CN108847921A - 分布式振动连续监测系统 - Google Patents

分布式振动连续监测系统 Download PDF

Info

Publication number
CN108847921A
CN108847921A CN201810736985.2A CN201810736985A CN108847921A CN 108847921 A CN108847921 A CN 108847921A CN 201810736985 A CN201810736985 A CN 201810736985A CN 108847921 A CN108847921 A CN 108847921A
Authority
CN
China
Prior art keywords
satellite
terminal
vibration
monitor system
time difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810736985.2A
Other languages
English (en)
Other versions
CN108847921B (zh
Inventor
胡卫华
滕军
卞晓晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Shenzhen Graduate School Harbin Institute of Technology
Original Assignee
Shenzhen Graduate School Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Harbin Institute of Technology filed Critical Shenzhen Graduate School Harbin Institute of Technology
Priority to CN201810736985.2A priority Critical patent/CN108847921B/zh
Publication of CN108847921A publication Critical patent/CN108847921A/zh
Priority to PCT/CN2019/097389 priority patent/WO2020007374A1/zh
Application granted granted Critical
Publication of CN108847921B publication Critical patent/CN108847921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1095Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种分布式振动连续监测系统,包括分设于超高层建筑的各个测量点的复数个子系统,所述子系统包括:终端,包括存储器与处理器,用于根据预设采样频率与预设采样时长发出控制指令;采集单元,分设于超高层建筑的各个测量点,用于根据所述控制指令采集对应测量点的振动数据,并将所述振动数据输出至所述终端;接收端,用于接收卫星秒脉冲信号以获取卫星标准时间;所述存储器存储有计算机程序,所述处理器执行所述计算机程序以消除所述终端接收到的振动数据中的系统时间误差。本发明提供的分布式振动连续监测系统具有易于实现的分布式结构与优秀的数据采集同步性,满足超高层建筑物的振动连续监测。

