WO2021151416A1 - Kupplungsaktor, erfassungssystem und verfahren zur erfassung einer winkelposition eines drehbauteils - Google Patents

Kupplungsaktor, erfassungssystem und verfahren zur erfassung einer winkelposition eines drehbauteils Download PDF

Info

Publication number
WO2021151416A1
WO2021151416A1 PCT/DE2021/100017 DE2021100017W WO2021151416A1 WO 2021151416 A1 WO2021151416 A1 WO 2021151416A1 DE 2021100017 W DE2021100017 W DE 2021100017W WO 2021151416 A1 WO2021151416 A1 WO 2021151416A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor signal
amplitude
sensor
angular position
determined
Prior art date
Application number
PCT/DE2021/100017
Other languages
English (en)
French (fr)
Inventor
Jie Zhou
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to US17/793,470 priority Critical patent/US20230069443A1/en
Priority to CN202180009761.1A priority patent/CN114981619A/zh
Publication of WO2021151416A1 publication Critical patent/WO2021151416A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • F16D2025/081Hydraulic devices that initiate movement of pistons in slave cylinders for actuating clutches, i.e. master cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/18Sensors; Details or arrangements thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D29/00Clutches and systems of clutches involving both fluid and magnetic actuation
    • F16D29/005Clutches and systems of clutches involving both fluid and magnetic actuation with a fluid pressure piston driven by an electric motor

