WO2021149765A1 - 有機物質の製造方法及び有機物質製造装置 - Google Patents

有機物質の製造方法及び有機物質製造装置 Download PDF

Info

Publication number
WO2021149765A1
WO2021149765A1 PCT/JP2021/002028 JP2021002028W WO2021149765A1 WO 2021149765 A1 WO2021149765 A1 WO 2021149765A1 JP 2021002028 W JP2021002028 W JP 2021002028W WO 2021149765 A1 WO2021149765 A1 WO 2021149765A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic substance
synthetic gas
gas
cooling tower
heat exchanger
Prior art date
Application number
PCT/JP2021/002028
Other languages
English (en)
French (fr)
Inventor
心 濱地
清水 諭
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202180010592.3A priority Critical patent/CN115003822A/zh
Priority to JP2021572790A priority patent/JPWO2021149765A1/ja
Priority to EP21744917.2A priority patent/EP4095122A4/en
Priority to US17/794,388 priority patent/US20230050575A1/en
Publication of WO2021149765A1 publication Critical patent/WO2021149765A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0214Separation of non-miscible liquids by sedimentation with removal of one of the phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/26Purification; Separation; Stabilisation
    • C07C27/28Purification; Separation; Stabilisation by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • C10K1/06Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials combined with spraying with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1665Conversion of synthesis gas to chemicals to alcohols, e.g. methanol or ethanol
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1681Integration of gasification processes with another plant or parts within the plant with biological plants, e.g. involving bacteria, algae, fungi
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing an organic substance using synthetic gas as a raw material, and an organic substance manufacturing apparatus for producing an organic substance using synthetic gas as a raw material.
  • Syngas obtained in gasification furnaces and reforming furnaces contains a large amount of impurities such as tar, and it is difficult to use it as it is for power generation and chemical synthesis. Therefore, gas purification is generally performed.
  • Syngas is known to be appropriately cooled in gas purification.
  • As a means for cooling the synthetic gas a means for spraying water on a gas stream and cooling the synthetic gas by using the heat of vaporization of water is generally used.
  • the temperature of the synthetic gas obtained in the gasification furnace and the reforming furnace is high, and a large amount of water is required to cool the synthetic gas by spraying water, and a large amount of wastewater is generated.
  • Patent Document 2 biomass is gasified at high temperature and normal pressure, and the gasified syngas is introduced from a gas furnace through a water cooling pipe into a quenching tower, and the crude synthetic gas is cooled by spray water in the quenching tower.
  • Patent Document 3 discloses a method including a cooling step by an indirect heat exchanger, a tar removing step, a cooling step by a tar removing device, and a cooling step by spraying water in a spray tower with respect to the gasified synthetic gas.
  • Patent Document 4 discloses a method including a cooling step in which a synthetic gas is cooled by a first heat exchanger and the synthetic gas cooled by the first heat exchanger is sprayed with cooling water by a spray tower.
  • the syngas when using synthetic gas as an organic synthetic raw material, for example, it may be necessary to strictly control the temperature.
  • the syngas when converting to an organic substance such as ethanol by a microbial catalyst, the syngas needs to be cooled to a temperature of 40 ° C. or lower in order to prevent the microbial catalyst from dying.
  • the present invention provides a method for producing an organic substance and an organic substance producing apparatus capable of efficiently cooling the synthetic gas and converting the synthetic gas into an organic substance with a high conversion efficiency by using a microbial catalyst. Is the subject.
  • the present inventors have cooled the synthetic gas by a heat exchanger, cooled the synthetic gas cooled by the heat exchanger with water sprayed inside the gas cooling tower, and cooled the synthetic gas.
  • the present invention provides the following [1] to [18].
  • [1] A step of cooling the synthetic gas discharged from the gasifier by passing it through a heat exchanger, and passing the synthetic gas cooled by the heat exchanger through a gas cooling tower to a gas cooling tower.
  • a method for producing an organic substance which comprises a step of cooling with water sprayed inside and a step of bringing synthetic gas that has passed at least through the heat exchanger and the gas cooling tower into contact with a microbial catalyst to generate an organic substance.
  • the synthetic gas cooled by the gas cooling tower further includes a step of passing the synthetic gas through a filter type dust collector, and at least passes through the heat exchanger, the gas cooling tower and the filter type dust collector.
  • the synthetic gas cooled by the gas cooling tower further includes a step of passing the synthetic gas through the water scrubber, and the synthetic gas that has passed at least the heat exchanger, the gas cooling tower and the water scrubber is subjected to a microbial catalyst.
  • the method for producing an organic substance according to any one of [1] to [4] which produces an organic substance in contact with the gas.
  • a gasifier that produces a synthetic gas, a heat exchanger that passes the synthetic gas discharged from the gasifier to cool it, and a synthetic gas cooled by the heat exchanger to pass through and spray water.
  • An organic substance manufacturing apparatus including a gas cooling tower for cooling by the above, and an organic substance generating unit for producing an organic substance by bringing a synthetic gas that has passed at least the heat exchanger and the gas cooling tower into contact with a microbial catalyst.
  • the organic substance manufacturing apparatus according to [10] wherein the temperature of the synthetic gas discharged from the gasification apparatus is 900 ° C. or higher.
  • a filter-type dust collector which is arranged after the gas cooling tower and allows the synthetic gas cooled by the gas cooling tower to pass through is further provided, and the organic substance generating unit is the heat exchanger, the said.
  • the organic substance production apparatus according to any one of [10] to [12], wherein the synthetic gas that has passed at least the gas cooling tower and the filtration type dust collector is brought into contact with the microbial catalyst to generate an organic substance.
  • a water scrubber arranged after the gas cooling tower and passing the synthetic gas cooled by the gas cooling tower is further provided, and the organic substance generating unit is the heat exchanger and the gas cooling tower.
  • the organic substance producing apparatus according to any one of [10] to [13], wherein the synthetic gas that has passed at least the water scrubber is brought into contact with the microbial catalyst to produce an organic substance.
  • the organic substance generating unit produces an organic substance by bringing a synthetic gas that has passed through the heat exchanger, the gas cooling tower, the filtration dust collector, and the water scrubber in this order into contact with the microbial catalyst. , [14].
  • a method for producing an organic substance and an organic substance producing apparatus capable of efficiently cooling a synthetic gas and converting the synthetic gas into an organic substance with a high conversion efficiency by using a microbial catalyst. Becomes possible.
  • FIG. 1 shows an organic substance manufacturing apparatus according to an embodiment of the present invention.
  • the organic substance manufacturing apparatus and the method for producing an organic substance according to the embodiment of the present invention will be described in detail with reference to the embodiments.
  • the organic substance manufacturing apparatus 1 is a gasification apparatus 2 that gasifies waste to generate a synthetic gas G1 and a processing unit that performs a treatment including at least a purification treatment on the synthetic gas G1 discharged from the gasification apparatus 2. 3 and an organic substance generation unit 30 that produces an organic substance by contacting the synthetic gas obtained by processing from the processing unit 3 (hereinafter, also referred to as “purified synthetic gas G2”) with a microbial catalyst.
  • the waste gasified by the gasifier 2 may be industrial waste such as industrial solid waste, general waste such as urban solid waste (MSW), plastic waste, garbage, and waste.
  • industrial solid waste general waste such as urban solid waste (MSW)
  • MSW urban solid waste
  • plastic waste plastic waste
  • garbage garbage
  • waste examples include flammable substances such as tires, biomass waste, food waste, building materials, wood, wood chips, fibers and papers.
  • MSW municipal solid waste
  • the gasifier 2 includes a gasifier 10 and a reformer 11.
  • the gasification furnace 10 is not particularly limited, and examples thereof include a kiln gasification furnace, a fixed bed gasification furnace, a fluidized bed gasification furnace, and the like.
  • oxygen or air and, if necessary, steam are introduced into the gasification furnace 10.
  • the gasification furnace 10 thermally decomposes the waste by heating it at, for example, 500 to 700 ° C., and appropriately partially oxidizes the waste to gasify it.
  • the pyrolysis gas includes not only carbon monoxide and hydrogen, but also gaseous tar, powdered char and the like.
  • the pyrolysis gas is supplied to the reforming furnace 11. Solids and the like generated as incombustibles in the gasification furnace 10 are appropriately recovered.
  • the pyrolysis gas obtained in the gasifier 2 is reformed to obtain the synthetic gas G1.
  • the content of at least one of hydrogen and carbon monoxide in the pyrolysis gas is increased, and the gas is discharged as the synthetic gas G1.
  • tar, char, etc. contained in the pyrolysis gas are reformed into hydrogen, carbon monoxide, and the like.
  • the temperature of the synthetic gas G1 in the reforming furnace 11 is not particularly limited, but is, for example, 900 ° C. or higher, preferably 900 ° C. or higher and 1,300 ° C. or lower, and more preferably 1,000 ° C. or higher and 1,200 ° C. or lower.
  • the temperature of the synthetic gas G1 discharged from the reformer 11 is the same as the temperature of the synthetic gas G1, for example, 900 ° C. or higher, preferably 900 ° C. or higher and 1,300 ° C. or lower. More preferably, it is 1,000 ° C. or higher and 1,200 ° C. or lower.
  • the synthetic gas G1 discharged from the reformer 11 contains carbon monoxide and hydrogen. Further, the synthetic gas G1 contains, for example, carbon monoxide in an amount of 0.1% by volume or more and 80% by volume or less, and hydrogen in an amount of 0.1% by volume or more and 80% by volume or less.
  • the carbon monoxide concentration in the synthetic gas G1 is preferably 10% by volume or more and 70% by volume or less, and more preferably 20% by volume or more and 55% by volume or less.
  • the hydrogen concentration in the synthetic gas G1 is preferably 10% by volume or more and 70% by volume or less, and more preferably 20% by volume or more and 55% by volume or less.
  • the synthetic gas G1 may contain carbon dioxide, nitrogen, oxygen and the like in addition to hydrogen and carbon monoxide.
  • the carbon dioxide concentration in the synthetic gas G1 is not particularly limited, but is preferably 0.1% by volume or more and 40% by volume or less, and more preferably 0.3% by volume or more and 30% by volume or less.
  • the carbon dioxide concentration is particularly preferably lowered when ethanol is produced by using a microbial catalyst, and from such a viewpoint, it is more preferably 0.5% by volume or more and 25% by volume or less.
  • the nitrogen concentration in the synthetic gas G1 is usually 40% by volume or less, preferably 1% by volume or more and 20% by volume or less.
  • the oxygen concentration in the synthetic gas G1 is usually 5% by volume or less, preferably 1% by volume or less. Further, the oxygen concentration should be as low as possible, and may be 0% by volume or more. However, in general, oxygen is inevitably contained in many cases, and the oxygen concentration is practically 0.01% by volume or more.
  • the concentrations of carbon monoxide, carbon dioxide, hydrogen, nitrogen and oxygen in the synthetic gas G1 are the type of waste, the temperature of the gasifier 10 and the reformer 11, and the oxygen concentration of the supply gas supplied to the gasifier 11.
  • the predetermined range can be obtained. For example, if you want to change the concentration of carbon monoxide or hydrogen, change to waste with a high ratio of hydrocarbons (carbon and hydrogen) such as waste plastic, and if you want to reduce the nitrogen concentration, change the oxygen concentration in the gasifier 10.
  • the concentration of each component of carbon monoxide, carbon dioxide, hydrogen and nitrogen may be appropriately adjusted in the synthetic gas G1.
  • the concentration may be adjusted by adding at least one of these components to the synthetic gas G1.
  • the volume% of each substance in the above-mentioned synthetic gas G1 means the volume% of each substance in the synthetic gas G1 discharged from the gasifier 2.
  • the gasification device 2 includes the gasification furnace 10 and the reforming furnace 11, but the configuration of the gasification device 2 is not limited to these, and the gasification furnace and the reforming device 2 are provided. It may be an apparatus in which a furnace is integrated, or it may be an apparatus of any type as long as it can generate synthetic gas G1.
  • the processing unit 3 in the present embodiment includes at least a heat exchanger 20 and a gas cooling tower 21.
  • the processing unit 3 further includes a filtration type dust collector 22 after the gas cooling tower 21.
  • the processing unit 3 further includes a water scrubber 23 after the gas cooling tower 21.
  • the latter stage means the latter stage along the gas supply flow of the synthetic gas G1.
  • the pre-stage means a pre-stage along the supply flow of the synthetic gas G1.
  • the supply flow of the synthetic gas G1 means the flow of the synthetic gas G1 until the synthetic gas G1 is discharged from the gasifier 2 and introduced into the organic substance generation unit 30.
  • the synthetic gas G1 discharged from the gasifier 2 passes through the heat exchanger 20.
  • the heat exchanger 20 is a device that cools the synthetic gas G1 using a heat medium.
  • the heat exchanger 20 cools the syngas G1 by transferring the heat energy of the syngas G1 to a heat medium.
  • a boiler is preferably used as the heat exchanger 20.