Description

分布式振动连续监测系统
技术领域
本发明属于振动监测技术领域,具体地来说,是一种分布式振动连续监测系统。
背景技术
随着城市化进程,我国的建筑业迎来了迅猛发展的时机。各类建筑物如雨后春笋般涌现,满足着人们生活、生产与商业交往的需要,使城市文明空前繁荣。为了保证建筑物的结构安全,为建筑行业提供设计参考,需要对建筑物进行大量而长期的连续监测。
其中,建筑物的振动频率对建筑物的结构性能有着重要影响,是重要的监测指标。振动监测即为针对振动频率开展的监测工作,借助于设置于建筑物测量点的传感器,实现对振动数据的采集。其中,各个传感器的数据采集的同步性要求很高。
为了满足同步性要求,振动监测系统多采用集中式系统构造。作为城市地标的超高层建筑物,纵向跨度超高超限且纵向层间隔断严重。集中式系统构造面临布线难度大、布线长度超限等问题,难以在超高层建筑物中有效实施。若采用分布式系统构造,又面临同步性不高的难题。目前,超高层建筑物的振动连续监测开展尚不充分,使有效的振动连续监测手段更为缺乏。
发明内容
为了克服现有技术的不足,本发明提供了一种分布式振动连续监测系统,具有易于实现的分布式结构与优秀的数据采集同步性,满足超高层建筑物的振动连续监测。
本发明的目的通过以下技术方案来实现:
一种分布式振动连续监测系统,包括分设于超高层建筑的各个测量点的复数个子系统,所述子系统包括:
终端,包括存储器与处理器,用于根据预设采样频率与预设采样时长发出控制指令;
采集单元,分设于超高层建筑的各个测量点,用于根据所述控制指令采集对应测量点的振动数据,并将所述振动数据输出至所述终端;
接收端,用于接收卫星秒脉冲信号以获取卫星标准时间;
所述存储器存储有计算机程序,所述处理器执行所述计算机程序以根据所述卫星秒脉冲信号消除所述终端接收到的振动数据中的系统时间误差。
作为上述技术方案的改进,所述采集单元包括采集模块与传感器,所述采集模块用于根据所述控制指令执行编译程序以驱动所述传感器并向所述终端传输所述对应测量点的振动数据,所述传感器用于采集所述对应测量点的振动数据。
作为上述技术方案的进一步改进,所述系统时间误差包括时钟误差、程序时差与丢包时差,所述时钟误差为所述终端的时钟源相对于所述卫星标准时间的误差,所述程序时差为所述编译程序的运行时间相对于标准运行时间的误差,所述丢包时差为由各个子系统中的所述采集模块与所述终端之间数据传输的丢包率差异引起的时间误差。
作为上述技术方案的进一步改进,所述时钟源为本地时钟,所述本地时钟的秒信号由本地晶振、铷钟或铯钟经分频得到。
作为上述技术方案的进一步改进,所述计算机程序包括以下步骤:
根据所述卫星秒脉冲信号消除所述时钟误差与所述程序时差;
根据所述卫星秒脉冲信号消除所述丢包时差。
作为上述技术方案的进一步改进,所述传感器为用于采集加速度信号的加速度传感器,“根据所述卫星秒脉冲信号消除所述时钟误差与所述程序时差”包括以下步骤:
获取于所述控制指令发出后的首个卫星秒脉冲信号;
捕捉所述首个卫星秒脉冲信号的上升沿起点作为同步起点;
截取所述同步起点后的加速度信号作为所述对应测量点的振动数据。
作为上述技术方案的进一步改进,“根据所述卫星秒脉冲信号消除所述丢包时差”包括以下步骤:
根据所述预设采样频率与同步采样时长确定所述丢包时差;
根据所述丢包时差对应地对所述终端接收到的振动数据进行补偿。
作为上述技术方案的进一步改进,“根据所述预设采样频率与同步采样时长确定所述丢包时差”包括以下步骤:
获取于所述控制指令发出后的首个卫星秒脉冲信号;
捕捉所述首个卫星秒脉冲信号的上升沿起点作为同步起点;
根据所述同步起点、所述预设采样频率与所述同步采样时长计算理论同步终点;
根据所述同步起点与所述同步采样时长索引实际同步终点;