Definitions

  • Clutch actuator detection system and method for detecting an angular position of a rotating component
  • the invention relates to a method for detecting an angular position of a rotary component according to the preamble of claim 1. Furthermore, the invention relates to a detection system and a clutch actuator.
  • a method for detecting an angular position of a rotating component is known from WO 2018/219388 A1, for example. This describes a method for detecting an angular position of a rotary component that is rotatable about an axis of rotation, in which the angular position of the rotary component is picked up by a sensor system arranged radially at a distance from the axis of rotation.
  • a magnetic ring that is fixedly and concentrically arranged on the rotating component causes a magnetic field that changes with respect to the sensor system and that is detected by the sensor system, with a signal picked up by the sensor system being evaluated with regard to the angular position.
  • the signal picked up by the sensor system is evaluated with regard to amplitude information of the magnetic field and a correction parameter is determined from the amplitude information, by means of which an angular error in the angular position obtained from the signal of the sensor system is determined.
  • the angle error is then used to correct the angular position determined from the signal emitted by the sensor system.
  • the object of the present invention is to detect an angular position more precisely and more quickly. It should be possible to determine the angular position with as little calculation effort as possible.
  • At least one of these objects is achieved by a method having the features according to claim 1.
  • the actual highest amplitude of the respective sensor signal can be determined more precisely and thus the error in the calculation of the angular position can be reduced.
  • the angular position can be recorded more precisely, faster and with as little computing power as possible.
  • the sensor unit and the rotating component can be arranged in a vehicle.
  • the rotating component and the rotating element can be arranged so as to be concentrically rotatable.
  • the sensor unit can be designed as an angle sensor.
  • the sensor element can be a Hall sensor.
  • the rotating element can be a magnetic ring.
  • the rotating element can be a permanent magnet.
  • the rotating element can be magnetized diametrically.
  • the first and / or second sensor signal can be a periodic signal.
  • the first sensor signal can be a sine signal and the second sensor signal can be a cosine signal.
  • the first sensor signal can be detected at a first measuring position and the second sensor signal can be detected in a second measuring position that is perpendicular thereto about the axis of rotation.
  • the amplitudes of the sensor signals over several revolutions can be taken into account.
  • the respective highest amplitude can be adapted after each rotation if the amplitude of the assigned sensor signal detected during this rotation is greater than the previously detected highest amplitude of this sensor signal.
  • a max-min method is preferably used to detect the respective highest amplitudes. This can reduce the calculation effort as much as possible. However, this method is susceptible to noise influencing the sensor signal. A noise value N can be superimposed on the sensor signal and thus the amplitude and consequently also the highest amplitude.
  • the noise value N can be determined via the following linear relationship
  • the measurement point ratio from the number of measurement points m recorded, in particular during the ongoing measurement, and the angle discretization c, which corresponds, for example, to the number of measurement points in an end-of-line measurement, is defined as follows
  • the number of measuring points m can be calculated from the speed n and the sampling frequency fs of the sensor element as follows
  • a more precise calculation with the assumed non-linear dependency of the noise value on the probability function 9 can take place with the following relationship
  • the parameters a, b and d are to be determined, for example, before the sensor unit is put into operation. This relationship can be stored in a lookup table and can be called up during operation.
  • the ratio i calculated during operation as a function of the number of measurement points m according to (4) and a lookup that depicts the relationship between i and g (i), especially at the beginning, for example in the case of an end-of-line definition, can be used -Table, the respective associated value g (i), possibly linearly interpolated, can be determined during operation.
  • f (T) applies to the relationship with the reference temperature T r and the previously determined value f (T r ) and the parameters a 1 and a 2 to be specified in advance
  • the noise value is calculated in the noise detection step and adapted as required during operation. As a result, changing environmental influences can be addressed and a more precise calculation can be carried out.
  • Amplitude determination step determines the highest amplitude of the respective sensor signal as the halved distance between the maximum and the minimum amplitude of the associated sensor signal.
  • the respective amplitude A is increased, for example with each revolution calculated with the maximum amplitude S max and the minimum amplitude S min of the respective sensor signal.
  • the following relationship can preferably be used for calculating the amplitude
  • a possible amplitude error of the respective highest amplitude is determined and corrected in the amplitude determination step.
  • the highest amplitudes differ in the comparison between the first and second sensor signals, the highest amplitudes can be matched.
  • the noise value is calculated as a function of the number of measurement points m.
  • the calculation is preferably carried out according to (6).
  • the number of measuring points m is at least 2000. This allows the standard deviation of the sensor signal to be reduced.
  • the noise value is calculated as a function of a temperature T of the sensor unit.
  • the rotary component is a rotor of an electric motor or a component connected to the rotor in a rotationally fixed manner.
  • the electric motor can be controlled more specifically via the more precisely recorded angular position.
  • a detection system for detecting an angular position of a rotating component is achieved by a method with at least one of the features indicated above. That
  • the detection system comprises an evaluation unit and a sensor unit which has a fixed sensor element and a rotary element which can be rotated relative to this and together with the rotary component.
  • a clutch actuator for clutch actuation having such a type
  • the clutch actuator can operate an e-clutch in a vehicle.
  • the clutch actuator can be a modular clutch actuator, also called Modular Clutch Actuator or MCA for short. This can comprise a rotor and a spindle. The rotor can perform a rotary motion that is converted into a linear motion via a planetary roller screw drive, abbreviated PWG
  • Movement of the spindle is implemented.
  • the linear movement of the spindle can operate the clutch.
  • Figure 1 A three-dimensional cross section through a clutch actuator with a
  • FIG. 2 A first and a second sensor signal of a sensor unit in a further special embodiment of the invention.
  • Figure 3 The influence of an amplitude deviation on the angular position.
  • Figure 5 A method for detecting an angular position in a special
  • Figure 6 A comparison of the accuracy of a method in a specific one
  • FIG. 7 A comparison of the accuracy of an optimized method in a further special embodiment of the invention with respect to a conventional method.
  • Figure 8 A course of an angle error as a function of the
  • FIG. 1 shows a three-dimensional cross section through a clutch actuator 10 with a sensor unit 12 in a special embodiment of the invention.
  • the clutch actuator 10 is a modular clutch actuator, a so-called MCA, comprising a spindle 14 and an electric motor 16 with a rotatable rotor 18 electromechanically driven rotor 18 moves.
  • the sensor unit 12 is arranged to detect an angular position of the rotor 18 and has a rotary element 22, which is designed as a magnet ring 26 that is non-rotatably connected to the rotary component 24 designed as the rotor 18.
  • the ring magnet 26 is in particular a permanent magnet and is diametrically magnetized.
