WO2021153728A1 - 切削工具、切削工具用ホルダ及び被削材切削方法 - Google Patents

切削工具、切削工具用ホルダ及び被削材切削方法 Download PDF

Info

Publication number
WO2021153728A1
WO2021153728A1 PCT/JP2021/003225 JP2021003225W WO2021153728A1 WO 2021153728 A1 WO2021153728 A1 WO 2021153728A1 JP 2021003225 W JP2021003225 W JP 2021003225W WO 2021153728 A1 WO2021153728 A1 WO 2021153728A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
recess
cutting tool
wall
main body
Prior art date
Application number
PCT/JP2021/003225
Other languages
English (en)
French (fr)
Inventor
重孝 橋本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2021574148A priority Critical patent/JP7258189B2/ja
Priority to DE112021000261.9T priority patent/DE112021000261B4/de
Priority to CN202180008669.3A priority patent/CN114945437A/zh
Publication of WO2021153728A1 publication Critical patent/WO2021153728A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/04Tool holders for a single cutting tool
    • B23B29/12Special arrangements on tool holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/128Sensors

Definitions

  • This disclosure relates to a cutting tool, a holder for a cutting tool, and a method for cutting a work material.
  • work material wood, metal, etc.
  • a machine tool For example, wood, metal, etc. (hereinafter referred to as work material) are rotated by a machine tool and scraped by a cutting tool that comes into contact with them.
  • a cutting tool By being cut by a cutting tool, the work material is processed into a desired size and shape.
  • the cutting tool may include a sensor.
  • the operator can know the information when cutting the work material, for example, through the physical quantity detected by the sensor.
  • a cutting tool including such a sensor a cutting tool described in Japanese Patent Application Laid-Open No. 2012-20359 is known.
  • the cutting tool includes a main body, a cutting insert, and a plurality of sensors.
  • the main body extends along the X direction of the Cartesian coordinate system XYZ, has a pocket at the tip, and has a recess on the outer surface on the rear end side of the pocket.
  • the cutting insert is located in the pocket.
  • the plurality of sensors are located in the recess.
  • the recess has a bottom surface and an inner wall located between the bottom surface and the outer surface of the main body.
  • the plurality of sensors include a first sensor fixed to the bottom surface and a second sensor fixed to a fixed wall which is a part of the inner wall and faces a predetermined direction.
  • the work material cutting method includes a step of rotating the work material, a step of bringing the cutting tool into contact with the rotating work material, and cutting the work material. It has a step of separating the cutting tool from the work material.
  • the cutting tool holder includes a main body and a plurality of sensors.
  • the main body has a rod shape, has a pocket at the tip, and has a recess opened on the outer surface on the rear end side of the pocket.
  • the plurality of sensors are located in the recess.
  • the recess has a bottom surface and an inner wall connecting the bottom surface and the outer surface of the main body.
  • the plurality of sensors include a first sensor fixed to the bottom surface and a second sensor fixed to a fixed wall which is a part of the inner wall and faces a predetermined direction.
  • FIG. 2 (A) is a diagram showing a cutting tool before being fixed to the tool post shown in FIG. 1
  • FIG. 2 (B) is a view showing a cutting tool fixed to the tool post shown in FIG. It is a figure which showed the tool.
  • FIG. 3 is a sectional view taken along line VV shown in FIG.
  • FIG. 2 is a sectional view taken along line VI-VI shown in FIG. 2B.
  • FIG. 5 is an enlarged view of VII shown in FIG.
  • FIG. 2nd Embodiment It is sectional drawing of the cutting tool in 2nd Embodiment. It is sectional drawing of the cutting tool in 3rd Embodiment. It is a perspective view of the cutting tool in 4th Embodiment.
  • Cartesian coordinate system XYZ is shown in the attached figure. Each direction of the Cartesian coordinate system XYZ is defined with reference to FIG.
  • front and back is a term used to specify the positional relationship of the cutting tool along the longitudinal direction.
  • Left and right is a term used to specify the positional relationship when the end of the cutting tool is viewed from the rear.
  • upper and lower is a term that specifies the positional relationship when the end of the cutting tool is viewed from the rear as in the case of left and right, and also specifies the direction orthogonal to the left and right direction.
  • the relationship between the X direction, the Y direction, and the Z direction hereinafter, may be referred to as the XYZ direction
  • the vertical direction gravitation direction
  • the X direction is along the front-rear direction
  • the Y direction is along the left-right direction
  • the Z direction is along the up-down direction.
  • the front, back, front, back, left, and right directions are shown as Fr for the front, Rr for the back, Le for the left, Ri for the right, Up for the top, and Dn for the bottom.
  • the machine tool 1 may be a machine used to cut the work material Ob into a desired shape and dimensions.
  • the machine tool 1 may have a tool post 10 for holding the cutting tool 20.
  • the cutting tool 20 held by the tool post 10 can be moved in each direction of the Cartesian coordinate system XYZ (up, down, front, back, left, and right) by, for example, manual operation or automatic operation of the machine tool 1.
  • the cutting tool 20 is pressed against the rotating work material Ob (wood, metal, etc.). As a result, the work material Ob is cut.
  • the tool post 10 may have a wall portion 11, a first protruding portion 12, a second protruding portion 13, a screw hole 14, and a plurality of urging portions 15 (three in the drawing). ..
  • the outer surface of the cutting tool 20 may come into contact with the wall portion 11.
  • the first projecting portion 12 may project laterally (Y direction) from the side surface of the wall portion 11.
  • the second projecting portion 13 may project laterally (Y direction) from the side surface of the wall portion 11.
  • the screw hole 14 may penetrate the second protruding portion 13 in the Z direction (vertical direction).
  • the plurality of urging portions 15 may be screwed into the screw holes 14, and may be members that urge the cutting tool 20 toward the first protruding portion 12.
  • the first protruding portion 12 may have a mounting surface 12a on which the cutting tool 20 is mounted.
  • the cutting tool 20 may be mounted on the mounting surface 12a.
  • the urging portion 15 may come into contact with the cutting tool 20 and urge it toward the mounting surface 12a.
  • the number of urging portions 15 is arbitrary.
  • the number of urging portions 15 may be two or three or more.
  • the shape of the tool post 10 is not limited to the shape shown in FIG.
  • the specific configuration of the tool post 10 capable of holding the cutting tool 20 may be appropriate.
  • the cutting tool 20 is detachably attached to the machine tool 1 (cutting tool base 10).
  • the cutting tool 20 includes an outer diameter cutting tool for cutting the outer diameter of the work material Ob, an inner diameter cutting tool for cutting the inner diameter of the work material Ob, a grooving tool for grooving the work material Ob, a thread cutting tool, and the like. Examples include parting tools.
  • the cutting tool 20 can also be called a cutting tool.
  • the cutting tool 20 includes an insert 30 (cutting insert 30), a holder 40 that supports the insert 30, and a clamp 21 that urges the insert 30 toward the holder 40. It may have a screw 22 that fixes the clamp 21 to the holder 40.
  • the insert 30 may be a replaceable insert called a throwaway insert.
  • the shape of the insert 30 can be changed according to the material and shape of the work material Ob (see FIG. 1).
  • the insert 30 may have a square plate shape. In other embodiments, the insert 30 may exhibit a triangular or pentagonal shape.
  • the size of the insert 30 can be set arbitrarily.
  • the thickness (Z direction) of the insert 30 may be, for example, 5 mm or more, or 20 mm or less.
  • the width (Y direction) of the insert 30 may be, for example, 10 mm or more, or 20 mm or less.
  • the size of the insert 30 may be changed depending on the material of the work material Ob and the like.
  • the material of the insert 30 can be set arbitrarily.
  • the material of the insert 30 may be cemented carbide, cermet, or the like.
  • the composition of the cemented carbide may be, for example, WC-Co, WC-TiC-Co and WC-TiC-TaC-Co.
  • WC, TiC and TaC are hard particles.
  • Co is a binding phase.
  • Cermet is a sintered composite material in which a metal is compounded with a ceramic component.
  • Specific examples of the cermet include, for example, a titanium compound containing TiC and / or TiN as a main component.
  • the surface of the insert 30 can be coated with, for example, a film coated by a chemical vapor deposition method, a physical vapor deposition method, or the like.
  • the coating film may contain TiC, TiN, TiCN, Al2O3 and the like as components.
  • the insert 30 may have a first surface 31, a second surface 32, and a third surface 33. As shown in FIG. 4, the first surface 31 may face in the Z direction (upward). The second surface 32 may be located on the opposite side of the first surface 31 and may face downward (in the negative direction of Z). The third surface 33 may connect the first surface 31 and the second surface 32 to form a side surface of the insert 30.
  • the cutting edge 34 may be located at the boundary between the first surface 31 and the third surface 33.
  • the first surface 31 may have a rake surface 31a connected to the cutting edge 34.
  • the third surface 33 may have a flank 33a connected to the cutting edge 34.
  • the cutting edge 34 may be a ridge line located between the rake face 31a and the flank face 33a.
  • the cutting edge 34 may be a portion that bites into the work material Ob when cutting the work material Ob (see FIG. 1) and directly contributes to the cutting of the work material Ob.
  • the cutting edge 34 may include a curved surface microscopically.
  • the rake face 31a may be a portion through which chips flow when cutting the work material Ob.
  • the rake face 31a can have grooves and / or protrusions and the like.
  • the flank 33a may be tilted by a predetermined angle with respect to the rake face 31a so that the insert 30 does not come into contact with the work material Ob more than necessary.
  • the insert 30 may be provided with a through hole 35 that opens in the first surface 31 and the second surface 32.
  • a part of the clamp 21 that urges the insert 30 toward the holder 40 may be inserted into the through hole 35. As a result, the insert 30 is fixed.
  • the holder 40 may extend from the front end 40a (first end 40a) toward the rear end 40b (hereinafter, also referred to as a second end 40b). From another point of view, it can be said that the holder 40 may extend along the X direction of the Cartesian coordinate system XYZ.
  • Such a holder 40 may have a rod shape, for example.
  • the length of the rod-shaped holder 40 is arbitrary. For example, the length of the holder 40 may be 50 mm or more and 200 mm or less.
  • the size of the holder 40 can be set arbitrarily.
  • the holder 40 has a predetermined width in the Y direction and a predetermined height in the Z direction.
  • the width and height of the holder 40 may be 10 mm or more, 19 mm or more, 25 mm or more, or 50 mm or more.
  • the width and height of the holder 40 may be different from each other. Further, the height of the holder 40 may increase toward the tip 40a.
  • the holder 40 may have a main body 50, a plurality of sensors 41, and wiring 45.
  • the main body 50 is a base portion of the holder 40 and occupies most of the holder 40.
  • Each of the plurality of sensors 41 is located inside the main body 50.
  • the wiring 45 is electrically connected to the plurality of sensors 41 so as to be energized.
  • the material of the main body 50 is arbitrary.
  • the material of the main body 50 may be steel, cast iron, or the like. Cast iron may be used as the material of the main body 50 from the viewpoint of increasing the toughness of the main body 50.
  • the description of the size and shape of the holder 40 can be referred to for the description of the size and shape of the main body 50.
  • the tip of the main body 50 may form the first end 40a, and the rear end of the main body 50 may form the second end 40b.
  • the main body 50 shown in FIG. 3 extends along the X direction of the Cartesian coordinate system XYZ.
  • the main body 50 may have a first surface 51, a second surface 52, a third surface 53, and a fourth surface 54.
  • the first surface 51 may face the direction (Z direction in the drawing) facing the first surface 31 of the insert 30.
  • the second surface 52 may be located on the opposite side of the first surface 51.
  • the third surface 53 may connect the first surface 51 and the second surface 52 and face the direction (Y direction in the drawing) in which the third surface 33 of the insert 30 faces.
  • the fourth surface 54 may be located on the opposite side of the third surface 53 and may connect the first surface 51 and the second surface 52.
  • the urging portion 15 of the tool post 10 may come into contact with the first surface 51.
  • the second surface 52 may come into contact with the mounting surface 12a of the first protrusion 12.
  • the fourth surface 54 may come into contact with the wall portion 11.
  • the main body 50 may further have a first end surface (front end surface) and a second end surface (rear end surface).
  • the first end surface may be located at the first end (tip) 40a of the holder 40.
  • the second end face may be located at the second end 40b (rear end) of the holder 40.
  • the first surface 51, the second surface 52, the third surface 53, and the fourth surface 54 may extend from the first end surface 40a toward the second end surface 40b, respectively. At this time, the first surface 51, the second surface 52, the third surface 53, and the fourth surface 54 may be connected to the first end surface 40a and the second end surface 40b, respectively.
  • the main body 50 has a pocket 55 at its tip 40a.
  • the pocket 55 may be, for example, a recess lacking a part of the main body 50.
  • An insert 30 capable of cutting the work material Ob is located in the pocket 55.
  • the main body 50 is provided with a recess 60 that opens to the outer surface of the main body 50.
  • a plurality of sensors 41 are located in the recess 60.
  • the location of the outer surface of the main body 50 opened in the recess 60 is arbitrary.
  • the main body 50 may be opened to the first surface 51, the second surface 52, the third surface 53, or the fourth surface 54. You may.
  • FIG. 3 shows a main body portion 50 opened to the third surface 53.
  • the expression may be made on the premise that the recess 60 opens to the third surface 53.
  • the size and shape of the recess 60 are arbitrary.
  • the recess 60 may be opened in 20% or more of the third surface 53, or may be opened in 70% or less of the third surface 53.
  • the shape of the recess 60 may be, for example, rectangular when the recess 60 is viewed from the front.
  • the recess 60 may have a bottom surface 61, an inner wall 62, and a connecting surface 63.
  • the inner wall 62 is located between the bottom surface 61 and the outer surface of the main body 50.
  • the inner wall 62 is continuous with the outer surface of the main body 50.
  • the connecting surface 63 may connect the bottom surface 61 and the inner wall 62.
  • the connecting surface 63 may be curved in a bow shape between the bottom surface 61 and the inner wall 62.
  • the recess 60 may have a first recess 70 in which at least one sensor is located and a second recess 80 in which at least one sensor is located.
  • the first recess 70 may be connected to the second recess 80.
  • the first recess 70 and the second recess 80 may be separated from each other.
  • the first recess 70 and the second recess 80 may be aligned in the longitudinal direction of the cutting tool 20.
  • the second recess 80 may be located at the tip 40a of the main body 50 from the first recess 70, or the second recess 80 may be located.
  • the first recess 70 may be located at the tip 40a of the main body 50.
  • the first recess 70 and the second recess 80 may be arranged in other directions (for example, the lateral direction of the cutting tool 20).
  • the sizes of the first recess 70 and the second recess are arbitrary.
  • the first recess 70 may be larger than the second recess 80 or smaller than the second recess 80.
  • the shapes of the first recess 70 and the second recess 80 are arbitrary.
  • the first recess 70 may have a rectangular shape having the recess 60 as the longitudinal direction in the X direction (front-back direction) when the recess 60 is viewed from the front.
  • the second recess 80 may have a rectangular shape having a longitudinal direction in the Z direction (vertical direction) when the recess 60 is viewed from the front.
  • the first recess 70 and / or the second recess 80 may be substantially square when the recess 60 is viewed from the front.
  • the first recess 70 includes a first bottom surface 71 which is the bottom surface of the first recess 70, a first inner wall 72 which is connected to the outer surface of the main body 50 and faces the first bottom surface 71, and the first bottom surface 71 and the first inner wall thereof. It may have a first connecting surface 73 connecting 72.
