WO2021159889A1 - 基于超临界流体色谱和离子液体柱后加合反应的测定方法 - Google Patents

基于超临界流体色谱和离子液体柱后加合反应的测定方法 Download PDF

Info

Publication number
WO2021159889A1
WO2021159889A1 PCT/CN2021/070260 CN2021070260W WO2021159889A1 WO 2021159889 A1 WO2021159889 A1 WO 2021159889A1 CN 2021070260 W CN2021070260 W CN 2021070260W WO 2021159889 A1 WO2021159889 A1 WO 2021159889A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
supercritical fluid
acid
addition reaction
solvent
Prior art date
Application number
PCT/CN2021/070260
Other languages
English (en)
French (fr)
Inventor
马强
Original Assignee
中国检验检疫科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国检验检疫科学研究院 filed Critical 中国检验检疫科学研究院
Publication of WO2021159889A1 publication Critical patent/WO2021159889A1/zh
Priority to US17/666,721 priority Critical patent/US20220229027A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/40Selective adsorption, e.g. chromatography characterised by the separation mechanism using supercritical fluid as mobile phase or eluent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0203Solvent extraction of solids with a supercritical fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0288Applications, solvents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/10Preparation using a splitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/065Preparation using different phases to separate parts of sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/067Preparation by reaction, e.g. derivatising the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • G01N2030/146Preparation by elimination of some components using membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • G01N2030/8429Preparation of the fraction to be distributed adding modificating material
    • G01N2030/8441Preparation of the fraction to be distributed adding modificating material to modify physical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • G01N2030/8447Nebulising, aerosol formation or ionisation
    • G01N2030/8452Generation of electrically charged aerosols or ions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/8845Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving halogenated organic compounds

