WO2022054556A1 - 偏光板、有機エレクトロルミネッセンス表示装置 - Google Patents

偏光板、有機エレクトロルミネッセンス表示装置 Download PDF

Info

Publication number
WO2022054556A1
WO2022054556A1 PCT/JP2021/030773 JP2021030773W WO2022054556A1 WO 2022054556 A1 WO2022054556 A1 WO 2022054556A1 JP 2021030773 W JP2021030773 W JP 2021030773W WO 2022054556 A1 WO2022054556 A1 WO 2022054556A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
anisotropic layer
liquid crystal
crystal compound
layer
Prior art date
Application number
PCT/JP2021/030773
Other languages
English (en)
French (fr)
Inventor
靖和 桑山
悠太 福島
慎平 吉田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180054993.9A priority Critical patent/CN116075876A/zh
Priority to JP2022547476A priority patent/JPWO2022054556A1/ja
Publication of WO2022054556A1 publication Critical patent/WO2022054556A1/ja
Priority to US18/177,563 priority patent/US20230225176A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a polarizing plate and an organic electroluminescence display device.
  • Patent Document 1 discloses a circular polarizing plate in which a retardation layer (optically anisotropic layer) is bonded to a polarizing element formed by using a dichroic substance via a pressure-sensitive adhesive layer.
  • the blackness means that when the image display device is displayed in black, the tinting of black is suppressed and the reflectance of the reflected light is low.
  • the present inventors have produced a circular polarizing plate formed by bonding a polarizing element and an optically anisotropic layer via a pressure-sensitive adhesive layer disclosed in Patent Document 1, and attached the polarizing plate to an organic EL display panel.
  • a circular polarizing plate formed by bonding a polarizing element and an optically anisotropic layer via a pressure-sensitive adhesive layer disclosed in Patent Document 1, and attached the polarizing plate to an organic EL display panel.
  • the present invention provides a polarizing plate having excellent black tightening in the front direction even after the organic EL display device obtained by being attached to an organic EL display panel is exposed to a high temperature environment for a long time.
  • the task is to do.
  • Another object of the present invention is to provide an organic EL display device.
  • a polarizing element formed by using a composition containing a first liquid crystal compound and a dichroic substance It has an optically anisotropic layer formed by using a composition containing a second liquid crystal compound, which is arranged adjacent to the polarizing element.
  • the optically anisotropic layer has a plurality of layers in which a second liquid crystal compound twist-oriented having a spiral axis in the thickness direction is fixed.
  • the optically anisotropic layer has a first optically anisotropic layer and a second optically anisotropic layer. The first optically anisotropic layer is arranged on the substituent side, and the first optically anisotropic layer is arranged.
  • the first optically anisotropic layer and the second optically anisotropic layer are layers formed by fixing a second liquid crystal compound twist-oriented with a spiral axis in the thickness direction.
  • the twisting direction of the second liquid crystal compound in the first optically anisotropic layer and the twisting direction of the second liquid crystal compound in the second optically anisotropic layer are the same.
  • the twist angle of the second liquid crystal compound in the first optically anisotropic layer is 26.5 ⁇ 10.0 °.
  • the twist angle of the second liquid crystal compound in the second optically anisotropic layer is 78.6 ⁇ 10.0 °.
  • the values of the products ⁇ n2 and d2 of the refractive index anisotropy ⁇ n2 of the sex layer and the thickness d2 of the second optically anisotropic layer satisfy the following equations (1) and (2), respectively, (1) to (1).
  • the polarizing plate according to any one of 6).
  • Equation (1) 252 nm ⁇ ⁇ n1 ⁇ d1 ⁇ 312 nm Equation (2) 110 nm ⁇ ⁇ n2 ⁇ d2 ⁇ 170 nm (8)
  • the maximum intensity Imax of the secondary ion intensity derived from the dichroic substance and the optical anisotropy of the substituent are obtained.
  • Equation (3) 2.0 ⁇ Imax / Isur1
  • an organic EL display device can also be provided.
  • FIG. 1 It is a schematic sectional drawing of one Embodiment of the polarizing plate of this invention. Schematic diagram for explaining the profile of the secondary ion intensity of each component detected by analyzing the components in the depth direction of the polarizing plate by the time-of-flight secondary ion mass spectrometry (TOF-SIMS). Is. It is the schematic sectional drawing of the preferable embodiment of the polarizing plate of this invention. It is a figure which shows the relationship between the absorption axis of a polarizing element 12 and the in-plane slow phase axis of each of the 1st optically anisotropic layer 16 and the 2nd optically anisotropic layer 18 in the preferred embodiment of the polarizing plate of this invention. be.
  • FIG. 4 The relationship between the angle relationship between the absorption axis of the polarizing element 12 when observed from the direction of the arrow in FIG. 4 and the in-plane slow phase axes of the first optically anisotropic layer 16 and the second optically anisotropic layer 18 is shown.
  • FIG. It is sectional drawing of the composition layer for demonstrating step 2.
  • FIG. In the graph plotting the relationship between the spiral inducing force (HTP: Helical Twisting Power) ( ⁇ m -1 ) ⁇ concentration (mass%) and the light irradiation amount (mJ / cm 2 ) for each of the chiral auxiliary A and the chiral agent B. It is a schematic diagram.
  • HTP Helical Twisting Power
  • the in-plane slow phase axis is defined at 550 nm unless otherwise specified.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation at wavelength ⁇ and retardation in the thickness direction, respectively. Unless otherwise specified, the wavelength ⁇ is 550 nm.
  • the values of the average refractive index of the main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethylmethacrylate (1.49), And polystyrene (1.59).
  • light means active light or radiation, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light: Extreme Ultraviolet), X-rays, ultraviolet rays, and the like. It also means an electron beam (EB: Electron Beam) or the like. Of these, ultraviolet rays are preferable.
  • visible light refers to light having a diameter of 380 to 780 nm.
  • the measurement wavelength is 550 nm.
  • the relationship between angles includes a range of errors allowed in the technical field to which the present invention belongs. Specifically, it means that the angle is within a range of less than ⁇ 10 °, and the error from the exact angle is preferably within a range of ⁇ 5 ° or less, and within a range of ⁇ 3 ° or less. Is more preferable.
  • the binding direction of the divalent group (for example, -C (O) O-) described in the present specification is not particularly limited, and for example, L1 in the formula (1) described later is -C (O) O-.
  • L1 in the formula (1) described later is -C (O) O-.
  • L1 may be * 1-C (O) -O- * 2.
  • * 1-OC (O)-* 2 may be used.
  • the feature of the polarizing plate of the present invention is that the polarizing element and the optically anisotropic layer are in direct contact with each other, and the concentration of the dichroic substance in the polarizing element is not more than a predetermined value.
  • the present inventors have investigated the reason why the polarizing plate described in Patent Document 1 does not have a desired effect. First, when the pressure-sensitive adhesive layer is interposed between the polarizing element and the optically anisotropic layer. At the interface between the polarizing element and the pressure-sensitive adhesive layer and the interface between the pressure-sensitive adhesive layer and the optically anisotropic layer, light reflection is likely to occur, which has been one of the causes of deterioration of blackening.
  • the substituent contains a dichroic substance having a relatively high refractive index
  • the refractive index of the substituent itself becomes high
  • the difference in the refractive index between the adjacent pressure-sensitive adhesive layers becomes large
  • the reflection of light becomes more. It was easy to occur.
  • the polarizing element and the optically anisotropic layer are brought into direct contact with each other to suppress the reflection of light derived from the pressure-sensitive adhesive layer and to determine the concentration of the dichroic substance in the polarizing element.
  • the refractive index of the substituent By adjusting the refractive index of the substituent to a refractive index similar to that of the optically anisotropic layer by setting the value to or less than the value, the reflection of light at the interface between the substituent and the optically anisotropic layer is suppressed.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of the polarizing plate of the present invention.
  • the polarizing plate 10A has a polarizing element 12 and an optically anisotropic layer 14. As shown in FIG. 1, the splitter 12 and the optically anisotropic layer 14 are arranged adjacent to each other. That is, the polarizing element 12 and the optically anisotropic layer 14 are arranged so as to be in direct contact with each other.
  • adjacent means that both are arranged between the polarizing element and the optically anisotropic layer without interposing another layer such as an adhesive layer.
  • the embodiment in which the splitter 12 and the optically anisotropic layer 14 are arranged adjacent to each other can also be specified by using a time-of-flight type secondary ion mass spectrometry method as follows. More specifically, first, the components in the depth direction of the polarizing plate are analyzed by the flight time type secondary ion mass spectrometry method while irradiating an ion beam from one surface of the polarizing plate to the other surface.
  • FIG. 2 shows a profile obtained by analyzing the components in the depth direction in each layer by TOF-SIMS while ion-sputtering from the surface on the polarizing element side of the polarizing plate toward the optically anisotropic layer side.
  • the depth direction is intended to be a direction toward the optically anisotropic layer side with reference to the surface of the polarizing plate on the polarizing element side.
  • the horizontal axis in FIG. 2
  • the axis extending in the left-right direction of the paper surface represents the depth with respect to the surface of the polarizing plate on the polarizing element side, and is vertical.
  • the axis (in FIG. 2, the axis extending in the vertical direction of the paper surface) represents the secondary ionic strength of each component.
  • the TOF-SIMS method is specifically described in "Surface Analysis Technology Selection Book Secondary Ion Mass Spectrometry" edited by the Japan Surface Science Society, Maruzen Co., Ltd. (published in 1999).
  • the intensity of the fragment ion derived from the component contained in the polarizing element is intended, and the "secondary ionic strength derived from the component contained in the optically anisotropic layer" is derived from the component contained in the optically anisotropic layer. Intended for fragment ion intensity.
  • the secondary ionic strength derived from the component contained in the polarizing element and the secondary ionic strength derived from the component contained in the optically anisotropic layer have the same intensity. There is a depth position that indicates.
  • the measuring device and the measuring conditions include the following.
  • ⁇ Equipment TOF-SIMS 5 (manufactured by ION-TOF)
  • Depth direction analysis Combined with Ar ion sputtering
  • Measurement range Raster scan of 128 points each in one direction and its orthogonal direction
  • Polarity posi, nega
  • a dichroic substance or a first liquid crystal compound is selected as the component contained in the polarizing element.
  • a second liquid crystal compound is selected as the component contained in the optically anisotropic layer.
  • the polarizing element is formed by using a composition containing a first liquid crystal compound and a dichroic substance (hereinafter, also referred to as a composition for forming a polarizing element).
  • the dichroic substance is also oriented in a predetermined direction along the orientation of the first liquid crystal compound.
  • the dichroic substance is preferably horizontally oriented.
  • first liquid crystal compound As the first liquid crystal compound, both a high molecular weight liquid crystal compound and a low molecular weight liquid crystal compound can be used, and it is preferable to use a high molecular weight liquid crystal compound from the viewpoint of increasing the degree of orientation of the bicolor substance.
  • the "polymer liquid crystal compound” refers to a liquid crystal compound having a repeating unit in the chemical structure.
  • the "small molecule liquid crystal compound” refers to a liquid crystal compound having no repeating unit in its chemical structure.
  • the polymer liquid crystal compound include a thermotropic liquid crystal polymer described in Japanese Patent Application Laid-Open No. 2011-237513, and high molecular weight liquid crystal compounds described in paragraphs [0012] to [0042] of International Publication No.
  • Molecular liquid crystal compounds can be mentioned.
  • the small molecule liquid crystal compound include the liquid crystal compounds described in paragraphs [0072] to [0088] of JP2013-228706A, and among them, the liquid crystal compound exhibiting smectic properties is preferable.
  • the first liquid crystal compound a high molecular weight liquid crystal compound and a low molecular weight liquid crystal compound may be used in combination.
  • the first liquid crystal compound is a polymer containing a repeating unit represented by the following formula (1) (hereinafter, also abbreviated as "repeating unit (1)") because the degree of orientation of the dichroic substance is higher. Liquid crystal compounds are preferred.
  • P1 represents the main chain of the repeating unit
  • L1 represents a single bond or a divalent linking group
  • SP1 represents a spacer group
  • M1 represents a mesogen group
  • T1 represents a terminal group. ..
  • Examples of the main chain of the repeating unit represented by P1 include groups represented by the following formulas (P1-A) to (P1-D), and among them, the diversity and handling of the raw material monomers can be mentioned.
  • a group represented by the following formula (P1-A) is preferable because it is easy.
  • R 1 , R 2 , R 3 and R 4 are independently hydrogen atoms, halogen atoms, cyano groups, and alkyl groups having 1 to 10 carbon atoms. Alternatively, it represents an alkoxy group having 1 to 10 carbon atoms.
  • the alkyl group may be a linear or branched alkyl group, or may be an alkyl group having a cyclic structure (cycloalkyl group). Further, the number of carbon atoms of the above alkyl group is preferably 1 to 5.
  • the group represented by the above formula (P1-A) is preferably one unit of the partial structure of the poly (meth) acrylic acid ester obtained by the polymerization of the (meth) acrylic acid ester.
  • the group represented by the above formula (P1-B) is preferably an ethylene glycol unit formed by ring-opening polymerization of an epoxy group of a compound having an epoxy group.
  • the group represented by the above formula (P1-C) is preferably a propylene glycol unit formed by ring-opening polymerization of the oxetane group of the compound having an oxetane group.
  • the group represented by the above formula (P1-D) is preferably a siloxane unit of a polysiloxane obtained by decomposing a compound having at least one of an alkoxysilyl group and a silanol group.
  • examples of the compound having at least one of the alkoxysilyl group and the silanol group include compounds having a group represented by the formula SiR 4 (OR 5 ) 2- .
  • R 4 is synonymous with R 4 in (P1-D), and each of the plurality of R 5s independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • L1 is a single bond or a divalent linking group.
  • the divalent linking groups represented by L1 include -C (O) O-, -O-, -S-, -C (O) NR 6- , -SO 2- , and -NR 6 R 7- .
  • R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • P1 is a group represented by the formula (P1-A)
  • L1 is preferably a group represented by —C (O) O— from the viewpoint that the degree of orientation of the dichroic substance is higher.
  • P1 is a group represented by the formulas (P1-B) to (P1-D)
  • L1 is preferably a single bond from the viewpoint that the degree of orientation of the dichroic substance is higher.
  • the spacer group represented by SP1 is composed of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and a fluorinated alkylene structure from the viewpoints of easily exhibiting liquid crystallinity and availability of raw materials. It preferably contains at least one structure selected from the group.
  • the oxyethylene structure represented by SP1 is preferably a group represented by *-( CH2 - CH2O ) n1- *.
  • n1 represents an integer of 1 to 20
  • * represents a coupling position with L1 or M1 in the above formula (1).
  • n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 4, and most preferably 3 from the viewpoint of increasing the degree of orientation of the dichroic substance.
  • the oxypropylene structure represented by SP1 is preferably a group represented by *-(CH (CH 3 ) -CH 2 O) n2- * from the viewpoint that the degree of orientation of the dichroic substance is higher.
  • n2 represents an integer of 1 to 3, and * represents the coupling position with L1 or M1.
  • the polysiloxane structure represented by SP1 is preferably a group represented by *-(Si (CH 3 ) 2 -O) n3- *, because the degree of orientation of the dichroic substance is higher.
  • n3 represents an integer of 6 to 10
  • * represents the coupling position with L1 or M1.
  • the fluoroalkylene structure represented by SP1 is preferably a group represented by *-(CF 2 -CF 2 ) n4- * from the viewpoint that the degree of orientation of the dichroic substance is higher.
  • n4 represents an integer of 6 to 10
  • * represents the coupling position with L1 or M1.
  • the mesogen group represented by M1 is a group showing the main skeleton of the liquid crystal molecule that contributes to the formation of the liquid crystal.
  • the liquid crystal molecule exhibits liquid crystallinity, which is an intermediate state (mesophase) between the crystalline state and the isotropic liquid state.
  • mesogen group for example, a group having at least one cyclic structure selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group is preferable.
  • the mesogen group preferably has an aromatic hydrocarbon group, more preferably 2 to 4 aromatic hydrocarbon groups, from the viewpoint of increasing the degree of orientation of the dichroic substance, and more preferably 3 aromatics. It is more preferable to have a group hydrocarbon group.
  • the mesogen group As the mesogen group, the following formula (M1-A) or The group represented by the following formula (M1-B) is preferable, and the group represented by the formula (M1-B) is more preferable.
  • A1 is a divalent group selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups. These groups may be substituted with an alkyl group, an alkyl fluoride group, an alkoxy group or a substituent.
  • the divalent group represented by A1 is preferably a 4- to 6-membered ring. Further, the divalent group represented by A1 may be a monocyclic ring or a condensed ring. * Represents the binding position with SP1 or T1.
  • Examples of the divalent aromatic hydrocarbon group represented by A1 include a phenylene group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group, a tetracene-diyl group, and the like, and the variety of design of the mesogen skeleton is included.
  • a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable, from the viewpoint of availability of raw materials and the like.
  • the divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but the divalent aromatic heterocyclic group is used because the degree of orientation of the dichromatic substance is higher. preferable.
  • Examples of the atom other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, they may be the same or different.
  • divalent aromatic heterocyclic group examples include pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinolin-diyl group), and isoquinolylene.
  • Examples of the divalent alicyclic group represented by A1 include a cyclopentylene group and a cyclohexylene group.
  • a1 represents an integer from 1 to 10.
  • the plurality of A1s may be the same or different.
  • A2 and A3 are divalent groups independently selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups, respectively. Specific examples and preferred embodiments of A2 and A3 are the same as those of A1 of the formula (M1-A), and thus the description thereof will be omitted.
  • a2 represents an integer of 1 to 10, and when a2 is 2 or more, a plurality of A2s may be the same or different, and a plurality of A3s may be the same or different. Often, the plurality of LA1s may be the same or different.
  • a2 is preferably an integer of 2 or more, and more preferably 2 from the viewpoint of increasing the degree of orientation of the dichroic substance.
  • M1-B when a2 is 1, LA1 is a divalent linking group.
  • the plurality of LA1s are independently single-bonded or divalent linking groups, and at least one of the plurality of LA1s is a divalent linking group.
  • a2 it is preferable that one of the two LA1s is a divalent linking group and the other is a single bond, because the degree of orientation of the dichroic substance is higher.
  • -C (O) O- is preferable because the degree of orientation of the bichromatic substance is higher. May be a group in which two or more of these groups are combined.
  • examples of the terminal group represented by T1 include a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms.
  • Acylamino group with 1 to 10 carbon atoms Acylamino group with 1 to 10 carbon atoms, alkoxycarbonylamino group with 1 to 10 carbon atoms, sulfonylamino group with 1 to 10 carbon atoms, sulfamoyl group with 1 to 10 carbon atoms, carbamoyl group with 1 to 10 carbon atoms, carbon Examples thereof include a sulfinyl group having a number of 1 to 10, a ureido group having 1 to 10 carbon atoms, and a (meth) acryloyloxy group-containing group.
  • the (meth) acryloyloxy group-containing group include -LA (L represents a single bond or a linking group. Specific examples of the linking group are the same as those of L1 and SP1 described above.
  • A is (meth).
  • a group represented by (representing an acryloyloxy group) can be mentioned.
  • T1 is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and even more preferably a methoxy group, from the viewpoint of increasing the degree of orientation of the dichroic substance.
  • These terminal groups may be further substituted with these groups or the polymerizable group described in JP-A-2010-244038.
  • T1 is preferably a polymerizable group from the viewpoint that the adhesion between the substituent and the optically anisotropic layer becomes better and the cohesive force as a film can be improved.
  • a radically polymerizable group or a cationically polymerizable group is preferable.
  • a generally known radically polymerizable group can be used, and an acryloyl group or a methacryloyl group is preferable.
  • the acryloyl group is generally faster in terms of the polymerization rate, and the acryloyl group is preferable from the viewpoint of improving productivity, but the methacryloyl group can also be used as the polymerizable group in the same manner.
  • a generally known cationically polymerizable group can be used, and for example, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spirorthoester group, and a vinyloxy group can be used.
  • an alicyclic ether group or a vinyloxy group is preferable, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferable.
  • the weight average molecular weight (Mw) of the polymer liquid crystal compound containing the repeating unit represented by the above formula (1) is preferably 1000 to 500,000, more preferably 2000 to 300,000.
  • the handling of the polymer liquid crystal compound becomes easy.
  • the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably 10,000 or more, and more preferably 10,000 to 300,000.
  • the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably less than 10,000, and preferably 2000 or more and less than 10,000.
  • the weight average molecular weight and the number average molecular weight in the present invention are values measured by a gel permeation chromatograph (GPC) method.
  • the content of the first liquid crystal compound is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total solid content of the composition for forming a substituent.
  • the upper limit is not particularly limited, but it is often 95% by mass or less.
  • the "total solid content of the composition for forming a polarizing element" refers to a component in the composition for forming a polarizing element excluding the solvent, and specific examples of the solid content include the above-mentioned first liquid crystal compound, which will be described later. Examples include dichroic substances, polymerization initiators, and surfactants.
  • the bicolor substance is not particularly limited, and is, for example, a visible light absorber (bicolor dye), a light emitting substance (fluorescent substance, a phosphorescent substance), an ultraviolet absorber, an infrared absorber, a nonlinear optical substance, a carbon nanotube, and the like.
  • a visible light absorber for example, a visible light absorber (bicolor dye), a light emitting substance (fluorescent substance, a phosphorescent substance), an ultraviolet absorber, an infrared absorber, a nonlinear optical substance, a carbon nanotube, and the like.
  • examples thereof include an inorganic substance (for example, a quantum rod), and a conventionally known bicolor substance (bicolor dye) can be used.
  • two or more kinds of dichroic substances may be used in combination.
  • the dichroic substance may have a crosslinkable group.
  • the crosslinkable group include a (meth) acryloyl group, an epoxy group, an oxetanyl group, and a styryl group, and among them, a (meth) acryloyl group is preferable.
  • the content of the dichroic substance is preferably 2 to 80 parts by mass, more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the liquid crystal compound.
  • the content of the dichroic substance is preferably 1 to 40% by mass, more preferably 2 to 30% by mass, based on the solid content of the composition for forming a substituent.
  • composition for forming a substituent may contain other components other than the above-mentioned first liquid crystal compound and the dichroic substance.
  • the composition for forming a substituent preferably contains a polymerization initiator.
  • the polymerization initiator is not particularly limited, but a photosensitive compound, that is, a photopolymerization initiator is preferable.
  • a photopolymerization initiator various compounds can be used without particular limitation. Examples of the photopolymerization initiator include ⁇ -carbonyl compounds (US Pat. Nos. 2,376,661 and 236,670), acidoin ethers (US Pat. No. 2,448,828), and ⁇ -hydrogen-substituted aromatic acidoines. Compounds (US Pat. No. 2722512), polynuclear quinone compounds (US Pat. Nos.
  • the content of the polymerization initiator is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass in total of the dichroic substance and the liquid crystal compound. , 0.1 to 15 parts by mass is more preferable.
  • the composition for forming a substituent preferably contains a surfactant.
  • a surfactant By containing the surfactant, it is expected that the smoothness of the coated surface is improved, the degree of orientation is further improved, repelling and unevenness are suppressed, and the in-plane uniformity is improved.
  • the surfactant a compound in which a dichroic substance and a liquid crystal compound are made horizontal on the coated surface side is preferable, and for example, the compound described in paragraphs [0155] to [0170] of International Publication No. 2016/09648, Examples thereof include the compounds (horizontal orienting agents) described in paragraphs [0253] to [0293] of JP-A-2011-237513.
  • the content of the surfactant is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass in total of the dichroic substance and the liquid crystal compound. , 0.01 to 3 parts by mass is more preferable.
  • the composition for forming a substituent preferably contains a solvent from the viewpoint of workability.
  • the solvent include ketones, ethers, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated carbons, esters, alcohols, cellosolves, cellosolve acetates, and sulfoxides.
  • kinds, amides, and organic solvents such as heterocyclic compounds, as well as water.
  • the solvent for this may be used alone or in combination of two or more.
  • the content of the solvent is preferably 80 to 99% by mass, more preferably 83 to 97% by mass, based on the total mass of the composition for forming a polarizing element.
  • the method for producing the polarizing element is not particularly limited as long as the composition for forming a polarizing element is used, but the composition for forming a polarizing element is applied on a predetermined support to form a coating film, and the liquid crystal property in the coating film is formed.
  • a method of orienting the components is preferred.
  • the liquid crystal component is a component that includes not only the first liquid crystal compound described above but also the dichroic substance having a liquid crystal property when the dichroic substance described above has a liquid crystal property.
  • the support to which the composition for forming a polarizing element is applied is not particularly limited.
  • the support will be described in detail later.
  • the support may have an orientation layer on its surface.
  • Examples of the method for forming the alignment film include rubbing treatment of an organic compound (preferably a polymer) on the film surface, oblique vapor deposition of an inorganic compound, formation of a layer having microgrooves, and a Langmuir-Blojet method (LB film). ) To accumulate organic compounds (eg, ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate, etc.).
  • organic compounds eg, ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate, etc.
  • an alignment film formed by a rubbing treatment or a photoalignment film formed by light irradiation is preferable.
  • the photo-alignment compound contained in the photo-alignment film include known materials.
  • the photoalignment compound it is preferable to use a photosensitive compound having a photoreactive group in which at least one of dimerization and isomerization is generated by the action of light.
  • the composition for forming a polarizing element may be applied onto the optically anisotropic layer described later, in which case the optically anisotropic layer functions as an alignment film.
  • the method of applying the composition for forming a polarizing element is not particularly limited, and is a curtain coating method, a dip coating method, a spin coating method, a print coating method, a spray coating method, a slot coating method, a roll coating method, a slide coating method, and a blade coating method.
  • Examples include the method, the gravure coating method, and the wire bar method.
  • the method for orienting the liquid crystal component in the coating film is not particularly limited, and heat treatment is preferable.
  • the heat treatment is preferably 10 to 250 ° C., more preferably 25 to 190 ° C. from the viewpoint of manufacturing suitability.
  • the heating time is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.
  • a cooling treatment may be carried out if necessary.
  • the cooling treatment is a treatment for cooling the coated film after heating to about room temperature (20 to 25 ° C.). Thereby, the orientation of the liquid crystal component contained in the coating film can be fixed.
  • the cooling means is not particularly limited, and can be carried out by a known method.
  • a curing treatment may be carried out if necessary.
  • the curing treatment is carried out by heating and / or light irradiation (exposure).
  • the content of the dichroic substance in the polarizing element is 40% by mass or less with respect to the total mass of the polarizing element.
  • the content of the dichroic substance is preferably 30% by mass or less with respect to the total mass of the polarizing element.
  • the lower limit of the content of the dichroic substance is not particularly limited, but is preferably 3% by mass or more, more preferably 5% by mass or more, based on the total mass of the substituent.
  • the maximum intensity Imax of the secondary ion intensity derived from the dichroic substance and the optically anisotropic layer side of the substituent were obtained.
  • the relationship between the intensity of the secondary ion intensity derived from the dichroic substance on the opposite surface and Isur1 preferably satisfies the formula (3), more preferably the formula (3-1), and the formula (3). It is more preferable to satisfy -2).
  • the display performance and durability are improved even if the refractive index adjusting layer and the barrier layer (oxygen blocking layer) are not provided. Therefore, the organic EL display device should be made thinner. Can be done. Equation (3) 2.0 ⁇ Imax / Isur1 Equation (3-1) 5.0 ⁇ Imax / Isur1 Equation (3-2) 10.0 ⁇ Imax / Isur1 ⁇ 100
  • the average value of the secondary ionic strength of the fragment derived from the dichroic substance in the region 1% from the surface opposite to the optically anisotropic layer side of the polarizing element (mean value of the intensity from the baseline). Is the strength Isur1 on the surface on the visual recognition side. Further, the maximum value of the secondary ionic strength (strength from the baseline) of the fragment derived from the dichroic substance in the region of 98% of the total thickness excluding the portion of 1% of the total thickness from each surface is set in the thickness direction. The maximum intensity Imax in.
  • the above-mentioned method can be mentioned.
  • the dichroic substance When the polarizing element contains two or more kinds of dichroic substances, the dichroic substance has a maximum absorption wavelength in the wavelength range of 500 to 650 nm (hereinafter, also referred to as “dichroic substance to be measured”).
  • the secondary ion intensity of the fragment derived from is measured and two or more kinds of dichroic substances to be measured are contained, it is derived from the dichroic substance having the highest absorbance among the dichroic substances to be measured. Measure the secondary ion intensity of the fragment.
  • the thickness of the stator is not particularly limited, but is preferably 100 to 8000 nm, more preferably 300 to 5000 nm.
  • the thickness of the splitter is intended to be the average thickness of the splitter. The average thickness is obtained by measuring the thicknesses of any five or more points of the polarizing element and arithmetically averaging them.
  • optically anisotropic layer is formed by using a composition containing a second liquid crystal compound (hereinafter, also referred to as a composition for forming an optically anisotropic layer).
  • a composition for forming an optically anisotropic layer a composition containing a second liquid crystal compound
  • Examples of the second liquid crystal compound include known liquid crystal compounds. Generally, liquid crystal compounds can be classified into rod-shaped type and disk-shaped type according to their shape. Furthermore, there are small molecule and high molecular types, respectively. A polymer generally refers to a molecule having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992). As the second liquid crystal compound, a rod-shaped liquid crystal compound or a discotic liquid crystal compound is preferable, and a rod-shaped liquid crystal compound is more preferable.
  • rod-shaped liquid crystal compound for example, those described in claim 1 of JP-A No. 11-513019 or paragraphs [0026] to [0098] of JP-A-2005-289980 can be preferably used, and discotics can be used.
  • liquid crystal compound for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 or paragraphs [0013] to [0108] of JP-A-2010-244038 can be preferably used. However, it is not limited to these.
  • the second liquid crystal compound preferably has a polymerizable group.
  • the type of the polymerizable group is not particularly limited, and a functional group capable of an addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring-polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, or an allyl group is preferable, and a (meth) acryloyl group is more preferable.
  • the (meth) acryloyl group is a notation meaning a meta-acryloyl group or an acryloyl group.
  • a liquid crystal compound having a reverse wavelength dispersibility can be used as the second liquid crystal compound.
  • the liquid crystal compound having "reverse wavelength dispersibility" in the present specification the in-plane retardation (Re) value at a specific wavelength (visible light range) of a retardation film produced using this compound was measured. In this case, it means that the Re value becomes equal or higher as the measurement wavelength becomes larger.
  • the reverse wavelength dispersible liquid crystal compound is not particularly limited as long as it can form a reverse wavelength dispersible film as described above, and is, for example, the general formula (1) described in JP-A-2010-084032.
  • the absolute value of the difference between the logP of the second liquid crystal compound and the logP of the dichroic substance described above is not particularly limited, but 3.0 or more is preferable because the effect of the present invention is more excellent, 4.0 to 6 .0 is more preferred.
  • the absolute value of the above difference is 3.0 or more, it becomes difficult for the dichroic substance in the substituent to move to the optically anisotropic layer side.
  • the absolute value of the difference between the logP of the second liquid crystal compound and the logP of each dichroic substance is within the above range.
  • the absolute value of the difference between the logP of each second liquid crystal compound and the logP of the dichroic substance is within the above range. Further, when a plurality of the second liquid crystal compound and the dichroic substance are used respectively, the logP of the second liquid crystal compound and the logP of the above-mentioned dichroic substance in a plurality of combinations of the second liquid crystal compound and the dichroic substance are used.
  • the absolute value of the difference is preferably within the above range.
  • the logP value is an index expressing the hydrophilic and hydrophobic properties of the chemical structure, and is sometimes called a prohydrophobic parameter.
  • the logP value of each compound can be calculated using software such as ChemBioDraw Ultra or HSPiP (Ver. 4.1.07).
  • OECD Guidelines for the Testing of Chemicals, Sections 1, Test No. It can also be obtained experimentally by the method of 117 or the like.
  • a value calculated by inputting the structural formula of the compound into HSPiP (Ver. 4.1.07) is adopted as the logP value.
  • the content of the second liquid crystal compound is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total solid content of the composition for forming an optically anisotropic layer.
  • the upper limit is not particularly limited, but it is often 95% by mass or less.
  • the "solid content of the composition for forming an optically anisotropic layer” refers to a component excluding the solvent in the composition for forming an optically anisotropic layer, and specific examples of the solid content include the above-mentioned second. Examples thereof include a liquid crystal compound, a polymerization initiator described later, and a surfactant.
  • the composition for forming an optically anisotropic layer may contain components other than the second liquid crystal compound.
  • examples of the composition for forming an optically anisotropic layer include a polymerization initiator, a surfactant, and a solvent, which may be contained in the composition for forming a substituent.
  • the content of the polymerization initiator in the composition for forming an optically anisotropic layer is preferably 0.01 to 20% by mass, preferably 0.3 to 20% by mass, based on the total solid content of the composition for forming an optically anisotropic layer. 10% by mass is more preferable.
  • the composition for forming an optically anisotropic layer may contain a polymerizable monomer.
  • the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Of these, a polyfunctional radically polymerizable monomer is preferable.
  • a monomer copolymerizable with the above-mentioned liquid crystal compound having a polymerizable group is preferable.
  • the polymerizable monomer described in paragraphs [0018] to [0020] in JP-A-2002-296423 can be mentioned.
  • the content of the polymerizable monomer in the composition for forming an optically anisotropic layer is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, based on the total mass of the liquid crystal compound.
  • the composition for forming an optically anisotropic layer may contain various orientation control agents such as a vertical alignment agent and a horizontal alignment agent. These orientation control agents are compounds that can control the orientation of the liquid crystal compound horizontally or vertically on the interface side.
  • the method for producing the optically anisotropic layer is not particularly limited, but a composition for forming an optically anisotropic layer is applied onto a substituent to form a coating film, and the coating film is subjected to an orientation treatment to obtain a second liquid crystal compound.
  • a method of forming an optically anisotropic layer by aligning and subjecting the obtained coating film to a curing treatment (ultraviolet irradiation (light irradiation treatment) or heat treatment) is preferable.
  • a polarizing plate in which the polarizing element and the optically anisotropic layer are arranged adjacent to each other is manufactured.
  • the method for applying the composition for forming an optically anisotropic layer is not particularly limited, and examples thereof include the methods exemplified as the method for applying the composition for forming a polarizing element described above.
  • the treatment for orienting the second liquid crystal compound examples include a treatment for drying the coating film at room temperature and a treatment for heating the coating film.
  • the liquid crystal phase formed by the orientation treatment can generally be transferred by a change in temperature or pressure.
  • a lyotropic liquid crystal compound it can also be transferred by a composition ratio such as the amount of solvent.
  • the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 40 to 250 ° C, more preferably 50 to 150 ° C, and the heating time is preferably 10 seconds to 10 minutes. Further, after heating the coating film, the coating film may be cooled, if necessary, before the curing treatment (light irradiation treatment) described later.
  • the cooling temperature is preferably 20 to 200 ° C, more preferably 30 to 150 ° C.
  • the coating film on which the second liquid crystal compound is oriented is subjected to a curing treatment.
  • the method of curing treatment performed on the coating film to which the second liquid crystal compound is oriented is not particularly limited, and examples thereof include light irradiation treatment and heat treatment. Among them, the light irradiation treatment is preferable, and the ultraviolet irradiation treatment is more preferable from the viewpoint of manufacturing suitability.
  • the irradiation conditions of the light irradiation treatment are not particularly limited, but an irradiation amount of 50 to 1000 mJ / cm 2 is preferable.
  • the thickness of the optically anisotropic layer is not particularly limited, and is preferably 10 ⁇ m or less, more preferably 0.5 to 8.0 ⁇ m, still more preferably 0.5 to 6.0 ⁇ m from the viewpoint of thinning.
  • the thickness of the optically anisotropic layer is intended to be the average thickness of the optically anisotropic layer. The average thickness is obtained by measuring the thicknesses of any five or more points of the optically anisotropic layer and arithmetically averaging them.
  • the optically anisotropic layer can also be used as a so-called ⁇ / 4 plate or ⁇ / 2 plate by adjusting the in-plane retardation.
  • the ⁇ / 4 plate is a plate having a function of converting linear polarization of a specific wavelength into circular polarization (or circular polarization into linear polarization). More specifically, it is a plate in which the in-plane retardation Re at a predetermined wavelength ⁇ nm is ⁇ / 4 (or an odd multiple thereof).
  • the in-plane retardation (Re (550)) of the ⁇ / 4 plate at a wavelength of 550 nm may have an error of about 25 nm centered on the ideal value (137.5 nm), and may be, for example, 110 to 160 nm. It is preferably 120 to 150 nm, and more preferably 120 to 150 nm.
  • the ⁇ / 2 plate is an optically anisotropic film in which the in-plane retardation Re ( ⁇ ) at a specific wavelength ⁇ nm satisfies Re ( ⁇ ) ⁇ / 2. This equation may be achieved at any wavelength in the visible light region (eg, 550 nm). Above all, it is preferable that the in-plane retardation Re (550) at a wavelength of 550 nm satisfies the following relationship. 210nm ⁇ Re (550) ⁇ 300nm
  • the angle formed by the above-mentioned absorber absorption axis and the in-plane slow phase axis on the surface of the optically anisotropic layer on the polarizing element side is not particularly limited, but is preferably 1 ° or less, and more preferably 0.5 ° or less. ..
  • the lower limit is not particularly limited, but 0 ° can be mentioned.
  • the optically anisotropic layer includes the first optically anisotropic layer and the second optically anisotropic layer, the effect of the present invention is more excellent, that is, the absorption axis of the polarizing element and the second. 1.
  • the angle formed by the in-plane slow-phase axis on the surface of the optically anisotropic layer on the polarizing element side is preferably within the above range.
  • the direction of the absorber absorption axis and the direction of the in-plane slow phase axis of the optically anisotropic layer are measured using Axometrics' Axoscan (polarimeter) device and the company's analysis software.
  • the optically anisotropic layer may be a layer formed by fixing a second liquid crystal compound twist-oriented having a spiral axis in the thickness direction, or a layer formed by fixing a second liquid crystal compound horizontally oriented. May be good. Among them, in that the effect of the present invention is more excellent, it is preferable that the layer is formed by fixing the second liquid crystal compound twist-oriented with the spiral axis in the thickness direction.
  • the twist angle of the second liquid crystal compound is not particularly limited, but is preferably more than 0 ° and less than 360 degrees.
  • the "fixed" state is a state in which the orientation of the liquid crystal compound is maintained. Specifically, the layer has no fluidity in the temperature range of 0 to 50 ° C., usually -30 to 70 ° C. under more severe conditions, and the orientation morphology is changed by an external field or an external force. It is preferable that the state is such that the fixed orientation form can be kept stable.
  • the optically anisotropic layer may be composed of a single layer or may have a plurality of layers. That is, the optically anisotropic layer may have a plurality of layers in which a second liquid crystal compound twist-oriented having a spiral axis in the thickness direction is fixed.
  • the optically anisotropic layer is preferably composed of a plurality of layers having different twist angles of the second liquid crystal compound. It is preferable that the plurality of layers have different twist angles of the second liquid crystal compound. Further, it is preferable that the plurality of layers have different ratios of the twist angle of the second liquid crystal compound to the thickness of the layer (twist angle (°) of the second liquid crystal compound / thickness of the layer ( ⁇ m)).
  • the optically anisotropic layer has a first optically anisotropic layer and a second optically anisotropic layer, which will be described later, can be mentioned. More specifically, as shown in FIG. 3, the polarizing plate 10B has a polarizing element 12 and an optically anisotropic layer 140, and the optically anisotropic layer 140 includes the first optically anisotropic layer 16 and the optically anisotropic layer 140. It has a second optically anisotropic layer 18. In the optically anisotropic layer 140, the first optically anisotropic layer 16 is arranged closer to the polarizing element 12 than the second optically anisotropic layer 18.
  • the splitter 12 is the same as the splitter 12 shown in FIG. 1 described above, and the description thereof will be omitted. In the following, the first optically anisotropic layer 16 and the second optically anisotropic layer 18 will be mainly described in detail.
  • the first optically anisotropic layer is a layer formed by fixing a second liquid crystal compound twist-oriented having a spiral axis in the thickness direction (in the z-axis direction in FIG. 3).
  • the first optically anisotropic layer is preferably a layer in which a chiral nematic phase having a so-called spiral structure is fixed.
  • the meaning of the "fixed" state is as described above.
  • the twist angle of the second liquid crystal compound in the first optically anisotropic layer is 26.5 ⁇ 10.0 °, and 26.5 ⁇ 8.0 ° is more preferable in that the effect of the present invention is more excellent. 26.5 ⁇ 6.0 ° is even more preferable.
  • the twist angle is measured by using the Axoscan (polarimeter) device of Axometrics and the analysis software of Axometrics.
  • the torsional orientation of the second liquid crystal compound means that the second liquid crystal compound from one main surface to the other main surface of the first optically anisotropic layer is oriented with the thickness direction of the first optically anisotropic layer as the axis. Intended to twist.
  • the orientation direction (in-plane slow phase axial direction) of the second liquid crystal compound differs depending on the position in the thickness direction of the first optically anisotropic layer.
  • the right-handed twist is intended to be a right-handed twist (clockwise twist) when observed from the second optically anisotropic layer toward the first optically anisotropic layer.
  • Equation (1) 252 nm ⁇ ⁇ n1 ⁇ d1 ⁇ 312 nm
  • Equation (1A) 262 nm ⁇ ⁇ n1 ⁇ d1 ⁇ 302 nm Equation (1B) 272 nm ⁇ ⁇ n1 ⁇ d1 ⁇ 292 nm
  • the measurement method of ⁇ n1 ⁇ d1 is the same as the method of measuring the twist angle, and the measurement is performed using the Axoscan (polarimeter) device of Axometrics and the analysis software of Axometrics.
  • the second optically anisotropic layer is a layer formed by immobilizing a twist-oriented second rod-shaped liquid crystal compound having a spiral axis in the thickness direction (z-axis direction in FIG. 3). Is.
  • the twist angle of the second liquid crystal compound is 78.6 ⁇ 10.0 °, and 78.6 ⁇ 8.0 ° is more preferable, and 78.6 ⁇ 6.0 ° is more preferable in that the effect of the present invention is more excellent. More preferred.
  • the twisting direction of the second liquid crystal compound in the second optically anisotropic layer is the same as the twisting direction of the second liquid crystal compound in the first optically anisotropic layer described above. For example, if the second liquid crystal compound in the first optically anisotropic layer is twisted to the right, the twisting direction of the second liquid crystal compound in the second optically anisotropic layer is also twisted to the right.
  • Equation (2) 110 nm ⁇ ⁇ n2 ⁇ d2 ⁇ 170 nm
  • Equation (2) 110 nm ⁇ ⁇ n2 ⁇ d2 ⁇ 170 nm
  • the measurement method of ⁇ n2 ⁇ d2 is the same as the method of measuring the twist angle, and the measurement is performed using the Axoscan (polarimeter) device of Axometrics and the analysis software of Axometrics.
  • the definition of parallelism is as described above.
  • the absorption axis of the polarizing element is parallel to the in-plane slow phase axis on the surface of the first optically anisotropic layer on the polarizing film side.
  • the relationship between the absorption axis of the splitter, the in-plane slow phase axis of the first optically anisotropic layer, and the in-plane slow phase axis of the second optically anisotropic layer will be described in more detail with reference to FIG. ..
  • the arrows in the polarizing element 12 in FIG. 4 indicate the absorption axis
  • the arrows in the first optically anisotropic layer 16 and the second optically anisotropic layer 18 indicate the in-plane slow-phase axis in each layer. Further, in FIG.
  • the absorption axis of the polarizing element 12, the in-plane slow phase axis of the first optically anisotropic layer 16, and the second optically anisotropic layer when observed from the white arrow in FIG. 4 are shown.
  • the relationship of the angle of the layer 18 with the in-plane slow phase axis is shown.
  • the rotation angle of the in-plane slow phase axis is a positive value in the counterclockwise direction and a negative value in the clockwise direction with respect to the absorption axis of the polarizing element 12 when observed from the white arrow in FIG. Expressed as a value.
  • the absorption axis of the polarizing element 12 and the in-plane slow phase axis on the surface 16a of the first optically anisotropic layer 16 on the polarizing element 12 side are parallel to each other.
  • the definition of parallelism is as described above.
  • the first optically anisotropic layer 16 is a layer formed by fixing a second liquid crystal compound twist-oriented having a spiral axis in the thickness direction. Therefore, as shown in FIG.
  • the in-plane slow phase axis on the surface 16a of the first optically anisotropic layer 16 on the polarizing element 12 side and the second optically anisotropic layer of the first optically anisotropic layer 16 The in-plane slow phase axis on the surface 16b on the 18 side has the above-mentioned twist angle (26.5 ° in FIG. 4). That is, the in-plane slow phase axis of the first optically anisotropic layer 16 rotates by ⁇ 26.5 ° (clockwise 26.5 °). Therefore, the angle ⁇ 2 formed by the absorption axis of the polarizing element 12 and the in-plane slow phase axis on the surface 16b of the first optically anisotropic layer 16 is 26.5 °.
  • the in-plane slow phase axis on the surface 16b of the first optically anisotropic layer 16 is clockwise with respect to the in-plane slow phase axis on the surface 16a of the first optically anisotropic layer 16.
  • the mode of rotation by 26.5 ° is shown, but the mode is not limited to this mode, and the rotation angle may be clockwise in the range of 26.5 ⁇ 10 °.
  • the in-plane slow phase axis on the surface 16b of the first optically anisotropic layer 16 on the side of the second optically anisotropic layer 18 and the first optically anisotropic layer 18 of the second optically anisotropic layer 18 are shown. It is parallel to the in-plane slow phase axis on the surface 18a on the layer 16 side. That is, the angle ⁇ 3 formed by the absorption axis of the polarizing element 12 and the in-plane slow phase axis on the surface 18a on the surface 18a of the second optically anisotropic layer 18 on the first optically anisotropic layer 16 side is substantially the same as the above angle ⁇ 2b. Is.
  • the second optically anisotropic layer 18 is a layer formed by immobilizing a twist-oriented liquid crystal compound having a spiral axis in the thickness direction. Therefore, as shown in FIG. 4, the in-plane slow phase axis on the surface 18a of the second optically anisotropic layer 18 on the side of the first optically anisotropic layer 16 and the first of the second optically anisotropic layer 18 The in-plane slow phase axis on the surface 18b opposite to the optically anisotropic layer 16 side has the above-mentioned twist angle (78.6 ° in FIG. 4).
  • the in-plane slow phase axis of the second optically anisotropic layer 18 rotates by ⁇ 78.6 ° (clockwise 78.6 °). Therefore, the angle ⁇ 4 formed by the absorption axis of the polarizing element 12 and the in-plane slow phase axis on the surface 18b of the second optically anisotropic layer 18 is 105.1 °.
  • the in-plane slow phase axis on the surface 18b of the second optically anisotropic layer 18 is clockwise with respect to the in-plane slow phase axis on the surface 18a of the second optically anisotropic layer 18.
  • the mode of rotation by 78.6 ° is shown, but the mode is not limited to this mode, and the rotation angle may be in the range of ⁇ 78.6 ⁇ 10 ° in the clockwise direction.
  • the twisting directions of the second liquid crystal compound in the first optically anisotropic layer 16 and the second optically anisotropic layer 18 are both relative to the absorption axis of the polarizing element 12. Indicates clockwise (right twist). In FIG. 4, the mode in which the twisting direction is clockwise (clockwise twisting) has been described in detail, but the twisting direction of the second liquid crystal compound in the first optically anisotropic layer 16 and the second optically anisotropic layer 18 is Both may be in a counterclockwise manner.
  • the method for producing a preferred embodiment of the optically anisotropic layer including the first optically anisotropic layer and the second optically anisotropic layer is not particularly limited, but the following steps 1 to 5 may be carried out.
  • an optically anisotropic layer including a first optically anisotropic layer and a second optically anisotropic layer can be produced in one coating step.
  • Step 1 A chiral agent containing at least a photosensitive chiral agent whose spiral inducing force is changed by light irradiation, and a liquid crystal compound having a polymerizable group (hereinafter, also simply referred to as "liquid crystal compound" in the description of steps 1 to 5).
  • Step 2 The composition layer is heat-treated to change the liquid crystal compound in the composition layer in the thickness direction.
  • Step 3 After step 2, the composition layer is irradiated with light under the condition of an oxygen concentration of 1% by volume or more.
  • Step 4 After step 3.
  • Step 5 of heat-treating the composition layer After step 4, the composition layer is cured to fix the orientation of the liquid crystal compound, and the first optically anisotropic layer and the second optical are fixed.
  • Step 1 a chiral agent containing at least a photosensitive chiral agent whose spiral-inducing force is changed by light irradiation and a polymerizable liquid crystal composition containing a liquid crystal compound having a polymerizable group are applied onto a polarizing element to form a composition. This is the process of forming a layer. By carrying out this step, a composition layer to be subjected to a light irradiation treatment described later is formed. Examples of the various components contained in the polymerizable liquid crystal composition include components that can be contained in the above-mentioned composition for forming an optically anisotropic layer, and the photosensitive chiral agents not described above will be described in detail below. ..
  • the spiral-inducing force (HTP) of the chiral agent is a factor indicating the spiral orientation ability represented by the following formula (X).
  • Formula (X) HTP 1 / (length of spiral pitch (unit: ⁇ m) ⁇ concentration of chiral agent to liquid crystal compound (mass%)) [ ⁇ m -1 ]
  • the photosensitive chiral agent whose spiral-inducing force changes by light irradiation may be liquid crystal or non-liquid crystal.
  • the chiral agent A generally contains an asymmetric carbon atom in many cases.
  • the chiral agent A may be an axial asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom.
  • the chiral agent A may have a polymerizable group.
  • the chiral agent A may be a chiral agent whose spiral-inducing force is increased by light irradiation, or may be a chiral agent whose spiral-inducing force is decreased. Of these, a chiral agent whose spiral-inducing force is reduced by light irradiation is preferable.
  • "increase and decrease of spiral-inducing force” means increase / decrease when the initial spiral direction (before light irradiation) of chiral agent A is "positive".
  • Examples of the chiral agent A include so-called photoreactive chiral agents.
  • the photoreactive chiral agent is a compound having a chiral portion and a photoreactive portion whose structure is changed by light irradiation, and for example, a compound that greatly changes the torsional force of the liquid crystal compound according to the irradiation amount.
  • the chiral agent A is preferably a compound having at least a photoisomerization site, and more preferably the photoisomerization site has a photoisomerizable double bond.
  • the photoisomerization site having a photoisomerizable double bond is a stilbene site, a chalcone site, an azobenzene site or a stilbene site in that photoisomerization is likely to occur and the difference in spiral induced force before and after light irradiation is large.
  • a stilbene moiety is preferred, and a cinnamoyle moiety, a chalcone moiety or a stilbene moiety is more preferred in that the absorption of visible light is small.
  • the photoisomerization site corresponds to the photoreaction site whose structure is changed by the above-mentioned light irradiation.
  • Equation (C) R-L-R R independently represents a group having at least one site selected from the group consisting of a cinnamoyl site, a chalcone site, an azobenzene site, and a stilbene site.
  • L is a divalent linking group formed by removing two hydrogen atoms from the structure represented by the formula (D) (a divalent link formed by removing two hydrogen atoms from the above binaphthyl partial structure).
  • Group a divalent linking group represented by the formula (E) (a divalent linking group composed of the isosorbide partial structure), or a divalent linking group represented by the formula (F) (the isomannide partial structure).
  • * represents the bonding position.
  • step 1 at least the above-mentioned chiral agent A is used.
  • the step 1 may be an embodiment in which two or more kinds of chiral agents A are used, or a chiral agent whose spiral inducing force does not change by irradiation with at least one kind of chiral agent A and at least one kind of light (hereinafter, simply "chiral agent”). B ”) may be used.
  • the chiral agent B may be liquid crystal or non-liquid crystal.
  • the chiral agent B generally contains an asymmetric carbon atom in many cases.
  • the chiral agent B may be an axial asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom.
  • the chiral agent B may have a polymerizable group.
  • the chiral agent B a known chiral agent can be used.
  • the chiral agent B is preferably a chiral agent that induces a spiral in the opposite direction to the above-mentioned chiral agent A. That is, for example, when the spiral induced by the chiral agent A is in the right direction, the helix induced by the chiral agent B is in the left direction.
  • the content of the chiral agent A in the composition layer is not particularly limited, but is preferably 5.0% by mass or less, preferably 3.0% by mass or less, based on the total mass of the liquid crystal compound in that the liquid crystal compound is easily oriented uniformly. It is more preferably 0% by mass or less, further preferably 2.0% by mass or less, particularly preferably less than 1.0% by mass, particularly preferably 0.8% by mass or less, and most preferably 0.5% by mass or less.
  • the lower limit is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.05% by mass or more.
  • the chiral auxiliary A may be used alone or in combination of two or more. When two or more of the above chiral agents A are used in combination, the total content is preferably within the above range.
  • the content of the chiral agent B in the composition layer is not particularly limited, but is preferably 5.0% by mass or less, preferably 3.0% by mass or less, based on the total mass of the liquid crystal compound in that the liquid crystal compound is easily oriented uniformly. It is more preferably 0% by mass or less, further preferably 2.0% by mass or less, particularly preferably less than 1.0% by mass, particularly preferably 0.8% by mass or less, and most preferably 0.5% by mass or less.
  • the lower limit is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.05% by mass or more.
  • the chiral auxiliary B may be used alone or in combination of two or more. When two or more kinds of the chiral auxiliary B are used in combination, the total content is preferably within the above range.
  • the total content of the chiral auxiliary (total content of all chiral agents) in the composition layer is preferably 5.0% by mass or less, more preferably 4.0% by mass or less, based on the total mass of the liquid crystal compound. , 2.0% by mass or less is more preferable, and 1.0% by mass or less is particularly preferable.
  • the lower limit is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.05% by mass or more.
  • the method of applying the polymerizable liquid crystal composition to form the composition layer is not particularly limited, and examples thereof include the method of applying the above-mentioned polarizing element forming composition.
  • the film thickness of the composition layer is not particularly limited, but is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 15 ⁇ m, and even more preferably 0.5 to 10 ⁇ m.
  • Step 2 is a step of heat-treating the composition layer and heat-treating the composition layer to twist-orient the polymerizable liquid crystal compound in the composition layer along a spiral axis extending along the thickness direction.
  • the optimum conditions are selected according to the liquid crystal compound used. Among them, the heating temperature is often 10 to 250 ° C, more often 40 to 150 ° C, and even more often 50 to 130 ° C.
  • the heating time is often 0.1 to 60 minutes, and more often 0.2 to 5 minutes.
  • the absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer formed in step 1 is preferably more than 0 ⁇ m -1 and more preferably more than 0 ⁇ m -1 and 1.9 ⁇ m -1 or less. , 0 ⁇ m -1 more than 1.5 ⁇ m -1 or less, and 0.00 ⁇ m -1 more than 1.0 ⁇ m -1 or less is particularly preferable.
  • the weighted average spiral-inducing force of the chiral agent is the spiral-inducing force of each chiral agent and the composition of each chiral agent when two or more kinds of chiral agents are contained in the composition layer. It represents the total value of the product of the concentration (% by mass) in the material layer divided by the total concentration (% by mass) of the chiral auxiliary in the composition layer. For example, when two kinds of chiral agents (chiral agent X and chiral agent Y) are used in combination, it is represented by the following formula (Y).
  • the spiral-inducing force is a positive value.
  • the spiral-inducing force is a negative value. That is, for example, in the case of a chiral agent having a spiral induced force of 10 ⁇ m -1 , when the spiral direction of the spiral induced by the chiral agent is right-handed, the spiral induced force is expressed as 10 ⁇ m -1 . On the other hand, when the spiral direction of the spiral induced by the chiral agent is left-handed, the spiral-induced force is expressed as -10 ⁇ m -1 .
  • FIG. 6 is a schematic cross-sectional view of the polarizing element 12 and the composition layer 20.
  • the composition layer 20 shown in FIG. 6 contains a chiral agent A and a chiral agent B, the concentration of the chiral agent B is higher than that of the chiral agent A, and the spiral direction induced by the chiral agent A is left-handed.
  • Step 3 is a step of irradiating the composition layer with light in the presence of oxygen after the step 2.
  • the mechanism of this process will be described with reference to the drawings.
  • FIG. 7 in the above-mentioned step 2, under the condition that the oxygen concentration is 1% by volume or more, from the direction opposite to the composition layer 20 side of the polarizing element 12 (the direction of the white arrow in FIG. 7). Irradiate with light.
  • the light irradiation is carried out from the polarizing element 12 side in FIG. 7, it may be carried out from the composition layer 20 side.
  • the surface of the second region 20B is on the air side.
  • the oxygen concentration in the second region 20B is high, and the oxygen concentration in the first region 20A is low. Therefore, when the composition layer 20 is irradiated with light, the polymerization of the liquid crystal compound easily proceeds in the first region 20A, and the orientation state of the liquid crystal compound is fixed.
  • the chiral agent A is also present in the first region 20A, and the chiral agent A is also exposed to light, and the spiral inducing force changes.
  • the orientation state of the liquid crystal compound remains. No change occurs.
  • the oxygen concentration is high in the second region 20B, even if light irradiation is performed, the polymerization of the liquid crystal compound is inhibited by the oxygen, and the polymerization is difficult to proceed.
  • the chiral agent A is also present in the second region 20B, the chiral agent A is exposed to light and the spiral inducing force changes. Therefore, when step 4 (heat treatment) described later is carried out, the orientation state of the liquid crystal compound changes along the changed spiral-inducing force.
  • step 3 the fixation of the orientation state of the liquid crystal compound is likely to proceed in the region on the ligand side of the composition layer. Further, in the region on the side opposite to the polarizing element side of the composition layer, the solidification of the oriented state of the liquid crystal compound is difficult to proceed, and the spiral-inducing force changes depending on the exposed chiral agent A.
  • Step 3 is carried out under the condition that the oxygen concentration is 1% by volume or more.
  • the oxygen concentration is preferably 2% by volume or more, more preferably 5% by volume or more, in that regions having different orientation states of the liquid crystal compounds are likely to be formed in the optically anisotropic layer.
  • the upper limit is not particularly limited, but 100% by volume can be mentioned.
  • the irradiation intensity of the light irradiation in the step 3 is not particularly limited and can be appropriately determined based on the spiral-inducing force of the chiral agent A.
  • the irradiation amount of the light irradiation in the step 3 is not particularly limited, but is preferably 300 mJ / cm 2 or less, and more preferably 200 mJ / cm 2 or less in that a predetermined optically anisotropic layer is easily formed. As the lower limit, 5 mJ / cm 2 or more is preferable, and 10 mJ / cm 2 or more is more preferable, because a predetermined optically anisotropic layer is easily formed.
  • the light irradiation in step 3 is preferably carried out at 15 to 70 ° C. (preferably 15 to 50 ° C.).
  • the light used for light irradiation may be any light that is exposed to the chiral agent A. That is, the light used for light irradiation is not particularly limited as long as it is an active ray or radiation that changes the spiral-inducing force of the chiral agent A. Examples include ultraviolet rays, X-rays, ultraviolet rays, and electron beams. Of these, ultraviolet rays are preferable.
  • Step 4 is a step of heat-treating the composition layer after the step 3.
  • the orientation state of the liquid crystal compound changes in the region where the spiral-inducing force of the chiral agent A in the composition layer irradiated with light changes.
  • the orientation state of the liquid crystal compound is fixed in the first region 20A, whereas the liquid crystal compound is fixed in the second region 20B.
  • the polymerization of the liquid crystal compound is difficult to proceed, and the orientation state of the liquid crystal compound is not fixed.
  • the spiral-inducing force of the chiral agent A changes.
  • the force for twisting the liquid crystal compound changes in the second region 20B as compared with the state before light irradiation. This point will be described in more detail.
  • the chiral agent A and the chiral agent B are present in the composition layer 20 shown in FIG. 6, the concentration of the chiral agent B is higher than that of the chiral agent A, and the spiral induced by the chiral agent A.
  • the direction is left-handed and the spiral direction induced by the chiral agent B is right-handed.
  • the absolute value of the spiral-inducing force of the chiral agent A and the absolute value of the spiral-inducing force of the chiral agent B are the same. Therefore, the weighted average spiral inducing force of the chiral agent in the composition layer before light irradiation shows a positive value.
  • the vertical axis represents “the spiral-inducing force of the chiral agent ( ⁇ m -1 ) ⁇ the concentration of the chiral agent (mass%)”, and the farther the value is from zero, the larger the spiral-inducing force.
  • the horizontal axis represents "light irradiation amount (mJ / cm 2 )”.
  • the relationship between the chiral agent A and the chiral agent B in the composition layer before light irradiation corresponds to the time when the light irradiation amount is 0, and "the spiral inducing force of the chiral agent A ( ⁇ m -1 ) ⁇ " Comparing the absolute value of "concentration of chiral agent A (mass%)" with the absolute value of "spiral-inducing force of chiral agent B ( ⁇ m -1 ) x concentration of chiral agent B (mass%)", "chiral agent”
  • the spiral-inducing force of B ( ⁇ m -1 ) ⁇ the concentration of chiral agent B (% by mass) ” is larger.
  • the spiral-inducing force that induces the spiral of the liquid crystal compound the larger the irradiation dose, the larger the spiral-inducing force in the direction (+) of the spiral induced by the chiral agent B. Therefore, when the composition layer 20 after the step 3 in which such a change in the weighted average spiral inducing force is generated is heat-treated to promote the reorientation of the liquid crystal compound, as shown in FIG. In the two regions 20B, the twist angle of the liquid crystal compound LC increases along the spiral axis extending along the thickness direction of the composition layer 20.
  • the polymerization of the liquid crystal compound proceeds during step 3 and the orientation state of the liquid crystal compound is fixed, so that the reorientation of the liquid crystal compound is not possible. Does not progress.
  • a plurality of regions having different orientation states of the liquid crystal compounds are formed along the thickness direction of the composition layer.
  • the degree of twist of the liquid crystal compound LC can be appropriately adjusted depending on the type of chiral agent A used, the exposure amount in step 3, and the like, and a predetermined twist angle can be realized.
  • a chiral agent whose spiral-inducing force is reduced by light irradiation is used as the chiral agent A
  • the present invention is not limited to this embodiment.
  • a chiral agent whose spiral-inducing force is increased by light irradiation may be used as the chiral agent A.
  • the spiral-inducing force induced by the chiral agent A increases due to light irradiation, and the liquid crystal compound is twisted or oriented in the swirling direction induced by the chiral agent A.
  • the mode in which the chiral agent A and the chiral agent B are used in combination has been described, but the mode is not limited to this mode.
  • the chiral agent A1 that induces left-handed winding and the chiral agent A2 that induces right-handed winding may be used in combination.
  • the chiral agents A1 and A2 may be chiral agents whose spiral-inducing force increases or may be chiral agents whose spiral-inducing force decreases, respectively.
  • a chiral agent that induces left-handed winding and whose spiral-inducing force increases by light irradiation and a chiral agent that induces right-handed winding and whose spiral-inducing force decreases by light irradiation are used in combination. You may.
  • the optimum conditions are selected according to the liquid crystal compound used.
  • the heating temperature is preferably a temperature for heating from the state of step 3, in many cases of 35 to 250 ° C, more often in the case of 50 to 150 ° C, and in the case of more than 50 ° C and 150 ° C or less. Even more, especially at 60-130 ° C.
  • the heating time is often 0.01 to 60 minutes, and more often 0.03 to 5 minutes.
  • the absolute value of the weighted average spiral-inducing force of the chiral agent in the composition layer after light irradiation is not particularly limited, but the weighted average spiral-inducing force of the chiral agent in the composition layer after light irradiation and before light irradiation.
  • the absolute value of the difference from the weighted average spiral inducing force is preferably 0.05 ⁇ m -1 or more, more preferably 0.05 to 10.0 ⁇ m -1 , and even more preferably 0.1 to 10.0 ⁇ m -1 .
  • Step 5 is a step of performing a curing treatment on the composition layer after the step 4 to fix the orientation state of the liquid crystal compound and to form the first optically anisotropic layer and the second optically anisotropic layer. be.
  • the orientation state of the liquid crystal compound in the composition layer is fixed, and as a result, a predetermined optically anisotropic layer is formed.
  • the method of the curing treatment is not particularly limited, and examples thereof include a photo-curing treatment and a thermosetting treatment. Among them, the light irradiation treatment is preferable, and the ultraviolet irradiation treatment is more preferable.
  • a light source such as an ultraviolet lamp is used for ultraviolet irradiation.
  • the irradiation amount of light (for example, ultraviolet rays) is not particularly limited, but is generally preferably about 100 to 800 mJ / cm 2 .
  • the polarizing plate of the present invention may have members other than the above-mentioned polarizing element and the optically anisotropic layer.
  • the polarizing plate may have a support.
  • the support is included as an object to be coated to which the composition for forming a polarizing element is applied, and may be included in the polarizing plate as it is.
  • the transparent support is intended to be a support having a visible light transmittance of 60% or more, and the transmittance is preferably 80% or more, more preferably 90% or more.
  • the support may be a long support (long support).
  • the length of the long support in the longitudinal direction is not particularly limited, but a support of 10 m or more is preferable, and 100 m or more is preferable from the viewpoint of productivity.
  • the length in the longitudinal direction is not particularly limited, and is often 10,000 m or less.
  • the width of the long support is not particularly limited, but is often 150 to 3000 mm, preferably 300 to 2000 mm.
  • the support may contain various additives (eg, optical anisotropy adjuster, wavelength dispersion adjuster, fine particles, plasticizer, UV inhibitor, deterioration inhibitor, and release agent). ..
  • the support is subjected to surface treatment (eg, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, and flame treatment) on the surface of the support in order to improve the adhesion to the layer provided on the support. May be good. Further, an adhesive layer (undercoat layer) may be provided on the support.
  • the support may be a so-called temporary support.
  • the surface of the support may be directly subjected to the rubbing treatment. That is, a support that has been subjected to a rubbing treatment may be used.
  • the direction of the rubbing treatment is not particularly limited, and the optimum direction is appropriately selected according to the direction in which the liquid crystal compound is desired to be oriented.
  • a processing method widely adopted as a liquid crystal alignment processing step of an LCD (liquid crystal display) can be applied. That is, a method of obtaining orientation by rubbing the surface of the support with paper, gauze, felt, rubber, nylon fiber, polyester fiber, or the like in a certain direction can be used.
  • the support may have an orientation layer on its surface.
  • the polarizing plate may have a surface protective layer.
  • the surface protective layer is preferably arranged on the most visible side.
  • the material constituting the surface protective layer is not particularly limited, and may be an inorganic substance or an organic substance.
  • the surface protective layer include a glass substrate and a polymer film such as polyimide and cellulose acylate.
  • the surface layer of the surface protective layer may include one layer or a plurality of layers selected from a surface hardened layer (hard coat layer), a low reflection layer that suppresses surface reflection generated at the air interface, and the like.
  • the composition for forming a polarizing element may be directly applied to the surface of the surface protective layer opposite to the visible side to form a polarizing element.
  • the thickness of the surface protective layer is not particularly limited, but is preferably 800 ⁇ m or less, more preferably 100 ⁇ m or less, from the viewpoint of thinning.
  • the lower limit is not particularly limited, but is preferably 0.1 ⁇ m or more.
  • a glass substrate having a thickness of 100 ⁇ m or less that can be bent is preferable because it makes it possible to take advantage of the flexible characteristics of the organic EL display device.
  • a (meth) acrylic resin, a polyester resin such as polyethylene terephthalate (PET), and a cellulose such as triacetyl cellulose (TAC) are used as a protective film from the viewpoint of impact resistance.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • the organic EL display device of the present invention has the above-mentioned polarizing plate.
  • the polarizing plate of the present invention can be suitably applied as a circular polarizing plate.
  • the polarizing plate is provided on the organic EL display panel (organic EL display element) of the organic EL display device.
  • the polarizing element is arranged on the visual recognition side.
  • the organic EL display panel is a member in which a plurality of organic compound thin films including a light emitting layer or a light emitting layer are formed between a pair of electrodes of an anode and a cathode, and is a hole injection layer, a hole transport layer, and an electron injection in addition to the light emitting layer. It may have a layer, an electron transport layer, a protective layer, and the like, and each of these layers may have other functions. Various materials can be used to form each layer.
  • Example 1 (Making a transparent support) The following composition was put into a mixing tank and stirred to prepare a cellulose acetate solution to be used as a core layer cellulose acylate dope.
  • Core layer Cellulose acylate dope ⁇ 100 parts by mass of cellulose acetate having an acetyl substitution degree of 2.88 ⁇ 12 parts by mass of the polyester compound B described in Examples of JP-A-2015-227955 ⁇ 2 parts by mass of the following compound F ⁇ Methylene chloride (first solvent) 430 Parts by mass / methanol (second solvent) 64 parts by mass ⁇
  • the core layer cellulose acylate dope and the outer layer cellulose acylate dope After filtering the core layer cellulose acylate dope and the outer layer cellulose acylate dope with a filter paper having an average pore diameter of 34 ⁇ m and a sintered metal filter having an average pore diameter of 10 ⁇ m, the core layer cellulose acylate dope and the outer layer cellulose acylate dope on both sides thereof. And three layers were simultaneously cast on a drum at 20 ° C. from the casting port (band spreading machine). Next, the film on the drum was peeled off with the solvent content in the film being approximately 20% by mass, both ends in the width direction of the film were fixed with tenter clips, and the film was stretched laterally at a stretching ratio of 1.1 times. It was dry while doing. Then, the obtained film was further dried by transporting it between the rolls of the heat treatment apparatus to prepare a transparent support having a thickness of 40 ⁇ m, which was used as a cellulose acylate film A1.
  • Formation of photoalignment film B1 The composition for forming a photoalignment film, which will be described later, was continuously applied onto the cellulose acylate film A1 with a wire bar.
  • the support on which the coating film was formed was dried with warm air at 140 ° C. for 120 seconds, and then the coating film was irradiated with polarized ultraviolet rays (10 mJ / cm 2 , using an ultrahigh pressure mercury lamp) to obtain a photoalignment film.
  • a TAC (triacetyl cellulose) film with a photoalignment film was obtained.
  • the film thickness of the photoalignment film was 0.25 ⁇ m.
  • Polymer PA-1 (In the formula, the numerical value described in each repeating unit represents the content (mass%) of each repeating unit with respect to all repeating units.)
  • the composition for forming a polarizing element having the following composition was continuously applied on the obtained photoalignment film with a wire bar to form a coating film.
  • the coating was then heated at 140 ° C. for 15 seconds and cooled to room temperature (23 ° C.).
  • the coating was then heated at 75 ° C. for 60 seconds and cooled again to room temperature.
  • a splitter was produced on the photoalignment film. ..
  • the transmittance of the polarizing element in the wavelength range of 280 to 780 nm was measured with a spectrophotometer, the average visible light transmittance was 42%.
  • the absorption axis of the splitter was orthogonal to the width direction of the cellulose acylate film A1.
  • Liquid crystal compound (L-1) (in the formula, the numerical values ("59", “15”, “26") described in each repeating unit represent the content (mass%) of each repeating unit with respect to all repeating units).
  • Surfactant (F-1) (In the formula, the numerical value described in each repeating unit represents the content (mass%) of each repeating unit with respect to all repeating units).
  • composition for forming an optically anisotropic layer containing a rod-shaped liquid crystal compound having the following composition was applied onto the prepared polarizing element, and the obtained composition layer was heated at 60 ° C. for 100 seconds.
  • the absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer was 0.03 ⁇ m -1 .
  • the composition layer was irradiated with the light of a 365 nm LED lamp (manufactured by Acroedge Co., Ltd.) having an irradiation amount of 52 mJ / cm 2 at 40 ° C. under air (oxygen concentration: about 20% by volume).
  • the orientation of the liquid crystal compound was fixed in about half of the region on the polarizing element side. Further, the obtained composition layer was heated at 60 ° C. for 30 seconds. Then, by irradiating the composition layer with light (irradiation amount 500 mJ / cm 2 ) of a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 55 ° C. under a nitrogen atmosphere, the composition layer is halved on the air side in the coating film. The liquid crystal compound in the region of No. 1 was immobilized to form an optically anisotropic layer (thickness: 3.0 ⁇ m), and a circular polarizing plate 1 was produced.
  • a metal halide lamp manufactured by Eye Graphics Co., Ltd.
  • the optically anisotropic layer is composed of two layers exhibiting different optical anisotropies, and the layer on the substituent side (first optically anisotropic layer) in the optically anisotropic layer has a spiral axis in the thickness direction. It is a layer formed by immobilizing a rod-shaped liquid crystal compound twist-oriented, and the molecular axis of the liquid crystal compound in the layer is horizontal with respect to the surface of the optically anisotropic layer, and the ⁇ nd of this layer is 282 nm, which is in-plane.
  • the air-side layer (second optically anisotropic layer) in the optically anisotropic layer is a layer formed by fixing a rod-shaped liquid crystal compound twisted and oriented with the thickness direction as a spiral axis, and is a layer of the liquid crystal compound in the layer.
  • the above angle represents the counterclockwise direction as a positive value with respect to the absorption axis of the substituent (0 °) when the optically anisotropic layer is observed from the substituent side.
  • Polymer (A) (In the formula, the numerical value described in each repeating unit represents the content (mass%) of each repeating unit with respect to all repeating units).
  • Polymer (B) (In the formula, the numerical value described in each repeating unit represents the content (mass%) of each repeating unit with respect to all repeating units).
  • an acrylate-based polymer was prepared according to the following procedure. Butyl acrylate (95 parts by mass) and acrylic acid (5 parts by mass) are polymerized by a solution polymerization method in a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer and a stirrer, and the average molecular weight is 2 million. , An acrylate-based polymer (S1) having a molecular weight distribution (Mw / Mn) of 3.0 was obtained.
  • Adhesive layer forming composition ⁇ 100 parts by mass of the acrylate-based polymer (S1) ⁇ 11.1 parts by mass of the following (A) polyfunctional acrylate-based monomer ⁇ 1.1 parts by mass of the following (B) photopolymerization initiator ⁇
  • B Photopolymerization Initiator: A mixture of benzophenone and 1-hydroxycyclohexylphenylketone in a mass ratio of 1: 1, "Irgacure 500" manufactured by Ciba Specialty Chemicals.
  • (C) Isocyanate-based cross-linking agent Trimethylolpropane-modified tolylene diisocyanate (“Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd.)
  • This pressure-sensitive adhesive layer forming composition was applied to a separate film surface-treated with a silicone-based release agent using a die coater, and the obtained coating film was dried in an environment of 90 ° C. for 1 minute. Next, the obtained coating film was irradiated with ultraviolet rays (UV) under the following conditions to obtain a pressure-sensitive adhesive layer.
  • the thickness of the pressure-sensitive adhesive layer was 15 ⁇ m.
  • -UV irradiation conditions- ⁇ Fusion electrodeless lamp H bulb ⁇ Illuminance 600mW / cm 2 , light intensity 150mJ / cm 2 -UV illuminance and light intensity were measured using "UVPF-36" manufactured by Eye Graphics.
  • the cellulose acylate film A1 of the circular polarizing plate 1 is peeled off, and the support side of the low-reflection surface film CV-LC5 (manufactured by FUJIFILM Corporation) is attached to the peeled surface using the adhesive layer prepared above. Then, an organic EL display device was manufactured.
  • Table 1 shows the amounts of the dichroic substances Dye-Y1, Dye-M1, Dye-C1, the liquid crystal compound (L-1), and the rod-shaped liquid crystal compound (L-2) used in the composition for forming a polarizing element.
  • Circularly polarizing plates 2 to 4 and circularly polarizing plates C4 were produced in the same manner as in Example 1 except that the amount was changed to the mass part of the addition amount, and an organic EL display device was further produced.
  • Examples 5 to 6 As shown in Table 1, the rod-shaped liquid crystal compound (L-2) was changed to a rod-shaped liquid crystal compound (L-3) or a rod-shaped liquid crystal compound (L-4), except that the circular polarizing plate was changed in the same manner as in Example 2. 5 to 6 were produced, and an organic EL display device was further produced.
  • the rod-shaped liquid crystal compound (L-3) shown in Table 1 described later has the following structure.
  • rod-shaped liquid crystal compound (L-4) shown in Table 1 described later has the following structure.
  • a circular polarizing plate 7 was produced in the same manner as in Example 1 except that the support to which the composition for forming a polarizing element was applied was changed to the low-reflection surface film CV-LC5 (manufactured by Fujifilm Corporation). Further, the support to which the composition for forming a polarizing element is applied uses an adhesive layer prepared by using an AR film (Dexerials, AR100; 91 ⁇ m) and a 50 ⁇ m thick glass substrate (SHOTT, D263) as described above.
  • a circularly polarizing plate 8 was produced by the same method as in Example 1 except that the glass with an AR film (AR glass 1) was bonded.
  • Examples 9 to 11> Except for changing the support to which the composition for forming a polarizing element is applied to a commercially available Cosmoshine SRF (thickness 80 ⁇ m), a commercially available cycloolefin film, or Zeonoa ZB12 (thickness 50 ⁇ m) (manufactured by Zeon Corporation). , Circular polarizing plates 9 to 11 were produced in the same manner as in Example 1.
  • the support side of the low-reflection surface film CV-LC5 (manufactured by FUJIFILM Corporation) or the glass side of AR glass 1 is bonded.
  • An organic EL display device was manufactured.
  • ⁇ Comparative Example 1> (Preparation of Cellulose Achillate Film A2) The following components to be cellulose acylate doping were put into a mixing tank, stirred, and the obtained composition was heated at 90 ° C. for 10 minutes. Then, the obtained composition was filtered through a filter paper having an average pore diameter of 34 ⁇ m and a sintered metal filter having an average pore diameter of 10 ⁇ m to prepare a dope.
  • the solid content concentration of the dope is 23.5% by mass
  • the amount of the plasticizer added is the ratio to the cellulose acylate
  • Cellulose acylate dope ⁇ Cellulose acylate (acetyl substitution degree 2.86, viscosity average polymerization degree 310) 100 parts by mass sugar ester compound 1 (represented by chemical formula (S4)) 6.0 parts by mass sugar ester compound 2 (represented by chemical formula (S5)) 2.0 parts by mass silica particle dispersion (AEROSIL R972, Nippon Aerosil Co., Ltd.) Made) 0.1 part by mass solvent (methylene chloride / methanol / butanol) ⁇
  • the dope prepared above was cast using a drum film forming machine.
  • the dope was cast from the die so that it was in contact with the metal support cooled to 0 ° C., and then the resulting web (film) was stripped.
  • the drum was made of SUS.
  • the web (film) obtained by casting from the drum After peeling the web (film) obtained by casting from the drum, it is dried in the tenter device for 20 minutes using a tenter device that clips and conveys both ends of the web at 30 to 40 ° C. during film transfer. did. Subsequently, the obtained web was rolled and then dried by zone heating. The resulting web was knurled and then rolled up.
  • the film thickness of the obtained cellulose acylate film was 40 ⁇ m
  • the in-plane retardation Re (550) at a wavelength of 550 nm was 1 nm
  • the thickness direction retardation Rth (550) was 26 nm.
  • the cellulose acylate film A2 produced above was continuously subjected to a rubbing treatment. At this time, the longitudinal direction of the long film and the conveying direction are parallel, and the angle formed by the film longitudinal direction (conveying direction) and the rotation axis of the rubbing roller is 90 °.
  • the cellulose acylate film A2 was coated by the same method as in Example 1 except that the composition for forming the above-mentioned optically anisotropic layer was applied using the above-mentioned rubbing-treated cellulose acylate film A2 as a substrate using a Gieser coating machine. An optically anisotropic layer was formed on the top to prepare an optically anisotropic film.
  • the cellulose acylate film A2 side of the optically anisotropic film was bonded to the polarizing element prepared in Example 1 to prepare a circular polarizing plate C1.
  • the polarizing element and the optically anisotropic layer were bonded to each other via the pressure-sensitive adhesive layer.
  • the cellulose acylate film A1 of the circular polarizing plate C1 is peeled off, and the support side of the low-reflection surface film CV-LC5 (manufactured by FUJIFILM Corporation) is attached to the peeled surface using the adhesive layer prepared above. Then, an organic EL display device was manufactured.
  • UV adhesive S1 was prepared.
  • ⁇ UV adhesive S1 ⁇ ⁇ CEL2021P manufactured by Daicel 70 parts by mass ⁇ 1,4-butanediol diglycidyl ether 20 parts by mass ⁇ 2-ethylhexyl glycidyl ether 10 parts by mass ⁇ CPI-100P 2.25 parts by mass ⁇ ⁇
  • the cellulose acylate film A2 side of the optically anisotropic film produced in Comparative Example 1 was bonded to the polarizing element produced in Example 1, and the obtained laminate was used. It was exposed to an illuminance of 1000 mJ and cured to prepare a circular polarizing plate C2.
  • the polarizing element and the optically anisotropic layer were bonded to each other via a UV adhesive.
  • an organic EL display device was produced according to the same procedure as in Comparative Example 1 except that the circular polarizing plate C2 was used instead of the circular polarizing plate C1.
  • the alignment film coating liquid having the following composition was continuously applied with a wire bar onto the polarizing element prepared in Example 1. Then, the obtained coating film was dried with warm air at 80 ° C. for 5 minutes to obtain a laminate having an alignment film made of polyvinyl alcohol (PVA) having a thickness of 0.5 ⁇ m.
  • the obtained laminate has an alignment film composed of a cellulose acylate film A1 (transparent support), a photoalignment film, a polarizing element, and a PVA adjacent to each other in this order.
  • the surface of the prepared laminate on the alignment film side was continuously subjected to a rubbing treatment.
  • the composition for forming an optically anisotropic layer described above was applied to the laminate using a Gieser coating machine, except that the composition for forming an optically anisotropic layer was applied onto the laminate by the same method as in Example 1.
  • a layer was formed to prepare a circular polarizing plate C3.
  • an organic EL display device was produced according to the same procedure as in Comparative Example 1 except that the circular polarizing plate C3 was used instead of the circular polarizing plate C1.
  • a circular polarizing plate C5 composed of a cellulose acylate film, an alignment film, an optically anisotropic layer, and a polarizing element layer was produced by the method described in Example 17 described in Japanese Patent No. 5753922.
  • ⁇ Durability evaluation> The produced organic EL display device was allowed to elapse for 1000 hours in an environment of 95 ° C. and a relative humidity of less than 10%. After that, the display screen of the obtained organic EL display device was turned black, and the reflected light when the fluorescent lamp was projected from the front was observed. The display performance was evaluated based on the following criteria. The evaluation results are shown in Table 1 below.
  • the column “Concentration of dichroic substance” represents the content (mass%) of the dichroic substance with respect to the total mass of the substituent.
  • the bonding method column in Table 1 the bonding method of the polarizing element and the optically anisotropic layer is shown, and in the “laminated coating", the polarizing element and the optically anisotropic layer are arranged adjacent to each other.
  • a method of applying a composition for forming an optically anisotropic layer on a polarizing element to form an optically anisotropic layer is shown.
  • PSA represents a method of adhering a polarizing element and an optically anisotropic layer via an adhesive layer.
  • UV adhesion refers to a method of bonding a polarizing element and an optically anisotropic layer via a UV adhesive.
  • the "PVA alignment film” represents a method of forming an optically anisotropic layer using the PVA alignment film, and in this form, the PVA alignment film is arranged between the polarizing element and the optically anisotropic layer.
  • Axis deviation (°)” column in Table 1 the absorption axis of the polarizing element and the in-plane slow phase axis of the surface of the optically anisotropic layer on the polarizing element side (in other words, the first optically anisotropic layer) are shown.
  • ⁇ logP in Table 1 represents the absolute value of the difference between the logP of the liquid crystal compound and the logP of the dichroic substance.
  • the “ ⁇ logP” is the smallest of the absolute values of the difference between the logP of each of the three dichroic substances (Dye-Y1, Dye-M1, Dye-C1) and the logP of the second liquid crystal compound. Show things.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、有機EL表示パネルに貼り付けて得られた有機EL表示装置を高温環境下に長時間曝した後においても、正面方向における黒締まりが優れる、偏光板、および、有機EL表示装置を提供する。本発明の偏光板は、第1液晶化合物および二色性物質を含む組成物を用いて形成された偏光子と、偏光子と隣接して配置された、第2液晶化合物を含む組成物を用いて形成された光学異方性層とを有し、偏光子中における二色性物質の含有量が、偏光子全質量に対して、40質量%以下である。

Description

偏光板、有機エレクトロルミネッセンス表示装置
 本発明は、偏光板、および、有機エレクトロルミネッセンス表示装置に関する。
 位相差を有する光学異方性層は、非常に多くの用途に使用されている。例えば、有機エレクトロルミネッセンス(EL)表示装置は、金属電極を用いる構造を有するため、外光を反射し、コントラスト低下および映り込みの問題を生じることがある。そこで、従来から、外光反射による悪影響を抑制するために、光学異方性層と偏光子とを含む偏光板が使用されている。
 特許文献1においては、二色性物質を用いて形成される偏光子に、粘着剤層を介して位相差層(光学異方性層)を貼り合わせた円偏光板が開示されている。
特開2020-023153号公報
 一方、近年、有機EL表示装置においては、画質のより一層の向上のために、正面方向における黒締まりが優れることが求められている。特に、有機EL表示装置を高温環境下にて長時間曝した後においても、正面における黒締まりが優れることが求められている。なお、黒締まりとは、画像表示装置を黒表示した際に、黒色の色味づきが抑制され、かつ、反射光の反射率が低いことを意味する。
 本発明者らは、特許文献1で開示される粘着剤層を介して偏光子と光学異方性層とを貼り合わせてなる円偏光板を作製し、有機EL表示パネルに貼り付けて、得られた有機EL表示装置を高温環境下にて長時間曝した後の性能評価を行ったところ、上記要望を十分には満たしていないことを知見した。
 本発明は、上記実情に鑑みて、有機EL表示パネルに貼り付けて得られた有機EL表示装置を高温環境下に長時間曝した後においても、正面方向における黒締まりが優れる、偏光板を提供することを課題とする。
 また、本発明は、有機EL表示装置も提供することを課題とする。
 本発明者らは、従来技術の問題点について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。
(1) 第1液晶化合物および二色性物質を含む組成物を用いて形成された偏光子と、
 偏光子と隣接して配置された、第2液晶化合物を含む組成物を用いて形成された光学異方性層とを有し、
 偏光子中における二色性物質の含有量が、偏光子全質量に対して、40質量%以下である、偏光板。
(2) 偏光子中における二色性物質の含有量が、偏光子全質量に対して、30質量%以下である、(1)に記載の偏光板。
(3) 偏光子の吸収軸と、光学異方性層の偏光子側の表面における面内遅相軸とのなす角度が、1°以内である、(1)または(2)に記載の偏光板。
(4) 光学異方性層が、厚み方向を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層である、(1)~(3)のいずれかに記載の偏光板。
(5) 光学異方性層が、厚み方向を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層を複数有し、
 複数の層における、第2液晶化合物の捩れ角がそれぞれ異なる、(1)~(4)のいずれかに記載の偏光板。
(6) 光学異方性層が、厚み方向を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層を複数有し、
 複数の層が、それぞれ、層の厚みに対する第2液晶化合物の捩れ角の比が異なる、(1)~(5)のいずれかに記載の偏光板。
(7) 光学異方性層が、第1光学異方性層と、第2光学異方性層とを有し、
 第1光学異方性層が、偏光子側に配置され、
 第1光学異方性層および第2光学異方性層が、厚み方向を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層であり、
 第1光学異方性層中の第2液晶化合物の捩れ方向と第2光学異方性層中の第2液晶化合物の捩れ方向とが同じであり、
 第1光学異方性層中の第2液晶化合物の捩れ角が26.5±10.0°であり、
 第2光学異方性層中の第2液晶化合物の捩れ角が78.6±10.0°であり、
 第1光学異方性層の第2光学異方性層側の表面での面内遅相軸と、第2光学異方性層の第1光学異方性層側の表面での面内遅相軸とは平行であり、
 波長550nmで測定した第1光学異方性層の屈折率異方性Δn1と第1光学異方性層の厚みd1との積Δn1・d1の値と、波長550nmで測定した第2光学異方性層の屈折率異方性Δn2と第2光学異方性層の厚みd2との積Δn2・d2の値とが、それぞれ下記式(1)および式(2)を満たす、(1)~(6)のいずれかに記載の偏光板。
 式(1) 252nm≦Δn1・d1≦312nm
 式(2) 110nm≦Δn2・d2≦170nm
(8) 飛行時間型2次イオン質量分析法で偏光子の深さ方向の成分分析をした際に、二色性物質由来の2次イオン強度の最大強度Imaxと、偏光子の光学異方性層側とは反対側の表面における二色性物質由来の2次イオン強度の強度Isur1との関係が、式(3)を満たす、(1)~(7)のいずれかに記載の偏光板。
 式(3)  2.0≦Imax/Isur1
(9) 第2液晶化合物のlogPと、二色性物質のlogPとの差の絶対値が3.0以上である、(1)~(8)のいずれかに記載の偏光板。
(10) (1)~(9)のいずれかに記載の偏光板を有する、有機エレクトロルミネッセンス表示装置。
 本発明によれば、有機EL表示パネルに貼り付けて得られた有機EL表示装置を高温環境下に長時間曝した後においても、正面方向における黒締まりが優れる、偏光板を提供できる。
 また、本発明によれば、有機EL表示装置も提供できる。
本発明の偏光板の一実施態様の概略断面図である。 飛行時間型2次イオン質量分析法(TOF-SIMS)で偏光板の深さ方向の成分を分析して検出された各成分の2次イオン強度の深さ方向のプロファイルを説明するための概略図である。 本発明の偏光板の好適態様の概略断面図である。 本発明の偏光板の好適態様における、偏光子12の吸収軸と、第1光学異方性層16および第2光学異方性層18のそれぞれの面内遅相軸との関係を示す図である。 図4の矢印の方向から観察した際の偏光子12の吸収軸と、第1光学異方性層16および第2光学異方性層18のそれぞれ面内遅相軸との角度の関係を示す概略図である。 工程1を説明するための組成物層の断面図である。 工程2を説明するための組成物層の断面図である。 キラル剤Aおよびキラル剤Bの各々について、螺旋誘起力(HTP:Helical Twisting Power)(μm-1)×濃度(質量%)と光照射量(mJ/cm2)との関係をプロットしたグラフの模式図である。 キラル剤Aおよびキラル剤Bを併用した系において、加重平均螺旋誘起力(μm-1)と光照射量(mJ/cm2)との関係をプロットしたグラフの模式図である。 工程4を説明するための組成物層の断面図である。
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。まず、本明細書で用いられる用語について説明する。
 面内遅相軸は、特別な断りがなければ、550nmにおける定義である。
 本発明において、Re(λ)およびRth(λ)は各々、波長λにおける面内のレタデーションおよび厚み方向のレタデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本発明において、Re(λ)およびRth(λ)はAxoScan(Axometrics社製)において、波長λで測定した値である。AxoScanにて平均屈折率((nx+ny+nz)/3)と膜厚(d(μm))を入力することにより、
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((nx+ny)/2-nz)×d
が算出される。
 なお、R0(λ)は、AxoScanで算出される数値として表示されるものであるが、Re(λ)を意味している。
 本明細書において、屈折率nx、ny、および、nzは、アッベ屈折計(NAR-4T、アタゴ(株)製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また、波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ(株)製)にて、干渉フィルターとの組み合わせで測定できる。
 また、ポリマーハンドブック(JOHN WILEY&SONS,INC)、および、各種光学フィルムのカタログの値を使用できる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、および、ポリスチレン(1.59)。
 本明細書中における「光」とは、活性光線または放射線を意味し、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光:Extreme Ultraviolet)、X線、紫外線、および、電子線(EB:Electron Beam)などを意味する。なかでも、紫外線が好ましい。
 本明細書では、「可視光」とは、380~780nmの光のことをいう。また、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 また、本明細書において、角度の関係(例えば「直交」、「平行」など)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。具体的には、厳密な角度±10°未満の範囲内であることを意味し、厳密な角度との誤差は、±5°以下の範囲内であることが好ましく、±3°以下の範囲内であることがより好ましい。
 本明細書において表記される二価の基(例えば、-C(O)O-)の結合方向は特に制限されず、例えば、後述する式(1)中のL1が-C(O)O-である場合、P1側に結合している位置を*1、SP1側に結合している位置を*2とすると、L1は*1-C(O)-O-*2であってもよく、*1-O-C(O)-*2であってもよい。
 本発明の偏光板の特徴点としては、偏光子と光学異方性層とが直接接しており、かつ、偏光子中に二色性物質の濃度が所定値以下である点が挙げられる。
 本発明者らは、特許文献1に記載の偏光板が所望の効果を奏さない理由について検討したところ、まず、偏光子と光学異方性層との間に粘着剤層が介在している場合、偏光子と粘着剤層との界面、および、粘着剤層と光学異方性層との界面において、光の反射が起こりやすく、黒締りの劣化の原因の一つとなっていた。特に、偏光子は、屈折率が比較的高い二色性物質を含むため、偏光子自体の屈折率が高くなり、隣接する粘着剤層の間の屈折率差が大きくなり、光の反射がより生じやすかった。
 それに対して、本発明においては、偏光子と光学異方性層とを直接接触させることにより、粘着剤層由来の光の反射を抑制すると共に、偏光子中の二色性物質の濃度を所定値以下とすることにより偏光子の屈折率を光学異方性層と類似する屈折率へと調整することにより、偏光子と光学異方性層と界面での光の反射を抑制している。
 以下、図面を用いて本発明の偏光板について説明する。
 図1は、本発明の偏光板の一実施態様の概略断面図である。偏光板10Aは、偏光子12と、光学異方性層14とを有する。図1に示すように、偏光子12と光学異方性層14とが隣接して配置される。つまり、偏光子12と光学異方性層14とは、直接接するように配置される。
 ここで、隣接とは、偏光子と光学異方性層との間に粘着剤層などの他の層を介さずに両者が配置されることを意味する。
 偏光子12と光学異方性層14とが隣接して配置される態様は、以下のように飛行時間型2次イオン質量分析法を用いて特定することもできる。
 より具体的には、まず、偏光板の一方の表面から他方の表面に向かって、イオンビームを照射しながら飛行時間型2次イオン質量分析法で偏光板の深さ方向の成分を分析し、偏光子に含まれる成分由来の2次イオン強度および光学異方性層に含まれる成分由来の2次イオン強度の深さ方向におけるプロファイルを得る。
 図2に、偏光板の偏光子側の表面から光学異方性層側に向かって、イオンスパッタリングしながらTOF-SIMSで各層中の深さ方向の成分を分析して得られるプロファイルを示す。なお、本明細書では、深さ方向とは、偏光板の偏光子側の表面を基準にして、光学異方性層側に向かう方向を意図する。
 図2中に記載される深さ方向のプロファイルにおいては、横軸(図2中、紙面の左右方向の延びる軸)は、偏光板の偏光子側の表面を基準とした深さを表し、縦軸(図2中、紙面の上下方向の延びる軸)は各成分の2次イオン強度を表す。
 なお、TOF-SIMS法については、具体的には日本表面科学会編「表面分析技術選書 2次イオン質量分析法」丸善株式会社(1999年発行)に記載されている。
 なお、イオンビームを照射しながらTOF-SIMSで偏光板の深さ方向の成分を分析する際において、表面深さ領域1~2nmの成分分析を行った後、さらに深さ方向に1nmから数百nm掘り進んで、次の表面深さ領域1~2nmの成分分析を行う一連の操作を繰り返す。
 図2に示す深さ方向のプロファイルにおいては、偏光子に含まれる成分由来の2次イオン強度の結果(図中の線C1)、および、光学異方性層に含まれる成分由来の2次イオン強度の結果(図中の線C2)を示す。
 なお、本明細書中、TOF-SIMSで偏光板の深さ方向の成分を分析して検出された深さ方向のプロファイルにより求められる「偏光子に含まれる成分由来の2次イオン強度」とは、偏光子に含まれる成分に由来するフラグメントイオンの強度を意図し、「光学異方性層に含まれる成分由来の2次イオン強度」とは、光学異方性層に含まれる成分に由来するフラグメントイオンの強度を意図する。
 図2に示すように、偏光板の偏光子側の表面から光学異方性層側に向かって、イオンビームを照射しながらTOF-SIMS法で偏光板の深さ方向の成分を分析すると、まず、偏光子に含まれる成分に由来する2次イオン強度が高く観測され、さらに深さ方向に向かってイオンビームを照射すると、その2次イオン強度が徐々に低くなる。一方で、ある深さ位置から、光学異方性層に含まれる成分に由来する2次イオン強度が徐々に高くなり、所定の深さ位置以降では、偏光子に含まれる成分に由来する2次イオン強度は観測されず、光学異方性層に含まれる成分に由来する2次イオン強度が高く観測される。
 偏光子と光学異方性層とが隣接している場合には、図2に示すように、所定の深さ位置Pにおいて、偏光子に含まれる成分に由来する2次イオン強度を示すプロファイル(線)と、光学異方性層に含まれる成分に由来する2次イオン強度を示すプロファイル(線)とが交差する。つまり、偏光子と光学異方性層との界面付近において、偏光子に含まれる成分に由来する2次イオン強度と光学異方性層に含まれる成分に由来する2次イオン強度とが同じ強度を示す深さ位置が存在する。
 TOF-SIMS法の測定方法としては、公知の方法が挙げられる。例えば、測定装置および測定条件としては、以下が挙げられる。
 ・装置:TOF-SIMS 5 (ION-TOF社製)
 ・深さ方向分析:Arイオンスパッタ併用
 ・測定範囲:一の方向およびその直交方向に各々128点ずつラスタースキャン
 ・極性:posi、nega
 また、上記2次イオン強度のプロファイルを得る際、偏光子に含まれる成分としては、例えば、二色性物質または第1液晶化合物が選択される。
 また、光学異方性層に含まれる成分としては、第2液晶化合物が選択される。
 以下、偏光板に含まれる各部材について詳述する。
<偏光子>
 偏光子は、第1液晶化合物および二色性物質を含む組成物(以下、偏光子形成用組成物ともいう。)を用いて形成される。偏光子中においては、第1液晶化合物の配向に沿って、二色性物質も所定の方向に配向されている。特に、二色性物質は水平配向していることが好ましい。
 以下では、まず、偏光子の形成に使用される材料について詳述する。
(第1液晶化合物)
 第1液晶化合物としては、高分子液晶化合物および低分子液晶化合物のいずれも用いることができ、二色性物質の配向度がより高くなる点から、高分子液晶化合物を用いることが好ましい。
 ここで、「高分子液晶化合物」とは、化学構造中に繰り返し単位を有する液晶化合物のことをいう。
 また、「低分子液晶化合物」とは、化学構造中に繰り返し単位を有さない液晶化合物のことをいう。
 高分子液晶化合物としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子、国際公開第2018/199096号の[0012]~[0042]段落に記載されている高分子液晶化合物が挙げられる。
 低分子液晶化合物としては、例えば、特開2013-228706号公報の[0072]~[0088]段落に記載されている液晶化合物が挙げられ、なかでも、スメクチック性を示す液晶化合物が好ましい。
 また、第1液晶化合物としては、高分子液晶化合物および低分子液晶化合物を併用してもよい。
 第1液晶化合物としては、二色性物質の配向度がより高くなる点から、下記式(1)で表される繰り返し単位(以下、「繰り返し単位(1)」とも略す。)を含む高分子液晶化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、P1は繰り返し単位の主鎖を表し、L1は単結合または2価の連結基を表し、SP1はスペーサー基を表し、M1はメソゲン基を表し、T1は末端基を表す。
 P1が表す繰り返し単位の主鎖としては、例えば、下記式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性および取り扱いが容易である点から、下記式(P1-A)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記式(P1-A)~(P1-D)において、「*」は、上記式(1)におけるL1との結合位置を表す。
 上記式(P1-A)~(P1-D)において、R、R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、または、炭素数1~10のアルコキシ基を表す。上記アルキル基は、直鎖または分岐のアルキル基であってもよいし、環状構造を有するアルキル基(シクロアルキル基)であってもよい。また、上記アルキル基の炭素数は、1~5が好ましい。
 上記式(P1-A)で表される基は、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
 上記式(P1-B)で表される基は、エポキシ基を有する化合物のエポキシ基を開環重合して形成されるエチレングリコール単位であることが好ましい。
 上記式(P1-C)で表される基は、オキセタン基を有する化合物のオキセタン基を開環重合して形成されるプロピレングリコール単位であることが好ましい。
 上記式(P1-D)で表される基は、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物の縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。ここで、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物としては、式SiR(OR-で表される基を有する化合物が挙げられる。式中、Rは、(P1-D)におけるRと同義であり、複数のRはそれぞれ独立に、水素原子または炭素数1~10のアルキル基を表す。
 上記式(1)中、L1は、単結合または2価の連結基である。
 L1が表す2価の連結基としては、-C(O)O-、-O-、-S-、-C(O)NR-、-SO-、および、-NR-が挙げられる。式中、RおよびRは、それぞれ独立に、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 P1が式(P1-A)で表される基である場合には、二色性物質の配向度がより高くなる点から、L1は-C(O)O-で表される基が好ましい。
 P1が式(P1-B)~(P1-D)で表される基である場合には、二色性物質の配向度がより高くなる点から、L1は単結合が好ましい。
 上記式(1)中、SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの点から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
 ここで、SP1が表すオキシエチレン構造は、*-(CH-CHO)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*は、上記式(1)中のL1またはM1との結合位置を表す。n1は、二色性物質の配向度がより高くなる点から、2~10の整数であることが好ましく、2~4の整数であることがより好ましく、3であることが最も好ましい。
 また、SP1が表すオキシプロピレン構造は、二色性物質の配向度がより高くなる点から、*-(CH(CH)-CHO)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1またはM1との結合位置を表す。
 また、SP1が表すポリシロキサン構造は、二色性物質の配向度がより高くなる点から、*-(Si(CH-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1またはM1との結合位置を表す。
 また、SP1が表すフッ化アルキレン構造は、二色性物質の配向度がより高くなる点から、*-(CF-CFn4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1またはM1との結合位置を表す。
 上記式(1)中、M1が表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「Flussige Kristalle in Tabellen II」(VEB Deutsche Verlag fur Grundstoff Industrie,Leipzig、19善、2000年刊)、特に第3章の記載、を参照することができる。
 メソゲン基としては、例えば、芳香族炭化水素基、複素環基、および、脂環式基からなる群より選択される少なくとも1種の環状構造を有する基が好ましい。
 メソゲン基は、二色性物質の配向度がより高くなる点から、芳香族炭化水素基を有するのが好ましく、2~4個の芳香族炭化水素基を有するのがより好ましく、3個の芳香族炭化水素基を有するのがさらに好ましい。
 メソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という点、並びに、二色性物質の配向度がより高くなる点から、下記式(M1-A)または下記式(M1-B)で表される基が好ましく、式(M1-B)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(M1-A)中、A1は、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。これらの基は、アルキル基、フッ化アルキル基、アルコキシ基または置換基で置換されていてもよい。
 A1で表される2価の基は、4~6員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
 *は、SP1またはT1との結合位置を表す。
 A1が表す2価の芳香族炭化水素基としては、例えば、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基、および、テトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの点から、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。
 A1が表す2価の複素環基としては、芳香族または非芳香族のいずれであってもよいが、二色性物質の配向度がより高くなる点から、2価の芳香族複素環基が好ましい。
 2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 2価の芳香族複素環基としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基が挙げられる。
 A1が表す2価の脂環式基としては、例えば、シクロペンチレン基およびシクロへキシレン基が挙げられる。
 式(M1-A)中、a1は1~10の整数を表す。a1が2以上である場合には、複数のA1は同一でも異なっていてもよい。
 式(M1-B)中、A2およびA3は、それぞれ独立に、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。A2およびA3の具体例および好適態様は、式(M1-A)のA1と同様であるので、その説明を省略する。
 式(M1-B)中、a2は1~10の整数を表し、a2が2以上である場合には、複数のA2は同一でも異なっていてもよく、複数のA3は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、二色性物質の配向度がより高くなる点から、2以上の整数であることが好ましく、2であることがより好ましい。
 式(M1-B)中、a2が1である場合には、LA1は2価の連結基である。a2が2以上である場合には、複数のLA1はそれぞれ独立に、単結合または2価の連結基であり、複数のLA1のうち少なくとも1つが2価の連結基である。a2が2である場合、二色性物質の配向度がより高くなる点から、2つのLA1のうち、一方が2価の連結基であり、他方が単結合であることが好ましい。
 式(M1-B)中、LA1が表す2価の連結基としては、例えば、-O-、-(CH-、-(CF-、-Si(CH-、-(Si(CHO)-、-(OSi(CH-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)-C(Z’)-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は、それぞれ独立に、水素原子、C1~C4アルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、および、-C(O)S-が挙げられる。なかでも、二色性物質の配向度がより高くなる点から、-C(O)O-が好ましい。LA1は、これらの基を2つ以上組み合わせた基であってもよい。
 上記式(1)中、T1が表す末端基としては、例えば、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のアルコキシカルボニルオキシ基、炭素数1~10のアルコキシカルボニル基(ROC(O)-:Rはアルキル基)、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、炭素数1~10のウレイド基、および、(メタ)アクリロイルオキシ基含有基が挙げられる。上記(メタ)アクリロイルオキシ基含有基としては、例えば、-L-A(Lは単結合または連結基を表す。連結基の具体例は上述したL1およびSP1と同じである。Aは(メタ)アクリロイルオキシ基を表す)で表される基が挙げられる。
 T1は、二色性物質の配向度がより高くなる点から、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシ基がより好ましく、メトキシ基がさらに好ましい。
 これらの末端基は、これらの基、または、特開2010-244038号公報に記載の重合性基によって、さらに置換されていてもよい。
 T1は、偏光子と光学異方性層との密着性がより良好となり、膜としての凝集力を向上させることができる点から、重合性基であることが好ましい。
 重合性基としては、ラジカル重合性基またはカチオン重合性基が好ましい。
 ラジカル重合性基としては、一般に知られているラジカル重合性基を用いることができ、アクリロイル基またはメタクリロイル基が好ましい。この場合、重合速度はアクリロイル基が一般的に速いことが知られており、生産性向上の点からアクリロイル基が好ましいが、メタクリロイル基も重合性基として同様に使用することができる。
