WO2021149134A1 - 電気化学式酸素センサ - Google Patents

電気化学式酸素センサ Download PDF

Info

Publication number
WO2021149134A1
WO2021149134A1 PCT/JP2020/001840 JP2020001840W WO2021149134A1 WO 2021149134 A1 WO2021149134 A1 WO 2021149134A1 JP 2020001840 W JP2020001840 W JP 2020001840W WO 2021149134 A1 WO2021149134 A1 WO 2021149134A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic solution
oxygen sensor
mol
alkali metal
acid
Prior art date
Application number
PCT/JP2020/001840
Other languages
English (en)
French (fr)
Inventor
直久 北澤
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to PCT/JP2020/001840 priority Critical patent/WO2021149134A1/ja
Priority to CN202080004999.0A priority patent/CN113748336A/zh
Priority to US17/273,539 priority patent/US11782015B2/en
Priority to EP20855849.4A priority patent/EP3882617B1/en
Priority to JP2020558558A priority patent/JP6985533B1/ja
Publication of WO2021149134A1 publication Critical patent/WO2021149134A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a long-life electrochemical oxygen sensor.
  • An electrochemical oxygen sensor (hereinafter, also referred to as an oxygen sensor) has the advantages of being inexpensive, easy, and capable of operating at room temperature. It is used in a wide range of fields such as detection of oxygen concentration in medical devices such as respirators.
  • Patent Document 1 includes a cathode, an anode, and an electrolytic solution, and the electrolytic solution contains a chelating agent, and the pH of the electrolytic solution is 12 or more.
  • the sensor is disclosed.
  • Patent Document 2 discloses that the life of the oxygen sensor is improved by setting the molar concentration of the chelating agent in the electrolytic solution of the electrochemical oxygen sensor to 1.4 mol / L or more.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a long-life electrochemical oxygen sensor.
  • the electrochemical oxygen sensor of the present invention comprises a positive electrode, a negative electrode, and an electrolytic solution, wherein the negative electrode contains tin or an alloy of tin, and the electrolytic solution is an aqueous solution in which at least citric acids are dissolved.
  • the aqueous solution contains an alkali metal
  • the total content of the citrates in the electrolytic solution is 2.1 mol / L or more
  • the content of the alkali metals in the electrolytic solution is that of the citrates. It is 0.1 to 1.6 times the total content
  • the pH of the electrolytic solution is 3.9 to 4.6
  • the amount of the electrolytic solution is x (ml)
  • the electrochemical oxygen sensor of the present invention will be described with reference to the galvanic cell oxygen sensor, which is an example of a preferred embodiment.
  • FIG. 1 is a cross-sectional view schematically showing a galvanic cell type oxygen sensor, which is an embodiment of an electrochemical oxygen sensor.
  • the oxygen sensor 1 shown in FIG. 1 has a positive electrode 50, a negative electrode 100, and an electrolytic solution 110 in a bottomed tubular holder 20.
  • the upper opening of the holder 20 is composed of a first holder lid (inner lid) 11 and a second holder lid (outer lid) 12 for fixing the first holder lid 11, and oxygen is contained in the oxygen sensor 1.
  • a holder lid 10 having a through hole 150 for taking in is attached via an O-ring 30.
  • the negative electrode 100 is arranged in a state of being immersed in the electrolytic solution.
  • a lead wire 120 is attached to the negative electrode 100, and a correction resistor 130 and a temperature compensation thermistor 140 are connected in series to the lead wire 120 outside the holder 20.
  • the positive electrode 50 is configured by laminating a catalyst electrode 51 and a positive electrode current collector 52, and the lead wire 120 is also attached to the positive electrode current collector 52.
  • the positive electrode 50 is arranged in the upper part of the electrolytic solution storage tank via the positive electrode current collector holding portion 70.
  • a perforation 80 for supplying the electrolytic solution 110 of the electrolytic solution storage tank to the positive electrode 50 and a perforation 90 for passing the lead wire 120 attached to the positive electrode current collector 52 are passed. And are provided.
  • a diaphragm 60 that selectively allows oxygen to permeate and limits the amount of permeation to match the battery reaction is arranged above the positive electrode 50, and oxygen from the through hole 150 provided in the holder lid 10 is released. It is introduced into the positive electrode 50 through the diaphragm 60. Further, a protective film 40 for preventing dust, dust, water, etc. from adhering to the diaphragm 60 is arranged on the upper portion of the diaphragm 60, and is fixed by the first holder lid 11.
  • the first holder lid 11 functions as a pressing end plate for the protective film 40, the diaphragm 60, and the positive electrode 50.
  • a screw portion is formed on the inner peripheral portion of the second holder lid 12 so as to be screwed with the screw portion formed on the outer peripheral portion of the holder 20. Then, by tightening the holder lid 10 with screws, the first holder lid 11 is pressed against the holder 20 via the O-ring 30, so that the protective film 40 and the diaphragm are maintained in a state of maintaining airtightness and liquidtightness.
  • the 60 and the positive electrode 50 can be fixed to the holder 20.
  • Oxygen that has entered the inside of the oxygen sensor 1 through the diaphragm 60 is reduced by the catalyst electrode 51 of the positive electrode 50, and causes the following electrochemical reaction with the negative electrode 100 via the electrolytic solution 110.
  • the negative electrode 100 can be made of, for example, metals such as Cu, Fe, Ag, Ti, Al, Mg, Zn, Ni and Sn, or alloys thereof, but in the acidic electrolytic solution used in the present invention. It is hard to corrode, and it is also possible to comply with the RoHS Directive (Restriction of the Use of Certain Hazardous Coppers in Electrical and Electronic Electron) regarding the regulation of the use of specific harmful substances in the EU (European Union). Used. Therefore, the above electrochemical reaction formula represents a case where the negative electrode is made of Sn or a Sn alloy.
  • a current corresponding to the oxygen concentration is generated between the catalyst electrode 51 and the negative electrode 100.
  • the current generated by the positive electrode reaction at the catalyst electrode 51 is collected by the positive electrode current collector 52 pressed against the catalyst electrode 51, guided to the outside by the lead wire 120, and passed through the correction resistor 130 and the temperature compensation thermistor 140 to the negative electrode. It flows to 100.
  • the current is converted into a voltage signal, and a voltage is obtained as an oxygen sensor output. After that, the obtained output voltage is converted into an oxygen concentration by a well-known method and detected as an oxygen concentration.
  • the citric acid (Y) which is a chelating agent, becomes a citric acid ion in the electrolytic solution, and has an action of chelating the constituent metal of the negative electrode and dissolving it in the electrolytic solution (hereinafter, referred to as "chelating action").
  • chelating action the life of the oxygen sensor is shortened when the metal (Sn) derived from the negative electrode dissolves in the electrolytic solution and reaches the saturation concentration, and the oxide of the metal is generated to inactivate the negative electrode. I thought it would be one of the factors to make it.
  • the present inventor has increased the amount of tin that can be dissolved in the electrolytic solution, that is, by increasing the molar concentration of citric acid (Y) in the electrolytic solution, from the negative electrode in the electrolytic solution. They have found that the dissolved tin can be delayed from reaching the saturation concentration, and as a result, the life of the oxygen sensor can be improved, and the present invention has been completed.
  • the citric acid used in the electrolytic solution of the electrochemical oxygen sensor of the present invention has a plurality of functional groups that coordinate with metal ions and forms a complex with the metal ions to inactivate the metal ions.
  • citric acid itself or a salt thereof in the present specification, citric acid and citrate are combined to form citric acids
  • the oxygen sensor of the present invention at least an aqueous solution in which citric acids are dissolved is used as an electrolytic solution.
  • the aqueous solution contains an alkali metal, the total content of citric acids is 2.1 mol / L or more, and the content of the alkali metal is 0.1 to 0.1 to the total content of citric acids. It is 1.6 times and is prepared to have a pH of 3.9 to 4.6.
  • the solvent of the electrolytic solution is water. With such an electrolytic solution, the molar concentration of citrate ions can be increased, and the life of the oxygen sensor can be improved.
  • Chelating agents such as citric acid generally have a chelating effect and have a pH buffering capacity (the ability to keep the pH of a solution substantially constant even when a small amount of acid or base is added).
  • a pH buffering capacity the ability to keep the pH of a solution substantially constant even when a small amount of acid or base is added.
  • the pH of the aqueous solution is mainly determined by the type and concentration of the chelating agent. Therefore, depending on the type of chelating agent used, the pH of the aqueous solution may be a region in which galvanic corrosion of the negative electrode material progresses, making it difficult to use as an electrolytic solution for the sensor.
  • a mixed solution containing an acid as a chelating agent and a salt thereof in order to adjust the pH of the electrolytic solution to a suitable range while maintaining an excellent pH buffering capacity.
  • citric acid when used as a chelating agent, the total content of citric acid and its salts (that is, citric acids) is increased, and the pH of the electrolytic solution is adjusted to a suitable range.
  • a salt of an alkali metal for example, an alkali metal salt of an organic acid, preferably an alkali metal salt of citric acid is dissolved in an electrolytic solution containing citric acid. It has become clear that it is important to have alkali metals (mostly presumed to exist in the form of alkali metal ions by ionization) at a specific content.
  • the total content of citric acids dissolved in the electrolytic solution should be 2.1 mol / L or more, and the content of alkali metals contained in the electrolytic solution should be the total content of citric acids.
  • the electrolytic solution having the above constitution dissolves citric acid and an alkali metal salt, for example, an alkali metal salt of citric acid and an organic acid, preferably an alkali metal salt of citric acid and citric acid in water as a solvent.
  • an alkali metal salt of citric acid for example, an alkali metal salt of citric acid and an organic acid, preferably an alkali metal salt of citric acid and citric acid in water as a solvent.
  • an alkali metal salt of citric acid trialkali metal citrate salt, hydrogen dialkali metal citrate salt, alkali metal dihydrogen citrate salt and the like can be used, and specifically, lithium salt, sodium salt and potassium salt.
  • 2.2 1.36 times
  • the electrolytic solution has a pH of 4.23 at 25 ° C.