Definitions

  • the invention relates to the field of inspection and detection, in particular to a determination method based on supercritical fluid chromatographic separation and ionic liquid post-column addition reaction.
  • Perfluorinated compounds are a class of organic compounds formed when all hydrogen atoms in hydrocarbons and their derivatives are replaced by fluorine atoms. Such substances are often used as surfactants for household decoration paper food packaging materials and fire extinguishing foams. In the production of textiles, perfluorinated compounds are widely used as finishing agents and surfactants. However, perfluorinated compounds have strong bioaccumulation. After entering the organism, perfluorinated compounds will be distributed in the serum and liver, and produce various toxic effects on the organism, such as liver toxicity, cardiovascular toxicity, developmental toxicity, and immunity. System toxicity, endocrine disrupting and potential carcinogenicity.
  • the pretreatment methods of textiles include solid phase microextraction, ultrasonic extraction, Soxhlet extraction and so on.
  • these methods not only have a long extraction time and a large amount of organic solvents, but also have a negative impact on the environment and experimenters.
  • Supramolecular solvents are micellar aggregates with nanostructures, which can improve the efficiency of extracting analytes from aqueous solutions, reduce extraction time, and consume less solvent. It is a new environmentally friendly alternative to molecular organic solvents in the analysis and extraction.
  • the technical problem to be solved by the present invention is to provide a measurement method that adopts supercritical fluid chromatographic separation, double cationic ionic liquid chromatographic column post-addition reaction and electrospray mass spectrometry detection.
  • Supercritical fluid chromatography uses compressed carbon dioxide as the mobile phase, which is cheaper than organic solvents, safe and environmentally friendly; at the same time, it can achieve rapid and effective separation. Supercritical fluid chromatography can achieve rapid and efficient separation while reducing the amount of organic solvents, and has high reproducibility.
  • the negative ion mode is usually used in the detection of perfluorinated compounds by mass spectrometry, but the electrospray ionization mass spectrometry in the negative ion mode is not as sensitive as the positive ion mode.
  • Room temperature ionic liquid is a salt substance with a melting point below 100°C. It has the characteristics of high thermal stability, non-flammability, low viscosity, good electrical conductivity, good solubility and miscibility, etc. It is expected to become a green and environmentally friendly organic solvent substitute .
  • the double-cation ionic liquid is a new type of ionic liquid with two positive charges, which can be used as a post-column addition ionic reagent for supercritical fluid chromatography.
  • the present invention is based on the supercritical fluid chromatography and ionic liquid post-column addition reaction determination method, including the following steps:
  • the method for measuring the supercritical fluid chromatography and ionic liquid post-column addition reaction described in the present invention, wherein the preparation method of the supramolecular solvent includes the following steps: measuring 3mL n-heptanol and 4mL tetrahydrofuran in a 50mL glass centrifuge tube After adding 33mL ultrapure water, magnetically stirring for 3min, centrifuging at 3000r/min for 10min, using a glass syringe to transfer the upper organic phase into a glass bottle, and sealing and storing at 4°C.
  • the determination method based on supercritical fluid chromatography and ionic liquid post-column addition reaction specifically includes the following steps: weigh 0.50g sample in a centrifuge tube, add 4mL For the supramolecular solvent, after vortexing for 3 minutes, centrifuge at 3000r/min for 10 minutes, pipette 100 ⁇ L of the upper liquid, add 100 ⁇ L of methanol, vortex to mix, and pass through a 0.22 ⁇ m microporous filter membrane for supercritical fluid chromatography-mass spectrometry. .
  • the determination method based on supercritical fluid chromatography and ionic liquid post-column addition reaction wherein the chromatographic conditions in the supercritical fluid chromatography-mass spectrometry method are as follows:
  • Torus DIOL column (2.1mm ⁇ 100mm, 1.7 ⁇ m); mobile phase: A (carbon dioxide) B (0.1% ammonia in methanol); gradient elution: 0 ⁇ 8.9min 5% ⁇ 20%B; 8.9 ⁇ 9min 20 %B; 9.0 ⁇ 9.5min 20% ⁇ 5%B; 9.5 ⁇ 10min 5%B; Column temperature: 40°C; Back pressure: 2000psi; Flow rate: 0.3mL/min; Injection volume: 2 ⁇ L; Compensation pump flow rate: 0.2 mL/min.
  • the measurement method based on supercritical fluid chromatography and ionic liquid post-column addition reaction described in the present invention wherein, after supercritical fluid chromatographic separation, the compensation liquid in the compensation pump is replaced with a double cation type ionic liquid solution.
  • the type ionic liquid is 1,1-di-n-octyl-4,4-bispyridine dimethyl bromide, which is dissolved in a solvent.
  • the solvent is a methanol-water mixed solvent with a volume ratio of 1:1.
  • the concentration is 2.5 ⁇ M, and the flow rate is 1.5mL/min; mass spectrometry is performed after replacing the compensation solution.
  • the mass spectrometry conditions are as follows:
  • Ion source electrospray ionization source; acquisition mode: positive ion mode; ion source temperature: 150°C; capillary voltage: 2.30kV; desolvation temperature: 350°C; cone gas flow rate: 150L/hr; desolvation gas flow rate : 800L/hr; collision gas flow rate: 0.25L/hr.
  • the determination method based on supercritical fluid chromatography and ionic liquid post-column addition reaction, wherein the perfluoro compound includes perfluorododecanoic acid, perfluoroundecanoic acid, perfluorodecanoic acid, perfluorononanoic acid , Perfluorooctanoic acid, Perfluoroheptanoic acid, Perfluorohexanoic acid, Perfluorovaleric acid, Perfluorooctane sulfonic acid and Perfluorobutane sulfonic acid.
  • the perfluoro compound includes perfluorododecanoic acid, perfluoroundecanoic acid, perfluorodecanoic acid, perfluorononanoic acid , Perfluorooctanoic acid, Perfluoroheptanoic acid, Perfluorohexanoic acid, Perfluorovaleric acid, Perfluorooctane sulf
  • the present invention adopts supercritical fluid chromatographic separation, double cationic ionic liquid chromatographic column post-addition reaction and electrospray mass spectrometry detection method, adopts double cationic ionic liquid, and the electronegative compound to be analyzed is formed in the electrospray process Positively charged adducts are used to detect analytes in positive ion mass spectrometry mode to enhance signal response.
  • the factors that affect the extraction rate of supramolecular solvents during the pretreatment process were optimized.
  • Figures 1A to 1D are schematic diagrams of optimizing supramolecular solvents, in which Figure 1A is the optimization of alkyl alcohol type and dosage, Figure 1B is the optimization of tetrahydrofuran dosage, Figure 1C is the optimization of vortex time, and Figure 1D is the supramolecular solvent dosage. Optimization;
  • Figures 2A to 2F are response surface diagrams
  • Figure 3 is a multi-reaction monitoring chromatogram of 10 perfluorinated compounds
  • Figure 4 is a comparison diagram of the response intensity and signal-to-noise ratio before and after the double cationic ionic liquid solution is used as the compensation liquid.
  • Torus DIOL column (2.1mm ⁇ 100mm, 1.7 ⁇ m); mobile phase: A (carbon dioxide) B (0.1% ammonia in methanol); gradient elution: 0 ⁇ 8.9min 5% ⁇ 20%B; 8.9 ⁇ 9min 20 %B; 9.0 ⁇ 9.5min 20% ⁇ 5%B; 9.5 ⁇ 10min 5%B; Column temperature: 40°C; Back pressure: 2000psi; Flow rate: 0.3mL/min; Injection volume: 2 ⁇ L; Compensation pump flow rate: 0.2 mL/min.
  • the double cationic ionic liquid is 1,1-di-n-octyl-4,4-bispyridine dimethyl bromide.
  • the solvent is dissolved.
  • the solvent is a methanol-water mixed solvent with a volume ratio of 1:1.
  • the concentration of the double cationic ionic liquid is 2.5 ⁇ M and the flow rate is 1.5 mL/min.
  • Ion source electrospray ionization source; acquisition mode: positive ion mode; ion source temperature: 150°C; capillary voltage: 2.30kV; desolvation temperature: 350°C; cone gas flow rate: 150L/hr; desolvation gas flow rate : 800L/hr; collision gas flow rate: 0.25L/hr.
  • Ion source electrospray ionization source; acquisition mode: positive ion mode; ion source temperature: 150°C; capillary voltage: 2.30kV; desolvation temperature: 350°C; cone gas flow rate: 150L/hr; desolvation gas flow rate : 800L/hr; collision gas flow rate: 0.25L/hr.
  • the parent ions, product ions, cone voltage and collision voltage of the 10 perfluorinated compounds are shown in Table 2.
  • Figure 3 shows the multi-reaction monitoring chromatogram of 10 kinds of perfluorinated compounds.
  • n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, n-decyl alcohol, n-undecyl alcohol and n-dodecanol to form supramolecular solvents, respectively, to extract perfluorinated compounds in textiles.
  • the extraction recovery rate of perfluorinated compounds for the n-heptanol/tetrahydrofuran/water supramolecular solvent system is 91%-106%, and the recovery rate is relatively stable. Therefore, n-heptanol/tetrahydrofuran/water was chosen as the supramolecular solvent system.
  • the recovery rate of the sample was investigated when the amount of n-heptanol was 1, 2, 3, 4, 5 and 6mL (to keep the total volume of the solvent at 40mL), the results are shown in Figure 1B.
  • the amount of n-heptanol is ⁇ 3mL, the recovery rate of the sample is high and stable. Therefore, the amount of heptanol is selected to be 3 mL.
  • the amount of tetrahydrofuran is 4mL, the recovery rate of perfluorinated compounds is the highest and stable. As it increases, the recovery rate decreases, and finally the recovery rate of most compounds is basically stable.
  • the recoveries of the samples were investigated when the vortex time was 1, 3, 5, 7, 9 and 11 min, and the results are shown in Figure 1D.
  • the vortex time is 3min, the recovery rate of the sample is the highest and stable. With the extension of the vortex time, the recovery rate tends to be stable. Therefore, the vortex time is chosen to be 3min.
  • the interaction terms AB of the amount of heptanol and the amount of tetrahydrofuran the interaction terms of the amount of heptanol and the vortex time AC, the amount of heptanol and the super
  • the interaction term AD of the amount of molecular solvent added has a very significant effect on the recovery rate.
  • the optimal conditions obtained by response surface methodology were 4 mL of heptanol, 4 mL of tetrahydrofuran, 1 min of vortexing time, and 3 mL of supramolecular solvent.
  • three parallel experiments were carried out according to the best conditions.
  • the experimental results were 106.337%, 108.599%, and 107.840%, with an average value of 107.592%, and a relative error of 0.474% from the theoretical prediction value of the model (108.105%).
  • the model can simulate and predict the test results well.
  • the double cationic ionic liquid is equivalent to the derivatization reagent added after the chromatographic column.
  • the perfluorinated compound separated from the chromatographic column using the double cationic ionic liquid as the compensation liquid is added after the column at the "splitter", positive ion mode Next, detect the compound after addition.
  • Methanol and acetonitrile are used as the solvents of the double cationic ionic liquid, but the baseline is too high.
  • Change the solvent to a mixed solvent of methanol-water and acetonitrile-water, the ratio of water to organic phase is 1:1, 2:3, 4:1, 3:2, 1:4, the same concentration, multi-reaction monitoring mode response The combined results of intensity and signal-to-noise ratio show that the methanol-water mixed solvent has the best effect when the ratio is 1:1, and the baseline is greatly reduced.
  • the flow rates of the double cationic ionic liquid are 1mL/min, 1.5mL/min, 2mL/min, 2.5mL/min. Impact on peak shape and signal-to-noise ratio at min. When the flow rate is 1.5mL/min, the peak shape is better and the signal-to-noise ratio is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种基于超临界流体色谱和离子液体柱后加合反应的测定方法,包括如下步骤:(1)采用正庚醇、四氢呋喃和水制备超分子溶剂;(2)样品前处理:采用所述超分子溶剂萃取试样,制备待测液;(3)采用超临界流体色谱分离、双阳离子型离子液体色谱柱后加合反应结合电喷雾质谱检测的方法对所述待测液中的全氟化合物进行检测。本发明采用超临界流体色谱分离-双阳离子型离子液体色谱柱后加合反应-电喷雾质谱检测的方法建立了一种新型的检测纺织品中全氟化合物的分析方法,采用双阳离子型离子液体,与要分析的电负性化合物在电喷雾过程中形成带正电荷的加合物,通过正离子质谱模式对分析物进行检测,以增强信号灵敏度。