根据所述理论同步终点、所述实际同步终点与所述预设采样频率确定所述丢包时差。
作为上述技术方案的进一步改进,所述实际同步终点为另一卫星秒脉冲信号的上升沿起点。
作为上述技术方案的进一步改进,所述同步采样时长不大于所述预设采样时长,且为所述卫星秒脉冲信号的周期的整数倍数值中的最大值。
本发明的有益效果是:
(1)设置分设于超高层建筑的各个测量点的复数个子系统,以分布式结构实现多点同时采集,避免集中式构造存在的布线困难,具有易于实现的特点;
(2)通过接收端接收卫星秒脉冲信号,终端的处理器执行存储器中存储的计算机程序,利用卫星授时消除所述终端接收到的振动数据中的系统时间误差,实现各个子系统之间的数据采集的同步。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明实施例1提供的分布式振动连续监测系统的结构示意图;
图2是本发明实施例2提供的分布式振动连续监测系统的计算机程序的流程示意图;
图3是本发明实施例2提供的分布式振动连续监测系统的计算机程序的步骤A的流程示意图;
图4是本发明实施例2提供的分布式振动连续监测系统的计算机程序的步骤B的流程示意图;
图5是本发明实施例2提供的分布式振动连续监测系统的计算机程序的步骤B1的流程示意图;
图6a是本发明实施例2提供的分布式振动连续监测系统的计算机程序定位同步起点的第一示意图;
图6b是本发明实施例2提供的分布式振动连续监测系统的计算机程序定位同步起点的第二示意图;
图7a是本发明实施例提供的分布式振动连续监测系统实际监测的超高层建筑的一阶振型;
图7b是本发明实施例提供的分布式振动连续监测系统实际监测的超高层建筑的二阶振型;
图7c是本发明实施例提供的分布式振动连续监测系统实际监测的超高层建筑的三阶振型;
图7d是本发明实施例提供的分布式振动连续监测系统实际监测的超高层建筑的四阶振型;
图7e是本发明实施例提供的分布式振动连续监测系统实际监测的超高层建筑的五阶振型。
主要元件符号说明:
1000-分布式振动连续监测系统,0100-子系统,0110-终端,0111-存储器,0112-处理器,0113-输入单元,0114-显示单元,0120-采集单元,0121-采集模块,0122-传感器,0130-接收端。
具体实施方式
为了便于理解本发明,下面将参照相关附图对分布式振动连续监测系统进行更全面的描述。附图中给出了分布式振动连续监测系统的优选实施例。但是,分布式振动连续监测系统可以通过许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对分布式振动连续监测系统的公开内容更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在分布式振动连续监测系统的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例1
请参阅图1,本实施例公开一种分布式振动连续监测系统1000,该监测系统包括分设于超高层建筑的各个测量点的复数个子系统0100。所述子系统0100包括终端0110、采集单元0120与接收端0130,各个子系统0100之间独立设置,彼此之间无需通过线缆连接,独立地对所在的测量点进行振动数据采集。
终端0110包括存储器0111与处理器0112,用于根据预设采样频率与预设采样时长发出控制指令。可以理解,预设采样频率与预设采样时长,由用户根据具体监测的超高层建筑物的结构特征而预先设定。示范性地,在预设采样时长内,处理器0112以预设采样频率发出脉冲式的控制指令,以触发采集单元0120的采集动作,实现超高层建筑物结构振动的连续监测。
其中,终端0110包括不具备移动通信能力的终端设备(比如计算机、服务器等),亦包括移动终端(比如智能电话、平板电脑、车载电脑、智能穿戴设备等)。