  • an electrolytic solution having the above composition by using an alkali metal salt of an organic acid other than citric acid.
  • organic acid other than citric acid for example, monocarboxylic acids and polyvalent carboxylic acids such as acetic acid, formic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, tartaric acid, glutaric acid, acid acid, malic acid, malonic acid, aspartic acid, glutamic acid, and ascorbic acid.
  • Alkali metal salts may be used, and sodium acetate, potassium acetate, sodium hydrogen oxalate, potassium hydrogen oxalate, disodium oxalate, dipotassium oxalate, sodium hydrogen tartrate, potassium hydrogen tartrate, Potassium ammonium tartrate, disodium tartrate, dipotassium tartrate and the like are preferably used.
  • the polyvalent carboxylic acid also acts as a chelating agent, adding the polyvalent carboxylic acid or a salt thereof delays the arrival of tin at a saturated concentration in the electrolytic solution and prolongs the life of the oxygen sensor. It can be expected to improve.
  • a mixed solution in which citric acid and potassium acetate are dissolved in water at a ratio of 2.5 mol / L and 1.0 mol / L, respectively, has a total content of dissolved citric acid of 2.5 mol / L.
  • a pH adjuster may be added to the electrolytic solution in order to more appropriately adjust the pH of the mixed solution of citric acid and the alkali metal salt of the organic acid.
  • the pH adjuster include organic acids and salts thereof, inorganic acids and salts thereof, ammonia, hydroxides and the like.
  • the pH at 25 ° C. can be adjusted to 4.32 by adding ammonia at a content of 3.0 mol / L.
  • Organic acids that serve as pH adjusters include monocarboxylic acids such as acetic acid, formic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, tartaric acid, glutaric acid, adipic acid, malic acid, malonic acid, aspartic acid, and glutamate.
  • Valuable carboxylic acids, ascorbic acid and the like are exemplified, and examples of the organic acid salt include ammonium salts (including acidic salts) of the organic acids such as ammonium acetate, diammonium tartrate and ammonium hydrogen tartrate, as well as dihydrogen citrate.
  • Salts of citric acid other than alkali metal salts such as ammonium and triammonium citrate can also be used. When the salt of citric acid is added, the content thereof is added to the total content of citric acids.
  • Examples of the inorganic acid used as a pH adjuster include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and carbonic acid
  • examples of the inorganic acid salt include ammonium chloride, sodium hydrogensulfate, potassium hydrogensulfate, ammonium sulfate, trisodium phosphate, and trisodium phosphate.
  • Alkali metal salts and ammonium salts of the above-mentioned inorganic acids such as potassium, disodium hydrogen phosphate, disodium hydrogen phosphate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate, etc. ) Etc. can be exemplified.
  • the alkali metal salt of the inorganic acid is added, the alkali metal contained in the compound is added as "the content of the alkali metal contained in the electrolytic solution".
  • ammonia is volatile, it is preferable to keep the total content of ammonia in the electrolytic solution including those derived from aqueous ammonia and ammonium salts below a certain level, considering the change in the composition of the electrolytic solution due to volatilization.
  • the molar ratio of the total content of ammonia to the total content of citric acid in the electrolytic solution is preferably 1.1 or less, more preferably 0.5 or less, and ammonia is contained in the electrolytic solution. It does not have to be included.
  • hydroxide used as the pH adjuster examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • the hydroxide of the alkali metal is added, the alkali metal contained in the compound is added as "the content of the alkali metal contained in the electrolytic solution".
  • the electrolytic solution used in the present invention can be prepared by appropriately selecting the types of citric acids and alkali metal salts and their amount ratios, and adding a pH adjuster as necessary.
  • the electrolytic solution used in the present invention has an alkali metal content of 0.1 to 1.6 times the total content of citric acids and a pH adjusted to a range of 3.9 to 4.6. Under the conditions, the larger the total content of citric acids, the longer the chelating action of the electrolytic solution can be maintained. Therefore, in order to extend the life of the oxygen sensor, the total content of citric acids in the electrolytic solution is preferably 2.4 mol / L or more, and more preferably 2.7 mol / L or more.
  • the content of citric acid in the electrolytic solution is preferably 1.1 mol / L or more, more preferably 1.7 mol / L or more, and particularly preferably 2.0 mol / L or more. preferable.
  • the content of alkali metal in the electrolytic solution is less than 0.1 times the total content of citric acids and when it exceeds 1.6 times, the life span is longer than a certain level. It cannot be converted.
  • the content of the alkali metal in the electrolytic solution is preferably 0.45 times or more the total content of citric acids from the viewpoint of increasing the ionic conductivity of the electrolytic solution.
  • the content of alkali metal in the electrolytic solution is less than 0.1 times the total content of citric acids, it becomes difficult to increase the ionic conductivity of the electrolytic solution in the above range of pH, and the oxygen sensor Operation may become unstable.
  • the oxygen sensor of the present invention is configured so that the amount of the electrolytic solution is equal to or higher than a certain amount with respect to the mass of tin, which is a reactant of the negative electrode, in order to utilize the characteristics of the electrolytic solution. That is, when the amount of the electrolytic solution inside the oxygen sensor is x (ml) and the content of tin contained in the negative electrode is y (g), x / y is 0.3 (ml / g) or more. Adjust the amount of electrolyte. When x / y is less than 0.3 (ml / g), the pH change of the electrolytic solution becomes faster when the oxygen sensor is used, the characteristics of the electrolytic solution are not utilized, and the life of the oxygen sensor is improved. Is insufficient.
  • the value of x / y is preferably 0.7 (ml / g) or more, and preferably 1 (ml / g) or more. More preferred.
  • the value of x / y is preferably 10 (ml / g) or less, and 6.5 (ml / g) or less. It is more preferable to use 3 (ml / g) or less, and it is particularly preferable to use 3 (ml / g) or less.
  • a Sn or Sn alloy is used for the negative electrode of the oxygen sensor of the present invention, but it is preferable to use a Sn alloy in order to suppress the reaction with the electrolytic solution and prevent the generation of hydrogen.
  • Sn alloys include Sn—Ag alloys, Sn—Cu alloys, Sn—Ag—Cu alloys, Sn—Sb alloys, and Al, Bi, Fe, Mg, Na, Zn, Ca, Ge, and In. , Ni, Co and the like may be an alloy containing a metal element.
  • the Sn or Sn alloy may contain a certain amount of impurities, but the Pb content is preferably less than 1000 ppm in order to comply with the RoHS Directive.
  • Sn alloy general lead-free solder materials (Sn-3.0Ag-0.5Cu, Sn-3.5Ag, Sn-3.5Ag-0.75Cu, Sn-3.8Ag- 0.7Cu, Sn-3.9Ag-0.6Cu, Sn-4.0Ag-0.5Cu, Sn-1.0Ag-0.5Cu, Sn-1.0Ag-0.7Cu, Sn-0.3Ag- 0.7Cu, Sn-0.75Cu, Sn-0.7Cu-Ni-P-Ge, Sn-0.6Cu-Ni-P-GeSn-1.0Ag-0.7Cu-Bi-In, Sn-0.
  • a positive electrode composed of a catalyst electrode and a positive electrode current collector is used as the positive electrode of the oxygen sensor of the present invention.
  • the constituent material of the catalyst electrode is not particularly limited as long as an electric current can be generated by the reduction of electrochemical oxygen on the positive electrode, but gold (Au), silver (Ag), platinum (Pt), and titanium (Ti). ) And other catalysts that are active in redox are preferably used.
  • a diaphragm for controlling the invasion of oxygen on the outer surface of the positive electrode of the oxygen sensor so that the amount of oxygen reaching the catalyst electrode does not become too large.
  • the material and thickness of the diaphragm are not particularly limited, but usually a fluororesin such as ethylene tetrafluoride resin or ethylene hexafluoride propylene copolymer; or a polyolefin such as polyethylene; is used.
  • a perforated membrane, a non-porous membrane, or a membrane having pores in which capillaries are formed which is called a capillary type, can be used.
  • a protective film made of a porous resin film on the diaphragm.
  • the material and thickness of the protective film are not particularly limited, but usually Fluororesin such as ethylene tetrafluoride resin is used.
  • the holder 20, which is the exterior body of the oxygen sensor 1 shown in FIG. 1, can be made of, for example, ABS resin.
  • the holder lid 10 (first holder lid 11 and second holder lid 12) arranged in the opening of the holder 20 can be made of, for example, ABS resin, polypropylene, polycarbonate, fluororesin, or the like.
  • the positive electrode current collector holding portion 70 for holding the positive electrode 50 can be made of, for example, ABS resin.
  • the O-ring 30 interposed between the holder 20 and the holder lid 10 (first holder lid 11) is pressed and deformed by screw tightening between the holder 20 and the second holder lid 12, so that the oxygen sensor is deformed. It is possible to maintain the airtightness and liquidtightness of 1.
  • the material of the O-ring is not particularly limited, but nitrile rubber, silicone rubber, ethylene propylene rubber, fluororesin, or the like is usually used.
  • the present invention has been described by taking a galvanized battery-type oxygen sensor, which is an embodiment of the oxygen sensor of the present invention, as an example, but the oxygen sensor of the present invention is not limited to the above-described embodiment and is technically described thereto. Various changes are possible within the scope of the idea. Further, the oxygen sensor shown in FIG. 1 can be changed in various designs as long as it has a function as an oxygen sensor and the oxygen supply path described above.
  • the oxygen sensor of the present invention can also take the form of a constant potential oxygen sensor.
  • the constant potential oxygen sensor is a sensor that applies a constant voltage between the positive electrode and the negative electrode, and the applied voltage is set according to the electrochemical characteristics of each electrode and the type of gas to be detected.
  • a constant potential oxygen sensor when an appropriate constant voltage is applied between the positive electrode and the negative electrode, the current flowing between them and the oxygen gas concentration have a proportional relationship.
  • the oxygen gas concentration of an unknown gas can be detected by measuring the voltage.
  • Example 1 Preparation of electrolyte> An electrolytic solution was prepared by dissolving citric acid and tripotassium citrate in water. The molar concentration in the electrolytic solution was citric acid: 1.2 mol / L and tripotassium citrate: 1.0 mol / L. The total content of citric acids dissolved in this electrolytic solution is 2.2 mol / L, and the content of alkali metal (potassium): 3.0 mol / L is 1.36 times the total content of citric acids. The pH of the electrolytic solution was 4.23 at 25 ° C.
  • a galvanic battery-powered oxygen sensor having the configuration shown in FIG. 1 was assembled.
  • the holder lid 10 first holder lid 11 and second holder lid 12