  • the sensor unit 12 also has a sensor element 28 which is designed as a magnetic sensor, in particular as a Hall sensor.
  • the sensor element 28 is attached axially to the rotary element 22 at a distance on a circuit board 30 and enables detection of the magnetic field emanating from the rotary element 22.
  • the effect of the magnetic field emanating from the rotary element 22 on the sensor element 28 enables the angular position of the rotary component 24 to be detected, since the diametrical magnetization of the magnetic ring 26 changes the magnetic field as a function of the angular position of the rotor 18.
  • FIG. 2 shows a first and a second sensor signal of a sensor unit in a further special embodiment of the invention.
  • the first sensor signal S 1 is a sine signal and the second sensor signal S 2 is a 90 ° phase-shifted cosine signal.
  • the first sensor signal S 1 arises at a first measuring position on the sensor element and the second sensor signal S 2 arises at a second measuring position on the sensor element that is perpendicular thereto about the axis of rotation. Due to the vertical position of the first and second measuring position relative to one another, the phase shift between the first sensor signal S 1 and the second sensor signal S 2 is brought about.
  • the course of an ideal first sensor signal is plotted in comparison to the first sensor signal S 1.
  • the first sensor signal S 1 is subject to the ideal first sensor signal an amplitude shift through which the
  • Amplitude is decreased.
  • the reason for this can be attenuation, interference and / or measurement errors.
  • FIG. 3 shows the influence of an amplitude shift on the angular position.
  • the first sensor signal S 1 is shown as a projection onto the Y-axis and the second sensor signal S 2 is shown as a projection onto the x-axis.
  • the first sensor signal S 1 is reduced by an amplitude shift, which results in an ellipse instead of a circle, which is present with idealized first and second sensor signals.
  • This causes an angle error in the detection of the angular position ⁇ .
  • the angle error ⁇ which arises as a function of the amplitude shift between the amplitude A 1 of the first sensor signal and the amplitude A 2 of the second sensor signal, can be calculated as follows with
  • the knowledge of the actual amplitudes of the first and second sensor signals are, however, decisive for the detection of the angular position. This is because the amplitudes can be used to calculate the angular position as a function of the first sensor signal and the second sensor signal via an atan2 function.
  • the amplitudes of the first and second sensor signals can preferably be determined using a max-min method, in which the calculation performance can be kept as low as possible.
  • the at The amplitudes of the first and second sensor signals recorded during the rotation of the rotary element are stored and corrected during operation of the sensor unit as soon as correspondingly higher values are determined. However, this method is susceptible to noise.
  • FIG. 4 shows the effect of noise on a sensor signal of the sensor unit in a special embodiment of the invention.
  • the solid line corresponds to an ideal curve of the sensor signal S, which can be the first or second sensor signal, depending on the angular position ⁇ , and the dashed curves reflect the bandwidth of the values of the sensor signal S influenced by the noise.
  • the noise can be described by a probability function g. If white noise is assumed to be the noise, this can be mapped using a standard distribution. A maximum expected noise value N is assumed due to the noise.
  • the ideal maximum amplitude of the sensor signal differs from that measured maximum amplitude S max of the sensor signal.
  • the ideal minimum amplitude of the sensor signal deviates from the measured one minimum amplitude S min of the sensor signal.
  • FIG. 5 shows a method 100 for detecting an angular position a in a special embodiment of the invention.
  • the first and second sensor signals S 1 , S 2 output by the sensor unit 12 are output to an evaluation unit 32.
  • the evaluation unit 32 determines the respective highest amplitude of the first and second sensor signals S 1 , S 2 .
  • the evaluation unit 32 determines the angular position ⁇ by means of an atan2 function, to which the first and second sensor signals S 1 , S 2 and determined highest amplitudes 1 , 2 are transferred.
  • the highest amplitude ⁇ 1 of the first and the highest amplitude ⁇ 2 of the second sensor signal is calculated as the maximum value of the respective sensor signals determined over at least one revolution of the rotary element.
  • the highest amplitude ⁇ 1 of the first sensor signal is the Maximum value of the amplitude A 1 of the first sensor signal and can be calculated using (1).
  • the highest amplitude ⁇ 2 of the second sensor signal is the highest value of the amplitude A 2 of the second sensor signal, according to the calculation according to (2).
  • the respective amplitude A is calculated, for example with each revolution, according to (9) with the maximum amplitude S max and the minimum amplitude S min of the respective sensor signal.
  • the evaluation unit 32 calculates the respective sensor signal on the basis of a number of measuring points m of the sensor element.
  • the number of measuring points m can be calculated from the speed n and the sampling frequency f s of the sensor element according to (5)
  • a noise value N which superimposes the corresponding first and / or second sensor signal S 1 , S 2 , is calculated and transferred to the amplitude determination step AM, in which this is taken into account according to (10)
  • the amplitude and consequently also the highest amplitude of the respective sensor signal can be determined more precisely and thus the error in the calculation of the angular position ⁇ can be reduced.
  • the angular position ⁇ can be recorded more precisely, more quickly and with as little computing power as possible.
  • the noise value N is calculated and taken into account, for example, at least for each revolution.
  • the noise value N can be calculated using the relationship according to (3), with the temperature T of the sensor unit, the probability function g and with the measuring point ratio i, which can be calculated using (5).
  • the parameters a, b and c are to be determined, for example, before commissioning. This relationship can be stored in a lookup table and can be called up during operation.
  • the probability function 5 is a standard distribution and can be calculated using (7).
  • FIG. 6 shows a comparison of the accuracy of a method in a special embodiment of the invention with respect to a conventional method.
  • the curve 102 stands for the accuracy profile of a conventional method as a function of the number of measuring points m and the curve 104 stands for the accuracy profile of a method in a special embodiment of the invention.
  • curve 104 is far more precise from a number of measurement points m of 400 and converges with an increasing number of measurement points m. In contrast to this, the inaccuracy of the conventional method increases with an increasing number of measurement points m.
  • a linear dependence of the noise value N on the probability function g (i) was assumed.
  • the ratio i calculated during operation as a function of the number of measurement points m according to (4) and a lookup that depicts the relationship between i and g (i), especially at the beginning, for example in the case of an end-of-line definition, can be used -Table, the respective associated value g (i), possibly linearly interpolated, can be determined during operation.
  • FIG. 7 shows a comparison of the accuracy of a method in a further special embodiment of the invention with respect to a conventional method.
  • curve 106 a non-linear dependency according to (6) between the noise value N and the probability function g (i) was assumed.
  • the accuracy can be increased again.
  • FIG. 8 shows a profile of an angle error ⁇ as a function of the amplitude ratio ⁇ .
  • the angle error e is plotted as a function of the amplitude ratio ⁇ according to (12).
  • the angle error ⁇ should be less than ⁇ 0.25%, which means that, according to (11), the amplitude difference must not exceed 0.5%. This requirement can be achieved with a number of measuring points m of 2000. If the sampling frequency f s is 20 kHz, the speed n should therefore be below 600 rpm.

Abstract

Die Erfindung betrifft ein Verfahren (100) zur Erfassung einer Winkelposition (a) eines um eine Drehachse drehbaren Drehbauteils (24), sowie ein Erfassungssystem zur Erfassung einer Winkelposition (a) eines um eine Drehachse drehbaren Drehbauteils (24) durch ein derartiges Verfahren und einen Kupplungsaktor (10) mit einem derartigen Erfassungssystem.

Description

Kupplungsaktor, Erfassungssystem und Verfahren zur Erfassung einer Winkelposition eines Drehbauteils
Beschreibungseinleitung
Die Erfindung betrifft ein Verfahren zur Erfassung einer Winkelposition eines Drehbauteils nach dem Oberbegriff von Anspruch 1. Weiterhin betrifft die Erfindung ein Erfassungssystem und einen Kupplungsaktor.
Ein Verfahren zur Erfassung einer Winkelposition eines Drehbauteils ist beispielsweise aus WO 2018/219388 A1 bekannt. Darin wird ein Verfahren zur Erfassung einer Winkelposition eines um eine Drehachse drehbaren Drehbauteils beschrieben, bei welchem die Winkelposition des Drehbauteils von einer radial beabstandet zur Drehachse angeordneten Sensorik abgenommen wird. Ein fest und konzentrisch an dem sich drehenden Bauteil angeordneter Magnetring bewirkt ein sich gegenüber der Sensorik änderndes Magnetfeld, das von der Sensorik detektiert wird, wobei ein von der Sensorik abgenommenes Signal hinsichtlich der Winkelposition ausgewertet wird. Das von der Sensorik abgenommene Signal wird hinsichtlich einer Amplitudeninformation des Magnetfeldes ausgewertet und aus der Amplitudeninformation ein Korrekturparameter ermittelt, mittels welchem ein Winkelfehler der aus dem Signal der Sensorik abgenommenen Winkelposition bestimmt wird. Der Winkelfehler wird dann zur Korrektur der aus dem von der Sensorik abgegebenen Signal ermittelten Winkelposition verwendet.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine Winkelposition genauer und schneller zu erfassen. Die Winkelposition soll mit möglichst wenig Berechnungsaufwand ermittelt werden können.
Wenigstens eine dieser Aufgaben wird durch ein Verfahren mit den Merkmalen nach Anspruch 1 gelöst. Dadurch kann die tatsächliche höchste Amplitude des jeweiligen Sensorsignals genauer ermittelt werden und damit der Fehler bei der Berechnung der Winkelposition verringert werden. Die Winkelposition kann genauer, schneller und mit möglichst wenig Berechnungsleistung erfasst werden. Die Sensoreinheit und das Drehbauteil können in einem Fahrzeug angeordnet sein. Das Drehbauteil und das Drehelement können konzentrisch drehbar angeordnet sein. Die Sensoreinheit kann als Winkelsensor ausgeführt sein.
Das Sensorelement kann ein Hallsensor sein.
Das Drehelement kann ein Magnetring sein. Das Drehelement kann ein Permanentmagnet sein. Das Drehelement kann diametral magnetisiert sein.
Das erste und/oder zweite Sensorsignal kann ein periodisches Signal sein. Das erste Sensorsignal kann ein Sinussignal und das zweite Sensorsignal ein Kosinussignal sein. Das erste Sensorsignal kann an einer ersten Messposition und das zweite Sensorsignal in einer dazu um die Drehachse senkrecht liegenden zweiten Messposition erfasst werden.
Die höchste Amplitude Â1 desner Sensorsignals ist der Höchstwert der Amplituden A1 des ersten Sensorsignals, nach folgendem Zusammenhang Â1 = max (A1) (1 )
Entsprechend ist die höchste Amplitude Â2 des zweiten Sensorsignals der Höchstwert der Amplituden A2 des zweiten Sensorsignals, entsprechend Â2 = max (A2) (2)
Zur Berechnung der jeweils höchsten Amplituden können die Amplituden der Sensorsignale über mehrere Umdrehungen hinweg berücksichtigt werden. Insbesondere kann die jeweilige höchste Amplitude nach jeder Umdrehung angepasst werden, wenn die bei dieser Umdrehung erfasste Amplitude des zugeordneten Sensorsignals größer als die bisher erfasste höchste Amplitude dieses Sensorsignals ist.
Zur Erfassung der jeweiligen höchsten Amplituden wird bevorzugt ein Max-Min- Verfahren angewendet. Dieses kann den Berechnungsaufwand möglichst verringern. Allerdings unterliegt dieses Verfahren einer Anfälligkeit gegenüber das Sensorsignal beeinflussendes Rauschen. Das Sensorsignal und damit die Amplitude und folglich auch die höchste Amplitude kann dabei durch einen Rauschwert N überlagert sein.
Der Rauschwert N kann über den folgenden linearen Zusammenhang
(3)
Figure imgf000005_0001
berechnet werden, mit der Temperatur T der Sensoreinheit und der Wahrscheinlichkeitsfunktion g. Das Messpunkteverhältnis aus der, insbesondere während der laufenden Messung erfassten, Anzahl an Messpunkten m und der Winkeldiskretisierung c, die beispielsweise der Anzahl an Messpunkten bei einer End-of-Line Messung entspricht, ist wie folgt definiert
Figure imgf000005_0002
Die Anzahl an Messpunkten m kann aus der Drehzahl n und der Abtastfrequenz fs des Sensorelements wie folgt berechnet werden
(5)
Figure imgf000005_0003
Eine genauere Berechnung mit angenommener nichtlinearer Abhängigkeit des Rauschwerts von der Wahrscheinlichkeitsfunktion 9 kann mit folgendem Zusammenhang erfolgen
Figure imgf000005_0004
Die Parameter a, b und d sind beispielsweise vor Inbetriebnahme der Sensoreinheit zu bestimmen. Dieser Zusammenhang kann in einer Lookup-Tabelle hinterlegt sein und während des Betriebs darüber abrufbar sein.
Bei angenommenem weissen Rauschen ist die Wahrscheinlichkeitsfunktion g wie folgt festgelegt
Figure imgf000006_0001
Beispielsweise kann über das abhängig von der Anzahl an Messpunkten m nach (4) während des Betriebs berechnete Verhältnis i und einer die Beziehung zwischen i und g(i) abbildenden, insbesondere anfangs, beispielsweise bei einer End-of-Line Festlegung, erstellten, Lookup-Tabelle der jeweils zugehörige Wert g(i) gegebenenfalls linear interpoliert, während des Betriebs ermittelt werden.
Es ist vorteilhaft, wenn für den Zusammenhang f(T) gilt
Figure imgf000006_0002
mit der Referenztemperatur Tr und dem vorab ermittelten Wert f( Tr) und den vorab festzulegenden Parametern a1 und a2
In einer bevorzugten Ausführung der Erfindung wird in dem Rauscherfassungsschritt der Rauschwert berechnet und im Betrieb bedarfsweise angepasst. Dadurch kann auf sich ändernde Umgebungseinflüsse eingegangen werden und eine genauere Berechnung durchgeführt werden.
In einer speziellen Ausführung der Erfindung wird in dem
Amplitudenermittlungsschritt die höchste Amplitude des jeweiligen Sensorsignals als der halbierte Abstand zwischen der maximalen und der minimalen Amplitude des zugehörigen Sensorsignals ermittelt. Dabei wird die jeweilige Amplitude A, beispielsweise bei jeder Umdrehung, nach
Figure imgf000007_0001
mit der maximalen Amplitude Smax und der minimalen Amplitude Smin des jeweiligen Sensorsignals berechnet.
Unter Berücksichtigung des Rauschwerts kann der folgende Zusammenhang zur Berechnung der Amplitude bevorzugt angesetzt werden
Figure imgf000007_0002
In einer weiteren speziellen Ausführung der Erfindung wird in dem Amplitudenermittlungsschritt ein möglicher Amplitudenfehler der jeweiligen höchsten Amplitude ermittelt und berichtigt. Insbesondere bei abweichenden höchsten Amplituden im Vergleich zwischen dem ersten und zweiten Sensorsignal kann eine Angleichung der höchsten Amplituden erfolgen.
In einer bevorzugten Ausführung der Erfindung wird der Rauschwert abhängig von der Anzahl an Messpunkten m berechnet. Bevorzugt erfolgt die Berechnung nach (6).
