WO2021157704A1 - 光学フィルムの製造方法 - Google Patents

光学フィルムの製造方法 Download PDF

Info

Publication number
WO2021157704A1
WO2021157704A1 PCT/JP2021/004364 JP2021004364W WO2021157704A1 WO 2021157704 A1 WO2021157704 A1 WO 2021157704A1 JP 2021004364 W JP2021004364 W JP 2021004364W WO 2021157704 A1 WO2021157704 A1 WO 2021157704A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
photo
compound
optical film
Prior art date
Application number
PCT/JP2021/004364
Other languages
English (en)
French (fr)
Inventor
一茂 中川
西川 秀幸
真人 中尾
峻也 加藤
浩之 萩尾
寛 野副
邦浩 加瀬澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021576187A priority Critical patent/JP7386268B2/ja
Publication of WO2021157704A1 publication Critical patent/WO2021157704A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing an optical film.
  • the liquid crystal layer formed by using a liquid crystal compound is used for an optical film used in the display field.
  • a method for forming a liquid crystal layer a method using a photo-aligned layer containing a photo-aligned compound is known (Reference 1). Specifically, there is known a method of forming a liquid crystal layer by forming a photo-alignment layer having an orientation-regulating force and then applying a liquid crystal layer-forming composition on the photo-alignment layer.
  • a method for producing an optical film which comprises a step A4 of orienting a liquid crystal compound in a second coating film to form a liquid crystal layer in this order.
  • the photo-aligned compound has a maximum absorption wavelength derived from the photo-aligned group at a wavelength of 250 to 450 nm.
  • the photo-aligned compound has a maximum absorption wavelength derived from the photo-aligned group at a wavelength of 250 to 450 nm.
  • the composition for forming a liquid crystal layer contains a polymerization initiator and contains The method for producing an optical film according to any one of (5) to (10), wherein the polymerization initiator satisfies Requirement 1 or Requirement 2 described later.
  • a method for producing an optical film which comprises a step B3 of orienting a liquid crystal compound in a coating film to form a liquid crystal layer in this order.
  • the photo-aligned compound has a maximum absorption wavelength derived from the photo-aligned group at a wavelength of 250 to 450 nm.
  • the photo-aligned compound has a maximum absorption wavelength derived from the photo-aligned group at a wavelength of 250 to 450 nm.
  • the composition for forming a liquid crystal layer contains a polymerization initiator and contains The method for producing an optical film according to any one of (22) to (25), wherein the polymerization initiator satisfies Requirement 1 or Requirement 2 described later.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and thickness direction retardation at wavelength ⁇ , respectively. Unless otherwise specified, the wavelength ⁇ is 550 nm.
  • Re ( ⁇ ) and Rth ( ⁇ ) are values measured at a wavelength ⁇ in AxoScan and Axometrics.
  • Slow phase axial direction (°) Re ( ⁇ ) R0 ( ⁇ )
  • Rth ( ⁇ ) ((nx + ny) /2-nz) ⁇ d Is calculated.
  • R0 ( ⁇ ) is displayed as a numerical value calculated by AxoScan, it means Re ( ⁇ ).
  • cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethylmethacrylate (1.49), And polystyrene (1.59).
  • light means active light or radiation, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light: Extreme Ultraviolet), X-rays, ultraviolet rays, and the like. And, it means an electron beam (EB: Electron Beam) and the like. Of these, ultraviolet rays are preferable.
  • the bonding direction of the divalent group (for example, -O-CO-) described in the present specification is not particularly limited, and for example, L 2 is-in the bonding of "L 1- L 2- L 3".
  • L 2 is * 1-O-CO- * 2. It may be * 1-CO-O- * 2.
  • FIG. 1 is a diagram in which a composition for forming a photo-alignment layer containing a photo-alignment compound is applied onto a base material 100 to form a coating film 120.
  • the photo-oriented group LA in the photo-aligned compound contained in the coating film 120 is oriented in various directions.
  • the photo-oriented group LA when polarized light is irradiated from the coating film 120 side, the photo-oriented group LA is oriented by the polarized light, and as shown in FIG. 2, a photo-aligned layer having an orientation-regulating force. 140 is formed on the substrate 100.
  • FIG. 3 when the liquid crystal layer forming composition containing the liquid crystal compound LC and the solvent is applied on the photoalignment layer 140 to form the coating film 160, it is contained in the liquid crystal layer forming composition.
  • the orientation of the photo-oriented group LA in the photo-aligned layer is relaxed by the solvent, and the orientation is disturbed. Therefore, as shown in FIG.
  • the first embodiment of the present invention has the following steps A1 to A4.
  • Step A1 A composition for forming a photoalignment layer containing a photoalignment compound is applied onto a substrate to form a first coating film.
  • Step A2 Formation of a liquid crystal layer containing a liquid crystal compound on the first coating film.
  • Step of applying the compound for forming a second coating film Step A3: The first coating film is irradiated with polarized light to impart an orientation regulating force to the first coating film to form a photoalignment layer.
  • Step A4 A step of orienting the liquid crystal compound in the second coating film to form a liquid crystal layer The procedure of each step will be described in detail below.
  • Step A1 is a step of applying a composition for forming a photo-alignment layer containing a photo-alignment compound onto a base material to form a first coating film.
  • a first coating film 12 containing a photo-aligned compound having a photo-aligning group LA is formed on the base material 10.
  • the photooriented group LA is oriented in various directions.
  • the base material is a member that supports the photoalignment layer and the liquid crystal layer, which will be described later.
  • the base material may be an organic base material (a base material composed of an organic material) or an inorganic base material (a base material composed of an inorganic material), and an organic base material is preferable.
  • a resin base material is preferable.
  • Materials for the resin substrate include cellulose-based polymers; polymethylmethacrylate and acrylic polymers such as acrylate ring-containing polymers, acrylic acid ester polymers; thermoplastic norbornene-based polymers; polycarbonate-based polymers; polyethylene terephthalates, and , Polyester-based polymers such as polyethylene naphthalate; Polystyrene and styrene-based polymers such as acrylonitrile styrene copolymers; Polyethylene-based polymers such as polyethylene, polypropylene, and ethylene-propylene copolymers; , And amide-based polymers such as aromatic polyamides; imide-based polymers; sulfone-based polymers; polyether sulfone-based polymers; polyether ether ketone-based polymers; polyphenylene sulfide-based polymers; vinylidene chloride-based polymers; vinyl alcohol-based polymers; vinyl
  • Examples of the inorganic base material include a glass base material.
  • the base material is preferably transparent. That is, as the base material, a transparent base material is preferable.
  • the transparent base material is intended to be a base material having a visible light transmittance of 60% or more, and the transmittance is preferably 80% or more, more preferably 90% or more.
  • the base material preferably has a hydrogen-bonding group on its surface.
  • the hydrogen-bonding group include a hydroxy group, a thiol group, a carboxy group, an amino group, an amide group, a urea group, and a urethane group.
  • a hydroxy group or a carboxy group is preferable simply because “the effect of the present invention is more excellent”).
  • the method for introducing a hydrogen-bonding group onto the surface of the base material is not particularly limited, and examples thereof include known surface treatment methods such as corona treatment and ultraviolet irradiation treatment. Further, the material (for example, polymer) itself constituting the base material may have a hydrogen-bonding group.
  • the base material may contain an additive having a hydrogen-bonding group in addition to the main component constituting the base material.
  • the base material contains a compound that is decomposed by heat or light to generate a hydrogen-bonding group, and the surface of the base material is subjected to a predetermined treatment (for example, light irradiation treatment or heat treatment). Hydrogen-bonding groups may be introduced.
  • the water contact angle on the surface of the base material is not particularly limited, but 80 ° or less is preferable, and 70 ° or less is more preferable, because the effect of the present invention is more excellent.
  • the lower limit is not particularly limited, but it is often 1 ° or more.
  • the method for measuring the water contact angle on the surface of the base material is as follows. First, a 3 ⁇ L liquid using a contact angle meter [“CA-X” type contact angle meter, manufactured by Kyowa Interface Science Co., Ltd.] in a dry state (20 ° C./65% RH) and using pure water as a liquid. Droplets are made on the tip of the needle and brought into contact with the surface of the substrate to form droplets on the substrate. The angle formed by the tangent to the liquid surface and the surface of the base material at the point where the base material and the liquid come into contact with each other 15 seconds after the dropping is measured, and the angle on the side containing the liquid is measured and used as the water contact angle.
  • the base material may have a single-layer structure or a multi-layer structure.
  • the base material may have a support and an optically anisotropic layer arranged on the support.
  • the optically anisotropic layer include an optically anisotropic layer having a phase difference in the in-plane direction and an optically anisotropic layer having a phase difference in the thickness direction.
  • the thickness of the base material is not particularly limited, and is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, and even more preferably 20 to 90 ⁇ m.
  • the photo-oriented compound is a compound having a photo-oriented group.
  • the "photo-oriented group” refers to a group having a photo-alignment function in which rearrangement or an heterogeneous chemical reaction is induced by irradiation with light having anisotropy (for example, plane polarized light).
  • a photo-oriented group in which at least one of dimerization and isomerization is generated by the action of light is preferable from the viewpoint of excellent orientation uniformity and good thermal stability or chemical stability.
  • Examples of photo-oriented groups that dimerize by the action of light include cinnamic acid derivatives (M. Schadt et al., J. Appl. Phys., Vol. 31, No. 7, page 2155 (1992)) and coumarins. Derivatives (M. Schadt et al., Nature., Vol. 381, page 212 (1996)), coumarin derivatives (Toshihiro Ogawa et al. Examples include groups having a skeleton of at least one derivative selected from the group consisting of (YK Jang et al., SID Int. Symposium Digest, P-53 (1997)).
  • examples of photo-oriented groups that are isomerized by the action of light include azobenzene compounds (K.
  • the photooriented group is preferably selected from the group consisting of a cinnamoyl group, an azobenzene group, a chalconyl group, and a coumarin group.
  • the photo-aligned compound is preferably a polymer because the effect of the present invention is more excellent.
  • the photo-oriented compound preferably contains a repeating unit having a photo-oriented group.
  • the structure of the main chain of the repeating unit having a photo-oriented group is not particularly limited, and known structures include known structures such as (meth) acrylic, styrene, siloxane, cycloolefin, methylpentene, amide, and. , A skeleton selected from the group consisting of aromatic esters is preferred.
  • a skeleton selected from the group consisting of (meth) acrylic-based, siloxane-based, and cycloolefin-based skeletons is more preferable, and (meth) acrylic-based skeletons are even more preferable.
  • the repeating unit having a photo-oriented group As the repeating unit having a photo-oriented group, the repeating unit represented by the formula (W) is preferable.
  • RW1 represents a hydrogen atom or a methyl group.
  • L W represents a single bond or a divalent linking group. Preferred embodiments of the divalent linking group are the same as preferred embodiment of the divalent linking group represented by L 1 to be described later.
  • RW2 , RW3 , RW4 , RW5 and RW6 each independently represent a hydrogen atom or substituent. Of R W2, R W3, R W4 , R W5 and R W6, may form a ring by bonding two groups adjacent. Type of the substituent is not particularly limited, include groups exemplified in the alkyl group has optionally may substituent represented by R 4 to be described later. Of these, an alkoxy group is preferable.
  • the content of the repeating unit having a photo-oriented group in the photo-aligned compound is not particularly limited, but 15 to 98% by mass is based on all the repeating units in the photo-aligned compound in that the effect of the present invention is more excellent. It is preferable, and 30 to 95% by mass is more preferable.
  • the photo-oriented compound preferably contains a repeating unit having a crosslinkable group.
  • the structure of the main chain of the repeating unit having a crosslinkable group is not particularly limited, and known structures include known structures such as (meth) acrylic, styrene, siloxane, cycloolefin, methylpentene, amide, and.
  • a skeleton selected from the group consisting of aromatic esters is preferred.
  • a skeleton selected from the group consisting of (meth) acrylic-based, siloxane-based, and cycloolefin-based skeletons is more preferable, and (meth) acrylic-based skeletons are even more preferable.
  • the repeating unit having a crosslinkable group As the repeating unit having a crosslinkable group, the repeating unit represented by the formula (1) is preferable.
  • R 1 represents a hydrogen atom or a methyl group.
  • L 1 represents a single bond or a divalent linking group.
  • the divalent linking group is not particularly limited, and for example, a divalent hydrocarbon group (for example, an alkylene group having 1 to 10 carbon atoms, an alkenylene group having 1 to 10 carbon atoms, and an alkynylene group having 1 to 10 carbon atoms) are not particularly limited. Divalent aliphatic hydrocarbon groups such as, and divalent aromatic hydrocarbon groups such as arylene groups), divalent heterocyclic groups, -O-, -S-, -NH-, -N (R).
  • Ra represents a hydrogen atom or an alkyl group.
  • Z represents a crosslinkable group.
  • the type of the crosslinkable group is not particularly limited, and examples thereof include known crosslinkable groups, such as a radical polymerizable group and a cationically polymerizable group.
  • As the crosslinkable group any of the groups represented by the formulas (Z1) to (Z4) is preferable.
  • R 2 represents a hydrogen atom, a methyl group, or an ethyl group.
  • R 3 represents a hydrogen atom or a methyl group. * Represents the bond position.
  • the content of the repeating unit having a cross-linking group in the photo-aligned compound is not particularly limited, but the effect of the present invention is more excellent in the photo-aligned compound. 20 to 80% by mass is preferable, and 30 to 70% by mass is more preferable, based on all the repeating units of.
  • the photo-oriented compound may contain other repeating units other than the repeating unit having a photo-oriented group and the repeating unit having a crosslinkable group described above.
  • the other repeating unit include a repeating unit having an interacting group described later, a repeating unit having an alkyl group described later, and the like.
  • the weight average molecular weight (Mw) of the photo-aligned compound is not particularly limited, but 10,000 to 500,000 is preferable, and 20,000 to 300,000 is more preferable, because the effect of the present invention is more excellent.
  • the weight average molecular weight and the number average molecular weight in the present invention are values measured by a gel permeation chromatography (GPC) method under the following conditions.
  • the photo-aligned compound can be synthesized by a known method.
  • composition for forming a photo-alignment layer contains the above-mentioned photo-alignment compound.
  • the content of the photo-aligned compound in the composition for forming a photo-aligned layer is not particularly limited, but 80% by mass with respect to the total solid content in the composition for forming a photo-aligned layer in that the effect of the present invention is more excellent.
  • the above is preferable, and 90% by mass or more is more preferable.
  • the upper limit is not particularly limited, but 100% by mass can be mentioned.
  • the total solid content in the composition for forming the photo-aligned layer is intended to be a component constituting the photo-aligned layer, and does not contain a solvent.
  • the composition for forming a photoalignment layer may contain a thermoacid generator.
  • the cationically polymerizable group can be polymerized by using a thermoacid generator when forming the liquid crystal layer.
  • the content of the thermoacid generator in the composition for forming a photoalignment layer is preferably 0.01 to 20% by mass, preferably 0.3 to 10% by mass, based on the total solid content in the composition for forming a photoalignment layer. % Is more preferable.
  • composition for forming a photoalignment layer may contain a solvent.
  • a solvent an organic solvent is preferable.
  • Organic solvents include amines (eg diisopropylethylamine), amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine, 1,3-dioxolane), hydrocarbons.
  • benzene, hexane alkyl halides (eg, chloroform, dichloromethane), esters (eg, methyl acetate, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclopentanone), and ethers (eg, eg, acetone, methyl ethyl ketone, cyclopentanone).
  • Tetrahydrofuran, 1,2-dimethoxyethane Two or more kinds of organic solvents may be used in combination.
  • step A1 a composition for forming a photo-alignment layer containing a photo-alignment compound is applied onto the base material.
  • the method of applying the composition for forming a photo-alignment layer onto a substrate is not particularly limited, and is a curtain coating method, a dip coating method, a spin coating method, a print coating method, a spray coating method, a slot coating method, a roll coating method, and a slide. Examples include a coating method, a blade coating method, a gravure coating method, and a wire bar method.
  • the first coating film to be formed may be subjected to a drying treatment, if necessary.
  • the drying treatment method include heat treatment.
  • the heating temperature during the heat treatment is preferably 50 to 250 ° C., more preferably 50 to 150 ° C., and the heating time is preferably 10 seconds to 10 minutes.
  • the thickness of the first coating film is not particularly limited, but is often 2.0 ⁇ m or less, and 1.0 ⁇ m or less is preferable because the effect of the present invention is more excellent.
  • the lower limit is not particularly limited, but is preferably 0.01 ⁇ m or more.
  • the photo-aligned compound has a maximum absorption wavelength derived from the photo-oriented group at a wavelength of 250 to 450 nm, and the base material at the maximum absorption wavelength derived from the photo-oriented group.
  • the absorbance is preferably 1.0 or less.
  • Step A2 is a step of applying a liquid crystal layer forming composition containing a liquid crystal compound on the first coating film to form a second coating film.
  • a second coating film 14 containing the liquid crystal compound LC is formed on the first coating film 12.
  • the liquid crystal compound LC faces in various directions.
  • liquid crystal compound The type of the liquid crystal compound is not particularly limited, and examples thereof include compounds capable of any of homeotropic orientation, homogeneous orientation, hybrid orientation, and cholesteric orientation.
  • liquid crystal compounds can be classified into rod-shaped type and disk-shaped type according to their shapes.
  • a polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but a rod-shaped liquid crystal compound or a discotic liquid crystal compound (disk-shaped liquid crystal compound) is preferable.
  • a liquid crystal compound which is a monomer or has a relatively low molecular weight having a degree of polymerization of less than 100 is preferable.
  • the liquid crystal compound preferably has a polymerizable group. That is, the liquid crystal compound is preferably a polymerizable liquid crystal compound.
  • the polymerizable group contained in the polymerizable liquid crystal compound include an acryloyl group, a methacryloyl group, an epoxy group, and a vinyl group.
  • the rod-shaped liquid crystal compound for example, those described in claim 1 of JP-A No. 11-513019 or paragraphs [0026] to [0098] of JP-A-2005-289980 are preferable, and the discotic liquid crystal compound is preferably a discotic liquid crystal compound.
  • the discotic liquid crystal compound is preferably a discotic liquid crystal compound.
  • those described in paragraphs [0020] to [0067] of JP2007-108732 or paragraphs [0013] to [0108] of JP2010-2404038 are preferable.
  • the polymerizable liquid crystal compound a liquid crystal compound having a reverse wavelength dispersibility can be used.
  • the liquid crystal compound having "reverse wavelength dispersibility” means that the in-plane retardation (Re) value at a specific wavelength (visible light range) of a retardation film produced using this compound is measured. In this case, it means that the Re value becomes equal or higher as the measurement wavelength becomes larger.
  • the reverse wavelength dispersible liquid crystal compound is not particularly limited as long as it can form a reverse wavelength dispersive film as described above, and is represented by, for example, the general formula (I) described in JP-A-2008-297210. (In particular, the compounds described in paragraphs [0034] to [0039]), and the compounds represented by the general formula (1) described in JP-A-2010-084032 (particularly, paragraphs [0067] to [0073]. ], And compounds represented by the general formula (1) described in JP-A-2016-081035 (particularly, compounds described in paragraphs [0043] to [0055]).
  • composition for forming a liquid crystal layer contains a liquid crystal compound.
  • the content of the liquid crystal compound in the composition for forming a liquid crystal layer is not particularly limited, but is preferably 50% by mass or more, preferably 70% by mass or more, based on the total solid content in the composition, in that the effect of the present invention is more excellent.
  • the above is more preferable, and 90% by mass or more is further preferable.
  • the upper limit is not particularly limited, but in many cases it is 99% by mass or less.
  • the total solid content in the liquid crystal layer forming composition is intended to be a component constituting the liquid crystal layer, and does not contain a solvent.
  • the composition for forming a liquid crystal layer may contain a compound other than the above-mentioned liquid crystal compound.
  • the liquid crystal layer forming composition may contain a leveling agent.
  • the leveling agent preferably has a fluorine atom or a silicon atom. That is, as the leveling agent, a fluorine-based leveling agent or a silicon-based leveling agent is preferable, and a fluorine-based leveling agent is more preferable.
  • the leveling agent include the compounds described in paragraphs [0079] to [0102] of JP-A-2007-069471, and the compounds represented by the general formula (I) described in JP-A-2013-047204.
  • the content of the leveling agent in the liquid crystal layer forming composition is preferably 0.01 to 5% by mass, more preferably 0.05 to 1% by mass, based on the total solid content in the liquid crystal layer forming composition. ..
  • the liquid crystal layer forming composition may contain a polymerization initiator.
  • the polymerization initiator used is selected according to the type of polymerization reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
  • examples of the photopolymerization initiator include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, and combinations of triarylimidazole dimers and p-aminophenyl ketones. Be done.
  • the content of the polymerization initiator in the liquid crystal layer forming composition is preferably 0.01 to 20% by mass, more preferably 0.3 to 10% by mass, based on the total solid content in the liquid crystal layer forming composition. preferable.
  • the composition for forming a liquid crystal layer may contain a polymerizable monomer.
  • the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Of these, a polyfunctional radically polymerizable monomer is preferable.
  • a monomer copolymerizable with the above-mentioned liquid crystal compound having a polymerizable group is preferable.
  • the content of the polymerizable monomer in the liquid crystal layer forming composition is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, based on the total mass of the liquid crystal compound.
  • the liquid crystal layer forming composition may contain a solvent.
  • a solvent an organic solvent is preferable.
  • Organic solvents include amines (eg diisopropylethylamine), amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine, 1,3-dioxolane), hydrocarbons.
  • benzene, hexane alkyl halides (eg, chloroform, dichloromethane), esters (eg, methyl acetate, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclopentanone), and ethers (eg, eg, acetone, methyl ethyl ketone, cyclopentanone).
  • Tetrahydrofuran, 1,2-dimethoxyethane Two or more kinds of organic solvents may be used in combination.
  • the composition for forming a liquid crystal layer may contain various orientation control agents such as a vertical alignment agent and a horizontal alignment agent. These orientation control agents are compounds capable of horizontally or vertically controlling the orientation of the liquid crystal compound on the interface side. Further, the composition for forming a liquid crystal layer may contain a polymerization inhibitor, an adhesion improver, and a plasticizer in addition to the above components. In particular, the composition for forming a liquid crystal layer may contain a polymerization inhibitor for the purpose of suppressing the polymerization of the liquid crystal compound in the step A3 described later.
  • step A2 a liquid crystal layer forming composition containing a liquid crystal compound is applied onto the first coating film.
  • the method of applying the liquid crystal layer forming composition on the first coating film is not particularly limited, and the curtain coating method, dip coating method, spin coating method, print coating method, spray coating method, slot coating method, roll coating method, etc. Examples include a slide coating method, a blade coating method, a gravure coating method, and a wire bar method.
  • the formed second coating film may be subjected to a drying treatment, if necessary.
  • the thickness of the second coating film is not particularly limited, but is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m.
  • the photo-alignment compound has a maximum absorption wavelength derived from the photo-orientation group at a wavelength of 250 to 450 nm
  • the liquid crystal layer forming composition contains a polymerization initiator and is polymerized. It is preferred that the initiator meet Requirement 1 or Requirement 2.
  • the polymerization of the liquid crystal compound can be suppressed in the step A3 described later, and the occurrence of orientation defects of the liquid crystal compound can be further suppressed.
  • Requirement 1 The molar absorption coefficient of the polymerization initiator at the maximum absorption wavelength (maximum absorption wavelength derived from the photoorientation group) is 4000 l / mol ⁇ cm or less
