WO2024002194A1 - 一种同步校验方法、装置、电子设备及存储介质 - Google Patents

一种同步校验方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2024002194A1
WO2024002194A1 PCT/CN2023/103425 CN2023103425W WO2024002194A1 WO 2024002194 A1 WO2024002194 A1 WO 2024002194A1 CN 2023103425 W CN2023103425 W CN 2023103425W WO 2024002194 A1 WO2024002194 A1 WO 2024002194A1
Authority
WO
WIPO (PCT)
Prior art keywords
image acquisition
synchronization
image
square wave
devices
Prior art date
Application number
PCT/CN2023/103425
Other languages
English (en)
French (fr)
Inventor
李洲强
郑明明
Original Assignee
先临三维科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先临三维科技股份有限公司 filed Critical 先临三维科技股份有限公司
Publication of WO2024002194A1 publication Critical patent/WO2024002194A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C25/00Arrangements for preventing or correcting errors; Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/167Synchronising or controlling image signals
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/60Security, fault tolerance

Definitions

  • the present disclosure relates to the field of data processing technology, and in particular to a synchronization verification method, device, electronic equipment and storage medium.
  • the three-dimensional data image acquisition device of a three-dimensional scanner must collect images at the same time as the spatial position tracking device to ensure accurate acquisition, and more and more application scenarios have multiple spatial position tracking devices and multiple spatial position tracking devices.
  • Three 3D data image acquisition devices work together in clusters, but image synchronization during the acquisition process cannot be guaranteed, resulting in inaccurate scanning results and low scanning efficiency.
  • the technical problem to be solved by this disclosure is to solve the existing problem of inaccurate scanning results and low scanning efficiency due to the inability to ensure image synchronization during the three-dimensional data image acquisition process.
  • embodiments of the present disclosure provide a synchronization verification method, device, electronic device and storage medium.
  • embodiments of the present disclosure provide a synchronization verification method.
  • the method is applied to a scanning device.
  • the scanning device includes at least two image acquisition devices.
  • the method include:
  • At least one of the image acquisition devices receives a trigger instruction at the same time; wherein the trigger instruction includes image frame period data;
  • a plurality of the image acquisition devices generate corresponding square wave synchronization signals based on the image frame period data
  • a plurality of the image acquisition devices collect image frames based on the corresponding square wave synchronization signal to obtain the number of image frames collected per unit time; wherein, the plurality of image acquisition devices are configured according to a preset synchronization frequency.
  • Synchronization verification results of a plurality of image acquisition devices are generated based on the square wave synchronization signals of the plurality of image acquisition devices and the acquisition number.
  • embodiments of the present disclosure also provide a synchronization verification device.
  • the device is applied to a scanning device.
  • the scanning device includes at least two image acquisition devices.
  • the device includes:
  • a receiving module configured to receive a triggering instruction from at least one of the image acquisition devices; wherein the triggering instruction includes image frame period data;
  • a generation module configured for multiple image acquisition devices to generate corresponding square wave synchronization signals based on the image frame period data
  • An acquisition module for multiple image acquisition devices to acquire image frames based on the corresponding square wave synchronization signal to obtain the acquisition number of image frames per unit time; wherein, multiple images are collected according to a preset synchronization frequency.
  • the square wave synchronization signal of the acquisition device is synchronized;
  • a processing module configured to generate synchronization verification results of multiple image acquisition devices based on the square wave synchronization signals of multiple image acquisition devices and the collection number.
  • embodiments of the present disclosure further provide an electronic device.
  • the electronic device includes: a processor; a memory for storing instructions executable by the processor; and the processor is configured to retrieve instructions from the memory.
  • the executable instructions are read and executed to implement the synchronization verification method provided by the embodiment of the first aspect of the present disclosure.
  • an embodiment of the present disclosure also provides a computer-readable storage medium, the storage medium stores a computer program, and the computer program is used to execute the synchronization verification method provided by the embodiment of the first aspect of the present disclosure.
  • the synchronization verification scheme provided by the embodiment of the present disclosure is applied to scanning equipment.
  • the scanning equipment includes at least two image acquisition devices, including: at least one image acquisition device receives a trigger instruction; wherein the trigger instruction includes image frame period data, multiple images
  • the acquisition device generates a corresponding square wave synchronization signal based on the image frame period data, and multiple image acquisition devices collect image frames based on the corresponding square wave synchronization signal to obtain the number of image frames collected per unit time; wherein, according to the preset synchronization frequency
  • the square wave synchronization signals of multiple image acquisition devices are synchronized, and a synchronization verification result of the image acquisition devices is generated based on the square wave synchronization signals of the multiple image acquisition devices and the acquisition quantity.
  • the image acquisition device can be double calibrated for time base and frame rate, reducing the accumulated error caused by the time base or the desynchronization of the collected data caused by frame loss, ensuring synchronization accuracy, and further meeting the needs of different scenarios. Improve data collection efficiency.
  • Figure 1 is a schematic flow chart of a synchronization verification method provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flow chart of another synchronization verification method provided by an embodiment of the present disclosure.
  • Figure 3a is a schematic diagram of the connection of an image acquisition device provided by an embodiment of the present disclosure.
  • Figure 3b is a schematic diagram of the connection of another image acquisition device provided by an embodiment of the present disclosure.
  • Figure 3c is a schematic diagram of the connection of another image acquisition device provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of a synchronization verification device provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • the scanning device includes at least two image acquisition devices.
  • the scanning device includes at least two image acquisition devices, at least one image acquisition device can be a master image acquisition device such as a spatial position tracking device; at least one image acquisition device can be a slave image acquisition device such as a three-dimensional data image acquisition device.
  • Figure 1 is a schematic flowchart of a synchronization verification method provided by an embodiment of the present disclosure.
  • the method can be executed by a synchronization verification device, where the device can be implemented by software and/or hardware, and can generally be integrated in electronic equipment.
  • the method includes:
  • Step 101 At least one image acquisition device receives a trigger instruction; wherein the trigger instruction includes image frame period data.
  • the image acquisition device refers to an image acquisition module with a camera or other shooting equipment.
  • the scanning device includes at least two image acquisition devices, which means at least one three-dimensional data image acquisition device for scanning.
  • the object performs image acquisition and includes at least one spatial position tracking device for performing image acquisition of the scanner position.
  • the image acquisition device there are many ways for the image acquisition device to receive trigger instructions at the same time.
  • the image acquisition device can receive trigger instructions at the same time in different ways.
  • the image acquisition device includes a wireless synchronization module, at least The two image acquisition devices include a master image acquisition device and at least one slave image acquisition device.
  • At least one image acquisition device receives a trigger instruction, including: the master image acquisition device receives a trigger instruction and simultaneously generates a trigger signal and sends it to at least one slave through a wireless synchronization module.
  • Image acquisition device includes a wireless synchronization module, at least The two image acquisition devices include a master image acquisition device and at least one slave image acquisition device.
  • At least one image acquisition device receives a trigger instruction, including: the master image acquisition device receives a trigger instruction and simultaneously generates a trigger signal and sends it to at least one slave through a wireless synchronization module.