In einer besonders bevorzugten Ausführung der Erfindung beträgt die Anzahl an Messpunkten m mindestens 2000. Dadurch kann die Standardabweichung des Sensorsignals verringert werden.
In einer speziellen Ausführung der Erfindung wird der Rauschwert abhängig von einer Temperatur T der Sensoreinheit berechnet.
In einer bevorzugten Ausführung der Erfindung ist das Drehbauteil ein Rotor eines Elektromotors oder ein drehfest mit dem Rotor verbundenes Bauteil. Über die genauer erfasste Winkelposition kann der Elektromotor gezielter gesteuert werden.
Weiterhin wird zur Lösung wenigstens einer der zuvor genannten Aufgaben ein Erfassungssystem zur Erfassung einer Winkelposition eines Drehbauteils durch ein Verfahren mit wenigstens einem der zuvor aufgezeigten Merkmale gelöst. Das Erfassungssystem umfasst eine Auswerteeinheit und eine Sensoreinheit, die ein festgelegtes Sensorelement und ein gegenüber diesem und gemeinsam mit dem Drehbauteil drehbares Drehelement aufweist.
Weiterhin wird zur Lösung wenigstens einer der zuvor genannten Aufgaben ein Kupplungsaktor zur Kupplungsbetätigung, aufweisend ein derartiges
Erfassungssystem vorgeschlagen. Der Kupplungsaktor kann eine E-Clutch in einem Fahrzeug betätigen. Der Kupplungsaktor kann ein modularer Kupplungsaktor, auch Modular Clutch Actuator oder abgekürzt MCA genannt, sein. Dieser kann einen Rotor und eine Spindel umfassen. Der Rotor kann eine Drehbewegung ausführen, die über einen Planeten-Wälzgewindetrieb, abgekürzt PWG in eine lineare
Bewegung der Spindel umgesetzt wird. Die lineare Bewegung der Spindel kann die Kupplung betätigen.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus der Figurenbeschreibung und den Abbildungen.
Figurenbeschreibung
Die Erfindung wird im Folgenden unter Bezugnahme auf die Abbildungen ausführlich beschrieben. Es zeigen im Einzelnen:
Figur 1 : Einen räumlichen Querschnitt durch einen Kupplungsaktor mit einer
Sensoreinheit in einer speziellen Ausführungsform der Erfindung.
Figur 2: Ein erstes und zweites Sensorsignal einer Sensoreinheit in einer weiteren speziellen Ausführungsform der Erfindung.
Figur 3: Den Einfluss einer Amplitudenabweichung auf die Winkelposition.
Figur 4: Die Auswirkung von Rauschen auf ein Sensorsignal der
Sensoreinheit in einer speziellen Ausführung der Erfindung.
Figur 5: Ein Verfahren zur Erfassung einer Winkelposition in einer speziellen
Ausführungsform der Erfindung.
Figur 6: Einen Vergleich der Genauigkeit eines Verfahrens in einer speziellen
Ausführungsform der Erfindung gegenüber einem herkömmlichen Verfahren. Figur 7: Einen Vergleich der Genauigkeit eines optimierten Verfahrens in einer weiteren speziellen Ausführungsform der Erfindung gegenüber einem herkömmlichen Verfahren.
Figur 8: Einen Verlauf eines Winkelfehlers in Abhängigkeit von dem
Amplitudenverhältnis.
Figur 1 zeigt einen räumlichen Querschnitt durch einen Kupplungsaktor 10 mit einer Sensoreinheit 12 in einer speziellen Ausführungsform der Erfindung. Der Kupplungsaktor 10 ist ein modularer Kupplungsaktor, ein sogenannter MCA, umfassend eine Spindel 14 und einen Elektromotor 16 mit einem drehbaren Rotor 18. Die Spindel 14 führt zur Kupplungsbetätigung eine lineare Bewegung aus und wird über einen Planetenwälzgewindetrieb 20, abgekürzt PWG, durch eine Drehbewegung des elektromechanisch angetriebenen Rotors 18 bewegt.
Die Sensoreinheit 12 ist zur Erkennung einer Winkelposition des Rotors 18 angeordnet und weist ein Drehelement 22 auf, das als mit dem als Rotor 18 ausgeführten Drehbauteil 24 drehfest verbundener Magnetring 26 ausgeführt ist. Der Magnetring 26 ist insbesondere ein Permanentmagnet und diametral magnetisiert.
Die Sensoreinheit 12 weist weiterhin ein Sensorelement 28 auf, das als Magnetsensor, insbesondere als Hall-Sensor, ausgeführt ist. Das Sensorelement 28 ist axial zu dem Drehelement 22 beabstandet auf einer Platine 30 angebracht und ermöglicht eine Erkennung des von dem Drehelement 22 ausgehenden Magnetfelds.
Durch die Einwirkung des von dem Drehelement 22 ausgehenden Magnetfelds auf das Sensorelement 28 ist eine Erfassung der Winkelposition des Drehbauteils 24 möglich, da durch die diametrale Magnetisierung des Magnetrings 26 das Magnetfeld in Abhängigkeit von der Winkelposition des Rotors 18 verändert wird.
In Figur 2 ist ein erstes und zweites Sensorsignal einer Sensoreinheit in einer weiteren speziellen Ausführungsform der Erfindung dargestellt. Das erste Sensorsignal S1 ist ein Sinussignal und das zweite Sensorsignal S2 ein um 90° phasenverschobenes Kosinussignal. Das erste Sensorsignal S1 entsteht an einer ersten Messposition an dem Sensorelement und das zweite Sensorsignal S2 an einer dazu um die Drehachse senkrecht liegenden zweiten Messposition an dem Sensorelement. Durch die senkrechte Lage der ersten und zweiten Messposition zueinander wird die Phasenverschiebung zwischen dem ersten Sensorsignal S1 und dem zweiten Sensorsignal S2 bewirkt.
Der Verlauf eines idealen ersten Sensorsignals
Figure imgf000010_0003
ist im Vergleich zu dem ersten Sensorsignal S1 aufgetragen. Das erste Sensorsignal S1 unterliegt gegenüber dem idealen ersten Sensorsignal
Figure imgf000010_0004
einer Amplitudenverschiebung, durch die die
Amplitude verringert ist. Der Grund hierfür können Dämpfungen, Störungen und/oder Messfehler sein.
Figur 3 zeigt den Einfluss einer Amplitudenverschiebung auf die Winkelposition. Das erste Sensorsignal S1 ist als eine Projektion auf die Y-Achse und das zweite Sensorsignal S2 als eine Projektion auf die x-Achse darstellt. In Anlehnung an die Darstellung in Figur 2 ist das erste Sensorsignal S1 durch eine Amplitudenverschiebung verringert, wodurch eine Ellipse anstelle eines Kreises, der bei idealisiertem ersten und zweiten Sensorsignal vorliegt, entsteht. Dadurch wird ein Winkelfehler bei der Erfassung der Winkelposition α verursacht. Der Winkelfehler ε, der abhängig von der Amplitudenverschiebung zwischen der Amplitude A1 des ersten Sensorsignals und der Amplitude A2 des zweiten Sensorensignals entsteht, kann wie folgt berechnet werden
Figure imgf000010_0001
mit
Figure imgf000010_0002
Die Kenntnis der tatsächlichen Amplituden des ersten und zweiten Sensorsignals sind allerdings entscheidend für die Erfassung der Winkelposition. Denn mit den Amplituden kann die Winkelposition abhängig von dem ersten Sensorsignal und dem zweiten Sensorsignal über eine atan2-Funktion berechnet werden. Die Ermittlung der Amplituden des ersten und zweiten Sensorsignals kann dabei vorzugsweise durch eine Max-Min-Methode erfolgen, bei der die Berechnungsleistung möglichst gering gehalten werden kann. Dabei werden die bei der Umdrehung des Drehelements aufgenommenen Amplituden des ersten und zweiten Sensorsignals hinterlegt und während des Betriebs der Sensoreinheit korrigiert, sobald entsprechend höhere Werte festgestellt werden. Allerdings ist diese Methode anfällig gegenüber Rauschen.
In Figur 4 ist die Auswirkung von Rauschen auf ein Sensorsignal der Sensoreinheit in einer speziellen Ausführung der Erfindung dargestellt. Die durchgezogene Linie entspricht einer idealen Kurve des Sensorsignals S, welches das erste oder zweite Sensorsignal sein kann, abhängig von der Winkelposition α und die gestrichelten Kurven geben die Bandbreite der durch das Rauschen beeinflussten Werte des Sensorsignals S wieder.
Das Rauschen kann durch eine Wahrscheinlichkeitsfunktion g beschrieben werden. Wird als Rauschen ein weißes Rauschen angenommen, kann dieses durch eine Standardverteilung abgebildet werden. Durch das Rauschen wird ein maximal zu erwartender Rauschwert N angenommen.
Die ideale maximale Amplitude des Sensorsignals ist dabei abweichend von der
Figure imgf000011_0001
gemessenen maximalen Amplitude Smax des Sensorsignals. Entsprechend ist die ideale minimale Amplitude des Sensorsignals abweichend von der gemessenen
Figure imgf000011_0002
minimalen Amplitude Smin des Sensorsignals.
Figur 5 zeigt ein Verfahren 100 zur Erfassung einer Winkelposition a in einer speziellen Ausführungsform der Erfindung. Das von der Sensoreinheit 12 ausgegebene erste und zweite Sensorsignal S1, S2 wird an eine Auswerteeinheit 32 ausgegeben. Die Auswerteeinheit 32 ermittelt in einem Amplitudenermittlungsschritt AM die jeweilige höchste Amplitude des ersten und zweiten Sensorsignals S1, S2. ln einem Auswerteschritt AW ermittelt die Auswerteeinheit 32 die Winkelposition α durch eine atan2-Funktion, der das erste und zweite Sensorsignal S1, S2 und ermittelte höchste Amplituden Â1, Â2 übergeben werden.
In einem Überwachungsschritt ÜW wird die höchste Amplitude Â1 des ersten und die höchste Amplitude Â2 des zweiten Sensorsignals jeweils als Höchstwert der über wenigstens eine Umdrehung des Drehelements hinweg ermittelten jeweiligen Sensorsignale berechnet. Die höchste Amplitude Â1 des ersten Sensorsignals ist der Höchstwert der Amplitude A1 des ersten Sensorsignals und kann über (1) berechnet werden.
Entsprechend ist die höchste Amplitude Â2 des zweiten Sensorsignals der Höchstwert der Amplitude A2 des zweiten Sensorsignals, entsprechend der Berechnung nach (2).
Dabei wird die jeweilige Amplitude A, beispielsweise bei jeder Umdrehung, nach (9) mit der maximalen Amplitude Smax und der minimalen Amplitude Smin jeweiligen Sensorsignals berechnet.
In einem Signalerfassungsschritt SE berechnet die Auswerteeinheit 32 das jeweilige Sensorsignal anhand einer Anzahl an Messpunkten m des Sensorelements. Die Anzahl an Messpunkten m kann aus der Drehzahl n und der Abtastfrequenz fs des Sensorelements nach (5) berechnet werden
In einem dem Amplitudenermittlungsschritt AM vorgelagerten Rauscherfassungsschritt RE wird ein Rauschwert N, der das entsprechende erste und/oder zweite Sensorsignal S1, S2 überlagert, berechnet und dem Amplitudenermittlungsschritt AM übergeben, bei dem dieser gemäß (10) berücksichtigt wird
Dadurch kann die Amplitude und folglich auch die höchste Amplitude des jeweiligen Sensorsignals genauer ermittelt werden und damit der Fehler bei der Berechnung der Winkelposition α verringert werden. Die Winkelposition α kann genauer, schneller und mit möglichst wenig Berechnungsleistung erfasst werden.
Der Rauschwert N wird beispielsweise wenigstens bei jeder Umdrehung berechnet und berücksichtigt. Der Rauschwert N kann über den Zusammenhang gemäß (3) berechnet werden, mit der Temperatur T der Sensoreinheit, der Wahrscheinlichkeitsfunktion g und mit dem Messpunkteverhältnis i, das über (5) berechnet werden kann.
Es ist vorteilhaft, wenn der Zusammenhang f(T) durch (8) beschrieben wird, mit der Referenztemperatur Tr und dem vorab ermittelten Wert f(Tr) und den vorab, beispielsweise vor Inbetriebnahme, festzulegenden Parametern a1 und a2 Eine genauere Berechnung mit angenommenen nichtlinearen Verlauf des Rauschwerts N kann über (6) erfolgen.
Die Parameter a, b und c sind beispielsweise vor Inbetriebnahme zu bestimmen. Dieser Zusammenhang kann in einer Lookup-Tabelle hinterlegt sein und während des Betriebs darüber abrufbar sein.
Bei angenommenem weissen Rauschen ist die Wahrscheinlichkeitsfunktion 5 eine Standardverteilung und lässt sich über (7) berechnen.
In Figur 6 ist ein Vergleich der Genauigkeit eines Verfahrens in einer speziellen Ausführungsform der Erfindung gegenüber einem herkömmlichen Verfahren dargestellt. Die Kurve 102 steht für den Genauigkeitsverlauf eines herkömmlichen Verfahrens in Abhängigkeit von der Anzahl an Messpunkten m und die Kurve 104 steht für den Genauigkeitsverlauf eines Verfahrens in einer speziellen Ausführungsform der Erfindung.
Gegenüber der Kurve 102 ist die Kurve 104 ab einer Anzahl an Messpunkten m von 400 weitaus genauer und konvergiert mit zunehmender Anzahl an Messpunkten m. Im Unterschied dazu steigt die Ungenauigkeit des herkömmlichen Verfahrens mit zunehmender Anzahl an Messpunkten m.
Bei dem Verfahren in einer speziellen Ausführungsform der Erfindung wurde eine lineare Abhängigkeit des Rauschwerts N von der Wahrscheinlichkeitsfunktion g(i) angenommen. Beispielsweise kann über das abhängig von der Anzahl an Messpunkten m nach (4) während des Betriebs berechnete Verhältnis i und einer die Beziehung zwischen i und g(i) abbildenden, insbesondere anfangs, beispielsweise bei einer End-of-Line Festlegung, erstellten, Lookup-Tabelle der jeweils zugehörige Wert g(i) gegebenenfalls linear interpoliert, während des Betriebs ermittelt werden.
Figur 7 zeigt einen Vergleich der Genauigkeit eines Verfahrens in einer weiteren speziellen Ausführungsform der Erfindung gegenüber einem herkömmlichen Verfahren. Bei der Kurve 106 wurde eine nichtlineare Abhängigkeit nach (6) zwischen dem Rauschwert N und der Wahrscheinlichkeitsfunktion g(i) angenommen. Im Vergleich zu der bei einem herkömmlichen Verfahren verlaufenden Kurve 102 und auch im Vergleich zu dem Verfahren mit angenommener linearer Abhängigkeit kann die Genauigkeit nochmals erhöht werden.
In Figur 8 ist ein Verlauf eines Winkelfehlers ε in Abhängigkeit von dem Amplitudenverhältnis Υ dargestellt. Der Winkelfehler e ist in Abhängigkeit von dem Amplitudenverhältnis Υ nach (12) aufgetragen. Praktischerweise sollte der Winkelfehler ε kleiner als ±0,25% sein, womit nach (11) der Amplitudenunterschied höchstens 0,5% betragen darf. Diese Voraussetzung kann bei einer Anzahl an Messpunkten m von 2000 erreicht werden. Beträgt die Abtastfrequenz fs 20 kHz sollte die Drehzahl n somit unterhalb von 600 rpm liegen.
Bezugszeichenliste
10 Kupplungsaktor
12 Sensoreinheit 14 Spindel
16 Elektromotor
18 Rotor
20 Planetenwälzgewindetrieb
22 Drehelement 24 Drehbauteil
26 Magnetring
28 Sensorelement
30 Platine
32 Auswerteeinheit 100 Verfahren
102 Kurve
104 Kurve
106 Kurve A1 Amplitude des ersten Sensorsignals Â1 höchste Amplitude des ersten Sensorsignals
A2 Amplitude des zweiten Sensorsignals Â2 höchste Amplitude des zweiten Sensorsignalsα Winkelposition C Winkeldiskretisierung ε Winkelfehler fs Abtastfrequenz g Wahrscheinlichkeitsfunktion Υ Amplitudenverhältnis i Messpunktverhältnis m Anzahl an Messpunkten n Drehzahl
N Rauschwert S1 erstes Sensorsignal erstes ideales Sensorsignal
Figure imgf000016_0001
S2 zweites Sensorsignal zweites ideales Sensorisgnal
Figure imgf000016_0002
S Sensorsignal ideale maximale Amplitude
Figure imgf000016_0004
Smax maximale Amplitude ideale minimale Amplitude
Figure imgf000016_0003
Smin minimale Amplitude
T Temperatur
AM Amplitudenermittlungsschritt
AW Auswerteschritt
ÜW Überwachungsschritt
RE Rauschermittlungsschritt SE Signalerfassungsschritt

Claims

Patentansprüche
1. Verfahren (100) zur Erfassung einer Winkelposition (a) eines um eine Drehachse drehbaren Drehbauteiis (24) über eine Sensoreinheit (12), die ein festgelegtes Sensorelement (28) und ein gegenüber diesem und gemeinsam mit dem Drehbauteil (24) drehbares Drehelement (22) aufweist, wobei das Sensorelement (28) ein von der Winkelposition (a) abhängiges zumindest erstes Sensorsignal (Si) und gegenüber diesem um 90° phasenverschobenes zweites Sensorsignal (52) an eine Auswerteeinheit (32) ausgibt, die in einem Amplitudenermittlungsschritt (AM) die jeweilige höchste Amplitude ( L, >) des ersten und zweiten Sensorsignals (5i, S2) ermittelt und in einem Auswerteschritt (AW) das erste und zweite Sensorsignal (51, S2) als Argumente an eine atan2-Funktion übergibt, die davon abhängig und mit den ermittelten höchsten Amplituden (Ά, Ά) die Winkelposition (a) ausgibt, dadurch gekennzeichnet, dass die Auswerteeinheit (32) einen dem Ampiitudenermittlungsschritt (AM) vorgelagerten Rauscherfassungsschritt (RE), bei dem ein das entsprechende Sensorsignal durch ein Rauschen überlagernder Rauschwert (N) berechnet wird, umfasst, wobei in dem Ampiitudenermittlungsschritt (AM) das entsprechende Sensorsignal (5i , 52) um den Rauschwert ( N ) bereinigt und die höchste Amplitude (AL, Ä2) des ersten und zweiten Sensorsignals (5 i, 52) jeweils als der Höchstwert der über mehrere Umdrehungen des Dreheiements (22) hinweg erfassten Amplituden ( ^1, A2) des jeweiligen Sensorsignals (51, 52) ermittelt wird.
2. Verfahren (100) nach Anspruch 1, dadurch gekennzeichnet, dass in dem Rauscherfassungsschritt (RE) der dem jeweiligen Sensorsignal (5i, 52) überlagerte Rauschwert (/V) berechnet und im Betrieb bedarfsweise angepasst wird.
3. Verfahren (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in dem Amplitudenermittlungsschritt (AM) die höchste Amplitude (Ά, A2) des jeweiligen Sensorsignals (5i, S2) als der halbierte Abstand zwischen der maximalen und der minimalen Amplitude ( Smax , Snyn) des zugehörigen Sensorsignals {$i, S2) ermittelt wird.
4. Verfahren (100) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in dem Amplitudenermittlungsschritt (AM) ein möglicher Amplitudenfehler der jeweiligen höchsten Amplitude (Ai, Ä2) ermittelt und berichtigt wird.
5. Verfahren (100) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Rauschwert (N) abhängig von der Anzahl an Messpunkten m berechnet wird.
6. Verfahren (100) nach Anspruch 5, dadurch gekennzeichnet, dass die Anzahl an Messpunkten m mindestens 2000 beträgt.
7. Verfahren (100) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Rauschwert (N) abhängig von einer Temperatur T der Sensoreinheit (12) berechnet wird.
8. Verfahren (100) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Drehbauteil (24) ein Rotor (18) eines Elektromotors (16) oder ein drehfest mit dem Rotor (18) verbundenes Bauteil ist.
9. Erfassungssystem zur Erfassung einer Winkelposition (a) eines Drehbauteils (24) durch ein Verfahren (100) nach einem der vorangehenden Ansprüche und aufweisend eine Auswerteeinheit (32) und eine Sensoreinheit (12), die ein festgelegtes Sensorelement (28) und ein gegenüber diesem und gemeinsam mit dem Drehbauteil drehbares Drehelement (22) umfasst.
10. Kupplungsaktor (10) zur Kupplungsbetätigung, aufweisend ein Erfassungssystem nach Anspruch 9.
PCT/DE2021/100017 2020-01-29 2021-01-12 Kupplungsaktor, erfassungssystem und verfahren zur erfassung einer winkelposition eines drehbauteils WO2021151416A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/793,470 US20230069443A1 (en) 2020-01-29 2021-01-12 Clutch actuator, detection system and method for detecting an angular position of a rotary component
CN202180009761.1A CN114981619A (zh) 2020-01-29 2021-01-12 离合器致动器、用于检测旋转部件的角度位置的检测系统及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020102063.5 2020-01-29
DE102020102063.5A DE102020102063B3 (de) 2020-01-29 2020-01-29 Kupplungsaktor, Erfassungssystem und Verfahren zur Erfassung einer Winkelposition eines Drehbauteils