  • Requirement 2 The maximum absorption wavelength (derived from the photoorientation group) The molar absorption coefficient of the polymerization initiator at (maximum absorption wavelength) is larger than 4000 l / mol ⁇ cm and smaller than 20000 l / mol ⁇ cm, and the content of the polymerization initiator is 2.0% by mass or less with respect to the content of the liquid crystal compound. ..
  • Step A3 is a step of irradiating the first coating film with polarized light to impart an orientation regulating force to the first coating film to form a photoalignment layer.
  • the photo-oriented group LAs in the first coating film 12 shown in FIG. 6 are arranged, and as shown in FIG. 7, the light with the photo-oriented group LA oriented in a predetermined direction.
  • the alignment layer 16 is formed.
  • the photo-alignment layer 16 has an orientation-regulating force that orients the compounds in the layer formed on the photo-alignment layer 16.
  • the polarization to be applied to the first coating film is not particularly limited, and examples thereof include linearly polarized light, circularly polarized light, and elliptically polarized light, and linearly polarized light is preferable.
  • the wavelength of polarized light is not particularly limited, and examples thereof include ultraviolet rays, near ultraviolet rays, and visible light. Of these, near-ultraviolet rays of 250 to 450 nm are preferable.
  • the light source for irradiating polarized light include a xenon lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp.
  • an interference filter, a color filter, or the like for ultraviolet rays or visible rays obtained from such a light source the wavelength range to be irradiated can be limited.
  • linearly polarized light can be obtained by using a polarizing filter or a polarizing prism for the light from these light sources.
  • the irradiation direction of polarized light is not particularly limited, and irradiation may be performed from the first coating film side or from the base material side. Irradiation from the base material side is preferable because the effect of the present invention is more excellent.
  • the integrated light amount of polarized light is not particularly limited , but is preferably 1 to 300 mJ / cm 2 and more preferably 2 to 100 mJ / cm 2 .
  • Step A4 is a step of orienting the liquid crystal compound in the second coating film to form a liquid crystal layer.
  • the liquid crystal compounds in the second coating film 14 shown in FIG. 7 are arranged, and as shown in FIG. 8, a liquid crystal layer 18 in which the liquid crystal compounds are oriented in a predetermined direction is formed. ..
  • the method for orienting the liquid crystal compound is not particularly limited, and examples thereof include heat treatment.
  • the conditions for heating the second coating film are not particularly limited, but the heating temperature is preferably 50 to 250 ° C, more preferably 50 to 150 ° C, and the heating time is preferably 10 seconds to 10 minutes. Further, after heating the second coating film, the second coating film may be cooled, if necessary, before the curing treatment described later.
  • the cooling temperature is preferably 20 to 200 ° C, more preferably 30 to 150 ° C.
  • the liquid crystal layer in which the liquid crystal compound is oriented may be cured after the liquid crystal compound is oriented.
  • the method of the curing treatment is not particularly limited, and examples thereof include light irradiation treatment and heat treatment. Among them, the light irradiation treatment is preferable, and the ultraviolet irradiation treatment is more preferable from the viewpoint of manufacturing suitability.
  • the irradiation conditions of the light irradiation treatment are not particularly limited, but an irradiation amount of 50 to 1000 mJ / cm 2 is preferable.
  • the atmosphere during the light irradiation treatment is not particularly limited, but a nitrogen atmosphere is preferable.
  • a liquid crystal layer in which the liquid crystal compound is oriented is formed.
  • the liquid crystal layer is preferably a layer in which the oriented liquid crystal compound is fixed.
  • the orientation state of the liquid crystal compound can be easily fixed by the curing treatment as described above.
  • the "fixed" state is a state in which the orientation of the liquid crystal compound is maintained. Specifically, in the temperature range of 0 to 50 ° C., and more severely, -30 to 70 ° C., the layer has no fluidity, and the orientation form is changed by an external field or an external force. It is preferable that the state is such that the fixed orientation form can be kept stable.
  • the state in which the liquid crystal compound is oriented is not particularly limited, and a known oriented state can be mentioned.
  • the orientation state include homogeneous orientation and homeotropic orientation.
  • the orientation states include, for example, nematic orientation (state in which a nematic phase is formed), smectic orientation (state in which a smectic phase is formed), and cholesteric. Orientation (a state in which a cholesteric phase is formed) and hybrid orientation can be mentioned.
  • the orientation state includes nematic orientation, columnar orientation (a state in which a columnar phase is formed), and cholesteric orientation.
  • the homogeneous orientation means that the molecular axis of the liquid crystal compound (for example, the major axis in the case of a rod-shaped liquid crystal compound) is arranged horizontally and in the same direction with respect to the layer surface.
  • the term “horizontal” does not require that the liquid crystal compound be exactly horizontal, but means that the average molecular axis of the liquid crystal compound in the layer is oriented so that the inclination angle formed by the surface of the layer is less than 2 °.
  • the same direction does not require that the directions are exactly the same, and when the directions of the slow axis are measured at any 20 positions in the plane, the slow axes at 20 points are measured. It is assumed that the maximum difference between the slow axis orientations (the difference between the two slow axis orientations having the largest difference among the 20 slow axis orientations) is less than 10 °. ..
  • the thickness of the liquid crystal layer is not particularly limited, but is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m.
  • the in-plane retardation of the liquid crystal layer is not particularly limited, but for example, when an optical film is used for an antireflection film application, the in-plane retardation of the liquid crystal layer at a wavelength of 550 nm is preferably 110 to 160 nm.
  • the second embodiment of the present invention has the following steps B1 to B3.
  • Step B1 A composition for forming a liquid crystal layer containing a photoalignment compound and a liquid crystal compound is applied onto a substrate to form a coating film in which the photoalignment compounds are unevenly distributed on the substrate side.
  • Step B2 Coating film
  • Step B3 A step of orienting a liquid crystal compound in a coating film to form a liquid crystal layer. The procedure of each step will be described in detail below. ..
  • Step B1 is a step of applying a liquid crystal layer forming composition containing a photo-alignment compound and a liquid crystal compound on a base material to form a coating film in which the photo-alignment compounds are unevenly distributed on the base material side.
  • the base material 10 contains a photo-alignment compound having a photo-orientation group LA and a liquid crystal compound LC, and the photo-alignment compounds are unevenly distributed on the base material 10 side.
  • the coating film 20 is formed.
  • Base material examples of the base material used in this step include the base material used in the first embodiment described above, and preferred embodiments are as described above.
  • liquid crystal compound examples include the liquid crystal compound used in the first embodiment described above, and preferred embodiments are as described above.
  • photo-aligned compound examples include the photo-aligned compound used in the first embodiment described above. That is, the photo-alignment compound is the compound having a photo-orientation group described in the first embodiment.
  • the photo-oriented compound used in this step may contain a repeating unit having a crosslinkable group as described in the first embodiment described above.
  • the photo-orientation compound has a hydrogen-binding group, a group having a salt structure, a boronic acid group (-B (OH) 2 ), a boronic acid ester group, and a formula (2), in that the effect of the present invention is more excellent. It preferably has an interacting group selected from the group consisting of the represented groups. When the photo-aligned compound has the above-mentioned interacting group, it easily interacts with the base material, and as a result, the photo-aligned compound tends to be unevenly distributed on the base material side.
  • the photo-orientation compound may have a group that decomposes by heat or light to form a hydrogen-bonding group, or a group that decomposes by heat or light to produce a salt structure.
  • Examples of the hydrogen-binding group include a hydroxy group, a thiol group, a carboxy group, an amino group, an amide group, a urea group, and a urethane group.
  • the group having a salt structure is a group having a salt-derived structure composed of an acid-derived anion and a base-derived cation.
  • Examples of the salt structure include a carboxylate structure, a sulfonate structure, a phosphonate structure, and a quaternary ammonium salt structure.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms, which may have a substituent.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • Type of the substituent which may be alkyl groups have to be represented by R 4 is not particularly limited, it includes known substituents. Examples of the substituent include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, an aromatic heterocyclic oxy group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group and an acyloxy group.
  • R 4 is an alkyl group having 2 to 20 carbon atoms
  • one or more of -CH 2- constituting the alkyl group are -O-, -S-, -N (Q)-, and -CO-O.
  • -, -O-CO- or -CO- may be substituted.
  • Q represents a substituent.
  • the kind of the substituent is not particularly limited, include known substituents, include the groups exemplified in the alkyl group has optionally may substituent represented by R 4. * Represents the bond position.
  • the photo-oriented compound preferably contains a repeating unit having an interacting group in that the effect of the present invention is more excellent.
  • the photo-alignment compound preferably contains at least one of the repeating units represented by the formulas (3) to (7).
  • the photo-aligned compound is represented by a repeating unit represented by the formula (3), a repeating unit represented by the formula (4), or a repeating unit represented by the formula (7) in that the effect of the present invention is more excellent. It is preferable to include repeating units.
  • R 5 , R 6 , R 7 , R 8 and R 11 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may have a substituent.
  • the number of carbon atoms of the alkyl group is preferably 1 to 10, and more preferably 1 to 5.
  • the alkyl group may be linear, branched or cyclic, or may have a structure in which these are combined.
  • Type of the substituents which may be possessed by the alkyl group is not particularly limited, include known substituents, include the groups exemplified in the alkyl group has optionally may substituent represented by R 4 Be done.
  • L 2 , L 3 , L 4 , L 5 and L 6 each independently represent a single bond or a divalent linking group.
  • the divalent linking group is not particularly limited, and for example, a divalent hydrocarbon group which may have a substituent (for example, an alkylene group having 1 to 10 carbon atoms, an alkenylene group having 1 to 10 carbon atoms, and an alkenylene group having 1 to 10 carbon atoms).
  • a divalent aliphatic hydrocarbon group such as an alkynylene group having 1 to 10 carbon atoms, and a divalent aromatic hydrocarbon group such as an arylene group
  • a divalent heterocycle which may have a substituent.
  • Ra represents a hydrogen atom or an alkyl group.
  • Divalent kinds of hydrocarbon group and a divalent heterocyclic group substituent which may be possessed is not particularly limited, include known substituents, have an alkyl group represented by R 4 Examples of the substituents may be exemplified.
  • X + represents a cation group.
  • a cation group is a group having a positive charge.
  • the cation group is not particularly limited, and examples thereof include a quaternary ammonium group and a pyridinium group. Of these, a quaternary ammonium group is preferable.
  • Y - represents an anion. The type of anion is not particularly limited, and known anions can be mentioned.
  • halogen ions F -, Cl -, Br -, I -
  • NO 3 -, CIO 4 -, BF 4 -, CO 3 2- and, inorganic anions such as SO 4 2-, as well, CH 3 OSO 3 -, C 2 H 5 OSO 3 -, more acetic acid, malonic acid, succinic acid, maleic acid, fumaric acid, p- toluenesulfonic acid, and organic anions consisting of organic acid residues such as trifluoroacetic acid
  • halogen ions are preferable because the effects of the present invention are more excellent.
  • D - represents an anion group.
  • An anionic group is a group having a negative charge.
  • Anionic group is not particularly limited, -COO -, and, -SO 3 - and the like.
  • E + represents a cation.
  • the type of cation is not particularly limited, and inorganic cations such as lithium ion, sodium ion, magnesium ion, potassium ion, calcium ion, and aluminum ion, as well as organic ammonium cation, organic sulfonium cation, organic iodonium cation, and organic Examples include organic cations such as phosphonium cations. Of these, organic cations are preferable because the effects of the present invention are more excellent.
  • R 9 and R 10 independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a hetero which may have a substituent.
  • Representing an aryl group, either R 9 or R 10 is a hydrogen atom.
  • the number of carbon atoms of the alkyl group is not particularly limited, and is preferably 1 to 10, and more preferably 1 to 5.
  • the alkyl group may be linear, branched or cyclic, or may have a structure in which these are combined.
  • the aryl group may have a monocyclic structure or a polycyclic structure.
  • the hetero atom contained in the heteroaryl group is not particularly limited, and examples thereof include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the base type (alkyl group, aryl group, heteroaryl group) may have substituent group is not particularly limited, include known substituents, have an alkyl group represented by R 4 Examples of the substituent
  • R 12 represents an alkyl group having 1 to 20 carbon atoms.
  • the number of carbon atoms of the alkyl group is preferably 1 to 10, and more preferably 1 to 5.
  • the alkyl group may be linear, branched or cyclic, or may have a structure in which these are combined.
  • R 12 is an alkyl group having 2 to 20 carbon atoms , one or more of -CH 2- constituting the alkyl group is -O-, -S-, -N (Q)-, and -CO-O. -, -O-CO- or -CO- may be substituted.
  • Q represents a substituent.
  • the kind of the substituent is not particularly limited, include known substituents, include the groups exemplified in the alkyl group has optionally may substituent represented by R 4. * Represents the bond position.
  • the photo-aligned compound preferably has at least one of the repeating units represented by the formulas (8) to (10) in that the effect of the present invention is more excellent.
  • R 13 , R 17 and R 18 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may have a substituent.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, or may have a structure in which these are combined.
  • Type of the substituents which may be possessed by the alkyl group is not particularly limited, include known substituents, include the groups exemplified in the alkyl group has optionally may substituent represented by R 4 Be done.
  • L 7 , L 8 and L 9 each independently represent a single bond or a divalent linking group.
  • the divalent linking group include the groups exemplified by the divalent linking groups represented by L 2 , L 3 , L 4 , L 5 and L 6 described above.
  • Y - represents an anion.
  • Y in the formula (8) - is, Y in the formula (3) - as synonymous.
  • E + represents a cation.
  • E + in equation (9) is synonymous with E + in equation (4).
  • R 14 , R 15 and R 16 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may have a substituent.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, or may have a structure in which these are combined.
  • Type of the substituents which may be possessed by the alkyl group is not particularly limited, include known substituents, include the groups exemplified in the alkyl group has optionally may substituent represented by R 4 Be done.
  • the content of the repeating unit having an interacting group in the photo-aligned compound is not particularly limited, but 2 to 85% by mass is added to all the repeating units in the photo-aligned compound in that the effect of the present invention is more excellent. Preferably, 5 to 70% by mass is more preferable.
  • the photo-oriented compound may contain a repeating unit having a photo-oriented group, a repeating unit having an interacting group, and a repeating unit having an alkyl group, which is different from the repeating unit having a crosslinkable group.
  • the number of carbon atoms of the alkyl group is not particularly limited, and is preferably 1 to 20 and more preferably 1 to 15.
  • the alkyl group may be linear, branched or cyclic, or may have a structure in which these are combined.
  • a cyclic alkyl group is preferable because it can suppress the relaxation of the orientation of the photo-aligned compound due to heat. Examples of the cyclic alkyl group include adamantane and the like.
  • the content of the repeating unit having an alkyl group in the photo-aligned compound is not particularly limited, but the effect of the present invention is more excellent in the photo-aligned compound. It is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on all the repeating units.
  • Examples of the weight average molecular weight of the photoaligned compound used in this step include the weight average molecular weight of the photoaligned compound described in the first embodiment described above.
  • the content of the photoalignment compound in the composition for forming a liquid crystal layer is not particularly limited, but is preferably 0.01 to 30% by mass, preferably 0, based on the content of the liquid crystal compound in that the effect of the present invention is more excellent. .1 to 10% by mass is more preferable.
  • the composition for forming a liquid crystal layer used in this step may contain a compound other than the liquid crystal compound and the photoalignment compound.
  • Other ingredients include leveling agents. Examples of the leveling agent include the leveling agent described in the first embodiment described above, and the preferable range of the amount used is the same as that of the first embodiment.
  • Other components include polymerization initiators. Examples of the polymerization initiator include the polymerization initiator described in the first embodiment described above, and the preferred range of the amount used is the same as that of the first embodiment.
  • Examples of other components include polymerizable monomers. Examples of the polymerizable monomer include the polymerizable monomer described in the first embodiment described above, and the preferable range of the amount used is the same as that of the first embodiment.
  • compositions for forming a liquid crystal layer may contain a polymerization inhibitor, an adhesion improver, and a plasticizer in addition to the above components.
  • the composition for forming a liquid crystal layer may contain a polymerization inhibitor for the purpose of suppressing the polymerization of the liquid crystal compound in the step B2 described later.
  • step B1 The procedure of this step is not particularly limited, and a composition for forming a liquid crystal layer containing a photo-alignment compound and a liquid crystal compound is applied onto the base material to form a coating film in which the photo-alignment compounds are unevenly distributed on the base material side. If possible, there are no particular restrictions. Among them, when a photo-oriented compound having an interacting group is used, a predetermined coating film can be formed with high productivity. When the photo-aligned compound has an interacting group, an interaction occurs between the interacting group in the photo-aligned compound and the base material, and the photo-aligned compound tends to be unevenly distributed on the base material side in the coating film. ..
  • the method of applying the liquid crystal layer forming composition on the substrate is not particularly limited, and is a curtain coating method, a dip coating method, a spin coating method, a print coating method, a spray coating method, a slot coating method, a roll coating method, and a slide coating method.
  • Examples include a method, a blade coating method, a gravure coating method, and a wire bar method.
  • the coating film may be heat-treated after the coating film is formed and before the step B2 described later. By performing the heat treatment, the photo-aligned compounds are more likely to be unevenly distributed on the substrate side.
  • the heating temperature during the heat treatment is preferably 50 to 250 ° C., more preferably 50 to 150 ° C., and preferably 10 seconds to 10 minutes as the heating time because the effect of the present invention is more excellent. ..
  • a coating film in which the photoalignment compounds are unevenly distributed on the substrate side can be formed.
  • the fact that the photo-aligned compounds are unevenly distributed on the substrate side corresponds to the fact that the uneven distribution degree calculated by the uneven distribution degree calculation method described later is 2.0 or more.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • Examples of the type of ion beam include an ion beam using an argon gas cluster ion gun (Ar-GCIB gun).
  • FIG. 10 is an example of the secondary ionic strength distribution derived from the photo-aligned compound obtained by TOF-SIMS analysis.
  • the horizontal axis is the distance (nm) from the surface of the coating film on the side opposite to the base material side
  • the vertical axis is the intensity of the secondary ion derived from the photo-aligned compound.
  • points S to E represent the secondary ionic strength derived from the photo-aligned compound in the coating film
  • points E and after represent the secondary ionic strength derived from the photo-aligned compound in the substrate. That is, points S to E correspond to the coating film, and points E and thereafter correspond to the base material.
  • a part of the photo-aligned compound may infiltrate into the base material, and in this case, as shown in FIG. 10, the secondary ionic strength derived from the photo-aligned compound is observed in the base material.
  • a depth position corresponding to 80% of the total thickness of the coating film (hereinafter, also referred to as “depth position M”). ) the region up to the upper layer region, when the region to the substrate side of the surface of the coating film and the underlying area from the depth position M, relative to the mean value I 2 of secondary ion intensity derived from the optical alignment compound in the upper layer region. If the ratio of the maximum value I 1 of the secondary ion intensity derived from the photo-aligned compound in the lower layer region is 2.0 or more, it is assumed that the photo-aligned compounds are unevenly distributed on the substrate side. That is, first, as shown in FIG.
  • the depth corresponding to 80% of the total thickness of the coating film is from the point S corresponding to the surface opposite to the base material side of the coating film toward the base material side.
  • the region up to point M corresponding to the position is defined as the upper layer region, and the region from point M to point E corresponding to the surface of the coating film on the substrate side is defined as the lower layer region.
  • the average value I 2 of the secondary ionic strength derived from the photo-aligned compound in the upper layer region and the maximum value I 1 of the secondary ionic strength derived from the photo-aligned compound in the lower layer region are calculated and the ratio (I 1 /). If I 2 ) is 2.0 or more, it is assumed that the photo-aligned compounds are unevenly distributed on the substrate side.
  • the above ratio (IA1 / IA2 ) is preferably 3.5 or more, and more preferably 5.0 or more, in that the effect of the present invention is more excellent.
  • the upper limit is not particularly limited, but it is often 30.0 or less, and more often 20.0 or less.
  • the photo-aligned compound has a maximum absorption wavelength derived from the photo-oriented group at a wavelength of 250 to 450 nm, and the absorbance of the substrate at the maximum absorption wavelength is 1.0 or less. It is preferable to have.
  • the photooriented groups in the coating film are efficiently oriented by irradiating the polarized light from the base material side. Can be made to.
  • the photo-alignment compound has a maximum absorption wavelength derived from the photo-orientation group at a wavelength of 250 to 450 nm
  • the liquid crystal layer forming composition contains a polymerization initiator and is polymerized. It is preferred that the initiator meet Requirement 1 or Requirement 2.
  • the polymerization of the liquid crystal compound can be suppressed in the step B2 described later, and the occurrence of orientation defects of the liquid crystal compound can be further suppressed.
  • Requirement 1 The molar absorption coefficient of the polymerization initiator at the maximum absorption wavelength (maximum absorption wavelength derived from the photoorientation group) is 4000 l / mol ⁇ cm or less
  • Requirement 2 The maximum absorption wavelength (derived from the photoorientation group) The molar absorption coefficient of the polymerization initiator at (maximum absorption wavelength) is larger than 4000 l / mol ⁇ cm and smaller than 20000 l / mol ⁇ cm, and the content of the polymerization initiator is 2.0% by mass or less with respect to the content of the liquid crystal compound. ..
  • Step B2 is a step of irradiating the coating film with polarized light to impart an orientation-regulating force to the photo-alignment compound. By carrying out this step, as shown in FIG. 11, the photo-oriented group LA is oriented in a predetermined direction in the coating film 20.
  • the polarization applied to the coating film is not particularly limited, and examples thereof include linearly polarized light, circularly polarized light, and elliptically polarized light, and linearly polarized light is preferable.
  • the wavelength of polarized light is not particularly limited, and examples thereof include ultraviolet rays, near ultraviolet rays, and visible light. Of these, near-ultraviolet rays of 250 to 450 nm are preferable.
  • the light source for irradiating polarized light include a xenon lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp.
  • an interference filter, a color filter, or the like for ultraviolet rays or visible rays obtained from such a light source the wavelength range to be irradiated can be limited.
  • linearly polarized light can be obtained by using a polarizing filter or a polarizing prism for the light from these light sources.
  • the irradiation direction of polarized light is not particularly limited, and irradiation may be performed from the coating film side or from the base material side. Irradiation from the base material side is preferable because the effect of the present invention is more excellent.
  • the integrated light amount of polarized light is not particularly limited , but is preferably 1 to 300 mJ / cm 2 and more preferably 2 to 100 mJ / cm 2 .