  • the second recess 80 includes a second bottom surface 81 which is the bottom surface of the second recess 80, a second inner wall 82 which is connected to the outer surface of the main body 50 and faces the second bottom surface 81, and the first bottom surface 71 and the second inner wall thereof. It may have a second connecting surface 83 connecting the 82.
  • the bottom surface 61 of the recess 60 may be composed of a first bottom surface 71 and a second bottom surface 81.
  • the bottom surface 61 may face the Y direction of the Cartesian coordinate system XYZ.
  • the second bottom surface 81 may be located next to the first bottom surface 71 so as to be connected to the first bottom surface 71.
  • the width of the second bottom surface 81 in the direction orthogonal to the X direction may be larger than the width of the first bottom surface 71 in the same direction as shown in the illustrated example.
  • the width of the bottom surface 61 on the front end 40a side of the main body 50 is larger than the width on the rear end 40b side of the main body 50 in the direction orthogonal to the X direction.
  • the width of the second bottom surface 81 in the direction orthogonal to the X direction may be the same as the width of the first bottom surface 71 in the same direction, or the width of the first bottom surface 71 of the first bottom surface 71. It may be smaller than the width in the same direction.
  • the width of the second bottom surface 81 in the Z direction is 1.2 times or more, 1.5 times or more, or 1.0 times or more and 1.2 times the width of the first bottom surface 71 in the same direction. It may have the following sizes.
  • the second bottom surface 81 may be located deeper in the recess 60 than the first bottom surface 71, may be located at the same depth as the first bottom surface 71, or may be shallower in the recess 60 than the first bottom surface 71. May be located.
  • the second recess 80 may have a depth of 1.5 times or more that of the first recess 70, may have a depth of twice or more, or may have a depth of 1.0 times or more. It may have a depth of 5 times or less.
  • the depth of the first recess 70 may be 1/3 or less, 1/6 or less, or 1/3 or more of the thickness (Y direction) of the main body 50.
  • the depth of the second recess 80 may be 1/2 or less or 1/3 or less of the thickness of the main body 50.
  • the main body 50 when the cutting tool 20 is fixed to the tool post 10, the main body 50 may be solid on a straight line L extending along the urging portion 15. That is, the recess 60 may be formed in the main body 50 so as to avoid the straight line L. However, the recess 60 may be located so as to overlap the straight line L extending along the urging portion 15.
  • the flank 33a (reference numeral is FIG. 4), the third surface 53, the first bottom surface 71, and the second bottom surface 81 shown in FIG. 3 face each other in the Y direction of the Cartesian coordinate system XYZ.
  • the term "facing" here does not necessarily mean a direction that coincides with that direction.
  • the inner wall 62 of the recess 60 may have a first inner wall 72 forming the first recess 70 and a second inner wall 82 forming the second recess 80.
  • the first inner wall 72 may be connected to the second inner wall 82.
  • the first inner wall 72 and the second inner wall 82 will be described in this order.
  • the first inner wall 72 may have a first wall surface 72a, a second wall surface 72b, and a third wall surface 72c.
  • the first wall surface 72a is a surface orthogonal to the straight line Lx along the X direction, and may be located on the second end 40b side of the surface forming the recess 60.
  • the second wall surface 72b may be connected to the first wall surface 72a and may be located on the first surface 51 side.
  • the second wall surface 72b may be a surface orthogonal to the straight line Lz along the Z direction.
  • the third wall surface 72c may be a surface that is connected to the first wall surface 72a, is located below the second wall surface 72b, and faces the second wall surface 72b.
  • the third wall surface 72c may face in the Z direction.
  • the first wall surface 72a may be orthogonal to the second wall surface 72b and the third wall surface 72c.
  • the first to third wall surfaces 72a, 72b, 72c have a depth of 1/3 or less, 1/6 or less, or 1/3 or more and 1/2 or less of the thickness of the main body 50 in the depth direction of the recess 60. You may have.
  • the second inner wall 82 may have a fourth wall surface 82a, a fifth wall surface 82b, a sixth wall surface 82c, and a seventh wall surface 82d.
  • the fourth wall surface 82a may be a surface orthogonal to the straight line Lx along the X direction and connected to the first recess 70.
  • the fifth wall surface 82b may be a surface connected to the fourth wall surface 82a and orthogonal to the straight line Lz along the Z direction.
  • the fifth wall surface 82b may be located on the first surface 51 side.
  • the sixth wall surface 82c may be connected to the fourth wall surface 82a and may be located below the fifth wall surface 82b.
  • the sixth wall surface 82c may be a surface facing the fifth wall surface 82b.
  • the sixth wall surface 82c may face in the Z direction.
  • the seventh wall surface 82d may be a surface that connects the fifth wall surface 82b and the sixth wall surface 82c and faces in the X direction (facing the rear end 40b side of the main body 50).
  • the seventh wall surface 82d may be the surface of the inner wall 62 located closest to the first end 40a.
  • the fourth to seventh wall surfaces 82a, 82b, 82c, 82d may have a depth of 1/2 or less or 1/3 or less of the thickness of the main body 50 in the depth direction of the recess 60.
  • the seventh wall surface 82d is separated from the first recess 70 via the fifth wall surface 82b and the sixth wall surface 82c.
  • the fourth wall surface 82a and the seventh wall surface 82d may be orthogonal to the fifth wall surface 82b and the sixth wall surface 82c.
  • the fourth wall surface 82a and the seventh wall surface 82d may be planes parallel to each other.
  • the fifth wall surface 82b and the sixth wall surface 82c may be planes parallel to each other.
  • the fourth to seventh wall surfaces 82a, 82b, 82c, and 82d may or may not be orthogonal to the second bottom surface 81.
  • the second sensor 41b is fixed to the inner wall 62.
  • the portion of the inner wall 62 to which the second sensor 41b is fixed is referred to as a fixed wall Fw.
  • the fixed wall Fw may be, for example, the seventh wall surface 82d (illustrated example), the sixth wall surface 82c, or the fifth wall surface 82b. Further, the fixed wall Fw may be any of the first to fourth wall surfaces 72a, 72b, 72c and 72d.
  • connection surface 63 of the recess 60 may be formed by the first connection surface 73 and the second connection surface 83.
  • the first connecting surface 73 may be connected to both of the first bottom surface 71 and the first inner wall 72 by being curved in a bow shape.
  • the second connecting surface 83 may be connected to both of the second bottom surface 81 and the second inner wall 82 by bending in a bow shape.
  • the main body 50 may be provided with a passage 56 (reference numeral: FIG. 7) through which wirings 45 electrically connected to the plurality of sensors 41 pass.
  • the passage 56 may be a through hole that opens into the bottom surface 61 of the recess 60, the inner wall 62 of the recess 60, and the second end surface 40b of the main body 50.
  • the passage 56 may have a circular shape or a rectangular shape in a cross-sectional view perpendicular to the direction in which the passage 56 extends.
  • the plurality of sensors 41 are, for example, devices capable of detecting the state of the cutting tool 20 at the time of cutting.
  • the states of the cutting tool 20 detected by the plurality of sensors 41 include, for example, physical quantities such as acceleration, vibration, strain, internal stress, and temperature in the cutting tool 20 during cutting, and physical quantities such as wear in the cutting tool 20.
  • Detecting means detecting at least one or more of the physical quantities in the cutting tool 20.
  • the target of detection is not limited to the physical quantity in a static state in which the state does not change relatively, but also includes, for example, a dynamic physical quantity in which the state changes.
  • the static state and the dynamic state will be described in more detail.
  • the physical quantity detected by the plurality of sensors 41 is the acceleration of the cutting tool 20 (main body 50), for example, when the cutting tool 20 comes into contact with the work material Ob in cutting, the cutting tool 20 (main body 50) It is assumed that the acceleration of is increased from 0 m / s 2 to a predetermined value. At this time, 0 m / s 2 before contact with the work material Ob corresponds to a static physical quantity, and the amount of change when contacting the work material Ob and changing from 0 m / s 2 to a predetermined value moves. It corresponds to a physical quantity.
  • the plurality of sensors 41 may detect these static physical quantities and dynamic physical quantities.
  • the information about the cutting tool 20 detected by the plurality of sensors 41 is not limited to the above-mentioned acceleration, vibration, internal stress, temperature, wear, and the like.
  • the senor may be capable of detecting physical quantities such as acceleration, vibration, strain, and internal stress of the main body 50.
  • the sensor may be able to detect only one of these physical quantities, or may be able to detect two or more physical quantities of these physical quantities.
  • the plurality of sensors 41 may include a capacitance detection type sensor, a piezoresistive type sensor, or a heat detection type sensor.
  • the sensor may be a MEMS (Micro Electro Mechanical Systems).
  • the sensor may include an accelerometer.
  • Each sensor of the plurality of sensors 41 may be selected from various types. Each sensor may be any sensor as long as it can detect the physical quantity.
  • the sensor may be an acceleration sensor or a strain sensor. Further, the sensor may include a thermoelectric pair or the like.
  • the physical quantity detected by each sensor may be input to an external device (for example, the information processing device Ip) via the wiring 45, for example.
  • the physical quantity detected by each sensor may be input to the information processing device Ip via an external device (a device capable of inputting information to the information processing device Ip) input through the wiring 45.
  • the information processing device Ip will be described later.
  • the plurality of sensors 41 have a first sensor 41a fixed to the bottom surface 61 and a second sensor 41b fixed to the inner wall 62 (fixed wall Fw).
  • Each sensor (first sensor 41a and second sensor 41b in FIG. 3) is arranged so that the plurality of sensors 41 can detect physical quantities in all directions of the orthogonal coordinate system XYZ.
  • the first sensor 41a can detect a physical quantity in one or two directions in the Cartesian coordinate system XYZ.
  • the direction in which the first sensor 41a can detect the physical quantity may be only the X direction, only the Y direction, or only the Z direction.
  • the two directions in which the first sensor 41a can detect the physical quantity may be the X direction and the Y direction (hereinafter, may be referred to as the XY direction), or the X direction and the Z direction (hereinafter, referred to as the XZ direction). There may be), or it may be in the Y direction and the Z direction (hereinafter, may be referred to as the YZ direction).
  • the first sensor 41a can detect only the physical quantity in one direction, it can be said that the first sensor 41a is a one-axis sensor.
  • the first sensor 41a can detect physical quantities in two directions, it can be said that the first sensor 41a is a two-axis sensor.
  • the size of the first sensor 41a is arbitrary.
  • the length and width of the first sensor 41a may be, for example, 10 mm or more, or 25 mm or less.
  • the thickness of the first sensor 41a may be, for example, 10 mm or more, 25 mm or more, or 10 mm or less.
  • the shape of the first sensor 41a is arbitrary. As shown in FIG. 3, the first sensor 41a may exhibit a rectangular parallelepiped, more specifically, a rectangular flat plate shape. From another point of view, the thickness of the first sensor 41a may be thinner than the length in the direction orthogonal to the first sensor 41a.
  • the first sensor 41a may have a circular flat plate shape or a rod shape (a shape other than a plate shape).
  • the first sensor 41a may be fixed at any position on the bottom surface 61.
  • the first sensor 41a may be fixed to the first bottom surface 71 by an adhesive.
  • the first sensor 41a may be fixed to the first end 40a side from the central portion of the first bottom surface 71 in the X direction, may be fixed to the central portion of the first bottom surface 71, or may be fixed to the central portion of the first bottom surface 71. It may be fixed to the second end 40b side from the central portion of the above.
  • the second sensor 41b can detect a physical quantity in one or two directions in the Cartesian coordinate system XYZ.
  • the second sensor 41b has the same physical quantity as the first sensor 41a, and can detect a physical quantity in a direction different from the direction in which the physical quantity of the first sensor 41a can be detected.
  • the second sensor 41b can detect only the physical quantity in one direction, it can be said that the second sensor 41b is a one-axis sensor.
  • the second sensor 41b can detect the physical quantity in two directions, it can be said that the second sensor 41b is a two-axis sensor.
  • the first sensor 41a can detect physical quantities in two directions
  • the first sensor 41a and the second sensor 41b can detect all physical quantities in the XYZ directions.
  • the second sensor 41b may be able to detect the physical quantity only in the Z direction, or the physical quantity in the X direction or the Y direction in addition to the Z direction. It may be detectable.
  • the second sensor 41b may be able to detect the physical quantity only in the Y direction, or the physical quantity in the X direction or the Z direction in addition to the Y direction. It may be detectable.
  • the second sensor 41b may be able to detect the physical quantity only in the X direction, or the physical quantity in the Y direction or the Z direction in addition to the X direction. It may be detectable.
  • each of the first sensor 41a and the second sensor 41b can detect the physical quantity in two directions, one direction in which the physical quantity of the first sensor 41a can be detected and one direction in which the physical quantity of the second sensor 41b can be detected. Will overlap each other.
  • the overlapping one direction may be a physical quantity in the X direction, a physical quantity in the Y direction, or a physical quantity in the Z direction.
  • the physical quantity in this direction can be detected with high accuracy.
  • the first sensor 41a can detect a physical quantity in one direction and the first sensor 41a and the second sensor 41b can detect all physical quantities in the XYZ directions.
  • the second sensor 41b may be able to detect the physical quantity in the YZ direction.
  • the second sensor 41b may be able to detect the physical quantity in the XZ direction.
  • the first sensor 41a can detect the physical quantity only in the Z direction
  • the second sensor 41b may be able to detect the physical quantity in the XY direction.
  • the description of the size and shape of the first sensor 41a may be incorporated into the description of the size and shape of the second sensor 41b. See FIG. 7.
  • the second sensor 41b may be fixed to the seventh wall surface 82d by, for example, an adhesive.
  • the seventh wall surface 82d is a fixed wall Fw to which the second sensor 41b is fixed.
  • the second sensor 41b fixed to the seventh wall surface 82d (inner wall 62) may be separated from the second bottom surface 81 (bottom surface 61).
  • the gap Vo may be located between the second sensor 41b and the second bottom surface 81 (bottom surface 61).
  • the gap Vo may have a size of 1 mm or more, a size of 2 mm or less, or a size of 1 mm or less in the Y direction.
  • the second sensor 41b may be fixed to the second bottom surface 81 and the seventh wall surface 82d. That is, the gap Vo does not have to be located between the second sensor 41b and the second bottom surface 81 (bottom surface 61).
  • the second sensor 41b is fixed to the second bottom surface 81 and the seventh wall surface 82d, the positioning of the sensor and the positioning of the sensor shaft become easy.
  • the second sensor 41b may be located closer to the tip (insert 30) of the main body 50 than the first sensor 41a.
  • the second sensor 41b may be separated from the first sensor 41a by 3 mm or more, 6 mm or more, or 12 mm or more along the X direction.
  • the wiring 45 may be electrically connected to the first sensor 41a and the second sensor 41b.
  • the wiring 45 may be connected to the information processing device Ip.
  • the physical quantities detected by the first sensor 41a and the second sensor 41b may be input to the information processing device Ip via the wiring 45.