  • the image acquisition device includes a wireless synchronization module
  • the at least two image acquisition devices include a master image acquisition device and at least one slave image acquisition device
  • the at least one image acquisition device receives a triggering instruction, including: each master image
  • the acquisition device receives the trigger instruction and simultaneously generates a trigger signal and sends it to the slave image acquisition device that is communicatively connected to it through the wireless synchronization module.
  • the triggering instruction includes image frame period data, where the image frame period data refers to the image collection frequency, such as how many frames of images are collected per second.
  • Step 102 Multiple image acquisition devices generate corresponding square wave synchronization signals based on the image frame period data.
  • the square wave synchronization signal refers to a periodically repeated pulse sequence
  • the square wave pulse period refers to the time interval between two adjacent pulses.
  • the image acquisition frequency can be determined based on the square wave pulse period.
  • the square wave synchronization signal is used to control the image acquisition device to collect image frames according to the square wave synchronization signal, that is, to collect image frames according to a certain period.
  • Step 103 Multiple image acquisition devices collect image frames based on corresponding square wave synchronization signals to obtain the number of image frames collected per unit time; wherein, the square wave synchronization signals of the multiple image acquisition devices are processed according to the preset synchronization frequency. Synchronize.
  • the number of acquisitions refers to how many image frames are obtained by collecting image frames according to the square wave synchronization signal in unit time. For example, according to the square wave synchronization signal, for example, 2 image frames are collected per second. In unit time, the number of image frames is obtained. The number is 2; for another example, according to the square wave synchronization signal For example, if 5 image frames are collected per second, the number of acquisitions in unit time is 5.
  • the square wave synchronization signals of multiple image acquisition devices are synchronized according to a preset synchronization frequency.
  • the preset synchronization frequency is selected and set according to the application scenario, such as outputting pulse signals regularly every second.
  • the wave synchronization signal realigns the synchronization, effectively reducing the accumulated error in the synchronization process.
  • Step 104 Generate synchronization verification results of the image acquisition devices based on the square wave synchronization signals and collection numbers of the multiple image acquisition devices.
  • calculation is performed based on the square wave synchronization signals to obtain the unit of the image frame.
  • the reference quantity within the time period. If the collection quantity and the reference quantity are the same, it is determined that the collection data of the image collection device is synchronized. If the collection quantity and the reference quantity are different, it is determined that the collection data of the image collection device is not synchronized.
  • the acquisition quantity is calculated to obtain the image acquisition frequency, and the reference frequency is determined based on the square wave synchronization signal.
  • the acquisition data synchronization of the image acquisition device is determined.
  • the acquisition frequency and the reference frequency are different, it is determined that the acquisition data of the image acquisition device is out of synchronization.
  • the above two methods are only examples of generating synchronization verification results of multiple image acquisition devices based on square wave synchronization signals and collection quantities of multiple image acquisition devices.
  • This disclosure does not take into account square wave synchronization signals and acquisitions based on multiple image acquisition devices.
  • the number of ways to generate synchronized verification results for multiple image acquisition devices is specifically limited.
  • the synchronization verification scheme provided by the embodiment of the present disclosure is applied to scanning equipment.
  • the scanning equipment includes at least two image acquisition devices, including: at least one image acquisition device receives a trigger instruction; wherein the trigger instruction includes image frame period data, and multiple image acquisition devices
  • the device generates corresponding square wave synchronization signals based on the image frame period data, and multiple image acquisition devices collect image frames based on the corresponding square wave synchronization signals to obtain the number of image frames collected per unit time; wherein, according to the preset synchronization frequency, the The square wave synchronization signals of the multiple image acquisition devices are synchronized, and the synchronization verification results of the multiple image acquisition devices are generated based on the square wave synchronization signals of the multiple image acquisition devices and the acquisition quantity.
  • the image acquisition device can be dually calibrated in terms of time base and frame rate, thereby reducing accumulated errors or errors caused by the time base.
  • the asynchronous collection of data caused by frame loss ensures synchronization accuracy, further meets the needs of different scenarios, and improves data collection efficiency.
  • the 3D data image acquisition device must collect images at the same time as the spatial position tracking device when working. More and more application scenarios have multiple spatial position tracking devices and multiple 3D data image acquisition devices. Work together in clusters to improve image collection efficiency.
  • the inability to achieve synchronous communication of multiple image acquisition devices results in low image acquisition efficiency, that is, the acquisition signal cannot be monitored in real time. The acquisition signal will have time accumulation errors and frame loss errors, and the validity of the synchronized image data cannot be guaranteed.
  • the above embodiment proposes that in any scanning scenario, such as the data collected by the cluster image acquisition device at the same time Synchronization can not only meet the needs of one spatial position tracking device working with multiple three-dimensional data image acquisition devices, but also meet the scene requirements of multiple spatial position tracking devices working with multiple three-dimensional data image acquisition devices, thereby improving the efficiency of clustered collaborative work. That is, the time base and frame rate of the collected signals can be double calibrated every second to ensure the high accuracy of the synchronization signal.
  • the image acquisition device will report it in time to reduce invalid image data caused by desynchronization. This is explained in detail below with reference to Figure 2.
  • FIG. 2 is a schematic flowchart of another synchronization verification method provided by an embodiment of the present disclosure. Based on the above embodiment, this embodiment further optimizes the above synchronization verification method. As shown in Figure 2, the method includes:
  • Step 201 The image acquisition device receives a communication instruction sent by the target device; the communication instruction includes a device identifier, and the wireless synchronization module of the image acquisition device establishes a communication connection with the wireless synchronization module of the image acquisition device corresponding to the device identifier.
  • At least two image acquisition devices include a master image acquisition device and at least one slave image acquisition device.
  • the master image acquisition device receives a trigger instruction and simultaneously generates a trigger signal and sends it to at least one slave image acquisition device through the wireless synchronization module.
  • At least two image acquisition devices include at least one master image acquisition device and at least one slave image acquisition device.
  • Each master image acquisition device receives a trigger instruction and generates a trigger signal through a wireless synchronization module and sends it to the slave image acquisition device that is communicatively connected to it. device.
  • step 201 After step 201, perform step 202 or step 203.
  • the target device (such as a computer or computer cluster or cloud) sends a trigger instruction to cause the spatial position tracking device and the three-dimensional data image acquisition device to communicate through the wireless synchronization module.
  • the target device can arbitrarily designate any two or more of the above image acquisition devices. Communicate with multiple devices. Synchronous operation can be performed only after communication is successful.
  • Figure 3a is a schematic diagram of the connection of an image acquisition device provided by an embodiment of the present disclosure. As shown in Figure 3a, it includes a spatial position tracking device and a three-dimensional data image acquisition device, a spatial position tracking device and a three-dimensional data image acquisition device.
  • the data image acquisition device is respectively connected to a PC (Personal Computer, personal computer), and receives the trigger instruction through the receiving module of the spatial position tracking device to generate a trigger signal and sends it to the wireless synchronization module of the three-dimensional data image acquisition device through the wireless synchronization module, in which the controller