  • Step B3 is a step of orienting the liquid crystal compound in the coating film to form a liquid crystal layer.
  • the liquid crystal compounds are arranged by the orientation restricting force of the oriented photo-oriented group LA, and the liquid crystal layer 22 in which the liquid crystal compounds are oriented in a predetermined direction is formed.
  • the method for orienting the liquid crystal compound is not particularly limited, and examples thereof include heat treatment.
  • the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 250 ° C, more preferably 50 to 150 ° C, and the heating time is preferably 10 seconds to 10 minutes. Further, after heating the coating film, the coating film may be cooled, if necessary, before the curing treatment described later.
  • the cooling temperature is preferably 20 to 200 ° C, more preferably 30 to 150 ° C.
  • the liquid crystal layer in which the liquid crystal compound is oriented may be cured after the liquid crystal compound is oriented.
  • the method of the curing treatment is not particularly limited, and examples thereof include light irradiation treatment and heat treatment. Among them, the light irradiation treatment is preferable, and the ultraviolet irradiation treatment is more preferable from the viewpoint of manufacturing suitability.
  • the irradiation conditions of the light irradiation treatment are not particularly limited, but an irradiation amount of 50 to 1000 mJ / cm 2 is preferable.
  • the atmosphere during the light irradiation treatment is not particularly limited, but a nitrogen atmosphere is preferable.
  • a liquid crystal layer in which the liquid crystal compound is oriented is formed.
  • the liquid crystal layer is preferably a layer in which the oriented liquid crystal compound is fixed.
  • the orientation state of the liquid crystal compound can be easily fixed by the curing treatment as described above.
  • the state in which the liquid crystal compound is oriented is not particularly limited, and a known oriented state can be mentioned. Specifically, various orientation states described in the first embodiment can be mentioned.
  • the thickness of the liquid crystal layer is not particularly limited, but is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m.
  • the in-plane retardation of the liquid crystal layer is not particularly limited, but for example, when an optical film is used for an antireflection film application, the in-plane retardation of the liquid crystal layer at a wavelength of 550 nm is preferably 110 to 160 nm.
  • the optical film formed by the above procedure can be applied to various uses.
  • a display element and an image display device including an optical film can be mentioned.
  • the liquid crystal layer of the optical film may be transferred onto the display element and the base material may be peeled off to form an image display device including the display device and the liquid crystal layer.
  • the display element used in the image display device of the present invention is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as "EL") display panel, and a plasma display panel, and the liquid crystal cell or An organic EL display panel is preferred. That is, as the image display device of the present invention, a liquid crystal display device using a liquid crystal cell as a display element or an organic EL display device using an organic EL display panel as a display element is preferable.
  • the liquid crystal cell used in the liquid crystal display device is preferably a VA (Vertical Element) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, or a TN (Twisted Nematic) mode. ..
  • VA Vertical Element
  • OCB Optically Compensated Bend
  • IPS In-Plane-Switching
  • TN Transmission Nematic
  • the organic EL display device which is an example of the image display device of the present invention, for example, it is preferable to have a polarizer, an optical film (or a liquid crystal layer), and an organic EL display panel in this order from the visual side.
  • the polarizer is not particularly limited as long as it is a member having a function of converting light into specific linearly polarized light, and conventionally known absorption type polarizers and reflection type polarizers can be used.
  • absorption type polarizer an iodine-based polarizer, a dye-based polarizer using a dichroic dye, a polyene-based polarizer, and the like are used.
  • the iodine-based polarizer and the dye-based polarizer include a coating type polarizing element and a stretching type polarizing element, and both of them can be applied.
  • Japanese Patent No. 5048120 Japanese Patent No. 5143918, Japanese Patent No. 46910205, and Japanese Patent No.
  • the methods described in Japanese Patent No. 4751481 and Japanese Patent No. 4751486 can be mentioned, and known techniques for these polarizers can also be preferably used.
  • the reflective polarizer include a polarizer in which thin films having different birefringences are laminated, a wire grid polarizer, and a polarizer in which a cholesteric liquid crystal having a selective reflection region and a 1/4 wave plate are combined.
  • a polymer containing a polyvinyl alcohol-based resin (-CH 2- CHOH- as a repeating unit.
  • a polyvinyl alcohol-based resin (-CH 2- CHOH- as a repeating unit.
  • a polarizer containing (1) is preferable.
  • the thickness of the polarizer is not particularly limited, and is preferably 3 to 60 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the organic EL display panel is a member in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer are formed between a pair of electrodes of an anode and a cathode.
  • the organic EL display panel may have a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a protective layer, and the like in addition to the light emitting layer, and each of these layers has other functions. It may be provided.
  • reaction solution was stirred at 50 ° C. for 6 hours.
  • the reaction mixture was cooled to room temperature, washed separately with water, and the obtained organic phase was dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off, and the obtained solution was concentrated to obtain a yellowish white solid.
  • the obtained yellowish white solid was dissolved by heating in methyl ethyl ketone (400 g) and recrystallized to obtain 76 g of the following monomer mA-1 as a white solid (yield 40%).
  • reaction solution was allowed to cool to room temperature, and 2-butanone (30 g) was added to the reaction solution for dilution to obtain a polymer solution having a polymer concentration of about 20% by mass.
  • the obtained polymer solution was poured into a large excess of methanol to precipitate the polymer, the precipitate was filtered off, the obtained solid content was washed with a large amount of methanol, and then air-dried at 50 ° C. for 12 hours. By doing so, a polymer P-1 having a photo-oriented group was obtained.
  • each repeating unit in the following structural formula represent the content (mass%) of each repeating unit with respect to all the repeating units, and below, 40% by mass and 60% by mass from the left repeating unit. Met.
  • the weight average molecular weight of the polymer P-1 measured by the above method was 48,000.
  • the reaction solution was stirred while maintaining the reaction solution. After completion of the reaction, the reaction solution was allowed to cool to room temperature, and dimethylacetamide (60 g) was added to the reaction solution for dilution to obtain a polymer solution having a polymer concentration of about 20% by mass.
  • the obtained polymer solution is poured into a large excess of methanol to precipitate the polymer, the precipitate is filtered off, the obtained solid content is washed with a large amount of methanol, and then air-dried at room temperature for 24 hours. As a result, polymer P-2 was obtained.
  • each repeating unit in the following structural formula represent the content (mass%) of each repeating unit with respect to all the repeating units, and below, 91% by mass and 9% by mass from the repeating unit on the left side. Met.
  • the weight average molecular weight of the polymer P-2 measured by the above method was 58,000.
  • reaction solution was allowed to cool to room temperature, and cyclohexanone (30 g) was added to the reaction solution for dilution to obtain a polymer solution having a polymer concentration of about 20% by mass.
  • the obtained polymer solution is poured into a large excess of methanol to precipitate the polymer, the precipitate is filtered off, the obtained solid content is washed with a large amount of methanol, and then air-dried at room temperature for 24 hours. As a result, a polymer of monomer mA-2 and methacrylic acid was obtained.
  • the obtained polymer of monomer mA-2 and methacrylic acid (1.0 g) was added to a mixed solvent (4.0 g) of cyclohexanone / isopropyl alcohol (2/1) and dissolved at 50 ° C. Then, diisopropylethylamine (418 ⁇ L) was added to the obtained solution, and the mixture was stirred at 50 ° C. for 30 minutes to obtain a polymer P-3 (solid content concentration: 20% by mass).
  • the numerical values described in each repeating unit in the following structural formula represent the content (mass%) of each repeating unit with respect to all the repeating units, and below, 79% by mass and 21% by mass from the repeating unit on the left side. Met.
  • the maximum absorption wavelength of the obtained polymers P-1 to P-10 derived from the synnamate group was 311 nm.
  • Preparation of base material B-1 The following composition 1 for forming a vertically oriented liquid crystal layer was applied to one surface of a cellulose acylate film (Fujitac ZRD40, manufactured by FUJIFILM Corporation) (thickness 40 ⁇ m) using a bar coater.
  • the coating film formed on the film is heated at 60 ° C. for 1 minute with warm air, and then 300 mJ / cm 2 at a wavelength of 365 nm using a high-pressure mercury lamp in a nitrogen atmosphere while maintaining 60 ° C.
  • the ultraviolet rays of the above were irradiated from the coating film side.
  • the liquid crystal layer side of the obtained laminate was treated once using a corona treatment device under the conditions of an output of 0.3 kW and a treatment speed of 7.6 m / min to obtain a base material B-1.
  • the absorbance of the obtained substrate B-1 at a wavelength of 311 nm was 0.12, and the water contact angle of the corona-treated surface was 63 °.
  • the base material B-1 had a hydrogen-bonding group such as a hydroxy group on the corona-treated surface.
  • composition 2 for forming a vertically oriented liquid crystal layer was applied to one surface of a cellulose acylate film (Fujitac ZRD40, manufactured by FUJIFILM Corporation) (thickness 40 ⁇ m) using a bar coater.
  • the coating film formed on the film is heated at 60 ° C. for 1 minute with warm air, and then 300 mJ / cm 2 at a wavelength of 365 nm using a high-pressure mercury lamp in a nitrogen atmosphere while maintaining 60 ° C.
  • the ultraviolet rays of the above were irradiated from the coating film side.
  • the obtained laminate was heated with warm air at 130 ° C. for 1 minute.
  • the acetal group of the fluorine-based polymer M-3 was decomposed to generate a carboxy group.
  • the base material B-2 was obtained.
  • the absorbance of the obtained substrate B-2 at a wavelength of 311 nm was 0.12, and the water contact angle on the surface of the liquid crystal layer was 68 °.
  • the base material B-2 had a hydrogen-bonding group such as a carboxy group on the surface.
  • the base material B-3 was prepared in the same manner as the base material B-1 except that the conditions for the corona treatment were an output of 0.06 kW and a treatment speed of 8.6 m / min.
  • the absorbance of the obtained substrate B-3 at a wavelength of 311 nm was 0.12, and the water contact angle of the corona-treated surface was 85 °.
  • the base material B-3 had a hydrogen-bonding group such as a hydroxy group on the corona-treated surface.
  • Substrate B-4 was obtained by treating one surface of a polyethylene terephthalate film (thickness 30 ⁇ m) once with a corona treatment device under the conditions of an output of 0.3 kW and a treatment speed of 7.6 m / min. ..
  • the absorbance of the obtained substrate B-4 at a wavelength of 311 nm was 1.2, and the water contact angle of the corona-treated surface was 60 °.
  • the base material B-4 had a hydrogen-bonding group such as a hydroxy group on the corona-treated surface.
  • composition 1 for forming a photo-alignment layer was applied to the surface of the base material B-1 on the corona-treated side using a bar coater.
  • the coating film formed on the substrate was heated with warm air at 125 ° C. for 2 minutes to remove the solvent, and a first coating film having a thickness of 0.05 ⁇ m was formed.
  • Composition for forming a photo-aligned layer 1
  • the following thermal acid generator D-2 6.0 parts by mass Diisopropylethylamine 0.6 parts by mass Butanone acetate 767.5 parts by mass Methyl ethyl ketone 191.9 parts by mass ⁇ ⁇
  • composition 1 for forming a liquid crystal layer was applied onto the first coating film obtained above using a bar coater, and dried at room temperature for 30 seconds to form a second coating film.
  • a high-pressure mercury lamp the surface opposite to the surface on which the first coating film of the base material was formed is passed through a bandpass filter (BPF313, manufactured by Asahi Spectrometer Co., Ltd.) having a wavelength of 313 nm and a wire grid polarizer.
  • Polarized ultraviolet rays were irradiated from the side (base material side) (50 mJ / cm 2 at a wavelength of 313 nm). Then, the obtained laminate was heated with warm air at 120 ° C.
  • the optical film of Example 1 which is a laminate of the base material B-1, the photoalignment layer (thickness 0.05 ⁇ m), and the liquid crystal layer (thickness 2.7 ⁇ m) was produced.
  • the Re (550) of the obtained optical film (liquid crystal layer) was 140 nm.
  • Example 2 An optical film was produced according to the same procedure as in Example 1 except that the irradiation with polarized ultraviolet rays was performed from the second coating film side.
  • Example 3 An optical film was produced according to the same procedure as in Example 1 except that the thickness of the first coating film was changed to 1.3 ⁇ m.
  • Example 4 The following liquid crystal layer forming composition 2 is applied to the surface of the base material B-1 on the corona-treated side using a bar coater, and the coating film formed on the base material is dried at room temperature for 30 seconds to form a base. A laminate having the material B-1 and the coating film was obtained. Next, using a high-pressure mercury lamp, the surface side opposite to the surface on which the coating film of the base material was formed (BPF 313, manufactured by Asahi Spectrometer Co., Ltd.) and a wire grid polarizer (BPF 313). Polarized ultraviolet rays were irradiated from the substrate side) (50 mJ / cm 2 at a wavelength of 313 nm).
  • the obtained laminate was heated with warm air at 120 ° C. for 1 minute, then cooled to 60 ° C., and then ultraviolet rays of 80 mJ / cm 2 at a wavelength of 365 nm using a high-pressure mercury lamp in a nitrogen atmosphere.
  • the optical film of Example 4 which is a laminate of the base material B-1 and the liquid crystal layer (thickness 2.7 ⁇ m)
  • the Re (550) of the obtained optical film (liquid crystal layer) was 140 nm.
  • Liquid crystal layer forming composition 2 ⁇ -The above-mentioned polymerizable liquid crystal compound L-1 7.1 parts by mass-The above-mentioned polymerizable liquid crystal compound L-2 1.3 parts by mass-The above-mentioned polymerizable liquid crystal compound L-3 0.2 parts by mass-The above-mentioned polymerizable liquid crystal compound L- 4 46.5 parts by mass, the polymerizable liquid crystal compound L-5 25.0 parts by mass, the polymerizable liquid crystal compound L-6 15.0 parts by mass, the polymerizable compound A-1 5.0 parts by mass, and the polymerization Sex compound A-2 5.0 parts by mass, polymerization initiator (Irgacure2959, manufactured by Ciba Specialty Chemicals) 4.0 parts by mass, 0.2 parts by mass of the leveling agent T-1, 3.0 parts by mass of polymer P-2, 209.4 parts by mass of tetrahydrofuran, 52.4 parts by mass of cyclopentanone ⁇ ⁇ ⁇
  • Example 5 An optical film was produced according to the same procedure as in Example 4 except that the liquid crystal layer forming composition 2 was changed to the following liquid crystal layer forming composition 3.
  • ⁇ Liquid crystal layer forming composition 3 ⁇ -The above-mentioned polymerizable liquid crystal compound L-1 7.1 parts by mass-The above-mentioned polymerizable liquid crystal compound L-2 1.3 parts by mass-The above-mentioned polymerizable liquid crystal compound L-3 0.2 parts by mass-The above-mentioned polymerizable liquid crystal compound L- 4 46.5 parts by mass, the polymerizable liquid crystal compound L-5 25.0 parts by mass, the polymerizable liquid crystal compound L-6 15.0 parts by mass, the polymerizable compound A-1 5.0 parts by mass, and the polymerization Sex compound A-2 5.0 parts by mass, polymerization initiator (Irgacure2959, manufactured by Ciba Specialty Chemicals) 4.0 parts by mass ⁇ 0.2 parts by mass of the leveling agent T-1
  • Example 6> The following liquid crystal layer forming composition 4 is applied to the surface of the base material B-1 on the corona-treated side using a bar coater, and the coating film formed on the base material is dried at room temperature for 30 seconds to form a base. A laminate having the material B-1 and the coating film was obtained. Next, it was heated with warm air at 120 ° C. for 1 minute. Subsequently, using a high-pressure mercury lamp, the surface side opposite to the surface on which the coating film of the base material was formed (BPF 313, manufactured by Asahi Spectrometer Co., Ltd.) and a wire grid polarizer (BPF 313).
  • Polarized ultraviolet rays were irradiated from the substrate side) (50 mJ / cm 2 at a wavelength of 313 nm). Then, the obtained laminate was heated with warm air at 120 ° C. for 1 minute, then cooled to 60 ° C., and then ultraviolet rays of 80 mJ / cm 2 at a wavelength of 365 nm using a high-pressure mercury lamp in a nitrogen atmosphere. Was subsequently irradiated from the coating film side, and then ultraviolet rays of 300 mJ / cm 2 were irradiated from the coating film side while heating at 120 ° C.
  • Example 6 which is a laminate of the base material B-1 and the liquid crystal layer (thickness 2.7 ⁇ m) was produced.
  • ⁇ Liquid crystal layer forming composition 4 ⁇ -The above-mentioned polymerizable liquid crystal compound L-1 7.1 parts by mass-The above-mentioned polymerizable liquid crystal compound L-2 1.3 parts by mass-The above-mentioned polymerizable liquid crystal compound L-3 0.2 parts by mass-The above-mentioned polymerizable liquid crystal compound L- 4 46.5 parts by mass, the polymerizable liquid crystal compound L-5 25.0 parts by mass, the polymerizable liquid crystal compound L-6 15.0 parts by mass, the polymerizable compound A-1 5.0 parts by mass, and the polymerization Sex compound A-2 5.0 parts by mass, polymerization initiator (Irgacure2959, manufactured by Ciba Specialty Chemicals) 4.0 parts by mass, 0.2 parts by mass of the leveling agent T-1, 3.0 parts by
  • Example 7 An optical film was produced according to the same procedure as in Example 6 except that the polymer P-4 was changed to the polymer P-5.
  • Example 8 An optical film was produced according to the same procedure as in Example 4 except that the polymer P-2 was changed to the polymer P-6.
  • Example 9 An optical film was produced according to the same procedure as in Example 6 except that the liquid crystal layer forming composition 4 was changed to the following liquid crystal layer forming composition 5.
  • ⁇ Liquid crystal layer forming composition 5 ⁇ -The above-mentioned polymerizable liquid crystal compound L-1 7.1 parts by mass-The above-mentioned polymerizable liquid crystal compound L-2 1.3 parts by mass-The above-mentioned polymerizable liquid crystal compound L-3 0.2 parts by mass-The above-mentioned polymerizable liquid crystal compound L- 4 46.5 parts by mass, the polymerizable liquid crystal compound L-5 25.0 parts by mass, the polymerizable liquid crystal compound L-6 15.0 parts by mass, the polymerizable compound A-1 5.0 parts by mass, and the polymerization Sex compound A-2 5.0 parts by mass, polymerization initiator (Irgacure2959, manufactured by Ciba Specialty Chemicals) 4.0 parts by mass, 0.2 parts by mass of leveling agent T-1, 3.0
  • Example 10 An optical film was produced according to the same procedure as in Example 4 except that the polymer P-2 was changed to the polymer P-8.
  • Example 11 The following liquid crystal layer forming composition 6 is applied to one surface of a cellulose acylate film (Fujitac ZRD40, manufactured by FUJIFILM Corporation) (thickness 40 ⁇ m, water contact angle 61 °) using a bar coater, and is applied onto the substrate.
  • the coating film formed on the above was dried at room temperature for 30 seconds to obtain a cellulose acylate film and a laminate having the coating film.
  • BPF 313 the surface side opposite to the surface on which the coating film of the base material was formed
  • BPF 313 wire grid polarizer
  • Polarized ultraviolet rays were irradiated from the substrate side) (50 mJ / cm 2 at a wavelength of 313 nm). Then, the obtained laminate was heated with warm air at 120 ° C. for 1 minute, then cooled to 60 ° C., and then ultraviolet rays of 80 mJ / cm 2 at a wavelength of 365 nm using a high-pressure mercury lamp in a nitrogen atmosphere. Was subsequently irradiated from the coating film side, and then ultraviolet rays of 300 mJ / cm 2 were irradiated from the coating film side while heating at 120 ° C.
  • Example 11 which is a laminate of a cellulose acylate film and a liquid crystal layer (thickness 2.7 ⁇ m) was produced.
  • Liquid crystal layer forming composition 6 ⁇ -The above-mentioned polymerizable liquid crystal compound L-1 7.1 parts by mass-The above-mentioned polymerizable liquid crystal compound L-2 1.3 parts by mass-The above-mentioned polymerizable liquid crystal compound L-3 0.2 parts by mass-The above-mentioned polymerizable liquid crystal compound L- 4 46.5 parts by mass, the polymerizable liquid crystal compound L-5 25.0 parts by mass, the polymerizable liquid crystal compound L-6 15.0 parts by mass, the polymerizable compound A-1 5.0 parts by mass, and the polymerization Sex compound A-2 5.0 parts by mass, polymerization initiator (Irgacure2959, manufactured by Ciba Specialty Chemicals) 4.0 parts by mass, 0.2 parts by mass of the leveling agent T-1,
  • Example 12 An optical film was produced according to the same procedure as in Example 4 except that the base material B-1 was changed to the base material B-2.
  • Example 13 An optical film was produced according to the same procedure as in Example 4 except that the irradiation with polarized ultraviolet rays was performed from the coating film side.
  • Example 14 An optical film was produced according to the same procedure as in Example 4 except that the amount of the polymer P-2 added was changed to 40.0 parts by mass.
  • Example 15 An optical film was produced according to the same procedure as in Example 4 except that the base material B-1 was changed to the base material B-3.
  • Example 16 An optical film was produced according to the same procedure as in Example 4 except that the base material B-1 was changed to the base material B-4.
  • Example 17 An optical film was produced according to the same procedure as in Example 4 except that the liquid crystal layer forming composition 2 was changed to the following liquid crystal layer forming composition 7.
  • ⁇ Liquid crystal layer forming composition 7 ⁇ -The above-mentioned polymerizable liquid crystal compound L-1 7.1 parts by mass-The above-mentioned polymerizable liquid crystal compound L-2 1.3 parts by mass-The above-mentioned polymerizable liquid crystal compound L-3 0.2 parts by mass-The above-mentioned polymerizable liquid crystal compound L- 4 46.5 parts by mass ⁇
  • the above-mentioned polymerizable liquid crystal compound L-6 15.0 parts by mass ⁇
  • the above-mentioned polymerizable compound A-1 5.0 parts by mass ⁇
  • the above-mentioned polymerization Sex compound A-2 5.0 parts by mass ⁇ Polymerization initiator S-1 4.0 parts by mass
  • Example 18 An optical film was produced according to the same procedure as in Example 17 except that the amount of the polymerization initiator S-1 added was changed to 0.5 parts by mass.
  • composition 1 for forming a photoalignment layer was applied to the surface of the base material B-1 on the corona-treated side using a bar coater.
  • the coating film formed on the substrate was heated with warm air at 125 ° C. for 2 minutes to form a coating film (thickness: 0.05 ⁇ m).
  • polarized ultraviolet rays are irradiated from the coating film side (50 mJ / cm 2 at a wavelength of 313 nm) via a bandpass filter (BPF 313, manufactured by Asahi Spectral Co., Ltd.) having a wavelength of 313 nm and a wire grid polarizer.
  • a photoalignment layer (thickness 0.3 ⁇ m) was formed.
  • the liquid crystal layer forming composition 1 was applied onto the photo-aligned layer obtained above using a bar coater.
  • the coating film formed on the photoalignment layer was dried at room temperature for 30 seconds, and then heated with warm air at 120 ° C. for 1 minute. Then, after cooling the obtained laminate to 60 ° C., an ultraviolet ray of 80 mJ / cm 2 was irradiated from the coating film side at a wavelength of 365 nm using a high-pressure mercury lamp in a nitrogen atmosphere, and then heated to 120 ° C. However, ultraviolet rays of 300 mJ / cm 2 were irradiated from the coating film side.
  • the optical film of Comparative Example 1 which is a laminate of the base material B-1, the photoalignment layer (thickness 0.05 ⁇ m), and the liquid crystal layer (thickness 2.7 ⁇ m) was produced.
  • Example 4 the laminate having the base material and the coating film before being irradiated with polarized ultraviolet rays is unevenly distributed according to the above procedure. The degree was measured. Further, with respect to Examples 6, 7 and 9, the laminate having the base material and the coating film before being irradiated with polarized ultraviolet rays and after being heated at 120 ° C. for 1 minute with warm air , The degree of uneven distribution was measured according to the procedure described above.
  • the “maximum absorption wavelength (nm)” in the “photo-oriented compound” column represents the maximum absorption wavelength (nm) of the photo-oriented group.
  • “1” is intended for the manufacturing process of the first embodiment described above
  • “2” is intended for the manufacturing process of the second embodiment described above
  • “3” is intended for the manufacturing process of the prior art. Intended.
  • the optical film obtained by the production method of the present invention exerted a predetermined effect. Among them, it was confirmed from the comparison between Examples 1 and 2 that the effect was more excellent when the polarized light was irradiated from the base material side in the step A3. Further, from the comparison between Examples 1 and 3, it was confirmed that the effect was more excellent when the thickness of the first coating film was 1.0 ⁇ m or less.
  • the photo-aligned compound is a repeating unit represented by the formula (3), a repeating unit represented by the formula (4), and a repeating unit represented by the formula (7). It was confirmed that the effect was superior when the above was included. Further, from the comparison between Examples 4 and 13, it was confirmed that in step B2, when the polarized light is irradiated from the base material side, the effect is more excellent. Further, as compared with Examples 4 and 14, when the content of the photoalignment compound in the liquid crystal layer forming composition is 0.01 to 30% by mass with respect to the content of the liquid crystal compound, the effect is more excellent. It was confirmed that.
  • Base material 12 First coating film 14 Second coating film 16 Photo-alignment layer 18, 22 Liquid crystal layer 20 Coating film 100 Base film 120 coating film 140 Photo-alignment layer 160 coating film 180 Liquid crystal layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

本発明は、液晶化合物の配向欠陥が少ない液晶層を有する光学フィルムを製造できる、光学フィルムの製造方法を提供する。本発明の光学フィルムの製造方法は、基材上に、光配向化合物を含む光配向層形成用組成物を塗布して、第1塗膜を形成する工程A1と、第1塗膜上に、液晶化合物を含む液晶層形成用組成物を塗布して、第2塗膜を形成する工程A2と、第1塗膜に対して偏光を照射して、第1塗膜に配向規制力を付与して、光配向層を形成する工程A3と、第2塗膜中の前記液晶化合物を配向させて、液晶層を形成する工程A4と、をこの順に有する。

Description

光学フィルムの製造方法
 本発明は、光学フィルムの製造方法に関する。
 液晶化合物を用いて形成される液晶層は、ディスプレイ分野で使用される光学フィルムの用途に用いられている。
 液晶層の形成方法としては、光配向化合物を含む光配向層を用いる方法が知られている(文献1)。具体的には、配向規制力を有する光配向層を形成した後、その上に液晶層形成用組成物を塗布して、液晶層を形成する方法が知られている。
国際公開第2017/069252号
 一方で、近年、液晶化合物の配向欠陥がより少ない液晶層の形成が求められている。
 本発明者らは特許文献1に記載されるような光配向層を用いる態様について検討したところ、形成される液晶層中において液晶化合物の配向欠陥が見られ、昨今の要求レベルを満たしていなかった。
 本発明は、上記実情に鑑みて、液晶化合物の配向欠陥が少ない液晶層を有する光学フィルムを製造できる、光学フィルムの製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねたところ、以下の構成の本発明を完成させた。
(1) 基材上に、光配向化合物を含む光配向層形成用組成物を塗布して、第1塗膜を形成する工程A1と、
 第1塗膜上に、液晶化合物を含む液晶層形成用組成物を塗布して、第2塗膜を形成する工程A2と、
 第1塗膜に対して偏光を照射して、第1塗膜に配向規制力を付与して、光配向層を形成する工程A3と、
 第2塗膜中の液晶化合物を配向させて、液晶層を形成する工程A4と、をこの順に有する、光学フィルムの製造方法。
(2) 工程A3において、偏光を基材側から第1塗膜に照射する、(1)に記載の光学フィルムの製造方法。
(3) 液晶化合物が重合性基を有する、(1)または(2)に記載の光学フィルムの製造方法。
(4) 第1塗膜の厚みが1.0μm以下である、(1)~(3)のいずれかに記載の光学フィルムの製造方法。
(5) 光配向化合物が、光の作用により二量化および異性化の少なくとも一方が生じる光配向性基を有する、(1)~(4)のいずれかに記載の光学フィルムの製造方法。
(6) 光配向性基が、シンナモイル基、アゾベンゼン基、カルコニル基、および、クマリン基からなる群から選択される、(5)に記載の光学フィルムの製造方法。
(7) 光配向化合物が、光配向性基を有する繰り返し単位と、架橋性基を有する繰り返し単位とを含む、(5)または(6)に記載の光学フィルムの製造方法。
(8) 架橋性基を有する繰り返し単位が、後述する式(1)で表される繰り返し単位を含む、(7)に記載の光学フィルムの製造方法。
(9) 架橋性基が、後述する式(Z1)~(Z4)で表される基のいずれかである、(8)に記載の光学フィルムの製造方法。
(10) 光配向化合物が、光配向性基に由来する極大吸収波長を波長250~450nmに有し、
 極大吸収波長における基材の吸光度が1.0以下である、(5)~(9)のいずれかに記載の光学フィルムの製造方法。
(11) 光配向化合物が、光配向性基に由来する極大吸収波長を波長250~450nmに有し、
 液晶層形成用組成物が重合開始剤を含み、
 重合開始剤が後述する要件1または要件2を満たす、(5)~(10)のいずれかに記載の光学フィルムの製造方法。
(12) 基材上に、光配向化合物および液晶化合物を含む液晶層形成用組成物を塗布して、光配向化合物が基材側に偏在している塗膜を形成する工程B1と、
 塗膜に対して偏光を照射して、光配向化合物に配向規制力を付与する工程B2と、
 塗膜中の液晶化合物を配向させて、液晶層を形成する工程B3と、をこの順に有する、光学フィルムの製造方法。
(13) 工程B2において、偏光を基材側から塗膜に照射する、(12)に記載の光学フィルムの製造方法。
(14) 液晶化合物が重合性基を有する、(12)または(13)に記載の光学フィルムの製造方法。
(15) 液晶層形成用組成物における光配向化合物の含有量が、液晶化合物の含有量に対して、0.01~30質量%である、(12)~(14)のいずれかに記載の光学フィルムの製造方法。
(16) 基材が、表面に水素結合性基を有する、(12)~(15)のいずれかに記載の光学フィルムの製造方法。
(17) 基材の表面の水接触角が80°以下である、(12)~(16)のいずれかに記載の光学フィルムの製造方法。
(18) 光配向化合物が、水素結合性基、塩構造を有する基、ボロン酸基、ボロン酸エステル基、および、後述する式(2)で表される基からなる群から選択される相互作用性基を有する、(12)~(17)のいずれかに記載の光学フィルムの製造方法。
(19) 光配向化合物が、相互作用性基を有する繰り返し単位を含む、(18)に記載の光学フィルムの製造方法。
(20) 相互作用性基を有する繰り返し単位が、後述する式(3)~(7)で表される繰り返し単位の少なくとも1つを含む、(19)に記載の光学フィルムの製造方法。
(21) 相互作用性基を有する繰り返し単位が、後述する式(8)~(10)で表される繰り返し単位の少なくとも1つを含む、(19)または(20)に記載の光学フィルムの製造方法。
(22) 光配向化合物が、光の作用により二量化および異性化の少なくとも一方が生じる光配向性基を有する、(12)~(21)のいずれかに記載の光学フィルムの製造方法。
(23) 光配向性基が、シンナモイル基、アゾベンゼン基、カルコニル基、および、クマリン基からなる群から選択される、(22)に記載の光学フィルムの製造方法。
(24) 光配向化合物が、光配向性基を有する繰り返し単位を含む、(22)または(23)に記載の光学フィルムの製造方法。
(25) 光配向化合物が、光配向性基に由来する極大吸収波長を波長250~450nmに有し、
 極大吸収波長における基材の吸光度が1.0以下である、(22)~(24)のいずれかに記載の光学フィルムの製造方法。
(26) 光配向化合物が、光配向性基に由来する極大吸収波長を波長250~450nmに有し、
 液晶層形成用組成物が重合開始剤を含み、
 重合開始剤が後述する要件1または要件2を満たす、(22)~(25)のいずれかに記載の光学フィルムの製造方法。
 本発明によれば、液晶化合物の配向欠陥が少ない液晶層を有する光学フィルムを製造できる、光学フィルムの製造方法を提供できる。
従来技術を説明するための図である。 従来技術を説明するための図である。 従来技術を説明するための図である。 従来技術を説明するための図である。 工程A1を説明するための図である。 工程A2を説明するための図である。 工程A3を説明するための図である。 工程A4を説明するための図である。 工程B1を説明するための図である。 飛行時間型二次イオン質量分析法で得られた光配向化合物由来の二次イオン強度分布の一例である。 工程B2を説明するための図である。 工程B3を説明するための図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリル」は、「アクリルおよびメタクリルのいずれか一方または双方」の意味で使用される。
 本発明において、Re(λ)およびRth(λ)は各々、波長λにおける面内のレタデーションおよび厚み方向のレタデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本発明において、Re(λ)およびRth(λ)はAxoScan、Axometrics社製において、波長λで測定した値である。AxoScanにて平均屈折率((nx+ny+nz)/3)と膜厚(d(μm))を入力することにより、
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((nx+ny)/2-nz)×d
が算出される。
 なお、R0(λ)は、AxoScanで算出される数値として表示されるものであるが、Re(λ)を意味している。
 本明細書において、屈折率nx、ny、および、nzは、アッベ屈折計(NAR-4T、アタゴ(株)製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また、波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ(株)製)にて、干渉フィルターとの組み合わせで測定できる。
 また、ポリマーハンドブック(JOHN WILEY&SONS,INC)、および、各種光学フィルムのカタログの値を使用できる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、および、ポリスチレン(1.59)。
 本明細書中における「光」とは、活性光線または放射線を意味し、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光:Extreme Ultraviolet)、X線、紫外線、および、電子線(EB:Electron Beam)などを意味する。なかでも、紫外線が好ましい。
 また、本明細書において表記される2価の基(例えば、-O-CO-)の結合方向は特に限定されず、例えば、「L-L-L」の結合においてLが-O-CO-である場合、L側に結合している位置を*1、L側に結合している位置を*2とすると、Lは*1-O-CO-*2であってもよく、*1-CO-O-*2であってもよい。
 従来技術においては、上述したように、基材上に光配向層を形成した後、光配向層上に液晶層形成用組成物を塗布して塗膜を形成して、塗膜中の液晶化合物を配向させて、液晶層を形成する。
 以下では、まず、上記手順の従来技術において所望の効果が得られない理由について図1~4を用いて説明する。
 図1は、基材100上に光配向化合物を含む光配向層形成用組成物を塗布して、塗膜120を形成した図である。塗膜120中に含まれる光配向化合物中の光配向性基LAは、種々の方向を向いている。
 次に、図1の白矢印で示すように、塗膜120側から偏光を照射すると、光配向性基LAが偏光によって配向して、図2に示すように、配向規制力を有する光配向層140が基材100上に形成される。
 次に、図3に示すように、光配向層140上に液晶化合物LCおよび溶媒を含む液晶層形成用組成物を塗布して、塗膜160を形成すると、液晶層形成用組成物に含まれる溶媒によって光配向層中の光配向性基LAの配向が緩和してしまい、配向の乱れが生じる。
 そのため、図4に示すように、塗膜160に加熱処理などの配向処理を施して、液晶化合物LCを配向させると、光配向層140中の光配向性基LAの配向の乱れに起因して、液晶化合物LCの配向にも乱れが生じてしまう。結果として、液晶層中に配向欠陥が生じてしまう。
 それに対して、本発明では、後述するように、所定の工程を実施することにより、所望の効果が得られている。
 以下では、本発明を、第1実施形態および第2実施形態に分けて説明する。
<<第1実施形態>>
 本発明の第1実施形態は、以下の工程A1~A4を有する。
工程A1:基材上に、光配向化合物を含む光配向層形成用組成物を塗布して、第1塗膜を形成する工程
工程A2:第1塗膜上に、液晶化合物を含む液晶層形成用組成物を塗布して、第2塗膜を形成する工程
工程A3:第1塗膜に対して偏光を照射して、第1塗膜に配向規制力を付与して、光配向層を形成する工程
工程A4:第2塗膜中の液晶化合物を配向させて、液晶層を形成する工程
 以下、各工程の手順について詳述する。
<工程A1>
 工程A1は、基材上に、光配向化合物を含む光配向層形成用組成物を塗布して、第1塗膜を形成する工程である。本工程を実施することにより、図5に示すように、基材10上に、光配向性基LAを有する光配向化合物を含む第1塗膜12が形成される。第1塗膜12中において、光配向性基LAは種々の方向を向いている。
 以下では、まず、本工程で使用される部材および材料について詳述し、その後、工程の手順について詳述する。
(基材)
 基材は、後述する光配向層および液晶層を支持する部材である。
 基材は、有機基材(有機材料で構成される基材)であってもよいし、無機基材(無機材料で構成される基材)であってもよく、有機基材が好ましい。
 有機基材としては、樹脂基材が好ましい。
 樹脂基材の材料としては、セルロース系ポリマー;ポリメチルメタクリレート、および、ラクトン環含有重合体であるアクリル酸エステル重合体などのアクリル系ポリマー;熱可塑性ノルボルネン系ポリマー;ポリカーボネート系ポリマー;ポリエチレンテレフタレート、および、ポリエチレンナフタレートなどのポリエステル系ポリマー;ポリスチレン、および、アクリロニトリルスチレン共重合体などのスチレン系ポリマー;ポリエチレン、ポリプロピレン、および、エチレン・プロピレン共重合体などのポリオレフィン系ポリマー;、塩化ビニル系ポリマー;ナイロン、および、芳香族ポリアミドなどのアミド系ポリマー;イミド系ポリマー;スルホン系ポリマー;ポリエーテルスルホン系ポリマー;ポリエーテルエーテルケトン系ポリマー;ポリフェニレンスルフィド系ポリマー;塩化ビニリデン系ポリマー;ビニルアルコール系ポリマー;ビニルブチラール系ポリマー;アリレート系ポリマー;ポリオキシメチレン系ポリマー;エポキシ系ポリマー;またはこれらのポリマーを混合したポリマーが挙げられる。
 無機基材としては、ガラス基材が挙げられる。
 基材は、透明であることが好ましい。つまり、基材としては、透明基材が好ましい。
 なお、透明基材とは、可視光の透過率が60%以上である基材を意図し、その透過率は80%以上が好ましく、90%以上がより好ましい。
 基材は、その表面に水素結合性基を有することが好ましい。
 水素結合性基としては、ヒドロキシ基、チオール基、カルボキシ基、アミノ基、アミド基、ウレア基、および、ウレタン基が挙げられ、形成される液晶層中の液晶化合物の配向欠陥がより少ない点(以下、単に「本発明の効果がより優れる点」ともいう。)で、ヒドロキシ基またはカルボキシ基が好ましい。
 基材の表面に水素結合性基を導入する方法は特に制限されず、コロナ処理、および、紫外線照射処理などの公知の表面処理方法が挙げられる。
 また、基材を構成する材料(例えば、ポリマー)自体が、水素結合性基を有していてもよい。
 また、基材は、基材を構成する主成分とは別に、水素結合性基を有する添加剤を含んでいてもよい。
 さらに、基材は、熱または光などにより分解して、水素結合性基を生じる化合物を含み、所定の処理(例えば、光照射処理、または、加熱処理)を施すことにより、基材の表面に水素結合性基を導入してもよい。
 基材の表面の水接触角は特に制限されないが、本発明の効果がより優れる点で、80°以下が好ましく、70°以下がより好ましい。下限は特に制限されないが、1°以上の場合が多い。
 基材の表面の水接触角の測定方法としては、以下の通りである。
 まず、接触角計[“CA-X”型接触角計、協和界面科学(株)製]を用い、乾燥状態(20℃/65%RH)で、液体として純水を使用して3μLの液滴を針先に作り、これを基材表面に接触させて、基材上に液滴を作る。滴下後15秒での基材と液体とが接する点における、液体表面に対する接線と基材表面がなす角で、液体を含む側の角度を測定し、水接触角とする。
 基材は、単層構造であっても、複層構造であってもよい。
 基材が複層構造である場合、基材は、支持体と、支持体上に配置される光学異方性層とを有していてもよい。
 光学異方性層としては、面内方向に位相差を有する光学異方性層、および、厚み方向に位相差を有する光学異方性層が挙げられる。
 基材の厚みは特に限定されず、5~200μmが好ましく、10~100μmがより好ましく、20~90μmがさらに好ましい。
(光配向化合物)
 光配向化合物とは、光配向性基を有する化合物である。
 ここで、「光配向性基」とは、異方性を有する光(例えば、平面偏光など)の照射により、再配列または異方的な化学反応が誘起される光配向機能を有する基をいい、配向の均一性に優れ、熱的安定性または化学的安定性も良好となる点から、光の作用により二量化および異性化の少なくとも一方が生じる光配向性基が好ましい。
 光の作用により二量化する光配向性基としては、例えば、桂皮酸誘導体(M. Schadt et al., J. Appl. Phys., vol. 31, No. 7, page 2155 (1992))、クマリン誘導体(M. Schadt et al., Nature., vol. 381, page 212 (1996))、カルコン誘導体(小川俊博他、液晶討論会講演予稿集,2AB03(1997))、マレイミド誘導体、および、ベンゾフェノン誘導体(Y. K. Jang et al., SID Int. Symposium Digest, P-53(1997))からなる群から選択される少なくとも1種の誘導体の骨格を有する基が挙げられる。
 一方、光の作用により異性化する光配向性基としては、例えば、アゾベンゼン化合物(K. Ichimura et al.,Mol.Cryst.Liq.Cryst .,298,221(1997))、スチルベン化合物(J.G.Victor and J.M.Torkelson,Macromolecules,20,2241(1987))、スピロピラン化合物(K. Ichimura et al., Chemistry Letters, page 1063 (1992);K.Ichimura et al., Thin Solid Films, vol. 235, page 101 (1993))、桂皮酸化合物(K.Ichimura et al.,Macromolecules,30,903(1997))、および、ヒドラゾノ-β-ケトエステル化合物(S. Yamamura et al., Liquid Crystals, vol. 13, No. 2, page 189 (1993))からなる群から選択される少なくとも1種の化合物の骨格を有する基が挙げられる。
 これらのうち、光配向性基が、シンナモイル基、アゾベンゼン基、カルコニル基、および、クマリン基からなる群から選択されることが好ましい。
 光配向化合物は、本発明の効果がより優れる点で、ポリマーであることが好ましい。
 光配向化合物は、光配向性基を有する繰り返し単位を含むことが好ましい。
 光配向性基を有する繰り返し単位の主鎖の構造は特に限定されず、公知の構造が挙げられ、(メタ)アクリル系、スチレン系、シロキサン系、シクロオレフィン系、メチルペンテン系、アミド系、および、芳香族エステル系からなる群から選択される骨格が好ましい。
 これらのうち、(メタ)アクリル系、シロキサン系、および、シクロオレフィン系からなる群から選択される骨格がより好ましく、(メタ)アクリル系骨格がさらに好ましい。
 光配向性基を有する繰り返し単位としては、式(W)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000006
 RW1は、水素原子またはメチル基を表す。
 Lは、単結合または2価の連結基を表す。2価の連結基の好適態様は、後述するLで表される2価の連結基の好適態様と同じである。
 RW2、RW3、RW4、RW5およびRW6は、それぞれ独立に、水素原子または置換基を表す。RW2、RW3、RW4、RW5およびRW6のうち、隣接する2つの基が結合して環を形成していてもよい。
 上記置換基の種類は特に制限されず、後述するRで表されるアルキル基が有していてもよい置換基で例示した基が挙げられる。なかでも、アルコキシ基が好ましい。
 光配向化合物中における光配向性基を有する繰り返し単位の含有量は特に制限されないが、本発明の効果がより優れる点で、光配向化合物中の全繰り返し単位に対して、15~98質量%が好ましく、30~95質量%がより好ましい。
 工程A2において液晶層形成用組成物に含まれる溶剤により第1塗膜中の光配向化合物が溶出するのを防止できる点、および、光配向層と液晶層との密着性がより優れる点で、光配向化合物は、架橋性基を有する繰り返し単位を含むことが好ましい。
 架橋性基を有する繰り返し単位の主鎖の構造は特に限定されず、公知の構造が挙げられ、(メタ)アクリル系、スチレン系、シロキサン系、シクロオレフィン系、メチルペンテン系、アミド系、および、芳香族エステル系からなる群から選択される骨格が好ましい。
 これらのうち、(メタ)アクリル系、シロキサン系、および、シクロオレフィン系からなる群から選択される骨格がより好ましく、(メタ)アクリル系骨格がさらに好ましい。
 架橋性基を有する繰り返し単位としては、式(1)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000007
 Rは、水素原子またはメチル基を表す。
 Lは、単結合または2価の連結基を表す。2価の連結基は特に制限されず、例えば、2価の炭化水素基(例えば、炭素数1~10のアルキレン基、炭素数1~10のアルケニレン基、および、炭素数1~10のアルキニレン基などの2価の脂肪族炭化水素基、並びに、アリーレン基などの2価の芳香族炭化水素基)、2価の複素環基、-O-、-S-、-NH-、-N(R)-、-CO-、または、これらを組み合わせた基(例えば、-CO-O-、-O-2価の炭化水素基-、-(O-2価の炭化水素基)-O-(mは、1以上の整数を表す)、および、-2価の炭化水素基-O-CO-など)が挙げられる。Rは、水素原子またはアルキル基を表す。
 Zは、架橋性基を表す。架橋性基の種類は特に制限されず、公知の架橋性基が挙げられ、例えば、ラジカル重合性基、および、カチオン重合性基が挙げられる。
 架橋性基としては、式(Z1)~(Z4)で表される基のいずれかが好ましい。
Figure JPOXMLDOC01-appb-C000008
 Rは、水素原子、メチル基、または、エチル基を表す。
 Rは、水素原子またはメチル基を表す。
 *は結合位置を表す。
 光配向化合物が架橋性基を有する繰り返し単位を含む場合、光配向化合物中における架橋性基を有する繰り返し単位の含有量は特に制限されないが、本発明の効果がより優れる点で、光配向化合物中の全繰り返し単位に対して、20~80質量%が好ましく、30~70質量%がより好ましい。
 光配向化合物は、上述した、光配向性基を有する繰り返し単位、および、架橋性基を有する繰り返し単位以外の、他の繰り返し単位を含んでいてもよい。
 他の繰り返し単位としては、後述する相互作用性基を有する繰り返し単位、および、後述するアルキル基を有する繰り返し単位などが挙げられる。
 光配向化合物がポリマーである場合、光配向化合物の重量平均分子量(Mw)は特に制限されないが、本発明の効果がより優れる点で、10000~500000が好ましく、20000~300000がより好ましい。
 本発明における重量平均分子量および数平均分子量は、以下に示す条件でゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):THF(テトラヒドロフラン)
 ・装置名:TOSOH HLC-8320GPC
 ・カラム:TOSOH TSKgel Super HZM-H(4.6mm×15cm)を3本接続して使用
 ・カラム温度:40℃
 ・試料濃度:0.1質量%
 ・流速:1.0ml/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
 光配向化合物は、公知の方法で合成できる。
(光配向層形成用組成物)
 光配向層形成用組成物は、上述した光配向化合物を含む。
 光配向層形成用組成物中における光配向化合物の含有量は特に制限されないが、本発明の効果がより優れる点で、光配向層形成用組成物中の全固形分に対して、80質量%以上が好ましく、90質量%以上がより好ましい。上限は特に制限されないが、100質量%が挙げられる。
 なお、光配向層形成用組成物中の全固形分とは、光配向層を構成する成分を意図し、溶媒は含まれない。
 光配向層形成用組成物は、熱酸発生剤を含んでいてもよい。特に、光配向化合物がカチオン重合性基を有する場合、液晶層を形成する際に熱酸発生剤を用いて、カチオン重合性基を重合させることができる。
 光配向層形成用組成物中における熱酸発生剤の含有量は、光配向層形成用組成物中の全固形分に対して、0.01~20質量%が好ましく、0.3~10質量%がより好ましい。
 また、光配向層形成用組成物は、溶媒を含んでいてもよい。溶媒としては、有機溶媒が好ましい。有機溶媒としては、アミン(例:ジイソプロピルエチルアミン)、アミド(例:N,N-ジメチルホルムアミド)、スルホキシド(例:ジメチルスルホキシド)、ヘテロ環化合物(例:ピリジン、1,3-ジオキソラン)、炭化水素(例:ベンゼン、ヘキサン)、アルキルハライド(例:クロロホルム、ジクロロメタン)、エステル(例:酢酸メチル、酢酸エチル、酢酸ブチル)、ケトン(例:アセトン、メチルエチルケトン、シクロペンタノン)、および、エーテル(例:テトラヒドロフラン、1,2-ジメトキシエタン)が挙げられる。なお、2種類以上の有機溶媒を併用してもよい。
(工程A1の手順)
 工程A1では、基材上に、光配向化合物を含む光配向層形成用組成物を塗布する。
 光配向層形成用組成物を基材上に塗布する方法は特に制限されず、カーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、および、ワイヤーバー法が挙げられる。
 光配向層形成用組成物を塗布した後、必要に応じて、形成される第1塗膜に対して乾燥処理を施してもよい。