  • the holder 20, and the positive electrode current collector holding portion 70 were made of ABS resin.
  • a porous ethylene tetrafluoride resin sheet was used for the protective film 40, and an ethylene tetrafluoride-propylene hexafluoride copolymer film was used for the diaphragm 60.
  • the catalyst electrode 51 of the positive electrode 50 was made of gold, the positive electrode current collector 52 and the lead wire 120 were made of titanium, and the positive electrode current collector 52 and the lead wire 120 were welded and integrated.
  • the negative electrode 100 was composed of 3.7 g of Sn—Sb alloy (Sb content was 5% by mass and Sn mass was 3.52 g).
  • the oxygen sensor 1 the first holder lid 11, the O-ring 30, the protective film 40 made of ethylene tetrafluoride resin sheet, the diaphragm 60 made of ethylene tetrafluoride-propylene hexafluoride copolymer film, and the catalyst
  • the electrode 51 and the positive electrode current collector 52 were pressed by screw tightening between the holder 20 and the second holder lid 12, and a good contact state was maintained.
  • the first holder lid 11 functioned as a pressing end plate, and the O-ring 30 ensured airtightness and liquidtightness.
  • the value of the ratio of the amount of the stored electrolytic solution (4.3 ml) to the mass of Sn contained in the negative electrode (3.52 g) was 1.22 (ml / g).
  • Example 2 An electrolytic solution was prepared by dissolving citric acid, tripotassium citrate and ammonia in water, and an oxygen sensor was assembled in the same manner as in Example 1 except that this electrolytic solution was used.
  • the molar concentration in the electrolytic solution was citric acid: 2.5 mol / L, tripotassium citrate: 0.5 mol / L, and ammonia: 3.0 mol / L.
  • the total content of citric acids dissolved in this electrolytic solution is 3.0 mol / L, and the content of alkali metal (potassium): 1.5 mol / L is 0.5 times the total content of citric acids.
  • the pH of the electrolytic solution was 4.30 at 25 ° C.
  • the molar ratio of the total content of ammonia to the total content of citric acid in the electrolytic solution was 1.
  • Example 3 An electrolytic solution was prepared by dissolving citric acid, potassium acetate and ammonia in water, and an oxygen sensor was assembled in the same manner as in Example 1 except that this electrolytic solution was used.
  • the molar concentration in the electrolytic solution was citric acid: 2.5 mol / L, potassium acetate: 1.0 mol / L, and ammonia: 3.0 mol / L.
  • the total content of citric acids dissolved in this electrolytic solution is 2.5 mol / L, and the content of alkali metal (potassium): 1.0 mol / L is 0.4 times the total content of citric acids.
  • the pH of the electrolytic solution was 4.32 at 25 ° C.
  • the molar ratio of the total content of ammonia to the total content of citric acid in the electrolytic solution was 1.2.
  • Example 4 An electrolytic solution was prepared and an oxygen sensor was assembled in the same manner as in Example 3 except that the molar concentrations of potassium acetate and ammonia were changed to potassium acetate: 1.5 mol / L and ammonia: 2.5 mol / L.
  • the total content of citric acids dissolved in this electrolytic solution is 2.5 mol / L, and the content of alkali metal (potassium): 1.5 mol / L is 0.6 times the total content of citric acids.
  • the pH of the electrolytic solution was 4.39 at 25 ° C.
  • the molar ratio of the total content of ammonia to the total content of citric acid in the electrolytic solution was 1.
  • Example 5 An electrolytic solution was prepared and an oxygen sensor was assembled in the same manner as in Example 3 except that the molar concentrations of citric acid and ammonia were changed to citric acid: 2.6 mol / L and ammonia: 3.3 mol / L.
  • the total content of citric acids dissolved in this electrolytic solution is 2.6 mol / L, and the content of alkali metal (potassium): 1.0 mol / L is 0.38 times the total content of citric acids.
  • the pH of the electrolytic solution was 4.36 at 25 ° C.
  • the molar ratio of the total content of ammonia to the total content of citric acid in the electrolytic solution was 1.27.
  • Comparative Example 1 An electrolytic solution was prepared in the same manner as in Example 1 except that the molar concentrations of citric acid and tripotassium citrate were changed to citric acid: 1.0 mol / L and tripotassium citrate: 1.2 mol / L. Assembled the sensor. The total content of citric acids dissolved in this electrolytic solution is 2.2 mol / L, and the content of alkali metal (potassium): 3.6 mol / L is 1.64 times the total content of citric acids. The pH of the electrolytic solution was 4.55 at 25 ° C.
  • Comparative Example 2 An electrolytic solution was prepared in the same manner as in Example 1 except that the molar concentrations of citric acid and tripotassium citrate were changed to citric acid: 1.4 mol / L and tripotassium citrate: 0.8 mol / L, and oxygen was prepared. Assembled the sensor. The total content of citric acids dissolved in this electrolytic solution is 2.2 mol / L, and the content of alkali metal (potassium): 2.4 mol / L is 1.09 times the total content of citric acids. The pH of the electrolytic solution was 3.60 at 25 ° C.
  • Comparative Example 3 An electrolytic solution was prepared in the same manner as in Example 1 except that the molar concentrations of citric acid and tripotassium citrate were changed to citric acid: 1.6 mol / L and tripotassium citrate: 0.6 mol / L. Assembled the sensor. The total content of citric acids dissolved in this electrolytic solution is 2.2 mol / L, and the content of alkali metal (potassium): 1.8 mol / L is 0.82 times the total content of citric acids. The pH of the electrolytic solution was 3.34 at 25 ° C.
  • Comparative Example 4 An electrolytic solution was prepared in the same manner as in Example 1 except that the molar concentrations of citric acid and tripotassium citrate were changed to 1.72 mol / L citric acid and 0.5 mol / L tripotassium citrate. Assembled the sensor. The total content of citric acids dissolved in this electrolytic solution is 2.22 mol / L, and the content of alkali metal (potassium): 1.5 mol / L is 0.68 times the total content of citric acids. The pH of the electrolytic solution was 3.07 at 25 ° C.
  • Comparative Example 5 An electrolytic solution was prepared in the same manner as in Example 1 except that the molar concentrations of citric acid and tripotassium citrate were changed to 0.26 mol / L citric acid and 2.0 mol / L tripotassium citrate. Assembled the sensor. The total content of citric acids dissolved in this electrolytic solution is 2.26 mol / L, and the content of alkali metal (potassium): 6.0 mol / L is 2.65 times the total content of citric acids. The pH of the electrolytic solution was 6.37 at 25 ° C.
  • Comparative Example 6 An electrolytic solution was prepared in the same manner as in Example 1 except that the molar concentrations of citric acid and tripotassium citrate were changed to citric acid: 0.6 mol / L and tripotassium citrate: 0.8 mol / L. Assembled the sensor. The total content of citric acids dissolved in this electrolytic solution is 1.4 mol / L, and the content of alkali metal (potassium): 2.4 mol / L is 1.71 times the total content of citric acids. The pH of the electrolytic solution was 4.48 at 25 ° C.
  • Comparative Example 7 An electrolytic solution was prepared in the same manner as in Example 1 except that the molar concentrations of citric acid and tripotassium citrate were changed to 1.0 mol / L citric acid and 0 mol / L tripotassium citrate, and an oxygen sensor was used. Assembled. The total content of citric acid dissolved in this electrolytic solution was 1.0 mol / L, no alkali metal was contained, and the pH of the electrolytic solution was 1.50 at 25 ° C.
  • Comparative Example 8 An electrolytic solution was prepared by dissolving citric acid and potassium carbonate in water, and an oxygen sensor was assembled in the same manner as in Example 1 except that this electrolytic solution was used.
  • the molar concentration in the electrolytic solution was citric acid: 2.5 mol / L and potassium carbonate: 2.0 mol / L.
  • the total content of citric acids dissolved in this electrolytic solution is 2.5 mol / L, and the content of alkali metal (potassium): 4.0 mol / L is 1.6 times the total content of citric acids.
  • the pH of the electrolytic solution was 4.86 at 25 ° C.
  • Comparative Example 9 The oxygen sensor was assembled in the same manner as in Example 1 except that the amount of the electrolytic solution was 1 ml. The value of the ratio of the amount of the stored electrolytic solution to the mass of Sn contained in the negative electrode was 0.28 (ml / g).
  • Table 1 shows the composition and physical properties of the electrolytic solution used in the oxygen sensors of Examples and Comparative Examples.
  • the total content of citric acids, the ratio of the contents of alkali metals and citric acids, and the pH value have an appropriate electrolytic solution, and the amount of the electrolytic solution and the negative electrode
  • the oxygen sensors of Examples 1 to 5 having an appropriate ratio to the content of tin contained had good performance over a long period of time and had a long life.
  • the oxygen sensors of Comparative Examples 1 to 4 and 8 in which the ratio of the contents of alkali metal and citric acids in the electrolytic solution or the pH of the electrolytic solution is outside the range of the present invention, or both.
  • the oxygen sensor of Comparative Example 5 which is outside the scope of the present invention has a shorter time for maintaining good performance and a shorter life than the oxygen sensor of the example.
  • the ratio of the contents of alkali metal and citric acids in the electrolytic solution and the pH of the electrolytic solution are similar to those of the oxygen sensor of Comparative Example 1, but the total content of citric acids is the same.
  • the life was further shortened as compared with the oxygen sensor of Comparative Example 1. Further, the oxygen sensor of Comparative Example 7 is unstable in operation because it does not contain an alkali metal in the electrolytic solution, and further, the pH of the electrolytic solution and the total content of citric acids are outside the range of the present invention. , The life was significantly shorter than that of the oxygen sensor of Comparative Example 1 having the same citric acid content.
  • the present invention can be implemented in forms other than the above, as long as the gist of the present invention is not deviated.
  • the embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments.
  • the scope of the present invention shall be construed in preference to the description of the appended claims over the description of the specification above, and all modifications within the scope of the claims shall be within the scope of the claims. included.
  • the electrochemical oxygen sensor of the present invention can be applied to the same applications as conventionally known electrochemical oxygen sensors.
  • Electrochemical oxygen sensor 10 Holder lid 11 1st holder lid (inner lid) 12 2nd holder lid (outer lid) 20 Holder 30 O-ring 40 Protective film 50 Positive electrode 51 Catalyst electrode 52 Positive electrode current collector 60 diaphragm 70 Positive electrode current collector holding part 80 Drilling for electrolyte supply 90 Drilling for lead wire 100 Negative electrode 110 Electrolyte 120 Lead wire 130 Compensation resistance 140 Temperature compensation thermista 150 Through hole