  • the trigger module is controlled based on the generated square wave synchronization signal, and the camera is triggered through the trigger module to collect images.
  • Figure 3b is a schematic diagram of the connection of another image acquisition device provided by an embodiment of the present disclosure.
  • a spatial position tracking device and four three-dimensional data image acquisition devices serves as After receiving the trigger command, the main device generates a trigger signal and sends it to the wireless communication modules of the four three-dimensional data image acquisition devices through the wireless synchronization module.
  • the controller controls the trigger module based on the generated square wave synchronization signal, and triggers the camera through the trigger module to collect images. .
  • Figure 3c is a schematic diagram of the connection of another image acquisition device provided by an embodiment of the present disclosure.
  • one spatial position tracking device The device 1 communicates with the three-dimensional data image acquisition device 1-1 and the three-dimensional data image acquisition device 1-2, and a spatial position tracking device 2 and a three-dimensional data image acquisition device 2-1 communicate with each other, that is, two spatial position tracking devices
  • the main device the device simultaneously receives the trigger command sent by the computer and generates a trigger signal.
  • the spatial position tracking device 1 sends it to the wireless communication modules of the three-dimensional data image acquisition device 1-1 and the three-dimensional data image acquisition device 1-2 through the wireless synchronization module.
  • the spatial position tracking device 2 sends it to the wireless communication module of the three-dimensional data image acquisition device 2-1 through the wireless synchronization module.
  • the controller controls the trigger module based on the generated square wave synchronization signal, and triggers the camera through the trigger module to collect images.
  • the synchronization verification method of the embodiment of the present disclosure can satisfy the requirements of a single set of equipment (i.e., a Spatial position tracking device and a three-dimensional data image acquisition device) application scenarios can also meet the cluster type (i.e. one spatial position tracking device and multiple three-dimensional data image acquisition devices or multiple spatial position tracking devices and multiple three-dimensional data image acquisition devices) ) application scenarios to improve image collection efficiency.
  • a single set of equipment i.e., a Spatial position tracking device and a three-dimensional data image acquisition device
  • the cluster type i.e. one spatial position tracking device and multiple three-dimensional data image acquisition devices or multiple spatial position tracking devices and multiple three-dimensional data image acquisition devices
  • Step 204 Multiple image acquisition devices generate square wave synchronization signals based on the image frame period data, collect image frames based on the square wave synchronization signals, and obtain the number of image frames collected per unit time; wherein, multiple image acquisition devices are configured according to the preset synchronization frequency.
  • the image acquisition device is synchronized with the square wave synchronization signal.
  • the spatial position tracking device receives the trigger instruction for image acquisition and generates a trigger signal that is sent to the three-dimensional data image acquisition device through the wireless module.
  • the wireless modules of the spatial position tracking device and the three-dimensional data image acquisition device generate corresponding square wave synchronization signals based on the image frame period data in the triggering instructions.
  • the square wave synchronization signals trigger the image acquisition devices of the two and perform frame counting at the same time.
  • the square wave pulse period can be determined based on the square wave synchronization signal. Based on the square wave pulse period, for example, how many frames of images are collected per second, the acquisition number can be obtained.
  • the wireless synchronization module regularly outputs pulse signals every second to realign the square wave synchronization signals for synchronization, effectively reducing the cumulative error during the synchronization process.
  • Step 205 Multiple image acquisition devices perform calculations based on corresponding square wave synchronization signals to obtain the reference number of image frames per unit time.
  • the acquisition number and the reference number are the same, the acquisition data synchronization of the image acquisition devices is determined.
  • the acquisition quantity and the reference quantity are different, it is determined that the acquisition data of the image acquisition device is out of synchronization.
  • Step 206 When the synchronization verification result is a verification error, report the synchronization verification result to the target device.
  • Step 207 Report the collection quantity to the target device, so that the target device performs verification based on the collection quantity corresponding to at least two image collection devices and generates a total synchronization verification result.
  • each collection device can count the collected frames, that is, report the collection number to the target device.
  • the received collection number is the same, so it can By comparing the received collection numbers, if there are inconsistent collection numbers, the corresponding image collection devices may be out of sync and require further processing. Therefore, the image collection frequency of the corresponding image collection devices can be adjusted in real time to ensure synchronous image collection. , improve image collection accuracy and efficiency.
  • the master and slave devices can also achieve quasi-synchronization of image acquisition according to the above embodiment, and the master and slave devices can Double proofreading can detect errors and report them in time, which ensures the synchronization of images collected by the image acquisition master and slave devices during the scanning process. It has a double proofreading function of real-time synchronization signals, which effectively improves the accuracy and effectiveness of the collected data.
  • steps 205-206 and/or step 207 may be performed, of which Figure 2 is only an example.
  • the image acquisition device receives communication instructions sent by the target device; wherein the communication instructions include device identification, and the wireless synchronization module of the image acquisition device is established with the wireless synchronization module of the image acquisition device corresponding to the device identification.
  • Communication connection at least two image acquisition devices include a master image acquisition device and at least one slave image acquisition device.
  • the master image acquisition device receives a trigger instruction and simultaneously generates a trigger signal and sends it to at least one slave image acquisition device through a wireless synchronization module. At least two images
  • the acquisition device includes at least one master image acquisition device and at least one slave image acquisition device.
  • Each master image acquisition device receives a trigger instruction and simultaneously generates a trigger signal and sends it to the slave image acquisition device communicatively connected to it through the wireless synchronization module.
  • Multiple image acquisition devices Generate a square wave synchronization signal based on the image frame period data, collect image frames based on the square wave synchronization signal, and obtain the collection number of image frames per unit time; wherein, the square wave synchronization signals of multiple image acquisition devices are processed according to the preset synchronization frequency.
  • multiple image acquisition devices perform calculations based on the corresponding square wave synchronization signals to obtain the reference number of image frames per unit time. When the acquisition number and the reference number are the same, the acquisition data synchronization of the image acquisition devices is determined.
  • the collection quantity and the reference quantity are different, it is determined that the collection data of the image collection device is out of synchronization.
  • the synchronization verification result is a verification error
  • the verification error is reported to the target device, and the collection quantity is reported to the target device.
  • the target device is verified based on the collection numbers corresponding to at least two image collection devices, and a total synchronization verification result is generated.
  • the embodiment of the present disclosure can perform dual calibration of the time base and frame rate of the acquisition signal, reducing the accumulated error caused by the time base or the desynchronization of the acquisition data caused by frame loss, ensuring synchronization accuracy, and During the image collection process, once wireless synchronization is interrupted or out of synchronization, the image collection device will report it in time to ensure the validity and accuracy of the synchronized image data.
  • Figure 4 is a schematic structural diagram of a synchronization verification device provided by an embodiment of the present disclosure.
