WO2021157163A1 - プラグ及び蒸気配管構造物並びにプラグの設置方法 - Google Patents

プラグ及び蒸気配管構造物並びにプラグの設置方法 Download PDF

Info

Publication number
WO2021157163A1
WO2021157163A1 PCT/JP2020/044029 JP2020044029W WO2021157163A1 WO 2021157163 A1 WO2021157163 A1 WO 2021157163A1 JP 2020044029 W JP2020044029 W JP 2020044029W WO 2021157163 A1 WO2021157163 A1 WO 2021157163A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam pipe
plug
groove
outer peripheral
hole
Prior art date
Application number
PCT/JP2020/044029
Other languages
English (en)
French (fr)
Inventor
純之 下田
佐藤 公彦
大山 博之
時吉 巧
紘希 片渕
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Publication of WO2021157163A1 publication Critical patent/WO2021157163A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/02Arrangements of auxiliary equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • This disclosure relates to plugs, steam piping structures, and plug installation methods.
  • a large boiler used in a power plant or the like has a hollow furnace that is installed in the vertical direction, and a plurality of combustion burners are arranged along the circumferential direction of the furnace on the furnace wall. Further, in the boiler, a flue is connected to the upper part in the vertical direction of the furnace, and a heat exchanger for generating steam is arranged in this flue. Then, the combustion burner injects a mixture of fuel and air (oxidizing gas) into the furnace to form a flame, and combustion gas is generated and flows into the flue.
  • a heat exchanger is installed in the area where the combustion gas flows, and superheated steam is generated by heating the water or steam flowing in the heat transfer tube constituting the heat exchanger.
  • the steam line used in a power plant with a boiler is constructed by connecting multiple steam pipes by welding.
  • a radiation transmission test may be performed to ensure the soundness of the joint (presence or absence of defects). Therefore, a through hole for inserting a radiation test device (radiation source) is formed inside the steam pipe in the vicinity of the joint.
  • the radiation transmission test is usually performed only once after welding, and it is necessary to close the drilled through hole after the radiation transmission test is completed.
  • Patent Document 1 discloses a closing plug.
  • the closing plug of Patent Document 1 is a plug in which a body portion, a shoulder portion and a head portion are formed, and is fixed to the steam pipe by welding the lower surface of the head portion and the steam pipe.
  • the closing plug and the steam pipe are welded in the form of so-called fillet welding, and the molten metal does not completely melt in the vicinity of the boundary between the head and the steam pipe.
  • the unwelded portion has a notch shape, which may facilitate stress concentration. Therefore, if the stress acting on the steam pipe due to the internal pressure is concentrated on the notched unwelded portion, cracks may occur starting from the unwelded portion. In this way, when a crack occurs in a part of the welded part, the crack may be extended to damage the outer surface near the welded part, and steam may leak from the damaged part. ..
  • the present disclosure has been made in view of such circumstances, and provides a plug, a steam pipe structure, and a method for installing the plug, which can suppress the occurrence of an unwelded portion in a portion to be welded.
  • the purpose is to suppress the occurrence of an unwelded portion in a portion to be welded.
  • the plug according to one aspect of the present disclosure is a plug that closes a through hole formed in a steam pipe from the outer peripheral surface side of the steam pipe, and has a columnar base portion extending in the axial direction and a tube base portion.
  • the steam pipe structure includes a steam pipe having a through hole and the above plug, and the plug has a groove portion abutted against an outer peripheral surface of the steam pipe.
  • a welded portion is formed between the groove surface of the groove portion and the outer peripheral surface of the steam pipe and is connected to the steam pipe.
  • the plug installation method is a plug that closes a through hole formed in a steam pipe from the outer peripheral surface side of the steam pipe, and is a tubular base formed in a columnar shape extending in the axial direction.
  • It is a method of installing a plug including a straight surface extending along the axial direction toward the pipe, and a groove portion formed so as to protrude from the pedestal portion by the groove surface and the straight surface. The first step of abutting the groove portion against the steam pipe and the second step of welding between the groove surface and the outer peripheral surface of the steam pipe to form a welded portion are included.
  • FIG. 1 is a schematic view showing a steam, condensate, and water supply system in a boiler power plant.
  • the boiler power generation plant is connected to the boiler heat exchangers 102, 103, 104, the steam turbine 110 rotationally driven by the steam generated by the boiler, and the steam turbine 110, and generates power according to the rotation of the steam turbine 110. It is equipped with a generator 115.
  • the steam turbine 110 is composed of, for example, a high-pressure turbine 111, a medium-pressure turbine 112, and a low-pressure turbine 113, and steam from reheaters 105 and 106, which will be described later, flows into the medium-pressure turbine 112 and then flows into the low-pressure turbine 113. do.
  • a condenser 114 is connected to the low-pressure turbine 113, and the steam that rotationally drives the low-pressure turbine 113 is cooled by the condenser 114 with cooling water (for example, seawater) to be condensed water.
  • the condenser 114 is connected to the economizer 107 via the water supply line L1.
  • the water supply line L1 is provided with, for example, a condensate pump (CP) 121, a low-pressure water supply heater 122, a boiler water supply pump (BFP) 123, and a high-pressure water supply heater 124.
  • CP condensate pump
  • BFP boiler water supply pump
  • a part of the steam driving the steam turbines 111, 112, and 113 is extracted into the low-pressure water supply heater 122 and the high-pressure water supply heater 124, and used as a heat source for the high-pressure water supply heater 124 and the low-pressure water supply heater 122 via an extraction line (not shown).
  • the water supplied and supplied to the economizer 107 is heated.
  • the economizer 107 is connected to each evaporation pipe of the furnace wall 101.
  • the economizer 107 passes through the evaporation pipe of the furnace wall 101, it is heated by receiving radiation from the flame in the furnace and is guided to the brackish water separator 126.
  • the steam separated by the brackish water separator 126 is supplied to the superheaters 102, 103, 104, and the drain water separated by the brackish water separator 126 is sent to the condenser 114 via the drain water line L2. Be guided.
  • the combustion gas flows through the combustion gas passage (flue) 13
  • the combustion gas is recovered by the superheaters 102, 103, 104, the reheaters 105, 106, and the economizer 107.
  • the water supplied from the boiler water supply pump (BFP) 123 is preheated by the economizer 107 and then heated as it passes through each evaporation pipe of the furnace wall 101 to become steam, which is guided to the brackish water separator 126. Be taken.
  • the steam separated by the brackish water separator 126 is introduced into the superheaters 102, 103, 104 and superheated by the combustion gas.
  • the superheated steam generated by the superheaters 102, 103, 104 is supplied to the high-pressure turbine 111 via the steam line L3, and the high-pressure turbine 111 is rotationally driven.
  • the steam discharged from the high-pressure turbine 111 is introduced into the reheaters 105 and 106 via the steam line L4 and overheated again.
  • the reheated steam is supplied to the low-pressure turbine 113 via the medium-pressure turbine 112 via the steam line L5, and rotationally drives the medium-pressure turbine 112 and the low-pressure turbine 113.
  • the rotating shafts of the steam turbines 111, 112, and 113 rotationally drive the generator 115 to generate electricity.
  • the steam discharged from the low-pressure turbine 113 is cooled by the condenser 114 to be condensed, and is sent to the economizer 107 again via the water supply line L1.
  • plugs 1 for closing the through holes 51 formed for inserting the radiation source are installed at a plurality of places. For example, it is installed at a location P on each steam line in the figure. Note that location P in the figure is an example and does not indicate all installation locations.
  • FIG. 2 is a side view of the plug 1A.
  • FIG. 3 is a vertical cross-sectional view of the plug 1A.
  • the material of the plug 1A is metal (for example, chromium-containing alloy steel).
  • the plug 1A is made of the same material as or similar to the steam pipe 50 described later.
  • the plug 1A has a groove surface 31 and a straight surface 32 at a cylindrical tube base portion 30 extending in the axis X1 direction and a lower portion thereof (a portion facing the steam pipe 50 described later). It has a groove portion 35 formed by the above.
  • the outer diameter of the tube base portion 30 is the maximum outer diameter of the plug 1A, which is larger than the inner diameter of the through hole 51 formed in the steam pipe 50 described later, for example, about ⁇ 50 mm to ⁇ 130 mm.
  • the groove surface 31 is an inclined surface whose diameter is reduced from the outer peripheral surface of the tube base portion 30 toward the axis X1 side (inside) in the direction from the base end 12 of the plug 1A toward the tip end 11.
  • the groove surface 31 is formed in an annular shape in the circumferential direction about the axis X1.
  • the straight surface 32 is a surface connected to the tip of the groove surface 31 (the end on the axis X1 side) near the bottom surface 38 of the plug 1A, and is an axis in the direction from the tip 11 of the plug 1A toward the base end 12. It extends along the X1 direction.
  • the straight surface 32 is parallel to or substantially parallel to the axis X1.
  • the straight surface 32 is formed in an annular shape in the circumferential direction about the axis X1.
  • the straight surface 32 preferably has a length dimension in the axis X1 direction of 1 mm or more and 5 mm or less. This is a dimension required for forming the annular groove portion 35, which will be described later.
  • the base end of the straight surface 32 whose tip is connected to the groove surface 31 is connected to the bottom surface 38 via a circular arcuate round surface 34.
  • the bottom surface 38 is a surface formed so as to be recessed from the tip end 11 of the plug 1A to the base end 12 side, and is smoothly connected to the round surface 34.
  • the amount of depression of the bottom surface 38 is uniquely determined by the length dimension of the straight surface 32 and the radius of the round surface 34.
  • the round surface 34 has, for example, a maximum outer diameter of the plug 1A (that is, the outer diameter of the tube base portion 30) of 130 mm and a thickness dimension (from the straight surface 32 to the outermost peripheral surface of the tube base portion 30 of the plug 1A in the radial direction).
  • the radius dimension is preferably 3 mm or more and 10 mm or less.
  • the lower limit of the radius of 3 mm is the minimum value in the range of dimensions that can be easily manufactured, and the upper limit of 10 mm is the maximum value of the range of dimensions that satisfies the service life (for example, 240,000 hours).
  • the radius of the round surface 34 is such that the straight surface 32 is located outside the inner diameter of the through hole 51 formed in the steam pipe 50 described later in the radial direction (direction orthogonal to the axis X1 direction) within the range of the above dimensions. Is decided on.
  • the groove surface 31 and the straight surface 32 formed as described above form a groove portion 35 protruding in a V shape at the lower part of the plug 1A.
  • the groove portion 35 is formed in an annular shape in the circumferential direction centered on the axis X1.
  • the groove portion 35 is formed so as to project toward the steam pipe 50 when installed in the steam pipe 50.
  • a root surface 33 may be formed between the groove surface 31 and the straight surface 32.
  • FIG. 4 is a cross-sectional view of the plug 1A on the steam pipe 50 as viewed from the axial direction of the steam pipe 50. That is, FIG. 4 is a cross-sectional view in which the circumferential direction of the steam pipe 50 can be seen.
  • FIG. 5 is a cross-sectional view of the plug 1A on the steam pipe 50 as viewed from a direction orthogonal to the axial direction of the steam pipe 50. That is, FIG. 5 is a cross-sectional view in which the longitudinal direction (axial direction) of the steam pipe 50 can be seen.
  • FIG. 4 is a cross-sectional view of the plug 1A on the steam pipe 50 as viewed from the axial direction of the steam pipe 50. That is, FIG. 5 is a cross-sectional view in which the longitudinal direction (axial direction) of the steam pipe 50 can be seen.
  • FIG. 6 is a cross-sectional view of the plug 1A connected to the steam pipe 50 by welding as viewed from the axial direction of the steam pipe 50.
  • FIG. 7 is a cross-sectional view of the plug 1A connected to the steam pipe 50 by welding as viewed from a direction orthogonal to the axial direction of the steam pipe 50.
  • FIG. 8 is a reference diagram showing the concept of the concentrated portion.
  • the plug 1A is placed on the through hole 51 formed in the steam pipe 50 constituting the steam line (L3, L5 in FIG. 1), and the annular groove portion 35 is placed. Is abutted against the outer peripheral surface of the steam pipe 50 (first step). As a result, a groove for welding is formed between the groove portion 35 and the outer peripheral surface of the steam pipe 50.
  • the steam pipe 50 is a pipe through which high-temperature and high-pressure steam flows.
  • the wall thickness of the steam pipe 50 is, for example, 25 mm to 130 mm.
  • the steam pipe 50 is formed with a through hole 51 for inserting a radiation source for a radiation transmission test.
  • the through hole 51 is a straight tubular hole that penetrates the pipe wall of the steam pipe 50 in the thickness direction thereof, and communicates the outside and the inside of the steam pipe 50.
  • the through hole 51 is preferably formed in the vicinity of the welded joint between the steam pipes 50. If the radiation source inserted into the through hole 51 can be appropriately inspected, the through hole 51 may be formed at a distance from the welded joint between the steam pipes 50.
  • the plug 1A is held with a predetermined gap (route interval) secured between the abutted groove portion 35 and the outer peripheral surface of the steam pipe 50.
  • the route interval is, for example, 2 mm to 7 mm.
  • the outer peripheral surface of the steam pipe 50 is located radially inside the tip of the groove portion 35. It will exist (part B surrounded by a dotted square in FIGS. 4 and 5).
  • the outer peripheral surface of the steam pipe 50 from the tip of the groove portion 35 to the through hole 51 functions as a receiving portion of molten metal flowing out from the gap between the tip of the groove portion 35 and the outer peripheral surface of the steam pipe 50 at the start of welding. ..
  • welding the groove portion 35 against the outer peripheral surface of the steam pipe 50 it is possible to improve the penetration of the molten metal at the start of welding. As a result, it is possible to suppress the occurrence of an unwelded portion in the portion to be welded and suppress the occurrence of a discontinuous weld penetration shape.
  • a welded portion 60 is formed by depositing molten metal between the groove surface 31 and the outer peripheral surface of the steam pipe 50 by welding, and the plug 1A and the steam pipe 50 are connected to each other. Connect (second step). As a result, the through hole 51 is closed by the plug 1A.
  • the position of the weld toe 61 is located radially outside the axis X1 direction with respect to the position of the outer peripheral surface of the tube base portion 30.
  • the weld toe 61 is a radial outer end of a portion of the weld 60 that is in contact with the steam pipe 50. With this configuration, as shown in FIG. 7, the weld toe 61 can be positioned at a distance outward in the radial direction from the stress concentration portion 53 generated inside the pipe material of the steam pipe 50.
  • a tensile stress ⁇ f is applied to the long side of the virtual flat plate 70 in which the through hole 71 is formed and extends in the longitudinal direction.
  • the maximum stress ⁇ max is generated in the vicinity of the longitudinal direction of the through hole 71 (so-called stress concentration).
  • the maximum stress ⁇ max is approximately three times the tensile stress ⁇ f generated at the through hole point 72.
  • a hoop stress acts on the steam pipe 50 in the circumferential direction of the through hole 51 due to the internal pressure of the steam flowing inside, and when the stress concentration phenomenon shown in FIG. 8 is applied to the steam pipe 50, it is shown in FIG. As described above, in the axial direction (longitudinal direction) of the steam pipe 50, the stress concentration portion 53 is generated inside the pipe material of the steam pipe 50 and in the vicinity of the through hole 51.
  • the position of the weld toe 61 is radially outside the stress concentration portion 53 generated inside the pipe material of the steam pipe 50 with respect to the axis X1 direction, so that it occurs in the stress concentration portion 53.
  • a part of the existing stress can be carried by the pedestal portion 30.
  • the position of the weld toe 61 of the welded portion 60 is preferably determined in detail as follows.
  • the welding leg length of the welded portion 60 protruding in the radial direction from the outer peripheral surface of the tube base portion 30 of the plug 1A is defined as Lw. That is, the distance along the radial direction (radial direction of the plug 1A) from the outer peripheral surface of the plug 1A to the welding toe 61 is defined as Lw.
  • the relationship between the welding leg length Lw and the damage degree Dc at the stress concentration portion 53 and the relationship between the welding leg length Lw and the damage degree Dc at the welding toe 61 are as shown in the graph shown in FIG. That is, as the welding leg length Lw increases, the degree of damage Dc in the stress concentration portion 53 decreases. Further, as the welding leg length Lw increases, the degree of damage Dc at the welding toe 61, particularly at the welding toe 61 (see FIG. 6) in the circumferential direction of the steam pipe 50 increases.
  • the degree of damage Dc indicates the degree of influence of damage to the metal structure, and indicates the degree of influence of factors that reduce material performance such as mechanical strength.
  • the weld toe 61 is preferably formed in a round shape having a smooth curved shape. As a result, stress concentration at the weld toe 61 can be suppressed.
  • the radius of the weld toe 61 formed in a round shape is Rw.
  • the relationship between the radius Rw and the damage degree Dc at the stress concentration portion 53 and the relationship between the radius Rw and the damage degree Dc at the weld toe 61 are as shown in the graph shown in FIG. That is, as the radius Rw increases, the degree of damage Dc at the stress concentration portion 53 and the degree of damage Dc at the weld toe 61 decrease. Therefore, it is preferable to set the radius Rw to be large.
  • the through hole 51 is formed in the vicinity of the joint between the steam pipes 50, when the position of the through hole 51 is fixed, the larger the radius Rw is set, the more the welding toe 61 is formed between the steam pipes 50.
  • the thermal influence when forming the welded portion 60 may affect the joint portion between the steam pipes 50, which is not preferable.
  • the larger the radius Rw is set the farther the position of the through hole 51 is from the welded joint between the steam pipes 50.
  • the through hole 51 is separated from the welded joint between the steam pipes 50, which may hinder the work of inserting the radiation source through the through hole 51 for the radiation transmission test, which is not preferable.
  • the radius Rw of the welded portion 60 is within a range that does not have a thermal effect on the joint portion between the steam pipes 50 during welding, and the work of inserting the radiation source through the through hole 51 for the radiation transmission test is performed. It is preferable to set it as large as possible within a range that does not cause any trouble.
  • the radius Rw of the welded portion 60 is preferably set in the range of 10 mm to 30 mm.
  • a groove portion 35 formed by a groove surface 31 and a straight surface 32 is provided.
  • the groove portion 35 is brought into contact with the outer peripheral surface of the steam pipe 50 and welded to improve the penetration of the molten metal at the start of welding so that there is an unwelded portion in the portion to be welded. Suppresses the occurrence of discontinuous weld penetration shapes. As a result, even when a load is applied, it is possible to prevent stress from being concentrated and causing cracks to occur.
  • the straight surface 32 is set to be located outside the through hole 51 in the radial direction with respect to the axis X1 direction, so that the plug 1A is steamed.
  • the outer peripheral surface of the steam pipe 50 is present by the distance from the tip of the annular groove portion 35 formed by the straight surface 32 and the groove surface 31 to the through hole 51. ..
  • the outer peripheral surface of the steam pipe 50 from the tip of the groove portion 35 to the through hole 51 is formed from a gap between the tip of the annular groove portion 35 protruding into the steam pipe 50 and the outer peripheral surface of the steam pipe 50 at the start of welding.
  • the straight surface 32 has a round surface 34 formed at the base end, stress concentration at the connecting portion between the straight surface 32 and the bottom surface 38 can be suppressed.
  • the welded portion 60 is formed between the groove surface 31 and the outer peripheral surface of the steam pipe 50 and connected to the steam pipe 50, all of the welded portion 60 is formed on the outer peripheral surface of the steam pipe 50. Can be formed on top. As a result, the presence or absence of defects in the welded portion 60 can be inspected by a non-destructive method, so that the inspection of the welded portion 60 can be easily performed. Further, since all of the welded portions 60 to be inspected are formed on the outer peripheral surface of the steam pipe 50, the accuracy of the inspection of the plug 1A is improved.
  • the welded portion 60 since the weld toe 61 is located radially outside the outer peripheral surface of the tube base portion 30 of the plug 1A with respect to the axis X1 direction, the welded portion 60 is inside the pipe material of the steam pipe 50 and has a through hole.
  • the weld toe 61 of the weld 60 can be located radially outside the stress concentration portion 53 generated in the vicinity of 51.
  • the welded portion 60 is formed to cover the stress concentration portion 53, and a part of the stress generated in the stress concentration portion 53 can be carried by the tube base portion 30. Thereby, the proof stress of the welded portion 60 can be improved. Further, the stress concentration generated in the welded portion 60 near the groove surface 31 and the straight surface 32 can be alleviated, and the strength of the welded portion 60 can be ensured and the life of the welded portion 60 can be extended.
  • the plug 1B according to the second embodiment of the present disclosure will be described with reference to FIGS. 12 to 15.
  • the plug of the present embodiment is different from the plug of the first embodiment in that a protruding portion 37 is provided. Therefore, the same components are designated by the same reference numerals and the description thereof will be omitted.
  • FIG. 12 shows a side view of the plug 1B.
  • FIG. 13 shows a vertical cross-sectional view of the plug 1B. As shown in FIGS. 12 and 13, the plug 1B includes a protrusion 37.
  • the protruding portion 37 is a tubular portion extending from the bottom surface 38 along the axis X1 direction.
  • the outer peripheral surface of the protruding portion 37 faces the straight surface 32 at a distance.
  • the outer peripheral surface of the protrusion 37 is sized so as to fit into the through hole 51 formed in the steam pipe 50. As a result, when the plug 1B is installed with respect to the through hole 51, it can be easily positioned in the radial direction.
  • the protruding portion 37 does not necessarily have to have a tubular shape having the entire circumference formed, and may be a part of the tubular shape.
  • FIG. 14 shows a cross-sectional view of a suitable steam pipe 50 to which the plug 1B is attached. As shown in FIG. 14, a step portion 51a is formed in the through hole 51 of the steam pipe 50.
  • the step portion 51a is provided so that the through hole 51 has a reduced diameter from the outer peripheral surface (upper surface in the figure) side to the inner peripheral surface (lower surface in the figure) side of the steam pipe 50.
  • the protruding end 37a of the protruding portion 37 provided on the plug 1B abuts on the step portion 51a in the axis X1 direction. Therefore, when the plug 1B is installed in the through hole 51, the plug 1B can be easily positioned in the axis X1 direction with respect to the through hole 51.
  • the plug 1B when the plug 1B is installed, the plug 1B can be easily positioned in the radial direction with respect to the through hole 51 by fitting the protruding portion 37 into the through hole 51.
  • the plug 1B can be easily positioned in the axis X1 direction with respect to the through hole 51 when the protruding portion 37 is fitted into the through hole 51. .. As a result, the gap (route interval) between the groove portion 35 formed in the plug 1B and the outer peripheral surface of the steam pipe 50 can be appropriately maintained.
  • the plug 1C according to the third embodiment of the present disclosure will be described with reference to FIGS. 16 and 17.
  • the plug of the present embodiment is different in that a collar 37b is formed with respect to the protruding portion 37 of the second embodiment. Therefore, the same components are designated by the same reference numerals and the description thereof will be omitted.
  • FIG. 16 shows a vertical cross-sectional view of the plug 1C. As shown in FIG. 16, a collar 37b is formed on the protruding portion 37 of the plug 1C.
  • the collar 37b is a portion protruding in the radial direction from the outer peripheral surface of the protruding portion 37.
  • the collar 37b may be formed in the entire circumferential direction of the axis X1 or may be formed only in a partial circumferential direction. However, the collar 37b is formed so as not to reach the straight surface 32 and to have a diameter larger than the inner diameter of the through hole 51.
  • the collar 37b of the plug 1C comes into contact with the periphery of the through hole 51 (the outer peripheral surface of the steam pipe 50). Thereby, when the plug 1C is installed, the plug 1C can be easily positioned in the axis X1 direction with respect to the through hole 51.
  • the following effects are obtained. Since the flange 37b is provided, when the protrusion 37 is fitted into the through hole 51 when the plug 1C is installed, the through hole 51 is provided without providing the step portion 51a as in the second embodiment in the steam pipe 50.
  • the plug 1C can be easily positioned with respect to the axis X1 direction. As a result, the gap (route interval) between the groove portion 35 formed in the plug 1C and the outer peripheral surface of the steam pipe 50 can be appropriately maintained.
  • a hole 36 may be formed in the plug 1 as shown in FIG.
  • the hole portion 36 is a hole drilled from the surface on the base end 12 side along the axis X1 at a depth that does not reach the bottom surface 38.
  • the hole 36 reduces the rigidity of the plug 1. As a result, it is possible to alleviate the concentration of tensile stress generated on the tip 11 side of the plug 1 when the groove 35 is welded. Therefore, it is possible to suppress the occurrence of cracks on the tip 11 side of the plug 1.
  • the plug (1) is a plug (1) that closes the through hole (51) formed in the steam pipe (50) from the outer peripheral surface side of the steam pipe (50).
  • a columnar pipe base (30) extending in the axis (X1) direction and a radial outer circumference orthogonal to the axis (X1) in the direction from the base end (12) side to the tip end (11) side.
  • a straight surface (32) extending from the pipe base (32), and a groove portion (35) formed so as to protrude from the tube base portion (30) by the groove surface (31) and the straight surface (32).
  • the groove surface (31) that contracts from the outer peripheral side in the radial direction orthogonal to the axis (X1) direction in the direction from the base end (12) side to the tip end (11) side.
  • the straight surface (32) extending from the end of the groove surface (31) toward the base end (12) side along the axis (X1) direction to form the tube base portion (30).
  • a groove portion (35) protruding from the can be formed.
  • the formed groove portion (35) is abutted against the outer peripheral surface of the steam pipe (50) and welded, so that the penetration of the molten metal at the start of welding can be improved.
  • the groove portion (35) is abutted against the steam pipe.
  • the outer peripheral surface of the steam pipe (50) exists for the distance from the tip of the groove portion (35) formed by the straight surface (32) and the groove surface (31) to the through hole (51). It will be.
  • the outer peripheral surface of the steam pipe (50) from the tip of the protruding groove (50) to the through hole (51) becomes the tip of the groove (35) and the steam pipe (50) at the start of welding.
  • a welded portion (60) is formed in the groove portion (35) with the outer peripheral surface of the steam pipe (50).
  • the welded portion (60) is formed between the groove portion (35) and the outer peripheral surface of the steam pipe (50), the groove portion (35) and the steam pipe are formed.
  • the outer peripheral surface of (50) can be welded and connected.
  • the straight surface (32) is described in the radial direction when the groove portion (35) is abutted against the outer peripheral surface of the steam pipe (50). It is located outside the through hole (51).
  • the straight surface (32) is located outside the through hole (51) in the radial direction when the groove portion (35) is abutted against the steam pipe (50). Therefore, when the groove portion (35) is abutted against the steam pipe, the distance from the tip of the groove portion (35) formed by the straight surface (32) and the groove surface (31) to the through hole (51) is reached.
  • the outer peripheral surface of the steam pipe (50) exists for the distance.
  • the outer peripheral surface of the steam pipe (50) from the tip of the groove portion (35) to the through hole (51) is between the tip of the groove portion (35) and the outer peripheral surface of the steam pipe (50) at the start of welding.
  • the penetration of the molten metal can be further improved, and a discontinuous weld penetration shape such that there is an unwelded portion in the portion to be welded is generated. Can be suppressed.
  • the plug (1) is a hole portion (36) formed along the axis (X1) direction from the surface of the tube base portion (30) on the base end (12) side. It has.
  • the hole portion (36) formed along the axis (X1) direction from the surface of the columnar tube base portion (30) on the base end (12) side is provided. Therefore, it is possible to alleviate the concentration of tensile stress generated on the tip (11) side of the plug (1) during welding. As a result, it is possible to suppress the occurrence of cracks on the tip (11) side of the plug (1).
  • the plugs (1B, 1C) face the straight surface (32) with a gap, and extend along the axis (X1) direction to the through hole (51).
  • the plugs (1B, 1C) can be fitted to the through hole (51) while facing the straight surface (32) with a gap and extending along the axis (X1) direction. Since the protrusion (37) forming a tubular shape or a part of the tubular shape on which the outer peripheral surface is formed is provided, the protrusion (37) is formed in the through hole (51) when the plugs (1B, 1C) are installed. ) Can be fitted to position the plugs (1B, 1C) in the radial direction with respect to the through hole (51).
  • the protruding portion (37) is formed with a collar (37b) protruding in the radial direction, and the collar (37b) is said to be said in the radial direction. It is located outside the through hole (51).
  • a collar (37b) protruding in the radial direction is formed in the protruding portion (37), and the collar (37b) is formed with the through hole (51) in the radial direction. Since it is located on the outer side, the collar (37b) can be brought into contact with the steam pipe around the through hole (51) when the protruding portion (37) is fitted into the through hole (51). As a result, when the plug (1C) is installed, the plug (1C) can be positioned in the axial direction with respect to the through hole (51), and the formed groove portion (35) and the outer peripheral surface of the steam pipe can be positioned. The gap (route interval) with and can be maintained appropriately.
  • the straight surface (32) has a round surface (34) formed at an end portion on the base end (12) side.
  • the straight surface (32) has a round surface (34) formed at the end on the base end (12) side, so that the base end (32) of the straight surface (32) is formed. 12) Stress concentration at the end on the side can be suppressed.
  • the steam pipe structure includes a steam pipe (50) in which a through hole (51) is formed and the above plug (1), and the plug (1) is opened.
  • the tip portion (35) is abutted against the outer peripheral surface of the steam pipe (50), and a welded portion is formed between the groove surface (312) of the groove portion (35) and the outer peripheral surface of the steam pipe (50).
  • (60) is formed and connected to the steam pipe (50).
  • the groove portion (35) is abutted against the outer peripheral surface of the steam pipe (50), and the groove surface (31) of the groove portion (35) is abutted. Since a welded portion (60) is formed between the welded portion (50) and the outer peripheral surface of the steam pipe (50) and connected to the steam pipe (50), all of the welded portion (60) is formed on the outer peripheral surface of the steam pipe (50). Can be formed on top. As a result, the presence or absence of defects in the welded portion (60) can be inspected by a non-destructive method, so that the inspection of the welded portion (60) can be easily performed. Further, since all of the welded portions (60) to be inspected are formed on the outer peripheral surface of the steam pipe (50), the accuracy of the inspection is improved.
  • the steam pipe structure includes a steam pipe (50) in which a through hole (51) is formed and the above plugs (1B, 1C), and the through hole (51) is provided. Is formed with a stepped portion (51a) in which the protruding end (37a) of the protruding portion (37) abuts in the axis (X1) direction, and the plug (1B, 1C) has the protruding portion (37) described above. Inserted into the through hole (51), the groove portion (35) is abutted against the steam pipe (50), and the groove surface (31) of the groove portion (35) and the steam pipe (50) A welded portion (60) is formed between the outer peripheral surface and the steam pipe (50).
  • a step portion (51a) is formed in the through hole (51) so that the protruding end (37a) of the protruding portion (37) abuts in the axis (X1) direction, and a plug is formed.
  • the protruding portion (37) is inserted into the through hole (51), the groove portion (35) is abutted against the steam pipe (50), and the groove surface (31) of the groove portion (35) is abutted.
  • a welded portion (60) is formed and connected to the steam pipe (60), so that the protruding portion (37) is fitted into the through hole (51).
  • the plugs (1B, 1C) can be positioned in the axial direction (X1) with respect to the through hole (51). Thereby, when the plugs (1B, 1C) are installed, the gap (route interval) between the formed groove portion (35) and the outer peripheral surface of the steam pipe (50) can be appropriately maintained.
  • the radial outer end portion (61) of the portion in contact with the steam pipe (50) is the tube base portion (61). It is located outside the position of the outer peripheral surface of 30) in the radial direction.
  • the radial outer end portion (61) of the portion in contact with the steam pipe (50) is the position of the outer peripheral surface of the tube base portion (30). Since it is located on the outer side in the radial direction, the welded part (60) is located on the outer side in the radial direction from the stress concentration part (53) generated inside the pipe material of the steam pipe (50) and near the through hole (51). ) Can be positioned at the end (61). As a result, a part of the stress generated in the stress concentration portion (53) can be carried by the tube base portion (30). Therefore, the yield strength of the steam pipe (50) can be improved.
  • the stress concentration generated in the welded portion (60) can be alleviated, and the strength of the welded portion (60) can be ensured and the life can be extended.
  • the "stress concentration portion” referred to here is a hoop stress acting on the steam pipe (50) (generated around the through hole (51) of the steam pipe (50) and circulates inside the steam pipe (50). It refers to the peak portion of stress generated in the vicinity of the through hole (51) due to the stress caused by the pressure of steam) and its vicinity.
  • the position of the end portion (61) of the welded portion (60) is the degree of damage of the stress concentration portion (53) and the position of the welded portion (60). It is determined by comparing with the degree of damage of the end portion (61).
  • the position of the end portion (61) of the welded portion (60) is the degree of damage of the stress concentration portion (53) and the position of the end portion (61) of the welded portion (60). Since the degree of damage is determined by comparing the degree of damage, the end portion (61) of the welded portion (60) is located at a position where both the stress concentration portion (53) and the end portion (61) of the welded portion (60) are unlikely to be damaged. ) Can be set.
  • the end portion (61) of the welded portion (60) is formed in a round shape curved in a concave shape with respect to the outer peripheral surface of the steam pipe (50). Has been done.
  • the end portion (61) of the welded portion (60) is formed in a round shape that is concavely curved with respect to the outer peripheral surface of the steam pipe (50). It is possible to suppress the concentration of stress on the end portion (61) of the portion (60). As a result, even if a part of the stress generated in the stress concentration portion (53) of the steam pipe (50) is carried by the tube base portion (30), the weld portion (60) is damaged by the stress. Can be suppressed.
  • the plug (1) that closes the through hole (51) formed in the steam pipe (50) from the outer peripheral surface side of the steam pipe (51).
  • the radius of the pipe base (30) formed in a columnar shape extending in the axis (X1) direction and the radius orthogonal to the axis (X1) in the direction from the base end (12) side to the tip end (11) side.
  • the axis (X1) from the groove surface (31) that contracts from the outer peripheral side in the direction and the end portion of the groove surface (31) from the tip end (11) side to the base end (12) side.
  • the first step of abutting the groove portion (35) against the steam pipe (50), the groove surface (31), and the steam pipe (50). ) Is included in the second step of forming a welded portion (60) by welding with the outer peripheral surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Thermal Sciences (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

溶接されるべき部分に未溶着部が発生することを抑制できるプラグ及び蒸気配管構造物並びにプラグの設置方法を提供する。蒸気配管に形成された貫通孔を蒸気配管の外周面側から閉塞するプラグ(1)であって、軸線(X1)方向に延びる柱状に形成された管台部と、基端(12)側から先端(11)側に向かう方向で軸線(X1)方向に直交する半径方向の外周側から縮経する開先面(31)と、開先面(31)の端部から、先端(11)側から基端(12)側に向かって軸線(X1)方向に沿って延びるストレート面(32)と、開先面(31)及びストレート面(32)によって管台部(30)から突出するように形成された開先部(35)とを備えている。

Description

プラグ及び蒸気配管構造物並びにプラグの設置方法
 本開示は、プラグ及び蒸気配管構造物並びにプラグの設置方法に関する。
 発電プラントなどに用いられる大型のボイラは、中空形状をなして鉛直方向に設置される火炉を有し、この火炉壁に複数の燃焼バーナが火炉の周方向に沿って配設されている。また、ボイラは、火炉の鉛直方向上方に煙道が連結されており、この煙道に蒸気を生成するための熱交換器が配置されている。そして、燃焼バーナが火炉内に燃料と空気(酸化性ガス)との混合気を噴射することで火炎が形成され、燃焼ガスが生成されて煙道に流れる。燃焼ガスが流れる領域に熱交換器が設置され、熱交換器を構成する伝熱管内を流れる水や蒸気を加熱して過熱蒸気が生成される。
 ボイラを有する発電プラントに使用される蒸気ラインは、複数の蒸気配管同士が溶接で接続されて構成される。この場合、接合部の健全性(欠陥の有無)を確保するために、放射線透過試験を実施することがある。このため、接合部の近傍には、蒸気配管の内部に放射線試験機器(放射線源)を挿入するための貫通孔が穿設される。放射線透過試験は溶接後に一度だけ実施されることが通常であり、放射線透過試験終了後には穿設された貫通孔を閉塞する必要がある。
 貫通孔を閉塞する方法として、例えば特許文献1には、閉止プラグが開示されている。特許文献1の閉止プラグは、胴部、肩部及び頭部が形成されたプラグとされ、頭部の下面と蒸気配管とが溶接されることで蒸気配管に固定されている。
特開2013-158823号公報
 特許文献1に開示されている閉止プラグは、閉止プラグと蒸気配管とが、いわゆるすみ肉溶接の形態で溶接されており、頭部と蒸気配管との境界付近にて溶金が完全に溶け込まない未溶着部が発生しやすくなる可能性がある。また、その未溶着部は切り欠き状であり、応力が集中しやすくなる可能性がある。そのため、内圧によって蒸気配管に作用する応力が切り欠き状の未溶着部に集中すると、未溶着部を起点として、き裂が発生する可能性がある。このように、溶接部一部にき裂が発生した場合には、き裂が伸展することで溶接部付近の外表面に損傷が発生して、その損傷部分から蒸気が漏出する可能性がある。
 本開示は、このような事情に鑑みてなされたものであって、溶接されるべき部分に未溶着部が発生することを抑制できるプラグ及び蒸気配管構造物並びにプラグの設置方法を提供することを目的とする。
 上記課題を解決するために、本開示のプラグ及び蒸気配管構造物並びにプラグの設置方法は以下の手段を採用する。
 すなわち、本開示の一態様に係るプラグは、蒸気配管に形成された貫通孔を前記蒸気配管の外周面側から閉塞するプラグであって、軸線方向に延びる柱状に形成された管台部と、基端側から先端側に向かう方向で前記軸線方向に直交する半径方向の外周側から縮経する開先面と、該開先面の端部から、前記先端側から前記基端側に向かって前記軸線方向に沿って延びるストレート面と、前記開先面と前記ストレート面によって前記管台部から突出するように形成された開先部と、を備えている。
 また、本開示の一態様に係る蒸気配管構造物は、貫通孔が形成された蒸気配管と、上記のプラグとを備え、前記プラグは、前記開先部が前記蒸気配管の外周面に突き合わされ、前記開先部の前記開先面と前記蒸気配管の外周面との間に溶接部が形成されて前記蒸気配管に接続されている。
 また、本開示の一態様に係るプラグの設置方法は、蒸気配管に形成された貫通孔を前記蒸気配管の外周面側から閉塞するプラグであって、軸線方向に延びる柱状に形成された管台部と、基端側から先端側に向かう方向で前記軸線方向に直交する半径方向の外周側から縮経する開先面と、該開先面の端部から、前記先端側から前記基端側に向かって前記軸線方向に沿って延びるストレート面と、前記開先面と前記ストレート面によって前記管台部から突出するように形成された開先部と、を備えているプラグの設置方法であって、前記蒸気配管に前記開先部を突き合わせる第1工程と、前記開先面と前記蒸気配管の外周面との間を溶接して溶接部を形成する第2工程と、を含む。
 本開示によれば、溶接されるべき部分に未溶着部が発生することを抑制できるプラグ及び蒸気配管構造物並びにプラグの設置方法を提供することができる。
ボイラ発電プラントにおける蒸気、復水、給水系統を表す概略図である。 本開示の第1実施形態に係るプラグの側面図である。 本開示の第1実施形態に係るプラグの縦断面図である。 蒸気配管上のプラグを蒸気配管の軸線方向から見た断面図である。 蒸気配管上のプラグを蒸気配管の軸線方向と直交する方向から見た断面図である。 蒸気配管に接続されたプラグを蒸気配管の軸線方向から見た断面図である。 蒸気配管に接続されたプラグを蒸気配管の軸線方向と直交する方向から見た断面図である。 応力集中部の概念を表す参考図である。 図7に示すA部の部分拡大図である。 応力集中部及び溶接止端における損傷度Dcと張り出した溶接脚長Lwとの各関係を示した図である。 応力集中部及び溶接止端における損傷度Dcと溶接止端半径Rwとの各関係を示した図である。 本開示の第2実施形態に係るプラグの側面図である。 本開示の第2実施形態に係るプラグの縦断面図である。 第2実施形態に係るプラグが取り付けられて好適な蒸気配管の縦断面図である。 蒸気配管上のプラグを蒸気配管の軸線方向と直交する方向から見た断面図である。 本開示の第3実施形態に係るプラグの縦断面図である。 蒸気配管上のプラグを蒸気配管の軸線方向と直交する方向から見た断面図である。
[ボイラ発電プラントについて]
 まず、本開示の一実施形態に係るプラグが設置されるボイラ発電プラントについて図1を用いて説明する。
 図1は、ボイラ発電プラントにおける蒸気、復水、給水系統を表す概略図である。
 ボイラ発電プラントは、ボイラの熱交換器102,103,104と、ボイラが生成した蒸気によって回転駆動される蒸気タービン110と、蒸気タービン110に連結され、蒸気タービン110の回転に応じて発電を行う発電機115とを備える。
 蒸気タービン110は、例えば、高圧タービン111と中圧タービン112と低圧タービン113とから構成され、後述する再熱器105,106からの蒸気が中圧タービン112に流入したのちに低圧タービン113に流入する。
 低圧タービン113には、復水器114が連結されており、低圧タービン113を回転駆動した蒸気がこの復水器114で冷却水(例えば、海水)により冷却されて復水となる。復水器114は、給水ラインL1を介して節炭器107に連結されている。
 給水ラインL1には、例えば、復水ポンプ(CP)121、低圧給水ヒータ122、ボイラ給水ポンプ(BFP)123、高圧給水ヒータ124が設けられている。
 低圧給水ヒータ122と高圧給水ヒータ124には、蒸気タービン111,112,113を駆動する蒸気の一部が抽気されて、図示しない抽気ラインを介して高圧給水ヒータ124と低圧給水ヒータ122に熱源として供給され、節炭器107へ供給される給水が加熱される。
 以下、ボイラが貫流ボイラの場合を例にして説明をする。
 節炭器107は、火炉壁101の各蒸発管に連結されている。節炭器107で加熱された給水は、火炉壁101の蒸発管を通過する際に、火炉内の火炎から輻射を受けて加熱され、汽水分離器126へと導かれる。汽水分離器126にて分離された蒸気は、過熱器102,103,104へと供給され、汽水分離器126にて分離されたドレン水は、ドレン水ラインL2を介して復水器114へと導かれる。
 燃焼ガスが燃焼ガス通路(煙道)13を流れるとき、この燃焼ガスは、過熱器102,103,104、再熱器105,106、節炭器107で熱回収される。一方、ボイラ給水ポンプ(BFP)123から供給された給水は、節炭器107によって予熱された後、火炉壁101の各蒸発管を通過する際に加熱されて蒸気となり、汽水分離器126に導かれる。
 汽水分離器126で分離された蒸気は、過熱器102,103,104に導入され、燃焼ガスによって過熱される。
 過熱器102,103,104で生成された過熱蒸気は、蒸気ラインL3を介して高圧タービン111に供給され、この高圧タービン111を回転駆動する。
 高圧タービン111から排出された蒸気は、蒸気ラインL4を介して再熱器105,106に導入されて再度過熱される。再度過熱された蒸気は、蒸気ラインL5を介して中圧タービン112を経て低圧タービン113に供給され、中圧タービン112及び低圧タービン113を回転駆動する。
 各蒸気タービン111,112,113の回転軸は、発電機115を回転駆動して、発電が行われる。低圧タービン113から排出された蒸気は、復水器114で冷却されることで復水となり、給水ラインL1を介して再び節炭器107に送られる。
 上記のようなボイラ発電プラントの各蒸気ラインを構成する蒸気配管50には、放射線源を挿入するために穿設された貫通孔51を閉塞するプラグ1が複数個所に設置される。例えば、同図において各蒸気ライン上の箇所Pに設置される。なお、同図の箇所Pは例示であり、全ての設置箇所を示したものではない。
[プラグ(第1実施形態)について]
 次に、本開示の第1実施形態に係るプラグ1Aについて図2から図3を用いて説明する。
 図2は、プラグ1Aの側面図である。図3は、プラグ1Aの縦断面図である。
 プラグ1Aは、材質が金属(例えば、クロム含有合金鋼など)とされている。好ましくは、プラグ1Aは、後述する蒸気配管50と同一または類似の材質がよい。
 図2及び図3に示すように、プラグ1Aは、軸線X1方向に延びた円柱形状の管台部30と、その下部(後述する蒸気配管50に臨む部分)において開先面31及びストレート面32によって形成された開先部35とを備えている。
 管台部30の外径はプラグ1Aの最大外径となり、後述する蒸気配管50に形成された貫通孔51の内径よりも大径とされ、例えばΦ50mm~Φ130mm程度とされる。
 開先面31は、プラグ1Aの基端12から先端11に向かう方向で管台部30の外周面から軸線X1側(内側)に縮径する傾斜面とされている。開先面31は、軸線X1を中心とした周方向において円環状に形成されている。
 ストレート面32は、プラグ1Aの底面38付近にて、開先面31の先端(軸線X1側の端部)に接続された面であり、プラグ1Aの先端11から基端12に向かう方向で軸線X1方向に沿って延びている。ストレート面32は、軸線X1に対して平行又は略平行とされている。ストレート面32は、軸線X1を中心とした周方向において円環状に形成されている。ストレート面32は、軸線X1方向の長さ寸法が1mm以上5mm以下とされることが好ましい。これは、後述する円環状の開先部35を形成するために必要な寸法とされている。
 先端が開先面31に接続されているストレート面32の基端は、四半円弧状のラウンド面34を介して底面38に接続されている。
 底面38は、プラグ1Aの先端11から基端12側に窪むように形成された面であり、ラウンド面34と滑らかに接続されている。底面38の窪み量は、ストレート面32の長さ寸法及びラウンド面34の半径によって一義的に定められる。
 ラウンド面34は、例えばプラグ1Aの最大外径(すなわち、管台部30の外径)が130mm、厚さ寸法(ストレート面32からプラグ1Aの管台部30の最外周面への半径方向における肉厚)が例えば30mmのとき、半径の寸法が3mm以上10mm以下とされることが好ましい。なお、半径の下限の3mmは製作容易な寸法の範囲の最小値であり、上限の10mmは寿命(例えば24万時間)を満足する寸法の範囲の最大値である。ラウンド面34の半径は、上記寸法の範囲内で、後述する蒸気配管50に形成された貫通孔51の内径よりもストレート面32が半径方向(軸線X1方向と直交する方向)外側に位置するように決定される。
 以上のように形成された開先面31及びストレート面32によって、プラグ1Aの下部には、V字状に尖るように突出した開先部35が形成されている。開先部35は、開先面31やストレート面32と同様、軸線X1を中心とした周方向において円環状に形成されている。開先部35は、蒸気配管50への設置時において、蒸気配管50側に突出するように形成されている。これによって、蒸気配管50との溶接時における溶金の溶け込みを良好なものにすることができ、溶接されるべき部分に未溶着部が発生することを抑制できる。なお、開先部35の先端において、開先面31とストレート面32との間にルート面33を形成してもよい。
[蒸気配管構造物について]
 次に、プラグ1Aが設置された蒸気配管50の構造について図4から図8を用いて説明する。
 図4は、蒸気配管50上のプラグ1Aを蒸気配管50の軸線方向から見た断面図である。すなわち、図4は、蒸気配管50の円周方向が見える断面図である。図5は、蒸気配管50上のプラグ1Aを蒸気配管50の軸線方向と直交する方向から見た断面図である。すなわち、図5は、蒸気配管50の長手方向(軸線方向)が見える断面図である。図6は、蒸気配管50に溶接によって接続されたプラグ1Aを蒸気配管50の軸線方向から見た断面図である。図7は、蒸気配管50に溶接によって接続されたプラグ1Aを蒸気配管50の軸線方向と直交する方向から見た断面図である。図8は、集中部の概念を表す参考図である。
 図4及び図5に示すように、プラグ1Aは、蒸気ライン(図1のL3,L5)を構成する蒸気配管50に形成された貫通孔51上に載置され、円環状の開先部35が蒸気配管50の外周面に突き合わされる(第1工程)。これにより、開先部35と蒸気配管50の外周面との間で溶接のための開先が形成される。
 蒸気配管50は、内部に高温高圧の蒸気が流通する配管とされている。蒸気配管50の肉厚は、例えば25mm~130mmとされる。蒸気配管50には、放射線透過試験用の放射線源を挿入するための貫通孔51が形成されている。
 貫通孔51は、蒸気配管50の管壁をその厚さ方向に貫通する直管状の孔とされており、蒸気配管50の外部と内部とを連通している。
 放射線透過試験は、蒸気配管50同士の溶接接合部近傍で実施される。このため、貫通孔51は、蒸気配管50同士の溶接接合部近傍に形成されていることが好ましい。
 なお、貫通孔51に挿入する放射線源によって適切に検査可能であれば、蒸気配管50同士の溶接接合部と間隔を空けて貫通孔51を形成してもよい。
 プラグ1Aは、突き合わされた開先部35と蒸気配管50の外周面との間に所定の隙間(ルート間隔)が確保されて保持される。ルート間隔は、例えば2mm~7mmとされている。
 このとき、軸線X1方向に対して、ストレート面32が貫通孔51の内径よりも半径方向外側に位置しているので、開先部35の先端よりも半径方向内側に蒸気配管50の外周面が存在することになる(図4及び図5において点線の四角で囲ったB部)。開先部35の先端から貫通孔51までの蒸気配管50の外周面は、溶接開始時において開先部35の先端と蒸気配管50の外周面との隙間から流れ出る溶金の受け部分として機能する。また、開先部35を蒸気配管50の外周面に突き合わさせて溶接することで溶接開始時における溶金の溶け込みを良好なものにすることができる。これによって、溶接されるべき部分に未溶着部が発生することを抑制して、不連続な溶接溶け込み形状の発生を抑制することができる。
 その後、図6及び図7に示すように、溶接によって開先面31と蒸気配管50の外周面との間に溶金を盛ることで溶接部60を形成してプラグ1Aと蒸気配管50とを接続する(第2工程)。これによって、貫通孔51がプラグ1Aで閉塞される。
 溶接部60を形成するにあたって、溶接止端61の位置は、管台部30の外周面の位置よりも軸線X1方向に対して半径方向外側に位置させておくことが好ましい。溶接止端61とは、溶接部60において蒸気配管50に接する部分の半径方向外側の端部である。この構成によって、図7に示すように、蒸気配管50の管材の内部に発生している応力集中部53よりも半径方向外側に距離を置いて溶接止端61を位置させることができる。
 以下、応力集中部53について図8を用いて説明する。
 貫通孔71が形成され長手方向に延びる仮想した平板70の長辺には、引張応力σfが負荷されている。このとき、既知の通り、平板70の中心線上に作用する応力σyは、貫通孔71の長手方向近傍で最大応力σmaxが発生する(いわゆる応力集中)。なお、最大応力σmaxは、貫通孔点72に発生する引張応力σfのおよそ3倍とされる。
 蒸気配管50には内部を流通する蒸気の内圧によって貫通孔51の周方向にフープ応力が作用しており、図8に示した応力集中の現象を蒸気配管50に適用した場合、図7に示すように、蒸気配管50の軸線方向(長手方向)において、蒸気配管50の管材の内部かつ貫通孔51の近傍に応力集中部53が発生することになる。
 本実施形態において、溶接止端61の位置は、蒸気配管50の管材の内部に発生している応力集中部53よりも軸線X1方向に対して半径方向外側なので、応力集中部53に発生している応力の一部を管台部30で担うことができる。これにより、開先面31及びストレート面32付近の溶接部60で発生する応力集中を緩和して、溶接部60の強度確保と寿命延長をすることができる。
[溶接始端の詳細について]
 溶接部60の溶接止端61の位置は、詳細には、次のように決定されることが好ましい。
 図9に示すように、プラグ1Aの管台部30の外周面から半径方向に張り出した溶接部60の溶接脚長をLwとする。すなわち、プラグ1Aの外周面から溶接止端61までの半径方向(プラグ1Aの半径方向)に沿った距離をLwとする。
 このとき、溶接脚長Lwと応力集中部53における損傷度Dcとの関係、及び、溶接脚長Lwと溶接止端61における損傷度Dcとの関係は、図10に示されたグラフようになる。すなわち、溶接脚長Lwが大きくなるにつれて応力集中部53における損傷度Dcが低下する。また、溶接脚長Lwが大きくなるにつれて溶接止端61、特に、蒸気配管50の円周方向の溶接止端61(図6参照)における損傷度Dcが増加する。このため、2つの損傷度を比較して、応力集中部53及び溶接止端61の両方の損傷度が材料性能へ影響する所定の量を超え難いような溶接脚長Lwの範囲を決定することが好ましい。
 ここで、損傷度Dcとは、金属組織への損傷の影響を示すものであり、機械的強度などの材料性能の低下要因の影響度を示すものとなる。
 また、図9に示すように、溶接止端61は、滑らかな湾曲形状となるラウンド状に形成されることが好ましい。これによって、溶接止端61における応力集中を抑制できる。
 ここで、ラウンド状に形成された溶接止端61の半径をRwとする。このとき、半径Rwと応力集中部53における損傷度Dcとの関係、及び、半径Rwと溶接止端61における損傷度Dcとの関係は、図11に示されたグラフのようになる。すなわち、半径Rwが大きくなるにつれて応力集中部53における損傷度Dc及び溶接止端61における損傷度Dcが低下する。このため、半径Rwは大きく設定することが好ましい。しかし、貫通孔51は蒸気配管50同士の接合部近傍に形成されるという性質上、貫通孔51の位置を固定した場合、半径Rwを大きく設定するほど、溶接止端61が蒸気配管50同士の接合部に接近することになる。この場合、溶接部60を形成する際の熱的な影響が蒸気配管50同士の接合部に及ぶ可能性があり好ましくない。
 また、溶接止端61の位置を固定した場合、半径Rwを大きく設定するほど、貫通孔51の位置が蒸気配管50同士の溶接接合部から遠ざかることになる。この場合、蒸気配管50同士の溶接接合部から貫通孔51が離れることになり、放射線透過試験用に放射線源を貫通孔51から挿入する作業に支障が発生する可能性があり好ましくない。
 以上より、溶接部60の半径Rwは、蒸気配管50同士の接合部に対して溶接時に熱的な影響を及ぼさない範囲、かつ、放射線透過試験用に放射線源を貫通孔51から挿入する作業に支障が発生しない範囲で、可能な限り大きく設定することが好ましい。例えば、溶接部60の半径Rwは、10mm~30mmの範囲で設定することが望ましい。
 本実施形態によれは、以下の効果を奏する。
 開先面31とストレート面32とによって形成された開先部35を備えている。これにより、開先部35を蒸気配管50の外周面に突き合わさせて溶接することで溶接開始時における溶金の溶け込みを良好なものにして、溶接されるべき部分に未溶着部があるような不連続な溶接溶け込み形状の発生を抑制する。これにより、負荷が印可された場合にも、応力が集中してき裂発生の起因となることを抑制することができる。
 また、開先部35が蒸気配管50に突き合わされたときに、軸線X1方向に対する半径方向においてストレート面32が貫通孔51よりも外側に位置するように設定されているので、プラグ1Aを蒸気配管50に突き合わせた場合に、ストレート面32及び開先面31によって形成された円環状の開先部35の先端から貫通孔51までの距離の分だけ蒸気配管50の外周面が存在することになる。開先部35の先端から貫通孔51までの蒸気配管50の外周面は、溶接開始時において蒸気配管50へ突出した円環状の開先部35の先端と蒸気配管50の外周面との隙間から流れ出る溶金の受け部分として機能するので、溶金の溶け込みを更に良好なものにすることができるる。
 このようにして溶金の溶け込みを良好にすることで、溶接されるべき部分に未溶着部が発生することを抑制でき、ひいては負荷が印可された場合に未溶着部に応力が集中して未溶着部を起点として、き裂が発生・伸展することを抑制できる。
 また、ストレート面32は、基端にラウンド面34が形成されているので、ストレート面32と底面38との接続部分における応力集中を抑制できる。
 また、プラグ1Aは、開先面31と蒸気配管50の外周面との間に溶接部60が形成されて蒸気配管50に接続されているので、溶接部60の全てを蒸気配管50の外周面上に形成することができる。これによって、溶接部60の欠陥の有無を非破壊法で検査することができるので、溶接部60の検査が容易に実施できるようになる。また、検査対象となる溶接部60の全てが蒸気配管50の外周面上に形成されるので、プラグ1Aの検査の精度が向上する。
 また、溶接部60は、溶接止端61がプラグ1Aの管台部30の外周面よりも軸線X1方向に対して半径方向外側に位置しているので、蒸気配管50の管材の内部かつ貫通孔51の近傍に発生する応力集中部53よりも半径方向外側に溶接部60の溶接止端61を位置させることができる。これによって、溶接部60が応力集中部53を覆うような形態となり、応力集中部53に発生している応力の一部を管台部30で担うことができる。これにより、溶接部60の耐力を向上させることができる。また、開先面31及びストレート面32付近の溶接部60で発生する応力集中を緩和して、溶接部60の強度確保と寿命延長をすることができる。
[プラグ(第2実施形態)について]
 次に、本開示の第2実施形態に係るプラグ1Bについて図12から図15を用いて説明する。
 本実施形態のプラグは、第1実施形態のプラグに対して突出部37が設けられている点で相違している。このため、同一の構成については同一の符号を付してその説明を省略する。
 図12には、プラグ1Bの側面図が示されている。図13には、プラグ1Bの縦断面図が示されている。図12及び図13に示すように、プラグ1Bは、突出部37を備えている。
 突出部37は、底面38から軸線X1方向に沿って延びた筒状の部位とされている。突出部37の外周面は、ストレート面32と間隔を空けて対向している。突出部37の外周面は、蒸気配管50に形成された貫通孔51に嵌合するように寸法が設定されている。これによって、貫通孔51に対してプラグ1Bを設置する際に、容易に半径方向に位置決めすることができる。
 なお、突出部37は、必ずしも全周が形成された筒状である必要はなく、筒状の一部分となるものでもよい。
 図14には、プラグ1Bが取り付けられ好適な蒸気配管50の断面図が示されている。図14に示すように、蒸気配管50の貫通孔51には、段部51aが形成されている。
 段部51aは、蒸気配管50の外周面(同図の上面)側から内周面(同図の下面)側に向かって貫通孔51が縮径するように設けられている。
 図15に示すように、段部51aには、プラグ1Bに設けられた突出部37の突出端37aが軸線X1方向に当接する。これによって、貫通孔51に対してプラグ1Bを設置する際に、貫通孔51に対してプラグ1Bを容易に軸線X1方向に位置決めすることができる。
 本実施形態によれば、以下の効果を奏する。
 突出部37を備えているので、プラグ1Bを設置する際に、貫通孔51に突出部37を嵌合することで貫通孔51に対してプラグ1Bを容易に半径方向に位置決めすることができる。
 また、貫通孔51には段部51aが形成されているので、突出部37を貫通孔51に嵌合させるとき、貫通孔51に対してプラグ1Bを容易に軸線X1方向に位置決めすることができる。これによって、プラグ1Bに形成された開先部35と蒸気配管50の外周面との隙間(ルート間隔)を適切に保つことができる。
[プラグ(第3実施形態)について]
 次に、本開示の第3実施形態に係るプラグ1Cについて図16及び図17を用いて説明する。
 本実施形態のプラグは、第2実施形態の突出部37に対して鍔37bが形成されている点で相違している。このため、同一の構成については同一の符号を付してその説明を省略する。
 図16には、プラグ1Cの縦断面図が示されている。図16に示すように、プラグ1Cの突出部37には鍔37bが形成されている。
 鍔37bは、突出部37の外周面から半径方向に張り出した部分とされている。鍔37bは、軸線X1の全周方向に形成されてもよいし、一部の周方向にのみ形成されてもよい。ただし、鍔37bは、ストレート面32に到達しないように、かつ、貫通孔51の内径よりも大径となるように形成されている。
 図17に示すように、プラグ1Cの鍔37bは、貫通孔51の周囲(蒸気配管50の外周面)に当接する。これによって、プラグ1Cを設置する際に、貫通孔51に対してプラグ1Cを容易に軸線X1方向に位置決めすることができる。
 本実施形態によれば、以下の効果を奏する。
 鍔37bを備えているので、プラグ1Cを設置する際に、突出部37を貫通孔51に嵌合させるとき、第2実施形態のような段部51aを蒸気配管50に設けることなく貫通孔51に対してプラグ1Cを容易に軸線X1方向に位置決めすることができる。これによって、プラグ1Cに形成された開先部35と蒸気配管50の外周面との隙間(ルート間隔)を適切に保つことができる。
 なお、各実施形態において、図3に示すように、プラグ1に穴部36を形成してもよい。穴部36は、基端12側の面から軸線X1に沿って底面38に到達しない深さで穿設された穴である。穴部36は、プラグ1の剛性を低下させる。これによって、開先部35の溶接時にプラグ1の先端11側に発生する引っ張り応力の集中を緩和することができる。このため、プラグ1の先端11側にき裂が発生することを抑制できる。
 以上の通り説明した各実施形態は、例えば以下のように把握される。
 すなわち、本開示の一態様に係るプラグ(1)は、蒸気配管(50)に形成された貫通孔(51)を前記蒸気配管(50)の外周面側から閉塞するプラグ(1)であって、軸線(X1)方向に延びる柱状に形成された管台部(30)と、基端(12)側から先端(11)側に向かう方向で前記軸線(X1)方向に直交する半径方向の外周側から縮経する開先面(31)と、該開先面(31)の端部から、前記先端(11)側から前記基端(12)側に向かって前記軸線(X1)方向に沿って延びるストレート面(32)と、前記開先面(31)と前記ストレート面(32)によって前記管台部(30)から突出するように形成された開先部(35)と、を備えている。
 本態様に係るプラグ(1)によれば、基端(12)側から先端(11)側に向かう方向で軸線(X1)方向に直交する半径方向の外周側から縮経する開先面(31)と、開先面(31)の端部から、先端(11)側から基端(12)側に向かって軸線(X1)方向に沿って延びるストレート面(32)によって管台部(30)から突出した開先部(35)を形成することができる。これにより、形成された開先部(35)を蒸気配管(50)の外周面に突き合わせて溶接することで溶接開始時における溶金の溶け込みを良好なものにすることができる。また、プラグ(1)の管台部(30)に形成された環状のストレート面(32)の内径よりも貫通孔(51)が小径であれば、開先部(35)を蒸気配管に突き合わせた場合、ストレート面(32)及び開先面(31)によって形成された開先部(35)の先端から貫通孔(51)までの距離の分だけ蒸気配管(50)の外周面が存在することになる。これにより、突出した開先部(50)の先端から貫通孔(51)までの蒸気配管(50)の外周面は、溶接開始時において開先部(35)の先端と蒸気配管(50)の外周面との間から流れ出る溶金の受け部分として機能するので、溶金の溶け込みを更に良好なものにして、未溶着部の発生を抑制することができる。
 このようにして溶金の溶け込みを良好にすることで、溶接されるべき部分に未溶着部があるような不連続な溶接溶け込み形状の発生を抑制する。これにより、負荷が印可された場合にも、応力が集中してき裂発生の起因となることを抑制することができる。
 また、本開示の一態様に係るプラグ(1)において、前記開先部(35)には、前記蒸気配管(50)の外周面との間で溶接部(60)が形成される。
 本態様に係るプラグによれば、開先部(35)には、蒸気配管(50)の外周面との間で溶接部(60)が形成されるので、開先部(35)と蒸気配管(50)の外周面とを溶接して接続することができる。
 また、本開示の一態様に係るプラグ(1)において、前記ストレート面(32)は、前記開先部(35)が前記蒸気配管(50)の外周面に突き合わされたとき前記半径方向において前記貫通孔(51)よりも外側に位置している。
 本態様に係るプラグ(1)によれば、ストレート面(32)は、開先部(35)が蒸気配管(50)に突き合わされたとき半径方向において貫通孔(51)よりも外側に位置しているので、開先部(35)を蒸気配管に突き合わせた場合、ストレート面(32)及び開先面(31)によって形成された開先部(35)の先端から貫通孔(51)までの距離の分だけ蒸気配管(50)の外周面が存在することになる。開先部(35)の先端から貫通孔(51)までの蒸気配管(50)の外周面は、溶接開始時において開先部(35)の先端と蒸気配管(50)の外周面との間から流れ出る溶金の受け部分として機能するので、溶金の溶け込みを更に良好なものにすることができて、溶接されるべき部分に未溶着部があるような不連続な溶接溶け込み形状が発生することを抑制できる。
 また、本開示の一態様に係るプラグ(1)は、前記管台部(30)の前記基端(12)側の面から軸線(X1)方向に沿って穿設された穴部(36)を備えている。
 本態様に係るプラグ(1)によれば、柱状の管台部(30)の基端(12)側の面から軸線(X1)方向に沿って穿設された穴部(36)を備えているので、溶接時にプラグ(1)の先端(11)側に発生する引っ張り応力の集中を緩和することができる。これによって、プラグ(1)の先端(11)側にき裂が発生することを抑制できる。
 また、本開示の一態様に係るプラグ(1B,1C)は、前記ストレート面(32)との間に隙間を空けて対向するとともに前記軸線(X1)方向に沿って延びて前記貫通孔(51)に嵌合可能な外周面が形成された筒状または筒状の一部を形成する突出部(37)を備えている。
 本態様に係るプラグ(1B,1C)によれば、ストレート面(32)との間に隙間を空けて対向するとともに軸線(X1)方向に沿って延びて貫通孔(51)に嵌合可能な外周面が形成された筒状または筒状の一部を形成する突出部(37)を備えているので、プラグ(1B,1C)を設置する際に、貫通孔(51)に突出部(37)を嵌合することで貫通孔(51)に対してプラグ(1B,1C)を半径方向に位置決めすることができる。
 また、本開示の一態様に係るプラグ(1C)において、前記突出部(37)には、前記半径方向に張り出した鍔(37b)が形成され、前記鍔(37b)は、前記半径方向で前記貫通孔(51)よりも外側に位置する。
 本態様に係るプラグ(1C)によれば、突出部(37)には、半径方向に張り出した鍔(37b)が形成され、前記鍔(37b)は、前記半径方向で前記貫通孔(51)よりも外側に位置するので、突出部(37)を貫通孔(51)に嵌合させるとき、鍔(37b)を貫通孔(51)周囲の蒸気配管に当接させることができる。これによって、プラグ(1C)を設置する際に、貫通孔(51)に対してプラグ(1C)を軸線方向に位置決めすることができ、形成された開先部(35)と蒸気配管の外周面との隙間(ルート間隔)を適切に保つことができる。
 また、本開示の一態様に係るプラグ(1)において、前記ストレート面(32)は、前記基端(12)側の端部にラウンド面(34)が形成されている。
 本態様に係るプラグ(1)によれば、ストレート面(32)は、基端(12)側の端部にラウンド面(34)が形成されているので、ストレート面(32)の基端(12)側の端部における応力集中を抑制できる。
 また、本開示の一態様に係る蒸気配管構造物は、貫通孔(51)が形成された蒸気配管(50)と、上記のプラグ(1)とを備え、前記プラグ(1)は、前記開先部(35)が前記蒸気配管(50)の外周面に突き合わされ、前記開先部(35)の前記開先面(312)と前記蒸気配管(50)の外周面との間に溶接部(60)が形成されて前記蒸気配管(50)に接続されている。
 本態様に係る蒸気配管構造物によれば、プラグ(1)は、開先部(35)が蒸気配管(50)の外周面に突き合わされ、開先部(35)の開先面(31)と蒸気配管(50)の外周面との間に溶接部(60)が形成されて蒸気配管(50)に接続されているので、溶接部(60)の全てを蒸気配管(50)の外周面上に形成することができる。これによって、溶接部(60)の欠陥の有無を非破壊法で検査することができるので、溶接部(60)の検査が容易に実施できるようになる。また、検査対象となる溶接部(60)の全てが蒸気配管(50)の外周面上に形成されるので検査の精度が向上する。
 また、本開示の一態様に係る蒸気配管構造物は、貫通孔(51)が形成された蒸気配管(50)と、上記のプラグ(1B,1C)とを備え、前記貫通孔(51)には、前記突出部(37)の突出端(37a)が前記軸線(X1)方向に当接する段部(51a)が形成され、前記プラグ(1B,1C)は、前記突出部(37)が前記貫通孔(51)に挿入され、前記開先部(35)が前記蒸気配管(50)に突き合わされ、前記開先部(35)の前記開先面(31)と前記蒸気配管(50)の外周面との間に溶接部(60)が形成されて前記蒸気配管(50)に接続されている。
 本態様に係る蒸気配管構造物によれば、貫通孔(51)には、突出部(37)の突出端(37a)が軸線(X1)方向に当接する段部(51a)が形成され、プラグ(1B,1C)は、突出部(37)が貫通孔(51)に挿入され、開先部(35)が蒸気配管(50)に突き合わされ、開先部(35)の開先面(31)と蒸気配管(50)の外周面との間に溶接部(60)が形成されて蒸気配管(60)に接続されているので、突出部(37)を貫通孔(51)に嵌合させるとき、貫通孔(51)に対してプラグ(1B,1C)を軸線(X1)方向に位置決めすることができる。これによって、プラグ(1B,1C)を設置する際に、形成された開先部(35)と蒸気配管(50)の外周面との隙間(ルート間隔)を適切に保つことができる。
 また、本開示の一態様に係る蒸気配管構造物において、前記溶接部(60)は、前記蒸気配管(50)に接する部分の前記半径方向の外側の端部(61)が前記管台部(30)の外周面の位置よりも前記半径方向の外側に位置している。
 本態様に係る蒸気配管構造物によれば、溶接部(60)は、蒸気配管(50)に接する部分の半径方向の外側の端部(61)が管台部(30)の外周面の位置よりも半径方向の外側に位置しているので、蒸気配管(50)の管材の内部かつ貫通孔(51)の近傍に発生する応力集中部(53)よりも半径方向の外側に溶接部(60)の端部(61)を位置させることができる。これによって、応力集中部(53)に発生している応力の一部を管台部(30)で担うことができる。このため、蒸気配管(50)の耐力を向上させることができる。また、溶接部(60)で発生する応力集中を緩和して、溶接部(60)の強度確保と寿命延長をすることができる。なお、ここでいう「応力集中部」とは、蒸気配管(50)に作用するフープ応力(蒸気配管(50)の貫通孔(51)周囲に発生し、蒸気配管(50)の内部を流通する蒸気の圧力に起因する応力)によって貫通孔(51)の近傍に発生する応力のピーク部分及びその付近をいう。
 また、本開示の一態様に係る蒸気配管構造物において、前記溶接部(60)の前記端部(61)の位置は、応力集中部(53)の損傷度と、前記溶接部(60)の前記端部(61)の損傷度と、を比較して決定されている。
 本態様に係る蒸気配管構造物によれば、溶接部(60)の端部(61)の位置は、応力集中部(53)の損傷度と、溶接部(60)の端部(61)の損傷度と、を比較して決定されているので、応力集中部(53)及び溶接部(60)の端部(61)の両者が損傷し難い位置に溶接部(60)の端部(61)を設定できる。
 また、本開示の一態様に係る蒸気配管構造物において、前記溶接部(60)の前記端部(61)は、前記蒸気配管(50)の外周面に対して凹状に湾曲したラウンド状に形成されている。
 本態様に係る蒸気配管構造物によれば、溶接部(60)の端部(61)は、蒸気配管(50)の外周面に対して凹状に湾曲するラウンド状に形成されているので、溶接部(60)の端部(61)に応力が集中することを抑制できる。これによって、蒸気配管(50)の応力集中部(53)に発生している応力の一部を管台部(30)で担ったとしても、その応力によって溶接部(60)が損傷することを抑制できる。
 また、本開示の一態様に係るプラグ(1)の設置方法は、蒸気配管(50)に形成された貫通孔(51)を前記蒸気配管(51)の外周面側から閉塞するプラグ(1)であって、軸線(X1)方向に延びる柱状に形成された管台部(30)と、基端(12)側から先端(11)側に向かう方向で前記軸線(X1)方向に直交する半径方向の外周側から縮経する開先面(31)と、該開先面(31)の端部から、前記先端(11)側から前記基端(12)側に向かって前記軸線(X1)方向に沿って延びるストレート面(32)と、前記開先面(31)と前記ストレート面(32)によって前記管台部(30)から突出するように形成された開先部(35)と、を備えているプラグ(1)の設置方法であって、前記蒸気配管(50)に前記開先部(35)を突き合わせる第1工程と、前記開先面(31)と前記蒸気配管(50)の外周面との間を溶接して溶接部(60)を形成する第2工程と、を含む。
1(1A,1B,1C) プラグ
11 先端
12 基端
31 開先面
32 ストレート面
33 ルート面
34 ラウンド面
35 開先部
36 穴部
37 突出部
37a 突出端
37b 鍔
38 底面
50 蒸気配管
51 貫通孔
51a 段部
53 応力集中部
60 溶接部
61 溶接止端
70 平板
71 貫通孔
72 貫通孔点
101 火炉壁(伝熱管)
102 第1過熱器(熱交換器)
103 第2過熱器(熱交換器)
104 第3過熱器(熱交換器)
105 第1再熱器(熱交換器)
106 第2再熱器(熱交換器)
107 節炭器(熱交換器)
111 高圧タービン
112 中圧タービン
113 低圧タービン
114 復水器
121 復水ポンプ(CP)
122 低圧給水ヒータ
123 ボイラ給水ポンプ(BFP)
124 高圧給水ヒータ
126 汽水分離器
L1 給水ライン
L2 ドレン水ライン
L3~L5 蒸気ライン

Claims (13)

  1.  蒸気配管に形成された貫通孔を前記蒸気配管の外周面側から閉塞するプラグであって、
     軸線方向に延びる柱状に形成された管台部と、
     基端側から先端側に向かう方向で前記軸線方向に直交する半径方向の外周側から縮経する開先面と、
     該開先面の端部から、前記先端側から前記基端側に向かって前記軸線方向に沿って延びるストレート面と、
     前記開先面及び前記ストレート面によって前記管台部から突出するように形成された開先部と、
    を備えているプラグ。
  2.  前記開先部には、前記蒸気配管の外周面との間で溶接部が形成される請求項1に記載のプラグ。
  3.  前記ストレート面は、前記開先部が前記蒸気配管の外周面に突き合わされたとき前記半径方向において前記貫通孔よりも外側に位置している請求項1又は2に記載のプラグ。
  4.  前記管台部の前記基端側の面から軸線方向に沿って穿設された穴部を備えている請求項1から3のいずれかに記載のプラグ。
  5.  前記ストレート面との間に隙間を空けて対向するとともに前記軸線方向に沿って延びて前記貫通孔に嵌合可能な外周面が形成された筒状または筒状の一部を形成する突出部を備えている請求項1から4のいずれかに記載のプラグ。
  6.  前記突出部には、前記半径方向に張り出した鍔が形成され、
     前記鍔は、前記半径方向で前記貫通孔よりも外側に位置する請求項5に記載のプラグ。
  7.  前記ストレート面は、前記基端側の端部にラウンド面が形成されている請求項1から6のいずれかに記載のプラグ。
  8.  貫通孔が形成された蒸気配管と
     請求項1から7のいずれかに記載のプラグと、
    を備え、
     前記プラグは、前記開先部が前記蒸気配管の外周面に突き合わされ、前記開先部の前記開先面と前記蒸気配管の外周面との間に溶接部が形成されて前記蒸気配管に接続されている蒸気配管構造物。
  9.  貫通孔が形成された蒸気配管と
     請求項5又は6に記載のプラグと、
    を備え、
     前記貫通孔の外周面側には、前記突出部の突出端が前記軸線方向に当接する段部が形成され、
     前記プラグは、前記突出部が前記貫通孔に挿入され、前記開先部が前記蒸気配管に突き合わされ、前記開先部の前記開先面と前記蒸気配管の外周面との間に溶接部が形成されて前記蒸気配管に接続されている蒸気配管構造物。
  10.  前記溶接部は、前記蒸気配管に接する部分の前記半径方向の外側の端部が前記管台部の外周面の位置よりも前記半径方向の外側に位置している請求項8又は9に記載の蒸気配管構造物。
  11.  前記溶接部の前記端部の位置は、応力集中部の損傷度と、前記溶接部の前記端部の損傷度と、を比較して決定されている請求項10に記載の蒸気配管構造物。
  12.  前記溶接部の前記端部は、前記蒸気配管の外周面に対して凹状に湾曲したラウンド状に形成されている請求項10又は11に記載の蒸気配管構造物。
  13.  蒸気配管に形成された貫通孔を前記蒸気配管の外周面側から閉塞するプラグであって、
     軸線方向に延びる柱状に形成された管台部と、
     基端側から先端側に向かう方向で前記軸線方向に直交する半径方向の外周側から縮経する開先面と、
     該開先面の端部から、前記先端側から前記基端側に向かって前記軸線方向に沿って延びるストレート面と、
     前記開先面及び前記ストレート面によって前記管台部から突出するように形成された開先部と、
    を備えているプラグの設置方法であって、
     前記蒸気配管に前記開先部を突き合わせる第1工程と、
     前記開先面と前記蒸気配管の外周面との間を溶接して溶接部を形成する第2工程と、
    を含むプラグの設置方法。
PCT/JP2020/044029 2020-02-07 2020-11-26 プラグ及び蒸気配管構造物並びにプラグの設置方法 WO2021157163A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-019547 2020-02-07
JP2020019547A JP6953564B2 (ja) 2020-02-07 2020-02-07 プラグ及び蒸気配管構造物並びにプラグの設置方法

Publications (1)

Publication Number Publication Date
WO2021157163A1 true WO2021157163A1 (ja) 2021-08-12

Family

ID=77200151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044029 WO2021157163A1 (ja) 2020-02-07 2020-11-26 プラグ及び蒸気配管構造物並びにプラグの設置方法

Country Status (2)

Country Link
JP (1) JP6953564B2 (ja)
WO (1) WO2021157163A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270891A (ja) * 1986-05-19 1987-11-25 株式会社日立製作所 小口径管台の修理方法
JPH06257705A (ja) * 1993-03-02 1994-09-16 Babcock Hitachi Kk 内面検査プラグ取付台の製作方法
JP2002113576A (ja) * 2000-10-10 2002-04-16 Babcock Hitachi Kk すみ肉溶接構造
JP2011173139A (ja) * 2010-02-23 2011-09-08 Mitsubishi Heavy Ind Ltd 点検孔のプラグ構造
JP2013158823A (ja) * 2012-02-08 2013-08-19 Mitsubishi Heavy Ind Ltd 検査孔閉止構造および検査孔閉止構造の改修方法
JP2013163202A (ja) * 2012-02-10 2013-08-22 Mitsubishi Heavy Ind Ltd 栓部材の取付構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270891A (ja) * 1986-05-19 1987-11-25 株式会社日立製作所 小口径管台の修理方法
JPH06257705A (ja) * 1993-03-02 1994-09-16 Babcock Hitachi Kk 内面検査プラグ取付台の製作方法
JP2002113576A (ja) * 2000-10-10 2002-04-16 Babcock Hitachi Kk すみ肉溶接構造
JP2011173139A (ja) * 2010-02-23 2011-09-08 Mitsubishi Heavy Ind Ltd 点検孔のプラグ構造
JP2013158823A (ja) * 2012-02-08 2013-08-19 Mitsubishi Heavy Ind Ltd 検査孔閉止構造および検査孔閉止構造の改修方法
JP2013163202A (ja) * 2012-02-10 2013-08-22 Mitsubishi Heavy Ind Ltd 栓部材の取付構造

Also Published As

Publication number Publication date
JP6953564B2 (ja) 2021-10-27
JP2021122851A (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
JP5320010B2 (ja) 管寄せ管台の溶接構造
CN107592904A (zh) 受控的防漏燃烧器护环
US7487745B2 (en) Boiler tube position retainer assembly
WO2021157141A1 (ja) 温度計保護筒、温度計測器具及び蒸気配管構造物並びに温度計保護筒の設置方法
WO2021157163A1 (ja) プラグ及び蒸気配管構造物並びにプラグの設置方法
JP6961735B2 (ja) サンプリングノズル及び蒸気配管構造物並びにサンプリングノズルの設置方法
WO2022239682A1 (ja) プラグ、配管構造物及びプラグの設置方法
JP2011194458A (ja) 補修溶接方法
JP6669323B1 (ja) 伝熱管及び伝熱管の製造方法
JP2023111212A (ja) プラグ構造、配管構造物および配管検査方法
JP6551621B1 (ja) 蒸気管の温度測定装置、蒸気管の温度測定方法
JP2015017778A (ja) 管寄せ部構造及びこれを用いた熱交換器
KR20210059905A (ko) 보일러 튜브 누설지점 확인장치 및 그 방법
JP3509187B2 (ja) 管寄せの構造
JP6671146B2 (ja) 節炭器及びボイラ並びに伝熱管の補修方法
KR102296237B1 (ko) 스터브 튜브를 위한 고정장치
US20240159172A1 (en) Once-through heat exchanger and heat recovery steam generator including the same
US11519597B2 (en) Multiple cooled supports for heat exchange tubes in heat exchanger
KR20200088610A (ko) 가스 예열기용 번들 헤더
US7757642B2 (en) Tube sheet pressure retaining plug for water tube condensers, power boilers, and heat exchangers
JP7049080B2 (ja) スーツブロワ装置及びボイラ
WO2020221444A1 (en) Stabilizer for a heat exchanger tube
Fricker Design and manufacturing experience for the German thorium high-temperature reactor 300-MW (e) steam generator
JP2002122484A (ja) 管表面温度計測装置
JP2021110415A (ja) 検査機構、ボイラおよび検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917767

Country of ref document: EP

Kind code of ref document: A1