Description

基于超临界流体色谱和离子液体柱后加合反应的测定方法 技术领域
本发明涉及检验检测领域,特别是涉及一种基于超临界流体色谱分离和离子液体柱后加合反应的测定方法。
背景技术
全氟化合物是碳氢化合物及其衍生物中的氢原子全部被氟原子取代后所形成的一类有机化合物,这类物质常用于家庭装饰纸制食品包装材料、灭火泡沫的表面活性剂。在纺织品的生产中,全氟化合物作为整理剂和表面活性剂而被大量使用。然而,全氟化合物具有很强的生物蓄积性,进入生物体后,全氟化合物会分布在血清及肝脏内,对生物体产生各种毒性效应,如肝脏毒性、心血管毒性、发育毒性、免疫系统毒性、内分泌干扰性及潜在的致癌性。
目前,纺织品的前处理方法包括固相微萃取、超声提取、索氏提取等。但这些方法不仅提取时间长、有机溶剂用量大,而且也会对环境和实验人员产生负面影响。超分子溶剂是一种具有纳米结构的胶束聚集体,可以提高从水溶液中提取分析物的效率,减少萃取时间,而且溶剂消耗量较少,是分析萃取中分子有机溶剂的新型环保替代品。
发明内容
本发明要解决的技术问题是提供一种采用超临界流体色谱分离、双阳离子型离子液体色谱柱后加合反应和电喷雾质谱检测的测定方法。
超临界流体色谱以压缩形式的二氧化碳作为流动相,比有机溶剂价格便宜,安全且绿色环保;同时,可以实现快速有效的分离。超临界流体色谱可在减少有机溶剂用量的情况下实现快速高效分离,具有高重现性。
用质谱检测全氟化合物时通常用负离子模式,但负离子模式的电喷雾电离质谱不及正离子模式灵敏。室温离子液体是熔点低于100℃的盐类物质,具有热稳定性高、不易燃、粘度低、导电性好、溶解性和混溶性好等特点,有望成为一种绿色环保的有机溶剂替代品。双阳离子型离子液体是一种新兴的离子液体,带有两个正电荷,可作为超临界流体色谱的柱后加 合离子试剂。
本发明基于超临界流体色谱和离子液体柱后加合反应的测定方法,包括如下步骤:
(1)采用正庚醇、四氢呋喃和水制备超分子溶剂;
(2)样品前处理:采用所述超分子溶剂萃取试样,制备待测液;
(3)采用超临界流体色谱-质谱联用的方法对所述待测液中的全氟化合物进行检测。
本发明中所述的基于超临界流体色谱和离子液体柱后加合反应的测定方法,其中,所述超分子溶剂的制备方法包括如下步骤:量取3mL正庚醇和4mL四氢呋喃于50mL玻璃离心管中,加入33mL超纯水,磁力搅拌3min后,以3000r/min离心10min,用玻璃注射器移取上层有机相于玻璃瓶中,4℃下密封保存。
本发明中所述的基于超临界流体色谱和离子液体柱后加合反应的测定方法,其中,所述样品前处理过程具体包括如下步骤:称取0.50g试样于离心管中,加入4mL所述超分子溶剂,涡旋振荡3min后,以3000r/min离心10min,移取上层液体100μL,加入100μL甲醇,涡旋混匀,过0.22μm微孔滤膜后,供超临界流体色谱-质谱测定。
本发明中所述的基于超临界流体色谱和离子液体柱后加合反应的测定方法,其中,所述超临界流体色谱-质谱联用的方法中色谱条件如下:
Torus DIOL色谱柱(2.1mm×100mm,1.7μm);流动相:A(二氧化碳)B(0.1%氨水的甲醇溶液);梯度洗脱:0~8.9min 5%~20%B;8.9~9min 20%B;9.0~9.5min 20%~5%B;9.5~10min 5%B;柱温:40℃;背压:2000psi;流速:0.3mL/min;进样体积:2μL;补偿泵流速:0.2mL/min。
本发明中所述的基于超临界流体色谱和离子液体柱后加合反应的测定方法,其中,超临界流体色谱分离后,将补偿泵中的补偿液替换为双阳离子型离子液体溶液,双阳离子型离子液体为1,1-二正辛酯-4,4-双吡啶二甲基溴,采用溶剂溶解,溶剂为体积比为1:1的甲醇-水的混合溶剂,双阳离子型离子液体的浓度为2.5μM,流速为1.5mL/min;替换补偿液后进行质谱检测,质谱条件如下:
离子源:电喷雾电离源;采集模式:正离子模式;离子源温度:150℃;毛细管电压:2.30kV;去溶剂化温度:350℃;锥孔气体流速:150L/hr;去溶剂化气体流速:800L/hr;碰撞气体流速:0.25L/hr。
本发明中所述的基于超临界流体色谱和离子液体柱后加合反应的测定方法,其中,全氟化合物包括全氟十二酸、全氟十一酸、全氟癸酸、全氟壬酸、全氟辛酸、全氟庚酸、全氟己酸、全氟戊酸、全氟辛烷磺酸和全氟丁烷磺酸。
表1 10种全氟化合物的信息
全氟化合物 分子量
PF12A(全氟十二酸) 613.9604
PF11A(全氟十一酸) 563.9647
PF10A(全氟癸酸) 513.9679
PF9A(全氟壬酸) 463.9711
PF8A(全氟辛酸) 413.9743
PF7A(全氟庚酸) 363.9774
PF6A(全氟己酸) 313.9806
PF5A(全氟戊酸) 263.9838
PF8S(全氟辛烷磺酸) 499.9380
PF4S(全氟丁烷磺酸) 299.9508
本发明采用基于超临界流体色谱和离子液体柱后加合反应的测定方法与现有技术不同之处在于:
本发明采用超临界流体色谱分离、双阳离子型离子液体色谱柱后加合反应和电喷雾质谱检测的测定方法,采用双阳离子型离子液体,与要分析的电负性化合物在电喷雾过程中形成带正电荷的加合物,通过正离子质谱模式下对分析物进行检测,以增强信号响应。同时,通过单因素实验和响应面方法,对前处理过程中影响超分子溶剂萃取率的因素进行了优化。
下面结合附图对本发明的采用超临界流体色谱分离、双阳离子型离子液体色谱柱后加合反应和电喷雾质谱检测的测定方法作进一步说明。
附图说明
图1A至图1D为优化超分子溶剂的示意图,其中图1A为烷基醇种类及用量的优化,图1B为四氢呋喃用量的优化,图1C为涡旋时间的优化,图1D为超分子溶剂用量的优化;
图2A至图2F为响应曲面图;
图3为10种全氟化合物的多反应监测色谱图;
图4为双阳离子型离子液体溶液作为补偿液前后响应强度、信噪比的对比图。
附图中出现的所有英文的中文对照如下:
Recovery     回收率
Pentanol     戊醇
Hexanol      己醇
Heptanol     庚醇
Octanol      辛醇
Nonanol     壬醇
Decanol     癸醇
Undecanol   十一醇
Dodecanol   十二醇
PFDoDA      全氟十二酸
PFDnDA      全氟十一酸
PFDA        全氟癸酸
PFNA        全氟壬酸
PFOA        全氟辛酸
PFHpA       全氟庚酸
PFHA        全氟己酸
PFPA        全氟戊酸
PFOS        全氟辛烷磺酸
PFBS        全氟丁烷磺酸
THF         四氢呋喃
具体实施方式
一、材料与仪器
1、材料
11种全氟化合物标准品:全氟丁烷磺酸(Perfluorobutanesulfonate,PEBS)、全氟己烷磺酸(Perfluorohexane sulfonate,PFHxS)、全氟庚酸(Perfluoroheptanoic acid,PFHpA)、全氟辛酸(Perfluorooctanoate,PFOA)、全氟辛烷磺酸(Perfluorooctane sulfonate,PFOS)、全氟壬酸(Perfluorononanoic acid,PFNA)、全氟癸酸(Perluorodecanoic acid,PFDA)、全氟十一酸(Perfluoroundecanoic acid,PFUnDA)、全氟癸烷磺酸(Perfluorodecanesulfonate,PFDS)、全氟十二酸(perfluorododecanoic acid,PFDoDA)、全氟十四酸(Perfluorotetradecanoic acid,PFTA),(Sigma Aldrich公司);1,1-二甲基-4,4'-联吡啶鎓盐二氯化物、1,1-(丁烷-1,4-二基)双[4-氮杂-1-氮杂双环[2.2.2]辛烷]二溴盐、1,1-[1,4-苯基双(亚甲基)]双(4,4-联吡啶)二溴盐、1,1-二庚基-4,4-联吡啶鎓二溴化物、1,1-二正辛酯-4,4-双吡啶二甲基溴(Sigma-Aldrich公司);超纯水(美国Millipore纯水机制);甲醇、四氢呋喃(HPLC级)(Fisher公司);正戊醇、正己醇、正辛醇、正癸醇、正十一醇和正十二醇(百灵威科技有限公司);正庚醇和正壬醇(日本TCI公司)。
2、仪器
超临界流体色谱,Waters Xevo TQ-S三重四极杆串联质谱仪,配有电喷雾离子源和Masslynx 4.1质谱数据系统(美国Waters公司);AB204-S型电子天平(瑞士Mettler Toledo公司;CR 21N型高速冷冻离心机(日本Hitachi公司);MS3型涡旋振荡器(德国IKA公司)。
二、检测方法
1、超分子溶剂的制备
量取3mL正庚醇和4mL四氢呋喃于50mL玻璃离心管中,加入33mL超纯水,磁力搅拌3min后,以3000r/min离心10min,用玻璃注射器移取上层有机相于玻璃瓶中,4℃下密封保存。
2、样品处理
称取0.50g试样(精确至0.01g)于离心管中,加入4mL超分子溶剂,涡旋振荡3min后,以3000r/min离心10min,移取上层液体100μL,加入100μL甲醇,涡旋混匀,过0.22μm微孔滤膜后,供超临界流体色谱-质谱测定。
3、超临界流体色谱条件
Torus DIOL色谱柱(2.1mm×100mm,1.7μm);流动相:A(二氧化碳)B(0.1%氨水的甲醇溶液);梯度洗脱:0~8.9min 5%~20%B;8.9~9min 20%B;9.0~9.5min 20%~5%B;9.5~10min 5%B;柱温:40℃;背压:2000psi;流速:0.3mL/min;进样体积:2μL;补偿泵流速:0.2mL/min。
4、质谱条件
超临界流体色谱分离后,将补偿泵中的补偿液替换为双阳离子型离子液体溶液,双阳离子型离子液体为1,1-二正辛酯-4,4-双吡啶二甲基溴,采用溶剂溶解,溶剂为体积比为1:1的甲醇-水的混合溶剂,双阳离子型离子液体的浓度为2.5μM,流速为1.5mL/min;替换补偿液后进行质谱检测,质谱条件如下:
离子源:电喷雾电离源;采集模式:正离子模式;离子源温度:150℃;毛细管电压:2.30kV;去溶剂化温度:350℃;锥孔气体流速:150L/hr;去溶剂化气体流速:800L/hr;碰撞气体流速:0.25L/hr。
综上,在双阳离子型离子液体溶剂为甲醇-水1:1混合溶剂,浓度为2.5μM,流速为1.5mL/min时在全氟丁磺酸、全氟辛磺酸浓度为10ng/mL时,其对比结果如图4。从负离子模式到正离子模式,信噪比和信号强度均有了很大的提高,而且在待测物浓度较低时,负离子模式由于电离不太稳定,峰形很容易形成分叉,正离子模式峰形较好。
5、质谱条件对比试验(采用负离子模式)
离子源:电喷雾电离源;采集模式:正离子模式;离子源温度:150℃;毛细管电压:2.30kV;去溶剂化温度:350℃;锥孔气体流速:150L/hr;去溶剂化气体流速:800L/hr;碰撞气体流速:0.25L/hr。
10种全氟化合物的母离子、子离子、锥孔电压和碰撞电压见表2。
表2 10种全氟酸化合物的母离子、子离子、锥孔电压、和碰撞电压信息
  化合物名称 母离子(m/z) 子离子(m/z) 锥孔电压(V) 碰撞电压(V)
1 PF12A(全氟十二酸) 613.1 569.0 10 10
2 PF11A(全氟十一酸) 563.1 519.0 2 10
3 PF10A(全氟癸酸) 513.0 469.0 22 10
4 PF9A(全氟壬酸) 463.1 419.1 14 10
5 PF8A(全氟辛酸) 413.0 369.0 21 10
6 PF7A(全氟庚酸) 363.1 319.0 10 10
7 PF6A(全氟己酸) 313.0 269.0 10 8
8 PF5A(全氟戊酸) 263.1 219.1 10 8
9 PF8S(全氟辛烷磺酸) 499.0 80.0 26 36
10 PF4S(全氟丁烷磺酸) 299.0 80.0 36 30
10种全氟化合物的多反应监测色谱图见图3。
三、分析和讨论
前处理条件的优化:
1、单因素实验
1.1烷基醇种类及用量的优化
选择正戊醇、正己醇、正庚醇、正辛醇、正壬醇、正癸醇、正十一醇和正十二醇分别与四氢呋喃组合生成超分子溶剂,对纺织品中全氟化合物进行萃取。如图1A所示,正庚醇/四氢呋喃/水超分子溶剂体系对全氟化合物的萃取回收率为91%~106%,且回收率较稳定。因此,选择正庚醇/四氢呋喃/水作为超分子溶剂体系。考察了正庚醇用量分别为1、2、3、4、5和6mL(保持溶剂总体积为40mL)时样品的回收率,结果见图1B。当正庚醇用量≥3mL时,样品的回收率较高且稳定。因此庚醇的用量选择为3mL。
1.2四氢呋喃用量的优化
实验考察了四氢呋喃用量分别为2、4、6、8、10和12mL(保持溶剂总体积为40mL)时样品的回收率,结果见图1C。当四氢呋喃用量为4mL时全氟化合物回收率最高且稳定,随着其的增加,回收率有所下降,最后大多数化合物回收率基本稳定。
1.3涡旋时间的优化
考察了涡旋时间分别为1、3、5、7、9和11min时样品的回收率,结果见图1D。当涡旋时间为3min时,样品的回收率最高且稳定,随涡旋时间的延长,回收率趋于稳定。因此,选择涡旋时间为3min。
1.4超分子溶剂用量的选择
考察了不同体积超分子溶剂(2、3、4、5和6mL)对萃取效率的影响,由图4E可知,当超分子溶剂体积达到4mL时,物质均有较高的回收率,超过4mL时,萃取效率达到稳定状态。因此,选择超分子溶剂最佳用量为4mL。
2、响应面优化全氟酸回收率
根据单因素实验结果,以庚醇用量、四氢呋喃用量、涡旋时间、超分子溶剂加入量为自变量,以全氟化合物回收率为响应值,采用四因素三水平响应面分析法对超分子溶剂萃取参数进行优化。表3为回归分析结果,在本实验中,模型显著性检验P<0.0001差异极显著,表明该模型具有统计学意义;失拟项p=0.2985>0.05,失拟项不显著,说明该模型与实验拟合的程度好。图2为相应的响应曲面图,四因素两两之间均有交互作用,其中,庚醇用量和四氢呋喃用量的交互项AB、庚醇用量和涡旋时间AC的交互项、庚醇用量和超分子溶剂加入量的交互项AD对回收率有非常显著的影响。
表3 回归分析结果
Figure PCTCN2021070260-appb-000001
3、验证实验
通过响应面法得到的最佳条件为庚醇用量4mL、四氢呋喃用量4mL、涡旋时间1min、超分子溶剂加入量3mL。为了验证预测结果的准确性,按照最佳条件进行三次平行实验,实验结果为106.337%、108.599%、107.840%,平均值为107.592%,与模型的理论预测值(108.105%)相对误差为0.474%,该模型可以良好的模拟和预测试验结果。
4、优化双阳离子型离子液体
双阳离子型离子液体相当于色谱柱后加合的衍生化试剂,将双阳离子型离子液体作为补偿液与色谱柱分离出来的全氟化合物在“分流器”处实现柱后加合,正离子模式下检测加合之后的化合物。实验中选择了1,1-二甲基-4,4'-联吡啶鎓盐二氯化物、1,1-(丁烷-1,4-二基)双[4-氮杂-1-氮杂双环[2.2.2]辛烷]二溴盐、1,1-[1,4-苯基双(亚甲基)]双(4,4-联吡啶)二溴盐、1,1-二正辛酯-4,4-双吡啶二甲基溴和1,1-二庚基-4,4-联吡啶鎓二溴化物5种双阳离子型离子液体,结果表明,1,1-二正辛酯-4,4-双吡啶二甲基溴的加和效果最好,因此选择1,1-二正辛酯-4,4-双吡啶二甲基溴作为补偿液,对其溶剂、浓度、流速进行优化。
4.1优化补偿液双阳离子型离子液体的溶剂种类及配比
将甲醇、乙腈作为双阳离子型离子液体的溶剂,但基线太高。改变溶剂为甲醇-水、乙腈-水的混合溶剂,水与有机相的比例分别为1:1、2:3、4:1、3:2、1:4,浓度相同,多反应监测模式响应强度和信噪比综合结果表明,甲醇-水混合溶剂,且比例为1:1时效果最好,基线大幅度降低。
4.2优化双阳离子型离子液体浓度
在改溶剂为甲醇-水1:1混合溶剂后,优化双阳离子型浓度20μM、15μM、10μM、5μM、4μM、3μM、2μM、1μM、0.8μM、0.6μM,综合多反应监测模式信号响应强度和信噪比,浓度为2.5μM时,信号响应强度、信噪比最好。
4.3优化双阳离子型离子液体流速
在溶剂为甲醇-水1:1混合溶剂,双阳离子型离子液体浓度为2.5μM的基础上,考察了双阳离子型离子液体流速为1mL/min、1.5mL/min、2mL/min、2.5mL/min时对峰形、信噪比的影响。当流速为1.5mL/min时峰形较好,信噪比较高。
5、实际样品检测
对市售的尼龙、棉麻、涤纶及丝绸纺织品样品进行检测分析。检测结果显示均未检出全氟化合物。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行 限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (6)