 カチオン重合性基としては、一般に知られているカチオン重合性を用いることができ、例えば、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基が挙げられる。なかでも、脂環式エーテル基、または、ビニルオキシ基が好ましく、エポキシ基、オキセタニル基、または、ビニルオキシ基がより好ましい。
 上記式(1)で表される繰り返し単位を含む高分子液晶化合物の重量平均分子量(Mw)は、1000~500000が好ましく、2000~300000がより好ましい。高分子液晶化合物のMwが上記範囲内にあれば、高分子液晶化合物の取り扱いが容易になる。
 特に、塗布時のクラック抑制の点から、高分子液晶化合物の重量平均分子量(Mw)は、10000以上が好ましく、10000~300000がより好ましい。
 また、配向度の温度ラチチュードの観点から、高分子液晶化合物の重量平均分子量(Mw)は、10000未満が好ましく、2000以上10000未満が好ましい。
 ここで、本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):N-メチルピロリドン
 ・装置名:TOSOH HLC-8220GPC
 ・カラム:TOSOH TSKgelSuperAWM-H(6mm×15cm)を3本接続して使用
 ・カラム温度:25℃
 ・試料濃度:0.1質量%
 ・流速:0.35mL/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
 第1液晶化合物の含有量は、偏光子形成用組成物の全固形分に対して、50質量%以上が好ましく、70質量%以上がより好ましい。上限は特に制限されないが、95質量%以下の場合が多い。
 ここで、「偏光子形成用組成物の全固形分」とは、偏光子形成用組成物中の溶媒を除いた成分をいい、固形分の具体例としては、上記第1液晶化合物、後述する二色性物質、重合開始剤、および、界面活性剤が挙げられる。
(二色性物質)
 二色性物質は特に制限されず、例えば、可視光吸収物質(二色性色素)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、および、無機物質(例えば量子ロッド)が挙げられ、従来公知の二色性物質(二色性色素)を使用することができる。
 例えば、特開2013-228706号公報の[0067]~[0071]段落、特開2013-227532号公報の[0008]~[0026]段落、特開2013-209367号公報の[0008]~[0015]段落、特開2013-014883号公報の[0045]~[0058]段落、特開2013-109090号公報の[0012]~[0029]段落、特開2013-101328号公報の[0009]~[0017]段落、特開2013-037353号公報の[0051]~[0065]段落、特開2012-063387号公報の[0049]~[0073]段落、特開平11-305036号公報の[0016]~[0018]段落、特開2001-133630号公報の[0009]~[0011]段落、特開2011-215337号公報の[0030]~[0169]、特開2010-106242号公報の[0021]~[0075]段落、特開2010-215846号公報の[0011]~[0025]段落、特開2011-048311号公報の[0017]~[0069]段落、特開2011-213610号公報の[0013]~[0133]段落、特開2011-237513号公報の[0074]~[0246]段落、特開2016-006502号公報の[0005]~[0051]段落、WO2016/060173号公報の[0005]~[0041]段落、WO2016/136561号公報の[0008]~[0062]段落、国際公開第2017/154835号の[0014]~[0033]段落、国際公開第2017/154695号の[0014]~[0033]段落、国際公開第2017/195833号の[0013]~[0037]段落、国際公開第2018/164252号の[0014]~[0034]段落に記載されたものが挙げられる。
 本発明においては、2種以上の二色性物質を併用してもよく、例えば、得られる偏光子を黒色に近づける観点から、波長370nm以上500nm未満の範囲に極大吸収波長を有する少なくとも1種の二色性物質と、波長500nm以上700nm未満の範囲に極大吸収波長を有する少なくとも1種の二色性物質とを併用することが好ましい。
 上記二色性物質は、架橋性基を有していてもよい。
 上記架橋性基としては、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、および、スチリル基が挙げられ、なかでも、(メタ)アクリロイル基が好ましい。
 二色性物質の含有量は、上記液晶化合物100質量部に対して、2~80質量部が好ましく、5~30質量部がより好ましい。
 また、二色性物質の含有量は、偏光子形成用組成物における固形分中の1~40質量%が好ましく、2~30質量%がより好ましい。
(その他の成分)
 偏光子形成用組成物は、上述した第1液晶化合物および二色性物質以外の他の成分を含んでいてもよい。
 偏光子形成用組成物は、重合開始剤を含むことが好ましい。
 重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤が好ましい。
 光重合開始剤としては、各種の化合物を特に制限なく使用できる。光重合開始剤としては、例えば、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書)、アシロインエーテル(米国特許第2448828号明細書)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書)、多核キノン化合物(米国特許第3046127号および同2951758号の各明細書)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報および米国特許第4239850号明細書)、オキサジアゾール化合物(米国特許第4212970号明細書)、o-アシルオキシム化合物(特開2016-027384明細書[0065])、および、アシルフォスフィンオキシド化合物(特公昭63-040799号公報、特公平5-029234号公報、特開平10-095788号公報および特開平10-029997号公報)が挙げられる。
 偏光子形成用組成物が重合開始剤を含む場合、重合開始剤の含有量は、上記二色性物質と上記液晶化合物との合計100質量部に対して、0.01~30質量部が好ましく、0.1~15質量部がより好ましい。
 偏光子形成用組成物は、界面活性剤を含むことが好ましい。
 界面活性剤を含むことにより、塗布表面の平滑性が向上し、配向度がさらに向上したり、ハジキおよびムラを抑制して、面内の均一性が向上したりする効果が見込まれる。
 界面活性剤としては、二色性物質と液晶化合物を塗布表面側で水平にさせるものが好ましく、例えば、国際公開第2016/009648号の[0155]~[0170]段落に記載されている化合物、および、特開2011-237513号公報の[0253]~[0293]段落に記載の化合物(水平配向剤)が挙げられる。
 偏光子形成用組成物が界面活性剤を含む場合、界面活性剤の含有量は、上記二色性物質と上記液晶化合物との合計100質量部に対して、0.001~5質量部が好ましく、0.01~3質量部がより好ましい。
 偏光子形成用組成物は、作業性の点から、溶媒を含むことが好ましい。
 溶媒としては、例えば、ケトン類、エーテル類、脂肪族炭化水素類、脂環式炭化水素類、芳香族炭化水素類、ハロゲン化炭素類、エステル類、アルコール類、セロソルブ類、セロソルブアセテート類、スルホキシド類、アミド類、および、ヘテロ環化合物などの有機溶媒、ならびに、水が挙げられる。これの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
 偏光子形成用組成物が溶媒を含む場合、溶媒の含有量は、偏光子形成用組成物の全質量に対して、80~99質量%が好ましく、83~97質量%がより好ましい。
(偏光子の製造方法)
 偏光子の製造方法は、偏光子形成用組成物を用いれば特に制限されないが、所定の支持体上に偏光子形成用組成物を塗布して塗膜を形成して、塗膜中の液晶性成分を配向させる方法が好ましい。
 なお、液晶性成分とは、上述した第1液晶化合物だけでなく、上述した二色性物質が液晶性を有している場合は、液晶性を有する二色性物質も含む成分である。
 偏光子形成用組成物が塗布される支持体は特に制限されない。支持体に関しては、後段で詳述する。
 なお、支持体は、その表面上に配向層を有していてもよい。
 配向膜を形成する方法としては、例えば、有機化合物(好ましくはポリマー)の膜表面へのラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、および、ラングミュアブロジェット法(LB膜)による有機化合物(例えば、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチルなど)の累積などの手法が挙げられる。
 配向層としては、ラビング処理により形成される配向膜、または、光照射により形成する光配向膜が好ましい。
 光配向膜に含まれる光配向化合物としては、公知の材料が挙げられる。光配向化合物として、光の作用により二量化および異性化の少なくとも一方が生じる光反応性基を有する感光性化合物を用いることが好ましい。
 また、後述する光学異方性層上に偏光子形成用組成物を塗布してもよく、その場合、光学異方性層が配向膜として機能する。
 偏光子形成用組成物を塗布する方法は特に制限されず、カーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、および、ワイヤーバー法が挙げられる。
 塗膜中の液晶性成分を配向させる方法は特に制限されず、加熱処理が好ましい。
 加熱処理は、製造適性の面から、10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
 加熱処理の後、必要に応じて、冷却処理を実施してもよい。冷却処理は、加熱後の塗布膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗膜に含まれる液晶性成分の配向を固定できる。冷却手段としては特に制限されず、公知の方法により実施できる。
 また、液晶性成分を配向させた後、必要に応じて、硬化処理を実施してもよい。
 偏光子に架橋性基(重合性基)が含まれる場合には、硬化処理は、加熱および/または光照射(露光)によって実施される。
(偏光子の特性)
 偏光子中における二色性物質の含有量は、偏光子全質量に対して、40質量%以下である。なかでも、本発明の偏光子を含む表示装置を高温環境下に長時間曝した後においても、正面方向における黒締りがより優れる点(以下、「本発明の効果がより優れる点」ともいう。)で、二色性物質の含有量は、偏光子全質量に対して、30質量%以下が好ましい。二色性物質の含有量の下限は特に制限されないが、偏光子全質量に対して、3質量%以上が好ましく、5質量%以上がより好ましい。
 飛行時間型2次イオン質量分析法で偏光子の深さ方向の成分分析をした際に、二色性物質由来の2次イオン強度の最大強度Imaxと、偏光子の光学異方性層側とは反対側の表面における二色性物質由来の2次イオン強度の強度Isur1との関係が、式(3)を満たすことが好ましく、式(3-1)を満たすことがより好ましく、式(3-2)を満たすことがさらに好ましい。上記式(3)の関係を満たすことにより、屈折率調整層やバリア層(酸素遮断層)を設けなくても表示性能および耐久性が良好となるため、有機EL表示装置の薄型化を図ることができる。
 式(3)  2.0≦Imax/Isur1
 式(3-1)  5.0≦Imax/Isur1
 式(3-2)  10.0<Imax/Isur1≦100
 なお、偏光子の光学異方性層側とは反対側の表面から1%の領域における、二色性物質に由来するフラグメントの2次イオン強度の平均値(ベースラインからの強度の平均値)を視認側表面における強度Isur1とする。
 また、各表面から全厚みの1%の部分を除いた全体厚みの98%の領域における、二色性物質に由来するフラグメントの2次イオン強度(ベースラインからの強度)の最大値を厚み方向における最大強度Imaxとする。
 飛行時間型2次イオン質量分析法の測定方法としては、上述した方法が挙げられる。
 また、偏光子に二色性物質が2種以上含まれている場合、波長500~650nmの範囲に極大吸収波長を有する二色性物質(以下、「測定対象二色性物質」ともいう。)に由来するフラグメントの2次イオン強度を測定し、測定対象二色性物質が2種以上含まれている場合には、測定対象二色性物質のうち吸光度の最も大きい二色性物質に由来するフラグメントの2次イオン強度を測定する。
 偏光子の厚さは特に制限されないが、100~8000nmが好ましく、300~5000nmがより好ましい。
 なお、偏光子の厚みとは、偏光子の平均厚みを意図する。上記平均厚みは、偏光子の任意の5箇所以上の厚みを測定して、それらを算術平均して求める。
<光学異方性層>
 光学異方性層は、第2液晶化合物を含む組成物(以下、光学異方性層形成用組成物ともいう。)を用いて形成される。
 以下では、まず、光学異方性層形成用組成物に含まれる材料について詳述する。
(第2液晶化合物)
 第2液晶化合物としては、公知の液晶化合物が挙げられる。
 一般的に、液晶化合物はその形状から、棒状タイプと円盤状タイプとに分類できる。さらにそれぞれ低分子と高分子タイプとがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。
 第2液晶化合物としては、棒状液晶化合物またはディスコティック液晶化合物が好ましく、棒状液晶化合物がより好ましい。
 棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1または特開2005-289980号公報の[0026]~[0098]段落に記載のものを好ましく用いることができ、ディスコティック液晶化合物としては、例えば、特開2007-108732号公報の[0020]~[0067]段落または特開2010-244038号公報の[0013]~[0108]段落に記載のものを好ましく用いることができるが、これらに制限されない。
 第2液晶化合物は、重合性基を有することが好ましい。
 また、重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、または、アリル基が好ましく、(メタ)アクリロイル基がより好ましい。なお、(メタ)アクリロイル基とは、メタアクリロイル基またはアクリロイル基を意味する表記である。
 また、第2液晶化合物として、逆波長分散性の液晶化合物を用いることができる。
 ここで、本明細書において「逆波長分散性」の液晶化合物とは、この化合物を用いて作製された位相差フィルムの特定波長(可視光範囲)における面内のレタデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
 また、逆波長分散性の液晶化合物は、上記のように逆波長分散性のフィルムを形成できるものであれば特に制限されず、例えば、特開2010-084032号公報に記載の一般式(1)で表される化合物(特に、[0067]~[0073]段落に記載の化合物)、特開2016-053709号公報に記載の一般式(II)で表される化合物(特に、[0036]~[0043]段落に記載の化合物)、および、特開2016-081035公報に記載の一般式(1)で表される化合物(特に、[0043]~[0055]段落に記載の化合物)が挙げられる。
 第2液晶化合物のlogPと、上述した二色性物質のlogPとの差の絶対値は特に制限されないが、本発明の効果がより優れる点で、3.0以上が好ましく、4.0~6.0がより好ましい。上記差の絶対値が3.0以上である場合、偏光子中の二色性物質が光学異方性層側に移行しにくくなる。
 なお、二色性物質を複数使用する場合、第2液晶化合物のlogPと、それぞれの二色性物質のlogPとの差の絶対値が、上記範囲内であることが好ましい。
 また、第2液晶化合物を複数使用する場合、それぞれの第2液晶化合物のlogPと、二色性物質のlogPとの差の絶対値が、上記範囲内であることが好ましい。
 さらに、第2液晶化合物および二色性物質をそれぞれ複数使用する場合、第2液晶化合物と二色性物質との複数の組み合わせのそれぞれ第2液晶化合物のlogPと上述した二色性物質のlogPとの差の絶対値が、上記範囲内であることが好ましい。
 logP値は、化学構造の親水性および疎水性の性質を表現する指標であり、親疎水パラメータと呼ばれることがある。各化合物のlogP値は、ChemBioDraw UltraまたはHSPiP(Ver.4.1.07)などのソフトウェアを用いて計算できる。また、OECD Guidelines for the Testing of Chemicals,Sections 1,Test No.117の方法などにより、実験的に求めることもできる。本発明では特に断りのない限り、HSPiP(Ver.4.1.07)に化合物の構造式を入力して算出される値をlogP値として採用する。
 第2液晶化合物の含有量は、光学異方性層形成用組成物の全固形分に対して、50質量%以上が好ましく、70質量%以上がより好ましい。上限は特に制限されないが、95質量%以下の場合が多い。
 ここで、「光学異方性層形成用組成物の固形分」とは、光学異方性層形成用組成物中の溶媒を除いた成分をいい、固形分の具体例としては、上記第2液晶化合物、後述する重合開始剤、および、界面活性剤が挙げられる。
(その他の成分)
 光学異方性層形成用組成物は、第2液晶化合物以外の他の成分を含んでいてもよい。
 光学異方性層形成用組成物は、偏光子形成用組成物に含まれていてもよい、重合開始剤、界面活性剤、および、溶媒が挙げられる。
 光学異方性層形成用組成物中における重合開始剤の含有量は、光学異方性層形成用組成物の全固形分に対して、0.01~20質量%が好ましく、0.3~10質量%がより好ましい。
 また、光学異方性層形成用組成物は、重合性モノマーを含んでいてもよい。
 重合性モノマーとしては、ラジカル重合性またはカチオン重合性の化合物が挙げられる。なかでも、多官能性ラジカル重合性モノマーが好ましい。また、重合性モノマーとしては、上記の重合性基を有する液晶化合物と共重合性のモノマーが好ましい。例えば、特開2002-296423号公報中の[0018]~[0020]段落に記載の重合性モノマーが挙げられる。
 光学異方性層形成用組成物中における重合性モノマーの含有量は、液晶化合物の全質量に対して、1~50質量%が好ましく、2~30質量%がより好ましい。
 光学異方性層形成用組成物は、垂直配向剤、および、水平配向剤などの各種配向制御剤を含んでいてもよい。これらの配向制御剤は、界面側において液晶化合物を水平または垂直に配向制御可能な化合物である。
(光学異方性層の製造方法)
 光学異方性層の製造方法は特に制限されないが、偏光子上に光学異方性層形成用組成物を塗布して塗膜を形成し、塗膜に配向処理を施して第2液晶化合物を配向させ、得られた塗膜に対して硬化処理(紫外線の照射(光照射処理)または加熱処理)を施して、光学異方性層を形成する方法が好ましい。
 上記のように、偏光子上に光学異方性層形成用組成物を塗布することにより、偏光子と光学異方性層とが隣接して配置された偏光板が製造される。
 光学異方性層形成用組成物を塗布する方法は特に制限されず、上述した偏光子形成用組成物を塗布する方法として例示した方法が挙げられる。
 第2液晶化合物を配向させる処理としては、室温により塗膜を乾燥させる処理、または、塗膜を加熱する処理が挙げられる。配向処理で形成される液晶相は、サーモトロピック性液晶化合物の場合、一般に温度または圧力の変化により転移させることができる。リオトロピック性液晶化合物の場合には、溶媒量などの組成比によっても転移させることができる。
 なお、塗膜を加熱する場合の条件は特に制限されないが、加熱温度としては40~250℃が好ましく、50~150℃がより好ましく、加熱時間としては10秒間~10分間が好ましい。
 また、塗膜を加熱した後、後述する硬化処理(光照射処理)の前に、必要に応じて、塗膜を冷却してもよい。冷却温度としては20~200℃が好ましく、30~150℃がより好ましい。
 次に、第2液晶化合物が配向された塗膜に対して硬化処理を施す。
 第2液晶化合物が配向された塗膜に対して実施される硬化処理の方法は特に制限されず、例えば、光照射処理および加熱処理が挙げられる。なかでも、製造適性の点から、光照射処理が好ましく、紫外線照射処理がより好ましい。
 光照射処理の照射条件は特に制限されないが、50~1000mJ/cmの照射量が好ましい。
(光学異方性層の特性)
 光学異方性層の厚みは特に制限されず、薄型化の点から、10μm以下が好ましく、0.5~8.0μmがより好ましく、0.5~6.0μmがさらに好ましい。
 なお、本明細書において、光学異方性層の厚みとは、光学異方性層の平均厚みを意図する。上記平均厚みは、光学異方性層の任意の5箇所以上の厚みを測定して、それらを算術平均して求める。
 光学異方性層は、面内レタデーションを調整して、いわゆるλ/4板またはλ/2板として用いることもできる。
 なお、λ/4板とは、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有する板である。より具体的には、所定の波長λnmにおける面内レタデーションReがλ/4(または、この奇数倍)を示す板である。
 λ/4板の波長550nmでの面内レタデーション(Re(550))は、理想値(137.5nm)を中心として、25nm程度の誤差があってもよく、例えば、110~160nmであることが好ましく、120~150nmであることがより好ましい。
 また、λ/2板とは、特定の波長λnmにおける面内レタデーションRe(λ)がRe(λ)≒λ/2を満たす光学異方性膜のことをいう。この式は、可視光線領域のいずれかの波長(例えば、550nm)において達成されていればよい。なかでも、波長550nmにおける面内レタデーションRe(550)が、以下の関係を満たすことが好ましい。
 210nm≦Re(550)≦300nm
 上述した偏光子の吸収軸と、光学異方性層の偏光子側の表面における面内遅相軸とのなす角度は特に制限されないが、1°以内が好ましく、0.5°以内がより好ましい。下限は特に制限されないが、0°が挙げられる。
 後述するように、光学異方性層が第1光学異方性層および第2光学異方性層を含む態様の場合、本発明の効果がより優れる点で、偏光子の吸収軸と、第1光学異方性層の偏光子側の表面における面内遅相軸とのなす角度が、上記範囲内であることが好ましい。
 偏光子の吸収軸の方向および光学異方性層の面内遅相軸の方向は、Axometrics社のAxoscan(ポラリメーター)装置を用い同社の解析ソフトウエアを用いて測定する。
 光学異方性層は、厚み方向を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層であってもよいし、水平配向した第2液晶化合物を固定してなる層であってもよい。
 なかでも、本発明の効果がより優れる点で、厚み方向を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層であることが好ましい。第2液晶化合物の捩れ角度は特に制限されないが、0°超360度未満が好ましい。
 なお、「固定した」状態は、液晶化合物の配向が保持された状態である。具体的には、通常、0~50℃、より過酷な条件下では-30~70℃の温度範囲において、層に流動性がなく、また、外場もしくは外力によって配向形態に変化を生じさせることなく、固定された配向形態を安定に保ち続けることができる状態であることが好ましい。
 光学異方性層は、単層から構成されていてもよいし、複数の層を有していてもよい。つまり、光学異方性層は、厚み方向を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層を複数有する態様であってもよい。
 光学異方性層は、第2液晶化合物の捩れ角がそれぞれ異なる複数の層から構成されることが好ましい。
 上記複数の層は、第2液晶化合物の捩れ角がそれぞれ異なることが好ましい。
 また、上記複数の層は、それぞれ、層の厚みに対する第2液晶化合物の捩れ角の比(第2液晶化合物の捩れ角(°)/層の厚み(μm))が異なることが好ましい。
<偏光板の好適態様>
 偏光子の好適態様の一つとして、光学異方性層が後述する第1光学異方性層および第2光学異方性層を有する態様が挙げられる。
 より具体的には、図3に示すように、偏光板10Bは、偏光子12と、光学異方性層140とを有し、光学異方性層140は第1光学異方性層16および第2光学異方性層18を有する。光学異方性層140中、第1光学異方性層16は、第2光学異方性層18よりも偏光子12側に配置されている。
 偏光子12は、上述した図1に示す偏光子12と同じであり、説明を省略する。
 以下では、主に、第1光学異方性層16および第2光学異方性層18について詳述する。
(第1光学異方性層)
 第1光学異方性層は、厚み方向(図3中、z軸方向)を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層である。第1光学異方性層は、いわゆる螺旋構造を持ったキラルネマチック相を固定してなる層であることが好ましい。なお、上記相を形成する際には、ネマチック液晶相を示す第2液晶化合物と後述するキラル剤とを混合したものが使用されることが好ましい。
 なお、「固定した」状態の意味は、上述した通りである。
 第1光学異方性層中における第2液晶化合物の捩れ角は26.5±10.0°であり、本発明の効果がより優れる点で、26.5±8.0°がより好ましく、26.5±6.0°がさらに好ましい。
 なお、本明細書において、捩れ角の測定方法は、Axometrics社のAxoscan(ポラリメーター)装置を用い同社の解析ソフトウエアを用いて測定する。
 また、第2液晶化合物が捩れ配向するとは、第1光学異方性層の厚み方向を軸として、第1光学異方性層の一方の主表面から他方の主表面までの第2液晶化合物が捩れることを意図する。それに伴い、第2液晶化合物の配向方向(面内遅相軸方向)が、第1光学異方性層の厚さ方向の位置によって異なる。
 なお、第1光学異方性層中の第2液晶化合物の捩れ方向には2種類あるが、右捩れでも左捩れでも構わない。図3において、右捩れとは、第2光学異方性層から第1光学異方性層の方向に向かって観察した際の右捩れ(時計回りの捩れ)を意図する。
 波長550nmで測定した第1光学異方性層の屈折率異方性Δn1と第1光学異方性層の厚みd1との積Δn1・d1の値は、下記式(1)を満たす。
 式(1) 252nm≦Δn1・d1≦312nm
 なかでも、本発明の効果がより優れる点で、式(1A)を満足することが好ましく、さらに式(1B)を満足することがより好ましい。
 式(1A) 262nm≦Δn1・d1≦302nm
 式(1B) 272nm≦Δn1・d1≦292nm
 Δn1・d1の測定方法は、捩れ角の測定方法と同様にAxometrics社のAxoscan(ポラリメーター)装置を用い同社の解析ソフトウエアを用いて測定する。
(第2光学異方性層)
 第2光学異方性層は、第1光学異方性層と同様に、厚み方向(図3中、z軸方向)を螺旋軸とする捩れ配向した第2棒状液晶化合物を固定してなる層である。
 第2液晶化合物の捩れ角は78.6±10.0°であり、本発明の効果がより優れる点で、78.6±8.0°がより好ましく、78.6±6.0°がさらに好ましい。
 なお、第2光学異方性層中の第2液晶化合物の捩れ方向は、上述した第1光学異方性層中の第2液晶化合物の捩れ方向と同一である。例えば、第1光学異方性層中の第2液晶化合物が捩れ方向が右捩れであれば、第2光学異方性層中の第2液晶化合物の捩れ方向も右捩れとなる。
 波長550nmで測定した第2光学異方性層の屈折率異方性Δn2と第2光学異方性層の厚みd2との積Δn2・d2の値は、下記式(2)を満たす。
 式(2) 110nm≦Δn2・d2≦170nm
 なかでも、本発明の効果がより優れる点で、式(2A)を満足することが好ましく、さらに式(2B)を満足することがより好ましい。
 式(2A) 120nm≦Δn2・d2≦160nm
 式(2B) 130nm≦Δn2・d2≦150nm
 Δn2・d2の測定方法は、捩れ角の測定方法と同様にAxometrics社のAxoscan(ポラリメーター)装置を用い同社の解析ソフトウエアを用いて測定する。
 第1光学異方性層の第2光学異方性層側の表面での面内遅相軸と、第2光学異方性層の第1光学異方性層側の表面での面内遅相軸とは平行に配置される。平行の定義は、上述の通りである。
(角度関係)
 偏光子の吸収軸と、第1光学異方性層の偏光膜側の表面での面内遅相軸とが平行である。
 偏光子の吸収軸と、第1光学異方性層の面内遅相軸と、第2光学異方性層の面内遅相軸との関係に関して、図4を用いてより詳細に説明する。
 図4中の偏光子12中の矢印は吸収軸を、第1光学異方性層16および第2光学異方性層18中の矢印はそれぞれの層中の面内遅相軸を表す。また、図5においては、図4の白抜きの矢印から観察した際の、偏光子12の吸収軸と、第1光学異方性層16の面内遅相軸と、第2光学異方性層18の面内遅相軸との角度の関係を示す。
 なお、図5において面内遅相軸の回転角度は、図4の白抜きの矢印から観察した際、偏光子12の吸収軸を基準に反時計回り方向に正の値、時計回りに負の値をもって表す。
 図4においては、偏光子12の吸収軸と第1光学異方性層16の偏光子12側の表面16aでの面内遅相軸とは、平行である。平行の定義は、上述の通りである。
 第1光学異方性層16は、上述したように、厚み方向を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層である。そのため、図4に示すように、第1光学異方性層16の偏光子12側の表面16aでの面内遅相軸と、第1光学異方性層16の第2光学異方性層18側の表面16bでの面内遅相軸とは、上述した捩れ角(なお、図4においては、26.5°)をなす。つまり、第1光学異方性層16の面内遅相軸は、-26.5°(時計回りに26.5°)回転する。従って、偏光子12の吸収軸と第1光学異方性層16の表面16bでの面内遅相軸とのなす角度φ2は、26.5°となる。
 なお、図5においては、第1光学異方性層16の表面16bでの面内遅相軸が第1光学異方性層16の表面16aでの面内遅相軸に対して時計回りに26.5°回転した態様を示すが、この態様に制限されず、その回転角度は時計回りに、26.5±10°の範囲であればよい。
 図4においては、第1光学異方性層16の第2光学異方性層18側の表面16bでの面内遅相軸と、第2光学異方性層18の第1光学異方性層16側の表面18aでの面内遅相軸とは、平行にある。つまり、偏光子12の吸収軸と第2光学異方性層18の第1光学異方性層16側の表面18aでの面内遅相軸とのなす角度φ3は、上記角度φ2bと略同じである。
 第2光学異方性層18には、上述したように、厚み方向を螺旋軸とする捩れ配向した液晶化合物を固定してなる層である。そのため、図4に示すように、第2光学異方性層18の第1光学異方性層16側の表面18aでの面内遅相軸と、第2光学異方性層18の第1光学異方性層16側とは反対側の表面18bでの面内遅相軸とは、上述した捩れ角(なお、図4においては、78.6°)をなす。つまり、第2光学異方性層18の面内遅相軸は、-78.6°(時計回りに78.6°)回転する。従って、偏光子12の吸収軸と第2光学異方性層18の表面18bでの面内遅相軸とのなす角度φ4は、105.1°となる。
 なお、図4においては、第2光学異方性層18の表面18bでの面内遅相軸が第2光学異方性層18の表面18aでの面内遅相軸に対して時計回りに78.6°回転した態様を示すが、この態様に制限されず、その回転角度は時計回りに-78.6±10°の範囲であればよい。
 上述したように、図4の態様では、偏光子12の吸収軸を基準に、第1光学異方性層16中および第2光学異方性層18中の第2液晶化合物の捩れ方向がともに時計回り(右捩れ)を示す。
 図4においては、捩れ方向が時計回り(右捩れ)の態様について詳述したが、第1光学異方性層16中および第2光学異方性層18中の第2液晶化合物の捩れ方向がともに反時計回りの態様であってもよい。
(好適態様の製造方法)
 第1光学異方性層および第2光学異方性層を含む光学異方性層の好適態様の製造方法は特に制限されないが、以下の工程1~5を実施してもよい。以下の工程1~工程5を実施することにより、塗布工程1回で第1光学異方性層および第2光学異方性層を含む光学異方性層を製造できる。
工程1:光照射により螺旋誘起力が変化する感光性キラル剤を少なくとも含むキラル剤、および、重合性基を有する液晶化合物(以下、工程1~工程5の説明においては、単に「液晶化合物」とも記す。)を含む重合性液晶組成物を偏光子上に塗布して、組成物層を形成する工程
工程2:組成物層に加熱処理を施して、組成物層中の液晶化合物を厚み方向に沿って延びる螺旋軸に沿って捩れ配向させる工程
工程3:工程2の後、酸素濃度1体積%以上の条件下にて、組成物層に対して光照射を行う工程
工程4:工程3の後、組成物層に加熱処理を施す工程
工程5:工程4の後、組成物層に対して硬化処理を施して、液晶化合物の配向状態を固定し、第1光学異方性層および第2光学異方性層を形成する工程
 以下、上記各工程の手順について詳述する。
[工程1]
 工程1は、光照射により螺旋誘起力が変化する感光性キラル剤を少なくとも含むキラル剤、および、重合性基を有する液晶化合物を含む重合性液晶組成物を偏光子上に塗布して、組成物層を形成する工程である。本工程を実施することにより、後述する光照射処理が施される組成物層が形成される。
 重合性液晶組成物に含まれる各種成分としては、上述した光学異方性層形成用組成物に含まれ得る成分が挙げられ、以下では、上記で説明していない感光性キラル剤について詳述する。
 なお、キラル剤の螺旋誘起力(HTP)は、下記式(X)で表される螺旋配向能力を示すファクターである。
 式(X) HTP=1/(螺旋ピッチの長さ(単位:μm)×液晶化合物に対するキラル剤の濃度(質量%))[μm-1
 螺旋ピッチの長さとは、コレステリック液晶相の螺旋構造のピッチP(=螺旋の周期)の長さをいい、液晶便覧(丸善株式会社出版)の196ページに記載の方法で測定できる。
 光照射により螺旋誘起力が変化する感光性キラル剤(以下、単に「キラル剤A」ともいう。)は、液晶性であっても、非液晶性であってもよい。キラル剤Aは、一般に不斉炭素原子を含む場合が多い。なお、キラル剤Aは、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物であってもよい。
 キラル剤Aは、重合性基を有していてもよい。
 キラル剤Aは、光照射によって螺旋誘起力が増加するキラル剤であってもよいし、減少するキラル剤であってもよい。なかでも、光照射により螺旋誘起力が減少するキラル剤であることが好ましい。
 なお、本明細書において「螺旋誘起力の増加および減少」とは、キラル剤Aの初期(光照射前)の螺旋方向を「正」としたときの増減を表す。従って、光照射により螺旋誘起力が減少し続け、0を超えて螺旋方向が「負」となった場合(つまり、初期(光照射前)の螺旋方向とは逆の螺旋方向の螺旋を誘起する場合)にも、「螺旋誘起力が減少するキラル剤」に該当する。
 キラル剤Aとしては、いわゆる光反応型キラル剤が挙げられる。光反応型キラル剤とは、キラル部位と光照射によって構造変化する光反応部位を有し、例えば、照射量に応じて液晶化合物の捩れ力を大きく変化させる化合物である。
 キラル剤Aとしては、なかでも、光異性化部位を少なくとも有する化合物が好ましく、光異性化部位は光異性化可能な二重結合を有することがより好ましい。上記光異性化可能な二重結合を有する光異性化部位としては、光異性化が起こりやすく、かつ、光照射前後の螺旋誘起力差が大きいという点で、シンナモイル部位、カルコン部位、アゾベンゼン部位またはスチルベン部位が好ましく、さらに可視光の吸収が小さいという点で、シンナモイル部位、カルコン部位またはスチルベン部位がより好ましい。なお、光異性化部位は、上述した光照射によって構造変化する光反応部位に該当する。
 キラル剤Aとしては、式(C)で表される化合物が好ましい。
 式(C)  R-L-R
 Rは、それぞれ独立に、シンナモイル部位、カルコン部位、アゾベンゼン部位、および、スチルベン部位からなる群から選択される少なくとも1つの部位を有する基を表す。
 Lは、式(D)で表される構造から2個の水素原子を除いた形成される2価の連結基(上記ビナフチル部分構造から2個の水素原子を除いて形成される2価の連結基)、式(E)で表される2価の連結基(上記イソソルビド部分構造からなる2価の連結基)、または、式(F)で表される2価の連結基(上記イソマンニド部分構造からなる2価の連結基)を表す。
 式(E)および式(F)中、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000004
 工程1においては、上述したキラル剤Aが少なくともが用いられる。工程1は、キラル剤Aを2種以上用いる態様であってもよいし、少なくとも1種のキラル剤Aと少なくとも1種の光照射により螺旋誘起力が変化しないキラル剤(以下、単に「キラル剤B」ともいう。)とを用いる態様であってもよい。
 キラル剤Bは、液晶性であっても、非液晶性であってもよい。キラル剤Bは、一般に不斉炭素原子を含む場合が多い。なお、キラル剤Bは、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物であってもよい。
 キラル剤Bは重合性基を有していてもよい。
 キラル剤Bとしては、公知のキラル剤を使用できる。
 キラル剤Bは、上述したキラル剤Aと逆向きの螺旋を誘起するキラル剤であることが好ましい。つまり、例えば、キラル剤Aにより誘起する螺旋が右方向の場合には、キラル剤Bにより誘起する螺旋は左方向となる。
 組成物層中における上記キラル剤Aの含有量は特に制限されないが、液晶化合物が均一に配向しやすい点で、液晶化合物の全質量に対して、5.0質量%以下が好ましく、3.0質量%以下がより好ましく、2.0質量%以下がさらに好ましく、1.0質量%未満が特に好ましく、0.8質量%以下がより特に好ましく、0.5質量%以下が最も好ましい。下限は特に制限されないが、0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上がさらに好ましい。
 なお、上記キラル剤Aは1種を単独で用いても、2種以上を併用してもよい。2種以上の上記キラル剤Aを併用する場合には、合計含有量が上記範囲内であることが好ましい。
 組成物層中における上記キラル剤Bの含有量は特に制限されないが、液晶化合物が均一に配向しやすい点で、液晶化合物の全質量に対して、5.0質量%以下が好ましく、3.0質量%以下がより好ましく、2.0質量%以下がさらに好ましく、1.0質量%未満が特に好ましく、0.8質量%以下がより特に好ましく、0.5質量%以下が最も好ましい。下限は特に制限されないが、0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上がさらに好ましい。
 なお、上記キラル剤Bは1種を単独で用いても、2種以上を併用してもよい。2種以上の上記キラル剤Bを併用する場合には、合計含有量が上記範囲内であることが好ましい。
 組成物層中におけるキラル剤の合計含有量(全てのキラル剤の総含有量)は、液晶化合物の全質量に対して、5.0質量%以下が好ましく、4.0質量%以下がより好ましく、2.0質量%以下がさらに好ましく、1.0質量%以下が特に好ましい。下限は特に制限されないが、0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上がさらに好ましい。
 重合性液晶組成物を塗布して組成物層を形成する方法は特に制限されず、上述した偏光子形成用組成物を塗布する方法が挙げられる。
 組成物層の膜厚は特に制限されないが、0.1~20μmが好ましく、0.2~15μmがより好ましく、0.5~10μmがさらに好ましい。
(工程2)
 工程2は、組成物層に加熱処理を施して、組成物層に加熱処理を施して、組成物層中の重合性液晶化合物を厚み方向に沿って延びる螺旋軸に沿って捩れ配向させる工程である。
 加熱処理の条件としては、使用される液晶化合物に応じて最適な条件が選択される。
 なかでも、加熱温度としては、10~250℃の場合が多く、40~150℃の場合がより多く、50~130℃の場合がさらに多い。
 加熱時間としては、0.1~60分間の場合が多く、0.2~5分間の場合がより多い。
 工程1により形成される組成物層中のキラル剤の加重平均螺旋誘起力の絶対値は、0μm-1超であることが好ましく、0μm-1超1.9μm-1以下であることがより好ましく、0μm-1超1.5μm-1以下であることがさらに好ましく、0.00μm-1超1.0μm-1以下であることが特に好ましい。
 なお、キラル剤の加重平均螺旋誘起力とは、組成物層中に2種以上のキラル剤が含まれる場合に、組成物層中に含まれる各キラル剤の螺旋誘起力と各キラル剤の組成物層中における濃度(質量%)との積を組成物層中におけるキラル剤の合計濃度(質量%)で除した値の合計値を表す。例えば、2種類のキラル剤(キラル剤Xおよびキラル剤Y)を併用した場合、下記式(Y)により表される。
 式(Y) 加重平均螺旋誘起力(μm-1)=(キラル剤Xの螺旋誘起力(μm-1)×組成物層中におけるキラル剤Xの濃度(質量%)+キラル剤Yの螺旋誘起力(μm-1)×組成物層中におけるキラル剤Yの濃度(質量%))/(組成物層中におけるキラル剤Xの濃度(質量%)+組成物層中におけるキラル剤Yの濃度(質量%))
 ただし、上記式(Y)において、キラル剤の螺旋方向が右巻きの場合、その螺旋誘起力は正の値とする。また、キラル剤の螺旋方向が左巻きの場合、その螺旋誘起力は負の値とする。つまり、例えば、螺旋誘起力が10μm-1のキラル剤の場合、上記キラル剤により誘起される螺旋の螺旋方向が右巻きであるときは、螺旋誘起力を10μm-1として表す。一方、上記キラル剤により誘起される螺旋の螺旋方向が左巻きであるときは、螺旋誘起力を-10μm-1として表す。
 工程1により形成される組成物層中のキラル剤の加重平均螺旋誘起力の絶対値が0μm-1超である場合には、図6に示すように、偏光子12上に、液晶化合物LCが厚み方向に沿って延びる螺旋軸に沿って捩れ配向した組成物層20が形成される。
 なお、図6は、偏光子12と組成物層20との断面の概略図である。図6に示す組成物層20にはキラル剤Aとキラル剤Bとが存在しており、キラル剤Bの濃度がキラル剤Aよりも多く、キラル剤Aにより誘起される螺旋方向が左巻きであり、キラル剤Bにより誘起される螺旋方向が右巻きであるとする。また、キラル剤Aの螺旋誘起力の絶対値と、キラル剤Bの螺旋誘起力の絶対値は同じとする。
(工程3)
 工程3は、工程2の後、酸素の存在下にて、組成物層に対して光照射を行う工程である。以下では、図面を用いて本工程の機構を説明する。
 図7に示すように、上述した工程2では酸素濃度1体積%以上の条件下にて、偏光子12の組成物層20側とは反対側の方向(図7中の白矢印の方向)から光照射を行う。なお、図7では光照射は偏光子12側から実施されているが、組成物層20側から実施されてもよい。
 その際、組成物層20の偏光子12側の第1領域20Aと、偏光子12側とは反対側の第2領域20Bとを比較すると、第2領域20Bの表面のほうが空気側にあるため、第2領域20B中の酸素濃度が高く、第1領域20A中の酸素濃度は低い。そのため、組成物層20に対して光照射がなされると、第1領域20Aにおいては液晶化合物の重合が進行しやすく、液晶化合物の配向状態が固定される。なお、第1領域20Aにおいてもキラル剤Aが存在しており、キラル剤Aも感光し、螺旋誘起力が変化する。しかしながら、第1領域20Aでは液晶化合物の配向状態が固定されているため、後述する、光照射された組成物層に対して加熱処理を施す工程4を実施しても、液晶化合物の配向状態の変化は生じない。
 また、第2領域20Bにおいては酸素濃度が高いため、光照射がなされても、液晶化合物の重合が酸素により阻害され、重合が進行しにくい。そして、第2領域20Bにおいてもキラル剤Aが存在しているため、キラル剤Aが感光し、螺旋誘起力が変化する。そのため、後述する工程4(加熱処理)を実施すると、変化した螺旋誘起力に沿って液晶化合物の配向状態が変化する。
 つまり、工程3を実施することにより、組成物層の偏光子側の領域においては液晶化合物の配向状態の固定化が進行しやすい。また、組成物層の偏光子側と反対側の領域においては、液晶化合物の配向状態の固形化は進行しづらく、感光したキラル剤Aに応じて螺旋誘起力が変化する状態となる。
 工程3は、酸素濃度1体積%以上の条件下にて実施される。なかでも、光学異方性層中において液晶化合物の配向状態が異なる領域が形成しやすい点で、酸素濃度は2体積%以上が好ましく、5体積%以上がより好ましい。上限は特に制限されないが、100体積%が挙げられる。
 工程3における光照射の照射強度は特に制限されず、キラル剤Aの螺旋誘起力に基づいて適宜決定できる。工程3における光照射の照射量は特に制限されないが、所定の光学異方性層が形成されやすい点で、300mJ/cm2以下が好ましく、200mJ/cm2以下がより好ましい。下限としては、所定の光学異方性層が形成されやすい点で、5mJ/cm2以上が好ましく、10mJ/cm2以上がより好ましい。
 なお、工程3での光照射は、15~70℃(好ましくは、15~50℃)にて実施されることが好ましい。
 光照射に使用される光は、キラル剤Aが感光する光であればよい。つまり、光照射に使用される光は、キラル剤Aの螺旋誘起力を変化させる活性光線または放射線であれば特に制限されず、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線、X線、紫外線、および、電子線が挙げられる。なかでも、紫外線が好ましい。
(工程4)
 工程4は、工程3の後、組成物層に加熱処理を施す工程である。本工程を実施することにより、光照射が施された組成物層中のキラル剤Aの螺旋誘起力が変化した領域において、液晶化合物の配向状態が変化する。
 以下では、図面を用いて本工程の機構を説明する。
 上述したように、図7に示した組成物層20に対して工程3を実施すると、第1領域20Aにおいては液晶化合物の配向状態が固定されるのに対して、第2領域20Bでは液晶化合物の重合は進行しづらく、液晶化合物の配向状態が固定されていない。また、第2領域20Bにおいてはキラル剤Aの螺旋誘起力が変化している。このようなキラル剤Aの螺旋誘起力の変化が生じると、光照射前の状態と比較すると、第2領域20Bにおいて液晶化合物を捩じる力が変化している。この点をより詳細に説明する。
 上述したように、図6に示す組成物層20にはキラル剤Aとキラル剤Bとが存在しており、キラル剤Bの濃度がキラル剤Aよりも多く、キラル剤Aにより誘起される螺旋方向が左巻きであり、キラル剤Bにより誘起される螺旋方向が右巻きである。また、キラル剤Aの螺旋誘起力の絶対値と、キラル剤Bの螺旋誘起力の絶対値は同じである。よって、光照射を行う前の組成物層中のキラル剤の加重平均螺旋誘起力は+の値を示す。
 上記の態様を図8に示す。図8においては、縦軸が「キラル剤の螺旋誘起力(μm-1)×キラル剤の濃度(質量%)」を表し、その値がゼロから離れるほど、螺旋誘起力が大きくなる。横軸は「光照射量(mJ/cm)」を表す。
 まず、光照射を行う前の組成物層中のキラル剤Aとキラル剤Bとの関係は、光照射量が0の時点に該当し、「キラル剤Aの螺旋誘起力(μm-1)×キラル剤Aの濃度(質量%)」の絶対値と、「キラル剤Bの螺旋誘起力(μm-1)×キラル剤Bの濃度(質量%)」の絶対値とを比較すると、「キラル剤Bの螺旋誘起力(μm-1)×キラル剤Bの濃度(質量%)」のほうが大きい。つまり、キラル剤Bが誘起する螺旋の方向(+)の螺旋誘起力が生じる。そのため、図6に示すように、厚み方向に沿って、液晶化合物が捩れ配向している。
 このような状態の第2領域20Bにおいて光照射が行われ、図8に示すように、光照射量によってキラル剤Aの螺旋誘起力が減少する場合、図9に示すように、第2領域20Bにおけるキラル剤の加重平均螺旋誘起力は大きくなり、右巻きの螺旋誘起力が強くなる。つまり、液晶化合物の螺旋を誘起する螺旋誘起力は、照射量が大きいほど、キラル剤Bが誘起する螺旋の方向(+)に螺旋誘起力が大きくなる。
 そのため、このような加重平均螺旋誘起力の変化が生じている工程3後の組成物層20に対して、加熱処理を施して液晶化合物の再配向を促すと、図10に示すように、第2領域20Bにおいては、組成物層20の厚み方向に沿って延びる螺旋軸に沿って液晶化合物LCの捩れ角が大きくなる。
 一方で、上述したように、組成物層20の第1領域20Aにおいては工程3の際に液晶化合物の重合が進行して液晶化合物の配向状態が固定されているため、液晶化合物の再配向は進行しない。
 上記のように、工程4を実施することにより、組成物層の厚み方向に沿って、液晶化合物の配向状態が異なる領域が複数形成される。
 上記液晶化合物LCの捩れの程度は、使用されるキラル剤Aの種類、および、工程3の露光量などによって適宜調整でき、所定の捩れ角度を実現できる。
 なお、上記においては、キラル剤Aとして光照射により螺旋誘起力が減少するキラル剤を用いた態様について説明したが、この態様には制限されない。例えば、キラル剤Aとして光照射により螺旋誘起力が増加するキラル剤を用いてもよい。その場合、光照射によりキラル剤Aの誘起する螺旋誘起力が大きくなり、キラル剤Aの誘起する旋回方向に液晶化合物が捩れ配向することになる。
 また、上記においては、キラル剤Aとキラル剤Bとを併用する態様について説明したが、この態様には制限されない。例えば、2種のキラル剤Aを用いる態様であってもよい。具体的には、左巻きを誘起するキラル剤A1と、右巻きを誘起するキラル剤A2とを併用する態様であってもよい。キラル剤A1およびA2は、それぞれ独立に、螺旋誘起力が増加するキラル剤であってもよいし、螺旋誘起力が減少するキラル剤であってもよい。例えば、左巻きを誘起するキラル剤であって、光照射により螺旋誘起力が増加するキラル剤と、右巻きを誘起するキラル剤であって、光照射により螺旋誘起力が減少するキラル剤とを併用してもよい。
 加熱処理の条件としては、使用される液晶化合物に応じて最適な条件が選択される。
 なかでも、加熱温度としては、工程3の状態から加熱する温度であることが好ましく、35~250℃の場合が多く、50~150℃の場合がより多く、50℃超150℃以下の場合がさらに多く、60~130℃の場合が特に多い。
 加熱時間としては、0.01~60分間の場合が多く、0.03~5分間の場合がより多い。
 また、光照射後の組成物層中のキラル剤の加重平均螺旋誘起力の絶対値は特に制限されないが、光照射後の組成物層中のキラル剤の加重平均螺旋誘起力と光照射前の加重平均螺旋誘起力との差の絶対値が、0.05μm-1以上が好ましく、0.05~10.0μm-1がより好ましく、0.1~10.0μm-1がさらに好ましい。
(工程5)
 工程5は、工程4の後、組成物層に対して硬化処理を施して、液晶化合物の配向状態を固定し、第1光学異方性層および第2光学異方性層を形成する工程である。本工程を実施することにより、組成物層中の液晶化合物の配向状態が固定され、結果として所定の光学異方性層が形成される。
 硬化処理の方法は特に制限されず、光硬化処理および熱硬化処理が挙げられる。なかでも、光照射処理が好ましく、紫外線照射処理がより好ましい。
 紫外線照射には、紫外線ランプなどの光源が利用される。
 光(例えば、紫外線)の照射量は特に制限されないが、一般的には、100~800mJ/cm2程度が好ましい。
<他の部材>
 本発明の偏光板は、上述した、偏光子および光学異方性層以外の他の部材を有していてもよい。
(支持体)
 偏光板は、支持体を有していてもよい。上述したように、支持体は偏光子形成用組成物が塗布される被塗布物として含まれ、そのまま偏光板に含まれてもよい。
 支持体としては、透明支持体が好ましい。なお、透明支持体とは、可視光の透過率が60%以上である支持体を意図し、その透過率は80%以上が好ましく、90%以上がより好ましい。
 支持体は、長尺状の支持体(長尺支持体)であってもよい。長尺支持体の長手方向の長さは特に制限されないが、10m以上の支持体が好ましく、生産性の点から、100m以上が好ましい。なお、長手方向の長さは特に制限されず、10000m以下の場合が多い。
 長尺支持体の幅は特に制限されないが、150~3000mmの場合が多く、300~2000mmが好ましい。
 支持体には、種々の添加剤(例えば、光学的異方性調整剤、波長分散調整剤、微粒子、可塑剤、紫外線防止剤、劣化防止剤、および、剥離剤)が含まれていてもよい。
 支持体はその上に設けられる層との接着を改善するため、支持体の表面に表面処理(例えば、グロー放電処理、コロナ放電処理、紫外線(UV)処理、および、火炎処理)を実施してもよい。
 また、支持体の上に、接着層(下塗り層)を設けてもよい。
 支持体は、いわゆる仮支持体であってもよい。
 また、支持体の表面に直接ラビング処理を施してもよい。つまり、ラビング処理が施された支持体を用いてもよい。ラビング処理の方向は特に制限されず、液晶化合物を配向させたい方向に応じて、適宜、最適な方向が選択される。
 ラビング処理は、LCD(liquid crystal display)の液晶配向処理工程として広く採用されている処理方法を適用できる。即ち、支持体の表面を、紙、ガーゼ、フェルト、ゴム、ナイロン繊維、または、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。
 なお、上述したように、支持体は、その表面上に配向層を有していてもよい。
(表面保護層)
 偏光板は、表面保護層を有していてもよい。この表面保護層は、偏光板を画像表示装置に適用した場合に、最も視認側に配置されることが好ましい。
 表面保護層を構成する材料は特に制限されず、無機物であっても、有機物であってもよい。表面保護層としては、ガラス基板、および、ポリイミドおよびセルロースアシレートなどのポリマーフィルムが挙げられる。
 表面保護層の表層には、表面硬化層(ハードコート層)、および、空気界面で生じる表面反射を抑制した低反射層などから選ばれる、1層または複数の層を含んでもよい。
 また、表面保護層の視認側とは反対の面に直接偏光子形成用組成物を塗布し、偏光子を形成してもよい。
 表面保護層の厚さは特に制限されないが、薄型化の点から、800μm以下が好ましく、100μm以下がより好ましい。下限は特に制限されないが、0.1μm以上が好ましい。
 例えば、曲げることが可能な100μm以下の厚みのガラス基板は、有機EL表示装置のフレキシブルな特徴を生かすことが可能となり、好ましい。
 さらに、100μm以下の厚みのガラス基板については、耐衝撃性の点から、保護フィルムとして、(メタ)アクリル系樹脂、ポリエチレンテレフタレート(PET)などのポリエステル系樹脂、トリアセチルセルロース(TAC)などのセルロース系樹脂、および、ノルボルネン系樹脂などのシクロオレフィン系樹脂の樹脂フィルムを接着剤などでガラス基板に貼合することも好ましい。特に、フレキシブル性の点からは、ポリエチレンテレフタレート(PET)をガラス基板に貼合することが好ましく、さらに視認性の点から、3000~10000nmの面内レタデーションを有するポリエチレンテレフタレート(PET)が好ましい。
<有機EL(エレクトロルミネッセンス)表示装置>
 本発明の有機EL表示装置は、上述した偏光板を有する。本発明の偏光板は、円偏光板として好適に適用できる。
 通常、偏光板は、有機EL表示装置の有機EL表示パネル(有機EL表示素子)上に設けられる。偏光板中、偏光子が視認側に配置される。
 有機EL表示パネルは、陽極、陰極の一対の電極間に発光層もしくは発光層を含む複数の有機化合物薄膜を形成した部材であり、発光層のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。各層の形成にはそれぞれ種々の材料を用いることができる。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す具体例により制限的に解釈されるべきものではない。
<実施例1>
(透明支持体の作製)
 下記の組成物をミキシングタンクに投入し、攪拌して、コア層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
―――――――――――――――――――――――――――――――――
コア層セルロースアシレートドープ
―――――――――――――――――――――――――――――――――
・アセチル置換度2.88のセルロースアセテート    100質量部
・特開2015-227955号公報の実施例に
 記載されたポリエステル化合物B            12質量部
・下記化合物F                      2質量部
・メチレンクロライド(第1溶媒)           430質量部
・メタノール(第2溶媒)                64質量部
―――――――――――――――――――――――――――――――――
 化合物F
Figure JPOXMLDOC01-appb-C000005
 上記のコア層セルロースアシレートドープ90質量部に下記のマット剤溶液を10質量部加え、外層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
―――――――――――――――――――――――――――――――――
マット剤溶液
―――――――――――――――――――――――――――――――――
・平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)   2質量部
・メチレンクロライド(第1溶媒)            76質量部
・メタノール(第2溶媒)                11質量部
・上記のコア層セルロースアシレートドープ         1質量部
―――――――――――――――――――――――――――――――――
 上記コア層セルロースアシレートドープと上記外層セルロースアシレートドープを平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルタでろ過した後、上記コア層セルロースアシレートドープとその両側に外層セルロースアシレートドープとを3層同時に流延口から20℃のドラム上に流延した(バンド流延機)。
 次いで、フィルム中の溶媒含有率が略20質量%の状態でドラム上のフィルムを剥ぎ取り、フィルムの幅方向の両端をテンタークリップで固定し、横方向に延伸倍率1.1倍でフィルムを延伸しつつ乾燥した。
 その後、得られたフィルムを熱処理装置のロール間を搬送することにより、さらに乾燥し、厚み40μmの透明支持体を作製し、これをセルロースアシレートフィルムA1とした。
(光配向膜B1の形成)
 後述する光配向膜形成用組成物を、ワイヤーバーで連続的に上記セルロースアシレートフィルムA1上に塗布した。塗膜が形成された支持体を140℃の温風で120秒間乾燥し、続いて、塗膜に対して偏光紫外線照射(10mJ/cm、超高圧水銀ランプ使用)することで、光配向膜を形成し、光配向膜付きTAC(トリアセチルセルロース)フィルムを得た。光配向膜の膜厚は0.25μmであった。
―――――――――――――――――――――――――――――――――
光配向膜形成用組成物
―――――――――――――――――――――――――――――――――
・下記重合体PA-1              100.00質量部
・下記酸発生剤PAG-1              8.25質量部
・下記安定化剤DIPEA               0.6質量部
・キシレン                  1126.60質量部
・メチルイソブチルケトン            125.18質量部
―――――――――――――――――――――――――――――――――
 重合体PA-1(式中、各繰り返し単位に記載の数値は、全繰り返し単位に対する各繰り返しの含有量(質量%)を表す。)
Figure JPOXMLDOC01-appb-C000006
 酸発生剤PAG-1
Figure JPOXMLDOC01-appb-C000007
 安定化剤DIPEA
Figure JPOXMLDOC01-appb-C000008
(偏光子の作製)
 得られた光配向膜上に、下記組成の偏光子形成用組成物をワイヤーバーで連続的に塗布し、塗膜を形成した。
 次に、塗膜を140℃で15秒間加熱し、塗膜を室温(23℃)になるまで冷却した。
 次に、塗膜を75℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、LED(light emitting diode)灯(中心波長365nm)を用いて照度200mW/cmの照射条件で2秒間照射することにより、光配向膜上に偏光子(厚み:1.8μm)を作製した。偏光子を分光光度計により280~780nmの波長域における透過率を測定したところ、可視光平均透過率は42%であった。偏光子の吸収軸は、セルロースアシレートフィルムA1の幅方向に対して、直交であった。
―――――――――――――――――――――――――――――――――
偏光子形成用組成物の組成
―――――――――――――――――――――――――――――――――
・上記第1の二色性物質Dye-C1         0.65質量部
・上記第2の二色性物質Dye-M1         0.15質量部
・上記第3の二色性物質Dey-Y1         0.52質量部
・下記液晶化合物(L-1)             2.50質量部
・下記棒状液晶化合物(L-2)           1.50質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)   0.17質量部
・下記界面活性剤(F-1)             0.01質量部
・シクロペンタノン                92.14質量部
・ベンジルアルコール                2.36質量部
―――――――――――――――――――――――――――――――――
 二色性物質Dye-C1
Figure JPOXMLDOC01-appb-C000009
 二色性物質Dye-M1
Figure JPOXMLDOC01-appb-C000010
 二色性物質Dye-Y1
Figure JPOXMLDOC01-appb-C000011
 液晶化合物(L-1)(式中、各繰り返し単位に記載の数値(「59」、「15」、「26」)は、全繰り返し単位に対する各繰り返しの含有量(質量%)を表す。)
Figure JPOXMLDOC01-appb-C000012
 棒状液晶化合物(L-2)
Figure JPOXMLDOC01-appb-C000013
 界面活性剤(F-1)(式中、各繰り返し単位に記載の数値は、全繰り返し単位に対する各繰り返しの含有量(質量%)を表す。)
Figure JPOXMLDOC01-appb-C000014
(光学異方性層の形成)
 上記作製した偏光子上に、下記の組成の棒状液晶化合物を含む光学異方性層形成用組成物を塗布し、得られた組成物層を60℃で100秒間加熱した。なお、組成物層中におけるキラル剤の加重平均螺旋誘起力の絶対値は、0.03μm-1であった。
 その後、空気(酸素濃度:約20体積%)下にて、40℃で、照射量52mJ/cmの365nmLEDランプ(アクロエッジ(株)製)の光を組成物層に照射し、組成物層中の偏光子側の約半分の領域における液晶化合物の配向状態を固定化した。
 さらに、得られた組成物層を60℃で30秒間加熱した。
 その後、窒素雰囲気下、55℃にて、メタルハライドランプ(アイグラフィックス(株)製)の光(照射量500mJ/cm)を組成物層に照射することで、塗膜中の空気側の半分の領域における液晶化合物を固定化し、光学異方性層(厚み:3.0μm)を形成、円偏光板1を作製した。
 光学異方性層は、2つの異なる光学異方性を示す層から構成されており、光学異方性層中の偏光子側の層(第1光学異方性層)は厚み方向を螺旋軸として捩れ配向した棒状液晶化合物を固定してなる層であり、層中の液晶化合物の分子軸が光学異方性層の表面に対して水平であり、この層のΔndは282nmであり、面内遅相軸の方向は偏光子側の表面において0°、空気側の表面において-26.5°(捩れ角=26.5°)であった。
 また、光学異方性層中の空気側の層(第2光学異方性層)は厚み方向を螺旋軸として捩れ配向した棒状液晶化合物を固定してなる層であり、層中の液晶化合物の分子軸が光学異方性層の表面に対して水平であり、この層のΔndは140nmであり、面内遅相軸の方向は偏光子側の表面において-26.5°、空気側の表面において-105.1°(捩れ角=78.6°)であった。
 なお、上記角度は、偏光子側から光学異方性層を観察した際に、偏光子の吸収軸を基準(0°)に反時計回り方向を正の値で表す。
――――――――――――――――――――――――――――――――――
 光学異方性層形成用組成物
――――――――――――――――――――――――――――――――――
上記の棒状液晶化合物(L-2)              80質量部
下記の棒状液晶化合物(B)                10質量部
下記の重合性化合物(C)                 10質量部
エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)           4質量部
光重合開始剤(Irgacure819、BASF社製)    3質量部
下記の左捩れキラル剤(L1)             0.59質量部
下記の右捩れキラル剤(R1)             0.39質量部
下記のポリマー(A)                 0.08質量部
下記のポリマー(B)                 0.50質量部
メチルイソブチルケトン                 121質量部
プロピオン酸エチル                    41質量部
――――――――――――――――――――――――――――――――――
棒状液晶化合物(B)
Figure JPOXMLDOC01-appb-C000015
重合性化合物(C)
Figure JPOXMLDOC01-appb-C000016
 左捩れキラル剤(L1)
Figure JPOXMLDOC01-appb-C000017
 右捩れキラル剤(R1)
Figure JPOXMLDOC01-appb-C000018
 ポリマー(A)(式中、各繰り返し単位に記載の数値は、全繰り返し単位に対する各繰り返しの含有量(質量%)を表す。)
Figure JPOXMLDOC01-appb-C000019
 ポリマー(B)(式中、各繰り返し単位に記載の数値は、全繰り返し単位に対する各繰り返しの含有量(質量%)を表す。)
Figure JPOXMLDOC01-appb-C000020
(粘着剤層の作製)
 次に、以下の手順に従い、アクリレート系重合体を調製した。
 冷却管、窒素導入管、温度計および撹拌装置を備えた反応容器に、アクリル酸ブチル(95質量部)、および、アクリル酸(5質量部)を溶液重合法により重合させて、平均分子量200万、分子量分布(Mw/Mn)3.0のアクリレート系重合体(S1)を得た。
 次に、得られたアクリレート系重合体(S1)を用いて、以下の組成の粘着剤層形成用組成物を得た。
―――――――――――――――――――――――――――――――――
粘着剤層形成用組成物
―――――――――――――――――――――――――――――――――
・アクリレート系重合体(S1)            100質量部
・下記(A)多官能アクリレート系モノマー      11.1質量部
・下記(B)光重合開始剤               1.1質量部
・下記(C)イソシアネート系架橋剤          1.0質量部
・下記(D)シランカップリング剤           0.2質量部
―――――――――――――――――――――――――――――――――
 (A)多官能アクリレート系モノマー:トリス(アクリロイロキシエチル)イソシアヌレート、分子量=423、3官能型(東亜合成社製、商品名「アロニックスM-315」)
 (B)光重合開始剤:ベンゾフェノンと1-ヒドロキシシクロヘキシルフェニルケトンとの質量比1:1の混合物、チバ・スペシャルティ・ケミカルズ社製「イルガキュア500」
 (C)イソシアネート系架橋剤:トリメチロールプロパン変性トリレンジイソシアネート(日本ポリウレタン社製「コロネートL」)
 (D)シランカップリング剤:3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製「KBM-403」)
 この粘着剤層形成用組成物を、シリコーン系剥離剤で表面処理したセパレートフィルムにダイコーターを用いて塗布し、得られた塗膜を90℃の環境下で1分間乾燥させた。次に、得られた塗膜に対して、紫外線(UV)を下記条件で照射して、粘着剤層を得た。粘着剤層の厚みは15μmであった。
-UV照射条件-
 ・フュージョン社無電極ランプ Hバルブ
 ・照度600mW/cm、光量150mJ/cm
 ・UV照度・光量は、アイグラフィックス製「UVPF-36」を用いて測定した。
 有機EL表示パネル搭載のSAMSUNG社製GALAXY S5を分解し、有機EL表示装置から、円偏光板付きタッチパネルを剥離し、さらにタッチパネルから円偏光板を剥がし、有機EL表示パネル、タッチパネルおよび円偏光板をそれぞれ単離した。続いて、単離したタッチパネルを有機EL表示パネルと再度貼合し、さらに上記で作製した円偏光板1の光学異方性層側を空気が入らないようにして、上記で作製した粘着剤層を介してタッチパネル上に貼合した。さらに、円偏光板1のセルロースアシレートフィルムA1を剥離し、剥離した面に、上記で作製した粘着剤層を用いて、低反射表面フィルムCV-LC5(富士フイルム社製)の支持体側を貼合し、有機EL表示装置を作製した。
<実施例2~4、比較例4>
 偏光子形成用組成物の二色性物質Dye-Y1、Dye-M1、Dye-C1、液晶化合物(L-1)、および、棒状液晶化合物(L-2)の使用量を表1に記載の添加量質量部に変更した以外は、実施例1と同様の方法で円偏光板2~4および円偏光板C4を作製し、さらに有機EL表示装置を作製した。
<実施例5~6>
 棒状液晶化合物(L-2)を、表1のように、棒状液晶化合物(L-3)または棒状液晶化合物(L-4)に変更した以外は、実施例2と同様の方法で円偏光板5~6を作製し、さらに有機EL表示装置を作製した。
 なお、後述する表1に記載の棒状液晶化合物(L-3)は、以下の構造である。
Figure JPOXMLDOC01-appb-C000021
 また、後述する表1に記載の棒状液晶化合物(L-4)は、以下の構造である。
Figure JPOXMLDOC01-appb-C000022
<実施例7~8>
 偏光子形成用組成物を塗布する支持体を低反射表面フィルムCV-LC5(富士フイルム社製)に変更した以外は、実施例1と同様の方法で円偏光板7を作製した。
 また、偏光子形成用組成物を塗布する支持体を、ARフィルム(Dexerials社、AR100;91μm)と50μm厚のガラス基材(SHOTT社、D263)とを上記で作製した粘着剤層を用いて貼り合わせたARフィルム付きガラス(ARガラス1)に変更した以外は、実施例1と同様の方法で円偏光板8を作製した。
 有機EL表示パネル搭載のSAMSUNG社製GALAXY S5を分解し、有機EL表示装置から、円偏光板付きタッチパネルを剥離し、さらにタッチパネルから円偏光板を剥がし、有機EL表示パネル、タッチパネルおよび円偏光板をそれぞれ単離した。続いて、単離したタッチパネルを有機EL表示パネルと再度貼合し、さらに上記で作製した円偏光板7および8の光学異方性層側を空気が入らないようにして、上記で作製した粘着剤層を介してタッチパネル上に貼合し、有機EL表示装置を作製した。
<実施例9~11>
 偏光子形成用組成物を塗布する支持体を、市販のコスモシャインSRF(膜厚80μm)、市販のシクロオレフィンフィルム、または、ゼオノアZB12(膜厚50μm)(日本ゼオン社製)に変更した以外は、実施例1と同様の方法で円偏光板9~11を作製した。
 有機EL表示パネル搭載のSAMSUNG社製GALAXY S5を分解し、有機EL表示装置から、円偏光板付きタッチパネルを剥離し、さらにタッチパネルから円偏光板を剥がし、有機EL表示パネル、タッチパネルおよび円偏光板をそれぞれ単離した。続いて、単離したタッチパネルを有機EL表示パネルと再度貼合し、さらに上記で作製した円偏光板9~11の光学異方性層側を空気が入らないようにして、上記で作製した粘着剤層を介してタッチパネル上に貼合した。さらに、上記で作製した粘着剤層を用いて、表1に記載のとおり、低反射表面フィルムCV-LC5(富士フイルム社製)の支持体側、または、ARガラス1のガラス側を貼合し、有機EL表示装置を作製した。
<比較例1>
(セルロースアシレートフィルムA2の作製)
 下記セルロースアシレートドープとなる成分をミキシングタンクに投入し、攪拌して、得られた組成物を90℃で10分間加熱した。
 その後、得られた組成物を、平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過して、ドープを調製した。ドープの固形分濃度は23.5質量%であり、可塑剤の添加量はセルロースアシレートに対する割合であり、ドープの溶媒は塩化メチレン/メタノール/ブタノール=81/18/1(質量比)である。
――――――――――――――――――――――――――――――――――
セルロースアシレートドープ
――――――――――――――――――――――――――――――――――
セルロースアシレート(アセチル置換度2.86、粘度平均重合度310)
                            100質量部
糖エステル化合物1(化学式(S4)に示す)       6.0質量部
糖エステル化合物2(化学式(S5)に示す)       2.0質量部
シリカ粒子分散液(AEROSIL R972、日本アエロジル(株)製)
                            0.1質量部
溶媒(塩化メチレン/メタノール/ブタノール)
――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 上記で作製したドープを、ドラム製膜機を用いて流延した。0℃に冷却された金属支持体上に接するようにドープをダイから流延し、その後、得られたウェブ(フィルム)を剥ぎ取った。なお、ドラムはSUS製であった。
 流延されて得られたウェブ(フィルム)を、ドラムから剥離後、フィルム搬送時に30~40℃で、クリップでウェブの両端をクリップして搬送するテンター装置を用いてテンター装置内で20分間乾燥した。引き続き、得られたウェブをロール搬送しながらゾーン加熱により後乾燥した。得られたウェブにナーリングを施した後、巻き取った。得られたセルロースアシレートフィルムの膜厚は40μmであり、波長550nmにおける面内レタデーションRe(550)は1nm、厚み方向のレタデーションRth(550)は26nmであった。
(光学異方性層の形成)
 上記作製したセルロースアシレートフィルムA2に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向(搬送方向)とラビングローラーの回転軸とのなす角度は90°とした。
 上記ラビング処理したセルロースアシレートフィルムA2を基板として、ギーサー塗布機を用いて、上述した光学異方性層形成用組成物を塗布した以外は、実施例1と同様の方法でセルロースアシレートフィルムA2上に光学異方性層を形成し、光学異方性フィルムを作製した。
 次に、上記で作製した粘着剤層を用いて、光学異方性フィルムのセルロースアシレートフィルムA2側を、実施例1で作製した偏光子に貼合し、円偏光板C1を作製した。得られた円偏光板C1では、偏光子と光学異方性層とが粘着剤層を介して貼合されていた。
 有機EL表示パネル搭載のSAMSUNG社製GALAXY S5を分解し、有機EL表示装置から、円偏光板付きタッチパネルを剥離し、さらにタッチパネルから円偏光板を剥がし、有機EL表示パネル、タッチパネルおよび円偏光板をそれぞれ単離した。続いて、単離したタッチパネルを有機EL表示パネルと再度貼合し、さらに上記で作製した円偏光板C1の光学異方性層側を空気が入らないようにして、上記で作製した粘着剤層を介してタッチパネル上に貼合した。さらに、円偏光板C1のセルロースアシレートフィルムA1を剥離し、剥離した面に、上記で作製した粘着剤層を用いて、低反射表面フィルムCV-LC5(富士フイルム社製)の支持体側を貼合し、有機EL表示装置を作製した。
<比較例2>
 下記のUV接着剤S1を調製した。
─────────────────────────────────
UV接着剤S1
―――――――――――――――――――――――――――――――――
・CEL2021P(ダイセル社製)           70質量部
・1、4-ブタンジオールジグリシジルエーテル      20質量部
・2-エチルヘキシルグリシジルエーテル         10質量部
・CPI-100P                 2.25質量部
─────────────────────────────────
 CEL2021P
Figure JPOXMLDOC01-appb-C000025
 CPI-100P
Figure JPOXMLDOC01-appb-C000026
 上記UV接着剤S1を用いて、比較例1で作製した光学異方性フィルムのセルロースアシレートフィルムA2側を、実施例1で作製した偏光子に貼合し、得られた積層体に対して1000mJの照度で露光して硬化させ、円偏光板C2を作製した。得られた円偏光板では、偏光子と光学異方性層とがUV接着剤を介して貼合されていた。
 次に、円偏光板C1のかわりに円偏光板C2を用いた以外は、比較例1と同様の手順に従って、有機EL表示装置を作製した。
<比較例3>
 実施例1で作製した偏光子上に、下記組成の配向膜塗布液をワイヤーバーで連続的に塗布した。その後、得られた塗膜を80℃の温風で5分間乾燥することにより、厚み0.5μmのポリビニルアルコール(PVA)からなる配向膜が形成された積層体を得た。得られた積層体は、セルロースアシレートフィルムA1(透明支持体)、光配向膜、偏光子、および、PVAからなる配向膜をこの順に隣接して有する。
 上記作製した積層体の配向膜側の表面に、連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向(搬送方向)とラビングローラーの回転軸とのなす角度は90°とした。
―――――――――――――――――――――――――――――――――
配向膜塗布液
―――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコール          3.80質量部
・開始剤Irg2959               0.20質量部
・水                          70質量部
・メタノール                      30質量部
―――――――――――――――――――――――――――――――――
 変性ポリビニルアルコール
Figure JPOXMLDOC01-appb-C000027
 上記ラビング処理した積層体を基板として、ギーサー塗布機を用いて、上述した光学異方性層形成用組成物を塗布した以外は、実施例1と同様の方法で積層体上に光学異方性層を形成し、円偏光板C3を作製した。
 次に、円偏光板C1のかわりに円偏光板C3を用いた以外は、比較例1と同様の手順に従って、有機EL表示装置を作製した。
<比較例5>
 特許5753922号公報に記載の実施例17に記載の方法で、セルロースアシレートフィルム、配向膜、光学異方性層、および、偏光子層からなる円偏光板C5を作製した。
 有機EL表示パネル搭載のSAMSUNG社製GALAXY S5を分解し、有機EL表示装置から、円偏光板付きタッチパネルを剥離し、さらにタッチパネルから円偏光板を剥がし、有機EL表示パネル、タッチパネルおよび円偏光板をそれぞれ単離した。続いて、単離したタッチパネルを有機EL表示パネルと再度貼合し、さらに上記で作製した円偏光板C5の支持体側を空気が入らないようにして、上記で作製した粘着剤層を介してタッチパネル上に貼合した。さらに、上記で作製した粘着剤層を用いて、低反射表面フィルムCV-LC5(富士フイルム社製)の支持体側を偏光子表面と貼合し、有機EL表示装置を作製した。
 なお、実施例1~11で得られた円偏光板をTOF-SIMS法で深さ方向の成分を分析したところ、図2に示すように、所定の深さ位置において、偏光子に含まれる成分に由来する2次イオン強度を示すプロファイル(線)と、光学異方性層に含まれる成分に由来する2次イオン強度を示すプロファイル(線)とが交差していた。
 一方で、比較例1~4においては、図2に示す、偏光子に含まれる成分に由来する2次イオン強度を示すプロファイル(線)と、光学異方性層に含まれる成分に由来する2次イオン強度を示すプロファイル(線)とが交差するような結果は得られなかった。
<耐久性評価>
 作製した有機EL表示装置について、95℃、相対湿度10%未満の環境下で、1000時間経時させた。その後、得られた有機EL表示装置の表示画面を黒表示にして、正面から蛍光灯を映しこんだときの反射光を観察した。下記の基準に基づいて表示性能を評価した。評価結果を下記表1に示す。
 <評価基準>
 A:黒色で色づきが全く視認されず、かつ、反射率が低い
 B:わずかに着色が視認されるが、反射率が低い
 C:わずかに着色が視認され、かつ、反射率が高い
 D:着色が明らかに視認され、かつ、反射率が高い
 表1中、「二色性物質の濃度」欄は、偏光子全質量に対する二色性物質の含有量(質量%)を表す。
 表1中の「貼合方法」欄は、偏光子と光学異方性層との貼合方法を表し、「積層塗布」は、偏光子と光学異方性層とが隣接して配置されるように、偏光子上に光学異方性層形成用組成物を塗布して光学異方性層を形成する方法を表す。「PSA」は、粘着剤層を介して偏光子と光学異方性層とを貼合する方法を表す。「UV接着」は、UV接着剤を介して偏光子と光学異方性層とを貼合する方法を表す。「PVA配向膜」は、PVA配向膜を用いて光学異方性層を形成する方法を表し、この形態においては偏光子と光学異方性層との間にPVA配向膜が配置されている。
 表1中の「軸ズレ(°)」欄は、偏光子の吸収軸と、光学異方性層の偏光子側の表面の面内遅相軸(言い換えれば、第1光学異方性層の偏光子側の表面の面内遅相軸)とのなす角度を表す。
 表1中の「ΔlogP」は、液晶化合物のlogPと二色性物質のlogPの差の絶対値を表す。なお、「ΔlogP」としては、3種の二色性物質(Dye-Y1、Dye-M1、Dye-C1)それぞれのlogPと、第2液晶化合物のlogPとの差の絶対値のうち、最も小さいものを示す。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 表1に示すように、本発明の偏光板を使用すると所望の効果が得られることが確認された。
 なかでも、実施例5および6より、ΔloPが3.0以上の場合、より効果が優れることが確認された。
 10A,10B  偏光板
 12  偏光子
 14,140  光学異方性層
 16  第1光学異方性層
 18  第2光学異方性層
 20  組成物層
 20A  第1領域
 20B  第2領域

Claims (10)

  1.  第1液晶化合物および二色性物質を含む組成物を用いて形成された偏光子と、
     前記偏光子と隣接して配置された、第2液晶化合物を含む組成物を用いて形成された光学異方性層とを有し、
     前記偏光子中における前記二色性物質の含有量が、前記偏光子全質量に対して、40質量%以下である、偏光板。
  2.  前記偏光子中における前記二色性物質の含有量が、前記偏光子全質量に対して、30質量%以下である、請求項1に記載の偏光板。
  3.  前記偏光子の吸収軸と、前記光学異方性層の前記偏光子側の表面における面内遅相軸とのなす角度が、1°以内である、請求項1または2に記載の偏光板。
  4.  前記光学異方性層が、厚み方向を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層である、請求項1~3のいずれか1項に記載の偏光板。
  5.  前記光学異方性層が、厚み方向を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層を複数有し、
     複数の前記層における、前記第2液晶化合物の捩れ角がそれぞれ異なる、請求項1~4のいずれか1項に記載の偏光板。
  6.  前記光学異方性層が、厚み方向を螺旋軸とする捩れ配向した第2液晶化合物を固定してなる層を複数有し、
     複数の前記層が、それぞれ、前記層の厚みに対する前記第2液晶化合物の捩れ角の比が異なる、請求項1~5のいずれか1項に記載の偏光板。
  7.  前記光学異方性層が、第1光学異方性層と、第2光学異方性層とを有し、
     前記第1光学異方性層が、前記偏光子側に配置され、
     前記第1光学異方性層および前記第2光学異方性層が、厚み方向を螺旋軸とする捩れ配向した前記第2液晶化合物を固定してなる層であり、
     前記第1光学異方性層中の前記第2液晶化合物の捩れ方向と前記第2光学異方性層中の前記第2液晶化合物の捩れ方向とが同じであり、
     前記第1光学異方性層中の前記第2液晶化合物の捩れ角が26.5±10.0°であり、
     前記第2光学異方性層中の前記第2液晶化合物の捩れ角が78.6±10.0°であり、
     前記第1光学異方性層の前記第2光学異方性層側の表面での面内遅相軸と、前記第2光学異方性層の前記第1光学異方性層側の表面での面内遅相軸とは平行であり、
     波長550nmで測定した前記第1光学異方性層の屈折率異方性Δn1と前記第1光学異方性層の厚みd1との積Δn1・d1の値と、波長550nmで測定した前記第2光学異方性層の屈折率異方性Δn2と前記第2光学異方性層の厚みd2との積Δn2・d2の値とが、それぞれ下記式(1)および式(2)を満たす、請求項1~6のいずれか1項に記載の偏光板。
     式(1) 252nm≦Δn1・d1≦312nm
     式(2) 110nm≦Δn2・d2≦170nm
  8.  飛行時間型2次イオン質量分析法で偏光子の深さ方向の成分分析をした際に、前記二色性物質由来の2次イオン強度の最大強度Imaxと、前記偏光子の前記光学異方性層側とは反対側の表面における前記二色性物質由来の2次イオン強度の強度Isur1との関係が、式(3)を満たす、請求項1~7のいずれか1項に記載の偏光板。
     式(3)  2.0≦Imax/Isur1
  9.  前記第2液晶化合物のlogPと、前記二色性物質のlogPとの差の絶対値が3.0以上である、請求項1~8のいずれか1項に記載の偏光板。
  10.  請求項1~9のいずれか1項に記載の偏光板を有する、有機エレクトロルミネッセンス表示装置。
PCT/JP2021/030773 2020-09-09 2021-08-23 偏光板、有機エレクトロルミネッセンス表示装置 WO2022054556A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180054993.9A CN116075876A (zh) 2020-09-09 2021-08-23 偏振片、有机电致发光显示装置
JP2022547476A JPWO2022054556A1 (ja) 2020-09-09 2021-08-23
US18/177,563 US20230225176A1 (en) 2020-09-09 2023-03-02 Polarizing plate and organic electroluminescence display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-151536 2020-09-09
JP2020151536 2020-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/177,563 Continuation US20230225176A1 (en) 2020-09-09 2023-03-02 Polarizing plate and organic electroluminescence display device

Publications (1)

Publication Number Publication Date
WO2022054556A1 true WO2022054556A1 (ja) 2022-03-17

Family

ID=80631612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030773 WO2022054556A1 (ja) 2020-09-09 2021-08-23 偏光板、有機エレクトロルミネッセンス表示装置

Country Status (4)

Country Link
US (1) US20230225176A1 (ja)
JP (1) JPWO2022054556A1 (ja)
CN (1) CN116075876A (ja)
WO (1) WO2022054556A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090167A1 (ja) * 2022-10-28 2024-05-02 富士フイルム株式会社 発光装置
WO2024162384A1 (ja) * 2023-01-31 2024-08-08 富士フイルム株式会社 組成物、光学フィルムの製造方法、光学異方性層

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151262A (ja) * 2000-11-08 2002-05-24 Idemitsu Kosan Co Ltd 色変換フィルタおよびその製造方法
JP2014209220A (ja) * 2013-03-25 2014-11-06 富士フイルム株式会社 円偏光板用位相差板、円偏光板、有機el表示装置
CN105807354A (zh) * 2014-12-30 2016-07-27 财团法人工业技术研究院 抗环境光反射膜
JP2019168691A (ja) * 2018-03-23 2019-10-03 東洋紡株式会社 可撓性画像表示装置、及びそれに用いる円偏光板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151262A (ja) * 2000-11-08 2002-05-24 Idemitsu Kosan Co Ltd 色変換フィルタおよびその製造方法
JP2014209220A (ja) * 2013-03-25 2014-11-06 富士フイルム株式会社 円偏光板用位相差板、円偏光板、有機el表示装置
CN105807354A (zh) * 2014-12-30 2016-07-27 财团法人工业技术研究院 抗环境光反射膜
JP2019168691A (ja) * 2018-03-23 2019-10-03 東洋紡株式会社 可撓性画像表示装置、及びそれに用いる円偏光板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090167A1 (ja) * 2022-10-28 2024-05-02 富士フイルム株式会社 発光装置
WO2024162384A1 (ja) * 2023-01-31 2024-08-08 富士フイルム株式会社 組成物、光学フィルムの製造方法、光学異方性層

Also Published As

Publication number Publication date
US20230225176A1 (en) 2023-07-13
JPWO2022054556A1 (ja) 2022-03-17
CN116075876A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
JP6375381B2 (ja) 光学フィルム、照明装置および画像表示装置
JP7402332B2 (ja) 光吸収異方性膜、積層体および画像表示装置
WO2022054556A1 (ja) 偏光板、有機エレクトロルミネッセンス表示装置
JP2006201746A (ja) 楕円偏光板およびそれを用いた画像表示装置
JP6262351B2 (ja) フィルム、フィルムの製造方法、輝度向上フィルム、光学シート部材および液晶表示装置
JP6999798B2 (ja) 光学フィルムおよび光学フィルムの製造方法
JP2020173460A (ja) 光学フィルム、偏光板および画像表示装置
WO2021246286A1 (ja) 光学要素、画像表示装置、仮想現実表示装置、電子ファインダー、偏光子の製造方法
WO2021002333A1 (ja) 液晶組成物、液晶層、積層体および画像表示装置
JPWO2020122116A1 (ja) 光吸収異方性膜、積層体および画像表示装置
JP7335900B2 (ja) 偏光板、液晶表示装置、有機電界発光装置
US20220204855A1 (en) Liquid crystal composition, optical film, circularly polarizing plate for organic el display, and method for producing optically anisotropic layer
JP4413117B2 (ja) 位相差フィルム、偏光板、液晶パネル、液晶表示装置及び位相差フィルムの製造方法
WO2022202268A1 (ja) 視角制御システム、画像表示装置、光学異方性層、積層体
WO2021033631A1 (ja) 光学異方性層の製造方法、積層体の製造方法、偏光子付き光学異方性層の製造方法、偏光子付き積層体の製造方法、組成物、光学異方性層
JP7417623B2 (ja) 光学積層体、偏光板、および、画像表示装置
WO2014168258A1 (ja) 光学異方性フィルムの製造方法
WO2022045187A1 (ja) 光学フィルム、円偏光板、有機エレクトロルミネッセンス表示装置
WO2021132624A1 (ja) 光学フィルム、円偏光板、有機エレクトロルミネッセンス表示装置
WO2024048193A1 (ja) 光吸収異方性膜及びその製造方法、積層体、並びに、画像表示装置
WO2022059569A1 (ja) 光学フィルム、円偏光板、有機エレクトロルミネッセンス表示装置
WO2024176900A1 (ja) 液晶組成物、液晶硬化層、光学フィルム、偏光板、画像表示装置および共重合体
WO2022045188A1 (ja) 光学フィルム、円偏光板、有機エレクトロルミネッセンス表示装置
WO2021111859A1 (ja) 光吸収異方性膜の製造方法
WO2023054164A1 (ja) 液晶組成物、液晶硬化層、光学フィルム、偏光板および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866516

Country of ref document: EP

Kind code of ref document: A1