Publications (1)

Publication Number Publication Date
WO2021151416A1 true WO2021151416A1 (de) 2021-08-05

Family

ID=74346763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2021/100017 WO2021151416A1 (de) 2020-01-29 2021-01-12 Kupplungsaktor, erfassungssystem und verfahren zur erfassung einer winkelposition eines drehbauteils

Country Status (4)

Country Link
US (1) US20230069443A1 (de)
CN (1) CN114981619A (de)
DE (1) DE102020102063B3 (de)
WO (1) WO2021151416A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114858110B (zh) * 2022-05-09 2023-12-15 潍柴动力股份有限公司 离合器位置传感器的检测方法、装置及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035077A1 (de) * 2010-09-14 2012-03-22 Zentrum Mikroelektronik Dresden Ag Verfahren und vorrichtung zur absoluten positionsbestimmung eines beweglichen körpers
DE102017202217A1 (de) * 2017-02-13 2018-08-16 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zur Korrektur eines Ausgangssignals einer Messeinrichtung
WO2018219388A1 (de) 2017-05-31 2018-12-06 Schaeffler Technologies AG & Co. KG Verfahren zur bestimmung einer winkelposition eines sich drehenden bauteiles, insbesondere eines elektromotors für ein kupplungsbetätigungssystem eines fahrzeuges
DE102017222508A1 (de) * 2017-12-12 2019-06-13 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zur Korrektur von Messsystemabweichungen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013885A (ja) * 2004-06-25 2006-01-12 Fuji Photo Film Co Ltd カメラ
JP4979352B2 (ja) * 2006-02-28 2012-07-18 日立オートモティブシステムズ株式会社 レゾルバ/デジタル変換器及び該レゾルバ/デジタル変換器を用いた制御システム
JP2008170178A (ja) * 2007-01-09 2008-07-24 Jtekt Corp レゾルバシステムおよびこれを用いた電気式動力舵取装置
JP5455776B2 (ja) * 2010-05-12 2014-03-26 三菱電機株式会社 電流測定装置
EP2674729B1 (de) * 2012-06-15 2016-07-13 SICK STEGMANN GmbH Positionscodierer
JP6330309B2 (ja) * 2013-12-12 2018-05-30 セイコーエプソン株式会社 信号処理装置、検出装置、センサー、電子機器及び移動体
JP2016090167A (ja) * 2014-11-07 2016-05-23 三菱電機株式会社 弾着観測装置
JP6443078B2 (ja) * 2015-01-26 2018-12-26 アイシン精機株式会社 生体情報検出装置
JP6331177B1 (ja) * 2017-03-24 2018-05-30 Tdk株式会社 角度センサシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035077A1 (de) * 2010-09-14 2012-03-22 Zentrum Mikroelektronik Dresden Ag Verfahren und vorrichtung zur absoluten positionsbestimmung eines beweglichen körpers
DE102017202217A1 (de) * 2017-02-13 2018-08-16 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zur Korrektur eines Ausgangssignals einer Messeinrichtung
WO2018219388A1 (de) 2017-05-31 2018-12-06 Schaeffler Technologies AG & Co. KG Verfahren zur bestimmung einer winkelposition eines sich drehenden bauteiles, insbesondere eines elektromotors für ein kupplungsbetätigungssystem eines fahrzeuges
DE102017222508A1 (de) * 2017-12-12 2019-06-13 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zur Korrektur von Messsystemabweichungen

Also Published As

Publication number Publication date
DE102020102063B3 (de) 2021-05-27
CN114981619A (zh) 2022-08-30
US20230069443A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
DE102017111895B3 (de) Verfahren zur Bestimmung einer Winkelposition eines sich drehenden Bauteiles, insbesondere eines Elektromotors für ein Kupplungsbetätigungssystem eines Fahrzeuges
WO2021151418A1 (de) Kupplungsaktor, erfassungssystem und verfahren zur erfassung einer winkelposition eines drehbauteils
EP1194687B1 (de) Verfahren zur korrektur eines winkelfehlers eines absolutwinkelgebers
EP3571474B1 (de) Geberradanordnung und verfahren zum ermitteln einer absolutwinkelposition und einer drehrichtung
EP2433099B1 (de) Verfahren zur bestimmung der winkelstellung eines drehbaren teils
EP3555571B1 (de) Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines um mindestens eine rotationsachse rotierenden elements
WO2015086014A1 (de) Vorrichtung und verfahren zur messung eines rotorparameters
WO2021151417A1 (de) Kupplungsaktor, erfassungssystem und verfahren zur erfassung einer winkelposition eines drehbauteils
DE102018211216A1 (de) Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung
DE102016201851A1 (de) Sensorvorrichtung zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements
WO2021069014A1 (de) Sensorvorrichtung zur erfassung der drehwinkelstellung einer drehbeweglichen welle sowie lenkungsanordnung eines fahrzeugs
DE19737999A1 (de) Einrichtung zur Winkelerfassung und Winkelzuordnung
DE102011055717B4 (de) Verfahren und Anordnung zur Bestimmung des dynamischen Zustands eines Elektromotors
EP3721175B1 (de) Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines um mindestens eine rotationsachse rotierenden elements
WO2021151416A1 (de) Kupplungsaktor, erfassungssystem und verfahren zur erfassung einer winkelposition eines drehbauteils
DE102004001570B4 (de) Messverfahren sowie Messvorrichtung zum Durchführen des Messverfahrens
DE102016205592A1 (de) Vorrichtung und verfahren zur winkelmessung
DE102020124419B4 (de) Verfahren zur Erfassung einer Winkelposition und Erfassungssystem
DE102016224854A1 (de) Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements
DE102018117459A1 (de) Sensorvorrichtung, System und Winkelerfassungsverfahren
WO2021213812A1 (de) Verfahren und vorrichtung zum bestimmen einer drehfrequenz eines rads
WO2019120688A1 (de) Geberradanordnung und verfahren zum ermitteln einer absolutwinkelposition und einer drehrichtung
DE102018211217A1 (de) Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung
WO2022012707A1 (de) Verfahren zur erfassung einer winkelposition und erfassungssystem
DE102022213833A1 (de) Elektrische Maschine, Sensorvorrichtung, Auswerteeinheit und Verfahren zur Erfassung einer Temperatur eines Rotors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21702158

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21702158

Country of ref document: EP

Kind code of ref document: A1