  • the information processing device Ip will be described below.
  • the information processing device Ip may be installed in, for example, the machine tool 1, a space around the machine tool 1, or a place away from the machine tool 1.
  • the information processing device Ip may include, for example, a computer.
  • the computer may include a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and an external storage device.
  • the information processing device Ip can exert various functions by executing the program recorded in the ROM and / or the external storage device by the CPU.
  • the information processing apparatus Ip may adjust the rotation speed of the work material Ob based on the physical quantities detected by the plurality of sensors 41. In one embodiment, the information processing apparatus Ip may adjust the moving speed of the cutting tool 20 that moves up, down, front, back, left, and right (XYZ direction) based on the physical quantities detected by the plurality of sensors 41. In one embodiment, the information processing apparatus Ip may adjust the time until the cutting is completed, which is displayed on a display (not shown), based on the physical quantities detected by the plurality of sensors 41. The information processing device Ip may perform a combination of the above adjustments.
  • FIG. 8 shows each step of the work material cutting method.
  • the work material cutting method may start from, for example, a step of attaching the work material Ob to the machine tool 1 (a step of fixing the work material). After that, for example, the cutting tool 20 may be attached to the machine tool 1 (for example, the tool post 10) (step of fixing the tool).
  • the step of fixing the work material Ob may be performed, for example, after the step of fixing the tool is completed.
  • the cutting tool 20 may be positioned (positioning step). For example, positioning may be performed while confirming the size and / or shape of the work material Ob and confirming the positional relationship between the work material Ob and the cutting tool 20. The positioning step may be performed manually (visually) or automatically.
  • the work material Ob is rotated via the machine tool 1 (rotation process). While the work material Ob is rotating, the cutting tool 20 may be brought into contact with the work material Ob via the machine tool 1 (cutting process). Specifically, the cutting edge 34 of the insert 30 may be brought into contact with the work material Ob. Then, the work material Ob is cut until it has a desired size and shape.
  • the cutting tool 20 may be separated from the work material Ob (step of releasing the cutting tool). After that, the rotation of the work material Ob is stopped (stop process), and the work material Ob is removed from the machine tool 1 (work material removal process). Thereby, the cut work material Ob can be obtained.
  • the first sensor 41a is fixed to the bottom surface 61 of the recess 60.
  • the second sensor 41b is fixed to a fixed wall Fw which is a part of the inner wall 62 of the recess 60 and faces in a predetermined direction. Therefore, for example, as compared with the case where a plurality of sensors 41 are fixed only on the bottom surface 61, the arrangement location and / or orientation of the first sensor 41a and the second sensor 41b can be easily changed. As a result, the degree of freedom in the arrangement location and / or orientation of the plurality of sensors 41 is improved. As a result, in the cutting tool 20 of the present disclosure, it is advantageous to arrange the first sensor 41a and the second sensor 41b.
  • the plurality of sensors 41 have the first sensor 41a and the second sensor 41b, for example, when detecting the physical quantity in the three directions of the Cartesian coordinate system XYZ, the physical quantity in the three directions is detected by one sensor. Is no longer required to detect.
  • a sensor capable of detecting a physical quantity in one or two directions may be more compact than a sensor capable of detecting a physical quantity in three directions, and may have more options for a measurement range and / or a frequency band.
  • the sensor may be compact in a direction in which the physical quantity cannot be detected. Therefore, by adopting a sensor capable of detecting physical quantities in one or two directions, the size of each sensor can be reduced. Even if the recess 60 is partially shallow, a plurality of sensors 41 can be arranged. It is possible to reduce the reduction of the solid portion of the main body 50 in the depth direction of the recess 60. Therefore, a rigid cutting tool 20 can be provided.
  • a sensor capable of detecting physical quantities in three directions in the XYZ directions may have lower detection accuracy than a sensor capable of detecting physical quantities in one or two directions.
  • a plurality of sensors 41 detect physical quantities in each direction of XYZ. Therefore, it is not necessary to detect physical quantities in three directions with one sensor. Therefore, it is possible to improve the detection accuracy of the physical quantity in each direction of the Cartesian coordinate system XYZ.
  • the fixed wall Fw connects the second bottom surface 81 of the inner wall 62 and the outer surface of the main body 50.
  • the second bottom surface 81 is located deeper in the recess 60 than the first bottom surface 71. Therefore, in the recess 60, the region where the second sensor 41b is located becomes deep, and the region where the first sensor 41a is located becomes shallow.
  • the first sensor 41a is installed on the first bottom surface 71 so that the first bottom surface 71 and the first sensor 41a face each other in the thickness direction of the first sensor 41a (the direction in which the dimension of the first sensor 41a is smaller).
  • the second sensor 41b can be easily installed on the fixed wall Fw so that the fixed wall Fw and the second sensor 41b face each other in the thickness direction of the second sensor 41b.
  • the region of the recess 60 in which the first bottom surface 71 is located is shallow, the cutting tool 20 in which a plurality of sensors 41 are located in the recess 60 can provide a more rigid cutting tool 20.
  • the width of the portion located on the fixed wall Fw side of the first sensor 41a is the width of the first sensor 41a. It is larger than the width of the fixed part.
  • the second sensor 41b is fixed to the inner wall 62 on the front end 40a or the rear end 40b side of the main body 50, the area where the second sensor 41b is fixed can be widened. Thereby, for example, in a mode in which the second sensor 41b is not intended to collide with the inner wall 62, the risk of collision can be reduced. Therefore, it is possible to reduce the possibility that a load (unintended one) is applied to the second sensor 41b at the time of manufacturing the cutting tool 20.
  • a connecting surface 63 that is curved and connects the two is located between the bottom surface 61 and the inner wall 62. Since the connecting surface 63 is located between the bottom surface 61 and the inner wall 62, it is possible to reduce the application of an excessive load to the boundary between the bottom surface 61 and the inner wall 62. As a result, a more durable cutting tool can be provided.
  • the fixed wall Fw is orthogonal to the bottom surface 61. Since the fixed wall Fw is orthogonal to the bottom surface 61, the first sensor 41a and the second sensor 41b are arranged in the recess 60 in a state where their thickness directions are orthogonal to each other. Thereby, for example, the physical quantity in each direction of the Cartesian coordinate system XYZ can be easily detected.
  • the fixed wall Fw is orthogonal to the X direction, which is the direction in which the main body 50 extends.
  • the thickness direction of the second sensor 41b faces the X direction side.
  • the second sensor 41b faces the X direction, and as a result, when the second sensor 41b can detect the physical quantity in two directions of the orthogonal coordinate system XYZ, the second sensor 41b has its surface direction (thickness).
  • the physical quantity in the YZ direction which is the physical quantity in the direction orthogonal to the direction), can be easily detected. Examples of physical quantities include acceleration. For example, when cutting the work material Ob, strong acceleration applied in the YZ direction (acceleration due to main component force, feed component force, etc.) can be detected more accurately.
  • the fixed wall Fw has a length of 1/2 or less of the thickness of the main body 50 in the depth direction of the recess 60.
  • the second bottom surface 81 of the recess 60 is located closer to the opening portion of the recess 60 than the central portion of the main body 50.
  • the main body portion 50 is composed of more than half of the solid portion in the depth direction thereof.
  • the cutting tool 20 can be reliably fixed to the tool post 10 (machine tool 1).
  • the durability of the cutting tool 20 with respect to the tool post 10 can be improved.
  • the second sensor 41b is located closer to the tip 40a of the main body 50 than the first sensor 41a. In other words, the second sensor 41b is located closer to the insert 30 than the first sensor 41a. As a result, the second sensor 41b fixed to the inner wall 62 can reliably detect physical quantities such as acceleration generated by the contact of the insert 30 with the work material Ob, for example.
  • the insert 30 includes a rake face 31a and has a first face facing the Z direction of the Cartesian coordinate system XYZ. Further, the bottom surface 61 of the recess 60 faces the Y direction of the Cartesian coordinate system XYZ.
  • the fixed wall Fw, the first surface 31, and the bottom surface 61 face each other in the X direction, the Y direction, and the Z direction, which are orthogonal to each other.
  • the plurality of sensors 41 composed of the first sensor 41a fixed to the bottom surface 61 and the second sensor 41b fixed to the fixed wall Fw can more easily detect the physical quantity in the XYZ direction.
  • the second sensor 41b is separated from the bottom surface 61. Thereby, for example, in a mode in which the second sensor 41b is not intended to receive the load from the bottom surface 61, the load applied to the second sensor 41b can be reduced.
  • the work material cutting method in the present disclosure includes a step of bringing the cutting tool 20 into contact with the work material Ob and cutting the work material Ob. Further, the cutting tool 20 has a holder 40 having a plurality of sensors 41. Therefore, it is possible to provide a work material cutting method capable of cutting with a durable cutting tool 20.
  • FIG. 9 shows a cross-sectional view of the cutting tool 20A according to the second embodiment.
  • the cutting tool 20A of the second embodiment is different from the cutting tool 20 of the first embodiment in that it has a cover 43A that covers a plurality of sensors 41. Further, the cutting tool 20A of the second embodiment also has a different shape of the recess 60A.
  • the holder 40A provided with the cover 43A and the recess 60A will be described.
  • reference numerals are used and detailed description thereof will be omitted.
  • the holder 40A includes a main body 50 having recesses 60A (first recess 70A and second recess 70B), a plurality of sensors 41 located inside the main body 50, and a plurality of sensors 41 covered with the recess 60A.
  • a cover 43A may be provided, and a wiring 45 connected to a plurality of sensors 41 so as to be energized may be provided.
  • the recess 60A may have a notch 60Ad that lacks a part of the main body 50 along the opening of the recess 60A.
  • the notch portion 60Ad may be a portion lacking the vicinity of the opening portion of the main body portion 50 in the circumferential direction. From another point of view, the notch 60Ad may be a portion having a large diameter located at the opening of the recess 60A.
  • the cover 43A may be fitted in the recess 60A (notch 60Ad). Such a cover 43A may be slightly smaller in size than the recess 60A when the recess 60A is viewed from the front. Further, the shape of the cover 43A may be the same as the shape of the recess 60A viewed from the front. In the example shown in FIG. 9, the cover 43A fitted in the recess 60A covers the first sensor 41a and the second sensor 41b located in the recess 60A.
  • the material of the cover 43A is arbitrary.
  • the material of the cover 43A is, for example, an organic material such as resin, an inorganic material such as glass, or a metal such as steel, cast iron, or stainless steel.
  • the material of the cover 43A may be the same as the material of the main body 50.
  • FIG. 10 shows a cross-sectional view of the cutting tool 20B according to the third embodiment.
  • the cutting tool 20B of the third embodiment is different from the cutting tool 20 of the first embodiment in that it has a wireless communication unit 42B and a sealing unit 44B for sealing a plurality of sensors 41.
  • a wireless communication unit 42B and a sealing unit 44B for sealing a plurality of sensors 41.
  • a sealing unit 44B for sealing a plurality of sensors 41.
  • the holder 40B includes a main body 50 having a recess 60 formed therein, a plurality of sensors 41 located inside the main body 50, and a radio electrically connected to the plurality of sensors 41. It may have a communication unit 42B and a sealing unit 44B that seals the plurality of sensors 41 and the wireless communication unit 42B.
  • the wireless communication unit 42B may be, for example, a device capable of transmitting the detected physical quantities of the first sensor 41a and the second sensor 41b to an external device (for example, the information processing device Ip).
  • the physical quantities detected by the first sensor 41a and the second sensor 41b may be input to the wireless communication unit 42B via the wiring 45, and may be input to the information processing device Ip from the wireless communication unit 42B.
  • the sealing portion 44B may be located in the recess 60 so as to seal the first sensor 41a, the second sensor 41b, and the wireless communication portion 42B. All of the sealing portions 44B may be located in the recess 60. Since all of the sealing portion 44B is located in the recess 60, the sealing portion 44B approaches the work material Ob (see FIG. 1) more than necessary when cutting the work material Ob (see FIG. 1). Is suppressed. However, a part of the sealing portion 44B may be located outside the recess 60.
  • the material of the sealing portion 44B may be, for example, an acrylic resin.
  • FIG. 11 shows a perspective view of the cutting tool 20C (holder 40C) according to the fourth embodiment.
  • the cutting tool 20C of the third embodiment has a different number of sensors from the plurality of sensors 41C as compared with the cutting tool 20 of the first embodiment.
  • reference numerals are used and detailed description thereof will be omitted.
  • the plurality of sensors 41C may have a first sensor 41a, a second sensor 41b, and a third sensor 41Cc.
  • the first sensor 41a, the second sensor 41b, and the third sensor 41Cc shown in FIG. 11 may be sensors capable of detecting physical quantities in only one direction of the Cartesian coordinate system XYZ.
  • the first sensor 41a may be able to detect the physical quantity in the X direction
  • the second sensor 41b may be able to detect the physical quantity in the Z direction
  • the third sensor 41Cc may be able to detect the physical quantity in the Y direction.
  • the first to third sensors 41a, 41b, and 41Cc are arranged so as to be able to detect all physical quantities in the XYZ directions.
  • the third sensor 41Cc may be located in the first recess 70 or in the second recess 80.
  • the third sensor 41Cc may be fixed to the second bottom surface 81, the fourth wall surface 82a, or the fifth wall surface 82b. It may be fixed.
  • the cutting tool, cutting structure, information processing device, and holder in the present disclosure are not limited to the above-described embodiments and modifications, and may be implemented in various forms. Below, we introduce some examples in which the forms of cutting tools, cutting structures, information processing devices, and holders are deformed.
  • the illustrated cutting tool is left-handed.
  • the cutting tool in the present disclosure is not limited to left-handed. That is, the cutting tool of the present disclosure can be applied to right-handed cutting tools, and can be applied to both right-handed and left-handed cutting tools.
  • the recess may be composed of a first recess, a second recess and a third recess.
  • the recess may be configured in such a manner that the first recess and the second recess cannot be distinguished.
  • the place where the wireless communication unit shown in the third embodiment is housed is not limited to the recess opened in the place shown in the embodiment.
  • the recess in which the wireless communication unit is housed may be a recess (fourth recess) other than the recess shown in the drawing. In this case, the position where the fourth recess can be opened is arbitrary.
  • wireless communication unit shown in the third embodiment may be applied to the first embodiment, the second embodiment and the fourth embodiment.
  • cover shown in the second embodiment may be applied to the first embodiment, the third embodiment and the fourth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)