  • the device can be implemented by software and/or hardware, and can generally be integrated in electronic equipment. As shown in Figure 4, the device is applied to a scanning device.
  • the scanning device includes at least two image acquisition devices.
  • the device includes:
  • the receiving module 301 is configured to receive trigger instructions from at least one of the image acquisition devices at the same time; wherein the trigger instructions include image frame period data;
  • Generating module 302 configured for multiple image acquisition devices to generate corresponding square wave synchronization signals based on the image frame period data
  • the acquisition module 303 is used for multiple image acquisition devices to acquire image frames based on the corresponding square wave synchronization signals to obtain the number of acquisitions of image frames per unit time; wherein, multiple image acquisition devices collect images according to a preset synchronization frequency.
  • the square wave synchronization signal of the image acquisition device is synchronized;
  • the processing module 304 is configured to generate synchronization verification results of multiple image acquisition devices based on the square wave synchronization signals of multiple image acquisition devices and the acquisition number.
  • the device also includes:
  • the first reporting module is configured to report the collection quantity to the target device, so that the target device performs verification based on the collection quantity corresponding to the at least two image collection devices and generates a total synchronization verification result.
  • each of the image acquisition devices includes a wireless synchronization module, and the at least two image acquisition devices include a master image acquisition device and at least one slave image acquisition device; the receiving module 301 is specifically used for:
  • the master image acquisition device receives the trigger instruction and simultaneously generates a trigger signal and sends it to the at least one slave image acquisition device through the wireless synchronization module.
  • each of the image acquisition devices includes a wireless synchronization module, and the at least two image acquisition devices include at least one master image acquisition device and at least one slave image acquisition device.
  • the receiving module 301 is specifically used for:
  • Each master image acquisition device receives the trigger instruction and simultaneously generates a trigger signal and sends it to the slave image acquisition device communicatively connected to it through the wireless synchronization module.
  • the device also includes:
  • a receiving instruction module configured for the image acquisition device to receive a communication instruction sent by the target device; wherein the communication instruction includes a device identification;
  • a connection module configured to establish a communication connection between the wireless synchronization module of the image acquisition device and the wireless synchronization module of the image acquisition device corresponding to the device identification.
  • processing module 304 is specifically used for:
  • the device also includes;
  • the second reporting module is configured to report the synchronization verification result to the target device when the synchronization verification result is a verification error.
  • the synchronization verification device provided by the embodiment of the present disclosure can execute the synchronization verification method provided by any embodiment of the present disclosure, and has corresponding functional modules and beneficial effects of the execution method.
  • An embodiment of the present disclosure also provides a computer program product, which includes a computer program/instruction.
  • a computer program product which includes a computer program/instruction.
  • the computer program/instruction is executed by a processor, the synchronization verification method provided by any embodiment of the present disclosure is implemented.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • the electronic device 400 in the embodiment of the present disclosure may include, but is not limited to, mobile phones, laptops, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablets), PMPs (portable multimedia players), vehicle-mounted terminals ( Mobile terminals such as car navigation terminals) and fixed terminals such as digital TVs, personal computers, etc.
  • the electronic device shown in FIG. 5 is only an example and should not be used in connection with the embodiments of the present disclosure. any limitations on its functions and scope of use.
  • the electronic device 400 may include a processing device (eg, central processing unit, graphics processor, etc.) 401 , which may be loaded into a random access device according to a program stored in a read-only memory (ROM) 402 or from a storage device 408 .
  • the program in the memory (RAM) 403 executes various appropriate actions and processes.
  • various programs and data required for the operation of the electronic device 400 are also stored.
  • the processing device 401, ROM 402 and RAM 403 are connected to each other via a bus 404.
  • An input/output (I/O) interface 405 is also connected to bus 404.
  • embodiments of the present disclosure include a computer program product including a computer program carried on a non-transitory computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via communication device 409, or from storage device 408, or from ROM 402.
  • the processing device 401 When the computer program is executed by the processing device 401, the above functions defined in the synchronization verification method of the embodiment of the present disclosure are performed.
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic device; it may also exist independently without being assembled into the electronic device.
  • the computer-readable medium carries one or more programs.
  • the electronic device When the one or more programs are executed by the electronic device, the electronic device: at least one image acquisition device receives a trigger instruction including image frame period data, multiple images The acquisition device generates a corresponding square wave synchronization signal based on the image frame period data. Multiple image acquisition devices acquire image frames based on the corresponding square wave synchronization signal to obtain the number of image frames collected per unit time; multiple image acquisition devices are configured according to the preset synchronization frequency.
  • the square wave synchronization signals of the multiple image acquisition devices are synchronized, and the synchronization verification results of the multiple image acquisition devices are generated based on the square wave synchronization signals of the multiple image acquisition devices and the number of acquisitions.
  • Programs may be written in one or more programming languages, or a combination thereof, for executing the present disclosure.
  • Computer program code for operating, the above-mentioned programming languages include but are not limited to object-oriented programming languages such as Java, Smalltalk, C++, and also include conventional procedural programming languages such as "C" language or similar programming languages .
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as an Internet service provider through Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider such as an Internet service provider through Internet connection
  • each block in the flowchart or block diagram may represent a module, segment, or portion of code that contains one or more logic functions that implement the specified executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown one after another may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or operations. , or can be implemented using a combination of specialized hardware and computer instructions.
  • the units involved in the embodiments of the present disclosure can be implemented in software or hardware. Among them, the name of a unit does not constitute a limitation on the unit itself under certain circumstances.
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs Systems on Chips
  • CPLD Complex Programmable Logical device
  • a machine-readable medium may be a tangible medium that may contain or be stored for use by or in connection with an instruction execution system, apparatus, or device. A procedure used in conjunction with a device or equipment.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, laptop disks, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM portable compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.
  • the present disclosure provides an electronic device, including:
  • memory for storing instructions executable by the processor
  • the processor is configured to read the executable instructions from the memory and execute the instructions to implement any of the synchronization verification methods provided by this disclosure.
  • the present disclosure provides a computer-readable storage medium, the storage medium stores a computer program, the computer program is used to perform any one of the synchronization provided by the present disclosure. Verification method.
  • the synchronization verification method provided by the present disclosure can perform dual verification of time base and frame rate of the image acquisition device to ensure synchronization accuracy, further meet the needs of different scenarios, improve data collection efficiency, and has strong industrial practicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Television Signal Processing For Recording (AREA)
  • Studio Devices (AREA)