 乾燥処理の方法としては、加熱処理が挙げられる。
 加熱処理の際の加熱温度としては50~250℃が好ましく、50~150℃がより好ましく、加熱時間としては10秒間~10分間が好ましい。
 第1塗膜の厚みは特に制限されないが、2.0μm以下の場合が多く、本発明の効果がより優れる点で、1.0μm以下が好ましい。下限は特に制限されないが、0.01μm以上が好ましい。
 なお、本発明の効果がより優れる点で、光配向化合物が、光配向性基に由来する極大吸収波長を波長250~450nmに有し、光配向性基に由来する極大吸収波長における基材の吸光度が1.0以下であることが好ましい。
 後述するように、工程A3において第1塗膜に対して偏光を照射する際に、上記関係を満たす場合、基材側から偏光を第1塗膜に照射することにより、効率的に第1塗膜中の光配向性基を配向させることができる。
<工程A2>
 工程A2は、第1塗膜上に、液晶化合物を含む液晶層形成用組成物を塗布して、第2塗膜を形成する工程である。本工程を実施することにより、図6に示すように、第1塗膜12上に、液晶化合物LCを含む第2塗膜14が形成される。第2塗膜14中において、液晶化合物LCは種々の方向を向いている。
 以下では、まず、本工程で使用される材料について詳述し、その後、工程の手順について詳述する。
(液晶化合物)
 液晶化合物の種類は特に限定されず、例えば、ホメオトロピック配向、ホモジニアス配向、ハイブリッド配向およびコレステリック配向のいずれかの配向が可能な化合物が挙げられる。
 ここで、一般的に、液晶化合物はその形状から、棒状タイプと円盤状タイプとに分類できる。さらに、それぞれ低分子と高分子タイプとがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできるが、棒状液晶化合物またはディスコティック液晶化合物(円盤状液晶化合物)が好ましい。また、モノマーであるか、重合度が100未満の比較的低分子量な液晶化合物が好ましい。
 液晶化合物は、重合性基を有することが好ましい。つまり、液晶化合物は、重合性液晶化合物であることが好ましい。重合性液晶化合物が有する重合性基としては、例えば、アクリロイル基、メタクリロイル基、エポキシ基、および、ビニル基が挙げられる。
 このような重合性液晶化合物を重合させることにより、液晶化合物の配向を固定することができる。なお、液晶化合物が重合によって固定された後においては、もはや液晶性を示す必要はない。
 棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1または特開2005-289980号公報の段落[0026]~[0098]に記載のものを好ましく、ディスコティック液晶化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]または特開2010-244038号公報の段落[0013]~[0108]に記載のものを好ましい
 上記重合性液晶化合物として、逆波長分散性の液晶化合物を用いることができる。
 ここで、本明細書において「逆波長分散性」の液晶化合物とは、この化合物を用いて作製された位相差フィルムの特定波長(可視光範囲)における面内のレタデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
 逆波長分散性の液晶化合物は、上記のように逆波長分散性のフィルムを形成できるものであれば特に限定されず、例えば、特開2008-297210号公報に記載の一般式(I)で表される化合物(特に、段落[0034]~[0039]に記載の化合物)、特開2010-084032号公報に記載の一般式(1)で表される化合物(特に、段落[0067]~[0073]に記載の化合物)、および、特開2016-081035公報に記載の一般式(1)で表される化合物(特に、段落[0043]~[0055]に記載の化合物)が挙げられる。
 さらに、特開2011-006360号公報の段落[0027]~[0100]、特開2011-006361号公報の段落[0028]~[0125]、特開2012-207765号公報の段落[0034]~[0298]、特開2012-077055号公報の段落[0016]~[0345]、WO12/141245号公報の段落[0017]~[0072]、WO12/147904号公報の段落[0021]~[0088]、WO14/147904号公報の段落[0028]~[0115]に記載の化合物が挙げられる。
(液晶層形成用組成物)
 液晶層形成用組成物は、液晶化合物を含む。
 液晶層形成用組成物中における液晶化合物の含有量は特に制限されないが、本発明の効果がより優れる点で、組成物中の全固形分に対して、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上がさらに好ましい。上限は特に制限されないが、99質量%以下の場合が多い。
 なお、液晶層形成用組成物中の全固形分とは、液晶層を構成する成分を意図し、溶媒は含まれない。
 液晶層形成用組成物は、上述した、液晶化合物以外の他の化合物を含んでいてもよい。
 液晶層形成用組成物は、レベリング剤を含んでいてもよい。
 レベリング剤は、フッ素原子またはケイ素原子を有することが好ましい。つまり、レベリング剤としては、フッ素系レベリング剤またはケイ素系レベリング剤が好ましく、フッ素系レベリング剤がより好ましい。
 レベリング剤の具体例としては、特開2007-069471号公報の段落[0079]~[0102]の記載の化合物、特開2013-047204号公報に記載の一般式(I)で表される化合物、特開2012-211306号公報に記載の一般式(I)で表される化合物、特開2002-129162号公報に記載の一般式(I)で表される液晶配向促進剤、特開2005-099248号公報に記載の一般式(I)、(II)または(III)で表される化合物が挙げられる。
 液晶層形成用組成物中におけるレベリング剤の含有量は、液晶層形成用組成物中の全固形分に対して、0.01~5質量%が好ましく、0.05~1質量%がより好ましい。
 液晶層形成用組成物は、重合開始剤を含んでいてもよい。使用される重合開始剤は、重合反応の形式に応じて選択され、例えば、熱重合開始剤、および、光重合開始剤が挙げられる。例えば、光重合開始剤としては、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、および、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせなどが挙げられる。
 液晶層形成用組成物中における重合開始剤の含有量は、液晶層形成用組成物中の全固形分に対して、0.01~20質量%が好ましく、0.3~10質量%がより好ましい。
 液晶層形成用組成物は、重合性モノマーを含んでいてもよい。
 重合性モノマーとしては、ラジカル重合性またはカチオン重合性の化合物が挙げられる。なかでも、多官能性ラジカル重合性モノマーが好ましい。また、重合性モノマーとしては、上記の重合性基を有する液晶化合物と共重合性のモノマーが好ましい。例えば、特開2002-296423号公報中の段落[0018]~[0020]に記載の重合性モノマーが挙げられる。
 液晶層形成用組成物中における重合性モノマーの含有量は、液晶化合物の全質量に対して、1~50質量%が好ましく、2~30質量%がより好ましい。
 液晶層形成用組成物は、溶媒を含んでいてもよい。溶媒としては、有機溶媒が好ましい。有機溶媒としては、アミン(例:ジイソプロピルエチルアミン)、アミド(例:N,N-ジメチルホルムアミド)、スルホキシド(例:ジメチルスルホキシド)、ヘテロ環化合物(例:ピリジン、1,3-ジオキソラン)、炭化水素(例:ベンゼン、ヘキサン)、アルキルハライド(例:クロロホルム、ジクロロメタン)、エステル(例:酢酸メチル、酢酸エチル、酢酸ブチル)、ケトン(例:アセトン、メチルエチルケトン、シクロペンタノン)、および、エーテル(例:テトラヒドロフラン、1,2-ジメトキシエタン)が挙げられる。なお、2種類以上の有機溶媒を併用してもよい。
 液晶層形成用組成物は、垂直配向剤、および、水平配向剤などの各種配向制御剤を含んでいてもよい。これらの配向制御剤は、界面側において液晶化合物を水平または垂直に配向制御可能な化合物である。
 さらに、液晶層形成用組成物は、上記成分以外に、重合禁止剤、密着改良剤、および、可塑剤を含んでいてもよい。
 特に、後述する工程A3において液晶化合物の重合を抑制する目的で、液晶層形成用組成物は重合禁止剤を含んでいてもよい。
(工程A2の手順)
 工程A2では、第1塗膜上に、液晶化合物を含む液晶層形成用組成物を塗布する。
 液晶層形成用組成物を第1塗膜上に塗布する方法は特に制限されず、カーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、および、ワイヤーバー法が挙げられる。
 液晶層形成用組成物を塗布した後、必要に応じて、形成される第2塗膜に対して乾燥処理を施してもよい。
 第2塗膜の厚みは特に制限されないが、0.1~10μmが好ましく、0.5~5μmがより好ましい。
 なお、本発明の効果がより優れる点で、光配向化合物が、光配向性基に由来する極大吸収波長を波長250~450nmに有し、液晶層形成用組成物が重合開始剤を含み、重合開始剤が要件1または要件2を満たすことが好ましい。要件1または要件2を満たすことにより、後述する工程A3の際に、液晶化合物の重合を抑制でき、液晶化合物の配向欠陥が生じることをより抑制できる。
要件1:上記極大吸収波長(光配向性基に由来する極大吸収波長)における、重合開始剤のモル吸光係数が4000l/mol・cm以下
要件2:上記極大吸収波長(光配向性基に由来する極大吸収波長)における、重合開始剤のモル吸光係数が4000l/mol・cmより大きく20000l/mol・cmより小さく、液晶化合物の含有量に対する重合開始剤の含有量が2.0質量%以下である。
<工程A3>
 工程A3は、第1塗膜に対して偏光を照射して、第1塗膜に配向規制力を付与して、光配向層を形成する工程である。本工程を実施することにより、図6に示す、第1塗膜12中の光配向性基LAが配列して、図7に示すように、光配向性基LAが所定の方向に配向した光配向層16が形成される。光配向層16は、その上に形成される層中の化合物を配向させる配向規制力を有する。
 第1塗膜に対して照射する偏光は特に制限はなく、例えば、直線偏光、円偏光、および、楕円偏光が挙げられ、直線偏光が好ましい。
 偏光における波長は特に制限はないが、例えば、紫外線、近紫外線、および、可視光線が挙げられる。なかでも、250~450nmの近紫外線が好ましい。
 また、偏光を照射するための光源としては、例えば、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、および、メタルハライドランプが挙げられる。このような光源から得た紫外線または可視光線に対して、干渉フィルタまたは色フィルタなどを用いることで、照射する波長範囲を制限できる。また、これらの光源からの光に対して、偏光フィルタまたは偏光プリズムを用いることで、直線偏光を得ることができる。
 偏光の照射方向は特に制限されず、第1塗膜側から照射してもよいし、基材側から照射してもよい。本発明の効果がより優れる点で、基材側から照射することが好ましい。
 偏光の積算光量は特に制限されないが、1~300mJ/cmが好ましく、2~100mJ/cmがより好ましい。
<工程A4>
 工程A4は、第2塗膜中の液晶化合物を配向させて、液晶層を形成する工程である。本工程を実施することにより、図7に示す、第2塗膜14中の液晶化合物が配列して、図8に示すように、液晶化合物が所定の方向に配向した液晶層18が形成される。
 液晶化合物を配向させる方法は特に制限されないが、加熱処理が挙げられる。
 第2塗膜を加熱する場合の条件は特に制限されないが、加熱温度としては50~250℃が好ましく、50~150℃がより好ましく、加熱時間としては10秒間~10分間が好ましい。
 また、第2塗膜を加熱した後、後述する硬化処理の前に、必要に応じて、第2塗膜を冷却してもよい。冷却温度としては20~200℃が好ましく、30~150℃がより好ましい。
 液晶化合物が重合性基を有する場合、液晶化合物を配向させた後、液晶化合物が配向している液晶層に対して硬化処理を施してもよい。
 硬化処理の方法は特に制限されず、例えば、光照射処理および加熱処理が挙げられる。なかでも、製造適性の点から、光照射処理が好ましく、紫外線照射処理がより好ましい。
 光照射処理の照射条件は特に制限されないが、50~1000mJ/cmの照射量が好ましい。
 光照射処理の際の雰囲気は特に制限されないが、窒素雰囲気が好ましい。
 工程A4を実施することにより、液晶化合物が配向している液晶層が形成される。
 液晶層は、配向した液晶化合物が固定されてなる層であることが好ましい。液晶化合物が重合性基を有する場合、上述したように硬化処理によって、液晶化合物の配向状態を容易に固定化できる。
 なお、本明細書において、「固定した」状態は、液晶化合物の配向が保持された状態である。具体的には、通常、0~50℃、より過酷な条件下では-30~70℃の温度範囲において、層に流動性がなく、また、外場もしくは外力によって配向形態に変化を生じさせることなく、固定された配向形態を安定に保ち続けることができる状態であることが好ましい。
 液晶化合物が配向した状態(配向状態)は特に制限されず、公知の配向状態が挙げられる。配向状態としては、例えば、ホモジニアス配向、および、ホメオトロピック配向が挙げられる。より具体的には、液晶化合物が棒状液晶化合物である場合、配向状態としては、例えば、ネマチック配向(ネマチック相を形成している状態)、スメクチック配向(スメクチック相を形成している状態)、コレステリック配向(コレステリック相を形成している状態)、および、ハイブリッド配向が挙げられる。液晶化合物がディスコティック液晶化合物である場合、配向状態としては、ネマチック配向、カラムナー配向(カラムナー相を形成している状態)、および、コレステリック配向が挙げられる。
 なお、本明細書において、ホモジニアス配向とは、液晶化合物の分子軸(例えば、棒状液晶化合物の場合には長軸が該当)が層表面に対して水平に、かつ、同一方位に配列している状態(光学的一軸性)をいう。
 ここで、水平とは、厳密に水平であることを要求するものでなく、層内の液晶化合物の平均分子軸が層表面とのなす傾斜角が2°未満の配向を意味するものとする。
 また、同一方位とは、厳密に同一方位であることを要求するものでなく、面内の任意の20か所の位置で遅相軸の方位を測定したとき、20か所での遅相軸の方位のうちの遅相軸方位の最大差(20個の遅相軸方位のうち、差が最大となる2つの遅相軸方位の差)が10°未満であることを意味するものとする。
 液晶層の厚みは特に制限されないが、0.1~10μmが好ましく、0.5~5μmがより好ましい。
 液晶層の面内レタデーションは特に制限されないが、例えば、光学フィルムを反射防止膜用途に用いる場合、液晶層の波長550nmにおける面内レタデーションは110~160nmが好ましい。
<<第2実施形態>>
 本発明の第2実施形態は、以下の工程B1~B3を有する。
工程B1:基材上に、光配向化合物および液晶化合物を含む液晶層形成用組成物を塗布して、光配向化合物が基材側に偏在している塗膜を形成する工程
工程B2:塗膜に対して偏光を照射して、光配向化合物に配向規制力を付与する工程
工程B3:塗膜中の液晶化合物を配向させて、液晶層を形成する工程
 以下、各工程の手順について詳述する。
<工程B1>
 工程B1は、基材上に、光配向化合物および液晶化合物を含む液晶層形成用組成物を塗布して、光配向化合物が基材側に偏在している塗膜を形成する工程である。本工程を実施することにより、図9に示すように、基材10上に、光配向性基LAを有する光配向化合物および液晶化合物LCを含み、光配向化合物が基材10側に偏在している塗膜20が形成される。
 以下では、まず、本工程で使用される部材および材料について詳述し、その後、工程の手順について詳述する。
(基材)
 本工程で使用される基材としては、上述した第1実施形態で使用される基材が挙げられ、好適態様は上述した通りである。
(液晶化合物)
 本工程で使用される液晶化合物としては、上述した第1実施形態で使用される液晶化合物が挙げられ、好適態様は上述した通りである。
(光配向化合物)
 光配向化合物としては、上述した第1実施形態で使用される光配向化合物が挙げられる。つまり、光配向化合物は、第1実施形態で説明した、光配向性基を有する化合物である。
 本工程で使用される光配向化合物は、上述した第1実施形態で説明したように、架橋性基を有する繰り返し単位を含んでいてもよい。
 光配向化合物は、本発明の効果がより優れる点で、水素結合性基、塩構造を有する基、ボロン酸基(-B(OH))、ボロン酸エステル基、および、式(2)で表される基からなる群から選択される相互作用性基を有することが好ましい。光配向化合物が上記相互作用性基を有する場合、基材と相互作用しやすくなり、結果として、光配向化合物が基材側に偏在しやすくなる。
 なお、光配向化合物は、熱若しくは光により分解して水素結合性基を生じる基、または、熱若しくは光により分解して塩構造を生じる基を有していてもよい。
Figure JPOXMLDOC01-appb-C000009
 水素結合性基としては、ヒドロキシ基、チオール基、カルボキシ基、アミノ基、アミド基、ウレア基、および、ウレタン基が挙げられる。
 塩構造を有する基とは、酸由来の陰イオンと塩基由来の陽イオンとからなる塩由来の構造を有する基である。塩構造としては、カルボン酸塩構造、スルホン酸塩構造、ホスホン酸塩構造、および、4級アンモニウム塩構造が挙げられる。
 式(2)中、Rは、置換基を有していてもよい、炭素数1~20のアルキル基を表す。上記アルキル基の炭素数は、1~10が好ましく、1~5がより好ましい。
 Rで表されるアルキル基が有していてもよい置換基の種類は特に制限されず、公知の置換基が挙げられる。置換基としては、例えば、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、芳香族ヘテロ環オキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、芳香族ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、シアノ基、スルホ基、カルボキシ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(例えば、ヘテロアリール基)、シリル基、および、これらを組み合わせた基などが挙げられる。なお、上記置換基は、さらに置換基で置換されていてもよい。
 なお、Rが炭素数2~20のアルキル基である場合、アルキル基を構成する-CH-の1個以上が-O-、-S-、-N(Q)-、-CO-O-、-O-CO-または-CO-に置換されていてもよい。
 Qは置換基を表す。置換基の種類は特に制限されず、公知の置換基が挙げられ、Rで表されるアルキル基が有していてもよい置換基で例示した基が挙げられる。
 *は結合位置を表す。
 光配向化合物は、本発明の効果がより優れる点で、相互作用性基を有する繰り返し単位を含むことが好ましい。
 なかでも、光配向化合物は、式(3)~(7)で表される繰り返し単位の少なくとも1つを含むことが好ましい。なかでも、本発明の効果がより優れる点で、光配向化合物は、式(3)で表される繰り返し単位、式(4)で表される繰り返し単位、または、式(7)で表される繰り返し単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000010
 R、R、R、RおよびR11は、それぞれ独立に、水素原子、または、置換基を有していてもよい炭素数1~20のアルキル基を表す。
 アルキル基の炭素数は、1~10が好ましく、1~5がより好ましい。
 アルキル基は、直鎖状であってもよいし、分岐鎖状であってもよいし、環状であってもよく、これらを組み合わせた構造であってもよい。
 アルキル基が有していてもよい置換基の種類は特に制限されず、公知の置換基が挙げられ、Rで表されるアルキル基が有していてもよい置換基で例示した基が挙げられる。
 L、L、L、LおよびLは、それぞれ独立に、単結合または2価の連結基を表す。2価の連結基は特に制限されず、例えば、置換基を有していてもよい2価の炭化水素基(例えば、炭素数1~10のアルキレン基、炭素数1~10のアルケニレン基、および、炭素数1~10のアルキニレン基などの2価の脂肪族炭化水素基、並びに、アリーレン基などの2価の芳香族炭化水素基)、置換基を有していてもよい2価の複素環基、-O-、-S-、-NH-、-N(R)-、-CO-、または、これらを組み合わせた基(例えば、-CO-O-、-O-2価の炭化水素基-、-(O-2価の炭化水素基)-O-(mは、1以上の整数を表す)、および、-2価の炭化水素基-O-CO-など)が挙げられる。Rは、水素原子またはアルキル基を表す。
 2価の炭化水素基および2価の複素環基が有していてもよい置換基の種類は特に制限されず、公知の置換基が挙げられ、Rで表されるアルキル基が有していてもよい置換基で例示した基が挙げられる。
 Xは、陽イオン基を表す。陽イオン基とは、正電荷を有する基である。陽イオン基は特に制限されず、4級アンモニウム基およびピリジニウム基が挙げられる。なかでも、4級アンモニウム基が好ましい。
 Yは、アニオンを表す。アニオンの種類は特に制限されず、公知のアニオンが挙げられる。例えば、ハロゲンイオン(F、Cl、Br、I)、NO 、CIO 、BF 、CO 2-、および、SO 2-などの無機アニオン、並びに、CHOSO 、COSO 、さらには酢酸、マロン酸、コハク酸、マレイン酸、フマル酸、p-トルエンスルホン酸、および、トリフルオロ酢酸などの有機酸残基からなる有機アニオンが挙げられる。なかでも、本発明の効果がより優れる点で、ハロゲンイオンが好ましい。
 Dは、陰イオン基を表す。陰イオン基とは、負電荷を有する基である。陰イオン基は特に制限されず、-COO、および、-SO が挙げられる。
 Eは、カチオンを表す。カチオンの種類は特に制限されず、リチウムイオン、ナトリウムイオン、マグネシウムイオン、カリウムイオン、カルシウムイオン、および、アルミニウムイオンなどの無機カチオン、並びに、有機アンモニウムカチオン、有機スルホニウムカチオン、有機ヨードニウムカチオン、および、有機ホスホニウムカチオンなどの有機カチオンが挙げられる。なかでも、本発明の効果がより優れる点で、有機カチオンが好ましい。
 RおよびR10は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、または、置換基を有していてもよいヘテロアリール基を表し、RおよびR10のいずれか一方は水素原子である。
 アルキル基の炭素数は特に制限されず、1~10が好ましく、1~5がより好ましい。
 アルキル基は、直鎖状であってもよいし、分岐鎖状であってもよいし、環状であってもよく、これらを組み合わせた構造であってもよい。
 アリール基としては、単環構造でも、多環構造でもよい。
 ヘテロアリール基に含まれるヘテロ原子は特に制限されず、窒素原子、酸素原子、および、硫黄原子が挙げられる。
 上記基(アルキル基、アリール基、ヘテロアリール基)が有していてもよい置換基の種類は特に制限されず、公知の置換基が挙げられ、Rで表されるアルキル基が有していてもよい置換基で例示した基が挙げられる。
 R12は、炭素数1~20のアルキル基を表す。
 アルキル基の炭素数は、1~10が好ましく、1~5がより好ましい。
 アルキル基は、直鎖状であってもよいし、分岐鎖状であってもよいし、環状であってもよく、これらを組み合わせた構造であってもよい。
 なお、R12が炭素数2~20のアルキル基である場合、アルキル基を構成する-CH-の1個以上が-O-、-S-、-N(Q)-、-CO-O-、-O-CO-または-CO-に置換されていてもよい。
 Qは置換基を表す。置換基の種類は特に制限されず、公知の置換基が挙げられ、Rで表されるアルキル基が有していてもよい置換基で例示した基が挙げられる。
 *は結合位置を表す。
 光配向化合物は、本発明の効果がより優れる点で、式(8)~(10)で表される繰り返し単位の少なくとも1つを有することが好ましい。
Figure JPOXMLDOC01-appb-C000011
 R13、R17およびR18は、それぞれ独立に、水素原子、または、置換基を有していてもよい炭素数1~20のアルキル基を表す。
 上記アルキル基の炭素数は、1~10が好ましく、1~5がより好ましい。
 アルキル基は、直鎖状であってもよいし、分岐鎖状であってもよいし、環状であってもよく、これらを組み合わせた構造であってもよい。
 アルキル基が有していてもよい置換基の種類は特に制限されず、公知の置換基が挙げられ、Rで表されるアルキル基が有していてもよい置換基で例示した基が挙げられる。
 L、LおよびLは、それぞれ独立に、単結合または2価の連結基を表す。2価の連結基としては、上述した、L、L、L、LおよびLで表される2価の連結基で例示した基が挙げられる。
 Yは、アニオンを表す。式(8)中のYは、式(3)中のYと同義である。
 Eは、カチオンを表す。式(9)中のEは、式(4)中のEと同義である。
 R14、R15およびR16は、それぞれ独立に、水素原子、または、置換基を有していてもよい炭素数1~20のアルキル基を表す。
 上記アルキル基の炭素数は、1~10が好ましく、1~5がより好ましい。
 アルキル基は、直鎖状であってもよいし、分岐鎖状であってもよいし、環状であってもよく、これらを組み合わせた構造であってもよい。