存储器0111可包括存储程序区和存储数据区。其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据终端0110的使用所创建的数据(比如音频数据、备份文件等)等。此外,存储器0111可以包括高速随机存取存储器,还可以包括非易失性存储器(例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件)。
示范性地,终端0110还包括输入单元0113与显示单元0114。其中,输入单元0113用于接收用户输入的各项指令或参数(包括预设滚动方式、预设时间间隔与预设滚动次数),包括鼠标、键盘、触控面板及其他输入设备。显示单元0114用于显示终端0110的各种输出信息(包括网页页面、参数配置界面等),包括显示面板。
采集单元0120分设于超高层建筑的各个测量点,用于根据所述控制指令采集对应测量点的振动数据,并将所述振动数据输出至终端0110。可以理解,采集单元0120属于振动数据采集的执行单元,即测量超高层建筑于测量点的振动信号,并将振动信号转换为可供传输的电信号而回传至终端0110,以便进行数据分析。
采集单元0120的实现方式众多,示范性地,采集单元0120包括采集模块0121与传感器0122。
其中,采集模块0121用于根据所述控制指令执行编译程序以驱动传感器0122并向终端0110传输对应测量点的振动数据。换言之,终端0110相当于上位机,采集模块0121相当于下位机。编译程序用于将高级语言程序翻译成二进制代码,从而驱动传感器0122执行采集动作。可见地,采集模块0121一方面将终端0110的控制指令编译为机器指令以驱动传感器0122,另一方面将传感器0122采集的振动信号转换为可供传输的电信号而输出。
其中,传感器0122用于根据所述编译程序的指令采集对应测量点的振动数据。传感器0122的类型众多,包括加速度传感器、应变片等多种形式。示范性地,本实施例采用加速度传感器进行振动测量。
接收端0130用于接收卫星秒脉冲信号以获取卫星标准时间,通过卫星授时而提供各个子系统0100数据同步的时间基准。其中,卫星秒脉冲信号由卫星定位系统下发,卫星定位系统可为具有授时功能的GPS、北斗系统等类型,接收端0130为与卫星定位系统匹配的接收机。
在本实施中,存储器0111存储有计算机程序,处理器0112执行计算机程序以根据所述卫星秒脉冲信号消除终端0110接收到的振动数据中的系统时间误差,从而保证各个子系统0100之间数据采集的同步性。
示范性地,系统时间误差包括时钟误差、程序时差与丢包时差,所述时钟误差为终端0110的时钟源相对于卫星标准时间的误差,所述程序时差为编译程序的运行时间相对于标准运行时间的误差,所述丢包时差为由各个子系统0100中的采集模块0121与终端0110之间数据传输的丢包率差异引起的时间误差。
其中,时钟源为本地时钟,本地时钟的秒信号由本地晶振、铷钟或铯钟经分频得到。相对于卫星标准时间,本地时钟的精度有限而具有不同的延时,造成不同的子系统0100之间具有不同的系统延时。
其中,程序时差由各个子系统0100的采集模块0121的硬件特性之差异所引起。换言之,不同的采集模块0121的运算能力(如性能差异)、运算环境(如环境温湿度等)等均有所差异,造成编译程序在不同的采集模块0121中的运行时间存在明显差异,从而产生延时而影响同步。
其中,由于内存、传输速率等问题,振动数据于采集模块0121与终端0110之间的传输常常存在丢包现象。由于系统差异,各个子系统0100之间的丢包数(对应于丢包率)存在明显不同,造成各个子系统0100的终端0110接收到的振动数据存在数量差异,进而体现为延时现象,使数据采集无法同步,造成丢包时差。