Abstract

本公开实施例涉及一种同步校验方法、装置、电子设备及存储介质,其中该方法应用于扫描设备,扫描设备包括至少两个图像采集装置,包括:至少一个图像采集装置接收包括图像帧周期数据的触发指令,多个图像采集装置基于图像帧周期数据生成对应的方波同步信号,多个图像采集装置基于对应的方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;按照预设的同步频率对多个图像采集装置的方波同步信号进行同步,基于多个图像采集装置的方波同步信号和采集数量生成多个图像采集装置的同步校验结果。采用上述技术方案,能够对图像采集装置进行时基和帧率双重校对,保证同步精度,进一步满足不同场景需求,提高数据采集效率。

Description

一种同步校验方法、装置、电子设备及存储介质
本公开要求于2022年6月28日提交中国专利局、申请号为202210753912.0、发明名称为“一种同步校验方法、装置、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及数据处理技术领域,尤其涉及一种同步校验方法、装置、电子设备及存储介质。
背景技术
目前扫描技术快速发展,比如三维扫描仪可以实现物体三维扫描广泛应用于机械、医疗整形等领域。
相关技术中,三维扫描仪的三维数据图像采集装置在工作时必须与空间位置追踪装置在同一时刻采集图像以保证采集精确,并且越来越多的应用场景中具有多个空间位置追踪装置和多个三维数据图像采集装置集群式协同工作,但是无法保证采集过程中图像同步,导致扫描结果不准确、扫描效率比较低。
发明内容
(一)要解决的技术问题
本公开要解决的技术问题是解决现有的因无法保证三维数据图像采集过程中图像同步,导致扫描结果不准确、扫描效率比较低的问题。
(二)技术方案
为了解决上述技术问题,本公开实施例提供了一种同步校验方法、装置、电子设备及存储介质。
第一方面,本公开实施例提供了一种同步校验方法,所述方法应用于扫描设备,所述扫描设备包括至少两个图像采集装置,所述方法 包括:
至少一个所述图像采集装置同时接收触发指令;其中,所述触发指令包括图像帧周期数据;
多个所述图像采集装置基于所述图像帧周期数据生成对应的方波同步信号;
多个所述图像采集装置基于所述对应的方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;其中,按照预设的同步频率对多个所述图像采集装置的所述方波同步信号进行同步;
基于多个所述图像采集装置的所述方波同步信号和所述采集数量生成多个所述图像采集装置的同步校验结果。
第二方面,本公开实施例还提供了一种同步校验装置,所述装置应用于扫描设备,所述扫描设备包括至少两个图像采集装置,所述装置包括:
接收模块,用于至少一个所述图像采集装置接收触发指令;其中,所述触发指令包括图像帧周期数据;
生成模块,用于多个所述图像采集装置基于所述图像帧周期数据生成对应的方波同步信号;
采集模块,用于多个所述图像采集装置基于所述对应的方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;其中,按照预设的同步频率对多个所述图像采集装置的所述方波同步信号进行同步;
处理模块,用于基于多个所述图像采集装置的所述方波同步信号和所述采集数量生成多个所述图像采集装置的同步校验结果。
第三方面,本公开实施例还提供了一种电子设备,所述电子设备包括:处理器;用于存储所述处理器可执行指令的存储器;所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现如本公开第一方面实施例提供的同步校验方法。
第四方面,本公开实施例还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行如本公开第一方面实施例提供的同步校验方法。
(三)有益效果
本公开实施例提供的上述技术方案与现有技术相比具有如下优点:
本公开实施例提供的该同步校验方案应用于扫描设备,扫描设备包括至少两个图像采集装置,包括:至少一个图像采集装置接收触发指令;其中,触发指令包括图像帧周期数据,多个图像采集装置基于图像帧周期数据生成对应的方波同步信号,多个图像采集装置基于对应的方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;其中,按照预设的同步频率对多个图像采集装置的方波同步信号进行同步,基于多个图像采集装置的方波同步信号和采集数量生成图像采集装置的同步校验结果。采用上述技术方案,能够对图像采集装置进行时基和帧率双重校对,减少因时间基准所产生的积累误差或是因丢帧造成的采集数据不同步,保证同步精度,进一步满足不同场景需求,提高数据采集效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种同步校验方法的流程示意图;
图2为本公开实施例提供的另一种同步校验方法的流程示意图;
图3a为本公开实施例提供的一种图像采集装置连接的示意图;
图3b为本公开实施例提供的另一种图像采集装置连接的示意图;
图3c为本公开实施例提供的又一种图像采集装置连接的示意图;
图4为本公开实施例提供的一种同步校验装置的结构示意图;
图5为本公开实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开提供的同步校验方法应用环境为扫描设备包括至少两个图像采集装置。其中,针对扫描设备包括至少两个图像采集装置,至少一个图像采集装置可以为主图像采集装置比如空间位置追踪装置;至少一个图像采集装置可以为从图像采集装置比如三维数据图像采集装置。
其中,至少一个图像采集装置接收触发指令;其中,触发指令包括图像帧周期数据,多个图像采集装置基于图像帧周期数据生成对应的方波同步信号,多个图像采集装置基于对应的方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;其中,按照预设的同步频率对多个图像采集装置的方波同步信号进行同步,基于多个图像采集装置的方波同步信号和采集数量生成多个图像采集装置的同步校验结果。
由此,能够对图像采集装置进行时基和帧率双重校对,减少因时间基准所产生的积累误差或是因丢帧造成的采集数据不同步,保证同步精度,进一步满足不同场景需求,提高数据采集效率。
图1为本公开实施例提供的一种同步校验方法的流程示意图,该方法可以由同步校验装置执行,其中该装置可以采用软件和/或硬件实现,一般可集成在电子设备中。如图1所示,该方法包括:
步骤101、至少一个图像采集装置接收触发指令;其中,触发指令包括图像帧周期数据。
其中,图像采集装置指的是具有相机等拍摄设备的图像采集模块,在本公开实施例中,扫描设备包括至少两个图像采集装置指的是至少包括一个三维数据图像采集装置,用于对扫描对象进行图像采集、以及至少包括一个空间位置追踪装置,用于对扫描仪位置进行图像采集。
在本公开实施例中,图像采集装置同时接收触发指令的方式有很多种,不同应用场景,图像采集装置同时接收触发指令的方式不同,在一些实施方式中,图像采集装置包括无线同步模块,至少两个图像采集装置包括一个主图像采集装置和至少一个从图像采集装置,至少一个图像采集装置接收触发指令,包括:主图像采集装置接收触发指令同时生成触发信号通过无线同步模块发送给至少一个从图像采集装置。
在另一些实施方式中,图像采集装置包括无线同步模块,至少两个图像采集装置包括一个主图像采集装置和至少一个从图像采集装置,至少一个图像采集装置接收触发指令,包括:每个主图像采集装置接收触发指令同时生成触发信号通过无线同步模块发送给与其通信连接的从图像采集装置。
以上两种方式仅为至少一个图像采集装置接收触发指令的示例,本公开实施例不对至少一个图像采集装置接收触发指令的方式进行具体限制。
在本公开实施例中,触发指令包括图像帧周期数据,其中,图像帧周期数据指的是图像采集频率,比如每秒采集多少帧图像。
步骤102、多个图像采集装置基于图像帧周期数据生成对应的方波同步信号。
其中,方波同步信号指的是周期性重复的脉冲序列,方波脉冲周期指的是两个相邻的脉冲之间的时间间隔,可以基于方波脉冲周期确定图像采集频率。在本公开实施例中,方波同步信号用于控制图像采集装置根据方波同步信号进行图像帧采集,即按照一定周期采集图像帧。
步骤103、多个图像采集装置基于对应的方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;其中,按照预设的同步频率对多个图像采集装置的方波同步信号进行同步。