 アルキル基が有していてもよい置換基の種類は特に制限されず、公知の置換基が挙げられ、Rで表されるアルキル基が有していてもよい置換基で例示した基が挙げられる。
 光配向化合物中における相互作用性基を有する繰り返し単位の含有量は特に制限されないが、本発明の効果がより優れる点で、光配向化合物中の全繰り返し単位に対して、2~85質量%が好ましく、5~70質量%がより好ましい。
 光配向化合物は、光配向性基を有する繰り返し単位、相互作用性基を有する繰り返し単位、および、架橋性基を有する繰り返し単位とは異なる、アルキル基を有する繰り返し単位を含んでいてもよい。
 アルキル基の炭素数は特に制限されず、1~20が好ましく、1~15がより好ましい。
 アルキル基は、直鎖状であってもよいし、分岐鎖状であってもよいし、環状であってもよく、これらを組み合わせた構造であってもよい。熱による光配向化合物の配向緩和を抑制できる点で、環状のアルキル基が好ましい。環状のアルキル基としては、アダマンタンなどが挙げられる。
 光配向化合物が上記アルキル基を有する繰り返し単位を含む場合、光配向化合物中におけるアルキル基を有する繰り返し単位の含有量は特に制限されないが、本発明の効果がより優れる点で、光配向化合物中の全繰り返し単位に対して、20~80質量%が好ましく、30~70質量%がより好ましい。
 本工程で使用される光配向化合物の重量平均分子量は、上述した第1実施形態で説明した光配向化合物の重量平均分子量が挙げられる。
 液晶層形成用組成物中における光配向化合物の含有量は特に制限されないが、本発明の効果がより優れる点で、液晶化合物の含有量に対して、0.01~30質量%が好ましく、0.1~10質量%がより好ましい。
(他の成分)
 本工程で使用される液晶層形成用組成物は、液晶化合物および光配向化合物以外の他の化合物を含んでいてもよい。
 他の成分としては、レベリング剤が挙げられる。レベリング剤としては、上述した第1実施形態で説明したレベリング剤が挙げられ、その使用量の好適範囲も第1実施形態と同じである。
 他の成分としては、重合開始剤が挙げられる。重合開始剤としては、上述した第1実施形態で説明した重合開始剤が挙げられ、その使用量の好適範囲も第1実施形態と同じである。
 他の成分としては、重合性モノマーが挙げられる。重合性モノマーとしては、上述した第1実施形態で説明した重合性モノマーが挙げられ、その使用量の好適範囲も第1実施形態と同じである。
 他の成分としては、溶媒が挙げられる。溶媒としては、上述した第1実施形態で説明した溶媒が挙げられる。
 他の成分としては、垂直配向剤、および、水平配向剤などの各種配向制御剤が挙げられる。
 さらに、液晶層形成用組成物は、上記成分以外に、重合禁止剤、密着改良剤、および、可塑剤を含んでいてもよい。
 特に、後述する工程B2において液晶化合物の重合を抑制する目的で、液晶層形成用組成物は重合禁止剤を含んでいてもよい。
(工程B1の手順)
 本工程の手順は特に制限されず、基材上に、光配向化合物および液晶化合物を含む液晶層形成用組成物を塗布して、光配向化合物が基材側に偏在している塗膜を形成できれば特に制限されない。
 なかでも、相互作用性基を有する光配向化合物を用いると、生産性よく所定の塗膜を形成できる。光配向化合物が相互作用性基を有する場合、光配向化合物中の相互作用性基と基材との間で相互作用が生じて、塗膜中において光配向化合物が基材側に偏在しやすくなる。
 液晶層形成用組成物を基材上に塗布する方法は特に制限されず、カーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、および、ワイヤーバー法が挙げられる。
 なお、塗膜を形成した後であって、後述する工程B2の前に、塗膜に対して加熱処理を施してもよい。加熱処理を施すことにより、光配向化合物がより基材側により偏在しやすくなる。
 加熱処理の際の加熱温度としては、本発明の効果がより優れる点で、加熱温度としては50~250℃が好ましく、50~150℃がより好ましく、加熱時間としては10秒間~10分間が好ましい。
 上記手順を実施することにより、光配向化合物が基材側に偏在している塗膜を形成できる。
 光配向化合物が基材側に偏在しているとは、後述する偏在度算出方法により算出される偏在度が2.0以上であることに該当する。
 以下、偏在度算出方法について詳述する。
 まず、塗膜の基材側とは反対側の表面から基材側に向かって、イオンビームを照射しながら飛行時間型二次イオン質量分析法(TOF-SIMS)で塗膜中における光配向化合物由来の二次イオン強度を測定する。イオンビームの種類としては、アルゴンガスクラスターイオン銃(Ar-GCIB銃)によるイオンビームが挙げられる。
 図10は、TOF-SIMS分析で得られた光配向化合物由来の二次イオン強度分布の一例である。横軸は、塗膜の基材側とは反対側の表面からの距離(nm)、縦軸は、光配向化合物由来の二次イオンの強度である。図10中、S点からE点までが塗膜中での光配向化合物由来の二次イオン強度を表し、E点以降が基材中での光配向化合物由来の二次イオン強度を表す。つまり、S点からE点までが塗膜、E点以降が基材に該当する。
 なお、光配向化合物の一部は基材内部に浸入する場合があり、この場合には図10に示すように、基材中において光配向化合物由来の二次イオン強度が観測される。
 次に、塗膜の基材側とは反対側の表面から、基材側に向かって、塗膜の全厚みの80%に相当する深さ位置(以下、「深さ位置M」ともいう。)までの領域を上層領域とし、深さ位置Mから塗膜の基材側の表面までの領域を下層領域とした際、上層領域における光配向化合物由来の二次イオン強度の平均値Iに対する、下層領域における光配向化合物由来の二次イオン強度の最大値Iの比が2.0以上であれば、光配向化合物が基材側に偏在しているとする。
 つまり、まず、図10に示すように、塗膜の基材側とは反対側の表面に該当するS点から、基材側に向かって、塗膜の全厚みの80%に相当する深さ位置に該当するM点までの領域を上層領域とし、M点から、塗膜の基材側の表面に該当するE点までの領域を下層領域とする。次に、上層領域における光配向化合物由来の二次イオン強度の平均値I、および、下層領域における光配向化合物由来の二次イオン強度の最大値Iを算出して、比(I/I)が2.0以上であれば、光配向化合物が基材側に偏在しているとする。
 上記比(I/I)が大きければ大きいほど、光配向化合物が基材側に偏在していることを示す。
 本発明の効果がより優れる点で、上記比(IA1/IA2)は、3.5以上が好ましく、5.0以上がより好ましい。上限は特に制限されないが、30.0以下の場合が多く、20.0以下の場合がより多い。
 なお、本発明の効果がより優れる点で、光配向化合物が、光配向性基に由来する極大吸収波長を波長250~450nmに有し、極大吸収波長における基材の吸光度が1.0以下であることが好ましい。
 後述するように、工程B2において塗膜に対して偏光を照射する際に、上記関係を満たす場合、基材側から偏光を照射することにより、効率的に塗膜中の光配向性基を配向させることができる。
 なお、本発明の効果がより優れる点で、光配向化合物が、光配向性基に由来する極大吸収波長を波長250~450nmに有し、液晶層形成用組成物が重合開始剤を含み、重合開始剤が要件1または要件2を満たすことが好ましい。要件1または要件2を満たすことにより、後述する工程B2の際に、液晶化合物の重合を抑制でき、液晶化合物の配向欠陥が生じることをより抑制できる。
要件1:上記極大吸収波長(光配向性基に由来する極大吸収波長)における、重合開始剤のモル吸光係数が4000l/mol・cm以下
要件2:上記極大吸収波長(光配向性基に由来する極大吸収波長)における、重合開始剤のモル吸光係数が4000l/mol・cmより大きく20000l/mol・cmより小さく、液晶化合物の含有量に対する重合開始剤の含有量が2.0質量%以下である。
<工程B2>
 工程B2は、塗膜に対して偏光を照射して、光配向化合物に配向規制力を付与する工程である。本工程を実施することにより、図11に示すように、塗膜20中において光配向性基LAが所定の方向に配向する。
 塗膜に対して照射する偏光は特に制限はなく、例えば、直線偏光、円偏光、および、楕円偏光が挙げられ、直線偏光が好ましい。
 偏光における波長は特に制限はないが、例えば、紫外線、近紫外線、および、可視光線が挙げられる。なかでも、250~450nmの近紫外線が好ましい。
 また、偏光を照射するための光源としては、例えば、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、および、メタルハライドランプが挙げられる。このような光源から得た紫外線または可視光線に対して、干渉フィルタまたは色フィルタなどを用いることで、照射する波長範囲を制限できる。また、これらの光源からの光に対して、偏光フィルタまたは偏光プリズムを用いることで、直線偏光を得ることができる。
 偏光の照射方向は特に制限されず、塗膜側から照射してもよいし、基材側から照射してもよい。本発明の効果がより優れる点で、基材側から照射することが好ましい。
 偏光の積算光量は特に制限されないが、1~300mJ/cmが好ましく、2~100mJ/cmがより好ましい。
<工程B3>
 工程B3は、塗膜中の液晶化合物を配向させて、液晶層を形成する工程である。本工程を実施することにより、図12に示すように、配向した光配向性基LAの配向規制力によって、液晶化合物が配列して、液晶化合物が所定の方向に配向した液晶層22が形成される。
 液晶化合物を配向させる方法は特に制限されないが、加熱処理が挙げられる。
 塗膜を加熱する場合の条件は特に制限されないが、加熱温度としては50~250℃が好ましく、50~150℃がより好ましく、加熱時間としては10秒間~10分間が好ましい。
 また、塗膜を加熱した後、後述する硬化処理の前に、必要に応じて、塗膜を冷却してもよい。冷却温度としては20~200℃が好ましく、30~150℃がより好ましい。
 液晶化合物が重合性基を有する場合、液晶化合物を配向させた後、液晶化合物が配向している液晶層に対して硬化処理を施してもよい。
 硬化処理の方法は特に制限されず、例えば、光照射処理および加熱処理が挙げられる。なかでも、製造適性の点から、光照射処理が好ましく、紫外線照射処理がより好ましい。
 光照射処理の照射条件は特に制限されないが、50~1000mJ/cmの照射量が好ましい。
 光照射処理の際の雰囲気は特に制限されないが、窒素雰囲気が好ましい。
 工程B3を実施することにより、液晶化合物が配向している液晶層が形成される。
 液晶層は、配向した液晶化合物が固定されてなる層であることが好ましい。液晶化合物が重合性基を有する場合、上述したように硬化処理によって、液晶化合物の配向状態を容易に固定化できる。
 液晶化合物が配向した状態(配向状態)は特に制限されず、公知の配向状態が挙げられる。具体的には、第1実施形態で説明した各種配向状態が挙げられる。
 液晶層の厚みは特に制限されないが、0.1~10μmが好ましく、0.5~5μmがより好ましい。
 液晶層の面内レタデーションは特に制限されないが、例えば、光学フィルムを反射防止膜用途に用いる場合、液晶層の波長550nmにおける面内レタデーションは110~160nmが好ましい。
<用途>
 上記手順によって形成された上記光学フィルムは種々の用途に適用できる。例えば、表示素子と、光学フィルムを含む画像表示装置が挙げられる。また、表示素子上に光学フィルムの液晶層を転写して、基材を剥離して、表示装置と液晶層とを含む画像表示装置としてもよい。
 本発明の画像表示装置に用いられる表示素子は特に制限されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、および、プラズマディスプレイパネルが挙げられ、液晶セルまたは有機EL表示パネルが好ましい。すなわち、本発明の画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、または、表示素子として有機EL表示パネルを用いた有機EL表示装置が好ましい。
 液晶表示装置に利用される液晶セルとしては、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、または、TN(Twisted Nematic)モードであることが好ましい。
 本発明の画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、偏光子、光学フィルム(または、液晶層)、および、有機EL表示パネルをこの順に有する態様が好ましい。
 上記偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に制限されず、従来公知の吸収型偏光子および反射型偏光子を利用できる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子などが用いられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子および延伸型偏光子があり、いずれも適用できる。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第4691205号公報、特許第4751481号公報、および、特許第4751486号公報に記載の方法が挙げられ、これらの偏光子に関する公知の技術も好ましく利用できる。
 反射型偏光子としては、例えば、複屈折の異なる薄膜を積層した偏光子、ワイヤーグリッド偏光子、および、選択反射域を有するコレステリック液晶と1/4波長板とを組み合わせた偏光子が挙げられる。
 これらのうち、密着性がより優れる点で、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマー。特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つ)を含む偏光子が好ましい。
 偏光子の厚みは特に制限されず、3~60μmが好ましく、5~30μmがより好ましい。
 有機EL表示パネルは、陽極および陰極の一対の電極間に、発光層または発光層を含む複数の有機化合物薄膜を形成した部材である。有機EL表示パネルは、発光層のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、および、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。
<モノマー合成>
(モノマーmA-1の合成)
 撹拌羽根、温度計、滴下ロートおよび還流管を備えた2L三口フラスコに、trans-4-アミノシクロヘキサノール(50.0g)、トリエチルアミン(48.3g)、および、N,N-ジメチルアセトアミド(800g)を入れて、得られた混合液を氷冷下で撹拌した。
 次に、滴下ロートを用いてメタクリル酸クロリド(47.5g)を40分かけて上記フラスコ内に滴下し、滴下終了後、反応液を40℃で2時間撹拌した。
 反応液を室温(23℃)まで冷却した後、反応液を吸引ろ過して、析出した塩を除去した。得られたろ液を撹拌羽根、温度計、滴下ロートおよび還流管を備えた2L三口フラスコに移し、水冷下で撹拌した。
 次いで、フラスコ内に、N,N-ジメチルアミノピリジン(10.6g)およびトリエチルアミン(65.9g)を添加し、滴下ロートを用いて、あらかじめテトラヒドロフラン(125g)に溶解させた4-n-オクチルオキシ桂皮酸クロリド(127.9g)を30分かけて上記フラスコ内に滴下した。滴下終了後、反応液を50℃で6時間撹拌した。反応液を室温まで冷却した後、水で分液洗浄し、得られた有機相を無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、得られた溶液を濃縮することにより黄白色固体を得た。
 得られた黄白色固体をメチルエチルケトン(400g)に加熱溶解させ、再結晶を行うことで、以下に示すモノマーmA-1を白色固体として76g得た(収率40%)。
Figure JPOXMLDOC01-appb-C000012
(モノマーmA-2の合成)
 原料のtrans-4-アミノシクロヘキサノールをtrans-1、4-シクロヘキサンジオールに、4-n-オクチルオキシ桂皮酸クロリドを4-メトキシ桂皮酸クロリドにかえた以外は、上記(モノマーmA-1の合成)と同様の手順に従って、モノマーmA-2を合成した。なお、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000013
<重合体の合成>
(重合体P-1の合成)
 冷却管、温度計、および、撹拌機を備えたフラスコに、2-ブタノン(5g)を仕込み、フラスコ内に窒素を5mL/min流しながら、水浴加熱により還流させた。ここに、モノマーmA-1(4.0g)、サイクロマーM-100(ダイセル社製)(6.0g)、2,2’-アゾビス(イソブチロニトリル)(1g)、および、2-ブタノン(5g)を混合した溶液を、3時間かけてフラスコ内に滴下し、さらに3時間還流状態を維持したまま、得られた反応液を撹拌した。
 反応終了後、反応液を室温まで放冷し、反応液に2-ブタノン(30g)を加えて希釈することで、重合体濃度が約20質量%の重合体溶液を得た。
 得られた重合体溶液を大過剰のメタノール中へ投入して重合体を沈殿させ、沈殿物をろ別し、得られた固形分を大量のメタノールで洗浄した後、50℃において12時間送風乾燥することにより、光配向性基を有する重合体P-1を得た。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から40質量%、60質量%であった。
 また、上述した方法で測定した重合体P-1の重量平均分子量は48000であった。
Figure JPOXMLDOC01-appb-C000014
(重合体P-2の合成)
 冷却管、温度計、および、撹拌機を備えたフラスコに、ジメチルアセトアミド(35g)、モノマーmA-2(13.8g)、および、メタクロイルコリンクロリド(80%水溶液、東京化成工業社製)(1.7g)を添加し、窒素を5mL/min流しながら、得られた溶液を80℃に加熱し、撹拌した。
 次に、V-601(富士フイルム和光純薬社製)(0.13g)、および、ジメチルアセトアミド(35g)を混合した溶液を、2時間かけてフラスコ内に滴下し、さらに5時間加熱状態を維持したまま、反応液を撹拌した。反応終了後、反応液を室温まで放冷し、反応液にジメチルアセトアミド(60g)を加えて希釈することで、重合体濃度が約20質量%の重合体溶液を得た。
 得られた重合体溶液を大過剰のメタノール中へ投入して重合体を沈殿させ、沈殿物をろ別し、得られた固形分を大量のメタノールで洗浄した後、室温において24時間送風乾燥することにより、重合体P-2を得た。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から91質量%、9質量%であった。
 また、上述した方法で測定した重合体P-2の重量平均分子量は58000であった。
Figure JPOXMLDOC01-appb-C000015
(重合体P-3の合成)
 冷却管、温度計、および、撹拌機を備えたフラスコに、シクロヘキサノン(35g)、モノマーmA-2(12.0g)、および、メタクリル酸(3.0g)を添加し、窒素を5mL/min流しながら、得られた溶液を80℃に加熱し、撹拌した。
 次に、V-601(富士フイルム和光純薬社製)(0.21g)、および、シクロヘキサノン(10g)を混合した溶液を、2時間かけてフラスコ内に滴下し、さらに7時間加熱状態を維持したまま、反応液を撹拌した。反応終了後、反応液を室温まで放冷し、反応液にシクロヘキサノン(30g)を加えて希釈することで、重合体濃度が約20質量%の重合体溶液を得た。
 得られた重合体溶液を大過剰のメタノール中へ投入して重合体を沈殿させ、沈殿物をろ別し、得られた固形分を大量のメタノールで洗浄した後、室温において24時間送風乾燥することにより、モノマーmA-2とメタクリル酸の重合体を得た。
 さらに、得られたモノマーmA-2とメタクリル酸の重合体(1.0g)をシクロヘキサノン/イソプロピルアルコール(2/1)の混合溶媒(4.0g)に添加し、50℃で溶解させた。その後、得られた溶液にジイソプロピルエチルアミン(418μL)を添加し、50℃にて30分間撹拌することで、重合体P-3を得た(固形分濃度20質量%)。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から79質量%、21質量%であった。
Figure JPOXMLDOC01-appb-C000016
(重合体P-4の合成)
 モノマーとして、モノマーmA-2(12.0g)、および、2,3-ジヒドロキシプロピルメタクリレート(富士フイルム和光純薬社製)(3.0g)を用いた以外は、重合体P-2と同様の合成方法で、重合体P-4を合成した。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から80質量%、20質量%であった。
Figure JPOXMLDOC01-appb-C000017
(重合体P-5の合成)
 モノマーとして、モノマーmA-2(12.0g)、および、4-(4-アクリロイルオキシブトキシ)ベンゾイルオキシフェニルボロン酸(3.0g)を用いた以外は、重合体P-2と同様の合成方法で、重合体P-5を合成した。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から81質量%、19質量%であった。
Figure JPOXMLDOC01-appb-C000018
(重合体P-6の合成)
 モノマーmA-2をモノマーmA-1に変更した以外は、重合体P-2と同様の合成方法で、重合体を合成した。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から91質量%、9質量%であった。
Figure JPOXMLDOC01-appb-C000019
(重合体P-7の合成)
 モノマーとして、モノマーmA-2(6.0g)、サイクロマーM-100(ダイセル社製)(7.7g)、および、メタクロイルコリンクロリド(80%水溶液、東京化成工業社製)(1.7g)を用いた以外は、重合体P-2と同様の合成方法で、重合体P-7を合成した。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から40質量%、9質量%、51質量%であった。
Figure JPOXMLDOC01-appb-C000020
(重合体P-8の合成)
 モノマーとして、モノマーmA-2(6.0g)、1-アダマンチルメタクリレート(東京化成工業社製)(7.7g)、および、メタクロイルコリンクロリド(80%水溶液、東京化成工業社製)(1.7g)を用いた以外は、重合体P-2と同様の合成方法で、重合体P-8を合成した。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から40質量%、9質量%、51質量%であった。
Figure JPOXMLDOC01-appb-C000021
(重合体P-9の合成)
 モノマーとして、モノマーmA-2(6.0g)、および、2-(メタクリロイロキシ)エチルアセトアセテート(富士フイルム和光純薬社製)(9.0g)を用いた以外は、重合体P-2と同様の合成方法で、重合体P-9を合成した。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から40質量%、60質量%であった。
Figure JPOXMLDOC01-appb-C000022
(重合体P-10の合成)
 モノマーとして、モノマーmA-2(15.0g)を用いた以外は、重合体P-2と同様の合成方法で、重合体を合成した。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から100質量%であった。
Figure JPOXMLDOC01-appb-C000023
 得られた重合体P-1~P-10の、シンナメート基に由来する極大吸収波長は、311nmであった。
<基材の作製>
(基材B-1の作製)
 セルロースアシレートフィルム(フジタックZRD40、富士フイルム社製)(厚み40μm)の片側の面に、下記垂直配向液晶層形成用組成物1を、バーコーターを用いて塗布した。フィルム上に形成された塗膜を、温風にて60℃で1分間加熱し、次に、60℃を維持したまま、窒素雰囲気下で高圧水銀灯を用いて、波長365nmにて300mJ/cmの紫外線を塗膜側から照射した。上記手順によって、セルロースアシレートフィルムと、垂直配向した液晶化合物が固定されてなる液晶層(厚み0.4μm)と、の積層体を作製した。
――――――――――――――――――――――――――――――――――
垂直配向液晶層形成用組成物1の調製
――――――――――――――――――――――――――――――――――
下記重合性液晶化合物L-1              83.0質量部
下記重合性液晶化合物L-2              15.0質量部
下記重合性液晶化合物L-3               2.0質量部
重合性モノマー(EBECRYL1290、ダイセル・オルネクス社製)
                            3.3質量部
重合開始剤(IrgacureOXE01、BASF社製) 4.0質量部
下記フッ素系ポリマーM-1               3.0質量部
下記フッ素系ポリマーM-2               0.5質量部
下記オニウム塩化合物S01               1.5質量部
トルエン                      509.0質量部
メチルエチルケトン                 127.3質量部