Abstract

切削工具において、本体部は、直交座標系XYZのX方向に沿って延び、先端にポケットを有すると共に、ポケットより後端側の外表面に開口する凹部があけられている。切削インサートは、ポケットに位置する。複数のセンサは、凹部内に位置する。凹部は、底面と、底面と本体部の外表面との間に位置する内壁と、を有している。複数のセンサは、底面に固定された第1センサと、内壁の一部であって所定方向に臨む固定壁に固定された第2センサと、を有している。

Description

切削工具、切削工具用ホルダ及び被削材切削方法
 本開示は、切削工具、切削工具用ホルダ及び被削材切削方法に関する。
 例えば、木材又は金属等(以下、被削材と呼ぶ)は、工作機械によって回転されると共に、接触した切削工具により削られる。切削工具に削られることにより、被削材は、所望の大きさ及び形状に加工される。
 切削工具は、センサを含んでいてもよい。作業者は、例えば、センサが検出した物理量を介して、被削材を切削している際の情報を知ることができる。このようなセンサを含む切削工具として、特開2012-20359号公報に記載された切削工具が知られている。
 本開示の一態様にかかる切削工具は、本体部と、切削インサートと、複数のセンサと、を有する。前記本体部は、直交座標系XYZのX方向に沿って延び、先端にポケットを有すると共に、前記ポケットより後端側の外表面に凹部が開口する。前記切削インサートは、前記ポケットに位置する。前記複数のセンサは、前記凹部内に位置する。前記凹部は、底面と、前記底面と前記本体部の前記外表面との間に位置する内壁と、を有する。前記複数のセンサは、前記底面に固定された第1センサと、前記内壁の一部であって所定方向に臨む固定壁に固定された第2センサと、を有している。
 本開示の一態様にかかる被削材切削方法は、被削材を回転させる工程と、回転している前記被削材に上記切削工具を接触させ、前記被削材を切削する工程と、切削された前記被削材から前記切削工具を離す工程と、を有している。
 本開示の一態様にかかる切削工具用ホルダは、本体部と、複数のセンサと、を有する。前記本体部は、棒状を呈し、先端にポケットを有すると共に、前記ポケットより後端側の外表面に開口する凹部があけられている。前記複数のセンサは、前記凹部内に位置する。前記凹部は、底面と、前記底面と前記本体部の前記外表面とを繋ぐ内壁と、を有する。前記複数のセンサは、前記底面に固定された第1センサと、前記内壁の一部であって所定方向に臨む固定壁に固定された第2センサと、を有している。
第1実施形態の切削工具により工作機械に固定された被削材を切削する状況を示した図である。 図2(A)は、図1に示された刃物台に固定される前の切削工具を示した図であり、図2(B)は、図1に示された刃物台に固定された切削工具を示した図である。 図2に示された切削工具の斜視図である。 図3に示されたインサート周辺の拡大図である。 図3に示されたV-V線断面図である。 図2Bに示されたVI-VI線断面図である。 図5に示されたVII拡大図である。 図2に示された切削工具を用いて被削材を切削する工程を説明するための図である。 第2実施形態における切削工具の断面図である。 第3実施形態における切削工具の断面図である。 第4実施形態における切削工具の斜視図である。
 本開示の実施形態を、添付図を用いて以下説明する。添付図には、直交座標系XYZが示されている。この直交座標系XYZの各方向は、図3を基準として定めている。
 更に、理解を容易にするために、前後左右上下を定める。ここで、前後とは、切削工具の長手方向に沿った位置関係を特定するために用いる用語である。左右とは、後方から切削工具の端部を見た場合の位置関係を特定するために用いる用語である。上下とは、左右と同様に後方から切削工具の端部を見た場合の位置関係を特定すると共に、左右方向に対し直交する方向を特定する用語である。尚、X方向、Y方向及びZ方向(以下、XYZ方向ということがある。)と鉛直方向(重力方向)との関係は任意である。
 本開示の添付図に示された各方向は、X方向が前後方向に沿っており、Y方向が左右方向に沿っており、Z方向が上下方向に沿っている。尚、上下前後左右の各方向は、添付図において、前をFr、後をRr、左をLe、右をRi、上をUp、下をDnとして示されている。
 [第1実施形態]
 (工作機械)
 図1を参照する。工作機械1は、被削材Obを所望の形状や寸法に切削するために用いる機械であってもよい。工作機械1は、切削工具20を保持する刃物台10を有してもよい。刃物台10に保持された切削工具20は、例えば、工作機械1の手動操作又は自動操作等によって、直交座標系XYZ(上下前後左右)の各方向に移動可能である。このような操作(自動又は手動)を介して、例えば、切削工具20は、回転する被削材Ob(木材や金属等)に押し当てられる。これにより、被削材Obが切削される。
 (刃物台)
 図2(A)及び図2(B)を参照する。刃物台10は、壁部11と、第1突出部12と、第2突出部13と、ねじ穴14と、複数の付勢部15(図中では3つ)と、を有してもよい。壁部11には、切削工具20の外表面が当接してもよい。第1突出部12は、壁部11の側面から側方(Y方向)に向かって突出してもよい。第2突出部13は、壁部11の側面から側方(Y方向)に向かって突出してもよい。ねじ穴14は、第2突出部13をZ方向(上下方向)に貫通してもよい。複数の付勢部15は、ねじ穴14に螺合されてもよく、且つ、切削工具20を第1突出部12に向かって付勢する部材であってもよい。
 第1突出部12は、切削工具20が載置される載置面12aを有してもよい。載置面12aには、切削工具20が載置されてもよい。付勢部15は、切削工具20に当接し、これを載置面12aに向かって付勢してもよい。付勢部15の数は、任意である。付勢部15の数は、2つであってもよいし、3つ以上であってもよい。
 刃物台10の形状は、図2に示された形状に限定されない。刃物台10における、切削工具20を保持することができる具体的な構成は、適宜なものとされてよい。
 (切削工具)
 切削工具20は、工作機械1(刃物台10)に着脱可能に取り付けられる。切削工具20としては、被削材Obの外径を切削する外径切削工具、被削材Obの内径を切削する内径切削工具、被削材Obに溝等を施す溝入れ工具、ねじ切り工具及び突っ切り工具等が挙げられる。切削工具20は、バイトと呼ぶこともできる。
 図3に示す例のように、切削工具20は、インサート30(切削インサート30)と、このインサート30を支持するホルダ40と、インサート30をホルダ40に向かって付勢しているクランプ21と、このクランプ21をホルダ40に固定しているねじ22と、を有してもよい。
 (インサート及びインサート周辺の構造)
 図4に示す例のように、インサート30は、スローアウェイインサートと呼ばれる交換式のインサートであってもよい。インサート30の形状は、被削材Ob(図1参照)の材質や形状等に応じて変更可能である。図3に示す例のように、インサート30は、四角板形状を呈してもよい。その他の態様において、インサート30は、三角板形状又は五角板形状を呈してもよい。
 インサート30の大きさは、任意に設定できる。インサート30の厚さ(Z方向)は、例えば、5mm以上でもよく、また、20mm以下でもよい。インサート30の幅(Y方向)は、例えば、10mm以上でもよく、また、20mm以下でもよい。被削材Obの材質等によってインサート30の大きさを変えてもよい。
 インサート30の材料は、任意に設定できる。例えば、インサート30の材料は、超硬合金やサーメット等であってもよい。超硬合金の組成は、例えば、WC-Co、WC-TiC-Co及びWC-TiC-TaC-Coであってもよい。WC、TiC及びTaCは、硬質粒子である。一方、Coは結合相である。尚、サーメットは、セラミック成分に金属を複合させた焼結複合材料である。サーメットの具体例としては、例えば、TiC及び/又はTiNを主成分としたチタン化合物が挙げられる。
 インサート30の表面には、例えば、化学蒸着法や物理蒸着法等によってコーティングされた被膜を施すことができる。例えば、被膜は、TiC、TiN、TiCN及びAl2O3等を成分としてもよい。
 インサート30は、第1面31、第2面32、第3面33と、を有してもよい。図4に示すように、第1面31は、Z方向(上方)に臨んでもよい。第2面32は、第1面31の反対側に位置し、下方(Zの負方向)に臨んでもよい。第3面33は、第1面31及び第2面32を繋ぎ、インサート30の側面を構成してもよい。
 第1面31及び第3面33の境界には、切刃34が位置してもよい。第1面31は、切刃34に繋がったすくい面31aを有してもよい。第3面33は、切刃34に繋がった逃げ面33aを有してもよい。切刃34は、すくい面31aと逃げ面33aとの間に位置する稜線であってもよい。
 切刃34は、被削材Ob(図1参照)を切削する際に、被削材Obに食い込み、被削材Obの切削に直接寄与する部位であってもよい。切刃34は、微視的には曲面を含んでもよい。すくい面31aは、被削材Obを切削する際に、切りくずが流れる部位であってもよい。すくい面31aは、溝及び/又は突起等を有することができる。逃げ面33aは、被削材Obにインサート30が必要以上に接触しないよう、すくい面31aに対し所定の角度だけ傾いてもよい。
 図4に示す例のように、インサート30には、第1面31及び第2面32に開口する貫通穴35があけられていてもよい。貫通穴35には、ホルダ40(Zの負方向)に向かってインサート30を付勢するクランプ21の一部が挿入されてもよい。これにより、インサート30が固定される。
 (ホルダ)
 図3を参照する。ホルダ40は、先端40a(第1端40a)から後端40b(以下、第2端40bとも呼ぶ。)に向かって延びてもよい。別の観点では、ホルダ40は、直交座標系XYZのX方向に沿って延びてもよい、といえる。このようなホルダ40は、例えば、棒形状を呈してもよい。棒状を呈するホルダ40の長さは、任意である。例えば、ホルダ40の長さは、50mm以上200mm以下であってもよい。
 ホルダ40の大きさは、任意に設定できる。ホルダ40は、Y方向に所定の幅を有し、Z方向に所定の高さを有している。ホルダ40の幅及び高さは、10mm以上でもよいし、19mm以上でもよいし、25mm以上でもよいし、50mm以上でもよい。ホルダ40の幅及び高さは、互いに異なってもよい。更には、ホルダ40の高さは、先端40aに向かって大きくなってもよい。
 図5を参照する。ホルダ40は、本体部50と、複数のセンサ41と、配線45と、を有してもよい。本体部50は、ホルダ40のベースとなる部分であり、ホルダ40の大部分を占める。複数のセンサ41は、それぞれ本体部50の内部に位置する。配線45は、これら複数のセンサ41と通電可能に接続される。
 (本体部)
 本体部50の材料は、任意である。本体部50の材料は、鋼又は鋳鉄等であってもよい。本体部50の柔靭性を高める観点から、本体部50の材料に鋳鉄を採用してもよい。本体部50の大きさ及び形状の説明には、ホルダ40の大きさ及び形状の説明を援用できる。本体部50の先端は、第1端40aを構成してもよく、本体部50の後端は、第2端40bを構成してもよい。
 図3に示す本体部50は、直交座標系XYZのX方向に沿って延びている。本体部50は、第1表面51と、第2表面52と、第3表面53と、第4表面54と、を有してもよい。
