WO2021159332A1 - 图像采集触发方法、装置、计算机设备、可读存储介质和监控设备 - Google Patents

图像采集触发方法、装置、计算机设备、可读存储介质和监控设备 Download PDF

Info

Publication number
WO2021159332A1
WO2021159332A1 PCT/CN2020/074928 CN2020074928W WO2021159332A1 WO 2021159332 A1 WO2021159332 A1 WO 2021159332A1 CN 2020074928 W CN2020074928 W CN 2020074928W WO 2021159332 A1 WO2021159332 A1 WO 2021159332A1
Authority
WO
WIPO (PCT)
Prior art keywords
trigger
image acquisition
time
image
reference time
Prior art date
Application number
PCT/CN2020/074928
Other languages
English (en)
French (fr)
Inventor
杨超
刘念邱
Original Assignee
深圳元戎启行科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳元戎启行科技有限公司 filed Critical 深圳元戎启行科技有限公司
Priority to CN202080003154.XA priority Critical patent/CN113519151B/zh
Priority to PCT/CN2020/074928 priority patent/WO2021159332A1/zh
Publication of WO2021159332A1 publication Critical patent/WO2021159332A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • This application relates to the field of computer technology, in particular to image acquisition triggering methods, devices, computer equipment, readable storage media, and monitoring equipment.
  • An image capture device refers to a device that can capture images or videos.
  • Image acquisition devices include but are not limited to cameras, cameras, video cameras, scanners, and devices with camera functions.
  • Image acquisition devices are widely used in various fields. Take the application of an image acquisition device to automatic driving as an example. In an automatic driving system, multiple image acquisition devices are installed at various positions of the vehicle. Trigger control of these image acquisition devices is required to enable the image acquisition device to generate one or one frame of images.
  • the inventor found that the trigger control method for image acquisition in the related technology cannot meet the usage requirements.
  • embodiments of the present application provide an image acquisition trigger method, device, computer equipment, readable storage medium, and monitoring equipment.
  • an embodiment of the present application provides an image acquisition trigger method, which is applied to a monitoring device, the monitoring device includes a plurality of image acquisition devices, and the method includes:
  • each of the image acquisition devices to periodically trigger image acquisition from the trigger start time according to the corresponding trigger cycle, wherein the trigger start time refers to the trigger reference time starting from the trigger reference time, delaying the The moment when the offset duration is triggered.
  • an embodiment of the present application provides a method for triggering image acquisition, and the method further includes:
  • the time delaying the trigger offset duration is determined as the trigger start time
  • the image sensor is periodically triggered to perform image collection.
  • An image acquisition trigger device comprising:
  • a period setting module which is used to set the trigger period of each image acquisition device
  • the reference time determination module is used to determine the trigger reference time
  • the offset duration determination module is used to set the trigger offset duration of each of the image acquisition devices
  • the control module is used to control each of the image acquisition devices to periodically trigger image acquisition from the trigger start time according to the corresponding trigger period, wherein the trigger start time refers to the trigger reference time , Delay the time of the trigger offset duration.
  • An image acquisition trigger device comprising:
  • the information acquisition module is used to receive the trigger period, the trigger reference time and the trigger offset duration sent by the trigger control device;
  • a start time determination module configured to determine the trigger start time starting from the trigger reference time and the time delaying the trigger offset duration
  • the trigger module is configured to periodically trigger the image sensor to perform image collection according to the trigger period from the trigger start moment.
  • a computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the steps of the above-mentioned image acquisition triggering method are realized.
  • a computer device includes a memory and a processor.
  • the memory stores computer-readable instructions.
  • the processor executes the above-mentioned image acquisition triggering method.
  • a monitoring device includes an image acquisition device and a trigger control device, the image acquisition device includes an image sensor and a main control component, wherein the trigger control device is used to execute the steps of the method described in the first aspect, the main control component For performing the steps of the method described in the second aspect.
  • the above-mentioned image acquisition trigger method, device, computer equipment, readable storage medium and monitoring equipment determine the trigger reference time by setting the trigger period of each image acquisition device, and set the trigger offset duration of each image acquisition device. Control each image acquisition device to periodically trigger image acquisition from the trigger start time according to the corresponding trigger cycle.
  • the methods, devices, computer equipment, readable storage media, and monitoring equipment provided by the embodiments of the present application can realize the triggering of multiple image acquisition devices at different times, and can realize periodic triggering, which can satisfy more application scenarios, such as Cooperate with other sensing devices to realize monitoring functions, etc., which improves the practicability of image acquisition.
  • FIG. 1 is a schematic diagram of an application scenario of an image acquisition trigger method provided by an embodiment of the application
  • FIG. 2 is a schematic flowchart of an image acquisition trigger method provided by an embodiment of the application
  • FIG. 3 is a schematic flowchart of a method for triggering image acquisition according to an embodiment of the application
  • FIG. 4 is a schematic flowchart of an image acquisition trigger method provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a method for triggering image acquisition according to an embodiment of the application
  • FIG. 6 is a schematic flowchart of an image acquisition trigger method provided by an embodiment of the application.
  • FIG. 7 is a schematic flowchart of a method for triggering image acquisition according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of the framework of an image acquisition trigger device provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the framework of an image acquisition trigger device provided by an embodiment of the application.
  • FIG. 10 is a block diagram of the structure of a computer device provided by an embodiment of the present application.
  • the image acquisition triggering method can be applied to the monitoring device shown in FIG. 1, where the monitoring device includes a plurality of image acquisition devices 102 and a trigger control device 104.
  • the multiple image acquisition devices 102 are connected to the trigger control device through network communication.
  • the image acquisition device can be, but is not limited to, a camera, a camera, a video camera, a scanner, and a device with a camera function, etc.
  • the image acquisition device 102 includes an image sensor (Sensor) 1021 and a main control component 1022.
  • the main control component 1022 is in communication connection with the image sensor 1021.
  • the main control component 1022 includes a processing chip, and the processing chip can execute a computer program.
  • the trigger control device 104 is connected to the main control component 1022 through network communication.
  • the trigger control device 104 may be, but is not limited to, various personal computers, notebook computers, smart phones, tablet computers, and portable wearable devices.
  • the above-mentioned monitoring device and image acquisition triggering method may be applied to an automatic driving system.
  • Multiple image acquisition devices 102 may be set on the unmanned vehicle to collect image information during the driving of the vehicle.
  • the trigger control device 104 may be installed on an unmanned vehicle, or may be installed in a remote terminal capable of remotely controlling the unmanned vehicle.
  • the monitoring equipment may further include a radar device, and the radar device is installed on the unmanned vehicle. Radar devices are used to measure the distance between unmanned vehicles and surrounding objects. In some applications, the radar device needs to cooperate with the image acquisition device to achieve a more practical monitoring function.
  • the related art lacks trigger control for image acquisition of such an image acquisition device, which cannot meet the usage requirements.
  • an embodiment of the present application provides a method for triggering image acquisition.
  • the method is applied to the monitoring device shown in FIG. 1, and the trigger control device is used as the execution subject as an example for description.
  • the method includes:
  • the trigger period refers to the time interval between two consecutive triggers when the image acquisition device is periodically triggered.
  • the trigger control device sets the trigger period of each image acquisition device and sends it to the main control component of the corresponding image acquisition device.
  • the trigger control device can set the trigger period of each image acquisition device according to the frequency, scanning azimuth step length, and scanning period of the radar device.
  • the trigger period of each image acquisition device can also be set according to other requirements.
  • the fifth period of the trigger week may be 200ms, and the image capture device triggers image capture every 200ms.
  • the trigger period of different image acquisition devices can be the same or different.
  • the trigger reference time refers to the time reference point at which all image acquisition devices trigger image acquisition. All image acquisition devices use the same trigger reference time.
  • the trigger reference time can be one, for example: set the trigger reference time to 15:30:15.
  • the trigger reference time can also be multiple, for example, the first trigger reference time is 15:30:15, the second trigger reference time is 15:30:28, and the third trigger reference time is 15:30 Wait 50 seconds.
  • the time difference between two adjacent trigger reference moments is equal.
  • the trigger reference time is a periodic time.
  • the first trigger reference time is 15:30:15
  • the second trigger reference time is 15:30:30
  • the third trigger reference time is 15:30:45, and so on.
  • the trigger offset duration is used to characterize the offset of the time when the image acquisition device starts to trigger the acquisition from the trigger reference time.
  • the trigger control device can determine the trigger offset duration according to the setting angle of each image acquisition device, the time when the image acquisition is required to start, and so on.
  • S140 Control each image acquisition device to periodically trigger image acquisition from the trigger start time and according to the corresponding trigger cycle, where the trigger start time refers to the time when the trigger offset time is delayed from the trigger reference time.
  • the trigger start time is used to characterize the time start point at which the image acquisition device starts to trigger.
  • the time when the trigger reference time starts and the delay trigger offset duration is determined as the trigger start time of the corresponding image acquisition device.
  • the image acquisition device may be triggered periodically, and the trigger start time represents the first trigger time from the trigger reference time.
  • Trigger start time trigger reference time + trigger offset duration. For example, if the trigger reference time is 15:30:15 and the trigger offset duration is 10ms, then the trigger start time is 15:30:15 seconds and 10 milliseconds. Different image acquisition devices have different trigger offset durations, so the trigger start time is different.
  • the trigger control device sends a trigger instruction to all image acquisition devices, and each image acquisition device starts from the trigger moment and periodically triggers image acquisition according to its trigger cycle.
  • the trigger reference time of all image capture devices is 15:30:15
  • the trigger offset time of the first image capture device is 10ms
  • the trigger offset time of the second image capture device is 20ms
  • the third The trigger offset duration of the image acquisition device is 30ms
  • the trigger cycles of the three image acquisition devices are all 200ms
  • the trigger control device sends the corresponding trigger cycle, trigger reference time, and respective trigger offset duration to each image acquisition device.
  • each image acquisition device starts from the trigger reference time and delays the trigger offset time, that is, when it reaches its trigger time, it starts to periodically trigger image acquisition according to its trigger cycle.
  • the first image acquisition device triggers images at 15:30:15, 10ms, 15:30:15, 210ms, 15:30:15, 410ms, 15:30:15, 610ms, 15:30:15, 810ms, etc. Acquisition; the second image acquisition device at 15:30:15, 20ms, 15:30:15, 220ms, 15:30:15, 420ms, 15:30:15, 620ms, 15:30:15, 820ms, etc.
  • the third image acquisition device is at 15:30:15, 30ms, 15:30:15, 230ms, 15:30:15, 430ms, 15:30:15, 630ms, 15:30:15, 830ms Wait for the moment to trigger the image acquisition.
  • different image acquisition devices start image acquisition at different times to achieve sequential triggering of different image acquisition devices, and can cooperate with other equipment to output a frame of image at different image data requirements.
  • the image sensors of the multiple image acquisition devices can be set with different acquisition orientations for acquiring images of the vehicle from different angles.
  • the radar device scans objects within its scanning range according to a preset scanning azimuth step. When the radar device scans to a certain position, the image sensor corresponding to this position triggers an acquisition; when the radar device scans to the next position, the image sensor corresponding to the next position triggers the acquisition, and so on. In this way, when the radar completes a scan within its scanning range, multiple image sensors collect image data in multiple directions, and the image data in multiple directions can be used or images within the scanning range.