  • the boiler is a device in which water as a heat medium is circulated inside, and the circulated water is heated by the heat energy of the synthetic gas G1 to be steamed. When the boiler is used as the heat exchanger 20, the steam generated in the boiler makes it possible to easily heat other devices, and the heat energy of the synthetic gas G1 can be easily reused.
  • the heat exchanger 20 can be used other than the boiler, and may have any configuration as long as the heat energy is transferred from the synthetic gas G1 to the heat medium, but the partition wall where the synthetic gas G1 and the heat medium do not come into direct contact with each other.
  • the method is preferred.
  • the heat medium may be either a gas or a liquid, or may have a phase change between the gas and the liquid. Further, the heat medium may be transferred with heat energy from the synthetic gas G1 in a state of being passed through a flow path having any shape such as a tubular shape or a plate shape.
  • the synthetic gas G1 discharged from the gasifier 2 has a high temperature of, for example, 900 ° C. or higher. Therefore, the synthetic gas G1 is cooled by the heat exchanger 20 to be supplied to the gas cooling tower 21 at a relatively low temperature, and it is possible to prevent the gas cooling tower 21 from being excessively cooled. Therefore, the amount of water sprayed on the synthetic gas G1 in the gas cooling tower 21 can be reduced, and it is necessary to supply the synthetic gas G1 having a higher water content to the filtration type dust collector 22 and the water scrubber 23. It disappears. Therefore, the amount of water moving from the gas cooling tower 21 to the water scrubber 23 can be suppressed, and the water can be prevented from agglomerating too much in the filtration type dust collector 22.
  • the heat exchanger 20 cools the synthetic gas supplied at a high temperature of, for example, 900 ° C. or higher, and cools the synthetic gas to a temperature of, for example, 200 ° C. or higher and 300 ° C. or lower, preferably 240 ° C. or higher and 280 ° C. or lower. It is supplied to the cooling tower 21.
  • the precipitation of impurities in the synthetic gas G1 can be prevented, and by setting the temperature to 240 ° C. or higher, the precipitation of tar content can be effectively prevented.
  • the synthetic gas G1 contains a large amount of tar, but by preventing the precipitation of tar, clogging due to tar can be prevented in the heat exchanger 20. Further, by setting the temperature to 300 ° C. or lower, it is not necessary to excessively cool the synthetic gas G1 in the gas cooling tower 21.
  • the gas cooling tower 21 is a facility for cooling the gas (synthetic gas G1) passing through the inside of the gas cooling tower 21 by spraying water.
  • the gas cooling tower 21 is provided with one or more water spray ports 24 for spraying water on the synthetic gas G1 on its inner peripheral surface. Two or more water spray ports 24 are preferably provided, and two or more water spray ports 24 are more preferably provided at different height positions in the cooling tower 21. Since a plurality of water spray ports 24 are provided and their height positions are different, the synthetic gas G1 can be sufficiently and efficiently cooled by water spraying.
  • the synthetic gas G1 is preferably introduced into the gas cooling tower 21 from the upper side thereof, and the synthetic gas G1 is passed through the inside of the gas cooling tower 21 so as to be a downdraft, and passes through the inside of the gas cooling tower 21. During this period, the gas is cooled by the water sprayed from the water spray port 24. In this case, the synthetic gas G1 may be discharged from the lower side of the gas cooling tower 21.
  • the temperature of the synthetic gas G1 introduced into the gas cooling tower 21 is sufficiently higher than 100 ° C., while the temperature of the water sprayed from the water spray port 24 is lower than 100 ° C. Therefore, the synthetic gas G1 is cooled by the temperature difference thereof, and is also cooled by the heat of vaporization when the water sprayed from the water spray port 24 is vaporized. It is preferable that a part of vaporized water is mixed as water vapor in the synthetic gas G1.
  • the water sprayed from the water spray port 24 may be partially or wholly vaporized at the time of spraying.
  • the synthetic gas G1 is preferably cooled to a temperature of 100 ° C. or higher and 200 ° C. or lower, and is discharged to the outside of the gas cooling tower 21 in the above temperature range.
  • the synthetic gas G1 is purified by the filtration type dust collector 22 without damaging the filtration type dust collector 22 described later or deteriorating the dust collection performance. can.
  • the temperature is 100 ° C. or higher, most of the sprayed water is vaporized and mixed in the synthetic gas G1. Therefore, in the gas cooling tower 21, a large amount of sprayed water is not drained, so that it is not necessary to install a large-scale drainage facility in the gas cooling tower 21.
  • a part of the water sprayed on the gas cooling tower 21 may fall as a liquid below the gas cooling tower 21 and be recovered. Impurities such as char and tar in the synthetic gas G1 may also fall downward and be recovered by colliding with the sprayed water.
  • the synthetic gas G1 is more preferably cooled to a temperature of 120 ° C. or higher and 180 ° C. or lower, more preferably 130 ° C. or higher and 170 ° C. or lower, cooled to these temperatures, and discharged to the outside. ..
  • the synthetic gas G1 By cooling the synthetic gas G1 to 120 ° C. or higher, it is possible to prevent a large amount of water mixed in the synthetic gas G1 from being liquefied in the gas cooling tower 21 and the filtration type dust collector 22 described later. Further, by setting the temperature to 180 ° C. or lower, it becomes easier to avoid damage and functional deterioration of the filtration type dust collector 22.
  • the synthetic gas G1 cooled by the gas cooling tower 21 passes through the filtration type dust collector 22.
  • the filtration type dust collector 22 can use what is called a bag filter, and includes a casing and a filter medium housed inside the casing.
  • the filter medium is not particularly limited, but for example, a woven fabric such as glass fiber or PTFE fiber or felt or the like is used.
  • the synthetic gas G1 contains a large amount of solid impurities such as tar and char, but the solid impurities are removed by passing through the filtration type dust collector 22. By removing the solid impurities, it is possible to prevent the solid impurities from being clogged in each device in the subsequent stage of the filtration type dust collector 22.
  • the organic substance generation unit 30 gas is generally blown into the reactor via a spudger, but clogging of solid impurities in the spurger can be prevented. Further, by removing the solid impurities, the activity of the microbial catalyst can be easily increased in the organic substance generating unit 30, the microbial catalyst can be prevented from being killed by the influence of the impurities, and the organic substance can be synthesized with high conversion efficiency.
  • "removal" means that the concentration of the target substance in gas is reduced by removing at least a part of the target substance from synthetic gas, and the substance to be removed is completely removed. Not limited to removal.
  • the temperature of the synthetic gas G1 when passing through the filtration type dust collector 22 is also preferably 100 ° C. or higher and 200 ° C. or lower, more preferably 120 ° C.
  • the temperature is °C or more and 180 °C or less, more preferably 130 °C or more and 170 °C or less. Therefore, the filtration type dust collector 22 can be prevented from being damaged by the high-temperature synthetic gas G1 and the filtration performance from being deteriorated. Further, it is possible to prevent the synthetic gas G1 contained in the synthetic gas G1 from being liquefied in a large amount in the filtration type dust collector 22.
  • Syngas G1 contains various impurities other than the above-mentioned solid impurities, and includes, for example, water-soluble impurities.
  • the water-soluble impurities include acid gases such as hydrogen sulfide, hydrogen chloride and blue acid, basic gases such as ammonia, and oxides such as NOx and SOx. These water-soluble impurities are removed by passing through the water scrubber 23.
  • the synthetic gas G1 also contains oil-based impurities such as BTEX (benzene, toluene, ethylbenzene, xylene), naphthalene, 1-naphthol, and 2-naphthol, which may also be appropriately removed by the water scrubber 23.
  • oil-based impurities such as BTEX (benzene, toluene, ethylbenzene, xylene), naphthalene, 1-naphthol, and 2-naphthol, which may also be appropriately removed by the water scrubber 23.
  • solid impurities and the like that could not be recovered by the filtration type dust collector 22 may be appropriately removed.
  • the water scrubber 23 is not particularly limited as long as it has a configuration in which the synthetic gas G1 and water are brought into contact with each other, but as shown in FIG. 1, for example, the water sprayed from the nozzle 25 provided on the upper portion (for convenience, also referred to as "washing water”). It is preferable to have a structure in which the synthetic gas G1 is brought into contact with the synthetic gas G1.
  • the water scrubber 23 may be provided with an introduction path 27, a supply path 28, a discharge path 29, and the like.
  • a storage unit 26 for storing wash water is provided below the water scrubber 23. The washing water stored in the storage unit 26 may be appropriately stirred by a stirring device (not shown).
  • the introduction path 27 is a path for introducing the synthetic gas G1 into the water scrubber 23, and the introduction port 27A of the introduction path 27 is, for example, higher than the liquid level of the washing water stored in the storage portion 26 inside the scrubber 12. It is installed above.
  • the supply path 28 circulates water in the water scrubber 23 and supplies wash water so as to come into contact with the synthetic gas G1. Specifically, the supply path 28 sprays the washing water stored in the storage unit 26 downward from the nozzle 25 inside the water scrubber 23 and brings it into contact with the synthetic gas G1.
  • a pump (not shown) is provided in the supply path 28, and the washing water is pumped to the nozzle 25 by the pump. Then, the washing water is sprayed downward from the nozzle 25 inside the scrubber 12.
  • the discharge path 29 is provided in the upper part of the scrubber 12, and discharges the synthetic gas G1 after contacting with the washing water sprayed from the nozzle 25 to the outside.
  • the washing water used in the scrubber 23 may be water alone, or a chemical may be added as appropriate.
  • the water scrubber 23 may be provided with a removal device 19.
  • the removing device 19 is, for example, a device for removing impurities (oil-based impurities, solid impurities, water-soluble impurities, etc.) contained in the washing water.
  • the removal device 19 may be provided, for example, with a circulation path for circulating water in the storage unit 26, and may be provided in the middle of the path.
  • the removing device 19 may, for example, remove oily impurities contained in the washing water, solid impurities not dissolved in the washing water, water-soluble impurities dissolved in the washing water, and the like.
  • the removing device 19 may be an oil-water separating device or the like, a filter for removing solid impurities, or a combination of two or more of these, and is included in the washing water. It may have any structure as long as impurities can be removed.
  • the water scrubber 23 is provided with the removing device 19 to prevent impurities from accumulating in the washing water.
  • the synthetic gas G1 may be cooled by coming into contact with water in the water scrubber 23.
  • the synthetic gas G1 is cooled by the gas cooling tower 21 and has a predetermined temperature (preferably 100 ° C. or higher and 200 ° C. or lower, more preferably 120 ° C. or higher and 180 ° C. or lower, still more preferably 130 ° C. or higher and 170 ° C. or lower. It is introduced into the water scrubber 23 in a state of being cooled to the temperature of).
  • the temperature of the water in contact with the synthetic gas G1 in the water scrubber 23 is less than 100 ° C., preferably 0 ° C. or higher and 40 ° C. or lower, and more preferably 5 ° C.
  • the "temperature of water in contact with the synthetic gas G1" means, when the wash water is circulated and brought into contact with the synthetic gas G1 as described above, immediately before the water comes into contact with the synthetic gas G1. That is, the temperature of the water (washing water) sprayed from the nozzle 15 may be measured. Further, when the synthetic gas G1 is introduced into the stored water (washing water) as described later, the temperature of the washing water stored in the storage unit 26 may be measured.
  • the synthetic gas G1 By contacting the synthetic gas G1 with water at the above temperature in the scrubber 23, the synthetic gas G1 is cooled in the water scrubber 23 to, for example, a temperature of less than 100 ° C., preferably 40 ° C. or lower, and more preferably 38 ° C. or lower.
  • a temperature of less than 100 ° C. preferably 40 ° C. or lower, and more preferably 38 ° C. or lower.
  • the synthetic gas G1 is cooled to a predetermined temperature below the boiling point of water in the water scrubber 23
  • at least a part of the water (water vapor) mixed in the synthetic gas G1 is condensed and removed in the gas cooling tower 22. Will be done. Therefore, it is possible to appropriately remove the water without separately providing a large-scale device for removing the water mixed by the gas cooling tower 22. Further, by cooling to 40 ° C.
  • the synthetic gas G1 having an appropriate temperature can be supplied to the organic substance generation unit without separately providing a cooling device. Further, when the processing device provided after the water scrubber 23 includes a cooling device, the load on the cooling device can be reduced.
  • the synthetic gas G1 is preferably cooled to a temperature of, for example, 0 ° C. or higher, preferably to a temperature of 5 ° C. or higher by coming into contact with water.
  • the water scrubber 23 is provided with a temperature control device (not shown), and the temperature of the washing water is controlled by the temperature control device.
  • the temperature control device may be attached to the supply path 28, for example, to adjust the temperature of the washing water passing through the inside of the supply path 28, or may be provided on the outer periphery of the water scrubber and stored in the storage portion 26 of the water scrubber. The temperature of the may be adjusted.
  • the temperature control device may cool the washing water passing through the supply path 28, the washing water stored in the storage unit 26, or the like to bring the temperature within the above range. Further, the water stored in the storage unit 26 may be appropriately replaced to maintain the temperature of the water in contact with the synthetic gas G1 within a constant temperature range.