  1. 一种基于超临界流体色谱和离子液体柱后加合反应的测定方法,其特征在于:包括如下步骤:
    (1)采用正庚醇、四氢呋喃和水制备超分子溶剂;
    (2)样品前处理:采用所述超分子溶剂萃取试样,制备待测液;
    (3)采用超临界流体色谱分离、双阳离子型离子液体色谱柱后加合反应结合电喷雾质谱检测的方法对所述待测液中的全氟化合物进行检测。
  2. 根据权利要求1所述的基于超临界流体色谱和离子液体柱后加合反应的测定方法,其特征在于:所述超分子溶剂的制备方法包括如下步骤:量取3mL正庚醇和4mL四氢呋喃于50mL玻璃离心管中,加入33mL超纯水,磁力搅拌3min后,以3000r/min离心10min,用玻璃注射器移取上层有机相于玻璃瓶中,4℃下密封保存
  3. 根据权利要求2所述的基于超临界流体色谱和离子液体柱后加合反应的测定方法,其特征在于:所述样品前处理过程具体包括如下步骤:称取0.50g试样于离心管中,加入4mL所述超分子溶剂,涡旋振荡3min后,以3000r/min离心10min,移取上层液体100μL,加入100μL甲醇,涡旋混匀,过0.22μm微孔滤膜后,供超临界流体色谱-质谱测定。
  4. 根据权利要求3所述的基于超临界流体色谱和离子液体柱后加合反应的测定方法,其特征在于:所述超临界流体色谱-质谱联用的方法中色谱条件如下:
    Torus DIOL色谱柱(2.1mm×100mm,1.7μm);流动相:A(二氧化碳)B(含0.1%氨水的甲醇溶液);梯度洗脱:0~8.9min 5%~20%B;8.9~9min 20%B;9.0~9.5min 20%~5%B;9.5~10min 5%B;柱温:40℃;背压:2000psi;流速:0.3mL/min;进样体积:2μL;补偿泵流速:0.2mL/min。
  5. 根据权利要求4所述的基于超临界流体色谱和离子液体柱后加合反应的测定方法,其特征在于:
    超临界流体色谱分离后,将补偿泵中的补偿液替换为双阳离子型离子液体溶液,双阳离子型离子液体为1,1-二正辛酯-4,4-双吡啶二甲基溴,用溶剂溶解,溶剂为体积比为1:1的甲醇-水的混合溶剂,双阳离子的浓度为2.5μM,流速为1.5mL/min;替换补偿液后进行质谱检测,质谱条件如下:
    离子源:电喷雾电离源;采集模式:正离子模式;离子源温度:150℃;毛细管电压:2.30kV;去溶剂化温度:350℃;锥孔气体流速:150L/hr;去溶剂化气体流速:800L/Hr; 碰撞气体流速:0.25L/hr。
  6. 根据权利要求5所述的基于超临界流体色谱和离子液体柱后加合反应的测定方法,其特征在于:全氟化合物包括全氟十二酸、全氟十一酸、全氟癸酸、全氟壬酸、全氟辛酸、全氟庚酸、全氟己酸、全氟戊酸、全氟辛烷磺酸和全氟丁烷磺酸。
PCT/CN2021/070260 2020-02-10 2021-01-05 基于超临界流体色谱和离子液体柱后加合反应的测定方法 WO2021159889A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/666,721 US20220229027A1 (en) 2020-02-10 2022-02-08 Detection method based on supercritical fluid chromatography and post-column ionic liquid charge complexation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010085113.1A CN111537623B (zh) 2020-02-10 2020-02-10 基于超临界流体色谱和离子液体柱后加合反应的测定方法
CN202010085113.1 2020-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/666,721 Continuation US20220229027A1 (en) 2020-02-10 2022-02-08 Detection method based on supercritical fluid chromatography and post-column ionic liquid charge complexation

Publications (1)

Publication Number Publication Date
WO2021159889A1 true WO2021159889A1 (zh) 2021-08-19

Family

ID=71976661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070260 WO2021159889A1 (zh) 2020-02-10 2021-01-05 基于超临界流体色谱和离子液体柱后加合反应的测定方法

Country Status (3)

Country Link
US (1) US20220229027A1 (zh)
CN (1) CN111537623B (zh)
WO (1) WO2021159889A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114887605A (zh) * 2022-04-24 2022-08-12 中国农业科学院油料作物研究所 一种全氟棉花固相萃取材料及其在有机氟化物的富集与检测中的应用
CN115015407A (zh) * 2022-05-19 2022-09-06 国家烟草质量监督检验中心 一种测定香精中对羟基苯甲酸酯同分异构体的方法
CN117491511A (zh) * 2023-09-26 2024-02-02 梅里埃检测技术(宁波)有限公司 一种食品中氟烷氧基磷腈类化合物的检测方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537623B (zh) * 2020-02-10 2021-08-13 中国检验检疫科学研究院 基于超临界流体色谱和离子液体柱后加合反应的测定方法
CN114295708B (zh) * 2021-12-30 2024-02-27 中国检验检疫科学研究院 基于电膜萃取和离子液体反应的小型便携式质谱检测方法
CN117665136A (zh) * 2022-08-24 2024-03-08 岛津企业管理(中国)有限公司 全氟和多氟烷基化合物浓度的测定方法以及液相色谱串联质谱系统
CN116328738A (zh) * 2023-01-16 2023-06-27 杭州师范大学 改性聚偏氟乙烯材料在同时吸附水体中微塑料和全氟化合物中的应用
CN116183782B (zh) * 2023-04-26 2023-07-28 北京建工环境修复股份有限公司 基于碱辅助电离的8种全氟化合物替代物的定量检测方法
CN116735743B (zh) * 2023-06-07 2024-03-22 重庆大学 同时检测有机固体样品中全氟化合物种类和总量的方法
CN116840388A (zh) * 2023-07-05 2023-10-03 上海交通大学医学院附属新华医院 卵泡液中全氟和多氟烷基物质的检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318609A (zh) * 2018-03-24 2018-07-24 厦门市诚安毅科技有限公司 一种超分子溶剂联合QuEChERS的农药残留检测方法
CN108709947A (zh) * 2018-07-10 2018-10-26 中国检验检疫科学研究院 食品接触材料中邻苯二甲酸酯类增塑剂迁移量的测定方法
CN109507342A (zh) * 2019-01-21 2019-03-22 中国检验检疫科学研究院 一种测定血液样品中硝基咪唑类药物残留的方法
CN111537623A (zh) * 2020-02-10 2020-08-14 中国检验检疫科学研究院 基于超临界流体色谱和离子液体柱后加合反应的测定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241995A (zh) * 2015-11-25 2016-01-13 通标标准技术服务(上海)有限公司 一种测定纺织品、镀层、涂层、液体、粉末样品中全氟化合物的方法
CN106226443B (zh) * 2016-09-21 2019-02-05 昆明理工大学 超分子溶剂萃取结合磁性固相萃取检测双酚a类物质的方法
US11506581B2 (en) * 2018-03-20 2022-11-22 Agilent Technologies, Inc. Mass spectrometry compatible salt formation for ionic liquid sample preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318609A (zh) * 2018-03-24 2018-07-24 厦门市诚安毅科技有限公司 一种超分子溶剂联合QuEChERS的农药残留检测方法
CN108709947A (zh) * 2018-07-10 2018-10-26 中国检验检疫科学研究院 食品接触材料中邻苯二甲酸酯类增塑剂迁移量的测定方法
CN109507342A (zh) * 2019-01-21 2019-03-22 中国检验检疫科学研究院 一种测定血液样品中硝基咪唑类药物残留的方法
CN111537623A (zh) * 2020-02-10 2020-08-14 中国检验检疫科学研究院 基于超临界流体色谱和离子液体柱后加合反应的测定方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DENG HONGLING; WANG HAIBO; LIANG MINHUA; SU XINGUO: "A novel approach based on supramolecular solvent microextraction and UPLC-Q-Orbitrap HRMS for simultaneous analysis of perfluorinated compounds and fluorine-containing pesticides in drinking and environmental water", MICROCHEMICAL JOURNAL, NEW YORK, NY, US, vol. 151, 10 September 2019 (2019-09-10), US, XP085873986, ISSN: 0026-265X, DOI: 10.1016/j.microc.2019.104250 *
LEO W.Y. YEUNG: "Simultaneous analysis of perfluoroalkyl and polyfluoroalkyl substances including ultrashort-chain C2 and C3 compounds in rain and river water samples by ultra performance convergence chromatography", JOURNAL OF CHROMATOGRAPHY A, vol. 1522, XP055835035 *
LI GUOPING, LV YUEGUANG, CHEN MENG, YE XIWEN, NIU ZENGYUAN, BAI HUA, LEI HAIMIN, MA QIANG: "Post-Chromatographic Dicationic Ionic Liquid-Based Charge Complexation for Highly Sensitive Analysis of Anionic Compounds by Ultra-High-Performance Supercritical Fluid Chromatography Coupled with Electrospray Ionization Mass Spectrometry", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 93, no. 3, 26 January 2021 (2021-01-26), US, pages 1771 - 1778, XP055835031, ISSN: 0003-2700, DOI: 10.1021/acs.analchem.0c04612 *
LV YUEGUANG, BAI HUA, YANG JINGKUI, HE YUJIAN, MA QIANG: "Direct Mass Spectrometry Analysis Using In-Capillary Dicationic Ionic Liquid-Based in Situ Dispersive Liquid–Liquid Microextraction and Sonic-Spray Ionization", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 91, no. 10, 19 April 2019 (2019-04-19), US, pages 6661 - 6668, XP055835039, ISSN: 0003-2700, DOI: 10.1021/acs.analchem.9b00597 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114887605A (zh) * 2022-04-24 2022-08-12 中国农业科学院油料作物研究所 一种全氟棉花固相萃取材料及其在有机氟化物的富集与检测中的应用
CN114887605B (zh) * 2022-04-24 2023-10-03 中国农业科学院油料作物研究所 一种全氟棉花固相萃取材料及其在有机氟化物的富集与检测中的应用
CN115015407A (zh) * 2022-05-19 2022-09-06 国家烟草质量监督检验中心 一种测定香精中对羟基苯甲酸酯同分异构体的方法
CN115015407B (zh) * 2022-05-19 2024-01-19 国家烟草质量监督检验中心 一种测定香精中对羟基苯甲酸酯同分异构体的方法
CN117491511A (zh) * 2023-09-26 2024-02-02 梅里埃检测技术(宁波)有限公司 一种食品中氟烷氧基磷腈类化合物的检测方法
CN117491511B (zh) * 2023-09-26 2024-04-16 梅里埃检测技术(宁波)有限公司 一种食品中氟烷氧基磷腈类化合物的检测方法

Also Published As

Publication number Publication date
US20220229027A1 (en) 2022-07-21
CN111537623A (zh) 2020-08-14
CN111537623B (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2021159889A1 (zh) 基于超临界流体色谱和离子液体柱后加合反应的测定方法
Kawaguchi et al. Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography–mass spectrometry for trace analysis of bisphenol A in water sample
US11714070B2 (en) Permeative amine or acid introduction for very weak acid detection in ion chromatography
de Campos Costa et al. Determination of Fe (III) and total Fe in wines by sequential injection analysis and flame atomic absorption spectrometry
Altun et al. Study of the factors affecting the performance of microextraction by packed sorbent (MEPS) using liquid scintillation counter and liquid chromatography-tandem mass spectrometry
CN106018648B (zh) 一种检测霉变烟叶中12种霉菌毒素浓度的方法
CN103293243B (zh) 食品中羧甲基赖氨酸成分的检测方法及应用
CN104991017B (zh) 一种水基胶中异噻唑啉酮杀菌剂测定的液相色谱‑串联质谱法
Sasajima et al. Simultaneous determination of antidepressants by non-aqueous capillary electrophoresis-time of flight mass spectrometry
CN111289637B (zh) 一种检测苹果汁中展青霉素的方法
Sakai et al. New phase separator for extraction-spectrophotometric determination of anionic surfactants with Malachite Green by flow injection analysis
CN104330510A (zh) 一种快速检测纸巾纸中烷基酚及其醚类的方法
CN110954639A (zh) 一种苯乙烯基苯酚聚氧乙烯醚类表面活性剂的分析方法
Li et al. Rapid separation and sensitive determination of banned aromatic amines with plastic microchip electrophoresis
CN111896644B (zh) 一种聚对苯二甲酸乙二酯/聚乙烯复合食品接触材料中抗氧化剂特定迁移量的测定方法
Wei et al. A novel method for quantitative determination of tea polysaccharide by resonance light scattering
CN107688062A (zh) 一种测定电子烟烟液中痕量烟碱的方法
CN109839451A (zh) 一种血中全氟类化合物、酚类化合物和雌激素的同时快速分析方法
CN109884233A (zh) 一种测定油井采出液中烷基醇聚氧乙烯醚硫酸盐含量的液相色谱分析检测方法
CN102998305A (zh) 一种利用显色反应检测原料乳中三聚氰胺的方法
CN113720946A (zh) 检测血液中多种类固醇激素的方法及试剂盒
CN115047089B (zh) 2-乙烯基吡啶中对叔丁基邻苯二酚的检测方法
CN110196300A (zh) 一种测定烟草中氨基酸及Amadori化合物的HILIC色谱分析方法
CN103175930B (zh) 一种测定亚硫酸钠含量的高效液相色谱分析方法
CN110988199B (zh) 一种碳酸饮料中丙烯酸-2-乙基己酯的测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753934

Country of ref document: EP

Kind code of ref document: A1