  • each image acquisition device is the same as that of the radar device, when the radar device performs the second period of scanning and scans to a certain position, the image sensor of this position also just triggers the second image acquisition, and so on, you can The radar scans to different directions, and the image acquisition device in this position also triggers image acquisition.
  • the trigger period of each image acquisition device is set, the trigger reference time is determined, and the trigger offset duration of each image acquisition device is set. Control each image acquisition device to periodically trigger image acquisition from the trigger start time according to the corresponding trigger cycle.
  • the method provided in this embodiment can realize the triggering of multiple image acquisition devices at different times, and can realize periodic triggering, which can meet more application scenarios, such as cooperating with other sensing devices to realize monitoring functions, etc. The practicality of image acquisition is improved.
  • this embodiment relates to a possible implementation manner for improving the trigger synchronization of multiple image acquisition devices.
  • the method further includes:
  • the trigger control device can synchronize the time of each image acquisition device.
  • at least one of the PTP protocol (Precision Time Protocol, high-precision time synchronization protocol), NTP protocol (Network Time Protocol, network time protocol), and GPRMC protocol may be used Time synchronization of multiple image acquisition devices.
  • the absolute time of each image acquisition device can be made consistent, so that the trigger reference time can be consistent, so that the control of the trigger time of each image acquisition device is more accurate.
  • the trigger control device, the image acquisition device, and the radar device may simultaneously use the same protocol for time synchronization, so that the absolute time of these is unified, and the accuracy of the trigger control is further improved.
  • the trigger time will be biased. For example, theoretically it should be 0ms, 100ms, 200ms... to trigger image acquisition, but as time goes by, the trigger time will gradually change , The cumulative error occurs, making the actual trigger time 5ms, 105ms, 205ms...
  • this embodiment relates to a possible implementation manner that eliminates the above-mentioned error and further improves the accuracy of the trigger time.
  • the method further includes:
  • the trigger reference time is equidistant time points, and step S140 is periodically executed at each trigger reference time.
  • the time delaying the trigger offset time is determined as the trigger start time of the image acquisition device, and the image acquisition device starts from the trigger start time according to the corresponding trigger cycle , Trigger image acquisition periodically.
  • the trigger reference time may be the same as the scan reference time of the radar device.
  • the radar device starts a new round of scanning at the reference moment, and at the same time, all the image acquisition devices start a new round of triggering.
  • the trigger reference time may be set to a whole second time, that is, S120 includes setting multiple whole second moments at equal intervals as the trigger reference time. For example, set 15:30:15, 15:30:18, 15:30:21...as the trigger reference time.
  • the time interval between the trigger reference moments is 1 second. That is to set each whole second as the trigger reference time, such as 15:30:15, 15:30:16, 15:17:21...Set the trigger reference time as a whole second, which is easy to grasp and calculate, and more convenient Precise control of triggering by the image acquisition device.
  • the trigger start time is recalculated at multiple trigger reference moments, and each image acquisition device is controlled to start from the new trigger start time and periodically trigger image acquisition according to the corresponding trigger period. This can eliminate the accumulation deviation of the image acquisition device's acquisition, and further improve the accuracy of the trigger control of the image acquisition device.
  • S130 includes:
  • S133 Determine the time difference between the time when the radar device scans to the acquisition orientation of each image acquisition device and the scanning reference time within the scanning period, and obtain the trigger offset duration of each image acquisition device.
  • Each image acquisition device corresponds to an acquisition orientation.
  • the time offset from the scanning reference moment is the trigger offset of the image acquisition device.
  • the image acquisition device 1 is used to collect the image information of the position 1, and the radar device starts scanning in one second and scans to the acquisition position 1 after 10 ms. Then, the trigger offset time of the image acquisition device 1 is 10 ms.
  • each trigger moment of each image acquisition device is consistent with the time when the scanning device scans the acquisition orientation of the image acquisition device, so as to realize the cooperation of the two and improve the accuracy of monitoring.
  • the method further includes:
  • the image data output by the image acquisition device is received, where the image data is the data output by the image acquisition device according to the frame synchronization signal when the image acquisition is triggered.
  • the main control component of the image acquisition device After receiving the trigger instruction of the trigger control device, the main control component of the image acquisition device periodically triggers the image sensor to expose the image from the trigger start time. After that, the image sensor outputs the collected images to the main control component, and the main control component transmits to the image data processor or other devices. Generally, the image sensor outputs image data at a preset frame rate. For example, if the frame rate of the image sensor is 30 frames/s, it outputs images at 0ms, 33ms, 66ms, 99ms...
  • the IO interface of the main control component can be connected to the frame synchronization interface of the image sensor, so that when the main control component triggers image acquisition, it sends a frame synchronization signal to the image sensor, and the image sensor receives the frame synchronization signal.
  • the trigger time is: 10ms, 210ms...
  • the corresponding image sensor outputs images at 10mm, 43ms, 76ms, 109ms...
  • the method provided in this embodiment changes the frame output timing of the image acquisition device, so that the image acquisition device immediately generates an image at the moment of triggering, so that the triggering and output of the image acquisition device are synchronized, so that the output of image data is more real-time and also Make the time control of image acquisition more accurate.
  • an embodiment of the present application provides an image acquisition triggering method.
  • the method is applied to any image acquisition device among multiple image acquisition devices, and specifically it is applied to the main control component as an example. Be explained.
  • the method includes:
  • S210 Receive the trigger period, trigger reference time, and trigger offset duration sent by the trigger control device;
  • S230 Starting from the trigger start time, according to the trigger period, periodically trigger the image sensor to perform image collection.
  • the main control component of the image acquisition device receives the trigger period, the trigger reference time and the trigger offset duration sent by the trigger control device.
  • the meaning and determination method of the trigger period, the trigger reference time and the trigger offset duration, etc. can be referred to the above-mentioned embodiments, and will not be repeated here.
  • the trigger reference time can be a time information sent by the trigger control device to the main control component, or it can be a trigger reference time determination rule or instruction sent by the trigger control device to the main control component, for example, the trigger reference time Triggers all seconds.
  • the timer counts to the trigger start time, then the first image acquisition is triggered, and when it counts to a trigger cycle after the trigger start time, the second time is triggered Image acquisition...and so on, to achieve periodic triggering.
  • the trigger reference time and the trigger offset duration are determined, starting from the trigger reference time, and the time delaying the trigger offset duration is determined as the corresponding trigger starting time.
  • the image sensor is periodically triggered for image acquisition according to the trigger cycle.
  • the method provided in this embodiment can realize that the image sensor realizes periodic triggering from the trigger start time according to the trigger offset. This can realize the fixed time triggering of the image acquisition device, and can realize the periodic triggering, so it can meet more requirements. Multiple application scenarios, such as cooperating with other sensing devices to realize monitoring functions, etc., improve the practicability of image collection.
  • the method further includes:
  • S240 Receive a time synchronization instruction sent by the trigger control device
  • the trigger control device sends a time synchronization instruction to the main control component of each image acquisition device, and the main control component receives the time synchronization instruction and performs time synchronization.
  • the time synchronization instruction is an instruction formed by using at least one of the PTP protocol, the NTP protocol, and the GPRMC protocol.
  • the time synchronization manner includes but is not limited to: using at least one of the PTP protocol, the NTP protocol, and the GPRMC protocol for time synchronization.
  • the method further includes:
  • the trigger reference time is a whole second time.
  • the time difference between adjacent trigger reference moments is 1 second.
  • the method further includes:
  • the IO interface of the main control component is connected with the frame synchronization interface of the image sensor.
  • Each time the main control component triggers the image sensor it sends a frame synchronization signal to the image sensor.
  • the image sensor receives the frame synchronization signal, it immediately ends the exposure and outputs the image data.
  • the trigger time is: 10ms, 210ms..., and the corresponding image sensor outputs images at 10mm, 43ms, 76ms, 109ms...
  • the method provided in this embodiment changes the frame output timing of the image sensor, so that the image sensor immediately generates an image at the moment of triggering, so that the triggering and output of the image sensor are synchronized, so that the output of image data is more real-time, and also the image acquisition The time control is more precise.
  • this embodiment takes the image acquisition trigger method applied to a monitoring device as an example to illustrate the entire process of the method, and the method includes:
  • S301 Trigger the control device to acquire the acquisition orientation of each image acquisition device
  • S302 Trigger the control device to acquire the scanning reference time of the radar device in a scanning period
  • the trigger control device determines the time difference between the time when the radar device scans to the acquisition orientation of each image acquisition device and the scan reference time within the scanning period, and obtains the trigger offset duration of each image acquisition device;
  • S311 Trigger the control device to send a time synchronization instruction to the main control component of each image acquisition device
  • Each main control component receives a time synchronization instruction sent by the trigger control device;
  • each main control component performs time synchronization according to the time synchronization instruction
  • the trigger control device sets the trigger period of each image acquisition device
  • the trigger control device determines a trigger reference time
  • the trigger control device sets the trigger offset duration of each image acquisition device
  • Each main control component receives the trigger period, the trigger reference time, and the trigger offset duration sent by the trigger control device;
  • each main control component will start from the trigger reference time, and the time when the trigger offset time is delayed is determined as the trigger start time of the corresponding image acquisition device;
  • each main control component Starting from the trigger start time, each main control component periodically triggers the image sensor to perform image collection according to the corresponding trigger cycle;
  • Each main control component sends a frame synchronization signal to the image sensor when triggering the image sensor to collect an image, so that the image sensor outputs image data according to the frame synchronization signal;
  • the trigger control device receives the image data output by the image acquisition device, where the image data is data output by the image acquisition device according to the frame synchronization signal when the image acquisition is triggered.
  • an embodiment of the present application provides an image acquisition trigger device 10, which is applied to a monitoring device.
  • the monitoring device includes a plurality of image acquisition devices.
  • the device includes a period setting module 110 and a reference time determination module 120. , The offset duration determination module 130 and the control module 140. in,
  • the period setting module 110 is used to set the trigger period of each image acquisition device
  • the reference moment determination module 120 is used to determine the trigger reference moment
  • the offset duration determination module 130 is configured to set the trigger offset duration of each of the image acquisition devices
  • the control module 140 is configured to control each of the image acquisition devices to periodically trigger image acquisition from the trigger start time according to the corresponding trigger cycle, where the trigger start time refers to the trigger reference time Initially, the time of the trigger offset duration is delayed.
  • the image acquisition triggering device 10 further includes a time synchronization module 150 for performing time synchronization of the multiple image acquisition devices.
  • the time synchronization module 150 is specifically configured to use at least one of the PTP protocol, the NTP protocol, and the GPRMC protocol to synchronize the time of the multiple image acquisition devices.