  • the synthetic gas G1 is introduced into the washing water stored in the storage unit 26. May be done. In this case, the supply path 28 and the nozzle 25 are omitted, and the washing water is not sprayed from the nozzle. Further, the introduction port 27A of the introduction path 27 is arranged below the liquid level of the washing water stored in the storage unit 26. The syngas G1 will come into contact with the wash water stored in the reservoir 26, whereby the syngas G1 may be washed and cooled.
  • the temperature of the water in contact with the synthetic gas G1 and the temperature of the synthetic gas G1 (that is, the synthetic gas introduced into the water scrubber 23).
  • the temperature of G1 and the temperature of the synthetic gas G1 after cooling) are as described above.
  • the processing unit 3 may have a processing device other than the heat exchanger 20, the gas cooling tower 21, the filtration type dust collector 22, and the water scrubber 23 described above.
  • a treatment device also referred to as “post-stage treatment device”
  • the purified synthetic gas G2 that has passed through the water scrubber 23 is appropriately used in the post-stage treatment device.
  • the post-treatment device include a moisture separation device consisting of a gas chiller, a low temperature separation method (deep cooling method) separation device, a fine particle separation device composed of various filters, a desulfurization device (sulfide separation device), and a membrane separation method.
  • oxygen scavenger pressure swing adsorption type separator (PSA), temperature swing adsorption type separator (TSA), pressure temperature swing adsorption type separator (PTSA), activated carbon separation device, desorption
  • PSA pressure swing adsorption type separator
  • TSA temperature swing adsorption type separator
  • PTSA pressure temperature swing adsorption type separator
  • activated carbon separation device desorption Examples thereof include an oxygen catalyst, specifically, a separation device using a copper catalyst or a palladium catalyst. These may be used alone or in combination of two or more.
  • the purified synthetic gas G2 discharged from the water scrubber 23 may be further purified by these post-treatment devices.
  • the synthetic gas G1 that has passed at least the heat exchanger 20 and the gas cooling tower 21 is supplied to the organic substance generation unit 30 as the purified synthetic gas G2.
  • the purified synthetic gas G2 supplied to the organic substance generation unit 30 is preferably a purified synthetic gas G2 that has passed through the heat exchanger 20, the gas cooling tower 21, the filtration dust collector 22, and the water scrubber 23 in this order.
  • the organic substance generation unit 30 produces an organic substance by contacting the purified synthetic gas G2 with a microbial catalyst.
  • a microbial catalyst gas-utilizing microorganisms are preferably used.
  • the organic substance generation unit 30 includes a fermenter (reactor) filled with a culture solution containing water and a microbial catalyst.
  • the purified synthetic gas G2 is supplied to the inside of the fermenter, and the purified synthetic gas G2 is converted into an organic substance inside the fermenter.
  • the organic substance preferably contains ethanol.
  • the fermenter is preferably a continuous fermentation apparatus, and may be any of a stirring type, an air lift type, a bubble tower type, a loop type, an open bond type, and a photobio type.
  • the purified synthetic gas G2 and the culture solution may be continuously supplied to the fermenter, but it is not necessary to supply the purified synthetic gas G2 and the culture solution at the same time, and the fermenter is purified in advance by supplying the culture solution.
  • Syngas G2 may be supplied. Syngas G2 is generally blown into a fermenter via a spudger or the like.
  • the medium used for culturing the microbial catalyst is not particularly limited as long as it has an appropriate composition according to the bacterium, but is limited to water as the main component and nutrients dissolved or dispersed in the water (for example, vitamins, phosphoric acid, etc.). It is a liquid containing and.
  • the organic substance generation unit 30 an organic substance is produced by microbial fermentation of a microbial catalyst, and an organic substance-containing liquid is obtained.
  • the temperature of the fermenter is preferably controlled to 40 ° C. or lower. By controlling the temperature to 40 ° C. or lower, the microbial catalyst in the fermenter does not die, and the purified synthetic gas G2 comes into contact with the microbial catalyst to efficiently generate an organic substance such as ethanol.
  • the temperature of the fermenter is more preferably 38 ° C. or lower, and in order to enhance the catalytic activity, it is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 30 ° C. or higher.
  • the organic substance manufacturing apparatus 1 includes a separating apparatus 31 that separates at least water from the organic substance-containing liquid.
  • the separation device 31 preferably includes a distillation device 33, and more preferably a solid-liquid separation device 32 in front of the distillation device 33.
  • the separation device 31 is preferably used in combination with the solid-liquid separation device 32 and the distillation device 33.
  • the separation step performed by combining the solid-liquid separation device 32 and the distillation device 33 will be specifically described.
  • the organic substance-containing liquid obtained in the organic substance generation unit 30 may be separated into a solid component mainly composed of microorganisms and a liquid component containing an organic substance in the solid-liquid separation device 32.
  • the organic substance-containing liquid obtained in the organic substance generation unit 30 contains the target organic substance, as well as microorganisms and their carcasses contained in the fermenter as solid components, and thus removes them. Therefore, solid-liquid separation is performed.
  • the solid-liquid separation device 32 include a filter, a centrifuge, and a device using a solution precipitation method.
  • the solid-liquid separation device 32 may be a device (for example, a heating / drying device) that evaporates a liquid component containing an organic substance from an organic substance-containing liquid and separates the liquid component from the solid component. At this time, all of the liquid components including the target organic substance may be evaporated, or the liquid components may be partially evaporated so that the target organic substance evaporates preferentially.
  • the distillation apparatus 33 performs distillation for separating an organic substance which is an object.
  • the distillation apparatus 33 can purify a large amount of organic substances with high purity by a simple operation by separation by distillation.
  • the distillation apparatus 33 performs distillation to further separate the target organic substance from the liquid components separated by the solid-liquid separation apparatus 32. This makes it possible to purify organic substances in large quantities with higher purity.
  • a known distillation column or the like can be used as the distillation apparatus 33.
  • the distillate contains a target organic substance (for example, ethanol) with high purity, while the canned liquid (that is, distillation residue) contains water as a main component (for example, 70 mass by mass). % Or more, preferably 90% by mass or more).
  • a target organic substance for example, ethanol
  • the canned liquid that is, distillation residue
  • water for example, 70 mass by mass. % Or more, preferably 90% by mass or more.
  • the temperature inside the distillation apparatus 33 during distillation of an organic substance is not particularly limited, but is preferably 100 ° C. or lower, and more preferably 70 to 95 ° C.
  • the pressure in the distillation apparatus 33 at the time of distilling the organic substance may be normal pressure, but is preferably less than atmospheric pressure, more preferably about 60 to 150 kPa (gauge pressure). By setting the pressure in the distillation apparatus 33 within the above range, the separation efficiency of the organic substance can be improved and the yield of the organic substance can be improved.
  • the distillation apparatus 33 preferably utilizes the heat energy obtained from the synthetic gas G1 by the heat exchanger 20 described above for distillation.
  • the distillation apparatus 33 can raise the temperature inside the distillation apparatus 33 during distillation of an organic substance by reusing the heat energy obtained from the synthetic gas G1 in the heat exchanger 20. In this way, the distillation apparatus 33 reuses the heat energy obtained from the synthetic gas G1 in the heat exchanger 20, so that the energy consumption of the entire organic substance manufacturing process can be reduced.
  • the heat energy obtained from the synthetic gas G1 in the heat exchanger 20 can be transferred via the heat energy path 33a connected to the heat exchanger 20 and the distillation apparatus 33.
  • the thermal energy path 33a is not particularly limited, and may have any configuration in which the thermal energy of the synthetic gas G1 is transferred from the heat exchanger 20 to the distillation apparatus 33 by a heat medium.
  • the heat medium may be either a gas or a liquid, or may have a phase change between the gas and the liquid.
  • the heat exchanger 20 is preferably a boiler, and therefore steam is preferable as the heat medium.
  • the water separated in the separation device 31 is preferably reused, more preferably supplied to the gas cooling tower 21, and used for water spraying in the gas cooling tower 21. In this way, when water is reused, the water that is no longer needed by the organic substance generating unit 30 does not become wastewater, which is preferable from the viewpoint of environmental protection and economic efficiency.
  • the organic substance manufacturing apparatus 1 may have a supply path 31a which is connected to the separation apparatus 31 and the gas cooling tower 21 and supplies the water obtained by the separation apparatus 31 to the gas cooling tower 21.
  • the supply path 31a is not particularly limited, but may be composed of pipes or the like. Further, the water separated by the separation device 31 may be further refined and purified, and may be supplied to the gas cooling tower 21.
  • the synthetic gas G1 is cooled by the heat exchanger 20 and the synthetic gas G1 is cooled by the water spray of the gas cooling tower 21, so that nitrogen gas and air can be blown into the synthetic gas G1.
  • Syngas G1 can be cooled without this. Therefore, the temperature of the synthetic gas G1 can be lowered without changing the composition of the synthetic gas G1, and the organic substance can be synthesized without killing the microbial catalyst.
  • the synthetic gas G1 is cooled by the heat exchanger 20
  • the synthetic gas G1 is cooled by the water spray of the gas cooling tower 21, so that the heat exchanger 20 plays the role of cooling the synthetic gas G1. Will play a part, and the role of cooling in the gas cooling tower 21 will be reduced. From this, it is possible to reduce the amount of water spray for cooling the synthetic gas in the gas cooling tower 21, and at the same time, it is possible to reduce the amount of drainage from the gas cooling tower 21.
  • the heat energy obtained from the synthetic gas G1 by the heat exchanger 20 can be used to raise the temperature in the distillation apparatus 33 at the time of distilling the organic substance. Therefore, the amount of energy procured from the outside in the distillation of the distillation apparatus 33 can be reduced, and the amount of energy used in the entire production process of the organic substance can be reduced.
  • the configuration in which the water scrubber 23 is provided is shown, but the water scrubber 23 may be omitted.
  • the synthetic gas G1 that has passed at least the gas cooling tower 21 and the filtration type dust collector 22 is brought into contact with the microbial catalyst in the organic substance generation unit 30 and converted into an organic substance.
  • the synthetic gas G1 discharged from the filtration type dust collector 22 is typically a relatively high temperature (for example, 100 ° C.
  • the filtration type A cooling device other than the water scrubber 23 is provided after the dust collector 22, and the synthetic gas G1 discharged from the filtration type dust collector 22 may be cooled by a cooling device other than the water scrubber 23.
  • the water scrubber 23 is omitted, one or more treatment devices selected from the above-mentioned post-stage treatment devices are provided in the subsequent stage of the filtration type dust collector 22 in addition to the cooling device, and the filtration type.
  • the synthetic gas G1 discharged from the dust collector 22 may be treated by a post-stage treatment device as appropriate.
  • the separation device 31 may be omitted when it is not necessary to purify the organic substance produced by the organic substance generation unit 30 or when it is not necessary to separate water from the organic substance-containing liquid.
  • the configuration in which the filtration type dust collector 22 is provided is shown, but the filtration type dust collector 22 may be omitted. If the filter type dust collector 22 is omitted, the synthetic gas G1 cooled in the gas cooling tower 21 will be supplied to the water scrubber 23 without going through the filter type dust collector 22.
  • the filtration type dust collector 22 may be omitted when the waste contains a small amount of solid impurities or when synthetic gas is generated from a material other than the waste as described later.
  • both the water scrubber 23 and the filter type dust collector 22 may be omitted.
  • the processing unit 3 in the refined syngas production apparatus includes at least a heat exchanger 20 and a gas cooling tower 21, but it is preferable that the processing unit 3 further includes a filtration type dust collector 22 and a water scrubber 23. In addition to these, the processing unit 3 may appropriately have a post-stage processing device or the like. Since these details are as described above, the description thereof will be omitted.
  • the synthetic gas G1 may be generated from other than the waste.
  • synthetic gas G1 may be generated from fossil resources such as natural gas, coal, heavy oil, petroleum exhaust gas, and oil shale, and biomass other than waste.
  • the synthetic gas may be a by-product gas in various manufacturing processes such as a steel manufacturing process, and for example, the gasification device 2 may constitute a steel manufacturing facility or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Industrial Gases (AREA)