实施例2
在实施例1的基础上,本实施例进一步公开计算机程序,该计算机程序存储于终端0110的存储器0111中,用于供处理器0112执行而实现连续监测过程中,各个子系统0100的振动数据之间的同步,从而保证监测精度。
请参阅图2,示范性地,所述计算机程序包括以下步骤:
A:根据所述卫星秒脉冲信号消除所述时钟误差与所述程序时差。可以理解,时钟误差与程序时差均影响于传感器0122采集到的振动数据。因此,根据卫星秒脉冲信号对传感器0122采集到的振动数据进行补偿,即可同时消除时钟误差与程序时差。
B:根据所述卫星秒脉冲信号消除所述丢包时差。
示范性地,传感器0122为用于采集加速度信号的加速度传感器,加速度信号为离散型的脉冲信号。请参阅图3,步骤A包括以下步骤:
A1:获取于所述控制指令发出后的首个卫星秒脉冲信号;可以理解,基于各子系统0100的时钟特性,在卫星秒脉冲信号的同一周期内,不同的接收端0130获取的卫星秒脉冲信号为同一卫星秒脉冲信号。换言之,于所述控制指令发出后,由不同的接收端0130获取的首个卫星秒脉冲信号亦为同一卫星秒脉冲信号,从而为各个子系统0100提供校准的时钟基准。
A2:捕捉所述首个卫星秒脉冲信号的上升沿起点作为同步起点;
A3:截取所述同步起点后的加速度信号作为所述对应测量点的振动数据。
请结合参阅图6a与6b,例如,以ai表示信号点,下标i表示采样点的序号。当ai+1与ai之间的幅值差大于阈值时,表明ai为首个卫星秒脉冲信号的上升沿起点,亦即为同步信号的起点(即同步起点),实现采集起点的自动校准。显然地,ai点后的加速度信号均为同步信号,符合同步要求。
请参阅图4,示范性地,步骤B包括以下步骤:
B1:根据所述预设采样频率与同步采样时长确定所述丢包时差;
B2:根据所述丢包时差对应地对终端0110接收到的振动数据进行补偿。
示范性地,所述同步采样时长不大于所述预设采样时长,且为所述卫星秒脉冲信号的周期的整数倍数值中的最大值。由于同步采样时长为卫星秒脉冲信号的周期的整数倍,理论上,自同步起点经过同步采样时长后,对应的点仍然为卫星秒脉冲信号的上升沿起点。
请参阅图5,示范性地,步骤B1包括以下步骤:
B11(与步骤A1相同):获取于所述控制指令发出后的首个卫星秒脉冲信号;
B12(与步骤A2相同):捕捉所述首个卫星秒脉冲信号的上升沿起点作为同步起点(例如ai);
B13:根据所述同步起点、所述预设采样频率与所述同步采样时长计算理论同步终点;例如,所述同步采样时长为T1,预设采样频率为N,则理论同步终点为M=ai+T1·N。
B14:根据所述同步起点与所述同步采样时长索引实际同步终点;示范性地,所述实际同步终点为另一卫星秒脉冲信号的上升沿起点。例如,在终端0110接收到的振动数据图谱中索引同步采样时长T1后的上升沿起点M,即为实际同步终点。
B15:根据所述理论同步终点、所述实际同步终点与所述预设采样频率确定所述丢包时差。例如,(M-M)/N即为丢包时差。应当理解,不同的子系统0100的丢包时差并不相同。因此,需要针对性地根据丢包时差对对应的子系统0100的振动数据进行补偿。
本实施例提供的计算机程序,有效地解决了分布式振动连续监测系统1000的数据同步问题,避免分布式结构存在的系统延时,尤其适应于超高层建筑物等大型建筑。
在分布式振动连续监测系统1000的采集数据基础上进行振型分析,可以得到超高层建筑的各阶振型,克服了数据不同步的技术障碍,实现了以往无法实现的超高层建筑的振动监测。图7a~7e分别示出了实际监测的超高层建筑的一至五阶的振型结构,显示了分布式振动连续监测系统1000的有效性。
在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。