  • each of the image acquisition devices is controlled to periodically trigger image acquisition from the trigger start time according to the corresponding trigger period.
  • the reference moment determination module 120 is specifically configured to set multiple full-second moments with equal time intervals as the trigger reference moment.
  • the time interval is 1 second.
  • the monitoring equipment further includes a radar device
  • the offset duration determination module 130 specifically obtains the acquisition orientation of each image acquisition device; obtains the scanning reference time of the radar device in a scanning period; and determines The time difference between the time when the radar device scans to the acquisition orientation of each image acquisition device and the scanning reference time within the scanning period, to obtain the trigger offset duration of each image acquisition device .
  • the scan reference time is the same as the trigger reference time.
  • the image acquisition triggering device 10 further includes an image receiving module 160 for receiving image data output by the image acquisition device, wherein the image data is based on the frame when the image acquisition device triggers the image acquisition. Synchronize the output data of the signal.
  • an embodiment of the present application further provides an image acquisition trigger device 20, the device includes: an information acquisition module 210, a starting time determination module 220, and a trigger module 230. in,
  • the information acquisition module 210 is configured to receive the trigger period, the trigger reference time, and the trigger offset duration sent by the trigger control device;
  • the start time determining module 220 is configured to determine the trigger start time from the trigger reference time and the time delaying the trigger offset duration;
  • the trigger module 230 is configured to periodically trigger the image sensor to perform image collection according to the trigger period from the trigger start time.
  • the image acquisition trigger device 20 further includes a synchronization module 240, which is configured to receive a time synchronization instruction sent by the trigger control device; and perform time synchronization according to the time synchronization instruction.
  • a synchronization module 240 which is configured to receive a time synchronization instruction sent by the trigger control device; and perform time synchronization according to the time synchronization instruction.
  • the time synchronization instruction is an instruction formed by using at least one of the PTP protocol, the NTP protocol, and the GPRMC protocol.
  • the time difference between two adjacent trigger reference moments is equal, and the trigger module 230 is further configured to return to execution when the next trigger reference moment is reached.
  • the time delaying the trigger offset duration is determined as the trigger start time of the corresponding image acquisition device.
  • the trigger reference time is a whole second time.
  • the image capture trigger device 20 further includes a frame synchronization module 250, which is used to send a frame synchronization signal to the image sensor when the image sensor is triggered to capture an image, so that the The image sensor outputs image data according to the frame synchronization signal.
  • a frame synchronization module 250 which is used to send a frame synchronization signal to the image sensor when the image sensor is triggered to capture an image, so that the The image sensor outputs image data according to the frame synchronization signal.
  • the division of the modules in the image acquisition trigger device 10 and the image acquisition trigger device 20 described above is only for illustration. In other embodiments, the image acquisition trigger device 10 and the image acquisition trigger device 20 may be divided into different modules as required. Module to complete all or part of the functions of the image acquisition trigger device 10 and the image acquisition trigger device 20 described above.
  • the various modules in the above-mentioned image acquisition trigger device 10 and the image acquisition trigger device 20 may be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • the computer equipment includes a processor, a memory, and a display screen connected through a system bus.
  • the processor is used to provide calculation and control capabilities to support the operation of the entire computer equipment.
  • the memory is used to store data, programs, and/or instruction codes, etc., and at least one computer program is stored on the memory, and the computer program can be executed by the processor to implement the image acquisition trigger method suitable for computer equipment provided in the embodiments of the present application .
  • the memory may include non-volatile storage media such as magnetic disks, optical disks, read-only memory (Read-Only Memory, ROM), or random-access-memory (Random-Access-Memory, RAM).
  • the memory includes a non-volatile storage medium and internal memory.
  • the non-volatile storage medium stores an operating system, a database, and a computer program.
  • the database stores data related to implementing an image acquisition trigger method provided in the above embodiments, for example, information such as the name of each process or application can be stored.
  • the computer program may be executed by the processor to implement an image acquisition trigger method provided by each embodiment of the present application.
  • the internal memory provides a cached operating environment for the operating system, database and computer program in the non-volatile storage medium.
  • the display screen can be a touch screen, such as a capacitive screen or an electronic screen, which is used to display the interface information of the application corresponding to the foreground process. It can also be used to detect touch operations on the display screen and generate corresponding instructions, such as performing front-end and back-end operations. Application switching instructions, etc.
  • the structure shown in FIG. 10 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • the computer device also includes a network interface connected through a system bus.
  • the network interface may be an Ethernet card or a wireless network card, etc., for communicating with external computer equipment, for example, for communicating with a server.
  • each of the image acquisition devices to periodically trigger image acquisition from the trigger start time according to the corresponding trigger cycle, wherein the trigger start time refers to the trigger reference time starting from the trigger reference time, delaying the The moment when the offset duration is triggered.
  • the processor executes the computer program, the following steps are further implemented: time synchronization of the multiple image acquisition devices.
  • the processor further implements the following steps when executing the computer program: using at least one of the PTP protocol, the NTP protocol, and the GPRMC protocol to synchronize the time of the multiple image acquisition devices.
  • the processor further implements the following steps when the computer program is executed: when the next trigger reference moment is reached At time, repeating the step of controlling each of the image acquisition devices to periodically trigger image acquisition from the trigger start time according to the corresponding trigger period.
  • the processor further implements the following step when executing the computer program: setting multiple full-second moments with equal time intervals as the trigger reference moment.
  • the time interval is 1 second.
  • the processor further implements the following steps when executing the computer program: acquiring the acquisition orientation of each of the image acquisition devices; acquiring the scanning reference time of the radar device in a scanning period; determining that the radar device is at In the scanning period, the time difference between the time when scanning to the acquisition orientation of each image acquisition device and the scanning reference time is used to obtain the trigger offset duration of each image acquisition device.
  • the scan reference time is the same as the trigger reference time.
  • the processor further implements the following steps when executing the computer program: receiving image data output by the image acquisition device, wherein the image data is output by the image acquisition device according to the frame synchronization signal when the image acquisition is triggered. The data.
  • the processor included in the computer device further implements the following steps when executing the computer program stored on the memory:
  • the time delaying the trigger offset duration is determined as the trigger start time
  • the image sensor is periodically triggered to perform image collection.
  • the processor further implements the following steps when executing the computer program: receiving a time synchronization instruction sent by the trigger control device; and performing time synchronization according to the time synchronization instruction.
  • the time synchronization instruction is an instruction formed by using at least one of the PTP protocol, the NTP protocol, and the GPRMC protocol.
  • the processor further implements the following steps when the computer program is executed: when the next trigger reference moment is reached At the time, returning to the step of executing the step from the trigger reference time, the time delaying the trigger offset time period is determined as the trigger start time of the corresponding image acquisition device.
  • the trigger reference time is a whole second time.
  • the processor when the processor executes the computer program, the processor further implements the following steps: when the image sensor is triggered to acquire an image, a frame synchronization signal is sent to the image sensor, so that the image sensor outputs according to the frame synchronization signal. Image data.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • One or more non-volatile computer-readable storage media containing computer-executable instructions when the computer-executable instructions are executed by one or more processors, cause the processors to perform the following steps of the image acquisition triggering method:
  • each of the image acquisition devices to periodically trigger image acquisition from the trigger start time according to the corresponding trigger cycle, wherein the trigger start time refers to the trigger reference time starting from the trigger reference time, delaying the The moment when the offset duration is triggered.
  • the following steps are further implemented: time synchronization of the multiple image acquisition devices.
  • the following steps are further implemented: using at least one of the PTP protocol, the NTP protocol, and the GPRMC protocol to synchronize the time of the plurality of image acquisition devices.
  • the time difference between two adjacent trigger reference moments is equal.
  • the computer program is executed by the processor, the following steps are also implemented: when the next trigger is reached At the reference time, repeat the step of controlling each of the image acquisition devices to periodically trigger image acquisition from the trigger start time according to the corresponding trigger period.
  • the following step is further implemented: setting multiple full-second moments with equal time intervals as the trigger reference moment.
  • the time interval is 1 second.
  • the following steps are further implemented: acquiring the acquisition orientation of each of the image acquisition devices; acquiring the scanning reference time of the radar device in a scanning period; determining the radar device In the scanning period, the time difference between the time when scanning to the acquisition orientation of each image acquisition device and the scanning reference time is used to obtain the trigger offset duration of each image acquisition device.
  • the scan reference time is the same as the trigger reference time.
  • the following steps are further implemented: receiving image data output by the image acquisition device, wherein the image data is the image acquisition device according to the frame synchronization signal when the image acquisition device triggers the image acquisition.
  • the output data is the image data output by the image acquisition device, wherein the image data is the image acquisition device according to the frame synchronization signal when the image acquisition device triggers the image acquisition.
  • the time delaying the trigger offset duration is determined as the trigger start time
  • the image sensor is periodically triggered to perform image collection.
  • the following steps are further implemented: receiving a time synchronization instruction sent by the trigger control device; and performing time synchronization according to the time synchronization instruction.
  • the time synchronization instruction is an instruction formed by using at least one of the PTP protocol, the NTP protocol, and the GPRMC protocol.
  • the time difference between two adjacent trigger reference moments is equal.
  • the computer program is executed by the processor, the following steps are also implemented: when the next trigger is reached At the reference time, returning to the execution step, starting from the trigger reference time and delaying the trigger offset time period, is determined as the trigger start time of the corresponding image acquisition device.
  • the trigger reference time is a whole second time.
  • the following steps are further implemented: when the image sensor is triggered to acquire an image, a frame synchronization signal is sent to the image sensor, so that the image sensor is based on the frame synchronization signal. Output image data.
  • An embodiment of the present application also provides a monitoring device, which includes an image acquisition device and a trigger control device.
  • the image acquisition device includes an image sensor and a main control component.
  • the trigger control device is used to execute the steps of the method applied to the trigger device in any of the above embodiments
  • the main control component is used to execute the steps of the method applied to the main control component in any of the above embodiments.
  • both the trigger control device and the main control component above include a memory and a processor, and computer-readable instructions are stored in the memory.
  • the processor executes the image acquisition trigger in any of the above embodiments. Method steps.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Studio Devices (AREA)