其中,采集数量指的是在单位时间内,按照方波同步信号进行采集图像帧,得到多少帧图像帧,比如按照方波同步信号比如每秒采集2帧图像帧,在单位时间内,得到采集数量为2;再比如按照方波同步信 号比如每秒采集5帧图像帧,在单位时间内,得到采集数量为5。
在本公开实施例中,按照预设的同步频率对多个图像采集装置的方波同步信号进行同步,其中,预设的同步频率根据应用场景选择设置,比如每秒定时输出脉冲信号,将方波同步信号重新对齐同步,有效减少同步过程中的累积误差。
步骤104、基于多个图像采集装置的方波同步信号和采集数量生成图像采集装置的同步校验结果。
其中,基于多个图像采集装置的方波同步信号和采集数量生成图像采集装置的同步校验结果的方式有很多种,在一些实施方式中,基于方波同步信号进行计算,得到图像帧的单位时间内的参考数量,在采集数量和参考数量相同的情况下,确定图像采集装置的采集数据同步,在采集数量和参考数量不相同的情况下,确定图像采集装置的采集数据不同步。
在另一些实施方式中,对采集数量进行计算,得到图像采集频率,基于方波同步信号确定参考频率,在图像采集频率和参考频率相同的情况下,确定图像采集装置的采集数据同步,在图像采集频率和参考频率不相同的情况下,确定图像采集装置的采集数据不同步。
以上两种方式仅为基于多个图像采集装置的方波同步信号和采集数量生成多个图像采集装置的同步校验结果的示例,本公开不对基于多个图像采集装置的方波同步信号和采集数量生成多个图像采集装置的同步校验结果的方式进行具体限制。
本公开实施例提供的同步校验方案应用于扫描设备,扫描设备包括至少两个图像采集装置,包括:至少一个图像采集装置接收触发指令;其中,触发指令包括图像帧周期数据,多个图像采集装置基于图像帧周期数据生成对应的方波同步信号,多个图像采集装置基于对应的方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;其中,按照预设的同步频率对多个图像采集装置的方波同步信号进行同步,基于多个图像采集装置的方波同步信号和采集数量生成多个图像采集装置的同步校验结果。采用上述技术方案,能够对图像采集装置进行时基和帧率双重校对,减少因时间基准所产生的积累误差或是 因丢帧造成的采集数据不同步,保证同步精度,进一步满足不同场景需求,提高数据采集效率。
具体地,针对三维扫描仪,三维数据图像采集装置在工作时必须与空间位置追踪装置在同一时刻采集图像,越来越多的应用场景具有多个空间位置追踪装置和多个三维数据图像采集装置集群式协同工作,提高图像采集效率。然而,无法做到多个图像采集装置的同步通信,导致图像采集效率低,即不能实时对采集信号进行监测,采集信号会有存在时间累积误差和丢帧误差,无法保证同步图像数据有效性。
针对在采集过程中无法对采集信号进行实时监测和校对,无法保证采集过程中的图像同步的技术问题,上述实施例提出了任何扫描场景下,比如集群式图像采集装置在同一时刻所采集的数据同步,既能满足一个空间位置追踪装置配合多个三维数据图像采集装置,也能满足多个空间位置追踪装置配合多个三维数据图像采集装置的场景需求,从而提高集群式协同工作效率。即可以每秒对采集信号进行时基和帧率双重校对,保证同步信号的高精度。另外,在同步过程中,如果无线通信中断或出现不同步现象时,图像采集装置会及时上报,降低因不同步所造成的无效图像数据,下面结合图2进行详细说明。
图2为本公开实施例提供的另一种同步校验方法的流程示意图,本实施例在上述实施例的基础上,进一步优化了上述同步校验方法。如图2所示,该方法包括:
步骤201、图像采集装置接收目标设备发送的通信指令;其中,通信指令包括装置标识,图像采集装置的无线同步模块与装置标识对应的图像采集装置的无线同步模块建立通信连接。
步骤202、至少两个图像采集装置包括一个主图像采集装置和至少一个从图像采集装置主图像采集装置接收触发指令同时生成触发信号通过无线同步模块发送给至少一个从图像采集装置。
步骤203、至少两个图像采集装置包括至少一个主图像采集装置和至少一个从图像采集装置,每个主图像采集装置接收触发指令同时生成触发信号通过无线同步模块发送给与其通信连接的从图像采集装置。
在步骤201后,执行步骤202或者步骤203。
具体地,目标设备(比如计算机或计算机群或云端)发送触发指令使空间位置追踪装置和三维数据图像采集装置通过无线同步模块进行通信,目标设备可任意指定上述图像采集装置中的任意两个或多个进行通信,通信成功后方能进行同步操作。
示例性的,图3a为本公开实施例提供的一种图像采集装置连接的示意图,如图3a所示,包括一个空间位置追踪装置和一个三维数据图像采集装置,一个空间位置追踪装置和一个三维数据图像采集装置分别与PC(Personal Computer,个人计算机)连接,通过空间位置追踪装置的接收模块接收触发指令生成触发信号通过无线同步模块发送给三维数据图像采集装置的无线同步模块,其中,控制器基于生成方波同步信号控制触发模块,通过触发模块触发相机进行图像采集。
示例性的,图3b为本公开实施例提供的另一种图像采集装置连接的示意图,如图3b所示,一个空间位置追踪装置和四个三维数据图像采集装置,即一个空间位置追踪装置作为主设备接收触发指令后生成触发信号通过无线同步模块发送给四个三维数据图像采集装置的无线通信模块,同理,控制器基于生成方波同步信号控制触发模块,通过触发模块触发相机进行图像采集。
示例性的,图3c为本公开实施例提供的又一种图像采集装置连接的示意图,如图3c所示,两个空间位置追踪装置和三个三维数据图像采集装置,其中,一个空间位置追踪装置1和三维数据图像采集装置1-1和三维数据图像采集装置1-2进行通信连接,一个空间位置追踪装置2和一个三维数据图像采集装置2-1进行通信连接,即两个空间位置追踪装置作为主设备同时接收计算机发送的触发指令后生成触发信号,空间位置追踪装置1通过无线同步模块分别发送给三维数据图像采集装置1-1和三维数据图像采集装置1-2的无线通信模块,以及空间位置追踪装置2通过无线同步模块发送给三维数据图像采集装置2-1的无线通信模块,同理,控制器基于生成方波同步信号控制触发模块,通过触发模块触发相机进行图像采集。
由此,本公开实施例的同步校验方法既能满足单套设备(即一个 空间位置追踪装置和一个三维数据图像采集装置)应用场景,也能满足集群式(即一个空间位置追踪装置和多个三维数据图像采集装置或多个空间位置追踪装置和多个三维数据图像采集装置)应用场景,提高图像采集效率。
步骤204、多个图像采集装置基于图像帧周期数据生成方波同步信号,基于方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;其中,按照预设的同步频率对多个图像采集装置的方波同步信号进行同步。
具体地,空间位置追踪装置接收图像采集的触发指令后产生触发信号通过无线模块发送给三维数据图像采集装置。空间位置追踪装置和三维数据图像采集装置的无线模块根据触发指令中的图像帧周期数据产生相应的方波同步信号,通过该方波同步信号触发二者的图像图像采集装置,同时进行帧计数,得到图像帧的单位时间内的采集数量,即可以基于方波同步信号确定方波脉冲周期,基于方波脉冲周期,比如每秒采集多少帧图像,从而得到采集数量。
同时,无线同步模块每秒定时输出脉冲信号,将方波同步信号重新对齐同步,有效减少同步过程中的累积误差。
步骤205、多个图像采集装置基于对应的方波同步信号进行计算,得到图像帧的单位时间内的参考数量,在采集数量和参考数量相同的情况下,确定图像采集装置的采集数据同步,在采集数量和参考数量不相同的情况下,确定图像采集装置的采集数据不同步。
步骤206、在同步校验结果为校验错误时,将同步校验结果上报至目标设备。
具体地,通过方波同步信号进行计算,得到参考数量与采集数量进行对比,如果单位时间比如一秒内的参考数量与采集数量一致,则正常,反之,则上报错误。
步骤207、将采集数量上报至目标设备,以使目标设备基于至少两个图像采集装置对应的采集数量进行校验,生成总同步校验结果。
具体地,各个采集装置可以将采集的帧计数,即采集数量上报至目标设备,在同步的情况下,接收到的采集数量是相同的,因此可以 通过接收到的采集数量进行对比,如果出现不一致的采集数量,则对应的图像采集装置可能不同步,需要进行进一步处理,因此,可以实时调整对应图像采集装置的图像采集频率等,保证图像同步采集,提高图像采集精度和效率。
具体地,当含多个图像采集装置时,可通过计算机直接指定其中一个为主设备,其余为从设备,主从设备按照上述实施例方式也能够实现图像采集的准同步,而且主从设备通过双重校对均能发现错误能够及时上报,即能够确保图像采集主从设备在扫描过程中所采集图像的同步性,具有实时同步信号双重校对功能,有效改善采集数据的准确率和有效性。
步骤204之后,可以执行步骤205-206和/或步骤207,图2中仅为示例。
本公开实施例提供的同步校验方案,图像采集装置接收目标设备发送的通信指令;其中,通信指令包括装置标识,图像采集装置的无线同步模块与装置标识对应的图像采集装置的无线同步模块建立通信连接,至少两个图像采集装置包括一个主图像采集装置和至少一个从图像采集装置主图像采集装置接收触发指令同时生成触发信号通过无线同步模块发送给至少一个从图像采集装置,至少两个图像采集装置包括至少一个主图像采集装置和至少一个从图像采集装置,每个主图像采集装置接收触发指令同时生成触发信号通过无线同步模块发送给与其通信连接的从图像采集装置,多个图像采集装置基于图像帧周期数据生成方波同步信号,基于方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;其中,按照预设的同步频率对多个图像采集装置的方波同步信号进行同步,多个图像采集装置基于对应的方波同步信号进行计算,得到图像帧的单位时间内的参考数量,在采集数量和参考数量相同的情况下,确定图像采集装置的采集数据同步,在采集数量和参考数量不相同的情况下,确定图像采集装置的采集数据不同步,在同步校验结果为校验错误时,将校验错误上报至目标设备,将采集数量上报至目标设备,以使目标设备基于至少两个图像采集装置对应的采集数量进行校验,生成总同步校验结果。
由此,在图像采集过程本公开实施例能够对采集信号进行时基和帧率双重校对,减少因时间基准所产生的积累误差或是因丢帧造成的采集数据不同步,保证同步精度,并且在图像采集过程中,一旦发生无线同步中断或不同步的现象,图像采集装置会及时上报,保证同步图像数据的有效性和准确性。
图4为本公开实施例提供的一种同步校验装置的结构示意图,该装置可由软件和/或硬件实现,一般可集成在电子设备中。如图4所示,所述装置应用于扫描设备,所述扫描设备包括至少两个图像采集装置,所述装置包括:
接收模块301,用于至少一个所述图像采集装置同时接收触发指令;其中,所述触发指令包括图像帧周期数据;
生成模块302,用于多个所述图像采集装置基于所述图像帧周期数据生成对应的方波同步信号;
采集模块303,用于多个所述图像采集装置基于对应的所述方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;其中,按照预设的同步频率对多个所述图像采集装置的所述方波同步信号进行同步;
处理模块304,用于基于多个所述图像采集装置的所述方波同步信号和所述采集数量生成多个所述图像采集装置的同步校验结果。
可选的,所述装置,还包括:
第一上报模块,用于将所述采集数量上报至目标设备,以使所述目标设备基于所述至少两个图像采集装置对应的所述采集数量进行校验,生成总同步校验结果。
可选的,每个所述图像采集装置包括无线同步模块,所述至少两个图像采集装置包括一个主图像采集装置和至少一个从图像采集装置;所述接收模块301,具体用于:
所述主图像采集装置接收所述触发指令同时生成触发信号通过所述无线同步模块发送给所述至少一个从图像采集装置。
可选的,每个所述图像采集装置包括无线同步模块,所述至少两个图像采集装置包括至少一个主图像采集装置和至少一个从图像采集 装置;所述接收模块301,具体用于:
每个所述主图像采集装置接收所述触发指令同时生成触发信号通过所述无线同步模块发送给与其通信连接的从图像采集装置。
可选的,所述装置还包括:
接收指令模块,用于所述图像采集装置接收目标设备发送的通信指令;其中,所述通信指令包括装置标识;
连接模块,用于所述图像采集装置的无线同步模块与所述装置标识对应的图像采集装置的无线同步模块建立通信连接。
可选的,所述处理模块304,具体用于:
基于所述方波同步信号进行计算,得到图像帧的单位时间内的参考数量;
在所述采集数量和所述参考数量相同的情况下,确定所述图像采集装置的采集数据同步;
在所述采集数量和所述参考数量不相同的情况下,确定所述图像采集装置的采集数据不同步。
可选的,所述装置还包括;
第二上报模块,用于在所述同步校验结果为校验错误时,将所述同步校验结果上报至目标设备。
本公开实施例所提供的同步校验装置可执行本公开任意实施例所提供的同步校验方法,具备执行方法相应的功能模块和有益效果。
本公开实施例还提供了一种计算机程序产品,包括计算机程序/指令,该计算机程序/指令被处理器执行时实现本公开任一实施例所提供的同步校验方法。
图5为本公开实施例提供的一种电子设备的结构示意图。下面具体参考图5,其示出了适于用来实现本公开实施例中的电子设备400的结构示意图。本公开实施例中的电子设备400可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、个式计算机等等的固定终端。图5示出的电子设备仅仅是一个示例,不应对本公开实施例 的功能和使用范围带来任何限制。
如图5所示,电子设备400可以包括处理装置(例如中央处理器、图形处理器等)401,其可以根据存储在只读存储器(ROM)402中的程序或者从存储装置408加载到随机访问存储器(RAM)403中的程序而执行各种适当的动作和处理。在RAM 403中,还存储有电子设备400操作所需的各种程序和数据。处理装置401、ROM 402以及RAM 403通过总线404彼此相连。输入/输出(I/O)接口405也连接至总线404。
通常,以下装置可以连接至I/O接口405:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置406;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置407;包括例如磁带、硬盘等的存储装置408;以及通信装置409。通信装置409可以允许电子设备400与其他设备进行无线或有线通信以交换数据。虽然图5示出了具有各种装置的电子设备400,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置409从网络上被下载和安装,或者从存储装置408被安装,或者从ROM 402被安装。在该计算机程序被处理装置401执行时,执行本公开实施例的同步校验方法中限定的上述功能。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只 读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如HTTP(Hyper Text Transfer Protocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:至少一个图像采集装置接收包括图像帧周期数据的触发指令,多个图像采集装置基于图像帧周期数据生成对应的方波同步信号,多个图像采集装置基于对应的方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;按照预设的同步频率对多个图像采集装置的方波同步信号进行同步,基于多个图像采集装置的方波同步信号和采集数量生成多个图像采集装置的同步校验结果。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开 的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、 装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
根据本公开的一个或多个实施例,本公开提供了一种电子设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现如本公开提供的任一所述的同步校验方法。
根据本公开的一个或多个实施例,本公开提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行如本公开提供的任一所述的同步校验方法。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限 制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
工业实用性
本公开提供的同步校验方法,能够对图像采集装置进行时基和帧率双重校对,保证同步精度,进一步满足不同场景需求,提高数据采集效率,具有很强的工业实用性。