Abstract

合成ガスを効率よく冷却し、微生物触媒を利用して合成ガスを高い変換効率で有機物質に変換することが可能な有機物質の製造方法及び有機物質製造装置を提供する。 有機物質の製造方法は、ガス化装置2から排出された合成ガスG1を、熱交換器20を通過させることにより冷却する工程と、熱交換器20で冷却された合成ガスG1を、ガス冷却塔21を通過させて、ガス冷却塔21内部で噴霧された水により冷却する工程と、熱交換器20及びガス冷却塔21を少なくとも通過した合成ガスG1を、微生物触媒に接触させて有機物質を生成する工程とを含む。

Description

有機物質の製造方法及び有機物質製造装置
 本発明は、合成ガスを原料として有機物質を製造する有機物質の製造方法、及び合成ガスを原料として有機物質を製造する有機物質製造装置に関する。
 産業廃棄物、一般廃棄物などの各種廃棄物は、ガス化炉において熱分解によりガスを生成した後、改質炉で生成されたガスを改質して合成ガスを得る技術が広く知られている。得られた合成ガスは、そのまま燃焼され発電などに利用されたり、必要に応じてボイラーなどにより熱回収された後、発電などに利用されたりする。
 また、近年、合成ガスが化学合成原料に利用されることも試みられており、例えば、微生物触媒によりエタノールなどの有機物質に変換することが試みられている(例えば、特許文献1参照)。
 ガス化炉及び改質炉において得られた合成ガスは、タール分などの不純物を多く含み、発電、化学合成にそのまま利用することが難しいため、ガス精製が行われることが一般的である。合成ガスは、ガス精製においては、適宜冷却されることが知られている。合成ガスを冷却する手段として、ガス流に水を噴霧し、水の蒸発熱を用いて合成ガスを冷却する手段が一般的に用いられている。しかし、ガス化炉及び改質炉において得られた合成ガスの温度は高温であり、水の噴霧によって合成ガスを冷却するには多量の水が必要となり、多量の排水が発生することになる。そこで、合成ガスを冷却する方法として、水の噴霧以外の手段を含める方法が提案されている(例えば、特許文献2~4参照)。
 特許文献2では、高温かつ常圧でバイオマスをガス化し、ガス化した合成ガスがガス火炉から水冷却管を通り急冷塔に導入され、急冷塔において粗合成ガスはスプレー水により冷却されることが開示されている。
 特許文献3では、ガス化して生成した合成ガスに対して、間接熱交換器による冷却工程、タール除去工程、タール除去装置による冷却工程、スプレー塔内の水スプレー噴霧による冷却工程を含む方法が開示されている。
 特許文献4では、合成ガスを第1熱交換器により冷却し、第1熱交換器により冷却された合成ガスに、スプレー塔にて冷却水を噴霧する冷却工程を含む方法が開示されている。
国際公開第2015/037710号 特表2015-510522号公報 特開2009-298825号公報 特開2014-227450号公報
 ところで、合成ガスを例えば有機合成原料として利用する場合には、温度を厳密に制御する必要がある場合がある。例えば、微生物触媒によりエタノールなどの有機物質に変換する場合には、微生物触媒が死滅することを防止するために、合成ガスは40℃以下の温度まで冷却する必要がある。
 しかしながら、合成ガスを発電などに利用する場合には、厳密な温度制御が必要とされない。したがって、特許文献2~4に記載される従来の合成ガスの精製方法を、微生物触媒を利用する場合にそのまま適用しても、高い変換効率で有機物質を合成することは難しい。
 また、従来の合成ガスの冷却では、窒素や空気の吹込みが一般的に多く行われているが、微生物触媒を利用する場合、合成ガスに窒素や空気が混入すると、有機物質の変換効率が低下してしまう。
 そこで、本発明は、合成ガスを効率よく冷却し、微生物触媒を利用して合成ガスを高い変換効率で有機物質に変換することが可能な有機物質の製造方法及び有機物質製造装置を提供することを課題とする。
 本発明者らは、鋭意検討の結果、合成ガスを熱交換器により冷却し、熱交換器で冷却された合成ガスをガス冷却塔内部で噴霧された水により冷却し、その冷却された合成ガスを、微生物触媒に接触させて有機物質を生成することで上記課題を解決できることを見出し、以下の本発明を完成させた。
 すなわち、本発明は、以下の[1]~[18]を提供する。
[1]ガス化装置から排出された合成ガスを、熱交換器を通過させることにより冷却する工程と、前記熱交換器で冷却された合成ガスを、ガス冷却塔を通過させて、ガス冷却塔内部で噴霧された水により冷却する工程と、前記熱交換器及び前記ガス冷却塔を少なくとも通過した合成ガスを、微生物触媒に接触させて有機物質を生成する工程とを含む有機物質の製造方法。
[2]前記ガス化装置から排出された前記合成ガスの温度が900℃以上である[1]に記載の有機物質の製造方法。
[3]前記熱交換器で前記合成ガスを200℃以上300℃以下の温度まで冷却する[1]又は[2]に記載の有機物質の製造方法。
[4]前記ガス冷却塔で冷却された前記合成ガスを、ろ過式集塵器を通過させる工程をさらに含み、前記熱交換器、前記ガス冷却塔及び前記ろ過式集塵器を少なくとも通過した前記合成ガスを、微生物触媒に接触させて有機物質を生成する、[1]~[3]のいずれかに記載の有機物質の製造方法。
[5]前記ガス冷却塔で冷却された前記合成ガスを、水スクラバを通過させる工程をさらに含み、前記熱交換器、前記ガス冷却塔及び前記水スクラバを少なくとも通過した前記合成ガスを、微生物触媒に接触させて有機物質を生成する、[1]~[4]のいずれかに記載の有機物質の製造方法。
[6]前記熱交換器、前記ガス冷却塔、前記ろ過式集塵器及び前記水スクラバをこの順に通過した前記合成ガスを、微生物触媒に接触させて有機物質を生成する、[5]に記載の有機物質の製造方法。
[7]前記水スクラバで前記合成ガスを40℃以下に冷却する[5]又は[6]に記載の有機物質の製造方法。
[8]前記有機物質を蒸留する工程をさらに含み、前記熱交換器によって前記合成ガスから得た熱エネルギーを蒸留に利用する、[1]~[7]のいずれかに記載の有機物質の製造方法。
[9]前記有機物質がエタノールを含む[1]~[8]のいずれかに記載の有機物質の製造方法。
[10]合成ガスを生成するガス化装置と、前記ガス化装置から排出された合成ガスを通過させて冷却する熱交換器と、前記熱交換器で冷却された合成ガスを通過させて水噴霧により冷却するガス冷却塔と、前記熱交換器及び前記ガス冷却塔を少なくとも通過した合成ガスを、微生物触媒に接触させて有機物質を生成する有機物質生成部とを備える有機物質製造装置。
[11]前記ガス化装置から排出された前記合成ガスの温度が900℃以上である[10]に記載の有機物質製造装置。
[12]前記熱交換器で前記合成ガスを200℃以上300℃以下の温度まで冷却する[10]又は[11]に記載の有機物質製造装置。
[13]前記ガス冷却塔の後段に配置され、かつ前記ガス冷却塔で冷却された前記合成ガスを通過させるろ過式集塵器をさらに備え、前記有機物質生成部が、前記熱交換器、前記ガス冷却塔及び前記ろ過式集塵器を少なくとも通過した合成ガスを、前記微生物触媒に接触させて有機物質を生成する、[10]~[12]のいずれかに記載の有機物質製造装置。
[14]前記ガス冷却塔の後段に配置され、かつ前記ガス冷却塔で冷却された前記合成ガスを通過させる水スクラバをさらに備え、前記有機物質生成部が、前記熱交換器、前記ガス冷却塔及び前記水スクラバを少なくとも通過した合成ガスを、前記微生物触媒に接触させて有機物質を生成する、[10]~[13]のいずれかに記載の有機物質製造装置。
[15]前記有機物質生成部が、前記熱交換器、前記ガス冷却塔、ろ過式集塵器及び前記水スクラバをこの順に通過した合成ガスを、前記微生物触媒に接触させて有機物質を生成する、[14]に記載の有機物質製造装置。
[16]前記水スクラバで前記合成ガスを40℃以下に冷却する[14]又は[15]に記載の有機物質製造装置。
[17]前記有機物質を蒸留する蒸留装置をさらに備え、前記蒸留装置は、前記熱交換器によって前記合成ガスから得た熱エネルギーを蒸留に利用する、[10]~[16]のいずれかに記載の有機物質製造装置。
[18]前記有機物質がエタノールを含む[10]~[17]のいずれかに記載の有機物質製造装置。
 本発明によれば、合成ガスを効率よく冷却し、微生物触媒を利用して合成ガスを高い変換効率で有機物質に変換することが可能な有機物質の製造方法及び有機物質製造装置を提供することが可能になる。
本発明の実施形態に係る有機物質製造装置の全体構成を示す模式図である。
 本発明について図面を参照しつつ実施形態を用いて説明する。
 図1は、本発明の実施形態に係る有機物質製造装置を示す。以下、実施形態を参照しつつ、本発明の実施形態に係る有機物質製造装置、及び有機物質の製造方法について詳細に説明する。
 有機物質製造装置1は、廃棄物をガス化して合成ガスG1を生成するガス化装置2と、ガス化装置2から排出された合成ガスG1に対して、少なくとも精製処理を含む処理を行う処理ユニット3と、処理ユニット3より処理されて得られた合成ガス(以下、「精製合成ガスG2」ともいう)を、微生物触媒に接触させて有機物質を生成する有機物質生成部30とを備える。
(ガス化装置)
 ガス化装置2でガス化される廃棄物としては、産業固形廃棄物などの産業廃棄物でもよいし、都市固形廃棄物(MSW)などの一般廃棄物でもよく、プラスチック廃棄物、生ゴミ、廃棄タイヤ、バイオマス廃棄物、食料廃棄物、建築資材、木材、木質チップ、繊維、紙類等の可燃性物質が挙げられる。これらのなかでは、都市固形廃棄物(MSW)が好ましい。
 ガス化装置2は、ガス化炉10と改質炉11とを備える。ガス化炉10としては、特に限定されないが、キルンガス化炉、固定床ガス化炉、流動床ガス化炉等が挙げられる。ガス化炉10には、廃棄物以外にも、酸素又は空気、更には必要に応じて水蒸気が投入される。ガス化炉10は、廃棄物を例えば500~700℃で加熱することにより、熱分解し、適宜部分酸化してガス化する。熱分解ガスは、一酸化炭素、水素のみならず、気体状のタール、粉体のチャー等も含む。熱分解ガスは、改質炉11へ供給される。なお、ガス化炉10において不燃物として発生する固形物などは、適宜回収される。