――――――――――――――――――――――――――――――――――
重合性液晶化合物L-1
Figure JPOXMLDOC01-appb-C000024
重合性液晶化合物L-2
Figure JPOXMLDOC01-appb-C000025
重合性液晶化合物L-3
Figure JPOXMLDOC01-appb-C000026
フッ素系ポリマーM-1
Figure JPOXMLDOC01-appb-C000027
フッ素系ポリマーM-2
Figure JPOXMLDOC01-appb-C000028
オニウム塩化合物S01
Figure JPOXMLDOC01-appb-C000029
 得られた積層体の液晶層側を、コロナ処理装置を用いて、出力0.3kWおよび処理速度7.6m/分の条件で1回処理することにより、基材B-1を得た。
 得られた基材B-1の波長311nmにおける吸光度は0.12であり、コロナ処理面の水接触角は、63°であった。
 また、基材B-1は、コロナ処理された表面上に、ヒドロキシ基などの水素結合性基を有していた。
(基材B-2の作製)
 セルロースアシレートフィルム(フジタックZRD40、富士フイルム社製)(厚み40μm)の片側の面に、下記垂直配向液晶層形成用組成物2を、バーコーターを用いて塗布した。フィルム上に形成された塗膜を、温風にて60℃で1分間加熱し、次に、60℃を維持したまま、窒素雰囲気下で高圧水銀灯を用いて、波長365nmにて300mJ/cmの紫外線を塗膜側から照射した。上記手順によって、フィルムと、垂直配向した液晶化合物が固定されてなる液晶層(厚み0.4μm)と、の積層体を作製した。
――――――――――――――――――――――――――――――――――
垂直配向液晶層形成用組成物2の調製
――――――――――――――――――――――――――――――――――
上記重合性液晶化合物L-1              83.0質量部
上記重合性液晶化合物L-2              15.0質量部
上記重合性液晶化合物L-3               2.0質量部
重合性モノマー(EBECRYL1290、ダイセル・オルネクス社製)
                            3.3質量部
重合開始剤(IrgacureOXE01、BASF社製) 4.0質量部
上記フッ素系ポリマーM-1               3.0質量部
下記フッ素系ポリマーM-3               0.5質量部
下記オニウム塩化合物S01               1.5質量部
下記光酸発生剤D-1                  3.0質量部
トルエン                      509.0質量部
メチルエチルケトン                 127.3質量部
――――――――――――――――――――――――――――――――――
フッ素系ポリマーM-3
Figure JPOXMLDOC01-appb-C000030
光酸発生剤D-1
Figure JPOXMLDOC01-appb-C000031
 さらに、得られた積層体を、温風にて130℃で1分間加熱した。これにより、フッ素系ポリマーM-3のアセタール基が分解し、カルボキシ基が発生した。以上の手順により、基材B-2を得た。
 得られた基材B-2の波長311nmにおける吸光度は、0.12であり、液晶層の表面の水接触角は、68°であった。
 また、基材B-2は、表面上に、カルボキシ基などの水素結合性基を有していた。
(基材B-3の作製)
 コロナ処理の条件を、出力0.06kWおよび処理速度8.6m/分とした以外は、基材B-1と同様の方法で、基材B-3を作製した。
 得られた基材B-3の波長311nmにおける吸光度は、0.12であり、コロナ処理面の水接触角は、85°であった。
 また、基材B-3は、コロナ処理された表面上に、ヒドロキシ基などの水素結合性基を有していた。
(基材B-4の作製)
 ポリエチレンテレフタレートフィルム(厚み30μm)の片側の面に、コロナ処理装置を用いて、出力0.3kWおよび処理速度7.6m/分の条件で1回処理することにより、基材B-4を得た。
 得られた基材B-4の波長311nmにおける吸光度は、1.2であり、コロナ処理面の水接触角は、60°であった。
 また、基材B-4は、コロナ処理された表面上に、ヒドロキシ基などの水素結合性基を有していた。
<実施例1>
 基材B-1のコロナ処理側の面に、下記光配向層形成用組成物1を、バーコーターを用いて塗布した。基材上に形成された塗膜を、温風にて125℃で2分間加熱し、溶媒を除去し、厚み0.05μmの第1塗膜を形成した。
─────────────────────────────────
光配向層形成用組成物1
─────────────────────────────────
重合体P-1                  100.0質量部
下記熱酸発生剤D-2                6.0質量部
ジイソプロピルエチルアミン             0.6質量部
酢酸ブチル                   767.5質量部
メチルエチルケトン               191.9質量部
─────────────────────────────────
熱酸発生剤D-2
Figure JPOXMLDOC01-appb-C000032
 上記で得られた第1塗膜上に、下記液晶層形成用組成物1を、バーコーターを用いて塗布して、室温で30秒間乾燥し、第2塗膜を形成した。
 次に、高圧水銀灯を用いて、波長313nmのバンドパスフィルター(BPF313、朝日分光社製)およびワイヤーグリッド偏光子を介して、基材の第1塗膜が形成された表面とは反対側の表面側(基材側)から偏光紫外線を照射した(波長313nmで50mJ/cm)。その後、得られた積層体を温風にて120℃で1分間加熱し、次に、60℃に冷却した後に、窒素雰囲気下で高圧水銀灯を用いて、波長365nmにて80mJ/cmの紫外線を塗膜側から照射し、続いて120℃に加熱しながら300mJ/cmの紫外線を塗膜側から照射した。上記手順によって、基材B-1と、光配向層(厚み0.05μm)と、液晶層(厚み2.7μm)と、の積層体である、実施例1の光学フィルムを作製した。得られた光学フィルム(液晶層)のRe(550)は140nmであった。
―――――――――――――――――――――――――――――――――
液晶層形成用組成物1
―――――――――――――――――――――――――――――――――
・上記重合性液晶化合物L-1             7.1質量部
・上記重合性液晶化合物L-2             1.3質量部
・上記重合性液晶化合物L-3             0.2質量部
・下記重合性液晶化合物L-4            46.5質量部
・下記重合性液晶化合物L-5            25.0質量部
・下記重合性液晶化合物L-6            15.0質量部
・下記重合性化合物A-1               5.0質量部
・下記重合性化合物A-2               5.0質量部
・重合開始剤(Irgacure2959、チバ・スペシャルティ・ケミカルズ社製)
                           4.0質量部
・下記レベリング剤T-1               0.2質量部
・テトラヒドロフラン               209.4質量部
・シクロペンタノン                 52.4質量部
―――――――――――――――――――――――――――――――――
重合性液晶化合物L-4
Figure JPOXMLDOC01-appb-C000033
重合性液晶化合物L-5
Figure JPOXMLDOC01-appb-C000034
重合性液晶化合物L-6
Figure JPOXMLDOC01-appb-C000035
重合性化合物A-1
Figure JPOXMLDOC01-appb-C000036
重合性化合物A-2
Figure JPOXMLDOC01-appb-C000037
レベリング剤T-1
Figure JPOXMLDOC01-appb-C000038
<実施例2>
 偏光紫外線の照射を、第2塗膜側から行った以外は、実施例1と同様の手順に従って、光学フィルムを作製した。
<実施例3>
 第1塗膜の厚みを1.3μmに変更した以外は、実施例1と同様の手順に従って、光学フィルムを作製した。
<実施例4>
 基材B-1のコロナ処理側の面に、下記液晶層形成用組成物2を、バーコーターを用いて塗布し、基材上に形成された塗膜を室温で30秒間乾燥して、基材B-1および塗膜を有する積層体を得た。
 次に、高圧水銀灯を用いて、波長313nmのバンドパスフィルター(BPF313、朝日分光社製)およびワイヤーグリッド偏光子を介して、基材の塗膜が形成された表面とは反対側の表面側(基材側)から偏光紫外線を照射した(波長313nmで50mJ/cm)。その後、得られた積層体を温風にて120℃で1分間加熱し、次に、60℃に冷却した後に、窒素雰囲気下で高圧水銀灯を用いて、波長365nmにて80mJ/cmの紫外線を塗膜側から照射し、続いて120℃に加熱しながら300mJ/cmの紫外線を塗膜側から照射した。上記手順によって、基材B-1と、液晶層(厚み2.7μm)と、の積層体である、実施例4の光学フィルムを作製した。得られた光学フィルム(液晶層)のRe(550)は140nmであった。
―――――――――――――――――――――――――――――――――
液晶層形成用組成物2
―――――――――――――――――――――――――――――――――
・上記重合性液晶化合物L-1             7.1質量部
・上記重合性液晶化合物L-2             1.3質量部
・上記重合性液晶化合物L-3             0.2質量部
・上記重合性液晶化合物L-4            46.5質量部
・上記重合性液晶化合物L-5            25.0質量部
・上記重合性液晶化合物L-6            15.0質量部
・上記重合性化合物A-1               5.0質量部
・上記重合性化合物A-2               5.0質量部
・重合開始剤(Irgacure2959、チバ・スペシャルティ・ケミカルズ社製)
                           4.0質量部
・上記レベリング剤T-1               0.2質量部
・重合体P-2                    3.0質量部
・テトラヒドロフラン               209.4質量部
・シクロペンタノン                  52.4質量部
―――――――――――――――――――――――――――――――――
<実施例5>
 液晶層形成用組成物2を、下記液晶層形成用組成物3に変更した以外は、実施例4と同様の手順に従って、光学フィルムを作製した。
―――――――――――――――――――――――――――――――――
液晶層形成用組成物3
―――――――――――――――――――――――――――――――――
・上記重合性液晶化合物L-1             7.1質量部
・上記重合性液晶化合物L-2             1.3質量部
・上記重合性液晶化合物L-3             0.2質量部
・上記重合性液晶化合物L-4            46.5質量部
・上記重合性液晶化合物L-5            25.0質量部
・上記重合性液晶化合物L-6            15.0質量部
・上記重合性化合物A-1               5.0質量部
・上記重合性化合物A-2               5.0質量部
・重合開始剤(Irgacure2959、チバ・スペシャルティ・ケミカルズ社製)
                           4.0質量部
・上記レベリング剤T-1               0.2質量部
・重合体P-3(固形分濃度20%)         15.0質量部
・テトラヒドロフラン               199.8質量部
・シクロペンタノン                 50.0質量部
―――――――――――――――――――――――――――――――――
<実施例6>
 基材B-1のコロナ処理側の面に、下記液晶層形成用組成物4を、バーコーターを用いて塗布し、基材上に形成された塗膜を室温で30秒間乾燥して、基材B-1および塗膜を有する積層体を得た。
 次に、温風にて120℃で1分間加熱した。続いて、高圧水銀灯を用いて、波長313nmのバンドパスフィルター(BPF313、朝日分光社製)およびワイヤーグリッド偏光子を介して、基材の塗膜が形成された表面とは反対側の表面側(基材側)から偏光紫外線を照射した(波長313nmで50mJ/cm)。その後、得られた積層体を温風にて120℃で1分間加熱し、次に、60℃に冷却した後に、窒素雰囲気下で高圧水銀灯を用いて、波長365nmにて80mJ/cmの紫外線を塗膜側から照射し、続いて120℃に加熱しながら300mJ/cmの紫外線を塗膜側から照射した。上記手順によって、基材B-1と、液晶層(厚み2.7μm)と、の積層体である、実施例6の光学フィルムを作製した。
―――――――――――――――――――――――――――――――――
液晶層形成用組成物4
―――――――――――――――――――――――――――――――――
・上記重合性液晶化合物L-1             7.1質量部
・上記重合性液晶化合物L-2             1.3質量部
・上記重合性液晶化合物L-3             0.2質量部
・上記重合性液晶化合物L-4            46.5質量部
・上記重合性液晶化合物L-5            25.0質量部
・上記重合性液晶化合物L-6            15.0質量部
・上記重合性化合物A-1               5.0質量部
・上記重合性化合物A-2               5.0質量部
・重合開始剤(Irgacure2959、チバ・スペシャルティ・ケミカルズ社製)
                           4.0質量部
・上記レベリング剤T-1               0.2質量部
・重合体P-4                    3.0質量部
・テトラヒドロフラン               209.4質量部
・シクロペンタノン                 52.4質量部
―――――――――――――――――――――――――――――――――
<実施例7>
 重合体P-4を重合体P-5に変更した以外は、実施例6と同様の手順に従って、光学フィルムを作製した。
<実施例8>
 重合体P-2を重合体P-6に変更した以外は、実施例4と同様の手順に従って、光学フィルムを作製した。
<実施例9>
 液晶層形成用組成物4を下記液晶層形成用組成物5に変更した以外は、実施例6と同様の手順に従って、光学フィルムを作製した。
―――――――――――――――――――――――――――――――――
液晶層形成用組成物5
―――――――――――――――――――――――――――――――――
・上記重合性液晶化合物L-1             7.1質量部
・上記重合性液晶化合物L-2             1.3質量部
・上記重合性液晶化合物L-3             0.2質量部
・上記重合性液晶化合物L-4            46.5質量部
・上記重合性液晶化合物L-5            25.0質量部
・上記重合性液晶化合物L-6            15.0質量部
・上記重合性化合物A-1               5.0質量部
・上記重合性化合物A-2               5.0質量部
・重合開始剤(Irgacure2959、チバ・スペシャルティ・ケミカルズ社製)
                           4.0質量部
・上記レベリング剤T-1               0.2質量部
・重合体P-7                    3.0質量部
・上記熱酸発生剤D-2                3.0質量部
・テトラヒドロフラン               209.4質量部
・シクロペンタノン                 52.4質量部
―――――――――――――――――――――――――――――――――
<実施例10>
 重合体P-2を重合体P-8に変更した以外は、実施例4と同様の手順に従って、光学フィルムを作製した。
<実施例11>
 セルロースアシレートフィルム(フジタックZRD40、富士フイルム社製)(厚み40μm、水接触角61°)の片側の面に、下記液晶層形成用組成物6を、バーコーターを用いて塗布し、基材上に形成された塗膜を室温で30秒間乾燥して、セルロースアシレートフィルムおよび塗膜を有する積層体を得た。
 次に、高圧水銀灯を用いて、波長313nmのバンドパスフィルター(BPF313、朝日分光社製)およびワイヤーグリッド偏光子を介して、基材の塗膜が形成された表面とは反対側の表面側(基材側)から偏光紫外線を照射した(波長313nmで50mJ/cm)。その後、得られた積層体を温風にて120℃で1分間加熱し、次に、60℃に冷却した後に、窒素雰囲気下で高圧水銀灯を用いて、波長365nmにて80mJ/cmの紫外線を塗膜側から照射し、続いて120℃に加熱しながら300mJ/cmの紫外線を塗膜側から照射した。上記手順によって、セルロースアシレートフィルムと、液晶層(厚み2.7μm)と、の積層体である、実施例11の光学フィルムを作製した。
―――――――――――――――――――――――――――――――――
液晶層形成用組成物6
―――――――――――――――――――――――――――――――――
・上記重合性液晶化合物L-1             7.1質量部
・上記重合性液晶化合物L-2             1.3質量部
・上記重合性液晶化合物L-3             0.2質量部
・上記重合性液晶化合物L-4            46.5質量部
・上記重合性液晶化合物L-5            25.0質量部
・上記重合性液晶化合物L-6            15.0質量部
・上記重合性化合物A-1               5.0質量部
・上記重合性化合物A-2               5.0質量部
・重合開始剤(Irgacure2959、チバ・スペシャルティ・ケミカルズ社製)
                           4.0質量部
・上記レベリング剤T-1               0.2質量部
・重合体P-9                    3.0質量部
・テトラヒドロフラン               209.4質量部
・シクロペンタノン                 52.4質量部
―――――――――――――――――――――――――――――――――
<実施例12>
 基材B-1を基材B-2に変更した以外は、実施例4と同様の手順に従って、光学フィルムを作製した。
<実施例13>
 偏光紫外線の照射を、塗膜側から行った以外は、実施例4と同様の手順に従って、光学フィルムを作製した。
<実施例14>
 重合体P-2の添加量を40.0質量部に変更した以外は、実施例4と同様の手順に従って、光学フィルムを作製した。
<実施例15>
 基材B-1を基材B-3に変更した以外は、実施例4と同様の手順に従って、光学フィルムを作製した。
<実施例16>
 基材B-1を基材B-4に変更した以外は、実施例4と同様の手順に従って、光学フィルムを作製した。
<実施例17>
 液晶層形成用組成物2を下記液晶層形成用組成物7に変更した以外は、実施例4と同様の手順に従って、光学フィルムを作製した。
―――――――――――――――――――――――――――――――――
液晶層形成用組成物7
―――――――――――――――――――――――――――――――――
・上記重合性液晶化合物L-1             7.1質量部
・上記重合性液晶化合物L-2             1.3質量部
・上記重合性液晶化合物L-3             0.2質量部
・上記重合性液晶化合物L-4            46.5質量部
・上記重合性液晶化合物L-5            25.0質量部
・上記重合性液晶化合物L-6            15.0質量部
・上記重合性化合物A-1               5.0質量部
・上記重合性化合物A-2               5.0質量部
・下記重合開始剤S-1                4.0質量部
・上記レベリング剤T-1               0.2質量部
・重合体P-2                    3.0質量部
・テトラヒドロフラン               209.4質量部
・シクロペンタノン                 52.4質量部
―――――――――――――――――――――――――――――――――
重合開始剤S-1
Figure JPOXMLDOC01-appb-C000039
<実施例18>
 重合開始剤S-1の添加量を0.5質量部に変更した以外は、実施例17と同様の手順に従って、光学フィルムを作製した。
<比較例1>
 基材B-1のコロナ処理側の面に、上記光配向層形成用組成物1を、バーコーターを用いて塗布した。基材上に形成された塗膜を、温風にて125℃で2分間加熱し、塗膜(厚み0.05μm)を形成した。
 次に、高圧水銀灯を用いて、波長313nmのバンドパスフィルター(BPF313、朝日分光社製)およびワイヤーグリッド偏光子を介して、塗膜側から偏光紫外線を照射(波長313nmで50mJ/cm)することで、光配向層(厚み0.3μm)を形成した。
 上記で得られた光配向層上に、上記液晶層形成用組成物1を、バーコーターを用いて塗布した。光配向層上に形成された塗膜を室温で30秒間乾燥し、続いて、温風にて120℃で1分間加熱した。その後、得られた積層体を60℃に冷却した後に、窒素雰囲気下で高圧水銀灯を用いて、波長365nmにて80mJ/cmの紫外線を塗膜側から照射し、続いて120℃に加熱しながら300mJ/cmの紫外線を塗膜側から照射した。上記手順によって、基材B-1と、光配向層(厚み0.05μm)と、液晶層(厚み2.7μm)と、の積層体である、比較例1の光学フィルムを作製した。
<比較例2>
 重合体P-2を重合体P-10に変更した以外は、実施例4と同様の手順に従って、光学フィルムを作製した。
<評価>
(基材表面の水接触角評価)
 接触角計[“CA-X”型接触角計、協和界面科学(株)製]を用い、乾燥状態(20℃/65%RH)で、液体として純水を使用して3μLの液滴を針先に作り、これを基材表面に接触させて、基材上に液滴を作った。滴下後15秒での基材と液体とが接する点における、液体表面に対する接線と基材表面がなす角で、液体を含む側の角度を測定し、水接触角とした。
(液晶配向性評価)
 各実施例および比較例で得られた積層体から幅40mm、長さ40mmのフィルムを切り出した。試料をクロスニコル下の偏光顕微鏡(10倍の対物レンズ使用)で観察し、下記の基準で液晶配向性を評価した。
A:観察視野内で光漏れがなかった。
B:観察視野内で光漏れがわずかにあった。
C:観察視野内で光漏れがあった。
 なお、実施例4、5、8、10~18、および、および、比較例2に関して、偏光紫外線を照射する前の基材と塗膜とを有する積層体に対して、上述した手順に従って、偏在度の測定を実施した。
 また、実施例6、7、および、9に関しては、偏光紫外線を照射する前であって、温風にて120℃で1分間加熱した後の基材と塗膜とを有する積層体に対して、上述した手順に従って、偏在度の測定を実施した。
 表1中、「光配向化合物」欄の「極大吸収波長(nm)」は、光配向性基の極大吸収波長(nm)を表す。
 「作製プロセス」欄の「1」は上述した第1実施形態の作製プロセスを意図し、「2」は上述した第2実施形態の作製プロセスを意図し、「3」は従来技術の作製プロセスを意図する。
Figure JPOXMLDOC01-appb-T000040
 上記表1に示すように、本発明の製造方法によって得られる光学フィルムは、所定の効果を奏した。
 なかでも、実施例1と2との比較より、工程A3において、偏光を基材側から照射する場合、より効果が優れることが確認された。
 また、実施例1と3との比較より、第1塗膜の厚みが1.0μm以下である場合、より効果が優れることが確認された。
 また、実施例4~8の比較より、光配向化合物が、式(3)で表される繰り返し単位、式(4)で表される繰り返し単位、および、式(7)で表される繰り返し単位を含む場合、より効果が優れることが確認された。
 また、実施例4と13との比較より、工程B2において、偏光を基材側から照射する場合、より効果が優れることが確認された。
 また、実施例4と14との比較より、液晶層形成用組成物における光配向化合物の含有量が、液晶化合物の含有量に対して、0.01~30質量%の場合、より効果が優れることが確認された。
 また、実施例4と15との比較より、基材の表面の水接触角が80°以下である場合、より効果が優れることが確認された。
 また、実施例4と16との比較より、極大吸収波長における基材の吸光度が1.0以下である場合、より効果が優れることが確認された。
 また、実施例17と18との比較より、要件2を満たす場合、より効果が優れることが確認された。
 10  基材
 12  第1塗膜
 14  第2塗膜
 16  光配向層
 18,22  液晶層
 20  塗膜
 100  基材
 120  塗膜
 140  光配向層
 160  塗膜
 180  液晶層

Claims (26)

  1.  基材上に、光配向化合物を含む光配向層形成用組成物を塗布して、第1塗膜を形成する工程A1と、
     前記第1塗膜上に、液晶化合物を含む液晶層形成用組成物を塗布して、第2塗膜を形成する工程A2と、
     前記第1塗膜に対して偏光を照射して、第1塗膜に配向規制力を付与して、光配向層を形成する工程A3と、
     前記第2塗膜中の前記液晶化合物を配向させて、液晶層を形成する工程A4と、をこの順に有する、光学フィルムの製造方法。
  2.  前記工程A3において、前記偏光を前記基材側から前記第1塗膜に照射する、請求項1に記載の光学フィルムの製造方法。
  3.  前記液晶化合物が重合性基を有する、請求項1または2に記載の光学フィルムの製造方法。
  4.  前記第1塗膜の厚みが1.0μm以下である、請求項1~3のいずれか1項に記載の光学フィルムの製造方法。
  5.  前記光配向化合物が、光の作用により二量化および異性化の少なくとも一方が生じる光配向性基を有する、請求項1~4のいずれか1項に記載の光学フィルムの製造方法。
  6.  前記光配向性基が、シンナモイル基、アゾベンゼン基、カルコニル基、および、クマリン基からなる群から選択される、請求項5に記載の光学フィルムの製造方法。
  7.  前記光配向化合物が、前記光配向性基を有する繰り返し単位と、架橋性基を有する繰り返し単位とを含む、請求項5または6に記載の光学フィルムの製造方法。
  8.  前記架橋性基を有する繰り返し単位が、式(1)で表される繰り返し単位を含む、請求項7に記載の光学フィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000001

     Rは、水素原子またはメチル基を表す。
     Lは、単結合または2価の連結基を表す。
     Zは、架橋性基を表す。
  9.  前記架橋性基が、式(Z1)~(Z4)で表される基のいずれかである、請求項8に記載の光学フィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000002

     Rは、水素原子、メチル基、または、エチル基を表す。
     Rは、水素原子またはメチル基を表す。
     *は結合位置を表す。
  10.  前記光配向化合物が、前記光配向性基に由来する極大吸収波長を波長250~450nmに有し、
     前記極大吸収波長における前記基材の吸光度が1.0以下である、請求項5~9のいずれか1項に記載の光学フィルムの製造方法。
  11.  前記光配向化合物が、前記光配向性基に由来する極大吸収波長を波長250~450nmに有し、
     前記液晶層形成用組成物が重合開始剤を含み、
     前記重合開始剤が要件1または要件2を満たす、請求項5~10のいずれか1項に記載の光学フィルムの製造方法。
    要件1:前記極大吸収波長における、前記重合開始剤のモル吸光係数が4000l/mol・cm以下
    要件2:前記極大吸収波長における、前記重合開始剤のモル吸光係数が4000l/mol・cmより大きく20000l/mol・cmより小さく、前記液晶化合物の含有量に対する前記重合開始剤の含有量が2.0質量%以下である。
  12.  基材上に、光配向化合物および液晶化合物を含む液晶層形成用組成物を塗布して、前記光配向化合物が前記基材側に偏在している塗膜を形成する工程B1と、
     前記塗膜に対して偏光を照射して、前記光配向化合物に配向規制力を付与する工程B2と、
     前記塗膜中の液晶化合物を配向させて、液晶層を形成する工程B3と、をこの順に有する、光学フィルムの製造方法。
  13.  前記工程B2において、前記偏光を前記基材側から前記塗膜に照射する、請求項12に記載の光学フィルムの製造方法。
  14.  前記液晶化合物が重合性基を有する、請求項12または13に記載の光学フィルムの製造方法。
  15.  前記液晶層形成用組成物における前記光配向化合物の含有量が、前記液晶化合物の含有量に対して、0.01~30質量%である、請求項12~14のいずれか1項に記載の光学フィルムの製造方法。
  16.  前記基材が、表面に水素結合性基を有する、請求項12~15のいずれか1項に記載の光学フィルムの製造方法。
  17.  前記基材の表面の水接触角が80°以下である、請求項12~16のいずれか1項に記載の光学フィルムの製造方法。
  18.  前記光配向化合物が、水素結合性基、塩構造を有する基、ボロン酸基、ボロン酸エステル基、および、式(2)で表される基からなる群から選択される相互作用性基を有する、請求項12~17のいずれか1項に記載の光学フィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000003

     Rは、置換基を有していてもよい、炭素数1~20のアルキル基を表す。ただし、Rが炭素数2~20のアルキル基である場合、アルキル基を構成する-CH-の1個以上が-O-、-S-、-N(Q)-、-CO-O-、または-CO-に置換されていてもよい。Qは、置換基を表す。*は結合位置を表す。
  19.  前記光配向化合物が、前記相互作用性基を有する繰り返し単位を含む、請求項18に記載の光学フィルムの製造方法。
  20.  前記相互作用性基を有する繰り返し単位が、式(3)~(7)で表される繰り返し単位の少なくとも1つを含む、請求項19に記載の光学フィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000004

     R、R、R、RおよびR11は、それぞれ独立に、水素原子、または、置換基を有していてもよい炭素数1~20のアルキル基を表す。
     L、L、L、LおよびLは、それぞれ独立に、単結合または2価の連結基を表す。
     Xは、陽イオン基を表す。Yは、アニオンを表す。
     Dは、陰イオン基を表す。Eは、カチオンを表す。
     RおよびR10は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、または、置換基を有していてもよいヘテロアリール基を表し、RおよびR10のいずれか一方は水素原子である。
     R12は、炭素数1~20のアルキル基を表す。ただし、R12が炭素数2~20のアルキル基である場合、アルキル基を構成する-CH-の1個以上が-O-、-S-、-N(Q)-、-CO-O-、または-CO-に置換されていてもよい。Qは置換基を表す。
  21.  前記相互作用性基を有する繰り返し単位が、式(8)~(10)で表される繰り返し単位の少なくとも1つを含む、請求項19または20に記載の光学フィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000005

     R13、R17およびR18は、それぞれ独立に、水素原子、または、置換基を有していてもよい炭素数1~20のアルキル基を表す。
     L、LおよびLは、それぞれ独立に、単結合または2価の連結基を表す。
     Yは、アニオンを表す。
     Eは、カチオンを表す。
     R14、R15およびR16は、それぞれ独立に、水素原子、または、置換基を有していてもよい炭素数1~20のアルキル基を表す。
  22.  前記光配向化合物が、光の作用により二量化および異性化の少なくとも一方が生じる光配向性基を有する、請求項12~21のいずれか1項に記載の光学フィルムの製造方法。
  23.  前記光配向性基が、シンナモイル基、アゾベンゼン基、カルコニル基、および、クマリン基からなる群から選択される、請求項22に記載の光学フィルムの製造方法。
  24.  前記光配向化合物が、前記光配向性基を有する繰り返し単位を含む、請求項22または23に記載の光学フィルムの製造方法。
  25.  前記光配向化合物が、前記光配向性基に由来する極大吸収波長を波長250~450nmに有し、
     前記極大吸収波長における前記基材の吸光度が1.0以下である、請求項22~24のいずれか1項に記載の光学フィルムの製造方法。
  26.  前記光配向化合物が、前記光配向性基に由来する極大吸収波長を波長250~450nmに有し、
     前記液晶層形成用組成物が重合開始剤を含み、
     前記重合開始剤が要件1または要件2を満たす、請求項22~25のいずれか1項に記載の光学フィルムの製造方法。
    要件1:前記極大吸収波長における、前記重合開始剤のモル吸光係数が4000l/mol・cm以下
    要件2:前記極大吸収波長における、前記重合開始剤のモル吸光係数が4000l/mol・cmより大きく20000l/mol・cmより小さく、前記液晶化合物の含有量に対する前記重合開始剤の含有量が2.0質量%以下である。
PCT/JP2021/004364 2020-02-06 2021-02-05 光学フィルムの製造方法 WO2021157704A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021576187A JP7386268B2 (ja) 2020-02-06 2021-02-05 光学フィルムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-018841 2020-02-06
JP2020018841 2020-02-06

Publications (1)

Publication Number Publication Date
WO2021157704A1 true WO2021157704A1 (ja) 2021-08-12

Family

ID=77199382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004364 WO2021157704A1 (ja) 2020-02-06 2021-02-05 光学フィルムの製造方法

Country Status (2)

Country Link
JP (1) JP7386268B2 (ja)
WO (1) WO2021157704A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276165A (ja) * 2006-09-29 2008-11-13 Dainippon Printing Co Ltd 光学機能層形成用感光性材料、光学機能層形成用組成物、光学機能フィルム、および、光学機能フィルム。
JP2012255926A (ja) * 2011-06-09 2012-12-27 Hayashi Engineering Inc 光学フィルム積層体
US20150248041A1 (en) * 2013-03-03 2015-09-03 Beam Engineering For Advanced Measurements Co. Mechanical rubbing method for fabricating cycloidal diffractive waveplates
JP2015227947A (ja) * 2014-05-30 2015-12-17 富士フイルム株式会社 積層体およびその製造方法、偏光板、液晶表示装置、有機el表示装置
WO2017164004A1 (ja) * 2016-03-22 2017-09-28 富士フイルム株式会社 光学フィルム、偏光板、画像表示装置、光学フィルムの製造方法および偏光板の製造方法
JP2019095553A (ja) * 2017-11-21 2019-06-20 富士フイルム株式会社 光学フィルムの製造方法および、光学フィルム、光学フィルム積層体、偏光板、画像表示装置
JP2019522245A (ja) * 2016-07-29 2019-08-08 ロリク・テクノロジーズ・アーゲーRolic Technologies Ag 液晶ポリマー材料上で配向を生じさせる方法
WO2019225632A1 (ja) * 2018-05-25 2019-11-28 富士フイルム株式会社 光配向性共重合体、光配向膜および光学積層体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276165A (ja) * 2006-09-29 2008-11-13 Dainippon Printing Co Ltd 光学機能層形成用感光性材料、光学機能層形成用組成物、光学機能フィルム、および、光学機能フィルム。
JP2012255926A (ja) * 2011-06-09 2012-12-27 Hayashi Engineering Inc 光学フィルム積層体
US20150248041A1 (en) * 2013-03-03 2015-09-03 Beam Engineering For Advanced Measurements Co. Mechanical rubbing method for fabricating cycloidal diffractive waveplates
JP2015227947A (ja) * 2014-05-30 2015-12-17 富士フイルム株式会社 積層体およびその製造方法、偏光板、液晶表示装置、有機el表示装置
WO2017164004A1 (ja) * 2016-03-22 2017-09-28 富士フイルム株式会社 光学フィルム、偏光板、画像表示装置、光学フィルムの製造方法および偏光板の製造方法
JP2019522245A (ja) * 2016-07-29 2019-08-08 ロリク・テクノロジーズ・アーゲーRolic Technologies Ag 液晶ポリマー材料上で配向を生じさせる方法
JP2019095553A (ja) * 2017-11-21 2019-06-20 富士フイルム株式会社 光学フィルムの製造方法および、光学フィルム、光学フィルム積層体、偏光板、画像表示装置
WO2019225632A1 (ja) * 2018-05-25 2019-11-28 富士フイルム株式会社 光配向性共重合体、光配向膜および光学積層体

Also Published As

Publication number Publication date
JP7386268B2 (ja) 2023-11-24
JPWO2021157704A1 (ja) 2021-08-12

Similar Documents

Publication Publication Date Title
US7981320B2 (en) Polymerizable composition
JP6156581B2 (ja) 積層体、およびそれを使用した光学フィルムまたは液晶配向膜
WO2016051663A1 (ja) 液晶組成物、偏光発光フィルム、波長変換部材およびその製造方法、バックライトユニット、液晶表示装置
JP4756342B2 (ja) 光学フィルム、楕円偏光板、円偏光板、液晶表示素子、及び該光学フィルムの製造方法
WO2009139131A1 (ja) 液晶表示装置及び液晶セル
KR20170120586A (ko) 광학 필름용 전사체, 광학 필름, 유기 일렉트로루미네센스 표시 장치, 및 광학 필름의 제조 방법
TW200402459A (en) Achromatic quarter wave film
WO2007122889A1 (ja) フィルムおよびフィルムの製造方法、並びにその利用
KR20180096615A (ko) 광학 이방성층 및 그 제조 방법, 광학 이방성 적층체 그리고 원 편광판
JP2009288440A (ja) 位相差フィルム、位相差フィルムの製造方法、偏光板および液晶表示装置
JP6227488B2 (ja) 光学補償フィルム、偏光板、液晶表示装置および光学補償フィルムの製造方法
JP7438321B2 (ja) 光学積層体、偏光板、画像表示装置
JP4984842B2 (ja) ホメオトロピック配向液晶フィルムおよびその製造方法
JP4297436B2 (ja) 液晶性ジ(メタ)アクリレート化合物及びこれを用いた位相差フィルム、光学フィルム、偏光板、液晶パネル並びに液晶表示装置
JP4413117B2 (ja) 位相差フィルム、偏光板、液晶パネル、液晶表示装置及び位相差フィルムの製造方法
JP7324171B2 (ja) フッ素含有共重合体、組成物、光学フィルム、液晶フィルム、ハードコートフィルム、偏光板
WO2021157704A1 (ja) 光学フィルムの製造方法
KR20150143570A (ko) 광학 이방층 형성용 조성물
TW201731889A (zh) 化合物、硬化物、聚合物、聚合物溶液、光配向膜、光學異向體、及液晶顯示元件
WO2021157694A1 (ja) 光学フィルム、液晶フィルム
JP7335986B2 (ja) 化合物、液晶組成物、液晶フィルム
WO2022054556A1 (ja) 偏光板、有機エレクトロルミネッセンス表示装置
JP2008287066A (ja) 光学異方体の製造方法
US11675233B2 (en) Liquid crystal display device and production method for liquid crystal display device
JP6769921B2 (ja) 液晶配向フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21751323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021576187

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21751323

Country of ref document: EP

Kind code of ref document: A1