Abstract

一种图像采集触发方法、装置、计算机设备、可读存储介质和监控设备,图像采集触发应用于监控设备,所述监控设备包括多个图像采集装置,所述方法包括:设置每个所述图像采集装置的触发周期(S110);确定触发基准时刻(S120);设置每个所述图像采集装置的触发偏移时长(S130);控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期,周期性触发图像采集,其中,所述触发起始时刻是指从所述触发基准时刻开始,延迟所述触发偏移时长的时刻(S140)。所提供的图像采集触发方法适用范围广、实用性强。

Description

图像采集触发方法、装置、计算机设备、可读存储介质和监控设备 技术领域
本申请涉及计算机技术领域,特别是涉及图像采集触发方法、装置、计算机设备、可读存储介质和监控设备。
背景技术
图像采集装置是指能够采集图像或视频的装置。图像采集设备包括但不限于相机、摄像头、摄像机、扫描仪以及带有拍照功能的设备等。
图像采集装置被广泛应用于各个领域。以图像采集装置应用于自动驾驶为例,自动驾驶系统中,车辆的各个位置会设置多个图像采集装置。需要对这些图像采集装置进行触发控制,以使图像采集装置产生一张或一帧图像。
发明人在实施过程中发现,相关技术中对于图像采集的触发控制方式不能满足使用需求。
发明内容
为了解决上述技术问题,本申请实施例提供一种图像采集触发方法、装置、计算机设备、可读存储介质和监控设备。
第一方面,本申请实施例提供一种图像采集触发方法,应用于监控设备,所述监控设备包括多个图像采集装置,所述方法包括:
设置每个所述图像采集装置的触发周期;
确定触发基准时刻;
设置每个所述图像采集装置的触发偏移时长;
控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期,周期性触发图像采集,其中,所述触发起始时刻是指从所述触发基准时刻开始,延迟所述触发偏移时长的时刻。
第二方面,本申请实施例提供一种图像采集触发方法,所述方法还包括:
接收触发控制装置发送的触发周期、触发基准时刻和触发偏移时长;
将从所述触发基准时刻开始,延迟所述触发偏移时长的时刻确定为触发起始时刻;
从所述触发起始时刻开始,按照所述触发周期,周期性触发图像传感器进行图像采集。
一种图像采集触发装置,所述装置包括:
周期设置模块,用于设置每个所述图像采集装置的触发周期;
基准时刻确定模块,用于确定触发基准时刻;
偏移时长确定模块,用于设置每个所述图像采集装置的触发偏移时长;
控制模块,用于控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期周期性触发图像采集,其中,所述触发起始时刻是指从所述触发基准时刻开始,延迟所述触发偏移时长的时刻。
一种图像采集触发装置,所述装置包括:
信息获取模块,用于接收触发控制装置发送的触发周期、触发基准时刻和触发偏移时长;
起始时刻确定模块,用于将从所述触发基准时刻开始,延迟所述触发偏移时长的时刻确定为触发起始时刻;
触发模块,用于从所述触发起始时刻开始,按照所述触发周期,周期性触发图像传感器进行图像采集。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的图像采集触发方法的步骤。
一种计算机设备,包括存储器及处理器,所述存储器中储存有计算机可读指令,所述指令被所述处理器执行时,使得所述处理器执行上述的图像采集触发方法。
一种监控设备,包括图像采集装置和触发控制装置,图像采集装置包括图像传感器和主控组件,其中,所述触发控制装置用于执行第一方面所述的方法的步骤,所述主控组件用于执行第二方面所述的方法的步骤。
上述图像采集触发方法、装置、计算机设备、可读存储介质和监控设备,通过设置每个图像采集装置的触发周期,确定触发基准时刻,并设置每个图像采集装置的触发偏移时长。控制每个图像采集装置从触发起始时刻开始,按照对应的触发周期,周期性触发图像采集。本申请实施例提供的方法、装置、计算机设备、可读存储介质和监控设备能够实现多个图像采集装置在不同时刻的触发,且能够实现周期性触发,这样能满足更多的应用场景,例如与其他的传感装置配合,实现监控功能等,提高了图像采集的实用性。
附图说明
图1为本申请一个实施例提供的图像采集触发方法的应用场景示意图;
图2为本申请一个实施例提供的图像采集触发方法流程示意图;
图3为本申请一个实施例提供的图像采集触发的方法流程示意图;
图4为本申请一个实施例提供的图像采集触发方法流程示意图;
图5为本申请一个实施例提供的图像采集触发方法流程示意图;
图6为本申请一个实施例提供的图像采集触发方法流程示意图;
图7为本申请一个实施例提供的图像采集触发方法流程示意图;
图8为本申请一个实施例提供的图像采集触发装置的框架示意图;
图9为本申请一个实施例提供的图像采集触发装置的框架示意图;
图10为与本申请实施例提供的计算机设备结构的框图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
请参见图1,本申请实施例提供的图像采集触发方法可以应用于如图1所示的监控设备中,其中,监控设备包括多个图像采集设备102和触发控制装置104。多个图像采集设备102与触发控制装置通过网络通信连接。图像采集设备可以但不限于是相机、摄像头、摄像机、扫描仪以及带有拍照功能的设备等。在一些实施例中,图像采集设备102包括图像传感器(Sensor)1021和主控组件1022。主控组件1022与图像传感器1021通信连接。主控组件1022包括处理芯片,处理芯片能够执行计算机程序。触发控制装置104与主控组件1022通过网络通信连接。触发控制装置104可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备。
在一些实施例中,上述监控设备和图像采集触发方法可以应用于自动驾驶系统中。多个图像采集装置102可以设置于无人驾驶车辆上,用于采集车辆行驶过程中的图像信息。触发控制装置104可以设置于无人驾驶车辆上,也可以设置于能够对无人驾驶车辆进行远程控制的远程终端中。在此应用场景下,监控设备还可以进一步包括雷达装置,雷达装置设置于无人驾驶车辆上。雷达装置用于测量无人驾驶车辆与周围物体的距离。在一些应用中,雷达装置需要与图像采集装置进行配合以实现更实用的监控功能。然而,相关技术中缺乏对这样的图像采集装置图像采集的触发控制,不能满足使用需求。
请参见图2,本申请一个实施例提供一种图像采集触发方法。本实施例以所述方法应用于图1所示的监控设备,且以触发控制装置为执行主体为例进行说明。所述方法包括:
S110,设置每个图像采集装置的触发周期。
触发周期是指图像采集装置周期性触发时,连续两次触发的时间间隔。触发控制装置设置每个图像采集装置的触发周期,并发送至对应的图像采集装置的主控组件。触发控制装置可以根据雷达装置的频率、扫描方位步长和扫描周期等设置每个图像采集装置的触发周期。当然,也可以根据其他的需求,设置每个图像采集装置的触发周期。例如,触发周5期可以为200ms,则图像采集装置每200ms触发一次图像采集。不同的图像采集装置的触发周期可以相同,也可以不同。
S120,确定触发基准时刻。
触发基准时刻是指所有图像采集装置触发图像采集的时间参考点。所有图像采集装置采用相同的触发基准时刻。触发基准时刻可以为一个,例如:设置触发基准时刻为15点30分15秒。触发基准时刻也可以为多个,例如,第一个触发基准时刻为15点30分15秒,第二个触发基准时刻为15点30分28秒,第三个触发基准时刻为15点30分50秒等。 在一些实施例中,触发基准时刻为多个时,相邻的两个触发基准时刻之间的时间差相等。也就是说,触发基准时刻为周期性时刻。例如,第一个触发基准时刻为15点30分15秒,第二个触发基准时刻为15点30分30秒,第三个触发基准时刻为15点30分45秒,依次类推。
S130,设置每个图像采集装置的触发偏移时长。
触发偏移时长用于表征图像采集装置开始触发采集的时刻偏移触发基准时刻的偏移量。触发控制装置可以根据每个图像采集装置的设置角度、要求启动图像采集的时刻等确定触发偏移时长。
S140,控制每个图像采集装置从触发起始时刻开始,按照对应的触发周期,周期性的触发图像采集,其中,触发起始时刻是指从触发基准时刻开始,延迟触发偏移时长的时刻。
触发起始时刻用于表征图像采集装置开始触发的时间起始点。将触发基准时刻开始,延迟触发偏移时长的时刻确定为对应的图像采集装置的触发起始时刻。图像采集装置可以为周期性触发,则触发起始时刻表征从触发基准时刻起的第一次触发的时刻。触发起始时刻=触发基准时刻+触发偏移时长。例如,触发基准时刻为15点30分15秒,触发偏移时长为10ms,则,触发起始时刻为15点30分15秒10毫秒。不同的图像采集装置,触发偏移时长不同,则触发起始时刻不同。
触发控制装置向所有图像采集装置发送触发指令,每个图像采集装置均从触发时刻开始,按照其触发周期,周期性的触发图像采集。例如:所有图像采集装置的触发基准时刻均为15点30分15秒;第一个图像采集装置的触发偏移时长为10ms,第二个图像采集装置的触发偏移时长为20ms,第三个图像采集装置的触发偏移时长为30ms;三个图像采集装置的触发周期均为200ms;触发控制装置向各个图像采集装置发送对应的触发周期、触发基准时刻和各自的触发偏移时长。当触发控制装置发送触发指令时,每个图像采集装置从触发基准时刻开始,延迟触发偏移时长后,即到达其触发时刻时,开始按照其触发周期,周期性触发图像采集。第一个图像采集装置在15点30分15秒10ms、15点30分15秒210ms、15点30分15秒410ms、15点30分15秒610ms、15点30分15秒810ms等时刻触发图像采集;第二个图像采集装置在15点30分15秒20ms、15点30分15秒220ms、15点30分15秒420ms、15点30分15秒620ms、15点30分15秒820ms等时刻触发图像采集;第三个图像采集装置在15点30分15秒30ms、15点30分15秒230ms、15点30分15秒430ms、15点30分15秒630ms、15点30分15秒830ms等时刻触发图像采集。这样,不同的图像采集装置在不同的时刻开始图像采集,实现不同图像采集装置的依次触发,可以实现与其他设备配合,实现在不同图像数据需求时刻输出一帧图像。
以多个图像采集装置与雷达装置配合实现对无人驾驶车辆的监控为例,多个图像采集装置的图像传感器可以设置不同的采集方位,用于采集车辆不同角度的图像。雷达装置按照预设的扫描方位步长,对其扫描范围内物体进行扫描。当雷达装置扫描至某一方位时,这个方位对应的图像传感器触发一次采集;当雷达装置扫描至下一方位时,下一方位对应 的图像传感器触发采集,以此类推。这样一来,当雷达完成一个其扫描范围内的一次扫描时,多个图像传感器采集得到多个方位的图像数据,根据多个方位的图像数据即可或者扫描范围内的图像。而若每个图像采集装置与雷达装置的采集周期相同,在雷达装置进行第二周期的扫描,扫描至某一方位时,这个方位的图像传感器也刚好触发第二次图像采集,依次类推,可以实现雷达扫描至不同的方位,此方位的图像采集装置刚好也触发图像采集。
本实施例中,设置每个图像采集装置的触发周期,确定触发基准时刻,并设置每个图像采集装置的触发偏移时长。控制每个图像采集装置从触发起始时刻开始,按照对应的触发周期,周期性触发图像采集。本实施例提供的方法能够实现多个图像采集装置在不同时刻的触发,且能够实现周期性触发,这样能满足更多的应用场景,例如与其他的传感装置配合,实现监控功能等,提高了图像采集的实用性。
请参见图3,本实施例涉及提高多个图像采集装置触发同步性的一种可能的实现方式。在一个实施例中,所述方法还进一步包括:
S150,对多个图像采集装置进行时间同步。
触发控制装置可以对每个图像采集装置进行时间同步。时间同步的方法可以有多种,在一个实施例中,可以通过PTP协议(Precision Time Protocol,高精度时间同步协议)、NTP协议(Network Time Protocol,网络时间协议)、GPRMC协议中的至少一种对多个图像采集装置进行时间同步。通过对多个图像采集装置进行时间同步,能够使得每个图像采集装置的绝对时间一致,从而使得触发基准时刻能够一致,这样对于每个图像采集装置的触发时间的控制也更加精确。
可以理解,在一些实施例中,触发控制装置、图像采集装置和雷达装置可以同时采用同一协议进行时间同步,以使几者的绝对时间统一,进一步提高触发控制的精确度。
图像采集装置在工作过程中,由于很多因素的影响,会导致其触发时刻存在偏差,如,理论上应该是0ms、100ms、200ms……触发图像采集,但是随着时间推移,触发时间会逐渐改变,出现累积误差,使得实际触发时刻变为5ms、105ms、205ms……
请继续参见图3,本实施例涉及的是消除上述误差,进一步提高触发时间精确度的一种可能的实现方式。如图4所示,触发基准时刻的数量为多个,相邻的两个触发基准时刻之间的时间差相等,步骤S140之后,所述方法还进一步包括:
S160,判断是否到达下一触发基准时刻;
若是,返回重复执行步骤S140。
也就是说,触发基准时刻为等间距的时间点,在每个触发基准时刻周期性的执行步骤S140。在每一个触发基准时刻,均将从该基准时刻开始,延迟触发偏移时长的时刻确定为该图像采集装置的触发起始时刻,并使图像采集装置从触发起始时刻开始,按照对应触发周期,周期性触发图像采集。
触发基准时刻可以与雷达装置的扫描基准时刻相同。雷达装置在基准时刻开始新一轮的扫描,同时,所有的图像采集装置开始新一轮的触发。在一个实施例中,可以将触发基 准时刻设置为整秒时刻,即:S120包括设置等间距的多个整秒时刻为触发基准时刻。如,设置15点30分15秒、15点30分18秒、15点30分21秒……为触发基准时刻。
在另一个实施例中,触发基准时刻之间的时间间距为1秒。即设置每个整秒为触发基准时刻,如15点30分15秒、15点30分16秒、15点17分21秒……设置触发基准时刻为整秒,时刻容易把握和计算,更便于图像采集装置对触发的精准控制。
本实施例中,通过在多个触发基准时刻时重新计算触发起始时刻,并控制每个图像采集装置从新的触发起始时刻开始,按照对应的所述触发周期周期性触发图像采集。这样能够消除图像采集装置的采集累积偏差,进一步提高图像采集装置触发控制的精确度。
请参见图4,本实施例涉及设置每个图像采集装置的触发偏移时长的一种可能的实现方式,如图4所示,S130包括:
S131,获取每个图像采集装置的采集方位;
S132,获取雷达装置在一扫描周期内的扫描基准时刻;
S133,确定雷达装置在该扫描周期内,扫描至每个图像采集装置的采集方位时的时刻与扫描基准时刻的时间差,得到每个图像采集装置的触发偏移时长。
每个图像采集装置对应一个采集方位,当雷达装置扫描至此采集方位时,与扫描基准时刻的时间偏移量,即为该图像采集装置的触发偏移量。例如,图像采集装置1用于采集方位1的图像信息,雷达装置整秒开始扫描,在整秒之后10ms扫描至采集方位1,则,图像采集装置1的触发偏移时长为10ms。
本实施例中,通过获取每个图像采集装置的采集方位,并获取雷达装置在一扫描周期内的扫描基准时刻,进而确定雷达装置在该扫描周期内扫描至各个图像采集装置的采集方位时的时刻与扫描基准时刻的时间差,得到各个图像采集装置的触发偏移时长。这样,使得每个图像采集装置的每个触发时刻,均与扫描装置扫描到此图像采集装置的采集方位时的时刻一致,从而实现二者的配合,提高监控的精确度。
在一个实施例中,所述方法还进一步包括:
接收图像采集装置输出的图像数据,其中,图像数据为图像采集装置在触发图像采集时根据帧同步信号输出的数据。
图像采集装置的主控组件在接收到触发控制装置的触发指令后,从触发起始时刻开始,周期性触发图像传感器进行图像的曝光。之后,图像传感器将采集的图像输出至主控组件,由主控组件传输至图像数据处理器或其他设备。一般情况下,图像传感器按照预设的帧率输出图像数据,如,图像传感器的帧率为30帧/s,则其在0ms、33ms、66ms、99ms……时输出图像。本实施例中,可以将主控组件的IO接口接到图像传感器的帧同步接口上,使得主控组件在触发图像采集时,向图像传感器发送帧同步信号,图像传感器接收到帧同步信号,则立即结束曝光,输出图像数据。如,触发时刻为:10ms、210ms….,则对应的,图像传感器在10mm、43ms、76ms、109ms……时输出图像。
本实施例提供的方法,改变了图像采集装置的帧输出时序,使得图像采集装置在触发 时刻立即产生一张图像,使得图像采集装置的触发和输出同步,从而使得图像数据的输出更加实时,也使得图像采集的时间控制更精确。
请参见图5,本申请一个实施例提供一种图像采集触发方法,本实施例以所述方法应用于多个图像采集装置中的任一个图像采集装置,具体的以应用于主控组件为例进行说明。所述方法包括:
S210,接收触发控制装置发送的触发周期、触发基准时刻和触发偏移时长;
S220,将从触发基准时刻开始,延迟触发偏移时长的时刻确定为触发起始时刻;
S230,从触发起始时刻开始,按照触发周期,周期性触发图像传感器进行图像采集。
图像采集装置的主控组件接收触发控制装置发送的触发周期、触发基准时刻和触发偏移时长。触发周期、触发基准时刻和触发偏移时长的含义、确定方法等可以参照上述实施例,在此不再赘述。需要说明的是,触发基准时刻可以为触发控制装置向主控组件发送的一个时刻信息,也可以为触发控制装置向主控组件发送的一项触发基准时刻确定规则或指令,如,触发基准时刻为整秒触发。
当主控组件接收到触发控制装置的触发指令时,计时器计时至触发起始时刻,则触发第一次图像采集,计时至触发起始时刻之后一个触发周期的时刻时,则触发第二次图像采集……依次类推,实现周期性触发。
本实施例中,通过接收触发控制装置发送的触发周期,确定触发基准时刻,以及触发偏移时长,将从触发基准时刻开始,延迟触发偏移时长的时刻确定为对应触发起始时刻,从而从触发起始时刻开始,按照触发周期,周期性触发图像传感器进行图像采集。本实施例提供的方法能够实现图像传感器按照触发偏移量,从触发起始时刻开始,实现周期性触发,这样能够实现图像采集装置的定时刻触发,且能够实现周期性触发,所以能够满足更多的应用场景,例如与其他的传感装置配合,实现监控功能等,提高了图像采集的实用性。
请参见图6,在一个实施例中,所述方法进一步还包括:
S240,接收所述触发控制装置发送的时间同步指令;
S250,根据所述时间同步指令进行时间同步。
触发控制装置向各个图像采集装置的主控组件发送时间同步指令,主控组件接收到时间同步指令,并进行时间同步。时间同步指令为采用PTP协议、NTP协议和GPRMC协议中的至少一种协议形成的指令。对应的,时间同步的方式包括但不限于:采用PTP协议、NTP协议和GPRMC协议中至少一种进行时间同步。
请继续参见图6,在一个实施例中,触发基准时刻的数量为多个,相邻的两个触发基准时刻之间的时间差相等,S230之后,所述方法还包括:
S260,判断是否到达基准触发时刻;
若是,则返回执行步骤S220。
具体实现过程和有益效果参见上述实施例,在此不再赘述。
在一些实施例中,触发基准时刻为整秒时刻。
在一些实施例中,相邻的触发基准时刻之间的时间差为1秒。
请继续参见图6,在一个实施例中,所述方法还进一步包括:
S270,在触发图像传感器采集图像时,向图像传感器发送帧同步信号,以使图像传感器根据帧同步信号输出图像数据。
主控组件的IO接口与图像传感器的帧同步接口连接。主控组件在每次触发图像传感器时,向图像传感器发送帧同步信号,出图像传感器接收到帧同步信号,则立即结束曝光,输出图像数据。如,触发时刻为:10ms、210ms….,则对应的,图像传感器在10mm、43ms、76ms、109ms……时输出图像。
本实施例提供的方法,改变了图像传感器的帧输出时序,使得图像传感器在触发时刻立即产生一张图像,使得图像传感器的触发和输出同步,从而使得图像数据的输出更加实时,也使得图像采集的时间控制更精确。
请参见图7,本实施例以图像采集触发方法应用于监控设备为例,对所述方法的整个过程进行说明,所述方法包括:
S301,触发控制装置获取每个图像采集装置的采集方位;
S302,触发控制装置获取雷达装置在一扫描周期内的扫描基准时刻;
S303,触发控制装置确定雷达装置在扫描周期内,扫描至每个图像采集装置的采集方位时的时刻与扫描基准时刻的时间差,得到每个图像采集装置的触发偏移时长;
S311,触发控制装置向每个图像采集装置的主控组件发送时间同步指令;
S312,各个主控组件接收触发控制装置发送的时间同步指令;
S313,各个主控组件根据时间同步指令进行时间同步;
S320,触发控制装置设置每个图像采集装置的触发周期;
S330,触发控制装置确定触发基准时刻;
S340,触发控制装置设置每个图像采集装置的触发偏移时长;
S350,各个主控组件接收触发控制装置发送的触发周期、触发基准时刻和触发偏移时长;
S360,各个主控组件将从触发基准时刻开始,延迟触发偏移时长的时刻确定为对应的图像采集装置的触发起始时刻;
S370,各个主控组件从触发起始时刻开始,按照对应的触发周期,周期性触发图像传感器进行图像采集;
S380,各个主控组件判断是否到达下一触发基准时刻,若是,主控组件返回执行步骤S360;
S391,各个主控组件在触发图像传感器采集图像时,向图像传感器发送帧同步信号,以使图像传感器根据帧同步信号输出图像数据;
S392,触发控制装置接收图像采集装置输出的图像数据,其中,图像数据为图像采集装置在触发图像采集时根据帧同步信号输出的数据。
以上过程的具体实现及有益效果可以参见上述实施例,在此不再赘述。
应该理解的是,虽然流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
请参见图8,本申请一个实施例提供一种图像采集触发装置10,应用于监控设备,所述监控设备包括多个图像采集装置,所述装置包括:周期设置模块110、基准时刻确定模块120、偏移时长确定模块130、控制模块140。其中,
周期设置模块110,用于设置每个所述图像采集装置的触发周期;
基准时刻确定模块120,用于确定触发基准时刻;
偏移时长确定模块130,用于设置每个所述图像采集装置的触发偏移时长;
控制模块140,用于控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期周期性触发图像采集,其中,所述触发起始时刻是指从所述触发基准时刻开始,延迟所述触发偏移时长的时刻。
在一个实施例中,图像采集触发装置10还包括时间同步模块150,用于对所述多个图像采集装置进行时间同步。
在一个实施例中,时间同步模块150具体用于采用PTP协议、NTP协议和GPRMC协议中的至少一种对所述多个图像采集装置进行时间同步。
在一个实施例中,所述触发基准时刻的数量为多个,相邻的两个所述触发基准时刻之间的时间差相等,控制模块140还用于当到达下一触发基准时刻时,重复执行步骤所述控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期,周期性触发图像采集。
在一个实施例中,基准时刻确定模块120具体用于设置等时间间距的多个整秒时刻为所述触发基准时刻。
在一个实施例中,所述时间间距为1秒。
在一个实施例中,所述监控设备还包括雷达装置,偏移时长确定模块130具体获取每个所述图像采集装置的采集方位;获取所述雷达装置在一扫描周期内的扫描基准时刻;确定所述雷达装置在所述扫描周期内,扫描至每个所述图像采集装置的采集方位时的时刻与所述扫描基准时刻的时间差,得到每个所述图像采集装置的所述触发偏移时长。
在一个实施例中,所述扫描基准时刻与所述触发基准时刻相同。
在一个实施例中,图像采集触发装置10还包括图像接收模块160,用于接收所述图像采集装置输出的图像数据,其中,所述图像数据为所述图像采集装置在触发图像采集时根据帧同步信号输出的数据。
请参见图9,本申请一个实施例还提供一种图像采集触发装置20,所述装置包括:信息获取模块210、起始时刻确定模块220和触发模块230。其中,
信息获取模块210,用于接收触发控制装置发送的触发周期、触发基准时刻和触发偏移时长;
起始时刻确定模块220,用于将从所述触发基准时刻开始,延迟所述触发偏移时长的时刻确定为触发起始时刻;
触发模块230,用于从所述触发起始时刻开始,按照所述触发周期,周期性触发图像传感器进行图像采集。
在一个实施例中,图像采集触发装置20还包括同步模块240,用于接收所述触发控制装置发送的时间同步指令;根据所述时间同步指令进行时间同步。
在一个实施例中,所述时间同步指令为采用PTP协议、NTP协议和GPRMC协议中的至少一种协议形成的指令。
在一个实施例中,所述触发基准时刻的数量为多个,相邻的两个所述触发基准时刻之间的时间差相等,触发模块230还用于当到达下一触发基准时刻时,返回执行步骤所述将从所述触发基准时刻开始,延迟所述触发偏移时长的时刻确定为对应的所述图像采集装置的触发起始时刻。
在一个实施例中,所述触发基准时刻为整秒时刻。
请继续参见图9,在一个实施例中,图像采集触发装置20还包括帧同步模块250,用于在触发所述图像传感器采集图像时,向所述图像传感器发送帧同步信号,以使所述图像传感器根据所述帧同步信号输出图像数据。
上述实施例提供的所述图像采集触发装置10和图像采集触发装置20,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
上述图像采集触发装置10和图像采集触发装置20中各个模块的划分仅用于举例说明,在其他实施例中,可将所述图像采集触发装置10和图像采集触发装置20按照需要划分为不同的模块,以完成上述图像采集触发装置10和图像采集触发装置20的全部或部分功能。
上述图像采集触发装置10和图像采集触发装置20中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
请参见图10所示,在一个实施例中,提供了一种计算机设备的内部结构示意图。该计算机设备包括通过系统总线连接的处理器、存储器和显示屏。其中,该处理器用于提供计算和控制能力,支撑整个计算机设备的运行。存储器用于存储数据、程序、和/或指令代码等,存储器上存储至少一个计算机程序,该计算机程序可被处理器执行,以实现本申请实施例中提供的适用于计算机设备的图像采集触发方法。存储器可包括磁碟、光盘、只 读存储记忆体(Read-Only Memory,ROM)等非易失性存储介质,或随机存储记忆体(Random-Access-Memory,RAM)等。例如,在一个实施例中,存储器包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统、数据库和计算机程序。该数据库中存储有用于实现以上各个实施例所提供的一种图像采集触发方法相关的数据,比如可存储有每个进程或应用的名称等信息。该计算机程序可被处理器所执行,以用于实现本申请各个实施例所提供的一种图像采集触发方法。内存储器为非易失性存储介质中的操作系统、数据库和计算机程序提供高速缓存的运行环境。显示屏可以是触摸屏,比如为电容屏或电子屏,用于显示前台进程对应的应用的界面信息,还可以被用于检测作用于该显示屏的触摸操作,生成相应的指令,比如进行前后台应用的切换指令等。
本领域技术人员可以理解,图10中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。如该计算机设备还包括通过系统总线连接的网络接口,网络接口可以是以太网卡或无线网卡等,用于与外部的计算机设备进行通信,比如可用于同服务器进行通信。
在本申请实施例中,该计算机设备所包括的处理器执行存储在存储器上的计算机程序时实现以下步骤:
设置每个所述图像采集装置的触发周期;
确定触发基准时刻;
设置每个所述图像采集装置的触发偏移时长;
控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期,周期性触发图像采集,其中,所述触发起始时刻是指从所述触发基准时刻开始,延迟所述触发偏移时长的时刻。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:对所述多个图像采集装置进行时间同步。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:采用PTP协议、NTP协议和GPRMC协议中的至少一种对所述多个图像采集装置进行时间同步。
在一个实施例中,所述触发基准时刻的数量为多个,相邻的两个所述触发基准时刻之间的时间差相等,处理器执行计算机程序时还实现以下步骤:当到达下一触发基准时刻时,重复执行步骤所述控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期,周期性触发图像采集。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:设置等时间间距的多个整秒时刻为所述触发基准时刻。
在一个实施例中,所述时间间距为1秒。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:获取每个所述图像采集装置的采集方位;获取所述雷达装置在一扫描周期内的扫描基准时刻;确定所述雷达装置 在所述扫描周期内,扫描至每个所述图像采集装置的采集方位时的时刻与所述扫描基准时刻的时间差,得到每个所述图像采集装置的所述触发偏移时长。
在一个实施例中,所述扫描基准时刻与所述触发基准时刻相同。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:接收所述图像采集装置输出的图像数据,其中,所述图像数据为所述图像采集装置在触发图像采集时根据帧同步信号输出的数据。
在一个实施例中,该计算机设备所包括的处理器执行存储在存储器上的计算机程序时还实现以下步骤:
接收触发控制装置发送的触发周期、触发基准时刻和触发偏移时长;
将从所述触发基准时刻开始,延迟所述触发偏移时长的时刻确定为触发起始时刻;
从所述触发起始时刻开始,按照所述触发周期,周期性触发图像传感器进行图像采集。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:接收所述触发控制装置发送的时间同步指令;根据所述时间同步指令进行时间同步。
在一个实施例中,所述时间同步指令为采用PTP协议、NTP协议和GPRMC协议中的至少一种协议形成的指令。
在一个实施例中,所述触发基准时刻的数量为多个,相邻的两个所述触发基准时刻之间的时间差相等,处理器执行计算机程序时还实现以下步骤:当到达下一触发基准时刻时,返回执行步骤所述将从所述触发基准时刻开始,延迟所述触发偏移时长的时刻确定为对应的所述图像采集装置的触发起始时刻。
在一个实施例中,所述触发基准时刻为整秒时刻。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:在触发所述图像传感器采集图像时,向所述图像传感器发送帧同步信号,以使所述图像传感器根据所述帧同步信号输出图像数据。
上述实施例提供的计算机设备的处理器执行计算机程序时实现步骤,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行以下图像采集触发方法的步骤:
设置每个所述图像采集装置的触发周期;
确定触发基准时刻;
设置每个所述图像采集装置的触发偏移时长;