 改質炉11では、ガス化装置2で得られた熱分解ガスが改質され合成ガスG1が得られる。改質炉11では、熱分解ガスにおける水素及び一酸化炭素の少なくともいずれかの含有率が増加し、合成ガスG1として排出される。改質炉11では、例えば、熱分解ガスに含まれるタール、チャーなどが、水素及び一酸化炭素などに改質される。
 改質炉11内の合成ガスG1の温度は、特に限定されないが、例えば900℃以上、好ましくは900℃以上1,300℃以下、より好ましくは1,000℃以上1,200℃以下である。改質炉11における温度を上記範囲内とすることで、一酸化炭素及び水素の含有率が高い合成ガスG1が得られやすくなる。
 改質炉11(すなわち、ガス化装置2)から排出される合成ガスG1の温度は、上記合成ガスG1の温度と同様であり、例えば900℃以上、好ましくは900℃以上1,300℃以下、より好ましくは1,000℃以上1,200℃以下である。
 改質炉11(すなわち、ガス化装置2)から排出される合成ガスG1は、一酸化炭素および水素を含む。また、合成ガスG1は、例えば一酸化炭素を0.1体積%以上80体積%以下、水素を0.1体積%以上80体積%以下含む。
 合成ガスG1における一酸化炭素濃度は、好ましくは10体積%以上70体積%以下であり、より好ましくは20体積%以上55体積%以下である。また、合成ガスG1における水素濃度は、好ましくは10体積%以上70体積%以下であり、より好ましくは20体積%以上55体積%以下である。
 合成ガスG1は、水素、一酸化炭素以外にも、二酸化炭素、窒素、酸素などを含んでもよい。合成ガスG1中の二酸化炭素濃度は、特に限定されないが、好ましくは0.1体積%以上40体積%以下、より好ましくは0.3体積%以上30体積%以下である。二酸化炭素濃度は、微生物触媒により、エタノール生成を行う場合に低くすることが特に好ましく、そのような観点から、より好ましくは0.5体積%以上25体積%以下である。
 合成ガスG1中の窒素濃度は、通常40体積%以下であり、好ましくは1体積%以上20体積%以下である。
 また、合成ガスG1中の酸素濃度は、通常5体積%以下であり、好ましくは1体積%以下である。また、酸素濃度は、低ければ低い方がよく、0体積%以上であればよい。ただし、一般的には不可避的に酸素が含有されることが多く、酸素濃度は実用的には0.01体積%以上である。
 合成ガスG1における一酸化炭素、二酸化炭素、水素、窒素及び酸素の濃度は、廃棄物の種類、ガス化炉10、改質炉11の温度、ガス化炉11に供給される供給ガスの酸素濃度等の燃焼条件を適宜変更することで、所定の範囲とすることができる。例えば、一酸化炭素や水素濃度を変更したい場合は、廃プラ等の炭化水素(炭素および水素)の比率が高い廃棄物に変更し、窒素濃度を低下させたい場合はガス化炉10において酸素濃度の高いガスを供給する方法等がある。
 さらに、合成ガスG1は、一酸化炭素、二酸化炭素、水素および窒素の各成分の濃度調整を適宜行ってもよい。濃度調整は、これら成分の少なくとも1種を合成ガスG1に添加して行うとよい。
 なお、上記した合成ガスG1における各物質の体積%は、ガス化装置2から排出される合成ガスG1における各物質の体積%を意味する。
 なお、以上の説明において、ガス化装置2は、ガス化炉10と改質炉11を備える態様を説明したが、ガス化装置2の構成は、これらに限定されず、ガス化炉と改質炉が一体となった装置であってもよいし、合成ガスG1を生成できる限りいかなる方式のガス化装置であってもよい。
(処理ユニット)
 本実施形態における処理ユニット3は、図1に示すように、熱交換器20及びガス冷却塔21を少なくとも備える。処理ユニット3は、ガス冷却塔21の後段にろ過式集塵器22をさらに備える。処理ユニット3は、ガス冷却塔21の後段に水スクラバ23をさらに備える。
 なお、本明細書において「後段」とは、合成ガスG1のガスの供給流れに沿う後段を意味する。また、「前段」とは、合成ガスG1の供給流れに沿う前段を意味する。合成ガスG1の供給流れとは、合成ガスG1がガス化装置2から排出され、有機物質生成部30に導入するまでの合成ガスG1の流れを意味する。
<熱交換器>
 熱交換器20には、ガス化装置2から排出された合成ガスG1が通過する。熱交換器20は、熱媒体を使用して合成ガスG1を冷却する装置である。熱交換器20は、合成ガスG1の熱エネルギーを熱媒体に移動させることで、合成ガスG1を冷却する。熱交換器20としては好ましくはボイラーを使用する。ボイラーは、内部に熱媒体としての水を流通させ、流通させた水を、合成ガスG1の熱エネルギーにより加熱して、蒸気とする装置である。熱交換器20としてボイラーを使用すると、ボイラーで発生した蒸気により、他の装置を容易に加熱することなどが可能になり、合成ガスG1の熱エネルギーを容易に再利用できる。
 ただし、熱交換器20は、ボイラー以外も使用可能であり、合成ガスG1から熱媒体に熱エネルギーを移動させる限りいかなる構成を有してもよいが、合成ガスG1と熱媒体が直接接触しない隔壁方式が好ましい。熱媒体としては、気体、液体のいずれでもよく、また、気体と液体との相変化を伴うものでもよい。また、熱媒体は、管状、プレート状などのいかなる形状の流路を通された状態で合成ガスG1からの熱エネルギーが移動させられてもよい。
 ガス化装置2より排出された合成ガスG1は、上記のとおり、例えば900℃以上の高温になる。そのため、合成ガスG1は、熱交換器20により冷却されることで、ガス冷却塔21に比較的低い温度で供給され、ガス冷却塔21において過剰に冷却することを防止できる。そのため、ガス冷却塔21において合成ガスG1に対して噴霧される水の量を減らすことができ、さらに含水率の高い合成ガスG1を、ろ過式集塵器22、水スクラバ23に供給する必要がなくなる。そのため、ガス冷却塔21から水スクラバ23への水の移動量を抑制でき、また、ろ過式集塵器22において水が凝集しすぎることなども防止できる。
 熱交換器20は、上記のとおり、例えば900℃以上の高温で供給された合成ガスを冷却して、例えば200℃以上300℃以下、好ましくは240℃以上280℃以下の温度まで冷却してガス冷却塔21に供給する。200℃以上に冷却することで、合成ガスG1を不純物の析出を防止することができ、また、240℃以上とすることで、タール分の析出を有効に防止できる。廃棄物をガス化すると、合成ガスG1には大量のタール分が含まれるが、タール分の析出を防止することで熱交換器20においてタール分による詰まりを防止することができる。また、300℃以下とすることで、ガス冷却塔21において合成ガスG1を過剰に冷却する必要がなくなる。
<ガス冷却塔>
 ガス冷却塔21は、水噴霧によりその内部を通過するガス(合成ガスG1)を冷却する設備である。ガス冷却塔21は、その内周面に合成ガスG1に対して水を噴霧するための水噴霧口24を1つ以上備える。水噴霧口24は、好ましくは2つ以上設けられ、2つ以上の水噴霧口24は、より好ましくは冷却塔21において異なる高さ位置に設けられる。水噴霧口24は、複数設けられ、さらにそれらの高さ位置が異なることによって、水噴霧により十分かつ効率的に合成ガスG1を冷却できる。
 ガス冷却塔21には、好ましくはその上部側から合成ガスG1が導入され、合成ガスG1は、下降気流となるようにガス冷却塔21の内部を通過させられ、ガス冷却塔21の内部を通過する間に水噴霧口24より噴霧された水により冷却される。この場合、合成ガスG1は、ガス冷却塔21の下部側から排出されるとよい。
 ガス冷却塔21に導入される合成ガスG1は、100℃より十分に高い温度である一方、水噴霧口24より噴霧される水は100℃よりも低い。したがって、合成ガスG1は、その温度差により冷却され、また、水噴霧口24より噴霧された水が気化する際の気化熱によっても冷却される。合成ガスG1には、気化された水の一部が水蒸気として混入されるとよい。なお、水噴霧口24より噴霧される水は、噴霧されるときに一部又は全部がすでに気化していてもよい。
 ガス冷却塔21において、合成ガスG1は好ましくは100℃以上200℃以下の温度まで冷却され、上記温度範囲でガス冷却塔21の外部に排出されるとよい。合成ガスG1を200℃以下まで冷却することで、後述するろ過式集塵器22を損傷させたり、集塵性能を低下させたりすることなく、ろ過式集塵器22にて合成ガスG1を精製できる。また、100℃以上とすることで、噴霧された水は、大部分が気化して、合成ガスG1中に混入されることになる。したがって、ガス冷却塔21において、噴霧された水が大量に排水されないので、ガス冷却塔21に大掛かりな排水設備を導入する必要がない。
 ただし、ガス冷却塔21に噴霧された水の一部は、液体としてガス冷却塔21の下方に落下し、回収されてもよい。また、合成ガスG1中のチャー、タールなどの不純物も噴霧された水と衝突することで下方に落下し、回収されてもよい。
 ガス冷却塔21において、合成ガスG1は、より好ましくは120℃以上180℃以下、さらに好ましくは130℃以上170℃以下の温度まで冷却して、これら温度まで冷却されて外部に排出されるとよい。合成ガスG1を120℃以上に冷却することで、ガス冷却塔21、さらには後述するろ過式集塵器22において、合成ガスG1に混入された水が大量に液化することを防止できる。また、180℃以下とすることで、ろ過式集塵器22の損傷及び機能低下がより一層回避しやすくなる。
<ろ過式集塵器>
 ガス冷却塔21で冷却された合成ガスG1は、ろ過式集塵器22を通過する。ろ過式集塵器22は、いわゆるバグフィルタと呼ばれるものを使用でき、ケーシングと、ケーシングの内部に収納されたろ材とを備える。ろ材としては、特に限定されないが、例えば、ガラス繊維、PTFE繊維などの織布またはフェルトなどが使用される。
 合成ガスG1は、タール、チャーなどの固形不純物が多く含まれるが、ろ過式集塵器22を通過することで、固形不純物が除去される。固形不純物を除去することで、ろ過式集塵器22の後段の各装置において固形不純物が詰まることを防止できる。例えば、有機物質生成部30において、反応器に対してスパージャーを介して気体が吹き込まれることが一般的であるが、スパージャーにおける固形不純物の詰まりを防止できる。さらに、固形不純物を除去することで、有機物質生成部30において微生物触媒の活性を高めやすく、また、微生物触媒が不純物の影響で死滅することも防止でき、高い変換効率で有機物質を合成できる。
 なお、本明細書において、「除去」とは、合成ガスから除去対象物質の少なくとも一部を除去することで、ガス中の対象物質の濃度を低減させることを意味し、除去対象物質を完全に除去することに限定されない。
 合成ガスG1は、上記のとおりガス冷却塔21において冷却されることで、ろ過式集塵器22を通過する際の合成ガスG1の温度も、好ましくは100℃以上200℃以下、より好ましくは120℃以上180℃以下、さらに好ましくは130℃以上170℃以下の温度となっている。そのため、ろ過式集塵器22は、高温の合成ガスG1によって損傷したり、ろ過性能が低下したりすることを防止できる。また、合成ガスG1に含まれる合成ガスG1がろ過式集塵器22において大量に液化することも防止できる。
<水スクラバ>
 ガス冷却塔21で冷却された合成ガスG1は、水スクラバ23を通過する。本実施形態では、ガス冷却塔21で冷却され、ろ過式集塵器22から排出された合成ガスG1が、ろ過式集塵器22の後段に配置される水スクラバ23を通過する。合成ガスG1には、上記した固形不純物以外にも様々な不純物が含まれ、例えば、水溶性不純物が含まれる。水溶性不純物としては、例えば硫化水素、塩化水素、青酸などの酸性ガス、アンモニアなどの塩基性ガス、NOx、SOxなどの酸化物が挙げられる。これら水溶性不純物は、水スクラバ23を通過することで除去される。
 また、合成ガスG1には、BTEX(ベンゼン、トルエン、エチルベンゼン、キシレン)、ナフタレン、1-ナフトール、2-ナフトール等の油性不純物も含まれるが、これらも、水スクラバ23において適宜除去されてもよいし、ろ過式集塵器22で回収できなかった固形不純物なども適宜除去されてもよい。
 水スクラバ23は、合成ガスG1と水を接触させる構成を有する限り特に限定されないが、例えば図1に示すように、上部に設けられたノズル25より噴霧された水(便宜上、「洗浄水」ともいう)を、合成ガスG1に接触させる構成を有することが好ましい。この場合、水スクラバ23には、導入路27、供給路28、排出路29などが設けられるとよい。また、水スクラバ23の下部には、洗浄水が貯留される貯留部26が設けられる。貯留部26に貯留された洗浄水は図示しない攪拌装置により適宜攪拌されてもよい。
 導入路27は、水スクラバ23に合成ガスG1を導入するための経路であり、導入路27の導入口27Aは、例えば、スクラバ12内部の貯留部26に貯留された洗浄水の液面よりも上方に設けられる。
 供給路28は、水スクラバ23において水を循環させて、合成ガスG1に接触させるように洗浄水を供給する。具体的には、供給路28は、貯留部26に貯留された洗浄水をノズル25から水スクラバ23の内部において下方に向けて噴霧させ、合成ガスG1に接触させる。ここで、供給路28には、例えばポンプ(図示しない)が設けられ、洗浄水はポンプによってノズル25に圧送される。そして、洗浄水は、スクラバ12の内部において、ノズル25から下方に向けて噴霧される。排出路29は、スクラバ12の上部に設けられ、ノズル25から噴霧された洗浄水に接触した後の合成ガスG1を外部に排出させる。
 なお、スクラバ23で使用する洗浄水は、水単独でもよいが、適宜薬剤が投入されてもよい。
 さらに、水スクラバ23には、除去装置19が設けられてもよい。除去装置19は、例えば、洗浄水に含まれる不純物(油性不純物、固形不純物、水溶性不純物など)を除去するための装置である。除去装置19は、例えば、貯留部26の水を循環させる循環経路を設け、その経路の中途に設けられとよい。除去装置19としては、例えば洗浄水に含まれる油性不純物、洗浄水に溶解していない固形不純物、洗浄水に溶解される水溶性不純物などを除去するとよい。したがって、除去装置19は、油水分離装置などであってもよいし、固形物不純物を除去するフィルタなどであってもよいし、これらの2以上を組み合わせたものでもよいし、洗浄水に含まれる不純物を取り除ける限りいかなる構成を有してもよい。水スクラバ23は、除去装置19が設けられることで、洗浄水に不純物が蓄積することを防止する。
 合成ガスG1は、水スクラバ23において水に接触することで、冷却されるとよい。上記したように、合成ガスG1は、ガス冷却塔21で冷却され、所定の温度(好ましくは100℃以上200℃以下、より好ましくは120℃以上180℃以下、さらに好ましくは130℃以上170℃以下の温度)まで冷却された状態で水スクラバ23に導入される。
 一方で、水スクラバ23において合成ガスG1に接触する水の温度は、100℃未満であり、好ましくは0℃以上40℃以下、より好ましくは5℃以上30℃以下である。
 なお、本明細書において「合成ガスG1に接触する水の温度」とは、上記のように洗浄水を循環させて合成ガスG1に接触させる場合には、水が合成ガスG1に接触する直前、すなわち、ノズル15から噴霧された水(洗浄水)の温度を測定すればよい。また、後述するように貯留された水(洗浄水)に対して合成ガスG1が導入する場合には、貯留部26に貯留された洗浄水の温度を測定すればよい。
 合成ガスG1は、スクラバ23において、上記温度の水と接触することで、水スクラバ23において例えば100℃未満、好ましくは40℃以下、より好ましくは38℃以下の温度まで冷却される。このように、合成ガスG1が水スクラバ23において水の沸点未満の所定温度まで冷却されると、ガス冷却塔22において合成ガスG1に混入された水(水蒸気)の少なくとも一部が、凝縮され除去される。そのため、ガス冷却塔22により混入された水を除去するための大掛かりな装置を別途設けなくても、適切に水を除去することが可能になる。また、40℃以下に冷却することで、別途冷却装置を設けなくても、適切な温度の合成ガスG1を有機物質生成部に供給することができる。また、水スクラバ23の後段に設けられる処理装置に、冷却装置が含まれる場合も、その冷却装置における負荷を低減できる。
 なお、水と接触することで合成ガスG1は、例えば0℃以上の温度まで冷却されるとよく、好ましくは5℃以上の温度まで冷却される。
 水スクラバ23には、図示しない温度制御装置が設けられ、温度制御装置により洗浄水の温度が制御されることが好ましい。温度制御装置は、例えば供給路28に取り付けられ、供給路28内部を通る洗浄水の温度を調整してもよいし、水スクラバの外周に設けられ、水スクラバの貯留部26に貯留された洗浄液の温度を調整してもよい。温度制御装置は、供給路28を通る洗浄水、又は貯留部26に貯留された洗浄水などを冷却などして、上記した範囲内の温度にするとよい。また、貯留部26に貯留される水を適宜入れ替えて、合成ガスG1に接触する水の温度を一定の温度範囲に維持させてもよい。
 なお、以上の説明では、水スクラバ23では、ノズル25から噴霧される洗浄水に合成ガスG1が接触する態様を説明したが、貯留部26に貯留される洗浄水に対して合成ガスG1が導入されてもよい。
 この場合、供給路28及びノズル25は省略され、洗浄水はノズルから噴霧されない。また、導入路27の導入口27Aは、貯留部26に貯留された洗浄水の液面よりも下方に配置される。合成ガスG1は、貯留部26に貯留された洗浄水に接触することになり、それにより、合成ガスG1は、洗浄され、また、冷却されるとよい。
 貯留部26に貯留される洗浄水に対して合成ガスG1が導入される場合も、合成ガスG1に接触する水の温度や、合成ガスG1の温度(すなわち、水スクラバ23に導入される合成ガスG1の温度、冷却後の合成ガスG1の温度)は上記のとおりである。
(その他の処理装置)
 処理ユニット3には、上記した熱交換器20、ガス冷却塔21、ろ過式集塵器22及び水スクラバ23以外の処理装置を有してもよい。そのような処理装置としては、水スクラバ23の後段に、処理装置(「後段処理装置」ともいう)が設けられてもよく、水スクラバ23を通過した精製合成ガスG2は、後段処理装置で適宜処理された後、有機物質生成部30に供給されてもよい。
 後段処理装置としては、例えば、ガスチラーなどよりなる水分分離装置、低温分離方式(深冷方式)の分離装置、各種フィルタから構成される微粒子分離装置、脱硫装置(硫化物分離装置)、膜分離方式の分離装置、脱酸素装置、圧力スイング吸着方式の分離装置(PSA)、温度スイング吸着方式の分離装置(TSA)、圧力温度スイング吸着方式の分離装置(PTSA)、活性炭を用いた分離装置、脱酸素触媒、具体的には、銅触媒またはパラジウム触媒を用いた分離装置等が挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
 水スクラバ23から排出された精製合成ガスG2は、これら後段処理装置でさらに精製されてもよい。
(有機物質生成部)
 上記のように、熱交換器20及びガス冷却塔21を少なくとも通過した合成ガスG1は、精製合成ガスG2として、有機物質生成部30に供給される。有機物質生成部30に供給される精製合成ガスG2は、熱交換器20、ガス冷却塔21、ろ過式集塵器22及び水スクラバ23をこの順に通過した精製合成ガスG2であることが好ましい。有機物質生成部30は、精製合成ガスG2を微生物触媒に接触させて有機物質を生成する。微生物触媒は好ましくはガス資化性微生物が使用される。
 有機物質生成部30は、水と微生物触媒を含む培養液が充填された発酵槽(反応器)を備える。発酵槽の内部には、精製合成ガスG2が供給され、発酵槽内部において精製合成ガスG2は有機物質に変換される。有機物質は、好ましくはエタノールを含む。
 発酵槽は、連続発酵装置とすることが好ましく、撹拌型、エアリフト型、気泡塔型、ループ型、オープンボンド型、フォトバイオ型のいずれでもよい。
 発酵槽には、精製合成ガスG2と培養液とが連続的に供給されてもよいが、精製合成ガスG2と培養液とを同時に供給する必要はなく、予め培養液を供給した発酵槽に精製合成ガスG2を供給してもよい。 合成ガスG2は一般的にスパージャーなどを介して発酵槽に吹き込まれる。
 微生物触媒を培養する際に用いる培地は、菌に応じた適切な組成であれば特に限定されないが、主成分の水と、この水に溶解または分散された栄養分(例えば、ビタミン、リン酸等)とを含有する液体である。 
 有機物質生成部30では、微生物触媒の微生物発酵により有機物質が生成され、有機物質含有液が得られる。
 発酵槽の温度は、好ましくは40℃以下に制御される。40℃以下に制御されることで発酵槽中の微生物触媒が死滅することなく、精製合成ガスG2が微生物触媒に接触することでエタノールなどの有機物質が効率良く生成される。
 発酵槽の温度は、より好ましくは38℃以下であり、また、触媒活性を高めるために、好ましくは10℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上である。
(分離装置)
 有機物質製造装置1は、有機物質含有液から少なくとも水を分離する分離装置31を備える。
 分離装置31としては、蒸留装置33を備えることが好ましく、蒸留装置33の前段に固液分離装置32を備えることがより好ましい。分離装置31は、固液分離装置32と蒸留装置33とを組み合わせて使用することが好ましい。以下、固液分離装置32と蒸留装置33を組み合わせて行う分離工程について具体的に説明する。
<固液分離装置>
 有機物質生成部30において得られた有機物質含有液は、固液分離装置32において、微生物を主とする固体成分と、有機物質を含む液体成分とに分離するとよい。有機物質生成部30において得られた有機物質含有液には、目的物である有機物質の他、発酵槽中に含まれていた微生物やその死骸等が固体成分として含まれるので、これらを除去するために固液分離をする。固液分離装置32としては、フィルタ、遠心分離機、溶液沈殿法を利用した装置などがある。また、固液分離装置32は、有機物質含有液から有機物質を含む液体成分を蒸発させ、固体成分と分離させる装置(例えば、加熱乾燥装置)であってもよい。この際、目的物である有機物質を含む液体成分の全てを蒸発させてもよいし、目的とする有機物質が優先的に蒸発するように液体成分を部分的に蒸発させてもよい。
<蒸留装置>
 蒸留装置33は、目的物である有機物質を分離するための蒸留を行う。蒸留装置33は、蒸留による分離により、単純な操作で有機物質を大量に高純度に精製するができる。蒸留装置33が固液分離装置32と組み合わせて行う分離工程においては、蒸留装置33において、固液分離装置32により分離された液体成分からさらに目的物である有機物質を分離するための蒸留を行うことで、有機物質を大量により高純度に精製するができる。
 蒸留装置33としては、公知の蒸留塔などを使用することができる。また、蒸留では、例えば、留出液に目的物である有機物質(例えば、エタノール)が高い純度で含まれる一方で、缶出液(すなわち、蒸留残渣)に水が主成分(例えば、70質量%以上、好ましくは90質量%以上)として含まれるように操作するとよい。このように操作することで、目的物である有機物質と、水とを概ね分離することができる。
 有機物質(例えばエタノール)の蒸留時における蒸留装置33内の温度は、特に限定されないが、100℃以下であることが好ましく、70~95℃程度であることがより好ましい。蒸留装置33内の温度を上記範囲に設定することにより、必要な有機物質と水などのその他の成分との分離を確実に行うことができる。 
 有機物質の蒸留時における蒸留装置33内の圧力は、常圧であってもよいが、好ましくは大気圧未満、より好ましくは60~150kPa(ゲージ圧)程度である。蒸留装置33内の圧力を上記範囲に設定することにより、有機物質の分離効率を向上させ、有機物質の収率を向上させることができる。
 蒸留装置33は、上述した熱交換器20によって合成ガスG1から得た熱エネルギーを蒸留に利用することが好ましい。蒸留装置33は、熱交換器20において合成ガスG1から得られた熱エネルギーを再利用することで、有機物質の蒸留時における蒸留装置33内の温度を上昇させることができる。このように、蒸留装置33が熱交換器20において合成ガスG1から得られた熱エネルギーを再利用することで、有機物質の製造プロセス全体のエネルギー使用量の低減を図ることができる。熱交換器20において合成ガスG1から得られた熱エネルギーは、熱交換器20と蒸留装置33に接続された熱エネルギー経路33aを介して伝達することができる。熱エネルギー経路33aは、特に限定はなく、熱交換器20から蒸留装置33に合成ガスG1の熱エネルギーを熱媒体により移動させるいかなる構成を有してもよい。熱媒体としては、気体、液体のいずれでもよく、また、気体と液体との相変化を伴うものでもよい。また、上記のとおり熱交換器20はボイラーであることが好ましく、したがって、熱媒体としては、水蒸気が好ましい。熱媒体として水蒸気を使用することで合成ガスG1の熱エネルギーの再利用が容易である。なお、熱媒体として水蒸気を使用する場合には、水蒸気の一部が液化していてもよい。
 分離装置31において分離された水は、再利用することが好ましく、より好ましくはガス冷却塔21に供給され、ガス冷却塔21において水噴霧に使用される。このように、水を再利用すると、有機物質生成部30で不要となった水が排水とならず、環境保護の観点、及び経済性の観点から好ましい。また、有機物質製造装置1は、分離装置31とガス冷却塔21に接続され、分離装置31で得られた水をガス冷却塔21に供給する供給経路31aを有してもよい。供給経路31aは特に限定されないが、配管などで構成されるとよい。また、分離装置31において分離された水は、さらに精製され純度が高められて、ガス冷却塔21に供給されてもよい。
 以上説明したように、本実施形態によれば、合成ガスG1を熱交換器20により冷却し、ガス冷却塔21の水噴霧により合成ガスG1を冷却することで、窒素ガス、空気の吹込みを行わずに合成ガスG1を冷却することができる。そのため、合成ガスG1の組成を変更することなく、合成ガスG1の温度を低下させることができ、微生物触媒を死滅させることなく、有機物質を合成できる。
 また、本実施形態によれば、合成ガスG1を熱交換器20により冷却した後に、ガス冷却塔21の水噴霧により合成ガスG1を冷却するので、合成ガスG1の冷却の役割を熱交換器20が一部担うことになり、ガス冷却塔21での冷却の役割が減少する。このことより、ガス冷却塔21において合成ガスを冷却するための水噴霧量を低減させることが可能となり、併せて、ガス冷却塔21からの排水量を低減させることもできる。
 また、本実施形態によれば、熱交換器20によって合成ガスG1から得た熱エネルギーを、有機物質の蒸留時における蒸留装置33内の温度を上昇させることに利用することができる。そのため、蒸留装置33の蒸留における外部から調達するエネルギー量を低減させることができ、有機物質の製造プロセス全体のエネルギー使用量の低減を図ることができる。
 なお、以上の実施形態においては、水スクラバ23が設けられる構成が示されるが、水スクラバ23は省略されてもよい。水スクラバ23が省略される場合には、ガス冷却塔21及びろ過式集塵器22を少なくとも通過した合成ガスG1が、有機物質生成部30において微生物触媒に接触され有機物質に変換される。本実施形態においてろ過式集塵器22から排出される合成ガスG1は、典型的には比較的高温(例えば、100℃以上)であるが、水スクラバ23が省略される場合には、ろ過式集塵器22の後段に、水スクラバ23以外の冷却装置が設けられ、ろ過式集塵器22から排出した合成ガスG1は、水スクラバ23以外の冷却装置で冷却されるとよい。
 また、水スクラバ23が省略される場合には、ろ過式集塵器22の後段には、冷却装置以外にも、上記した後段処理装置から選択される1以上の処理装置が設けられ、ろ過式集塵器22から排出した合成ガスG1は、適宜後段処理装置にて処理されてもよい。
 また、有機物質生成部30で製造された有機物質を精製する必要がない場合や、有機物質含有液から水を分離する必要がない場合などには、分離装置31が省略されてもよい。
 また、以上の実施形態においては、ろ過式集塵器22が設けられる構成が示されるが、ろ過式集塵器22は省略されてもよい。ろ過式集塵器22が省略されると、ガス冷却塔21において冷却された合成ガスG1は、ろ過式集塵器22を介さずに水スクラバ23に供給されることになる。例えば、ろ過式集塵器22は、廃棄物に固形不純物が少ない場合や、後述するように廃棄物以外を原料として合成ガスを生成する場合に省略するとよい。もちろん、水スクラバ23及びろ過式集塵器22の両方が省略されてもよい。
 精製合成ガス製造装置における処理ユニット3は、上記のとおり、少なくとも熱交換器20とガス冷却塔21とを備えるが、さらにろ過式集塵器22及び水スクラバ23を備えることが好ましい。また、処理ユニット3は、これら以外にも後段処理装置などを適宜有してもよい。これらの詳細は、上記のとおりであるので、その説明は省略する。
 さらに、上記実施形態では、ガス化装置2において、廃棄物から合成ガスG1が得られる態様について説明したが、ガス化装置2では、廃棄物以外から合成ガスG1が生成されてもよい。例えば、天然ガス、石炭、重質油、石油排ガス、オイルシェール等の化石資源や、廃棄物以外のバイオマスなどから合成ガスG1が生成されてもよい。また、合成ガスは、鉄鋼製造プロセスなどの各種製造プロセスにおける副生ガスでもよく、例えば、ガス化装置2は鉄鋼製造設備などを構成するものでもよい。
 1 有機物質製造装置
 2 ガス化装置
 3 処理ユニット
 10 ガス化炉
 11 改質炉
 20 熱交換器
 21 ガス冷却塔
 22 ろ過式集塵器
 23 水スクラバ
 24 水噴霧口
 25 ノズル
 26 貯留部
 27 導入路
 28 供給路
 29 排出路
 30 有機物質生成部
 31 分離装置
 31a 供給経路
 32 固液分離装置
 33 蒸留装置
 33a 熱エネルギー経路
 G1 合成ガス
 G2 精製合成ガス