Claims (10)

1.一种分布式振动连续监测系统,其特征在于,包括分设于超高层建筑的各个测量点的复数个子系统,所述子系统包括:
终端,包括存储器与处理器,用于根据预设采样频率与预设采样时长发出控制指令;
采集单元,分设于超高层建筑的各个测量点,用于根据所述控制指令采集对应测量点的振动数据,并将所述振动数据输出至所述终端;
接收端,用于接收卫星秒脉冲信号以获取卫星标准时间;
所述存储器存储有计算机程序,所述处理器执行所述计算机程序以根据所述卫星秒脉冲信号消除所述终端接收到的振动数据中的系统时间误差。
2.根据权利要求1所述的分布式振动连续监测系统,其特征在于,所述采集单元包括采集模块与传感器,所述采集模块用于根据所述控制指令执行编译程序以驱动所述传感器并向所述终端传输所述对应测量点的振动数据,所述传感器用于采集所述对应测量点的振动数据。
3.根据权利要求2所述的分布式振动连续监测系统,其特征在于,所述系统时间误差包括时钟误差、程序时差与丢包时差,所述时钟误差为所述终端的时钟源相对于所述卫星标准时间的误差,所述程序时差为所述编译程序的运行时间相对于标准运行时间的误差,所述丢包时差为由各个子系统中的所述采集模块与所述终端之间数据传输的丢包率差异引起的时间误差。
4.根据权利要求3所述的分布式振动连续监测系统,其特征在于,所述时钟源为本地时钟,所述本地时钟的秒信号由本地晶振、铷钟或铯钟经分频得到。
5.根据权利要求3所述的分布式振动连续监测系统,其特征在于,所述计算机程序包括以下步骤:
根据所述卫星秒脉冲信号消除所述时钟误差与所述程序时差;
根据所述卫星秒脉冲信号消除所述丢包时差。
6.根据权利要求5所述的分布式振动连续监测系统,其特征在于,所述传感器为用于采集加速度信号的加速度传感器,“根据所述卫星秒脉冲信号消除所述时钟误差与所述程序时差”包括以下步骤:
获取于所述控制指令发出后的首个卫星秒脉冲信号;
捕捉所述首个卫星秒脉冲信号的上升沿起点作为同步起点;
截取所述同步起点后的加速度信号作为所述对应测量点的振动数据。
7.根据权利要求5所述的分布式振动连续监测系统,其特征在于,“根据所述卫星秒脉冲信号消除所述丢包时差”包括以下步骤:
根据所述预设采样频率与同步采样时长确定所述丢包时差;
根据所述丢包时差对应地对所述终端接收到的振动数据进行补偿。
8.根据权利要求7所述的分布式振动连续监测系统,其特征在于,“根据所述预设采样频率与同步采样时长确定所述丢包时差”包括以下步骤:
获取于所述控制指令发出后的首个卫星秒脉冲信号;
捕捉所述首个卫星秒脉冲信号的上升沿起点作为同步起点;
根据所述同步起点、所述预设采样频率与所述同步采样时长计算理论同步终点;
根据所述同步起点与所述同步采样时长索引实际同步终点;
根据所述理论同步终点、所述实际同步终点与所述预设采样频率确定所述丢包时差。
9.根据权利要求8所述的分布式振动连续监测系统,其特征在于,所述实际同步终点为另一卫星秒脉冲信号的上升沿起点。
10.根据权利要求7所述的分布式振动连续监测系统,其特征在于,所述同步采样时长不大于所述预设采样时长,且为所述卫星秒脉冲信号的周期的整数倍数值中的最大值。
CN201810736985.2A 2018-07-06 2018-07-06 分布式振动同步连续监测系统 Active CN108847921B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810736985.2A CN108847921B (zh) 2018-07-06 2018-07-06 分布式振动同步连续监测系统
PCT/CN2019/097389 WO2020007374A1 (zh) 2018-07-06 2019-07-24 分布式振动连续监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810736985.2A CN108847921B (zh) 2018-07-06 2018-07-06 分布式振动同步连续监测系统