控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期,周期性触发图像采集,其中,所述触发起始时刻是指从所述触发基准时刻开始,延迟所述触发偏移时长的时刻。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:对所述多个图像采集 装置进行时间同步。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:采用PTP协议、NTP协议和GPRMC协议中的至少一种对所述多个图像采集装置进行时间同步。
在一个实施例中,所述触发基准时刻的数量为多个,相邻的两个所述触发基准时刻之间的时间差相等,计算机程序被处理器执行时还实现以下步骤:当到达下一触发基准时刻时,重复执行步骤所述控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期,周期性触发图像采集。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:设置等时间间距的多个整秒时刻为所述触发基准时刻。
在一个实施例中,所述时间间距为1秒。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:获取每个所述图像采集装置的采集方位;获取所述雷达装置在一扫描周期内的扫描基准时刻;确定所述雷达装置在所述扫描周期内,扫描至每个所述图像采集装置的采集方位时的时刻与所述扫描基准时刻的时间差,得到每个所述图像采集装置的所述触发偏移时长。
在一个实施例中,所述扫描基准时刻与所述触发基准时刻相同。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:接收所述图像采集装置输出的图像数据,其中,所述图像数据为所述图像采集装置在触发图像采集时根据帧同步信号输出的数据。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
接收触发控制装置发送的触发周期、触发基准时刻和触发偏移时长;
将从所述触发基准时刻开始,延迟所述触发偏移时长的时刻确定为触发起始时刻;
从所述触发起始时刻开始,按照所述触发周期,周期性触发图像传感器进行图像采集。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:接收所述触发控制装置发送的时间同步指令;根据所述时间同步指令进行时间同步。
在一个实施例中,所述时间同步指令为采用PTP协议、NTP协议和GPRMC协议中的至少一种协议形成的指令。
在一个实施例中,所述触发基准时刻的数量为多个,相邻的两个所述触发基准时刻之间的时间差相等,计算机程序被处理器执行时还实现以下步骤:当到达下一触发基准时刻时,返回执行步骤所述将从所述触发基准时刻开始,延迟所述触发偏移时长的时刻确定为对应的所述图像采集装置的触发起始时刻。
在一个实施例中,所述触发基准时刻为整秒时刻。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:在触发所述图像传感器采集图像时,向所述图像传感器发送帧同步信号,以使所述图像传感器根据所述帧同步信号输出图像数据。
上述实施例提供的计算机可读存储介质,其实现原理和技术效果与上述方法实施例类 似,在此不再赘述。
本申请一个实施例还提供一种监控设备,其包括图像采集装置和触发控制装置。图像采集装置包括图像传感器和主控组件。其中,触发控制装置用于执行如上实施例中任一项应用于触发装置的方法的步骤,所述主控组件用于执行如上实施例中任一项应用于主控组件的方法的步骤。
需要说明的是,上述触发控制装置和主控组件均包括存储器及处理器,存储器中存储有计算机可读指令,指令被处理器执行时,使得处理器执行上述任一实施例中的图像采集触发方法的步骤。
上述实施例提供的监控设备,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种图像采集触发方法,应用于监控设备,所述监控设备包括多个图像采集装置,其特征在于,所述方法包括:
    设置每个所述图像采集装置的触发周期;
    确定触发基准时刻;
    设置每个所述图像采集装置的触发偏移时长;
    控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期,周期性触发图像采集,其中,所述触发起始时刻是指从所述触发基准时刻开始,延迟所述触发偏移时长的时刻。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    对所述多个图像采集装置进行时间同步。
  3. 根据权利要求2所述的方法,其特征在于,所述对所述多个图像采集装置进行时间同步,包括:
    采用PTP协议、NTP协议和GPRMC协议中的至少一种对所述多个图像采集装置进行时间同步。
  4. 根据权利要求1所述的方法,其特征在于,所述触发基准时刻的数量为多个,相邻的两个所述触发基准时刻之间的时间差相等,所述方法还包括:
    当到达下一触发基准时刻时,重复执行步骤所述控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期,周期性触发图像采集。
  5. 根据权利要求4所述的方法,其特征在于,所述确定触发基准时刻,包括:
    设置等时间间距的多个整秒时刻为所述触发基准时刻。
  6. 根据权利要求5所述的方法,其特征在于,所述时间间距为1秒。
  7. 根据权利要求1所述的方法,其特征在于,所述监控设备还包括雷达装置,所述设置每个所述图像采集装置的触发偏移时长,包括:
    获取每个所述图像采集装置的采集方位;
    获取所述雷达装置在一扫描周期内的扫描基准时刻;
    确定所述雷达装置在所述扫描周期内,扫描至每个所述图像采集装置的采集方位时的时刻与所述扫描基准时刻的时间差,得到每个所述图像采集装置的所述触发偏移时长。
  8. 根据权利要求7所述的方法,其特征在于,所述扫描基准时刻与所述触发基准时刻相同。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述图像采集装置输出的图像数据,其中,所述图像数据为所述图像采 集装置在触发图像采集时根据帧同步信号输出的数据。
  10. 一种图像采集触发方法,其特征在于,所述方法还包括:
    接收触发控制装置发送的触发周期、触发基准时刻和触发偏移时长;
    将从所述触发基准时刻开始,延迟所述触发偏移时长的时刻确定为触发起始时刻;
    从所述触发起始时刻开始,按照所述触发周期,周期性触发图像传感器进行图像采集。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    接收所述触发控制装置发送的时间同步指令;
    根据所述时间同步指令进行时间同步。
  12. 根据权利要求11所述的方法,其特征在于,所述时间同步指令为采用PTP协议、NTP协议和GPRMC协议中的至少一种协议形成的指令。
  13. 根据权利要求10所述的方法,其特征在于,所述触发基准时刻的数量为多个,相邻的两个所述触发基准时刻之间的时间差相等,所述从所述触发起始时刻开始,按照所述触发周期,周期性触发图像传感器进行图像采集之后,所述方法还包括:
    当到达下一触发基准时刻时,返回执行步骤所述将从所述触发基准时刻开始,延迟所述触发偏移时长的时刻确定为对应的所述图像采集装置的触发起始时刻。
  14. 根据权利要求10所述的方法,其特征在于,所述触发基准时刻为整秒时刻。
  15. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在触发所述图像传感器采集图像时,向所述图像传感器发送帧同步信号,以使所述图像传感器根据所述帧同步信号输出图像数据。
  16. 一种图像采集触发装置,其特征在于,所述装置包括:
    周期设置模块,用于设置每个所述图像采集装置的触发周期;
    基准时刻确定模块,用于确定触发基准时刻;
    偏移时长确定模块,用于设置每个所述图像采集装置的触发偏移时长;
    控制模块,用于控制每个所述图像采集装置从触发起始时刻开始,按照对应的所述触发周期周期性触发图像采集,其中,所述触发起始时刻是指从所述触发基准时刻开始,延迟所述触发偏移时长的时刻。
  17. 一种图像采集触发装置,其特征在于,所述装置包括:
    信息获取模块,用于接收触发控制装置发送的触发周期、触发基准时刻和触发偏移时长;
    起始时刻确定模块,用于将从所述触发基准时刻开始,延迟所述触发偏移时长的时刻确定为触发起始时刻;
    触发模块,用于从所述触发起始时刻开始,按照所述触发周期,周期性触发图像传感器进行图像采集。
  18. 一种计算机设备,包括存储器及处理器,其特征在于,所述存储器中储存有计算机可读指令,所述指令被所述处理器执行时,使得所述处理器执行如权利要求1至15中任一项所述的图像采集触发方法。
  19. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至15中任一项所述的图像采集触发方法的步骤。
  20. 一种监控设备,其特征在于,包括图像采集装置和触发控制装置,图像采集装置包括图像传感器和主控组件,其中,所述触发控制装置用于执行如权利要求1至9任一项所述的方法的步骤,所述主控组件用于执行如权利要求10至15任一项所述的方法的步骤。
PCT/CN2020/074928 2020-02-12 2020-02-12 图像采集触发方法、装置、计算机设备、可读存储介质和监控设备 WO2021159332A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080003154.XA CN113519151B (zh) 2020-02-12 2020-02-12 图像采集触发方法、装置、计算机设备、可读存储介质和监控设备
PCT/CN2020/074928 WO2021159332A1 (zh) 2020-02-12 2020-02-12 图像采集触发方法、装置、计算机设备、可读存储介质和监控设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074928 WO2021159332A1 (zh) 2020-02-12 2020-02-12 图像采集触发方法、装置、计算机设备、可读存储介质和监控设备

Publications (1)

Publication Number Publication Date
WO2021159332A1 true WO2021159332A1 (zh) 2021-08-19

Family

ID=77292004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074928 WO2021159332A1 (zh) 2020-02-12 2020-02-12 图像采集触发方法、装置、计算机设备、可读存储介质和监控设备

Country Status (2)

Country Link
CN (1) CN113519151B (zh)
WO (1) WO2021159332A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025055A (zh) * 2021-11-29 2022-02-08 上海商汤临港智能科技有限公司 一种数据处理的方法、装置、系统、设备及存储介质
WO2024002194A1 (zh) * 2022-06-28 2024-01-04 先临三维科技股份有限公司 一种同步校验方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078772A1 (de) * 2011-07-07 2013-01-10 Robert Bosch Gmbh Verfahren zum Auslösen einer bildgebenden Vorrichtung und bildgebende Vorrichtung
CN103575256A (zh) * 2013-11-12 2014-02-12 中国工程物理研究院流体物理研究所 基于两台转镜式超高速摄影仪同步工作的控制装置及方法
CN104301719A (zh) * 2014-10-29 2015-01-21 北京理工大学 校正多台高速相机联合测量系统中时间同步性的系统
CN105530433A (zh) * 2016-01-28 2016-04-27 北京金久瑞科技有限公司 多相机系统的取像同步控制装置
CN106418849A (zh) * 2016-09-26 2017-02-22 西安蒜泥电子科技有限责任公司 一种人体扫描仪同步扫描控制方法及系统
CN107241546A (zh) * 2017-05-26 2017-10-10 清华大学 灯阵闪烁系统、摄像机时间检测设定系统和方法
CN107277389A (zh) * 2017-08-09 2017-10-20 山东科技大学 基于fpga的摄影测量系统多相机动态同步曝光电路及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130287122A1 (en) * 2011-03-09 2013-10-31 Hitachi Consumer Electronics Co., Ltd. Video transmission device, video transmission method, video receiving device, and video receiving method
JP5581356B2 (ja) * 2012-06-21 2014-08-27 有限会社アルニック 多点計測システムおよび時刻同期方法
CN109212554B (zh) * 2017-07-03 2024-05-10 百度在线网络技术(北京)有限公司 车载信息采集系统及其控制方法和装置
CN108195533B (zh) * 2017-12-14 2019-07-19 北京理工大学 一种精确定位数据采集时刻的系统和方法
CN108957478B (zh) * 2018-07-23 2021-03-26 上海禾赛科技股份有限公司 多传感器同步采样系统及其控制方法、车辆
CN109729270A (zh) * 2018-12-30 2019-05-07 联想(北京)有限公司 一种控制方法、装置及电子设备
CN109842737B (zh) * 2019-02-01 2021-04-09 初速度(苏州)科技有限公司 一种图像曝光方法及装置、车载终端
CN110009709B (zh) * 2019-05-08 2023-07-07 上海联影医疗科技股份有限公司 医学图像成像方法和系统
CN110753167B (zh) * 2019-11-13 2022-04-08 广州文远知行科技有限公司 时间同步方法、装置、终端设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078772A1 (de) * 2011-07-07 2013-01-10 Robert Bosch Gmbh Verfahren zum Auslösen einer bildgebenden Vorrichtung und bildgebende Vorrichtung
CN103575256A (zh) * 2013-11-12 2014-02-12 中国工程物理研究院流体物理研究所 基于两台转镜式超高速摄影仪同步工作的控制装置及方法
CN104301719A (zh) * 2014-10-29 2015-01-21 北京理工大学 校正多台高速相机联合测量系统中时间同步性的系统
CN105530433A (zh) * 2016-01-28 2016-04-27 北京金久瑞科技有限公司 多相机系统的取像同步控制装置
CN106418849A (zh) * 2016-09-26 2017-02-22 西安蒜泥电子科技有限责任公司 一种人体扫描仪同步扫描控制方法及系统
CN107241546A (zh) * 2017-05-26 2017-10-10 清华大学 灯阵闪烁系统、摄像机时间检测设定系统和方法
CN107277389A (zh) * 2017-08-09 2017-10-20 山东科技大学 基于fpga的摄影测量系统多相机动态同步曝光电路及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025055A (zh) * 2021-11-29 2022-02-08 上海商汤临港智能科技有限公司 一种数据处理的方法、装置、系统、设备及存储介质
WO2024002194A1 (zh) * 2022-06-28 2024-01-04 先临三维科技股份有限公司 一种同步校验方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN113519151A (zh) 2021-10-19
CN113519151B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2021159332A1 (zh) 图像采集触发方法、装置、计算机设备、可读存储介质和监控设备
WO2018228352A1 (zh) 一种同步曝光方法、装置及终端设备
US9654672B1 (en) Synchronized capture of image and non-image sensor data
KR101389789B1 (ko) 촬상 장치, 촬상 시스템, 촬상 방법, 및 컴퓨터 판독 가능한 기록 매체
CN108923876A (zh) 时间同步方法、装置及系统
US9185269B2 (en) Imaging device, information processing device, information processing method, and method for synchronizing frame data output
CN107439000B (zh) 一种同步曝光的方法、装置及终端设备
WO2016140747A1 (en) Multi-camera sync pulse synchronization
CN109391799B (zh) 一种监控视频同步方法、装置及视频采集设备
WO2021159329A1 (zh) 流媒体网络时延确定方法、装置、计算机设备、可读存储介质和远程驾驶系统
CN110505466B (zh) 图像处理方法、装置、电子设备、存储介质和系统
CN111813716A (zh) 多传感器数据同步、电子设备及存储介质
CN111107248B (zh) 一种多路视频采集的同步系统、方法和采集控制器
CN114509753A (zh) 雷达视频数据的融合方法及相关设备
US20230188239A1 (en) Clock Synchronization Method and Apparatus, and Electronic Device
CN102986237B (zh) 显示装置以及显示系统
CN111193568A (zh) 时间同步方法、装置、系统、存储介质及车辆
WO2021093586A1 (zh) 一种数据同步系统和方法
JPWO2010038459A1 (ja) マルチプロセッサのカウント値補正装置及びこれを備えるマルチプロセッサ
US20230412918A1 (en) System for wireless synchronized capturing, and smart device
US11323594B2 (en) Method, apparatus and terminal device for synchronous exposure
CN116347128A (zh) 数据同步方法、装置、设备及存储介质
CN114697465B (zh) 多图像传感器同步、协作方法及装置、存储介质、终端
CN115604402A (zh) 一种无线智能可穿戴装置及其图像采集方法
CN114697466A (zh) 视频帧采集同步控制

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20919033

Country of ref document: EP

Kind code of ref document: A1