 第1表面51は、インサート30の第1面31が臨む方向(図中ではZ方向)側を向いてもよい。第2表面52は、第1表面51の反対側に位置してもよい。第3表面53は、第1表面51及び第2表面52を繋ぐと共にインサート30の第3面33が臨む方向(図中ではY方向)側を向いてもよい。第4表面54は、第3表面53の反対側に位置し、第1表面51及び第2表面52を繋いでもよい。尚、上記にいう「臨む」とは、その方向と一致する方向を意味する必要はなく、本体部50を構成する側面の中で最もその方向を向いていればよい。以下の説明で用いられる「臨む」についても同一であってもよい。
 図6を参照する。第1表面51には、刃物台10の付勢部15が当接してもよい。第2表面52は、第1突出部12の載置面12aに当接してもよい。第4表面54は、壁部11に当接してもよい。
 図3を参照する。本体部50は、第1端面(先端面)及び第2端面(後端面)をさらに有してもよい。第1端面は、ホルダ40における第1端(先端)40aに位置してもよい。第2端面は、ホルダ40における第2端40b(後端)に位置してもよい。第1表面51、第2表面52、第3表面53及び第4表面54は、それぞれ第1端面40aから第2端面40bに向かって延びてもよい。この時、第1表面51、第2表面52、第3表面53及び第4表面54は、それぞれ第1端面40a及び第2端面40bに繋がってもよい。
 再び本体部50の構成の説明に戻る。本体部50は、その先端40aにポケット55を有している。ポケット55は、例えば、本体部50の一部を欠いた窪みであってもよい。ポケット55には、被削材Obを切削可能なインサート30が位置している。
 (凹部)
 本体部50には、本体部50の外表面に開口する凹部60があけられている。凹部60内には、複数のセンサ41が位置している。凹部60に開口される本体部50の外表面の箇所は、任意である。例えば、本体部50は、第1表面51に開口されてもよいし、第2表面52に開口されてもよいし、第3表面53に開口されてもよいし、第4表面54に開口されてもよい。図3には、第3表面53に開口された本体部50が示されている。以下、便宜上、凹部60が第3表面53に開口する態様を前提とした表現をすることがある。
 凹部60の大きさ及び形状は、任意である。例えば、凹部60は、第3表面53の20%以上に開口してもよいし、第3表面53の70%以下に開口してもよい。凹部60の形状は、凹部60を正面に見て、例えば、矩形状を呈してもよい。
 図3及び図5~図7を参照する。凹部60は、底面61と、内壁62と、接続面63と、を有してもよい。内壁62は、底面61と本体部50の外表面との間に位置している。内壁62は、本体部50の外表面と連続している。接続面63は、底面61と内壁62とを繋いでもよい。接続面63は、底面61と内壁62との間が弓なりに湾曲していてもよい。
 図3を参照する。別の観点では、凹部60は、少なくとも1つのセンサが配置されている第1凹部70と、少なくとも1つのセンサが配置されている第2凹部80と、を有してもよい。図示の例のように、第1凹部70は、第2凹部80と繋がってもよい。図示の例とは異なり、第1凹部70と第2凹部80とは、互いに離れていてもよい。
 第1凹部70と第2凹部80は、切削工具20の長手方向に並んでいてもよい。第1凹部70及び第2凹部80が切削工具20の長手方向に並んでいる場合、第1凹部70より第2凹部80が本体部50の先端40aに位置してもよいし、第2凹部80より第1凹部70が本体部50の先端40aに位置してもよい。第1凹部70と第2凹部80は、他の方向(例えば切削工具20の短手方向)に並んでいてもよい。
 第1凹部70及び第2凹部の大きさは、それぞれ任意である。例えば、凹部60を正面に見て、第1凹部70は、第2凹部80より大きくてもよいし、第2凹部80より小さくてもよい。第1凹部70及び第2凹部80の形状は、任意である。図3に示すように、第1凹部70は、凹部60を正面に見て、X方向(前後方向)を長手とする矩形状であってもよい。一方、第2凹部80は、凹部60を正面に見て、Z方向(上下方向)を長手とする矩形状であってもよい。第1凹部70及び/又は第2凹部80は、凹部60を正面に見て、略正方形であってもよい。
 (第1凹部の構成)
 図3及び図5を参照する。第1凹部70は、第1凹部70の底面である第1底面71と、本体部50の外表面に繋がり第1底面71に向かった第1内壁72と、これら第1底面71及び第1内壁72を繋ぐ第1接続面73と、を有してもよい。
 (第2凹部の構成)
 第2凹部80は、第2凹部80の底面である第2底面81と、本体部50の外表面に繋がり第2底面81に向かった第2内壁82と、これら第1底面71及び第2内壁82を繋ぐ第2接続面83と、を有してもよい。
 (第1凹部及び第2凹部の底面)
 凹部60の底面61は、第1底面71及び第2底面81によって構成されてもよい。底面61は、直交座標系XYZのY方向に臨んでもよい。例えば、凹部60の底面61を正面に見て、第2底面81は、第1底面71に繋がるよう第1底面71の隣に位置してもよい。
 第2底面81のX方向に直交する方向(Z方向)の幅は、図示の例のように、第1底面71の同方向の幅より大きくてもよい。別の観点では、底面61は、X方向に直交する方向において、本体部50の先端40a側の幅が本体部50の後端40b側の幅より大きい。但し、図示の例とは異なり、第2底面81のX方向に直交する方向の幅は、第1底面71の同方向の幅と同一の大きさであってもよいし、第1底面71の同方向の幅より小さくてもよい。図3に示す例において、第2底面81のZ方向の幅は、第1底面71の同方向の幅の1.2倍以上、1.5倍以上、又は1.0倍以上1.2倍以下の大きさであってもよい。
 第2底面81は、第1底面71より凹部60の深くに位置してもよいし、第1底面71と同一の深さに位置してもよいし、第1底面71より凹部60の浅くに位置してもよい。例えば、第2凹部80は、第1凹部70の1.5倍以上の深さを有してもよいし、2倍以上の深さを有してもよいし、1.0倍以上1.5倍以下の深さを有してもよい。
 図6を併せて参照する。第1凹部70の深さは、本体部50の厚さ(Y方向)の1/3以下、1/6以下又は1/3以上であってもよい。第2凹部80の深さは、本体部50の厚さの1/2以下又は1/3以下であってもよい。図6に示すように、切削工具20が刃物台10に固定された際に、本体部50は、付勢部15に沿って延びる直線L上が中実であってもよい。即ち、凹部60は、直線Lを避けるよう本体部50にあけられてもよい。但し、凹部60は、付勢部15に沿って延びる直線Lと重なるに位置してもよい。
 図3に示す逃げ面33a(符号は図4)、第3表面53、第1底面71及び第2底面81は、それぞれ直交座標系XYZのY方向に臨んでいる。尚、ここでいう「臨む」とは、上記で述べたように、必ずしもその方向と一致する方向を意味する必要はない。
 (第1凹部及び第2凹部の内壁)
 図3に示すように、凹部60の内壁62は、第1凹部70を構成する第1内壁72と、第2凹部80を構成する第2内壁82と、を有してもよい。例えば、第1凹部70及び第2凹部80が繋がっている場合、第1内壁72は、第2内壁82と繋がってもよい。以下、第1内壁72及び第2内壁82の説明をこの順で行う。
 第1内壁72は、第1壁面72aと、第2壁面72bと、第3壁面72cと、を有してもよい。第1壁面72aは、X方向に沿った直線Lxと直交する面であり、凹部60を構成する面において第2端40b側に位置してもよい。第2壁面72bは、第1壁面72aに繋がり、第1表面51側に位置してもよい。第2壁面72bは、Z方向に沿った直線Lzと直交する面であってもよい。第3壁面72cは、第1壁面72aに繋がり、第2壁面72bより下方に位置し第2壁面72bに対向した面であってもよい。第3壁面72cは、Z方向に臨んでもよい。第1壁面72aは、第2壁面72b及び第3壁面72cに直交してもよい。
 第1~第3壁面72a、72b、72cは、凹部60の深さ方向において、本体部50の厚さの1/3以下、1/6以下、又は1/3以上1/2以下の奥行きを有してもよい。
 第2内壁82は、第4壁面82aと、第5壁面82bと、第6壁面82cと、第7壁面82dと、を有してもよい。第4壁面82aは、X方向に沿った直線Lxと直交し、第1凹部70に繋がった面であってもよい。第5壁面82bは、第4壁面82aに繋がった、Z方向に沿った直線Lzと直交する面であってもよい。第5壁面82bは、第1表面51側に位置してもよい。第6壁面82cは、第4壁面82aに繋がり、第5壁面82bより下方に位置してもよい。第6壁面82cは、第5壁面82bに対向した面であってもよい。第6壁面82cは、Z方向に臨んでもよい。第7壁面82dは、第5壁面82bと第6壁面82cとを繋ぎ、X方向に臨む(本体部50の後端40b側に臨む)面であってもよい。第7壁面82dは、内壁62のうち最も第1端40a側に位置する面であってもよい。
 第4~第7壁面82a、82b、82c、82dは、凹部60の深さ方向において、本体部50の厚さの1/2以下又は1/3以下の奥行きを有してもよい。第7壁面82dは、第5壁面82b及び第6壁面82cを介して第1凹部70から離れている。
 第4壁面82a及び第7壁面82dは、第5壁面82b及び第6壁面82cに直交してもよい。第4壁面82a及び第7壁面82dは、互いに平行な面であってもよい。第5壁面82b及び第6壁面82cは、互いに平行な面であってもよい。第4~第7壁面82a、82b、82c、82dは、第2底面81に対し直交してもよいし、第2底面81に対し直交しなくてもよい。
 図5を参照する。内壁62には、第2センサ41bが固定されている。ここで、第2センサ41bが固定された内壁62の部位を固定壁Fwと呼ぶ。固定壁Fwは、例えば、第7壁面82dであってもよいし(図示の例)、第6壁面82cであってもよいし、第5壁面82bであってもよい。更に、固定壁Fwは、第1~第4壁面72a、72b、72c、72dの何れであってもよい。
 (第1凹部及び第2凹部の接続面)
 図5及び図7を参照する。第1接続面73及び第2接続面83によって凹部60の接続面63が構成されてもよい。第1接続面73は、第1底面71と第1内壁72との間が弓なりに湾曲し、両者に繋がってもよい。第2接続面83は、第2底面81と第2内壁82との間が弓なりに湾曲し、両者に繋がってもよい。
 (通路)
 図5を参照する。本体部50には、複数のセンサ41と電気的に接続された配線45が通る通路56(符号は図7)があけられてもよい。通路56は、凹部60の底面61、凹部60の内壁62、及び、本体部50の第2端面40bに開口する貫通穴であってもよい。通路56は、通路56が延びる方向に垂直な断面視において、円形状を呈してもよいし、矩形状を呈してもよい。
 (複数のセンサ)
 複数のセンサ41は、例えば、切削時に切削工具20の状態を検出可能な機器である。複数のセンサ41が検出する切削工具20の状態としては、例えば、切削時の切削工具20における、加速度、振動、ひずみ、内部応力、温度等の物理量、及び、切削工具20における損耗等の物理量が挙げられる。「検出する」とは、切削工具20における上記物理量の少なくとも1以上を検出することを意味する。ここで、検出の対象は、状態が比較的変化しない静的な状態における物理量に限定されず、例えば、状態が変化する動的な物理量も含まれる。以下、静的な状態及び動的な状態について、より詳細に説明する。
 複数のセンサ41が検出する物理量が切削工具20(本体部50)の加速度である場合に、例えば、切削において切削工具20が被削材Obに接触することによって、切削工具20(本体部50)の加速度が0m/sから所定の値まで上がったとする。この時、被削材Obへの接触前の0m/sが静的な物理量に該当し、被削材Obに接触して0m/sから所定の値まで変化した時の変化量が動的な物理量に該当する。複数のセンサ41は、これら静的な物理量及び動的な物理量を検出してもよい。尚、複数のセンサ41が検出する切削工具20に関する情報は、上記にいう加速度、振動、内部応力、温度及び損耗等に限定されない。
 例えば、センサは、本体部50の加速度、振動、歪み及び内部応力等の物理量を検出可能であってもよい。センサは、これら物理量の1つのみを検出可能であってもよいし、これら物理量の2つ以上の物理量を検出可能であってもよい。例えば、複数のセンサ41は、静電容量検出方式のセンサを含んでもよいし、ピエゾ抵抗方式のセンサを含んでもよいし、熱検知方式のセンサを含んでもよい。センサが静電容量検出方式である場合、センサは、MEMS(Micro Electro Mechanical Systems)であってもよい。センサは、加速度センサを含んでもよい。
 複数のセンサ41の各センサは、様々な種類から選ばれてよい。各センサは、上記物理量を検出可能であれば如何なるものであってもよい。例えば、センサは、加速度センサであってもよいし、歪みセンサであってもよい。更に、センサは、熱電対等を含んでいてもよい。各センサが検出した物理量は、例えば、配線45を介して外部の機器(例えば、情報処理装置Ip)に入力されてもよい。各センサが検出した物理量は、配線45を通じて入力された外部の機器(情報処理装置Ipに情報を入力可能な機器)を介して、情報処理装置Ipに入力されてもよい。情報処理装置Ipの説明は、後述する。
 図3に示すように、複数のセンサ41は、底面61に固定された第1センサ41aと、内壁62(固定壁Fw)に固定された第2センサ41bと、を有している。複数のセンサ41は、直交座標系XYZ全ての方向の物理量が検出できるよう、各センサ(図3では、第1センサ41a及び第2センサ41b)が配置されている。
 (第1センサ)
 第1センサ41aは、直交座標系XYZのうち1方向又は2方向の物理量を検出可能である。第1センサ41aが物理量を検出可能な方向は、X方向のみであってもよいし、Y方向のみであってもよいし、Z方向のみであってもよい。第1センサ41aが物理量を検出可能な2方向は、X方向及びY方向(以下、XY方向ということがある。)であってもよいし、X方向及びZ方向(以下、XZ方向ということがある。)であってもよいし、Y方向及びZ方向(以下、YZ方向ということがある。)であってもよい。尚、第1センサ41aが1方向の物理量のみを検出可能である場合、第1センサ41aは1軸のセンサである、といえる。一方、第1センサ41aが2方向の物理量を検出可能である場合、第1センサ41aは2軸のセンサである、といえる。
 第1センサ41aの大きさは、任意である。第1センサ41aの長さ及び幅は、例えば、10mm以上であってもよいし、25mm以下であってもよい。第1センサ41aの厚さは、例えば、10mm以上であってもよいし、25mm以上であってもよいし、10mm以下であってもよい。
 第1センサ41aの形状は、任意である。図3に示すように、第1センサ41aは、直方体、より詳細には、矩形の平板形状を呈してもよい。別の観点では、第1センサ41aは、その厚みがこれと直交する方向の長さより薄くてよい。尚、第1センサ41aは、円形の平板形状を呈してもよいし、棒形状(板形状でない形状)を呈してもよい。
 第1センサ41aは、底面61における任意の箇所に固定されてもよい。例えば、第1センサ41aは、接着材によって第1底面71に固定されてもよい。第1センサ41aは、X方向において、第1底面71の中央部より第1端40a側に固定されてもよいし、第1底面71の中央部に固定されてもよいし、第1底面71の中央部より第2端40b側に固定されてもよい。
 (第2センサ)
 第2センサ41bは、直交座標系XYZのうち1方向又は2方向の物理量を検出可能である。第2センサ41bは、第1センサ41aと同一の物理量であって、第1センサ41aの物理量を検出可能な方向とは異なる方向の物理量を検出可能である。ここで、第2センサ41bが1方向の物理量のみを検出可能である場合、第2センサ41bは1軸のセンサである、といえる。一方、第2センサ41bが2方向の物理量を検出可能である場合、第2センサ41bは2軸のセンサである、といえる。
 第1センサ41aが2方向の物理量を検出可能であって、第1センサ41aと第2センサ41bとでXYZ方向の全ての物理量を検出可能な場合について考える。第1センサ41aがXY方向の物理量を検出可能である場合、第2センサ41bは、Z方向のみの物理量を検出可能であってもよいし、Z方向に加えてX方向又はY方向の物理量を検出可能であってもよい。第1センサ41aがXZ方向の物理量を検出可能である場合、第2センサ41bは、Y方向のみの物理量を検出可能であってもよいし、Y方向に加えてX方向又はZ方向の物理量を検出可能であってもよい。第1センサ41aがYZ方向の物理量を検出可能である場合、第2センサ41bは、X方向のみの物理量を検出可能であってもよいし、X方向に加えてY方向又はZ方向の物理量を検出可能であってもよい。
 第1センサ41a及び第2センサ41bのそれぞれが2方向の物理量を検出可能である場合、第1センサ41aの物理量を検出可能な1方向、及び、第2センサ41bの物理量を検出可能な1方向は、それぞれが重なることになる。ここで、重なる1方向は、X方向の物理量であってもよいし、Y方向の物理量であってもよいし、Z方向の物理量であってもよい。例えば、所定方向の物理量を第1センサ41a及び第2センサ41bによって検出することにより、この方向の物理量を精度よく検出できる。
 第1センサ41aが1方向の物理量を検出可能であって、第1センサ41aと第2センサ41bとでXYZ方向の全ての物理量を検出可能な場合について考える。第1センサ41aがX方向のみの物理量を検出可能である場合、第2センサ41bは、YZ方向の物理量を検出可能であってもよい。第1センサ41aがY方向のみの物理量を検出可能である場合、第2センサ41bは、XZ方向の物理量を検出可能であってもよい。第1センサ41aがZ方向のみの物理量を検出可能である場合、第2センサ41bは、XY方向の物理量を検出可能であってもよい。
 第2センサ41bの大きさ及び形状の説明には、第1センサ41aの大きさ及び形状の説明を援用してもよい。図7を参照する。第2センサ41bは、例えば、接着材によって、第7壁面82dに固定されてもよい。この場合、第7壁面82dは、第2センサ41bが固定された固定壁Fwである、といえる。第7壁面82d(内壁62)に固定された第2センサ41bは、第2底面81(底面61)から離れていてもよい。別の観点では、第2センサ41bと第2底面81(底面61)との間には、空隙Voが位置してもよい。例えば、空隙Voは、Y方向において、1mm以上の大きさであってもよいし、2mm以下の大きさであってもよいし、1mm以下の大きさであってもよい。
 第2センサ41bは、第2底面81及び第7壁面82dに固定されてもよい。すなわち、第2センサ41bと第2底面81(底面61)との間には、空隙Voが位置しなくてもよい。第2センサ41bが第2底面81及び第7壁面82dに固定される場合には、センサの位置決めならびにセンサ軸の位置決めが容易になる。
 図3を参照する。第2センサ41bは、第1センサ41aより本体部50の先端(インサート30)側に位置してもよい。例えば、第2センサ41bは、X方向に沿って、第1センサ41aより3mm以上離れていてもよいし、6mm以上離れていてもよいし、12mm以上離れていてもよい。
 (配線)
 図1及び図3を参照する。配線45は、第1センサ41a及び第2センサ41bと電気的に接続されてもよい。配線45は、情報処理装置Ipに接続されてもよい。第1センサ41a及び第2センサ41bが検出した物理量は、配線45を介して情報処理装置Ipに入力されてもよい。以下、情報処理装置Ipの説明をする。
 (情報処理装置)
 情報処理装置Ipは、例えば、工作機械1に設置されたり、工作機械1周辺のスペースに設置されたり、工作機械1から離れた箇所に設置されたりしてもよい。情報処理装置Ipは、例えば、コンピュータを含んでもよい。コンピュータは、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)及び外部記憶装置を含んでもよい。ROM及び/又は外部記憶装置に記録されたプログラムがCPUによって実行されることで、情報処理装置Ipは、様々な機能を発揮できる。
 1つの態様では、情報処理装置Ipは、複数のセンサ41が検出した物理量に基づいて、被削材Obの回転速度を調整してもよい。1つの態様では、情報処理装置Ipは、複数のセンサ41が検出した物理量に基づいて、上下前後左右(XYZ方向)に移動する切削工具20の移動速度を調整してもよい。1つの態様では、情報処理装置Ipは、複数のセンサ41が検出した物理量に基づいて、図示しないディスプレイに表示される切削完了までの時間を調整してもよい。尚、情報処理装置Ipは、上記調整の組み合わせを行ってもよい。
 次に、切削工具を用いて被削材を切削する方法について説明する。
 図1及び図8を参照する。図8には、被削材切削方法の各工程が示されている。被削材切削方法は、例えば、工作機械1に被削材Obを取り付ける工程(被削材を固定する工程)から始めてよい。その後、例えば、工作機械1(例えば、刃物台10)に切削工具20を取り付けてよい(工具を固定する工程)。尚、被削材Obを固定する工程は、例えば、工具を固定する工程を終えた後に行ってもよい。
 工作機械1に被削材Ob及び切削工具20を固定したら、切削工具20(インサート30)の位置決めを行ってもよい(位置決め工程)。例えば、被削材Obの大きさ及び/又は形状を確認すると共に、被削材Obと切削工具20との位置関係を確認しつつ位置決めを行ってもよい。位置決め工程は、手動(目視)又は自動で行ってもよい。次に、工作機械1を介して被削材Obを回転させる(回転工程)。被削材Obが回転している状態において、工作機械1を介して、切削工具20を被削材Obに接触させてもよい(切削工程)。具体的には、インサート30の切刃34を被削材Obに接触させてもよい。そして、被削材Obが所望の大きさ及び形状になるまで切削する。
 被削材Obが所望の大きさ及び形状になったら、切削工具20を被削材Obから離してもよい(切削工具を離す工程)。その後、被削材Obの回転を停止させ(停止工程)、工作機械1から被削材Obを取り外す(被削材取り外し工程)。これにより、切削された被削材Obを得ることができる。
 以上のとおり、本実施形態では、第1センサ41aは、凹部60の底面61に固定されている。更に、第2センサ41bは、凹部60の内壁62の一部であって所定方向に臨む固定壁Fwに固定されている。従って、例えば、底面61のみに複数のセンサ41を固定する場合と比較して、第1センサ41a及び第2センサ41bの配置箇所及び/又は向きを容易に異ならせることができる。これにより、複数のセンサ41の配置箇所及び/又は向きの自由度が向上する。結果、本開示の切削工具20においては、第1センサ41a及び第2センサ41bの配置に有利である。
 加えて、複数のセンサ41が第1センサ41a及び第2センサ41bを有していることにより、例えば、直交座標系XYZの3方向の物理量を検出する際に、1つのセンサによって3方向の物理量を検出することが不要になる。1方向又は2方向の物理量を検出可能なセンサは、3方向の物理量を検出可能なセンサよりコンパクトかつ測定レンジ及び/又は周波数帯の選択肢が増える場合もある。特に、物理量を検出不可の方向において、センサはコンパクトである場合もある。このため、1方向又は2方向の物理量を検出可能なセンサを採用することで、1つあたりのセンサを小さくできる。凹部60を部分的に浅くしても、複数のセンサ41を配置することができる。凹部60の深さ方向において、本体部50の中実部分が減ることを軽減できる。よって剛性のある切削工具20の提供ができる。
 更に、XYZ方向の3方向の物理量を検出可能なセンサは、1方向又は2方向の物理量を検出可能なセンサより検出精度が悪いこともある。本開示においては、複数のセンサ41によってXYZの各方向の物理量を検出する。このため、1つのセンサによって3方向の物理量を検出することが不要である。よって、直交座標系XYZの各方向の物理量の検出精度の向上を図ることができる。
 固定壁Fwは、内壁62のうち第2底面81と本体部50の外表面とを繋いでいる。ここで、第2底面81は、第1底面71より凹部60の深くに位置している。このため、凹部60は、第2センサ41bが位置する領域が深くなり、第1センサ41aが位置する領域が浅くなる。結果、第1底面71と第1センサ41aとが第1センサ41aの厚さ方向(第1センサ41aの寸法が小さい方向)にて対向するように第1センサ41aを第1底面71に設置し、固定壁Fwと第2センサ41bとが第2センサ41bの厚み方向にて対向するように第2センサ41bを固定壁Fwに設置することが容易になる。加えて、第1底面71が位置する凹部60の領域が浅いことから、凹部60内に複数のセンサ41が位置する切削工具20において、より剛性のある切削工具20の提供ができる。
 底面61は、X方向に直交する方向(実施形態ではZ方向)の長さを幅としたときに、第1センサ41aよりも固定壁Fw側に位置する部位の幅が、第1センサ41aが固定されている部位の幅より大きい。例えば、本体部50における先端40a又は後端40b側の内壁62に第2センサ41bが固定される場合、第2センサ41bが固定される領域を広くできる。これにより、例えば、第2センサ41bを内壁62に衝突させることが意図されていない態様において、衝突の虞を軽減できる。よって、切削工具20の製造時において、第2センサ41bに負荷(意図されていないもの)が加わる虞を軽減できる。
 図7を参照する。底面61と内壁62との間には、湾曲して両者を繋ぐ接続面63が位置している。底面61と内壁62との間に接続面63が位置していることにより、底面61と内壁62との境界に過剰な負荷が加わることを軽減できる。結果、より耐久性のある切削工具の提供ができる。
 図3を参照する。固定壁Fwは、底面61に対し直交している。固定壁Fwが底面61に対し直交していることにより、第1センサ41a及び第2センサ41bは、それぞれの厚さ方向が直交した状態で凹部60内に配置される。これにより、例えば、直交座標系XYZの各方向における物理量の検出を容易に行うことができる。
 固定壁Fwは、本体部50が延びる方向であるX方向に直交している。これにより、第2センサ41bは、その厚み方向がX方向側を向くことになる。第2センサ41bの厚み方向がX方向側を向くことにより、結果、第2センサ41bが直交座標系XYZの2方向の物理量を検出可能な場合に、第2センサ41bは、その面方向(厚み方向と直交する方向)の物理量であるYZ方向の物理量の検出が容易になる。物理量としては、例えば加速度が挙げられる。例えば、被削材Obを切削する際に、YZ方向に加わる強い加速度(主分力、送り分力による加速度など)をより正確に検出できる。
 図6を参照する。固定壁Fwは、凹部60の深さ方向において、本体部50の厚さの1/2以下の長さである。別の観点では、凹部60の深さ方向において、凹部60の第2底面81は、本体部50の中央部より凹部60の開口部分側に位置している。これにより、本体部50は、凹部60があけられている部位でも、その深さ方向において半分以上が中実部分で構成される。結果、刃物台10(工作機械1)に切削工具20を確実に固定できる。加えて、刃物台10に対する切削工具20の耐久性を向上できる。
 図3を参照する。第2センサ41bは、第1センサ41aよりも本体部50の先端40a側に位置している。言い換えると、第2センサ41bは、第1センサ41aよりインサート30側に位置している。これにより、内壁62に固定された第2センサ41bは、例えば、インサート30の被削材Obへの接触によって生じる加速度等の物理量を確実に検出できる。
 インサート30は、すくい面31aを含み、直交座標系XYZのZ方向に臨んでいる第1面を有している。更に、凹部60の底面61は、直交座標系XYZのY方向に臨んでいる。これらにより、固定壁Fw、第1面31及び底面61は、それぞれが互いに直交する方向である、X方向、Y方向及びZ方向に臨むことになる。結果、底面61に固定された第1センサ41a、及び、固定壁Fwに固定された第2センサ41bから構成される複数のセンサ41は、XYZ方向の物理量をより容易に検出できる。
 図7を参照する。第2センサ41bは、底面61から離れている。これにより、例えば、第2センサ41bが底面61から負荷を受けることが意図されていない態様において、第2センサ41bに加わる負荷を軽減できる。
 図1及び図8を参照する。本開示における被削材切削方法は、被削材Obに対し切削工具20を接触させ、被削材Obを切削する工程を含んでいる。更に、切削工具20は、複数のセンサ41を有するホルダ40を有している。よって、耐久性のある切削工具20により切削が可能な被削材切削方法の提供ができる。
 [第2実施形態]
 図9には、第2実施形態における切削工具20Aの断面図が示されている。第2実施形態の切削工具20Aは、第1実施形態の切削工具20に対し、複数のセンサ41を覆うカバー43Aを有する点が異なっている。更に、第2実施形態の切削工具20Aは、凹部60Aの形状も異なっている。以下、カバー43Aと凹部60Aとを備えたホルダ40Aの説明をする。尚、第1実施形態と共通する部分については、符号を流用すると共に詳細な説明を省略する。
 (ホルダ)
 ホルダ40Aは、凹部60A(第1凹部70A及び第2凹部70B)があけられた本体部50と、この本体部50の内部に位置する複数のセンサ41と、凹部60Aに被せられ複数のセンサ41を覆うカバー43Aと、複数のセンサ41と通電可能に接続された配線45と、を有してもよい。
 (凹部)
 凹部60Aは、凹部60Aの開口部分に沿って本体部50の一部を欠いた欠き部60Adを有してもよい。欠き部60Adは、周方向に亘って、本体部50の開口部分付近を欠いた部位であってもよい。別の観点では、欠き部60Adは、凹部60Aの開口部分に位置する、径が大きくなった部分であってよい。
 (カバー)
 カバー43Aは、凹部60A(欠き部60Ad)に嵌め込まれていてもよい。このようなカバー43Aは、凹部60Aを正面に見て、その大きさが凹部60Aより僅かに小さくてもよい。更に、カバー43Aの形状は、凹部60Aを正面に見た形状と同一であってもよい。図9に示す例において、凹部60Aに嵌め込まれたカバー43Aは、凹部60A内に位置する第1センサ41a及び第2センサ41bを覆っている。
 カバー43Aの材料は任意である。カバー43Aの材料は、例えば、樹脂等による有機材料、ガラス等による無機材料、又は鋼、鋳鉄、ステンレス等の金属からなる。カバー43A材料は、本体部50の材料と同一であってもよい。
 [第3実施形態]
 図10を参照する。図10には、第3実施形態における切削工具20Bの断面図が示されている。第3実施形態の切削工具20Bは、第1実施形態の切削工具20比べ、無線通信部42B、及び、複数のセンサ41を封止する封止部44Bを有している点が異なる。尚、第1実施形態と共通する部分については、符号を流用すると共に詳細な説明を省略する。
 (ホルダ)
 図10に示すように、ホルダ40Bは、凹部60があけられた本体部50と、この本体部50の内部に位置する複数のセンサ41と、これら複数のセンサ41と電気的に接続された無線通信部42Bと、これら複数のセンサ41及び無線通信部42Bを封止する封止部44Bと、を有してもよい。
 (無線通信部)
 無線通信部42Bは、例えば、第1センサ41a及び第2センサ41b検出した物理量を外部の機器(例えば、情報処理装置Ip)に送信可能な機器であってもよい。第1センサ41a及び第2センサ41bが検出した物理量は、配線45を介して無線通信部42Bに入力され、無線通信部42Bから情報処理装置Ipに入力されてもよい。
 (封止部)
 封止部44Bは、第1センサ41a、第2センサ41b及び無線通信部42Bを封止するよう、凹部60内に位置してもよい。封止部44Bは、その全てが凹部60内に位置してもよい。封止部44Bの全てが凹部60内に位置することにより、被削材Ob(図1参照)を切削する際に、封止部44Bが必要以上に被削材Ob(図1参照)と接近することが抑制される。但し、封止部44Bは、その一部が凹部60外に位置してもよい。封止部44Bの材料は、例えば、アクリル樹脂であってもよい。
 [第4実施形態]
 図11を参照する。図11には、第4実施形態における切削工具20C(ホルダ40C)の斜視図が示されている。第3実施形態の切削工具20Cは、第1実施形態の切削工具20と比べ、複数のセンサ41Cが有するセンサの数が異なっている。第1実施形態と共通する部分については、符号を流用すると共に詳細な説明を省略する。
 (複数のセンサ)
 図11に示すように、複数のセンサ41Cは、第1センサ41aと、第2センサ41bと、第3センサ41Ccと、を有してもよい。図11に示す第1センサ41a、第2センサ41b及び第3センサ41Ccは、直交座標系XYZの1方向のみの物理量を検出可能なセンサであってもよい。例えば、第1センサ41aがX方向の物理量を検出可能であり、第2センサ41bがZ方向の物理量を検出可能であり、第3センサ41CcがY方向の物理量を検出可能であってもよい。第1~第3センサ41a、41b、41Ccは、XYZ方向の物理量の全てを検出できるよう配置されている。
 第3センサ41Ccは、第1凹部70内に位置してもよいし、第2凹部80内に位置してもよい。第3センサ41Ccが第2凹部80内に位置する場合、第3センサ41Ccは、第2底面81に固定されてもよいし、第4壁面82aに固定されてもよいし、第5壁面82bに固定されてもよい。
 尚、本開示における切削工具、切削構造体、情報処理装置及びホルダは、上記に述べた実施形態及び変形例に限定されず、様々な形態で実施されてよい。以下、切削工具、切削構造体、情報処理装置及びホルダの形態が変形される例を幾つか紹介する。
 例えば、実施形態では、図示された切削工具が左勝手である。しかしながら、本開示における切削工具は左勝手に限定されない。つまり、本開示の切削工具は、右勝手にも適用可能であるし、右勝手及び左勝手のどちらも使用できる勝手なしにも適用可能である。
 例えば、実施形態では、第1凹部及び第2凹部によって凹部が構成されている例について説明した。しかしながら、凹部は、第1凹部、第2凹部及び第3凹部によって構成されてもよい。尚、凹部が第1凹部及び第2凹部で構成されている場合、凹部は、第1凹部及び第2凹部が区別できない態様によって構成されていてもよい。
 例えば、第3実施形態に示された無線通信部が収容される箇所は、実施形態に示された箇所に開けられた凹部に限定されない。例えば、無線通信部が収容される凹部は、図中に示された凹部以外の凹部(第4凹部)であってもよい。この場合、第4凹部が開けられる位置は任意である。
 更に、第3実施形態に示す無線通信部は、第1実施形態、第2実施形態及び第4実施形態に適用されてもよい。加えて、第2実施形態に示すカバーは、第1実施形態、第3実施形態及び第4実施形態に適用されてもよい。
 20…切削工具
 30…インサート
 31…第1面
 40…ホルダ
 40a…先端(第1端)
 40b…後端(第2端)
 41…複数のセンサ
 41a…第1センサ
 41b…第2センサ
 50…本体部
 55…ポケット
 60…凹部
 61…底面
 62…内壁
 71…第1底面
 82…第2底面
 Fw…固定壁
 Ob…被削材

Claims (13)

  1.  直交座標系XYZのX方向に沿って延び、先端にポケットを有すると共に、前記ポケットより後端側の外表面に凹部が開口する本体部と、
     前記ポケットに位置する切削インサートと、
     前記凹部内に位置する複数のセンサと、
     を有し、
     前記凹部は、底面と、前記底面と前記本体部の前記外表面との間に位置する内壁と、を有し、
     前記複数のセンサは、
      前記底面に固定された第1センサと、
      前記内壁の一部であって所定方向に臨む固定壁に固定された第2センサと、
     を有している
     切削工具。
  2.  前記底面は、
      前記第1センサが固定された第1底面と、
      前記第1底面の隣であって、前記第1底面より前記凹部の深くに位置する第2底面と、
     を有し、
     前記固定壁は、前記内壁のうち前記第2底面と前記本体部の前記外表面とを繋いでいる
     請求項1記載の切削工具。
  3.  前記固定壁は、前記第1センサよりも前記本体部の前記先端側又は前記後端側に位置し、
     前記底面は、前記X方向に直交する方向の長さを幅としたときに、前記第1センサよりも前記固定壁側に位置する部位の幅が前記第1センサが固定されている部位の幅より大きい
     請求項1又は2記載の切削工具。
  4.  前記底面と前記内壁との間には、湾曲して両者を繋ぐ接続面が位置している
     請求項1~3のいずれか1項記載の切削工具。
  5.  前記固定壁は、前記底面に対し直交している
     請求項1~4のいずれか1項記載の切削工具。
  6.  前記固定壁は、前記直交座標系XYZの前記X方向と直交している
     請求項1~5のいずれか1項記載の切削工具。
  7.  前記固定壁は、前記凹部の深さ方向の長さが、前記本体部の厚さの1/2以下である
     請求項1~6のいずれか1項記載の切削工具。
  8.  前記第2センサは、前記第1センサよりも前記本体部の前記先端側に位置している
     請求項1~7のいずれか1項記載の切削工具。
  9.  前記切削インサートは、すくい面を含み、前記直交座標系XYZのZ方向に臨んでいる第1面を有し、
     前記凹部の前記底面は、前記直交座標系XYZのY方向に臨んでいる
     請求項6、又は請求項6を直接又は間接に引用する請求項7若しくは請求項8記載の切削工具。
  10.  前記第2センサは、前記底面から離れている
     請求項1~9のいずれか1項記載の切削工具。
  11.  前記第1センサは、前記直交座標系XYZのうち1又は2方向の物理量を検出可能であり、
     前記第2センサは、前記直交座標系XYZのうち1又は2方向の前記物理量を検出可能であって、その方向の少なくとも一部が前記第1センサとは異なる方向である
     請求項1~10のいずれか1項記載の切削工具。
  12.  被削材を回転させる工程と、
     回転している前記被削材に請求項1~11のいずれか1項記載の切削工具を接触させ、前記被削材を切削する工程と、
     切削された前記被削材から前記切削工具を離す工程と、
     を有している
     被削材切削方法。
  13.  棒状を呈し、先端にポケットを有すると共に、前記ポケットより後端側の外表面に凹部が開口する本体部と、
     前記凹部内に位置する複数のセンサと、
     を有し、
     前記凹部は、底面と、前記底面と前記本体部の前記外表面とを繋ぐ内壁と、を有し、
     前記複数のセンサは、
     前記底面に固定された第1センサと、前記内壁の一部であって所定方向に臨む固定壁に固定された第2センサと、を有している
     切削工具用ホルダ。
PCT/JP2021/003225 2020-01-30 2021-01-29 切削工具、切削工具用ホルダ及び被削材切削方法 WO2021153728A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021574148A JP7258189B2 (ja) 2020-01-30 2021-01-29 切削工具、切削工具用ホルダ及び被削材切削方法
DE112021000261.9T DE112021000261B4 (de) 2020-01-30 2021-01-29 Schneidwerkzeug, Schneidwerkzeughalter und Verfahren zum Schneiden eines zu schneidenden Materials
CN202180008669.3A CN114945437A (zh) 2020-01-30 2021-01-29 切削刀具、切削刀具用刀柄以及被切削件切削方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-013322 2020-01-30
JP2020013322 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153728A1 true WO2021153728A1 (ja) 2021-08-05

Family

ID=77078239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003225 WO2021153728A1 (ja) 2020-01-30 2021-01-29 切削工具、切削工具用ホルダ及び被削材切削方法

Country Status (4)

Country Link
JP (1) JP7258189B2 (ja)
CN (1) CN114945437A (ja)
DE (1) DE112021000261B4 (ja)
WO (1) WO2021153728A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007036002A1 (de) * 2007-07-30 2009-02-05 Genesis Adaptive Systeme Deutschland Gmbh In-Prozess-Überwachungsvorrichtung für ein Bearbeitungswerkzeug
US20160045994A1 (en) * 2013-03-25 2016-02-18 Centre Technique De L'industrie Du Decolletage Insert Holder For A Machine Tool
CN110103077A (zh) * 2019-05-08 2019-08-09 北京理工大学 一种镗刀杆多传感器集成的镗削状态智能监测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07285003A (ja) * 1994-04-20 1995-10-31 Hitachi Zosen Corp ボーリング用ツール
DE10029953B4 (de) * 2000-06-26 2004-08-26 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Werkzeughalter für Werkzeugmaschinen
DE10154435B4 (de) * 2001-11-06 2006-07-13 Sahm, Alexander, Dipl.-Ing. Fräskopf für das Hochgeschwindigkeitsfräsen
JP5822441B2 (ja) 2010-07-13 2015-11-24 株式会社幸和電熱計器 切削加工評価装置
JP2013240842A (ja) * 2012-05-18 2013-12-05 Nihon Id System Kk 切削工具状態検出システム
CN102873353B (zh) 2012-10-15 2015-02-18 哈尔滨工业大学 具有微小三向切削力测量系统的智能刀具
CN108856752A (zh) 2018-07-05 2018-11-23 西安万威机械制造股份有限公司 一种带切削力传感器的智能车刀
CN109623494B (zh) * 2019-01-18 2023-08-15 四川大学 一种三合一传感器夹具及多模态刀具磨损状态监测系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007036002A1 (de) * 2007-07-30 2009-02-05 Genesis Adaptive Systeme Deutschland Gmbh In-Prozess-Überwachungsvorrichtung für ein Bearbeitungswerkzeug
US20160045994A1 (en) * 2013-03-25 2016-02-18 Centre Technique De L'industrie Du Decolletage Insert Holder For A Machine Tool
CN110103077A (zh) * 2019-05-08 2019-08-09 北京理工大学 一种镗刀杆多传感器集成的镗削状态智能监测方法

Also Published As

Publication number Publication date
JPWO2021153728A1 (ja) 2021-08-05
JP7258189B2 (ja) 2023-04-14
DE112021000261T5 (de) 2022-09-08
DE112021000261B4 (de) 2024-02-15
CN114945437A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2020171157A1 (ja) ホルダ、切削工具、切削加工物の製造方法及びデータの収集方法
JP2020062746A (ja) ホルダ、切削工具及び切削加工物の製造方法
EP1190795B1 (en) Cutting tool
US5829331A (en) Tool holder and cutting process using the tool holder
US11439484B2 (en) Method for controlling a machine tool
JP6685531B2 (ja) 切削インサート、切削工具及び切削加工物の製造方法
JP7304989B2 (ja) 切削インサート、切削工具及び切削加工物の製造方法
KR102488941B1 (ko) 측정 디바이스 및 칩 제거 기계 가공 공구의 작동 파라미터들을 선택하는 방법
WO2021153728A1 (ja) 切削工具、切削工具用ホルダ及び被削材切削方法
JP7199506B2 (ja) ホルダ、切削工具、切削加工物の製造方法及びデータの収集方法
JP7368064B2 (ja) 工作機械及び切削加工物の製造方法
WO2021132357A1 (ja) ホルダ、切削工具及び切削加工物の製造方法
JP6691549B2 (ja) ドリル用ホルダ、ドリル及び切削加工物の製造方法
JP7299985B2 (ja) 切削工具、データ収集システム及び切削工具用ホルダ
JP6462126B2 (ja) 切削インサート、切削工具及びこれを用いた切削加工物の製造方法
WO2021049429A1 (ja) 切削構造体、データ収集システム及び切削工具
JP7299988B2 (ja) 切削工具、切削構造体、データ収集システム及び切削工具用ホルダ
WO2011142387A1 (ja) インサート着脱式切削工具
JP6842529B2 (ja) 切削工具用ホルダ、切削工具及び切削加工物の製造方法
WO2024024549A1 (ja) 切削工具、及び切削加工物の製造方法
JP7045460B2 (ja) 切削工具及び切削加工物の製造方法
WO2024024550A1 (ja) 切削工具、及び切削加工物の製造方法
JPWO2019022016A1 (ja) 切削インサート、切削工具及び切削加工物の製造方法
JP6418765B2 (ja) 切削インサート、切削工具および切削加工物の製造方法
WO2023176441A1 (ja) 切削工具及び切削加工物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574148

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21747843

Country of ref document: EP

Kind code of ref document: A1