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

長寿命の電気化学式酸素センサを提供する。 本発明の電気化学式酸素センサは、正極、負極および電解液を有してなり、前記負極が、スズまたはスズの合金を含有し、前記電解液は、少なくともクエン酸類を溶解した水溶液であり、前記水溶液は、アルカリ金属を含有しており、前記電解液中でのクエン酸類の総含有量が、2.1mol/L以上であり、前記電解液中でのアルカリ金属の含有量が、クエン酸類の総含有量の0.1~1.6倍であり、前記電解液のpHが、3.9~4.6であり、前記電解液の液量をx(ml)とし、前記負極に含まれるスズの含有量をy(g)としたときに、x/y≧0.3(ml/g)であることを特徴とするものである。

Description

電気化学式酸素センサ
 本発明は、長寿命の電気化学式酸素センサに関するものである。
 電気化学式酸素センサ(以下、酸素センサともいう)は、安価、手軽であり、かつ常温での作動が可能という利点を有することから、船倉内部やマンホール内の酸欠状態のチェック、麻酔器や人工呼吸器などの医療機器における酸素濃度の検出など、広い分野で使用されている。
 このような電気化学式酸素センサとして、例えば特許文献1には、カソード、アノードおよび電解液を備え、前記電解液にキレート剤が含まれ、かつ、前記電解液のpHが12以上である電気化学式酸素センサが開示されている。
 また、特許文献2においては、電気化学式酸素センサの電解液中のキレート剤のモル濃度を1.4mol/L以上とすることにより、酸素センサの寿命を向上させることが開示されている。
国際公開第2009/069749号 特開2018-109549号公報
 しかし、Pbのような有害物質を使用しない負極を用いた電気化学式酸素センサ、特に、スズまたはスズの合金を負極に用いた電気化学式酸素センサの寿命については、未だ十分な改善がなされておらず、更に検討が必要な状況である。
 本発明は、前記事情に鑑みてなされたものであり、その目的は、長寿命の電気化学式酸素センサを提供することにある。
 本発明の電気化学式酸素センサは、正極、負極および電解液を有してなり、前記負極が、スズまたはスズの合金を含有し、前記電解液は、少なくともクエン酸類を溶解した水溶液であり、前記水溶液は、アルカリ金属を含有しており、前記電解液中でのクエン酸類の総含有量が、2.1mol/L以上であり、前記電解液中でのアルカリ金属の含有量が、クエン酸類の総含有量の0.1~1.6倍であり、前記電解液のpHが、3.9~4.6であり、前記電解液の液量をx(ml)とし、前記負極に含まれるスズの含有量をy(g)としたときに、x/y≧0.3(ml/g)であることを特徴とするものである。
 本発明によれば、長寿命の電気化学式酸素センサを提供することができる。
本発明の電気化学式酸素センサの一例を模式的に表す断面図である。
 まず、本発明の電気化学式酸素センサを、好適な実施形態の一例であるガルバニ電池式酸素センサを例にとり、図面を用いて説明する。
 図1は、電気化学式酸素センサの一実施形態であるガルバニ電池式酸素センサを、模式的に表す断面図である。
 図1に示す酸素センサ1は、有底筒状のホルダー20内に正極50、負極100および電解液110を有している。ホルダー20の上部開口部には、第1ホルダー蓋(中蓋)11と、第1ホルダー蓋11を固定するための第2ホルダー蓋(外蓋)12とで構成され、酸素センサ1内に酸素を取り込むための貫通孔150を有するホルダー蓋10が、O-リング30を介して取り付けられている。
 ホルダー20内の電解液110を収容する槽中には、負極100が電解液中に浸漬された状態で配されている。負極100には、リード線120が取り付けられており、このリード線120には、ホルダー20の外部で補正抵抗130および温度補償用サーミスタ140が直列に連結されている。また、正極50は、触媒電極51と正極集電体52とが積層されて構成されており、正極集電体52にも、前記リード線120が取り付けられている。そして、正極50は、電解液収容槽の上部に、正極集電体保持部70を介して配されている。また、正極集電体保持部70には、電解液収容槽の電解液110を正極50に供給するための穿孔80と、正極集電体52に取り付けられたリード線120を通すための穿孔90とが設けられている。
 正極50の上部には、酸素を選択的に透過させ、かつ透過量を電池反応に見合うように制限する隔膜60が配されており、ホルダー蓋10に設けられた貫通孔150からの酸素が、隔膜60を通じて正極50へ導入される。また、隔膜60の上部には、隔膜60へのゴミやチリ、水などの付着を防止するための保護膜40が配されており、第1ホルダー蓋11によって固定されている。
 すなわち、第1ホルダー蓋11は、保護膜40、隔膜60および正極50の押圧端板として機能する。図1に示すセンサ1では、第2ホルダー蓋12に、ホルダー20の外周部に形成されたネジ部と螺合するように、内周部にネジ部が形成されている。そして、ホルダー蓋10をネジ締めすることにより、第1ホルダー蓋11がO-リング30を介してホルダー20に押し付けられることで、気密性および液密性を保持した状態で、保護膜40、隔膜60および正極50をホルダー20に固定できるようになっている。
 特許文献1に示すようなキレート剤を含有する電解液を有するガルバニ電池式酸素センサの動作原理は、図1を参照しつつ説明すると、下記のようになると考えられる。
 隔膜60を通って酸素センサ1の内部に入った酸素は、正極50が有する触媒電極51で還元され、電解液110を介して負極100との間で次のような電気化学反応を起こす。
 正極反応:O+4H+4e→2H
 負極反応:Sn+2HO→SnO+4H+4e
           YX-+SnO+4H→YSn4-x+2H
     :Yはキレート剤(クエン酸)
 なお、負極100は、例えば、Cu、Fe、Ag、Ti、Al、Mg、Zn、NiおよびSnなどの金属やそれらの合金によって構成することができるが、本発明に用いる酸性の電解液中で腐食し難く、かつEU(欧州連合)での特定有害物質の使用規制に関するRoHS指令(Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment)にも対応可能であることから、SnまたはSn合金が用いられる。従って、上記の電気化学反応式は、負極がSnまたはSn合金で構成されている場合を表している。
 この電気化学反応により、触媒電極51と負極100との間に酸素濃度に応じた電流が発生する。触媒電極51での正極反応によって生じた電流は、触媒電極51に圧接された正極集電体52で集電され、リード線120によって外部に導かれ、補正抵抗130および温度補償用サーミスタ140を通して負極100に流れる。これによって前記電流が電圧信号に変換され、酸素センサ出力として電圧が得られる。その後、得られた出力電圧が周知の方法で酸素濃度に変換され、酸素濃度として検知される。
 ここで、キレート剤であるクエン酸(Y)は、電解液中でクエン酸イオンとなり、負極の構成金属をキレート化して電解液に溶解させる作用(以下、「キレート化作用」という)を有する。しかし、本発明者は、負極由来の金属(Sn)が電解液中に溶解して飽和濃度に達し、前記金属の酸化物が生成して負極が不活性になることが酸素センサの寿命を低下させる要因の一つになると考えた。
 そこで、本発明者は、鋭意検討を重ねた結果、電解液に溶解できるスズの量を高めること、すなわち電解液中のクエン酸(Y)のモル濃度を高めることにより、電解液中で負極から溶解したスズが飽和濃度に達するのを遅らせることができ、その結果、酸素センサの寿命を向上させることができることを見出し、本発明を完成するに至った。
 本発明の電気化学式酸素センサの電解液に用いるクエン酸は、金属イオンと配位結合をする官能基を複数有し、金属イオンと錯体を形成(錯化)して金属イオンを不活性化させるものであり、電解液を構成する溶媒中でクエン酸自身やその塩(本明細書では、クエン酸とクエン酸塩とを合わせてクエン酸類とする)として電解液に含有させることができる。
 本発明の酸素センサにおいては、少なくともクエン酸類を溶解した水溶液を電解液として使用する。ここで、前記水溶液は、アルカリ金属を含有しており、クエン酸類の総含有量が、2.1mol/L以上であり、アルカリ金属の含有量が、クエン酸類の総含有量の0.1~1.6倍であり、pHが3.9~4.6であるよう調製されている。なお、電解液の溶媒は水である。このような電解液であれば、クエン酸イオンのモル濃度を高めることができ、酸素センサの寿命を向上させることが可能となる。
 クエン酸のようなキレート剤は、一般に、キレート化作用を有し、かつ、pH緩衝能(少量の酸や塩基が添加されても、溶液のpHをほぼ一定に保つ能力)を有しているが、水溶液中でキレート化作用を生じる酸やその塩を単体で水に溶かした場合は、主にキレート剤の種類や濃度によって水溶液のpHが決定される。このため、用いるキレート剤の種類によっては、水溶液のpHが負極材料のガルバニ腐食を進行させる領域となってしまい、センサの電解液として使用し難くなる場合も生じる。
 よって、優れたpH緩衝能を維持しながら、電解液のpHを好適な範囲に調整するために、キレート剤となる酸とその塩とを含有する混合溶液を用いることも提案されている。しかし、本発明者の検討により、キレート剤としてクエン酸を用いる場合には、クエン酸とその塩(すなわちクエン酸類)の総含有量を多くし、電解液のpHを好適な範囲に調整しても、必ずしも寿命の向上にはつながらないこと、さらに、アルカリ金属の塩、例えば有機酸のアルカリ金属塩、好ましくはクエン酸のアルカリ金属塩を溶解させるなどの方法で、クエン酸を含む電解液中にアルカリ金属(ほとんどは、電離してアルカリ金属イオンの状態で存在すると推測される)を特定の含有量で存在させることが重要であることが明らかとなった。
 すなわち、理由は明確ではないものの、電解液に溶存するクエン酸類の総含有量を2.1mol/L以上にすると共に、電解液に含まれているアルカリ金属の含有量をクエン酸類の総含有量の0.1~1.6倍とし、さらに電解液のpHが3.9~4.6の範囲に調整されている場合に、クエン酸(電離してイオン化したものを含む)のキレート剤としての作用を最大限に活用することができ、酸素センサの長寿命化を実現することができることが判明した。
 本発明において、前記構成の電解液は、クエン酸類とアルカリ金属塩、例えば、クエン酸と有機酸のアルカリ金属塩、好ましくは、クエン酸とクエン酸のアルカリ金属塩とを溶媒である水に溶解して作製することができる。クエン酸のアルカリ金属塩は、クエン酸三アルカリ金属塩、クエン酸水素二アルカリ金属塩、クエン酸二水素アルカリ金属塩などを用いることができ、具体的には、リチウム塩、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩などであり、クエン酸三ナトリウム、クエン酸三カリウム、クエン酸水素二ナトリウム、クエン酸二水素ナトリウム、クエン酸水素二カリウム、クエン酸二水素カリウムなどを好ましく用いることができる。
 例えば、クエン酸とクエン酸三カリウムを、それぞれ1.2mol/Lおよび1.0mol/Lの割合で水に溶解させた混合溶液は、溶存するクエン酸類の総含有量が2.2mol/Lであり、クエン酸三カリウムに由来するアルカリ金属(カリウム)の含有量が1.0×3=3.0mol/Lであり、すなわちアルカリ金属の含有量がクエン酸類の総含有量の3.0/2.2=1.36倍であり、さらに、25℃でのpHが4.23である電解液となる。
 また、クエン酸以外の有機酸のアルカリ金属塩を用い、前記構成の電解液を作製することもできる。例えば、酢酸、ギ酸、シュウ酸、コハク酸、フマル酸、マレイン酸、酒石酸、グルタル酸、アジピン酸、リンゴ酸、マロン酸、アスパラギン酸、グルタミン酸、アスコルビン酸などの、モノカルボン酸や多価カルボン酸のアルカリ金属塩(酸性塩を含む)を用いてもよく、酢酸ナトリウム、酢酸カリウム、シュウ酸水素ナトリウム、シュウ酸水素カリウム、シュウ酸二ナトリウム、シュウ酸二カリウム、酒石酸水素ナトリウム、酒石酸水素カリウム、酒石酸アンモニウムカリウム、酒石酸二ナトリウム、酒石酸二カリウムなどが好ましく用いられる。なお、前記多価カルボン酸は、キレート剤としても作用するため、前記多価カルボン酸またはその塩を添加することにより、電解液中でスズが飽和濃度に達するのを遅らせ、酸素センサの寿命を向上させることが期待できる。
 例えば、クエン酸と酢酸カリウムを、それぞれ2.5mol/Lおよび1.0mol/Lの割合で水に溶解させた混合溶液は、溶存するクエン酸類の総含有量が2.5mol/Lであり、酢酸カリウムに由来するアルカリ金属(カリウム)の含有量が1.0mol/Lであり、すなわちアルカリ金属の含有量がクエン酸類の総含有量の1.0/2.5=0.4倍である電解液となる。
 なお、本発明では、クエン酸と有機酸のアルカリ金属塩との混合溶液のpHをより適切に調整するために、電解液にpH調整剤を添加してもよい。pH調整剤としては、有機酸およびその塩、無機酸およびその塩、アンモニア、水酸化物などを例示することができる。前記クエン酸と酢酸カリウムの混合溶液の場合には、アンモニアを3.0mol/Lの含有量で添加することにより、25℃でのpHを4.32に調整することができる。
 pH調整剤となる有機酸は、酢酸、ギ酸、シュウ酸、コハク酸、フマル酸、マレイン酸、酒石酸、グルタル酸、アジピン酸、リンゴ酸、マロン酸、アスパラギン酸、グルタミン酸などのモノカルボン酸や多価カルボン酸、あるいはアスコルビン酸などが例示され、有機酸の塩としては、酢酸アンモニウム、酒石酸二アンモニウム、酒石酸水素アンモニウムなど、前記有機酸のアンモニウム塩(酸性塩を含む)の他、クエン酸水素二アンモニウム、クエン酸三アンモニウムなど、アルカリ金属塩以外のクエン酸の塩を用いることもできる。なお、前記クエン酸の塩を添加する場合には、その含有量はクエン酸類の総含有量に加算される。
 pH調整剤となる無機酸は、塩酸、硫酸、硝酸、リン酸、炭酸などが例示され、無機酸の塩としては、塩化アンモニウム、硫酸水素ナトリウム 硫酸水素カリウム、硫酸アンモニウム、リン酸三ナトリウム リン酸三カリウム、リン酸水素二ナトリウム、リン酸水素二カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸アンモニウム、炭酸水素アンモニウムなど、前記無機酸のアルカリ金属塩やアンモニウム塩(それぞれ酸性塩を含む)などを例示することができる。なお、前記無機酸のアルカリ金属塩を添加する場合には、その化合物に含まれるアルカリ金属は、「電解液に含まれているアルカリ金属の含有量」として加算される。
 なお、アンモニアは揮発性を有するため、揮発による電解液の組成変化を考慮すると、アンモニア水やアンモニウム塩に由来するものを含めた電解液中のアンモニアの総含有量を一定以下とすることが好ましく、電解液中でのクエン酸類の総含有量に対するアンモニアの総含有量のモル比を、1.1以下とすることが好ましく、0.5以下とすることがより好ましく、電解液にはアンモニアが含まれていなくてもよい。
 pH調整剤となる水酸化物は、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物を例示することができる。なお、前記アルカリ金属の水酸化物を添加する場合には、その化合物に含まれるアルカリ金属は、「電解液に含まれているアルカリ金属の含有量」として加算される。
 本発明において用いる電解液は、クエン酸類およびアルカリ金属塩の種類やその量比を適宜選択し、必要に応じてpH調整剤を添加することにより作製することができる。
 本発明において用いる電解液は、アルカリ金属の含有量をクエン酸類の総含有量の0.1~1.6倍とし、pHが3.9~4.6の範囲に調整されており、前記の条件においては、クエン酸類の総含有量が多くなるほど、電解液のキレート化作用を長時間維持することができる。従って、酸素センサの長寿命化のためには、電解液中のクエン酸類の総含有量は、2.4mol/L以上とすることが好ましく、2.7mol/L以上とすることがより好ましい。
 また、理由は明確ではないものの、クエン酸類の総含有量やpHが同じであっても、その中のクエン酸の含有量が多い方が電解液のキレート化作用を長時間維持することができるので、電解液中でのクエン酸の含有量は、1.1mol/L以上であることが好ましく、1.7mol/L以上であることがより好ましく、2.0mol/L以上であることが特に好ましい。
 同様に、理由は明確ではないものの、電解液中のアルカリ金属の含有量がクエン酸類の総含有量の0.1倍より少ない場合、および1.6倍を超えた場合、一定以上の長寿命化ができなくなる。電解液中のアルカリ金属の含有量は、電解液のイオン伝導度を高める点から、クエン酸類の総含有量の0.45倍以上とすることが好ましい。なお、電解液中のアルカリ金属の含有量がクエン酸類の総含有量の0.1倍より少ない場合、pHが前記の範囲において電解液のイオン伝導度を高くすることが難しくなり、酸素センサの動作が不安定になることがある。
 また、本発明の酸素センサは、前記電解液の特性を生かすために、負極の反応物質であるスズの質量に対する電解液の液量が一定以上となるよう構成される。すなわち、酸素センサ内部の電解液量をx(ml)とし、負極に含まれるスズの含有量をy(g)としたときに、x/yが0.3(ml/g)以上となるよう電解液量を調整する。x/yが0.3(ml/g)未満となる場合には、酸素センサの使用の際の電解液のpH変化が早くなり、前記電解液の特性が生かされず、酸素センサの寿命向上効果が不十分となる。
 酸素センサの使用時の電解液のpH変化を抑制するために、x/yの値は、0.7(ml/g)以上とすることが好ましく、1(ml/g)以上とすることがより好ましい。一方、電解液の収納容積を減らし、酸素センサの容積をできるだけ小さくするために、x/yの値は、10(ml/g)以下とすることが好ましく、6.5(ml/g)以下とすることがより好ましく、3(ml/g)以下とすることが特に好ましい。
 本発明の酸素センサの負極には、SnまたはSnの合金が用いられるが、電解液との反応を抑制し水素の発生を防ぐため、Sn合金を用いることが好ましい。Sn合金としては、Sn-Ag合金、Sn-Cu合金、Sn-Ag-Cu合金、Sn-Sb合金などが例示されるが、Al、Bi、Fe、Mg、Na、Zn、Ca、Ge、In、Ni、Coなどの金属元素を含有する合金であってもよい。
 また、SnまたはSn合金は、一定量の不純物を含有していてもよいが、RoHS指令に適合させるため、Pbの含有量は1000ppm未満であることが望ましい。
 Sn合金としては、具体的には、一般的な鉛フリーはんだ材料(Sn-3.0Ag-0.5Cu、Sn-3.5Ag、Sn-3.5Ag-0.75Cu、Sn-3.8Ag-0.7Cu、Sn-3.9Ag-0.6Cu、Sn-4.0Ag-0.5Cu、Sn-1.0Ag-0.5Cu、Sn-1.0Ag-0.7Cu、Sn-0.3Ag-0.7Cu、Sn-0.75Cu、Sn-0.7Cu-Ni-P-Ge、Sn-0.6Cu-Ni-P-GeSn-1.0Ag-0.7Cu-Bi-In、Sn-0.3Ag-0.7Cu-0.5Bi-Ni、Sn-3.0Ag-3.0Bi-3.0In、Sn-3.9Ag-0.6Cu-3.0Sb、Sn-3.5Ag-0.5Bi-8.0In、Sn-5.0Sb、Sn-10Sb、Sn-0.5Ag-6.0Cu、Sn-5.0Cu-0.15Ni、Sn-0.5Ag-4.0Cu、Sn-2.3Ag-Ni-Co、Sn-2Ag-Cu-Ni、Sn-3Ag-3Bi-0.8Cu-Ni、Sn-3.0Ag-0.5Cu-Ni、Sn-0.3Ag-2.0Cu-Ni、Sn-0.3Ag-0.7Cu-Ni、Sn-58Bi、Sn-57Bi-1.0Agなど)や、Sn-Sb合金を好ましく用いることができる。
 本発明の酸素センサの正極には、例えば、図1に示すように、触媒電極と正極集電体とで構成されたものが使用される。触媒電極の構成材料としては、正極上の電気化学的な酸素の還元によって電流が生じ得るものであれば特に限定されないが、金(Au)、銀(Ag)、白金(Pt)、チタン(Ti)などの、酸化還元に活性な触媒が好適に用いられる。
 また、酸素センサの正極の外面には、触媒電極に到達する酸素が多くなりすぎないように、酸素の侵入を制御するための隔膜を配置することが好ましい。隔膜としては、酸素を選択的に透過させると共に、酸素ガスの透過量を制限できるものが好ましい。隔膜の材質や厚みについては特に制限はないが、通常、四フッ化エチレン樹脂、四フッ化エチレン六フッ化プロピレンコポリマーなどのフッ素樹脂;ポリエチレンなどのポリオレフィン;などが使用される。隔膜には、多孔膜、無孔膜、更には、キャピラリー式と呼ばれる毛細管が形成された孔を有する膜を使用することができる。
 さらに、前記隔膜を保護するために、隔膜上に多孔性の樹脂膜からなる保護膜を配置することが好ましい。保護膜は、隔膜へのゴミやチリ、水などの付着を防止でき、空気(酸素を含む)を透過する機能を有していれば、その材質や厚みについては特に制限はないが、通常、四フッ化エチレン樹脂などのフッ素樹脂が使用される。
 図1に示す酸素センサ1の外装体であるホルダー20は、例えばABS樹脂で構成することができる。また、ホルダー20の開口部に配されるホルダー蓋10(第1ホルダー蓋11および第2ホルダー蓋12)は、例えば、ABS樹脂、ポリプロピレン、ポリカーボネート、フッ素樹脂などで構成することができる。更に、ホルダー20内において、正極50を保持するための正極集電体保持部70は、例えばABS樹脂で構成することができる。
 更に、ホルダー20とホルダー蓋10(第1ホルダー蓋11)との間に介在させるO-リング30は、ホルダー20と第2ホルダー蓋12とのネジ締めによって押圧されて変形することで、酸素センサ1の気密性および液密性を保持できるようになっている。O-リングの材質については特に制限はないが、通常、ニトリルゴム、シリコーンゴム、エチレンプロピレンゴム、フッ素樹脂などが使用される。
 これまで、本発明の酸素センサの一実施形態であるガルバニ電池式酸素センサを例にとって本発明を説明してきたが、本発明の酸素センサは前記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の変更が可能である。また、図1に示す酸素センサについても、酸素センサとしての機能および前述した酸素供給経路を備えていれば、各種設計変更が可能である。
 また、本発明の酸素センサは、定電位式酸素センサとしての形態を採ることもできる。定電位式酸素センサは、正極と負極との間に一定電圧を印加するセンサであり、印加電圧は各電極の電気化学特性や検知するガス種に応じて設定される。定電位式酸素センサでは正極と負極の間に適当な一定電圧を印加すると、その間に流れる電流と酸素ガス濃度とは比例関係を有するので、電流を電圧に変換すれば、ガルバニ電池式酸素センサと同様に、電圧を測定することによって未知の気体の酸素ガス濃度を検出することができる。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
実施例1
<電解液の調製>
 クエン酸およびクエン酸三カリウムを水に溶解させて電解液を調製した。なお、電解液中のモル濃度は、クエン酸:1.2mol/L、クエン酸三カリウム:1.0mol/Lとした。この電解液に溶存するクエン酸類の総含有量は2.2mol/Lであり、アルカリ金属(カリウム)の含有量:3.0mol/Lは、クエン酸類の総含有量の1.36倍であり、電解液のpHは25℃で4.23であった。
<酸素センサの組み立て>
 前記の電解液を4.3ml用いて、図1に示す構成のガルバニ電池式酸素センサを組み立てた。ホルダー蓋10(第1ホルダー蓋11および第2ホルダー蓋12)、ホルダー20および正極集電体保持部70は、ABS樹脂で形成した。また、保護膜40には多孔性の四フッ化エチレン樹脂製シートを使用し、隔膜60には四フッ化エチレン-六フッ化プロピレンコポリマー膜を使用した。
 正極50の触媒電極51は金で構成し、正極集電体52およびリード線120にはチタン製のものを使用して、正極集電体52とリード線120は溶接して一体化した。また、負極100は、3.7gのSn-Sb合金(Sb含有量が5質量%であり、Snの質量は3.52g)によって構成した。
 得られた酸素センサ1においては、第1ホルダー蓋11、O-リング30、四フッ化エチレン樹脂製シート製の保護膜40、四フッ化エチレン-六フッ化プロピレンコポリマー膜製の隔膜60、触媒電極51、および正極集電体52は、ホルダー20と第2ホルダー蓋12とのネジ締めによって押圧され良好な接触状態が保持されていた。第1ホルダー蓋11は押圧端板として機能し、また、O-リング30によって気密性および液密性が確保されていた。また、収容された電解液量(4.3ml)と負極に含まれるSnの質量(3.52g)の比の値は、1.22(ml/g)であった。
実施例2
 クエン酸、クエン酸三カリウムおよびアンモニアを水に溶解させて電解液を調製し、この電解液を用いた以外は実施例1と同様にして酸素センサを組み立てた。なお、電解液中のモル濃度は、クエン酸:2.5mol/L、クエン酸三カリウム:0.5mol/L、アンモニア:3.0mol/Lとした。この電解液に溶存するクエン酸類の総含有量は3.0mol/Lであり、アルカリ金属(カリウム)の含有量:1.5mol/Lは、クエン酸類の総含有量の0.5倍であり、電解液のpHは25℃で4.30であった。また、電解液中でのクエン酸類の総含有量に対するアンモニアの総含有量のモル比は、1であった。
実施例3
 クエン酸、酢酸カリウムおよびアンモニアを水に溶解させて電解液を調製し、この電解液を用いた以外は実施例1と同様にして酸素センサを組み立てた。なお、電解液中のモル濃度は、クエン酸:2.5mol/L、酢酸カリウム:1.0mol/L、アンモニア:3.0mol/Lとした。この電解液に溶存するクエン酸類の総含有量は2.5mol/Lであり、アルカリ金属(カリウム)の含有量:1.0mol/Lは、クエン酸類の総含有量の0.4倍であり、電解液のpHは25℃で4.32であった。また、電解液中でのクエン酸類の総含有量に対するアンモニアの総含有量のモル比は、1.2であった。
実施例4
 酢酸カリウムおよびアンモニアのモル濃度を、酢酸カリウム:1.5mol/L、アンモニア:2.5mol/Lに変更した以外は、実施例3と同様にして電解液を調製し酸素センサを組み立てた。この電解液に溶存するクエン酸類の総含有量は2.5mol/Lであり、アルカリ金属(カリウム)の含有量:1.5mol/Lは、クエン酸類の総含有量の0.6倍であり、電解液のpHは25℃で4.39であった。また、電解液中でのクエン酸類の総含有量に対するアンモニアの総含有量のモル比は、1であった。
実施例5
 クエン酸およびアンモニアのモル濃度を、クエン酸:2.6mol/L、アンモニア:3.3mol/Lに変更した以外は、実施例3と同様にして電解液を調製し酸素センサを組み立てた。この電解液に溶存するクエン酸類の総含有量は2.6mol/Lであり、アルカリ金属(カリウム)の含有量:1.0mol/Lは、クエン酸類の総含有量の0.38倍であり、電解液のpHは25℃で4.36であった。また、電解液中でのクエン酸類の総含有量に対するアンモニアの総含有量のモル比は、1.27であった。
比較例1
 クエン酸およびクエン酸三カリウムのモル濃度を、クエン酸:1.0mol/L、クエン酸三カリウム:1.2mol/Lに変更した以外は、実施例1と同様にして電解液を調製し酸素センサを組み立てた。この電解液に溶存するクエン酸類の総含有量は2.2mol/Lであり、アルカリ金属(カリウム)の含有量:3.6mol/Lは、クエン酸類の総含有量の1.64倍であり、電解液のpHは25℃で4.55であった。
比較例2
 クエン酸およびクエン酸三カリウムのモル濃度を、クエン酸:1.4mol/L、クエン酸三カリウム:0.8mol/Lに変更した以外は、実施例1と同様にして電解液を調製し酸素センサを組み立てた。この電解液に溶存するクエン酸類の総含有量は2.2mol/Lであり、アルカリ金属(カリウム)の含有量:2.4mol/Lは、クエン酸類の総含有量の1.09倍であり、電解液のpHは25℃で3.60であった。
比較例3
 クエン酸およびクエン酸三カリウムのモル濃度を、クエン酸:1.6mol/L、クエン酸三カリウム:0.6mol/Lに変更した以外は、実施例1と同様にして電解液を調製し酸素センサを組み立てた。この電解液に溶存するクエン酸類の総含有量は2.2mol/Lであり、アルカリ金属(カリウム)の含有量:1.8mol/Lは、クエン酸類の総含有量の0.82倍であり、電解液のpHは25℃で3.34であった。
比較例4
 クエン酸およびクエン酸三カリウムのモル濃度を、クエン酸:1.72mol/L、クエン酸三カリウム:0.5mol/Lに変更した以外は、実施例1と同様にして電解液を調製し酸素センサを組み立てた。この電解液に溶存するクエン酸類の総含有量は2.22mol/Lであり、アルカリ金属(カリウム)の含有量:1.5mol/Lは、クエン酸類の総含有量の0.68倍であり、電解液のpHは25℃で3.07であった。
比較例5
 クエン酸およびクエン酸三カリウムのモル濃度を、クエン酸:0.26mol/L、クエン酸三カリウム:2.0mol/Lに変更した以外は、実施例1と同様にして電解液を調製し酸素センサを組み立てた。この電解液に溶存するクエン酸類の総含有量は2.26mol/Lであり、アルカリ金属(カリウム)の含有量:6.0mol/Lは、クエン酸類の総含有量の2.65倍であり、電解液のpHは25℃で6.37であった。
比較例6
 クエン酸およびクエン酸三カリウムのモル濃度を、クエン酸:0.6mol/L、クエン酸三カリウム:0.8mol/Lに変更した以外は、実施例1と同様にして電解液を調製し酸素センサを組み立てた。この電解液に溶存するクエン酸類の総含有量は1.4mol/Lであり、アルカリ金属(カリウム)の含有量:2.4mol/Lは、クエン酸類の総含有量の1.71倍であり、電解液のpHは25℃で4.48であった。
比較例7
 クエン酸およびクエン酸三カリウムのモル濃度を、クエン酸:1.0mol/L、クエン酸三カリウム:0mol/Lに変更した以外は、実施例1と同様にして電解液を調製し酸素センサを組み立てた。この電解液に溶存するクエン酸類の総含有量は1.0mol/Lであり、アルカリ金属を含有せず、電解液のpHは25℃で1.50であった。
比較例8
 クエン酸および炭酸カリウムを水に溶解させて電解液を調製し、この電解液を用いた以外は実施例1と同様にして酸素センサを組み立てた。なお、電解液中のモル濃度は、クエン酸:2.5mol/L、炭酸カリウム:2.0mol/Lとした。この電解液に溶存するクエン酸類の総含有量は2.5mol/Lであり、アルカリ金属(カリウム)の含有量:4.0mol/Lは、クエン酸類の総含有量の1.6倍であり、電解液のpHは25℃で4.86であった。
比較例9
 電解液量を1mlとした以外は実施例1と同様にして酸素センサを組み立てた。なお、収容された電解液量と負極に含まれるSnの質量の比の値は、0.28(ml/g)であった。
 実施例および比較例の酸素センサに使用した電解液の組成および物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例および比較例の各酸素センサについて、温度40℃中、100%酸素ガスを通気して加速的寿命試験を行った。40℃では、室温時の約2倍の電気化学反応が進行する。また、100%酸素ガス通気では、大気中での約5倍の電気化学反応が進行する。このため、温度40℃中で100%酸素ガス通気では、大気中で室温放置時の約10倍のスピードで寿命判断が可能である。本試験では、酸素センサの出力電圧を測定し、出力電圧が測定開始時の値の90%まで低下した時点を寿命とし、寿命に至るまでの時間(測定可能時間)により酸素センサの性能を評価した。比較例1の酸素センサの測定可能時間を100としたときの測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示す通り、クエン酸類の総含有量、アルカリ金属とクエン酸類との含有量の比、およびpHの値が適正な電解液を有し、かつ電解液の液量と負極に含まれるスズの含有量との比も適正な実施例1~5の酸素センサは、良好な性能が長時間にわたって発揮され、長い寿命を有していた。
 これに対し、電解液中のアルカリ金属とクエン酸類との含有量の比、または、電解液のpHが本発明の範囲外である比較例1~4および比較例8の酸素センサ、並びにその両方が本発明の範囲外である比較例5の酸素センサは、実施例の酸素センサに比べて良好な性能を維持できた時間が短く、寿命が短かった。更に、比較例6の酸素センサは、電解液中のアルカリ金属とクエン酸類との含有量の比および電解液のpHが比較例1の酸素センサと同程度であるが、クエン酸類の総含有量が、2.1mol/Lよりも少ないため、比較例1の酸素センサよりもさらに寿命が短くなった。また、比較例7の酸素センサは、電解液中にアルカリ金属を含有しないため動作が不安定であり、さらに、電解液のpH、およびクエン酸類の総含有量が本発明の範囲外となったため、クエン酸の含有量が同じ比較例1の酸素センサよりも寿命が大幅に低下した。
 また、負極に含まれるスズの含有量に対する電解液量の比を0.3ml/gより小さくした比較例9の酸素センサは、電解液のpHの変化が早く、溶解したスズが短期間で飽和濃度に達したため、電解液の特性を生かすことができず寿命が短くなった。
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。
 本発明の電気化学式酸素センサは、従来から知られている電気化学式酸素センサと同じ用途に適用することができる。
  1  電気化学式酸素センサ
 10  ホルダー蓋
 11  第1ホルダー蓋(中蓋)
 12  第2ホルダー蓋(外蓋)
 20  ホルダー
 30  O-リング
 40  保護膜
 50  正極
 51  触媒電極
 52  正極集電体
 60  隔膜
 70  正極集電体保持部
 80  電解液供給用の穿孔
 90  リード線用の穿孔
100  負極
110  電解液
120  リード線
130  補正抵抗
140  温度補償用サーミスタ
150  貫通孔

Claims (6)

  1.  正極、負極および電解液を有する電気化学式酸素センサであって、
     前記負極が、スズまたはスズの合金を含有し、
     前記電解液は、少なくともクエン酸類を溶解した水溶液であり、
     前記水溶液は、アルカリ金属を含有しており、
     前記電解液中でのクエン酸類の総含有量が、2.1mol/L以上であり、
     前記電解液中でのアルカリ金属の含有量が、クエン酸類の総含有量の0.1~1.6倍であり、
     前記電解液のpHが、3.9~4.6であり、
     前記電解液の液量をx(ml)とし、前記負極に含まれるスズの含有量をy(g)としたときに、x/y≧0.3(ml/g)であることを特徴とする電気化学式酸素センサ。
  2.  前記電解液が、有機酸のアルカリ金属塩を含む請求項1に記載の電気化学式酸素センサ。
  3.  有機酸のアルカリ金属塩が、クエン酸のアルカリ金属塩を含む請求項2に記載の電気化学式酸素センサ。
  4.  有機酸のアルカリ金属塩が、酢酸のアルカリ金属塩を含む請求項2に記載の電気化学式酸素センサ。
  5.  前記クエン酸類が、クエン酸を含む請求項1~4のいずれかに記載の電気化学式酸素センサ。
  6.  前記電解液中でのクエン酸の含有量が、1.1mol/L以上である請求項5に記載の電気化学式酸素センサ。
     
PCT/JP2020/001840 2020-01-21 2020-01-21 電気化学式酸素センサ WO2021149134A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/001840 WO2021149134A1 (ja) 2020-01-21 2020-01-21 電気化学式酸素センサ
CN202080004999.0A CN113748336A (zh) 2020-01-21 2020-01-21 电化学式氧传感器
US17/273,539 US11782015B2 (en) 2020-01-21 2020-01-21 Electrochemical oxygen sensor
EP20855849.4A EP3882617B1 (en) 2020-01-21 2020-01-21 Electrochemical oxygen sensor
JP2020558558A JP6985533B1 (ja) 2020-01-21 2020-01-21 電気化学式酸素センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001840 WO2021149134A1 (ja) 2020-01-21 2020-01-21 電気化学式酸素センサ

Publications (1)

Publication Number Publication Date
WO2021149134A1 true WO2021149134A1 (ja) 2021-07-29

Family

ID=76992130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001840 WO2021149134A1 (ja) 2020-01-21 2020-01-21 電気化学式酸素センサ

Country Status (5)

Country Link
US (1) US11782015B2 (ja)
EP (1) EP3882617B1 (ja)
JP (1) JP6985533B1 (ja)
CN (1) CN113748336A (ja)
WO (1) WO2021149134A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272553A1 (en) * 2006-05-23 2007-11-29 It Dr. Gambert Gmbh Lead Free Galvanic Oxygen Sensor
JP2008101948A (ja) * 2006-10-17 2008-05-01 Dkk Toa Corp ガルバニ電池式センサ
WO2009069749A1 (ja) 2007-11-28 2009-06-04 Gs Yuasa Corporation 電気化学式酸素センサ
JP2015505358A (ja) * 2011-09-29 2015-02-19 ブリガム・ヤング・ユニバーシティBrigham Young University 鉛フリー酸素センサ
JP2018109549A (ja) 2016-12-28 2018-07-12 株式会社Gsユアサ 電気化学式酸素センサ
JP2019066331A (ja) * 2017-09-29 2019-04-25 マクセル株式会社 電気化学式酸素センサ
JP2019066332A (ja) * 2017-09-29 2019-04-25 マクセル株式会社 電気化学式酸素センサ
JP2019066328A (ja) * 2017-09-29 2019-04-25 マクセル株式会社 電気化学式酸素センサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117929502A (zh) 2018-10-17 2024-04-26 麦克赛尔株式会社 电化学氧传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272553A1 (en) * 2006-05-23 2007-11-29 It Dr. Gambert Gmbh Lead Free Galvanic Oxygen Sensor
JP2008101948A (ja) * 2006-10-17 2008-05-01 Dkk Toa Corp ガルバニ電池式センサ
WO2009069749A1 (ja) 2007-11-28 2009-06-04 Gs Yuasa Corporation 電気化学式酸素センサ
JP2015505358A (ja) * 2011-09-29 2015-02-19 ブリガム・ヤング・ユニバーシティBrigham Young University 鉛フリー酸素センサ
JP2018109549A (ja) 2016-12-28 2018-07-12 株式会社Gsユアサ 電気化学式酸素センサ
JP2019066331A (ja) * 2017-09-29 2019-04-25 マクセル株式会社 電気化学式酸素センサ
JP2019066332A (ja) * 2017-09-29 2019-04-25 マクセル株式会社 電気化学式酸素センサ
JP2019066328A (ja) * 2017-09-29 2019-04-25 マクセル株式会社 電気化学式酸素センサ

Also Published As

Publication number Publication date
US11782015B2 (en) 2023-10-10
US20220113275A1 (en) 2022-04-14
JP6985533B1 (ja) 2021-12-22
EP3882617A4 (en) 2022-01-05
EP3882617B1 (en) 2024-02-21
CN113748336A (zh) 2021-12-03
JPWO2021149134A1 (ja) 2021-07-29
EP3882617A1 (en) 2021-09-22
EP3882617C0 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
JP7009646B2 (ja) 電気化学式酸素センサ
JP5019141B2 (ja) 電気化学式酸素センサ
EP2950089B1 (en) Galvanic cell type oxygen sensor with a pb-sb alloy negative electrode
JP2023007024A (ja) 電気化学式酸素センサ
JP4062447B2 (ja) 定電位式酸素センサ
WO2018124066A1 (ja) 電気化学式酸素センサ
JP6621637B2 (ja) 酸素センサ
JP6899751B2 (ja) 電気化学式酸素センサ
WO2021149134A1 (ja) 電気化学式酸素センサ
JP6707431B2 (ja) ガルバニ電池式酸素センサ
JP6955950B2 (ja) 電気化学式酸素センサ
WO2022113389A1 (ja) 電気化学式酸素センサおよびその製造方法
JP2019066331A (ja) 電気化学式酸素センサ
US20220326174A1 (en) Electrochemical oxygen sensor
WO2023162960A1 (ja) 電気化学式酸素センサおよびその製造方法
JP2019066328A (ja) 電気化学式酸素センサ
JPWO2022113389A5 (ja)
JP2018059719A (ja) 電気化学式酸素センサ
JP2017058170A (ja) 電気化学式酸素センサ
JP2017053689A (ja) 電気化学式酸素センサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020558558

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020855849

Country of ref document: EP

Effective date: 20210304

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE