device monitoring unit 112” is hereinafter simply referred to as “control unit / device monitoring unit 112”.
  • the main signal processing unit 111 performs processing such as mutual conversion between an optical signal and an electric signal for the main signal flowing between the OLT (Optical Line Terminal) 300 and the user terminal 200.
  • the control unit / device monitoring unit 112a includes a processor such as a CPU (Central Processing Unit), for example.
  • the control unit / device monitoring unit 112a controls the operation of each functional unit included in the ONU 100. Further, the control unit / device monitoring unit 112a detects an error occurring in the main signal by monitoring the main signal flowing through the main signal processing unit 111a. Further, the control unit / device monitoring unit 112a executes life-and-death monitoring of the other device 110 (that is, the device 110b) via the control signal line. Further, when the control unit / device monitoring unit 112a detects a runaway or operation stop of the other device 110, the control unit / device monitoring unit 112a outputs a reset instruction to the other device 110 via the control signal line.
  • a processor such as a CPU (Central Processing Unit)
  • control unit / device monitoring unit 112a detects a runaway or operation stop of the other device 110
  • the control unit / device monitoring unit 112a outputs a power reset instruction to the power supply unit 140 via the control signal line.
  • the control unit / device monitoring unit 112a acquires a reset instruction from the control unit / device monitoring unit 112 (that is, the control unit / device monitoring unit 112b) of the other device 110 via the control signal line, the control unit / device monitoring unit 112a itself A reset process for resetting the operating state of the device 110a is executed.
  • the control unit / device monitoring unit 112b includes a processor such as a CPU, for example.
  • the control unit / device monitoring unit 112b controls the operation of each functional unit included in the ONU 100. Further, the control unit / device monitoring unit 112b detects an error occurring in the main signal by monitoring the main signal flowing through the main signal processing unit 111b. Further, the control unit / device monitoring unit 112b executes life-and-death monitoring of the other device 110 (that is, the device 110a) via the control signal line. Further, when the control unit / device monitoring unit 112b detects a runaway or operation stop of the other device 110, the control unit / device monitoring unit 112b outputs a reset instruction to the other device 110 via the control signal line.
  • control unit / device monitoring unit 112b detects a runaway or operation stop of the other device 110
  • the control unit / device monitoring unit 112b outputs a power reset instruction to the power supply unit 140 via the control signal line.
  • control unit / device monitoring unit 112b obtains a reset instruction from the control unit / device monitoring unit 112 (that is, the control unit / device monitoring unit 112a) of the other device 110 via the control signal line
  • the control unit / device monitoring unit 112b itself A reset process for resetting the operating state of the device 110b is executed.
  • the optical power receiving unit 120 receives the optical signal transmitted from the OLT 300 and outputs it to the main signal processing unit 111. Further, the optical power receiving unit 120 transmits the optical signal output from the main signal processing unit 111 to the OLT 300.
  • the UNI 130 transmits the electric signal output from the main signal processing unit 111 to the user terminal 200. Further, the UNI 130 outputs the electric signal transmitted from the user terminal 200 to the main signal processing unit 11.
  • the power supply unit 140 supplies electric power to each functional unit included in the ONU 100. Further, when the power supply unit 140 receives a reset instruction from the control unit / device monitoring unit 112 via the control signal line, the power supply unit 140 temporarily stops supplying power to the entire ONU 100 (that is, after the power is turned off). , The power supply reset process for resuming the power supply to the entire ONU 100 (that is, turning on the power) is executed.
  • Any method can be used for resetting the device 110 and resetting the power supply of the entire ONU 100.
  • FIG. 3 is a flowchart showing the operation of the device 110 according to the first embodiment of the present invention.
  • the flowchart shown in FIG. 3 starts when an error occurs in the other device 110.
  • the operation of the device 110a will be described as an example, but the operation of the device 110b is also the same.
  • the control unit / device monitoring unit 112a of the device 110a detects an error that occurs in the other device 110 (device 110b) (step S001). As described above, the error referred to here is, for example, a runaway or operation stop of the device 110. Next, the control unit / device monitoring unit 112a outputs a reset instruction to the other device 110 (device 110b) via the control signal line (step S002).
  • step S003 / Yes when the control unit / device monitoring unit 112a detects that the other device 110 (device 110b) has been restored by the reset process (step S003 / Yes), the operation of the device 110a shown in the flowchart of FIG. 3 ends. do.
  • the control unit / device monitoring unit 112a detects that the other device 110 (device 110b) has not been restored (step S003 / No)
  • the control unit / device monitoring unit 112a issues a power reset instruction to the power supply unit 140 via the control signal line. Output (step S004). This completes the operation of the device 110a shown in the flowchart of FIG.
  • the ONU 100 (communication device) according to the first embodiment mutually monitors a plurality of devices 110 (communication processing units) in its own communication device. Then, when an error occurs in one device 110 and one device 110 goes out of control or stops operating, the ONU 100 resets the operating state of one device 110 by the other device 110. Alternatively, when the device 110 goes out of control or stops operating, the ONU 100 resets the power supply of the entire communication device (ONU) 100 itself.
  • the conventional communication device for example, when a soft error such as bit inversion occurs, it is assumed that the device inside the own communication device detects and corrects the error.
  • the conventional communication device cannot detect a soft error in a device that monitors its own communication device, for example, when a soft error occurs that causes the device itself to run away or stop operating. ..
  • the ONU 100 has the above configuration, and even if an error occurs in the device 110 that monitors its own communication device, the ONU 100 detects the error and communicates with itself. The device can be restored.
  • control unit / device monitoring unit 112 of one device 110 when the control unit / device monitoring unit 112 of one device 110 detects an error occurring in the other device 110, it first instructs the reset of the other device 110 and is not restored. In this case, it is configured to instruct the power reset of the entire communication device (ONU100) of its own. However, the configuration is not limited to this, and when the control unit / device monitoring unit 112 of one device 110 detects an error occurring in the other device 110, it first instructs the reset of the other device 110. However, it may be configured to instruct the power reset of the entire own communication device (ONU100) when the reset is not recovered even if the reset is attempted a plurality of times.
  • control unit / device monitoring unit 112 may be configured to perform only the former processing or only the latter processing. That is, for example, when the control unit / device monitoring unit 112 of one device 110 detects an error that occurs in the other device 110, it may only instruct the reset of the other device 110. Or, for example, when the control unit / device monitoring unit 112 of one device 110 detects an error that occurs in the other device 110, the entire communication device (ONU100) itself does not attempt to reset the other device 110. You may instruct to reset the power supply of.
  • the ONU 100 is configured to include two devices 110 (device 110a and device 110b), but is configured to include N devices (N is an integer of 3 or more). There may be.
  • N is an integer of 3 or more.
  • the probability that an error occurs in each device 110 is 1 / X
  • the probability that an error occurs in N devices at the same time is (1 / X) N. Therefore, as the number of devices 110 included in the ONU 100 increases, the possibility that the ONU 100 cannot be recovered due to an error occurring at the same time in all the devices 110 becomes exponentially lower.
  • the robustness of the device can be improved without complicating the device configuration.
  • the configuration of the ONU 100 according to the first embodiment described above is merely an example.
  • it may have a configuration like a modification of the first embodiment described below.
  • the communication device according to the modified example described below includes a plurality of devices capable of mutually performing alive monitoring, similarly to the ONU 100 according to the first embodiment described above.
  • FIG. 4 is a flowchart showing the operation of the device included in the communication device according to the modified example of the first embodiment of the present invention. This flowchart starts when some error occurs in the communication device.
  • the operation of any one device among the plurality of devices included in the communication device will be described.
  • the arbitrary one device is referred to as "one device”
  • one of the other devices is referred to as "the other device”.
  • each device can be executed in two operation modes, "power reset mode” and “device reset mode".
  • the power reset mode is an operation mode for instructing the reset of the power supply of the entire communication device of the company when it is detected that an error has occurred in the communication device of the company.
  • the device reset mode when it is detected that an error has occurred in its own communication device, if the location where the error occurs is the other device to be monitored, the reset of the other device is instructed. This is the operation mode that may be used.
  • the other device to be monitored is a device that can instruct the reset of the other device when one device detects an error that occurs in the other device.
  • the operation mode is set in advance for each device by, for example, an operation manager or the like.
  • one device first detects an error that has occurred in its own communication device (step S101).
  • step S102 When one device is operating in the power reset mode (step S102 ⁇ Yes), the one device outputs a power reset instruction to the power supply unit via a control signal (step S103). This completes the operation of the device shown in the flowchart of FIG.
  • step S102 When one device is operating in the device reset mode (step S102 / No), one device determines whether or not the error detected in step S101 is an error that occurred in the monitored device (step S102 / No). Step S104). When the detected error is not an error that occurred in the device to be monitored (step S104 / No), one device outputs a power reset instruction to the power supply unit via the control signal (step S103). This completes the operation of the device shown in the flowchart of FIG.
  • step S104 If the detected error is an error that occurred in the monitored device (step S104 ⁇ Yes), if one device has a chain of command (step S105 ⁇ Yes), then one device is via the control signal line. Outputs a power reset instruction to the power supply unit (step S103). This completes the operation of the device shown in the flowchart of FIG.
  • step S105 If one device does not have a chain of command (step S105 / No), one device outputs a reset instruction to the other device in which an error has occurred via the control signal line (step S106). This completes the operation of the device shown in the flowchart of FIG.
  • the communication device has a configuration in which the operation differs depending on what the operation mode is, whether the device is the device to be monitored, and whether the device has a chain of command. Is.
  • three configuration examples of the functional configuration of the communication device according to the modified example of the first embodiment will be described.
  • FIG. 5 is a schematic block diagram showing a configuration of a communication device 600p according to a modified example of the first embodiment of the present invention.
  • the communication device 600p includes a device 610a, a device 610b, and a power supply unit 640.
  • the broken line arrow represents the control signal line through which the control signal flows.
  • the device 610a includes a command system unit 611a, a monitoring unit 612a, and a communication processing unit 613a. Further, the device 610b includes a command system unit 611b, a monitoring unit 612b, and a communication processing unit 613b. As described above, in the communication device 600p according to the configuration example 1, both the device 610a and the device 610b are configured to include a command system unit.
  • the chain of command unit is composed of a processor such as a CPU, for example.
  • the command system unit 611a and the command system unit 611b can cause the power supply unit 640 to reset the power supply of the entire communication device 600p by outputting a power supply reset instruction to the power supply unit 640.
  • the monitoring unit 612a of the device 610a can detect that an error has occurred in the communication processing unit 613b of the device 610b.
  • the command system unit 611a of the device 610a outputs a power reset instruction to the power supply unit 640.
  • the monitoring unit 612b of the device 610b can detect that an error has occurred in the communication processing unit 613a of the device 610a.
  • the command system unit 611b of the device 610b outputs a power reset instruction to the power supply unit 640.
  • the communication device 600p is configured to cause the power supply unit 640 to reset the power supply when one device detects that an error has occurred in the communication processing unit of the other device.
  • FIG. 6 is a schematic block diagram showing a configuration of a communication device 600q according to a modified example of the first embodiment of the present invention.
  • the communication device 600q includes a device 610a, a device 610b, and a power supply unit 640.
  • the broken line arrow represents the control signal line through which the control signal flows.
  • the device 610a includes a command system unit 611a, a monitoring unit 612a, and a communication processing unit 613a. Further, the device 610b includes a monitoring unit 612b and a communication processing unit 613b. As described above, in the communication device 600p according to the configuration example 2, the device 610a has a command system unit, but the device 610b does not have a command system unit.
  • the command system unit 611a of the device 610a can cause the power supply unit 640 to reset the power supply of the entire communication device 600q by outputting a power supply reset instruction to the power supply unit 640.
  • the monitoring unit 612b of the device 610b can cause the device 610a to reset the device 610a by outputting a reset instruction to the device 610a.
  • the monitoring unit 612a of the device 610a can detect that an error has occurred in the communication processing unit 613b of the device 610b.
  • the command system unit 611a of the device 610a outputs a power reset instruction to the power supply unit 640.
  • the monitoring unit 612b of the device 610b can detect that an error has occurred in the communication processing unit 613a of the device 610a.
  • the monitoring unit 612b detects that an error has occurred in the communication processing unit 613a, the monitoring unit 612b outputs a reset instruction to the device 610a.
  • the communication device 600p when the communication device 600p according to the configuration example 2 detects that an error has occurred in the communication processing unit of the other device, if one device has a command system unit.
  • the power supply unit 640 is made to reset the power supply, and if one device does not have the command system unit, the other device is reset.
  • FIG. 7 is a schematic block diagram showing a configuration of a communication device 600r according to a modified example of the first embodiment of the present invention.
  • the communication device 600r includes a device 610a, a device 610b, a device 610c, and a power supply unit 640.
  • the broken line arrow represents the control signal line through which the control signal flows.
  • the device 610a includes a command system unit 611a, a monitoring unit 612a, and a communication processing unit 613a.
  • the device 610b includes a command system unit 611b, a monitoring unit 612b, and a communication processing unit 613b.
  • the device 610c includes a monitoring unit 612c and a communication processing unit 613c. As described above, in the communication device 600r according to the configuration example 3, the device 610a and the device 610b are provided with the command system unit, but the device 610c is not provided with the command system unit.
  • the command system unit 611a of the device 610a and the command system unit 611b of the device 610b can cause the power supply unit 640 to reset the power supply of the entire communication device 600p by outputting a power supply reset instruction to the power supply unit 640.
  • the monitoring unit 612c of the device 610c can cause the device 610a to reset the device 610a by outputting a reset instruction to the device 610a.
  • the monitoring unit 612a of the device 610a can detect that an error has occurred in the communication processing unit 613b of the device 610b and the communication processing unit 613c of the device 610c.
  • the command system unit 611a of the device 610a outputs a power reset instruction to the power supply unit 640.
  • the monitoring unit 612b of the device 610b can detect that an error has occurred in the communication processing unit 613a of the device 610a.
  • the command system unit 611b of the device 610b outputs a power reset instruction to the power supply unit 640.
  • the monitoring unit 612c of the device 610c can detect that an error has occurred in the communication processing unit 613a of the device 610a.
  • the monitoring unit 612b detects that an error has occurred in the communication processing unit 613a, the monitoring unit 612b outputs a reset instruction to the device 610a.
  • the communication device 600r when the communication device 600r according to the configuration example 3 detects that an error has occurred in the communication processing unit of the other device, if one device has a command system unit.
  • the power supply unit 640 is made to reset the power supply, and if one device does not have the command system unit, the other device is reset.
  • FIG. 8 is a flowchart showing the operation of the device 110 according to the second embodiment of the present invention.
  • the flowchart shown in FIG. 8 starts when an error occurs in the ONU 100.
  • the error referred to here includes not only an error generated in the other device 110, but also an error generated in the own device 110 and an error generated in another member (member other than the device 110) in the ONU 100. You may be.
  • the control unit / device monitoring unit 112 initializes the variable M by substituting 0 for the value of the variable M indicating the counter that counts the number of times the power reset instruction is output (step S201).
  • the left-pointing arrow shown in steps S201 and S205 of the flowchart of FIG. 8 means an operation of substituting the value on the right side into the variable on the left side.
  • the value of the variable M is temporarily stored in, for example, a storage medium (not shown) included in the control unit / device monitoring unit 112.
  • the storage medium referred to here is, for example, a cache memory mounted on a CPU or the like.
  • the control unit / device monitoring unit 112 of the device 110 detects an error that has occurred in its own communication device (ONU100) (step S202).
  • the error referred to here is an error that causes, for example, a runaway or operation stop of the device 110.
  • the control unit / device monitoring unit 112 determines whether or not the value of the variable M is less than the predetermined value j (step S203).
  • the predetermined value j is a value indicating the maximum number of trials of the power supply reset process.
  • the predetermined value j is, for example, a value predetermined by an operation / maintenance person or the like.
  • step S203 When the value of the variable M is less than the predetermined value j (step S203 ⁇ Yes), the control unit / device monitoring unit 112 outputs a reset instruction to the other device 110 or the power supply unit via the control signal line.
  • the power reset instruction to 140 is output (step S204).
  • the operation for the control unit / device monitoring unit 112 to output the reset instruction to the other device 110 or to give the power reset instruction to the power supply unit 140 is performed according to, for example, the flowchart shown in FIG. Will be reset.
  • the control unit / device monitoring unit 112 adds 1 to the value of the variable M (step S205).
  • step S206 ⁇ Yes when the control unit / device monitoring unit 112 detects that the ONU 100 has been restored by the reset process in the other device 110 or the power supply reset process by the power supply unit 140 (step S206 ⁇ Yes), the flowchart of FIG. The operation of the device 110 indicated by is finished. On the other hand, when the control unit / device monitoring unit 112 detects that the ONU 100 has not been restored (steps S206 and No), the operation after step S203 described above is repeated.
  • control unit / device monitoring unit 112 outputs an operation stop instruction of its own communication device (ONU100) (step S207).
  • any method can be used as a method for stopping the operation of the ONU 100.
  • the control unit / device monitoring unit 112 stops the operation of the ONU 100 by outputting an operation stop instruction, which is an instruction to stop the power supply to the entire ONU 100, to the power supply unit 140 via the control signal line. You may.
  • control unit / device monitoring unit 112 outputs a lighting instruction indicating an instruction to light a lamp (not shown) provided in the ONU 100 (step S208). This completes the operation of the device 110 shown in the flowchart of FIG.
  • control unit / device monitoring unit 112 starts power supply from the power supply unit 140 to the lamp by outputting a lighting instruction to the power supply unit 140 via the control signal line, and lights the lamp.
  • the user or the person in charge of operation and maintenance can recognize that the ONU 100 is in an operation stopped state (abnormal state).
  • the user or the person in charge of operation and maintenance manually restores the operating state of the ONU 100.
  • a user, an operation / maintenance person, or the like restores the operating state of the ONU 100 by plugging and unplugging the power plug (not shown) included in the ONU 100 into an outlet (not shown).
  • the control unit / device monitoring unit 112 may use a speaker (not shown) provided in the ONU 100 to notify the user or the person in charge of operation and maintenance by voice.
  • the control unit / device monitoring unit 112 is provided with its own communication device (ONU100) or an external device, for example, on a display device (not shown) such as a liquid crystal display (LCD), in a state where the ONU100 is stopped. Information indicating that there is may be displayed.
  • the ONU100 (communication device) according to the second embodiment monitors its own communication device. Then, the ONU 100 executes a power supply reset that resets the power supply to the entire communication device of the ONU 100 when an error that causes, for example, a runaway or an operation stop occurs in the communication device of the ONU 100. Nevertheless, if the own communication device is not restored, the ONU 100 repeatedly executes a power reset. If the power is not restored even after trying to reset the power supply until the predetermined number of times is reached, the ONU 100 stops the operation of its own communication device. Then, the ONU 100 turns on the lamp in order to make the user, the person in charge of operation and maintenance, or the like recognize that the communication device of the ONU 100 is in the stopped operation state. As a result, the ONU 100 can manually promote the restoration of its own communication device. The ONU 100 waits until the user, the person in charge of operation and maintenance, or the like manually restores its own communication device.
  • the ONU 100 according to the second embodiment can autonomously try to recover its own communication device when an error occurs in its own communication device.
  • the ONU 100 detects an error that can be recovered by, for example, power reset (or reconfiguration)
  • the ONU 100 can autonomously reset and recover its own communication device.
  • the frequency of manual recovery work is reduced, so that the operating cost of the communication device capable of coping with the error generated in the own communication device is reduced. ..
  • the resistance to soft errors caused by neutron rays derived from cosmic rays will be improved.
  • control unit / device monitoring unit 112 of the device 110 when the control unit / device monitoring unit 112 of the device 110 detects an error that occurs in the ONU 100, it first instructs the power reset of the entire ONU 100, and even then, its own communication device is not restored. In that case, the power reset is repeatedly instructed until the predetermined number of times is reached. If the recovery does not occur even after reaching a predetermined number of times, the control unit / device monitoring unit 112 stops the operation of the ONU 100.
  • the control unit / device monitoring unit 112 is configured to light the lamp provided in the ONU 100. However, the configuration is not limited to such a configuration, and the control unit / device monitoring unit 112 may be configured to perform only the former processing or only the latter processing.
  • control unit / device monitoring unit 112 only stops the operation of its own communication device when its own communication device is not restored even after the number of trials for power reset reaches a predetermined number of times. (That is, the configuration may not be notified by lighting the lamp or the like).
  • the control unit / device monitoring unit 112 if the control unit / device monitoring unit 112 does not restore its own communication device even if the power reset of the entire ONU 100 is instructed, the control unit / device monitoring unit 112 turns on the lamp without repeatedly instructing the power reset. May be good.
  • the ONU 100 when the ONU 100 detects an error generated in its own communication device, it first attempts to reset the power supply to reset the power supply to the entire own communication device, and still tries to reset its own communication device. If it does not recover, the operation of its own communication device is stopped.
  • the device 110 of the ONU 100 when the device 110 of the ONU 100 detects an error occurring in the other device 110 included in the ONU 100, the device 110 of the ONU 100 first causes an error. Attempt to reset. If the device 110 still does not recover, the device 110 attempts a power reset. If the device 110 still does not recover, the device 110 is configured to stop the operation of its own communication device.
  • FIG. 9 is a flowchart showing the operation of the device 110 according to the modified example of the second embodiment of the present invention.
  • the flowchart shown in FIG. 9 starts when an error occurs in the other device 110.
  • the operation of the device 110a will be described as an example, but the operation of the device 110b is also the same.
  • the control unit / device monitoring unit 112a of the device 110a detects an error that occurs in the other device 110 (device 110b) (step S301).
  • the error referred to here is an error that causes, for example, a runaway or operation stop of the device 110.
  • the control unit / device monitoring unit 112a initializes the variable N by substituting 0 for the value of the variable N indicating the counter that counts the number of times the reset instruction is output (step S302).
  • the left-pointing arrow shown in step S302, step S304, step S307, and step S309 in the flowchart of FIG. 9 means an operation of substituting the value on the right side into the variable on the left side.
  • the value of the variable N is temporarily stored in, for example, a storage medium (not shown) included in the control unit / device monitoring unit 112a.
  • control unit / device monitoring unit 112a outputs a reset instruction to the device 110b via the control signal line (step S303).
  • control unit / device monitoring unit 112a adds 1 to the value of the variable N (step S304).
  • step S305 / Yes when the control unit / device monitoring unit 112a detects that the device 110b has been restored by resetting (step S305 / Yes), the operation of the device 110a shown in the flowchart of FIG. 9 ends.
  • the control unit / device monitoring unit 112a detects that the device 110b has not been restored (step S305 / No)
  • the control unit / device monitoring unit 112a determines whether or not the value of the variable N is less than the predetermined value k (step S305 / No).
  • the predetermined value k is a value indicating the maximum number of trials for the reset process of the device 110.
  • the predetermined value k is, for example, a value predetermined by an operation / maintenance person or the like.
  • step S306 / No When the value of the variable N is less than the predetermined value k (step S306 / No), the control unit / device monitoring unit 112a repeats the operations after step S303 described above. On the other hand, when the value of the variable N reaches the predetermined value k (step S306 ⁇ Yes), the control unit / device monitoring unit 112a performs the operations after step S307. Since the operations after step S307 shown in FIG. 9 are the same as the operations after step S202 shown in FIG. 8, the description thereof will be omitted.
  • the values of the variable M and the predetermined value j in step S311 may be used, respectively. That is, a common variable and a common predetermined value may be used for the maximum number of trials of the reset process for the device 110 and the maximum number of trials of the power reset process by the power supply unit 140 for the entire ONU 100.
  • the device 110 of the ONU 100 monitors its own communication device. Then, the device 110 resets the operating state of the other device 110 when an error that causes a runaway or an operation stop occurs in the other device 110. Nevertheless, if the other device 110 is not restored, the device 110 repeatedly resets the operating state of the other device 110. If the reset is not recovered even after trying the reset until the predetermined number of times is reached, the device 110 causes the device 110 to perform a power reset that resets the power supply of the entire communication device. Nevertheless, if its communication device is not restored, the device 110 repeatedly performs a power reset.
  • the device 110 stops the operation of its own communication device. Then, the device 110 turns on the lamp in order to make the user, the person in charge of operation and maintenance, or the like recognize that the communication device of the device 110 is in the stopped operation state. The ONU 100 waits until the user, the person in charge of operation and maintenance, or the like manually restores its own communication device.
  • the ONU 100 can autonomously try to recover its own communication device when an error occurs in its own communication device.
  • the ONU 100 detects an error that can be recovered by, for example, power reset (or reconfiguration), the ONU 100 can autonomously reset and recover its own communication device.
  • the ONU 100 is configured to detect an error that occurs in its own communication device and recover it.
  • the device to which the present invention can be applied is not limited to the ONU100, and can be applied to other devices as well.
  • the other device referred to here is, for example, a communication device in a communication system other than OLT300 and 10G-EPON, and a device other than the communication device.
  • a part or all of the ONU 100 in the above-described embodiment may be realized by a computer.
  • the program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the term "computer system” as used herein includes hardware of an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a recording device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time.
  • it may include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or a client.
  • the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).
  • Communication system 100 ... ONU, 110 (110a, 110b) ... Device, 111 (111a, 111b) ... Main signal processing unit, 112 (112a, 112b) ... Control unit / Device monitoring unit, 120 ... optical power receiving unit, 130 ... UNI, 140 ... power supply unit, 200 ... user terminal, 300 ... OLT, 400 ... optical splitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Debugging And Monitoring (AREA)

Abstract

通信装置は、複数のデバイスを備え、各々の前記デバイスは、少なくとも1つの他のデバイスを監視して、前記他のデバイスにおいて生じたエラーを検出する監視部を備え、各々の前記デバイスは、少なくとも1つの他のデバイスによって監視される。

Description

通信装置及びエラー検出方法
 本発明は、通信装置及びエラー検出方法に関する。
 従来、自己の装置の故障及び自己の装置内部を流れるデータに生じたエラー(以下、総称して「エラー」という。)を検出することができる装置がある(例えば、特許文献1参照)。このような装置の一例を図10に示す。図10は、従来の通信装置の一例を示す概略構成図である。図示されるように、図10において、通信装置はONU(Optical Network Unit)である。ONUは、主信号処理部と、制御部/装置監視部とを備えている。主信号処理部は、OLT(Optical Line Terminal)とユーザ端末との間を流れる主信号に対して、光信号と電気信号の相互変換等の処理を行う。制御部/装置監視部は、自己の通信装置内部を流れるデータの整合性をチェックすることにより、エラーを検出する。例えば、制御部/装置監視部は、主信号処理部を流れる主信号を監視してエラーを検出する。そして、制御部/装置監視部は、検出されたエラーを訂正する。
特開2004-303271号公報
 前述の通り、従来の通信装置は、制御部/装置監視部を備えることでエラーを検出することができる。しかしながら、従来の通信装置は、自己の通信装置を監視するデバイス(すなわち、制御部/装置監視部を有するデバイス)を暴走又は動作停止させるようなエラーが生じた場合には、当該エラーを検出することができないという課題がある。
 本発明は、上記の点を鑑みてなされたものであり、自己の通信装置を監視するデバイスにおいてエラーが生じた場合であっても、当該エラーを検出することができる技術を提供することを目的とする。
 本発明の一態様は、複数のデバイスを備え、各々の前記デバイスは、少なくとも1つの他のデバイスを監視して、前記他のデバイスにおいて生じたエラーを検出する監視部を備え、各々の前記デバイスは、少なくとも1つの他のデバイスによって監視される通信装置である。
 また、本発明の一態様は、複数のデバイスを備え、各々の前記デバイスが少なくとも1つの他のデバイスによって監視される通信装置によるエラー検出方法であって、少なくとも1つの他のデバイスを監視して、前記他のデバイスにおいて生じたエラーを検出するステップを有するエラー検出方法である。
 本発明により、自己の通信装置を監視するデバイスにおいてエラーが生じた場合であっても、当該エラーを検出することができる。
本発明の第1の実施形態に係る通信システム1の全体構成図である。 本発明の第1の実施形態に係るONU100の機能構成を示す概略ブロック図である。 本発明の第1の実施形態に係るデバイス110の動作を示すフローチャートである。 本発明の第1の実施形態の変形例に係る通信装置が備えるデバイスの動作を示すフローチャートである。 本発明の第1の実施形態の変形例に係る通信装置600pの構成を示す概略ブロック図である。 本発明の第1の実施形態の変形例に係る通信装置600qの構成を示す概略ブロック図である。 本発明の第1の実施形態の変形例に係る通信装置600rの構成を示す概略ブロック図である。 本発明の第2の実施形態に係るデバイス110の動作を示すフローチャートである。 本発明の第2の実施形態の変形例に係るデバイス110の動作を示すフローチャートである。 従来の通信装置の構成の一例を示す概略図である。
<第1の実施形態>
 以下、本発明の第1の実施形態について、図面を参照しながら説明する。
[通信システムの全体構成]
 図1は、本発明の第1の実施形態に係る通信システム1の全体構成図である。図1に示される通信システム1は、10G-EPON(10 Gigabit-Ethernet Passive Optical Network)システムである。図示されるように、通信システム1は、複数のONU100と、各ONU100にそれぞれ通信接続された複数のユーザ端末200と、OLT300と、光スプリッタ400とを含んで構成される。通信システム1は、1つのOLT300と複数のONU100とが光スプリッタ400を介してPoint-to-Multipoint型に通信接続されたシステムである。但し、通信システム1は、OLT300とONU100とがそれぞれ1つずつであり、Point-to-Point型に通信接続されたシステムであっても構わない。ユーザ端末200とは、例えば、パソコン又はホームゲートウェイ等の情報処理装置である。
[ONUの構成]
 図2は、本発明の第1の実施形態に係るONU100の機能構成を示す概略ブロック図である。図2に示されるように、ONU100は、デバイス110aと、デバイス110bと、光受電部120と、UNI(User Network Interface)130と、電源部140とを含んで構成される。なお、図2において、実線の矢印は、主信号が流れる通信線を表す。また、破線の矢印は、制御信号が流れる制御信号線を表す。
 デバイス110aは、主信号処理部111aと、制御部/装置監視部112aとを含んで構成される。また、デバイス110bは、主信号処理部111bと、制御部/装置監視部112bとを含んで構成される。このように、デバイス110aとデバイス110bとは同様の構成である。なお、デバイス110aとデバイス110bとを特に区別して説明する必要がない場合には、以下、単に「デバイス110」という。また、主信号処理部111aと主信号処理部111bとを特に区別して説明する必要がない場合には、以下、単に「主信号処理部111」という。また、制御部/装置監視部112aと制御部/装置監視部112bとを特に区別して説明する必要がない場合には、以下、単に「制御部/装置監視部112」という。
 主信号処理部111は、OLT(Optical Line Terminal)300とユーザ端末200との間を流れる主信号に対して、光信号と電気信号の相互変換等の処理を行う。
 制御部/装置監視部112aは、例えばCPU(Central Processing Unit)等のプロセッサを含んで構成される。制御部/装置監視部112aは、ONU100が備える各機能部の動作を制御する。また、制御部/装置監視部112aは、主信号処理部111aを流れる主信号を監視することにより、主信号に生じたエラーを検出する。また、制御部/装置監視部112aは、制御信号線を介して他方のデバイス110(すなわち、デバイス110b)の死活監視を実行する。また、制御部/装置監視部112aは、他方のデバイス110の暴走又は動作停止を検出した場合、制御信号線を介して他方のデバイス110へリセット指示を出力する。又は、制御部/装置監視部112aは、他方のデバイス110の暴走又は動作停止を検出した場合、制御信号線を介して電源部140へ電源リセット指示を出力する。また、制御部/装置監視部112aは、他方のデバイス110の制御部/装置監視部112(すなわち、制御部/装置監視部112b)から制御信号線を介してリセット指示を取得した場合、自己のデバイス110aの動作状態をリセットするリセット処理を実行する。
 制御部/装置監視部112bは、例えばCPU等のプロセッサを含んで構成される。制御部/装置監視部112bは、ONU100が備える各機能部の動作を制御する。また、制御部/装置監視部112bは、主信号処理部111bを流れる主信号を監視することにより、主信号に生じたエラーを検出する。また、制御部/装置監視部112bは、制御信号線を介して他方のデバイス110(すなわち、デバイス110a)の死活監視を実行する。また、制御部/装置監視部112bは、他方のデバイス110の暴走又は動作停止を検出した場合、制御信号線を介して他方のデバイス110へリセット指示を出力する。又は、制御部/装置監視部112bは、他方のデバイス110の暴走又は動作停止を検出した場合、制御信号線を介して電源部140へ電源リセット指示を出力する。また、制御部/装置監視部112bは、他方のデバイス110の制御部/装置監視部112(すなわち、制御部/装置監視部112a)から制御信号線を介してリセット指示を取得した場合、自己のデバイス110bの動作状態をリセットするリセット処理を実行する。
 光受電部120は、OLT300から送信された光信号を受電し、主信号処理部111へ出力する。また、光受電部120は、主信号処理部111から出力された光信号をOLT300へ送信する。
 UNI130は、主信号処理部111から出力された電気信号をユーザ端末200へ送信する。また、UNI130は、ユーザ端末200から送信された電気信号を主信号処理部11へ出力する。
 電源部140は、ONU100が備える各機能部へ電力を供給する。また、電源部140は、制御部/装置監視部112から制御信号線を介してリセット指示を取得した場合、ONU100全体への電力の供給を一旦停止にした後(すなわち、電源オフにした後)、ONU100全体への電力の供給を再開する(すなわち、電源オンにする)電源リセット処理を実行する。
 なお、デバイス110のリセット、及びONU100全体の電源リセットを行わせる方法については、任意の方法を用いることができる。
[デバイスの動作]
 図3は、本発明の第1の実施形態に係るデバイス110の動作を示すフローチャートである。図3に示されるフローチャートは、他方のデバイス110においてエラーが生じた場合に開始する。なお、以下の説明では、例としてデバイス110aの動作を説明するが、デバイス110bの動作も同様である。
 デバイス110aの制御部/装置監視部112aは、他方のデバイス110(デバイス110b)において生じたエラーを検出する(ステップS001)。前述の通り、ここでいうエラーとは、例えばデバイス110の暴走又は動作停止等である。次に、制御部/装置監視部112aは、制御信号線を介して他方のデバイス110(デバイス110b)へリセット指示を出力する(ステップS002)。
 次に、制御部/装置監視部112aは、リセット処理によって他方のデバイス110(デバイス110b)が復旧したことを検出した場合(ステップS003・Yes)、図3のフローチャートが示すデバイス110aの動作が終了する。一方、制御部/装置監視部112aは、他方のデバイス110(デバイス110b)が復旧していないことを検出した場合(ステップS003・No)、制御信号線を介して電源部140へ電源リセット指示を出力する(ステップS004)。以上で、図3のフローチャートが示すデバイス110aの動作が終了する。
 以上説明したように、第1の実施形態に係るONU100(通信装置)は、自己の通信装置内の複数のデバイス110(通信処理部)で相互に監視を行う。そして、ONU100は、一方のデバイス110においてエラーが生じ、一方のデバイス110が暴走又は動作停止等をした場合に、他方のデバイス110によって一方のデバイス110の動作状態をリセットさせる。又は、デバイス110が暴走又は動作停止等をした場合に、ONU100は、自己の通信装置(ONU)100全体の電源をリセットさせる。
 なお、従来の通信装置では、例えばビット反転が生じるようなソフトエラーが生じた場合に、自己の通信装置内部のデバイスでエラーを検出して訂正することを想定している。しかしながら、従来の通信装置は、自己の通信装置を監視するデバイスにおいて例えば、デバイス自身を暴走又は動作停止等を生じさせるようなソフトエラーが発生した場合には、当該ソフトエラーを検出することができない。
 これに対し、第1の実施形態に係るONU100は、以上のような構成を備えることによって、自己の通信装置を監視するデバイス110においてエラーが生じた場合でも、当該エラーを検出し、自己の通信装置を復旧させることができる。
 なお、第1の実施形態では、一方のデバイス110の制御部/装置監視部112は、他方のデバイス110で生じたエラーを検出した場合、まず、他方のデバイス110のリセットを指示し、復旧されない場合に自己の通信装置(ONU100)全体の電源リセットを指示する構成である。但し、このような構成に限られるものではなく、一方のデバイス110の制御部/装置監視部112は、他方のデバイス110で生じたエラーを検出した場合、まず、他方のデバイス110のリセットを指示し、複数回リセットを試みても復旧されない場合に自己の通信装置(ONU100)全体の電源リセットを指示する構成であってもよい。
 また、制御部/装置監視部112が前者の処理のみ又は後者の処理のみを行う構成であってもよい。すなわち、例えば、一方のデバイス110の制御部/装置監視部112は、他方のデバイス110で生じたエラーを検出した場合、他方のデバイス110のリセットを指示することのみを行うようにしてもよい。又は、例えば、一方のデバイス110の制御部/装置監視部112は、他方のデバイス110で生じたエラーを検出した場合、他方のデバイス110のリセットを試みることなく、自己の通信装置(ONU100)全体の電源リセットを指示するようにしてもよい。
 なお、第1の実施形態では、ONU100が2つのデバイス110(デバイス110a及びデバイス110b)を備えている構成であるが、N個(Nは3以上の整数)のデバイス110を備えている構成であってもよい。この場合、例えば、各デバイス110においてエラーが発生する確率が1/Xであるならば、N個のデバイスにおいて同時にエラーが生じる確率は(1/X)となる。そのため、ONU100が備えるデバイス110の個数が多いほど、全てのデバイス110において同時にエラーが生じることによってONU100を復旧させることができなくなる可能性は指数関数的に低くなる。
 このように、第1の実施形態によれば、装置構成を複雑化させることなく、装置の堅牢性を向上させることができる。
 なお、前述の第1の実施形態に係るONU100の構成はあくまで一例である。例えば、以下に説明する第1の実施形態の変形例のような構成であってもよい。以下に説明する変形例に係る通信装置は、前述の第1の実施形態に係るONU100と同様に、互いに死活監視を行うことができる複数のデバイスを備える。
[変形例]
[デバイスの動作]
 以下、第1の実施形態の変形例に係る通信装置の動作の一例について説明する。
 図4は、本発明の第1の実施形態の変形例に係る通信装置が備えるデバイスの動作を示すフローチャートである。本フローチャートは、通信装置において何らかのエラーが生じた場合に開始する。なお、以下の説明では、通信装置が備える複数のデバイスの中の任意の1つのデバイスの動作について説明する。なお、以下の説明において、当該任意の1つのデバイスを「一方のデバイス」、その他のデバイスの1つを「他方のデバイス」という。
 なお、それぞれのデバイスは、「電源リセットモード」と「デバイスリセットモード」の2つの動作モードで実行可能である。電源リセットモードとは、自己の通信装置においてエラーが生じたことが検出された場合に、自己の通信装置全体の電源のリセットを指示する動作モードである。一方、デバイスリセットモードとは、自己の通信装置においてエラーが生じたことが検出された場合に、エラーの発生箇所が監視対象である他方のデバイスであるならば、当該他方のデバイスのリセットを指示する場合がある動作モードである。
 なお、監視対象の他方のデバイスとは、一方のデバイスが他方のデバイスで生じたエラーを検出した場合に当該他方のデバイスのリセットを指示することができるデバイスである。
 なお、動作モードは、例えば運用管理者等によって、各デバイスに対して予め設定がなされる。
 図4に示されるように、まず、一方のデバイスは、自己の通信装置において生じたエラーを検出する(ステップS101)。一方のデバイスが電源リセットモードで動作している場合(ステップS102・Yes)、一方のデバイスは、制御信号を介して電源部へ電源リセット指示を出力する(ステップS103)。以上で図4のフローチャートが示すデバイスの動作が終了する。
 一方のデバイスがデバイスリセットモードで動作している場合(ステップS102・No)、一方のデバイスは、ステップS101において検出されたエラーが監視対象のデバイスにおいて生じたエラーであるか否かを判定する(ステップS104)。検出されたエラーが監視対象のデバイスにおいて生じたエラーではない場合(ステップS104・No)、一方のデバイスは、制御信号を介して電源部へ電源リセット指示を出力する(ステップS103)。以上で図4のフローチャートが示すデバイスの動作が終了する。
 検出されたエラーが監視対象のデバイスにおいて生じたエラーである場合(ステップS104・Yes)、一方のデバイスが指揮系統を有するならば(ステップS105・Yes)、一方のデバイスは、制御信号線を介して電源部へ電源リセット指示を出力する(ステップS103)。以上で図4のフローチャートが示すデバイスの動作が終了する。
 一方のデバイスが指揮系統を有していないならば(ステップS105・No)、一方のデバイスは、制御信号線を介してエラーが生じた他方のデバイスへリセット指示を出力する(ステップS106)。以上で図4のフローチャートが示すデバイスの動作が終了する。
 このように、第1の実施形態の変形例に係る通信装置は、動作モードが何であるか、監視対象のデバイスであるか、及び、デバイスが指揮系統を有するかに応じて動作を異ならせる構成である。以下に、第1の実施形態の変形例に係る通信装置の機能構成の3つの構成例について説明する。
[構成例1]
 以下、構成例1に係る通信装置600pの機能構成について説明する。
 図5は、本発明の第1の実施形態の変形例に係る通信装置600pの構成を示す概略ブロック図である。図5に示されるように、通信装置600pは、デバイス610aと、デバイス610bと、電源部640とを含んで構成される。なお、図5において、破線の矢印は、制御信号が流れる制御信号線を表す。
 デバイス610aは、指揮系統部611aと、監視部612aと、通信処理部613aとを含んで構成される。また、デバイス610bは、指揮系統部611bと、監視部612bと、通信処理部613bとを含んで構成される。
 このように、構成例1に係る通信装置600pでは、デバイス610a及びデバイス610bともに指揮系統部を備える構成である。指揮系統部は、例えばCPU等のプロセッサによって構成される。
 指揮系統部611a及び指揮系統部611bは、電源部640へ電源リセット指示を出力することにより、電源部640に対して通信装置600p全体の電源リセットを行わせることができる。
 デバイス610aの監視部612aは、デバイス610bの通信処理部613bにおいてエラーが生じたことを検出することができる。監視部612aが、通信処理部613bにおいてエラーが生じたことを検出した場合、デバイス610aの指揮系統部611aは、電源部640へ電源リセット指示を出力する。
 デバイス610bの監視部612bは、デバイス610aの通信処理部613aにおいてエラーが生じたことを検出することができる。監視部612bが、通信処理部613aにおいてエラーが生じたことを検出した場合、デバイス610bの指揮系統部611bは、電源部640へ電源リセット指示を出力する。
 このように、構成例1に係る通信装置600pは、一方のデバイスが他方のデバイスの通信処理部でエラーが生じたことを検出した場合、電源部640に電源リセットを行わせる構成である。
[構成例2]
 以下、構成例2に係る通信装置600qの機能構成について説明する。
 図6は、本発明の第1の実施形態の変形例に係る通信装置600qの構成を示す概略ブロック図である。図6に示されるように、通信装置600qは、デバイス610aと、デバイス610bと、電源部640とを含んで構成される。なお、図6において、破線の矢印は、制御信号が流れる制御信号線を表す。
 デバイス610aは、指揮系統部611aと、監視部612aと、通信処理部613aとを含んで構成される。また、デバイス610bは、監視部612bと、通信処理部613bとを含んで構成される。
 このように、構成例2に係る通信装置600pでは、デバイス610aは指揮系統部を備えるが、デバイス610bは指揮系統部を備えない構成である。
 デバイス610aの指揮系統部611aは、電源部640へ電源リセット指示を出力することにより、電源部640に対して通信装置600q全体の電源リセットを行わせることができる。
 デバイス610bの監視部612bは、デバイス610aへリセット指示を出力することにより、デバイス610aに対して当該デバイス610aのリセットを行わせることができる。
 デバイス610aの監視部612aは、デバイス610bの通信処理部613bにおいてエラーが生じたことを検出することができる。監視部612aが、通信処理部613bにおいてエラーが生じたことを検出した場合、デバイス610aの指揮系統部611aは、電源部640へ電源リセット指示を出力する。
 デバイス610bの監視部612bは、デバイス610aの通信処理部613aにおいてエラーが生じたことを検出することができる。監視部612bは、通信処理部613aにおいてエラーが生じたことを検出した場合、デバイス610aへリセット指示を出力する。
 このように、構成例2に係る通信装置600pは、一方のデバイスが他方のデバイスの通信処理部でエラーが生じたことを検出した場合において、一方のデバイスが指揮系統部を備えているならば電源部640に電源リセットを行わせ、一方のデバイスが指揮系統部を備えていないならば他方のデバイスをリセットさせる構成である。
[構成例3]
 以下、構成例3に係る通信装置600rの機能構成について説明する。
 図7は、本発明の第1の実施形態の変形例に係る通信装置600rの構成を示す概略ブロック図である。図7に示されるように、通信装置600rは、デバイス610aと、デバイス610bと、デバイス610cと、電源部640とを含んで構成される。なお、図7において、破線の矢印は、制御信号が流れる制御信号線を表す。
 デバイス610aは、指揮系統部611aと、監視部612aと、通信処理部613aとを含んで構成される。また、デバイス610bは、指揮系統部611bと、監視部612bと、通信処理部613bとを含んで構成される。また、デバイス610cは、監視部612cと、通信処理部613cとを含んで構成される。
 このように、構成例3に係る通信装置600rでは、デバイス610a及びデバイス610bは指揮系統部を備えるが、デバイス610cは指揮系統部を備えない構成である。
 デバイス610aの指揮系統部611a及びデバイス610bの指揮系統部611bは、電源部640へ電源リセット指示を出力することにより、電源部640に対して通信装置600p全体の電源リセットを行わせることができる。
 デバイス610cの監視部612cは、デバイス610aへリセット指示を出力することにより、デバイス610aに対して当該デバイス610aのリセットを行わせることができる。
 デバイス610aの監視部612aは、デバイス610bの通信処理部613b及びデバイス610cの通信処理部613cにおいてエラーが生じたことを検出することができる。監視部612aが、通信処理部613b又は通信処理部613bにおいてエラーが生じたことを検出した場合、デバイス610aの指揮系統部611aは、電源部640へ電源リセット指示を出力する。
 デバイス610bの監視部612bは、デバイス610aの通信処理部613aにおいてエラーが生じたことを検出することができる。監視部612bが、通信処理部613aにおいてエラーが生じたことを検出した場合、デバイス610bの指揮系統部611bは、電源部640へ電源リセット指示を出力する。
 デバイス610cの監視部612cは、デバイス610aの通信処理部613aにおいてエラーが生じたことを検出することができる。監視部612bは、通信処理部613aにおいてエラーが生じたことを検出した場合、デバイス610aへリセット指示を出力する。
 このように、構成例3に係る通信装置600rは、一方のデバイスが他方のデバイスの通信処理部でエラーが生じたことを検出した場合において、一方のデバイスが指揮系統部を備えているならば電源部640に電源リセットを行わせ、一方のデバイスが指揮系統部を備えていないならば他方のデバイスをリセットさせる構成である。
<第2の実施形態>
 以下、本発明の第2の実施形態について、図面を参照しながら説明する。なお、以下に説明する第2の実施形態における、通信システム1の全体構成図、及びONU100の機能構成を示す概略ブロック図は、それぞれ第1の実施形態と同様(すなわち、それぞれ図1及び図2と同様)であるため、説明を省略する。
[デバイスの動作]
 図8は、本発明の第2の実施形態に係るデバイス110の動作を示すフローチャートである。図8に示されるフローチャートは、ONU100において、エラーが生じた場合に開始する。なお、ここでいうエラーとは、他方のデバイス110で生じたエラーだけでなく、自己のデバイス110で生じたエラー、及びONU100内のその他の部材(デバイス110以外の部材)で生じたエラーを含んでいてもよい。
 制御部/装置監視部112は、電源リセット指示を出力した回数をカウントするカウンターを示す変数Mの値に0を代入することにより、変数Mを初期化する(ステップS201)。なお、図8のフローチャートのステップS201及びステップS205に示される左向きの矢印は、右側の値を左側の変数に代入する動作を意味する。変数Mの値は、例えば、制御部/装置監視部112が備える記憶媒体(不図示)に一時記憶される。ここでいう記憶媒体とは、例えばCPUに搭載されたキャッシュメモリ等である。
 次に、デバイス110の制御部/装置監視部112は、自己の通信装置(ONU100)において生じたエラーを検出する(ステップS202)。前述の通り、ここでいうエラーとは、例えばデバイス110の暴走又は動作停止等を生じさせるようなエラーである。
 制御部/装置監視部112は、変数Mの値が所定値j未満であるか否かについての判定を行う(ステップS203)。なお、所定値jとは、電源リセット処理の最大試行回数を示す値である。所定値jは、例えば運用保守担当者等によって予め定められる値である。
 変数Mの値が所定値j未満である場合(ステップS203・Yes)、制御部/装置監視部112は、制御信号線を介して、他方のデバイス110へのリセット指示の出力、又は、電源部140への電源リセット指示を出力を行う(ステップS204)。なお、制御部/装置監視部112が、他方のデバイス110へのリセット指示の出力、又は、電源部140への電源リセット指示を行うための動作は、例えば前述の図4に示されるフローチャートに従って行われる。次に、制御部/装置監視部112は、変数Mの値に1を加算する(ステップS205)。
 次に、制御部/装置監視部112が、他方のデバイス110におけるリセット処理、又は、電源部140による電源リセット処理によりONU100が復旧したことを検出した場合(ステップS206・Yes)、図8のフローチャートが示すデバイス110の動作が終了する。一方、制御部/装置監視部112は、ONU100が復旧していないことを検出した場合(ステップS206・No)、前述のステップS203以降の動作を繰り返す。
 一方、変数Mの値が所定値jに達した場合(ステップS203・No)、制御部/装置監視部112は、自己の通信装置(ONU100)の動作停止指示を出力する(ステップS207)。
 なお、ONU100の動作を停止させる方法としては、任意の方法を用いることができる。例えば、制御部/装置監視部112は、ONU100全体への電力供給を停止させる指示である動作停止指示を制御信号線を介して電源部140へ出力することにより、ONU100の動作を停止させるようにしてもよい。
 次に、制御部/装置監視部112は、ONU100に備えられたランプ(不図示)を点灯させる指示を示す点灯指示を出力する(ステップS208)。以上で、図8のフローチャートが示すデバイス110の動作が終了する。
 なお、ランプを点灯させる方法としては、任意の方法を用いることができる。例えば、制御部/装置監視部112は、制御信号線を介して電源部140へ点灯指示を出力することにより電源部140からランプへの電力供給を開始させ、点灯させる。
 このように、ランプが点灯することにより、ユーザ又は運用保守担当者等は、ONU100が動作停止状態(異常状態)であることを認識することができる。ユーザ又は運用保守担当者等は、ONU100が動作停止状態であることを認識すると、手動によりONU100の動作状態を復旧させる。例えば、ユーザ又は運用保守担当者等は、ONU100が備える電源プラグ(不図示)をコンセント(不図示)に対して抜き差しすることにより、ONU100の動作状態を復旧させる。
 なお、ユーザ又は運用保守担当者等に対してONU100が動作停止状態であることを通知することができる方法であるならば、ランプを点灯させる方法以外の方法が用いられてもよい。例えば、制御部/装置監視部112は、ONU100に備えられたスピーカ(不図示)を用いて、音声によりユーザ又は運用保守担当者等に対して通知するようにしてもよい。または、例えば、制御部/装置監視部112は、自己の通信装置(ONU100)又は外部装置に備えられた、例えば液晶ディスプレイ(LCD)等の表示装置(不図示)に、ONU100が動作停止状態であること示す情報を表示させるようにしてもよい。
 以上説明したように、第2の実施形態に係るONU100(通信装置)は、自己の通信装置の監視を行う。そして、ONU100は、自己の通信装置において例えば暴走又は動作停止等を生じさせるようなエラーが生じた場合に、自己の通信装置全体への電力の供給をリセットする電源リセットを実行させる。それでもなお、自己の通信装置が復旧しない場合、ONU100は、繰り返し電源リセットを実行させる。所定の回数に達するまで電源リセットを試行してもなお復旧しない場合には、ONU100は、自己の通信装置の動作を停止させる。そして、ONU100は、自己の通信装置が動作停止状態であることをユーザ又は運用保守担当者等に認識させるため、ランプを点灯させる。これにより、ONU100は、手動による自己の通信装置の復旧を促すことができる。ONU100は、ユーザ又は運用保守担当者等により手動で自己の通信装置の復旧がなされるまで待機する。
 以上のような構成を備えることによって、第2の実施形態に係るONU100は、自己の通信装置においてエラーが生じた場合に、自律的に自己の通信装置の復旧を試みることができる。ONU100は、例えば、電源リセット(又はリコンフィグレーション)によって復旧可能なエラーを検出した場合には、自律的に自己の通信装置をリセットさせ復旧させることができる。これにより、第2の実施形態に係るONU100によれば、人手による復旧作業が発生する頻度が低減されるため、自己の通信装置で生じたエラーに対処可能な通信装置の運用コストが削減される。
 なお、第2の実施形態によれば、例えば、宇宙線由来の中性子線が引き起こすソフトエラーへの耐性の向上も見込める。
 なお、第2の実施形態では、デバイス110の制御部/装置監視部112は、ONU100で生じたエラーを検出した場合、まず、ONU100全体の電源リセットを指示し、それでも自己の通信装置が復旧しない場合には所定の回数に達するまで、繰り返し電源リセットを指示する。所定の回数に達してもなお復旧しない場合には、制御部/装置監視部112は、ONU100の動作停止させる。そして、制御部/装置監視部112は、ONU100に備えられたランプを点灯させる構成である。但し、このような構成に限られるものではなく、制御部/装置監視部112が前者の処理のみ又は後者の処理のみを行う構成であってもよい。すなわち、例えば、制御部/装置監視部112は、電源リセットの試行回数が所定の回数に達してもなお自己の通信装置が復旧しない場合には、自己の通信装置の動作停止させることだけを行うようにしてもよい(すなわち、ランプの点灯等による通知は行われない構成であってもよい)。又は、例えば、制御部/装置監視部112は、ONU100全体の電源リセットを指示しても自己の通信装置が復旧しない場合には、電源リセットの指示を繰り返し行うことなくランプを点灯させるようにしてもよい。
<第2の実施形態の変形例>
 以下、本発明の第2の実施形態の変形例について、図面を参照しながら説明する。なお、以下に説明する第2の実施形態の変形例における、通信システム1の全体構成図、及びONU100の機能構成を示す概略ブロック図は、それぞれ第1の実施形態と同様(すなわち、それぞれ図1及び図2と同様)であるため、説明を省略する。
 前述の第2の実施形態では、ONU100は、自己の通信装置で生じたエラーを検出した場合、まずは自己の通信装置全体への電力の供給をリセットする電源リセットを試み、それでもなお自己の通信装置が復旧しない場合には自己の通信装置の動作を停止させる構成であった。これに対し、以下に説明する第2の実施形態の変形例では、ONU100のデバイス110は、当該ONU100が備える他方のデバイス110で生じたエラーを検出した場合、まずはエラーが生じた他方のデバイス110のリセットを試みる。それでもなおデバイス110が復旧しない場合には、デバイス110は、電源リセットを試みる。そして、それでもなおデバイス110が復旧しない場合、デバイス110は、自己の通信装置の動作を停止させる構成である。
[デバイスの動作]
 図9は、本発明の第2の実施形態の変形例に係るデバイス110の動作を示すフローチャートである。図9に示されるフローチャートは、他方のデバイス110においてエラーが生じた場合に開始する。なお、以下の説明では、例としてデバイス110aの動作を説明するが、デバイス110bの動作も同様である。
 デバイス110aの制御部/装置監視部112aは、他方のデバイス110(デバイス110b)において生じたエラーを検出する(ステップS301)。前述の通り、ここでいうエラーとは、例えばデバイス110の暴走又は動作停止等を生じさせるエラーである。次に、制御部/装置監視部112aは、リセット指示を出力した回数をカウントするカウンターを示す変数Nの値に0を代入することにより、変数Nを初期化する(ステップS302)。なお、図9のフローチャートのステップS302、ステップS304、ステップS307、及びステップS309に示される左向きの矢印は、右側の値を左側の変数に代入する動作を意味する。変数Nの値は、例えば、制御部/装置監視部112aが備える記憶媒体(不図示)に一時記憶される。
 次に、制御部/装置監視部112aは、制御信号線を介してデバイス110bへリセット指示を出力する(ステップS303)。次に、制御部/装置監視部112aは、変数Nの値に1を加算する(ステップS304)。
 次に、制御部/装置監視部112aが、リセットによりデバイス110bが復旧したことを検出した場合(ステップS305・Yes)、図9のフローチャートが示すデバイス110aの動作が終了する。一方、制御部/装置監視部112aは、デバイス110bが復旧していないことを検出した場合(ステップS305・No)、変数Nの値が所定値k未満であるか否かについての判定を行う(ステップS306)。なお、所定値kとは、デバイス110のリセット処理の最大試行回数を示す値である。所定値kは、例えば運用保守担当者等によって予め定められる値である。
 変数Nの値が所定値k未満である場合(ステップS306・No)、制御部/装置監視部112aは、前述のステップS303以降の動作を繰り返す。一方、変数Nの値が所定値kに達した場合(ステップS306・Yes)、制御部/装置監視部112aは、ステップS307以降の動作を行う。なお、図9に示されるステップS307以降の動作は、図8に示されるステップS202以降の動作と同様であるため、説明を省略する。
 なお、ステップS311における変数M及び所定値jの値として、前述のステップS306で用いられる変数N及び所定値kの値がそれぞれ用いられるような構成であってもよい。すなわち、デバイス110対するリセット処理の最大試行回数と、ONU100全体に対する電源部140による電源リセット処理の最大試行回数とは、それぞれ共通の変数及び共通の所定値が用いられてもよい。
 以上説明したように、第2の実施形態の変形例に係るONU100(通信装置)のデバイス110は、自己の通信装置の監視を行う。そして、デバイス110は、他方のデバイス110において暴走又は動作停止等を生じさせるようなエラーが生じた場合に、他方のデバイス110の動作状態をリセットさせる。それでもなお、他方のデバイス110が復旧しない場合、デバイス110は、繰り返し他方のデバイス110の動作状態をリセットさせる。所定の回数に達するまでリセットを試行してもなお復旧しない場合には、デバイス110は、自己の通信装置全体の電源をリセットする電源リセットを実行させる。それでもなお、自己の通信装置が復旧しない場合、デバイス110は、繰り返し電源リセットを実行させる。所定の回数に達するまで電源リセットを試行してもなお復旧しない場合には、デバイス110は、自己の通信装置の動作を停止させる。そして、デバイス110は、自己の通信装置が動作停止状態であることをユーザ又は運用保守担当者等に認識させるため、ランプを点灯させる。ONU100は、ユーザ又は運用保守担当者等により手動で自己の通信装置の復旧がなされるまで待機する。
 以上のような構成を備えることによって、第2の実施形態の変形例に係るONU100は、自己の通信装置においてエラーが生じた場合に、自律的に自己の通信装置の復旧を試みることができる。ONU100は、例えば、電源リセット(又はリコンフィグレーション)によって復旧可能なエラーを検出した場合には、自律的に自己の通信装置をリセットさせ復旧させることができる。
 なお、前述の各実施形態では、一例として、ONU100が自己の通信装置で生じるエラーを検出し復旧を行う構成であるものとした。但し、本発明を適用することできる装置はONU100に限られるものではなく、他の装置においても適用可能である。ここでいう他の装置とは、例えば、OLT300、10G-EPON以外の通信システムにおける通信装置、及び通信装置以外の装置である。
 上述した実施形態におけるONU100の一部又は全部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記録装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものを含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1・・・通信システム、100・・・ONU、110(110a,110b)・・・デバイス、111(111a,111b)・・・主信号処理部、112(112a,112b)・・・制御部/装置監視部、120・・・光受電部、130・・・UNI、140・・・電源部、200・・・ユーザ端末、300・・・OLT、400・・・光スプリッタ

Claims (8)

  1.  複数のデバイス
     を備え、
     各々の前記デバイスは、少なくとも1つの他のデバイスを監視して、前記他のデバイスにおいて生じたエラーを検出する監視部
     を備え、
     各々の前記デバイスは、少なくとも1つの他のデバイスによって監視される
     通信装置。
  2.  前記デバイスの少なくとも1つは、自己の通信装置への電力の供給をリセットさせる指揮系統部
     をさらに備える
     請求項1に記載の通信装置。
  3.  前記デバイスの少なくとも1つが備える前記監視部が前記他のデバイスにおいて生じたエラーを検出した場合、
     前記指揮系統部は自己の通信装置への電力の供給をリセットさせる
     請求項2に記載の通信装置。
  4.  前記デバイスの少なくとも1つが備える監視部は、前記他のデバイスにおいて生じたエラーを検出した場合、前記他のデバイスの動作状態をリセットさせる
     請求項2又は請求項3に記載の通信装置。
  5.  前記他のデバイスの動作状態のリセットにより自己の通信装置の動作状態が復旧しない場合、前記指揮系統部は前記自己の通信装置への電力の供給をリセットさせる
     請求項4に記載の通信装置。
  6.  前記他のデバイスの動作状態のリセットにより自己の通信装置の動作状態が復旧しない場合、前記デバイスは前記自己の通信装置の動作を停止させる
     請求項4に記載の通信装置。
  7.  前記通信装置は、光回線の終端装置である
     請求項1から請求項6のうちいずれか一項に記載の通信装置。
  8.  複数のデバイスを備え、各々の前記デバイスが少なくとも1つの他のデバイスによって監視される通信装置によるエラー検出方法であって、
     少なくとも1つの他のデバイスを監視して、前記他のデバイスにおいて生じたエラーを検出するステップ
     を有するエラー検出方法。
PCT/JP2020/005494 2020-02-13 2020-02-13 通信装置及びエラー検出方法 WO2021161441A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021577782A JP7477780B2 (ja) 2020-02-13 2020-02-13 通信装置及びエラー検出方法
US17/798,300 US11863230B2 (en) 2020-02-13 2020-02-13 Communication apparatus and error detection method
PCT/JP2020/005494 WO2021161441A1 (ja) 2020-02-13 2020-02-13 通信装置及びエラー検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005494 WO2021161441A1 (ja) 2020-02-13 2020-02-13 通信装置及びエラー検出方法

Publications (1)

Publication Number Publication Date
WO2021161441A1 true WO2021161441A1 (ja) 2021-08-19

Family

ID=77291484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005494 WO2021161441A1 (ja) 2020-02-13 2020-02-13 通信装置及びエラー検出方法

Country Status (3)

Country Link
US (1) US11863230B2 (ja)
JP (1) JP7477780B2 (ja)
WO (1) WO2021161441A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222379A (ja) * 2004-02-06 2005-08-18 Hitachi Ltd ディスクアレイ装置およびその障害回避制御方法
JP2014135679A (ja) * 2013-01-11 2014-07-24 Mitsubishi Electric Corp 端末側通信装置、局側装置、通信障害復旧方法
JP2014207593A (ja) * 2013-04-15 2014-10-30 西日本電信電話株式会社 光回線装置用の遠隔電源再起動装置
JP2017158088A (ja) * 2016-03-03 2017-09-07 西日本電信電話株式会社 加入者線終端装置と復旧方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576457B2 (ja) 1999-05-11 2004-10-13 シャープ株式会社 1チップマイクロコンピュータおよびその制御方法、ならびにそれを用いたicカード
JP2004303271A (ja) 1999-05-11 2004-10-28 Sharp Corp 1チップマイクロコンピュータおよびその制御方法、ならびにそれを用いたicカード
US7317681B1 (en) * 2002-01-11 2008-01-08 Cisco Systems O.I.A. (1988)Ltd. Redundancy for dual optical ring concentrator
US20050283641A1 (en) * 2004-05-21 2005-12-22 International Business Machines Corporation Apparatus, system, and method for verified fencing of a rogue node within a cluster
US20060029389A1 (en) * 2004-08-05 2006-02-09 Optical Solutions, Inc. Optical network terminal with low power hibernation
GB2421671A (en) * 2004-12-22 2006-06-28 Marconi Comm Gmbh A node selects a source of timing information using network topology and the timing status of network nodes
WO2007010518A1 (en) * 2005-07-18 2007-01-25 Passave Ltd. Method and system for passive optical network diagnostics
US7710864B2 (en) * 2006-01-16 2010-05-04 Cisco Technology, Inc. Recovery mechanism for 10 GE optical transport network wavelength division multiplexing ring
JP5060057B2 (ja) * 2006-03-08 2012-10-31 富士通株式会社 通信回線監視システム、中継装置、及び通信回線監視方法
JP2008061091A (ja) * 2006-09-01 2008-03-13 Hitachi Communication Technologies Ltd パス設定方法およびノード装置
US7539359B2 (en) * 2007-04-02 2009-05-26 Ciena Corporation Systems and methods for chirp control of a dual arm Z-modulator to minimize dispersion effect of fiber plant
US20090285576A1 (en) * 2008-05-16 2009-11-19 Tellabs Vienna, Inc. Method and apparatus for feedback/configuration of optical network terminal (ONT) anomalies to/from a central location
US8488962B2 (en) * 2010-05-03 2013-07-16 Verizon Patent And Licensing Inc. Bit error generation system for optical networks
CN102377479B (zh) * 2010-08-11 2015-01-21 华为技术有限公司 数据同步方法及系统、光网络单元
KR101296515B1 (ko) 2012-04-10 2013-09-16 에스케이텔레시스 주식회사 원격 복구 기능을 구비하는 광 중계기 및 광 중계기의 원격 복구 방법
JP6056494B2 (ja) * 2013-01-17 2017-01-11 富士通株式会社 判定装置、判定方法、及び、判定プログラム
US10033459B2 (en) * 2013-02-15 2018-07-24 Lantiq Deutschland Gmbh System, method and apparatus for a rogue optics network unit
CN105337657B (zh) * 2014-08-15 2018-08-24 上海诺基亚贝尔股份有限公司 在无源光网络中用于确定流氓onu的方法及装置
US9800327B2 (en) * 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9565083B2 (en) * 2014-11-21 2017-02-07 Ciena Corporation In-band signaling for network protection switching
JP6452656B2 (ja) 2016-09-01 2019-01-16 日本電信電話株式会社 地気情報転送装置
CN109586864B (zh) * 2017-09-28 2021-01-15 华为技术有限公司 数据传输方法、装置及系统
JP7035877B2 (ja) * 2018-07-20 2022-03-15 富士通株式会社 伝送装置
JP2020174319A (ja) * 2019-04-12 2020-10-22 富士通株式会社 測定装置、伝送装置、及びネットワークシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222379A (ja) * 2004-02-06 2005-08-18 Hitachi Ltd ディスクアレイ装置およびその障害回避制御方法
JP2014135679A (ja) * 2013-01-11 2014-07-24 Mitsubishi Electric Corp 端末側通信装置、局側装置、通信障害復旧方法
JP2014207593A (ja) * 2013-04-15 2014-10-30 西日本電信電話株式会社 光回線装置用の遠隔電源再起動装置
JP2017158088A (ja) * 2016-03-03 2017-09-07 西日本電信電話株式会社 加入者線終端装置と復旧方法

Also Published As

Publication number Publication date
JP7477780B2 (ja) 2024-05-02
US20230070907A1 (en) 2023-03-09
US11863230B2 (en) 2024-01-02
JPWO2021161441A1 (ja) 2021-08-19

Similar Documents

Publication Publication Date Title
US7565567B2 (en) Highly available computing platform
JP6391700B2 (ja) 電源アダプター、端末及び充電回路のインピーダンス異常の処理方法
US20180341310A1 (en) Active charge through of a peripheral device
KR102070034B1 (ko) 단말기, 전원 어댑터 및 충전 이상 처리방법
US20070271468A1 (en) Method and Apparatus for Maintaining Data Integrity When Switching Between Different Data Protection Methods
JP2007109238A (ja) 回復可能なエラーのロギングのためのシステム及び方法
US20180322285A1 (en) System and method for detecting malicious software in nvme over fabrics devices
TW201911813A (zh) 網路切換控制系統
CN110370288B (zh) 机器人安全控制方法、装置、设备和存储介质
WO2021161441A1 (ja) 通信装置及びエラー検出方法
JP2008172592A (ja) クラスタシステム、コンピュータおよびその異常検出方法
WO2021161442A1 (ja) 通信装置及びエラー対処方法
KR102131863B1 (ko) 라우팅 처리기의 동작 모드 천이 방법
JP2007334731A (ja) Usb機器、ホスト装置、およびusb接続システム
US20100077188A1 (en) Emergency file protection system for electronic devices
US8917609B2 (en) Line monitoring apparatus and line monitoring method
CN110377238A (zh) 一种存储系统及其数据传输方法、装置和NVMe控制框
KR20190041732A (ko) 백업 장치 관리 시스템 및 방법
JP6904918B2 (ja) 制御装置およびそのデータ書き込み方法
JP7447059B2 (ja) ネットワーク装置およびネットワークシステム
JP6784939B2 (ja) ネットワーク機器
JP2007041953A (ja) 制御装置のバックアップ方法及びコンピュータプログラム、並びに制御システム
JP2022059326A (ja) 通信装置及び制御方法
KR101896840B1 (ko) 최대절전모드를 이용하는 pc 망전환 장치
JP2006269274A (ja) 過電流事前防止コンセントボックス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919166

Country of ref document: EP

Kind code of ref document: A1