Claims (10)

  1. 一种同步校验方法,其特征在于,所述方法应用于扫描设备,所述扫描设备包括至少两个图像采集装置,所述方法包括:
    至少一个所述图像采集装置接收触发指令;其中,所述触发指令包括图像帧周期数据;
    多个所述图像采集装置基于所述图像帧周期数据生成对应的方波同步信号;
    多个所述图像采集装置基于对应的所述方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;其中,按照预设的同步频率对多个所述图像采集装置的所述方波同步信号进行同步;
    基于多个所述图像采集装置的所述方波同步信号和所述采集数量生成多个所述图像采集装置的同步校验结果。
  2. 根据权利要求1所述的同步校验方法,其特征在于,还包括:
    将所述采集数量上报至目标设备,以使所述目标设备基于所述至少两个图像采集装置对应的所述采集数量进行校验,生成总同步校验结果。
  3. 根据权利要求1或2所述的同步校验方法,其特征在于,每个所述图像采集装置包括无线同步模块,所述至少两个图像采集装置包括一个主图像采集装置和至少一个从图像采集装置;
    所述至少一个图像采集装置接收触发指令,包括:
    所述主图像采集装置接收所述触发指令同时生成触发信号通过所述无线同步模块发送给所述至少一个从图像采集装置。
  4. 根据权利要求1或2所述的同步校验方法,其特征在于,每个所述图像采集装置包括无线同步模块,所述至少两个图像采集装置包括至少一个主图像采集装置和至少一个从图像采集装置;
    所述至少一个图像采集装置接收触发指令,包括:
    每个所述主图像采集装置接收所述触发指令同时生成触发信号通过所述无线同步模块发送给与其通信连接的从图像采集装置。
  5. 根据权利要求3或者4所述的同步校验方法,其特征在于,在 所述图像采集装置接收触发指令之前,还包括:
    所述图像采集装置接收目标设备发送的通信指令;其中,所述通信指令包括装置标识;
    所述图像采集装置的无线同步模块与所述装置标识对应的图像采集装置的无线同步模块建立通信连接。
  6. 根据权利要求1-5任一项所述的同步校验方法,其特征在于,所述基于多个所述图像采集装置的所述方波同步信号和所述采集数量生成多个所述图像采集装置的同步校验结果,包括:
    基于所述方波同步信号进行计算,得到图像帧的单位时间内的参考数量;
    在所述采集数量和所述参考数量相同的情况下,确定所述图像采集装置的采集数据同步;
    在所述采集数量和所述参考数量不相同的情况下,确定所述图像采集装置的采集数据不同步。
  7. 根据权利要求1-6任一项所述的同步校验方法,其特征在于,还包括:
    在所述同步校验结果为校验错误时,将所述同步校验结果上报至目标设备。
  8. 一种同步校验装置,其特征在于,包括:所述装置应用于扫描设备,所述扫描设备包括至少两个图像采集装置,所述装置包括:
    接收模块,用于至少一个所述图像采集装置接收触发指令;其中,所述触发指令包括图像帧周期数据;
    生成模块,用于多个所述图像采集装置基于所述图像帧周期数据生成对应的方波同步信号;
    采集模块,用于多个所述图像采集装置基于对应的所述方波同步信号采集图像帧,得到图像帧的单位时间内的采集数量;其中,按照预设的同步频率对多个所述图像采集装置的所述方波同步信号进行同步;
    处理模块,用于基于多个所述图像采集装置的所述方波同步信号和所述采集数量生成多个所述图像采集装置的同步校验结果。
  9. 一种电子设备,其特征在于,所述电子设备包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现上述权利要求1-7中任一所述的同步校验方法。
  10. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-7中任一所述的同步校验方法。
PCT/CN2023/103425 2022-06-28 2023-06-28 一种同步校验方法、装置、电子设备及存储介质 WO2024002194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210753912.0 2022-06-28
CN202210753912.0A CN117354483A (zh) 2022-06-28 2022-06-28 一种同步校验方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024002194A1 true WO2024002194A1 (zh) 2024-01-04

Family

ID=89354522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103425 WO2024002194A1 (zh) 2022-06-28 2023-06-28 一种同步校验方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN117354483A (zh)
WO (1) WO2024002194A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040017486A1 (en) * 2002-07-24 2004-01-29 Cooper Alan Neal Digital camera synchronization
CN111107248A (zh) * 2018-10-25 2020-05-05 北京图森智途科技有限公司 一种多路视频采集的同步系统、方法和采集控制器
CN112217985A (zh) * 2020-08-28 2021-01-12 新奥特(北京)视频技术有限公司 信息采集方法、装置及系统
WO2021159332A1 (zh) * 2020-02-12 2021-08-19 深圳元戎启行科技有限公司 图像采集触发方法、装置、计算机设备、可读存储介质和监控设备
CN114071022A (zh) * 2020-08-07 2022-02-18 北京图森未来科技有限公司 一种图像采集设备的控制方法、装置、设备及存储介质
CN114205650A (zh) * 2022-01-27 2022-03-18 众信方智(苏州)智能技术有限公司 一种三维全景视频画面同步方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040017486A1 (en) * 2002-07-24 2004-01-29 Cooper Alan Neal Digital camera synchronization
CN111107248A (zh) * 2018-10-25 2020-05-05 北京图森智途科技有限公司 一种多路视频采集的同步系统、方法和采集控制器
WO2021159332A1 (zh) * 2020-02-12 2021-08-19 深圳元戎启行科技有限公司 图像采集触发方法、装置、计算机设备、可读存储介质和监控设备
CN114071022A (zh) * 2020-08-07 2022-02-18 北京图森未来科技有限公司 一种图像采集设备的控制方法、装置、设备及存储介质
CN112217985A (zh) * 2020-08-28 2021-01-12 新奥特(北京)视频技术有限公司 信息采集方法、装置及系统
CN114205650A (zh) * 2022-01-27 2022-03-18 众信方智(苏州)智能技术有限公司 一种三维全景视频画面同步方法及装置

Also Published As

Publication number Publication date
CN117354483A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
CN109819048B (zh) 数据同步方法、装置、终端及存储介质
US8909244B2 (en) Distributed positioning mechanism for wireless communication devices
US20190304118A1 (en) Method and apparatus for generating image generative model
CN103248471B (zh) 基于ptp协议与反射内存网的时钟同步方法
CN113032412B (zh) 数据同步方法、装置、电子设备和计算机可读介质
KR20220079978A (ko) 보정 방법 및 장치, 프로세서, 전자 기기, 저장 매체
US11263453B2 (en) Method and system for tracking and displaying object trajectory
CN115391422A (zh) 车辆感知信息生成方法、装置、设备、介质和程序产品
CN111343401B (zh) 帧同步方法及其装置
CN112818898B (zh) 模型训练方法、装置和电子设备
WO2024002194A1 (zh) 一种同步校验方法、装置、电子设备及存储介质
CN108847921A (zh) 分布式振动连续监测系统
US11281611B2 (en) General purpose interface bus (GPIB) sniffer system and method
JP2001051966A (ja) ノード装置、並列処理システム、並列処理方法、および、並列処理プログラムを記録した記録媒体
CN113420400B (zh) 一种路由关系建立方法、请求处理方法、装置及设备
CN110750424B (zh) 资源巡检方法和装置
CN114035861A (zh) 集群配置方法、装置、电子设备和计算机可读介质
CN110633182B (zh) 用于监控服务器稳定性的系统、方法和装置
CN109257158B (zh) 一种用于光差通讯的对等方式采样同步方法及系统
CN112464039A (zh) 树形结构的数据显示方法、装置、电子设备和介质
CN110991312A (zh) 生成检测信息的方法、装置、电子设备和介质
CN114651237A (zh) 数据处理方法、装置、电子设备及计算机可读存储介质
WO2023138339A1 (zh) 时间同步方法、装置及系统
CN111309549B (zh) 监控方法、系统、可读介质及电子设备
CN112688831B (zh) 联调测试方法、装置、电子设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830365

Country of ref document: EP

Kind code of ref document: A1