 

Claims (18)

  1.  ガス化装置から排出された合成ガスを、熱交換器を通過させることにより冷却する工程と、
     前記熱交換器で冷却された合成ガスを、ガス冷却塔を通過させて、ガス冷却塔内部で噴霧された水により冷却する工程と、
     前記熱交換器及び前記ガス冷却塔を少なくとも通過した合成ガスを、微生物触媒に接触させて有機物質を生成する工程と
     を含む有機物質の製造方法。
  2.  前記ガス化装置から排出された前記合成ガスの温度が900℃以上である請求項1に記載の有機物質の製造方法。
  3.  前記熱交換器で前記合成ガスを200℃以上300℃以下の温度まで冷却する請求項1又は2に記載の有機物質の製造方法。
  4.  前記ガス冷却塔で冷却された前記合成ガスを、ろ過式集塵器を通過させる工程をさらに含み、
     前記熱交換器、前記ガス冷却塔及び前記ろ過式集塵器を少なくとも通過した前記合成ガスを、微生物触媒に接触させて有機物質を生成する、請求項1~3のいずれか1項に記載の有機物質の製造方法。
  5.  前記ガス冷却塔で冷却された前記合成ガスを、水スクラバを通過させる工程をさらに含み、
     前記熱交換器、前記ガス冷却塔及び前記水スクラバを少なくとも通過した前記合成ガスを、微生物触媒に接触させて有機物質を生成する、請求項1~4のいずれか1項に記載の有機物質の製造方法。
  6.  前記熱交換器、前記ガス冷却塔、前記ろ過式集塵器及び前記水スクラバをこの順に通過した前記合成ガスを、微生物触媒に接触させて有機物質を生成する、請求項5に記載の有機物質の製造方法。
  7.  前記水スクラバで前記合成ガスを40℃以下に冷却する請求項5又は6に記載の有機物質の製造方法。
  8.  前記有機物質を蒸留する工程をさらに含み、前記熱交換器によって前記合成ガスから得た熱エネルギーを蒸留に利用する、請求項1~7のいずれか1項に記載の有機物質の製造方法。
  9.  前記有機物質がエタノールを含む請求項1~8のいずれか1項に記載の有機物質の製造方法。
  10.  合成ガスを生成するガス化装置と、
     前記ガス化装置から排出された合成ガスを通過させて冷却する熱交換器と、
     前記熱交換器で冷却された合成ガスを通過させて水噴霧により冷却するガス冷却塔と、
     前記熱交換器及び前記ガス冷却塔を少なくとも通過した合成ガスを、微生物触媒に接触させて有機物質を生成する有機物質生成部と
     を備える有機物質製造装置。
  11.  前記ガス化装置から排出された前記合成ガスの温度が900℃以上である請求項10に記載の有機物質製造装置。
  12.  前記熱交換器で前記合成ガスを200℃以上300℃以下の温度まで冷却する請求項10又は11に記載の有機物質製造装置。
  13.  前記ガス冷却塔の後段に配置され、かつ前記ガス冷却塔で冷却された前記合成ガスを通過させるろ過式集塵器をさらに備え、
     前記有機物質生成部が、前記熱交換器、前記ガス冷却塔及び前記ろ過式集塵器を少なくとも通過した合成ガスを、前記微生物触媒に接触させて有機物質を生成する、請求項10~12のいずれか1項に記載の有機物質製造装置。
  14.  前記ガス冷却塔の後段に配置され、かつ前記ガス冷却塔で冷却された前記合成ガスを通過させる水スクラバをさらに備え、
     前記有機物質生成部が、前記熱交換器、前記ガス冷却塔及び前記水スクラバを少なくとも通過した合成ガスを、前記微生物触媒に接触させて有機物質を生成する、請求項10~13のいずれか1項に記載の有機物質製造装置。
  15.  前記有機物質生成部が、前記熱交換器、前記ガス冷却塔、ろ過式集塵器及び前記水スクラバをこの順に通過した合成ガスを、前記微生物触媒に接触させて有機物質を生成する、請求項14に記載の有機物質製造装置。
  16.  前記水スクラバで前記合成ガスを40℃以下に冷却する請求項14又は15に記載の有機物質製造装置。
  17.  前記有機物質を蒸留する蒸留装置をさらに備え、前記蒸留装置は、前記熱交換器によって前記合成ガスから得た熱エネルギーを蒸留に利用する、請求項10~16のいずれか1項に記載の有機物質製造装置。
  18.  前記有機物質がエタノールを含む請求項10~17のいずれか1項に記載の有機物質製造装置。

     
PCT/JP2021/002028 2020-01-23 2021-01-21 有機物質の製造方法及び有機物質製造装置 WO2021149765A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180010592.3A CN115003822A (zh) 2020-01-23 2021-01-21 有机物质的制造方法和有机物质制造装置
JP2021572790A JPWO2021149765A1 (ja) 2020-01-23 2021-01-21
EP21744917.2A EP4095122A4 (en) 2020-01-23 2021-01-21 METHOD FOR PRODUCING AN ORGANIC SUBSTANCE AND DEVICE FOR PRODUCING AN ORGANIC SUBSTANCE
US17/794,388 US20230050575A1 (en) 2020-01-23 2021-01-21 Method for producing organic substance and apparatus for producing organic substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020009372 2020-01-23
JP2020-009372 2020-05-12

Publications (1)

Publication Number Publication Date
WO2021149765A1 true WO2021149765A1 (ja) 2021-07-29

Family

ID=76992534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002028 WO2021149765A1 (ja) 2020-01-23 2021-01-21 有機物質の製造方法及び有機物質製造装置

Country Status (5)

Country Link
US (1) US20230050575A1 (ja)
EP (1) EP4095122A4 (ja)
JP (1) JPWO2021149765A1 (ja)
CN (1) CN115003822A (ja)
WO (1) WO2021149765A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249203A (ja) * 2003-02-19 2004-09-09 Toshiba Corp 被処理物処理システムおよび被処理物処理方法
WO2015037710A1 (ja) 2013-09-13 2015-03-19 積水化学工業株式会社 有機物質の製造装置及び有機物質の製造方法
JP2017216997A (ja) * 2016-06-09 2017-12-14 積水化学工業株式会社 有機物質の製造システム及び有機物質の製造方法
JP2019167424A (ja) * 2018-03-22 2019-10-03 積水化学工業株式会社 ガス化装置、有機物質製造装置、合成ガスの製造方法および有機物質の製造方法
WO2019188730A1 (ja) * 2018-03-27 2019-10-03 積水化学工業株式会社 有機物質の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394863B2 (en) * 2003-08-21 2013-03-12 Pearson Technologies, Inc. Process and apparatus for the production of useful products from carbonaceous feedstock
JP2006104339A (ja) * 2004-10-06 2006-04-20 Jfe Engineering Kk 廃棄物のガス化改質方法
US8026095B2 (en) * 2007-06-02 2011-09-27 Ingo Krieg Biological production of ethanol from waste gases
US20090038316A1 (en) * 2007-08-10 2009-02-12 International Financial Services #1, Llc Integrated process for carbonaceous material to co2-free fuel gas for power plants and to ethylene
JP2012525145A (ja) * 2009-04-29 2012-10-22 ランザテク・ニュージーランド・リミテッド 発酵における改善された炭素捕捉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249203A (ja) * 2003-02-19 2004-09-09 Toshiba Corp 被処理物処理システムおよび被処理物処理方法
WO2015037710A1 (ja) 2013-09-13 2015-03-19 積水化学工業株式会社 有機物質の製造装置及び有機物質の製造方法
JP2017216997A (ja) * 2016-06-09 2017-12-14 積水化学工業株式会社 有機物質の製造システム及び有機物質の製造方法
JP2019167424A (ja) * 2018-03-22 2019-10-03 積水化学工業株式会社 ガス化装置、有機物質製造装置、合成ガスの製造方法および有機物質の製造方法
WO2019188730A1 (ja) * 2018-03-27 2019-10-03 積水化学工業株式会社 有機物質の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095122A4

Also Published As

Publication number Publication date
EP4095122A1 (en) 2022-11-30
US20230050575A1 (en) 2023-02-16
JPWO2021149765A1 (ja) 2021-07-29
CN115003822A (zh) 2022-09-02
EP4095122A4 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
JP6523959B2 (ja) 有機物質の製造装置及び有機物質の製造方法
US20030236311A1 (en) Process for producing saleable liquids from organic material
KR101885932B1 (ko) 플래시 용기의 탈기 시스템
SK281101B6 (sk) Spôsob čiastočnej oxidácie uhľovodíkového paliva
JP2016131549A (ja) エタノール合成方法及び装置
JP4644831B2 (ja) バイオマスからの液体燃料製造装置
AU2012250295B2 (en) Method for gasifying solid raw material containing carbon
JP3943042B2 (ja) タール含有ガスの洗浄方法および装置並びに可燃性ガス製造方法および装置
WO2021149764A1 (ja) 有機物質の製造方法、及び有機物質製造装置
JP2009298967A (ja) ガス化方法、及びガス化装置
WO2021193573A1 (ja) 熱分解ガス精製冷却装置及び熱分解ガス精製冷却方法、並びに、有機物質製造装置及び有機物質の製造方法
JP4711980B2 (ja) バイオマスからの液体燃料製造装置
US20230234843A1 (en) Systems and methods for producing carbon-negative green hydrogen and renewable natural gas from biomass waste
WO2021149765A1 (ja) 有機物質の製造方法及び有機物質製造装置
CN102320568A (zh) Bgl加压熔渣气化加纯氧非催化部分氧化制取合成气或氢气的方法及装置
US8821153B2 (en) Method and system for the production of a combustible gas from a fuel
JP2022006350A (ja) 有機物質の製造方法、及び有機物質製造装置
JP2022006560A (ja) 有機物質製造装置及び有機物質製造方法
US20220347624A1 (en) Method for producing purified gas, method for producing valuable material, gas purification device, and device for producing valuable material
WO2020256147A1 (ja) 精製ガスの製造方法及び精製ガス製造装置
JP2021170961A (ja) 有機物質の製造方法、及び有機物質製造装置
JP2018102170A (ja) 廃棄物処理システムおよびガス処理装置
WO2021193572A1 (ja) 有機物質の製造方法、及び有機物質製造装置
EP3517618B1 (en) Method and apparatus for producing valuable substance
EA029238B1 (ru) Способ и устройство для газификации твердых веществ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021744917

Country of ref document: EP

Effective date: 20220823