Publications (2)

Publication Number Publication Date
CN108847921A true CN108847921A (zh) 2018-11-20
CN108847921B CN108847921B (zh) 2020-09-29

Family

ID=64201563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810736985.2A Active CN108847921B (zh) 2018-07-06 2018-07-06 分布式振动同步连续监测系统

Country Status (2)

Country Link
CN (1) CN108847921B (zh)
WO (1) WO2020007374A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110220594A (zh) * 2019-07-24 2019-09-10 哈尔滨工业大学(深圳) 移动平台及基于分布式同步采集的振动检测系统
WO2020007374A1 (zh) * 2018-07-06 2020-01-09 哈尔滨工业大学(深圳) 分布式振动连续监测系统
CN110739969A (zh) * 2019-10-18 2020-01-31 唐智科技湖南发展有限公司 一种信号同步采集系统
CN110220594B (zh) * 2019-07-24 2024-07-02 哈尔滨工业大学(深圳) 移动平台及基于分布式同步采集的振动检测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147597A (zh) * 2010-02-10 2011-08-10 广州大学 一种重大建筑与桥梁结构的健康监测系统
US20120046866A1 (en) * 2010-08-23 2012-02-23 Schlumberger Technology Corporation Oilfield applications for distributed vibration sensing technology
CN102735331A (zh) * 2011-11-30 2012-10-17 重庆大学 具有片上处理能力的无线传感器网络节点
CN106788843A (zh) * 2016-12-09 2017-05-31 中北大学 一种分布式测试系统的gps同步方法
CN106936530A (zh) * 2017-03-28 2017-07-07 浙江大学 一种实现多测点同步采集的无线传感风荷载监测系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776767A (zh) * 2010-02-08 2010-07-14 北京豪仪测控工程有限公司 无线地震仪系统
CA2699596A1 (fr) * 2010-03-24 2011-09-24 Hydro-Quebec Systeme et methode de synchronisation de phase de signaux produits par des unites de mesure respectives
CN104316168B (zh) * 2014-11-19 2018-01-05 中国人民解放军总参谋部工程兵科研三所 可自校准的组网式无线振动测试仪
CN108847921B (zh) * 2018-07-06 2020-09-29 哈尔滨工业大学(深圳) 分布式振动同步连续监测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147597A (zh) * 2010-02-10 2011-08-10 广州大学 一种重大建筑与桥梁结构的健康监测系统
US20120046866A1 (en) * 2010-08-23 2012-02-23 Schlumberger Technology Corporation Oilfield applications for distributed vibration sensing technology
CN102735331A (zh) * 2011-11-30 2012-10-17 重庆大学 具有片上处理能力的无线传感器网络节点
CN106788843A (zh) * 2016-12-09 2017-05-31 中北大学 一种分布式测试系统的gps同步方法
CN106936530A (zh) * 2017-03-28 2017-07-07 浙江大学 一种实现多测点同步采集的无线传感风荷载监测系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020007374A1 (zh) * 2018-07-06 2020-01-09 哈尔滨工业大学(深圳) 分布式振动连续监测系统
CN110220594A (zh) * 2019-07-24 2019-09-10 哈尔滨工业大学(深圳) 移动平台及基于分布式同步采集的振动检测系统
CN110220594B (zh) * 2019-07-24 2024-07-02 哈尔滨工业大学(深圳) 移动平台及基于分布式同步采集的振动检测系统
CN110739969A (zh) * 2019-10-18 2020-01-31 唐智科技湖南发展有限公司 一种信号同步采集系统

Also Published As

Publication number Publication date
CN108847921B (zh) 2020-09-29
WO2020007374A1 (zh) 2020-01-09

Similar Documents

Publication Publication Date Title
EP3333586B1 (en) Three-dimensional space detection system, positioning method and system
CN110329273A (zh) 一种用于无人驾驶获取数据同步的方法及装置
EP3009897B1 (en) Distribution device, distribution system, and distribution method
WO2018098606A1 (zh) 使用以太网与rs-232串口协同工作的振动监控系统高精度同步数传方法与装置
CN109725572A (zh) 一种多传感器精准时钟同步系统及方法
CN108023658B (zh) 高精度时钟同步授时方法与装置
CN107014381B (zh) Pld、dsp、组合导航系统、数据处理方法和装置
CN204650151U (zh) 多路高速脉冲输入时间同步设备
WO2022247915A1 (zh) 融合定位方法、装置、设备、存储介质及程序产品
EP2365651A2 (en) System and method for providing time synchronization
CN108847921A (zh) 分布式振动连续监测系统
Zhmud et al. Software structure for the laser sensor of the Earth crust Lunar-Solar tide deformations
CN103941579B (zh) 一种用于海洋仪器的时刻记录和时钟同步方法
CN112003768B (zh) 多节点测试系统及用于执行多节点测试的方法
CN111664844A (zh) 导航方法、导航装置和电子设备
CN103941281A (zh) 一种分布式矿震检测方法及装置
CN104573135A (zh) 基于反射内存网与中间件技术的实时数据采集方法及装置
CN103532786A (zh) 一种服务器同步检测器及同步检测方法和系统
CN110809041B (zh) 一种数据同步方法、装置、电子设备及存储介质
CN115097379A (zh) 一种定位追踪方法、装置、设备及存储介质
CN116149217A (zh) 基于ttp总线的分布式时间敏感信息同步采集控制系统
CN101887286A (zh) 时间格式的转换方法及装置
CN110750424B (zh) 资源巡检方法和装置
Germenis et al. Low latency and low cost smart embedded seismograph for early warning IoT applications
WO2024002194A1 (zh) 一种同步校验方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant