WO2021147411A1 - 一种相变蓄热自流式耐火浇注料及其制备方法 - Google Patents

一种相变蓄热自流式耐火浇注料及其制备方法 Download PDF

Info

Publication number
WO2021147411A1
WO2021147411A1 PCT/CN2020/123536 CN2020123536W WO2021147411A1 WO 2021147411 A1 WO2021147411 A1 WO 2021147411A1 CN 2020123536 W CN2020123536 W CN 2020123536W WO 2021147411 A1 WO2021147411 A1 WO 2021147411A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
alloy
phase change
mass
parts
Prior art date
Application number
PCT/CN2020/123536
Other languages
English (en)
French (fr)
Inventor
张美杰
夏求林
顾华志
黄奥
付绿平
杨爽
Original Assignee
武汉科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉科技大学 filed Critical 武汉科技大学
Publication of WO2021147411A1 publication Critical patent/WO2021147411A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention belongs to the technical field of self-flowing refractory castables. Specifically, it relates to a phase change heat storage self-flowing refractory castable and a preparation method thereof.
  • Heat storage materials usually store heat in three ways: sensible heat storage, latent heat storage and chemical reaction heat storage.
  • latent heat storage is also called phase change heat storage. It absorbs or releases heat during the phase change of the material. It has the advantages of large heat storage density, small volume, stable temperature and easy control, and has been widely used.
  • phase change heat storage material for medium temperature and its preparation method (CN104559936A) patented technology, using oxalic acid as the heat storage material, rare earth oxide as the heat-resistant modifier, and graphite as the heat-conducting enhancement material
  • the prepared heat storage material has good thermal conductivity and thermal stability, but the use temperature is low and cannot be used for the utilization of high-temperature heat energy.
  • Refractory castables are supporting materials used in high-temperature industries. They are widely used because of their low cost, convenient construction and no need for high-temperature firing. The commonly used refractory castables mainly obviously store heat, have low heat storage density, and do not have the ability to control temperature.
  • the present invention aims to overcome the defects of the prior art, and aims to provide a method for preparing phase change heat storage self-flowing refractory castable with simple process; the phase change heat storage self-flowing refractory castable prepared by the method has high heat storage density, High strength, good thermal shock resistance, high thermal efficiency and temperature stability in high temperature applications.
  • alumina particles With 55 to 75 parts by mass of alumina particles, 10 to 30 parts by mass of fine alumina powder, 6 to 10 parts by mass of ⁇ -alumina powder, 1 to 3 parts by mass of fine silicon powder, and 4 to 6 parts by mass of aluminum Calcium acid cement is used as the raw material and mixed to obtain the mixture.
  • the preparation method of the alloy@ceramic large capsule is:
  • the alloy@ceramic large capsule is composed of a ceramic spherical shell and an alloy ball, and the alloy ball is placed in the ceramic spherical shell.
  • the diameter of the alloy ball is 2-18mm
  • the alloy ball is one of Al-Si-Ni alloy ball, Al-Si-Fe alloy ball, Al-Si alloy ball; Al-Si-Ni alloy ball, Al-Si-Fe alloy ball, Al-Si alloy ball is made of Al-Si-Ni alloy ball, Al-Si-Fe alloy ball and Al-Si alloy ball.
  • the corresponding Al-Si-Ni alloy rods, Al-Si-Fe alloy rods and Al-Si alloy rods are made.
  • the preparation method of the ceramic spherical shell is:
  • 80 ⁇ 90wt% of corundum fine powder, 5 ⁇ 15wt% of mullite fine powder, 3 ⁇ 5wt% of ⁇ -alumina powder and 1-3wt% of silica fine powder are ball milled in a ball mill for 5 ⁇ 8min, A mixed powder is obtained; zirconium dioxide sol accounting for 5-20 wt% of the mixed powder is added to the mixed powder, and the mixture is stirred uniformly to obtain a mixed mud. Then, an injection molding machine is used to shape the mixed mud to obtain a hemispherical shell mud blank with threads.
  • the hemispherical shell mud body with threads is dried at 110-180°C for 24 ⁇ 36h, heated to 1350 ⁇ 1650°C at a rate of 3 ⁇ 5°C/min, and kept for 2 ⁇ 4h to make belt Threaded ceramic hemispherical shell.
  • the ceramic hemispherical shells with threads are two types: ceramic hemispherical shells with internal threads and ceramic hemispherical shells with external threads; ceramic hemispherical shells with internal threads and ceramic hemispherical shells with external threads
  • the threaded ceramic hemispherical shell is connected to a hollow sphere through the thread to obtain a ceramic spherical shell.
  • the annular inner wall at the edge of the hemispherical ceramic shell with internal threads is provided with internal threads
  • the annular outer wall at the edge of the hemispherical ceramic shell with external threads is provided with external threads.
  • the outer diameter and wall thickness of the ceramic hemispherical shell with internal threads and the ceramic hemispherical shell with external threads are the same, the wall thickness is 0.6-2mm, and the outer diameter is 3.5-24mm;
  • the nominal diameter of the internal thread and the external thread is 2.7-21 mm.
  • the Al 2 O 3 content of the fine corundum powder is ⁇ 98wt%; the particle size of the fine corundum powder is ⁇ 15 ⁇ m;
  • the mullite fine powder Al 2 O 3 content ⁇ 70wt%, SiO 2 content ⁇ 22wt%; the particle size of the mullite fine powder ⁇ 15 ⁇ m;
  • the zirconia sol has a solid content of 30 wt% and a particle size of 20-50 nm.
  • the gradation of the alumina particles is: the alumina particles with a particle size of less than 3 mm and greater than or equal to 1 mm account for 65 to 70 wt%; the alumina particles with a particle size of less than 1 mm and greater than or equal to 0.088 mm account for 30 to 35 wt% of the alumina particles; The Al 2 O 3 ⁇ 85wt%.
  • the particle gradation of the said alloy@ceramic large capsule is: 15-25wt% of alloy@ceramics large capsule with an outer diameter of less than 10mm and greater than or equal to 3.5mm, and alloy@ceramics large capsule 5 with an outer diameter of less than 18mm and greater than or equal to 10mm ⁇ 15wt%; the outer diameter is less than or equal to 24mm and greater than or equal to 18mm accounted for 65 ⁇ 75wt% of the alloy@ceramic large capsule.
  • the content of Al 2 O 3 in the fine alumina powder is greater than or equal to 85 wt%, and the particle size is less than or equal to 8 ⁇ m.
  • the content of Al 2 O 3 in the ⁇ -alumina powder is greater than or equal to 97 wt%, and the particle size is less than or equal to 8 ⁇ m.
  • the content of SiO 2 in the silicon micropowder is greater than or equal to 92 wt%, and the particle size is less than or equal to 0.6 ⁇ m.
  • the chemical composition of the pure calcium aluminate cement is: Al 2 O 3 is 50-60 wt%, SiO 2 ⁇ 8wt%, Fe 2 O 3 ⁇ 2.5wt%; the particle size of the pure calcium aluminate cement is less than or equal to 10 ⁇ m.
  • the water reducing agent is one or more of sodium tripolyphosphate, sodium tetrapolyphosphate and sodium hexametaphosphate.
  • the present invention has the following positive effects compared with the prior art:
  • the alloy@ceramics large capsule is placed in a mold to obtain a castable skeleton; water reducing agent and water are added to the mixed raw materials to obtain an alumina-based self-flowing castable; then the alumina-based self-flowing castable is obtained
  • the material is poured into the castable skeleton to prepare the phase-change heat storage self-flowing refractory castable, and the process is simple.
  • the alloy@ceramics large capsule used in the present invention can effectively prevent the alloy in the alloy@ceramics large capsule from reacting with the high-temperature environment, and control the volume change during the phase transformation of the alloy, thereby significantly extending the cycle stability and Temperature stability of phase-change heat storage self-flowing refractory castables.
  • the phase change heat storage self-flowing refractory castable prepared by the invention is in the high-temperature service process, the matrix material is sintered to achieve densification, so that the strength of the castable is obviously improved; when the service temperature reaches the melting point of the alloy, the alloy @ceramics in the large capsule alloy It begins to melt and stores heat in the form of latent heat of phase change, and takes advantage of the advantages of large latent heat of phase change, good heat transfer performance and low degree of subcooling, which significantly improves the heat storage of phase change heat storage self-flowing refractory castables when used at high temperatures. Density and thermal efficiency.
  • the alloy@ceramic large capsule used in the invention is used as the aggregate, and the high thermal conductivity of the alloy is used to improve the thermal conductivity of the phase change heat storage self-flowing refractory castable and make it have higher thermal shock stability.
  • the phase change heat storage artesian refractory castable stores heat through sensible heat storage and latent heat storage; when the temperature in the furnace decreases, phase change storage Thermal self-flowing refractory castables release sensible heat storage and latent heat storage and transfer the stored heat to the working lining, reducing the temperature gradient of the working lining, alleviating thermal stress, and improving the thermal shock resistance of the working lining.
  • phase change heat storage self-flowing refractory castable prepared by the present invention has been tested: after drying at 110°C ⁇ 24h, normal temperature flexural strength is 10-18MPa, normal temperature compressive strength is 60 ⁇ 75MPa; under 1200°C ⁇ 3h condition After sintering, the flexural strength at room temperature is 20-29MPa, the compressive strength at room temperature is 130-165MPa, the thermal conductivity at 1000°C is 1.00 ⁇ 1.70W/(m ⁇ K), after 1000°C air cooling cycle 10 times, the surface No damage, no obvious cracks, normal temperature flexural strength loss rate ⁇ 20%.
  • the process of the present invention is simple, and the prepared phase change heat storage self-flowing refractory castable has high heat storage density, high strength, good thermal shock resistance, high thermal efficiency and stable temperature when applied at high temperature.
  • the preparation method of the alloy@ceramic large capsule is:
  • the alloy@ceramic large capsule is composed of a ceramic spherical shell and an alloy ball, and the alloy ball is placed in the ceramic spherical shell.
  • the diameter of the alloy ball is 2-18 mm.
  • the preparation method of the ceramic spherical shell is:
  • 80 ⁇ 90wt% of corundum fine powder, 5 ⁇ 15wt% of mullite fine powder, 3 ⁇ 5wt% of ⁇ -alumina powder and 1-3wt% of silica fine powder are ball milled in a ball mill for 5 ⁇ 8min, A mixed powder is obtained; zirconium dioxide sol accounting for 5-20 wt% of the mixed powder is added to the mixed powder, and the mixture is stirred uniformly to obtain a mixed mud. Then, an injection molding machine is used to shape the mixed mud to obtain a hemispherical shell mud blank with threads.
  • the hemispherical shell mud body with threads is dried at 110-180°C for 24 ⁇ 36h, heated to 1350 ⁇ 1650°C at a rate of 3 ⁇ 5°C/min, and kept for 2 ⁇ 4h to make belt Threaded ceramic hemispherical shell.
  • the ceramic hemispherical shells with threads are two types: ceramic hemispherical shells with internal threads and ceramic hemispherical shells with external threads; ceramic hemispherical shells with internal threads and ceramic hemispherical shells with external threads
  • the threaded ceramic hemispherical shell is connected to a hollow sphere through the thread to obtain a ceramic spherical shell.
  • the annular inner wall at the edge of the hemispherical ceramic shell with internal threads is provided with internal threads
  • the annular outer wall at the edge of the hemispherical ceramic shell with external threads is provided with external threads.
  • the outer diameter and wall thickness of the ceramic hemispherical shell with internal threads and the ceramic hemispherical shell with external threads are the same, the wall thickness is 0.6-2mm, and the outer diameter is 3.5-24mm;
  • the nominal diameter of the internal thread and the external thread is 2.7-21 mm.
  • the Al 2 O 3 content of the fine corundum powder is ⁇ 98wt%; the particle size of the fine corundum powder is ⁇ 15 ⁇ m;
  • the mullite fine powder Al 2 O 3 content ⁇ 70wt%, SiO 2 content ⁇ 22wt%; the particle size of the mullite fine powder ⁇ 15 ⁇ m;
  • the zirconia sol has a solid content of 30 wt% and a particle size of 20-50 nm.
  • the gradation of the alumina particles is: the alumina particles with a particle size of less than 3 mm and greater than or equal to 1 mm account for 65 to 70 wt%; the alumina particles with a particle size of less than 1 mm and greater than or equal to 0.088 mm account for 30 to 35 wt% of the alumina particles; The Al 2 O 3 ⁇ 85wt%.
  • the particle gradation of the said alloy@ceramic large capsule is: 15-25wt% of alloy@ceramics large capsule with an outer diameter of less than 10mm and greater than or equal to 3.5mm, and alloy@ceramics large capsule 5 with an outer diameter of less than 18mm and greater than or equal to 10mm ⁇ 15wt%; the outer diameter is less than or equal to 24mm and greater than or equal to 18mm accounted for 65 ⁇ 75wt% of the alloy@ceramic large capsule.
  • the content of Al 2 O 3 in the fine alumina powder is greater than or equal to 85 wt%, and the particle size is less than or equal to 8 ⁇ m.
  • the content of Al 2 O 3 in the ⁇ -alumina powder is greater than or equal to 97 wt%, and the particle size is less than or equal to 8 ⁇ m.
  • the content of SiO 2 in the silicon micropowder is greater than or equal to 92 wt%, and the particle size is less than or equal to 0.6 ⁇ m.
  • the chemical composition of the pure calcium aluminate cement is: Al 2 O 3 is 50-60 wt%, SiO 2 ⁇ 8wt%, Fe 2 O 3 ⁇ 2.5wt%; the particle size of the pure calcium aluminate cement is less than or equal to 10 ⁇ m.
  • the preparation method described in this example is:
  • alumina particles Based on 55-60 parts by mass of alumina particles, 25-30 parts by mass of fine alumina powder, 6-7 parts by mass of ⁇ -alumina powder, 1-3 parts by mass of fine silicon powder, and 4-6 parts by mass of aluminum Calcium acid cement is used as the raw material and mixed to obtain the mixture.
  • the alloy ball is an aluminum-silicon-nickel alloy ball; the aluminum-silicon-nickel alloy ball is made of an aluminum-silicon-nickel alloy rod.
  • the water reducing agent is sodium tripolyphosphate.
  • phase change heat storage self-flowing refractory castable prepared in this example is tested: after drying at 110°C ⁇ 24h, the normal temperature flexural strength is 10 ⁇ 15.1MPa, and the normal temperature compressive strength is 60 ⁇ 71.9MPa; at 1200°C ⁇ After firing under 3h conditions, normal temperature flexural strength is 20-26.2MPa, normal temperature compressive strength is 130-154MPa, thermal conductivity at 1000°C is 1.21 ⁇ 1.70W/(m ⁇ K), after 1000°C air cooling cycle 10 Secondly, the surface has no damage and no obvious cracks, and the loss rate of flexural strength at room temperature is 10 to 16.8%.
  • the preparation method described in this example is:
  • alumina particles 20 to 25 parts by mass of fine alumina powder, 7 to 8 parts by mass of ⁇ -alumina powder, 1 to 3 parts by mass of fine silicon powder, and 4 to 6 parts by mass of aluminum Calcium acid cement is used as the raw material and mixed to obtain the mixture.
  • the alloy balls are Al-Si-Fe alloy balls; Al-Si-Fe alloy balls are made of Al-Si-Fe alloy rods.
  • the water reducing agent is sodium hexametaphosphate.
  • phase change heat storage self-flowing refractory castable prepared in this example is tested: after drying at 110°C ⁇ 24h, the normal temperature flexural strength is 11.1 ⁇ 16.3MPa, and the normal temperature compressive strength is 62.3 ⁇ 74.2MPa; at 1200°C ⁇ After firing under 3h conditions, normal temperature flexural strength is 21.3 ⁇ 27.1MPa, normal temperature compression strength is 133 ⁇ 160MPa, thermal conductivity at 1000°C is 1.30 ⁇ 1.68W/(m ⁇ K), after 1000°C air cooling cycle 10 Second, the surface has no damage or obvious cracks, and the loss rate of flexural strength at room temperature is 11.2 to 17.9%.
  • the preparation method described in this example is:
  • the alloy ball is an aluminum-silicon alloy ball; the aluminum-silicon alloy ball is made of an aluminum-silicon alloy rod.
  • the water reducing agent is sodium tetrapolyphosphate.
  • phase change heat storage self-flowing refractory castable prepared in this example is tested: after drying at 110°C ⁇ 24h, the normal temperature flexural strength is 12.3 ⁇ 17.2MPa, and the normal temperature compressive strength is 61.1 ⁇ 73.1MPa; at 1200°C ⁇ After firing in 3h, normal temperature flexural strength is 23.1 ⁇ 29MPa, normal temperature compressive strength is 136 ⁇ 162MPa, thermal conductivity at 1000°C is 1.11 ⁇ 1.58W/(m ⁇ K), after 1000°C air cooling cycle 10 times , The surface has no damage, no obvious cracks, and the loss rate of flexural strength at room temperature is 12.5 to 19.1%.
  • the preparation method described in this example is:
  • the alloy ball is an aluminum-silicon alloy ball; the aluminum-silicon alloy ball is made of an aluminum-silicon alloy rod.
  • the water reducing agent is a mixture of two or three of sodium tripolyphosphate, sodium tetrapolyphosphate and sodium hexametaphosphate.
  • phase change heat storage self-flowing refractory castable prepared in this example has been tested: after drying at 110°C ⁇ 24h, the normal temperature flexural strength is 13.2-18MPa, and the normal temperature compressive strength is 62.9 ⁇ 75MPa; at 1200°C ⁇ 3h After sintering, the normal temperature flexural strength is 22.3 ⁇ 27.9MPa, the normal temperature compression strength is 140 ⁇ 165MPa, the thermal conductivity at 1000°C is 1.00 ⁇ 1.48W/(m ⁇ K), after 1000°C air cooling cycle 10 times, The surface has no damage and no obvious cracks, and the loss rate of flexural strength at room temperature is 13.1-20%.
  • the alloy@ceramics large capsule is placed in the mold to obtain the castable skeleton; the water-reducing agent and water are added to the mixed raw materials to obtain the alumina-based self-flowing castable; then the alumina-based self-flowing
  • the type castable is poured into the castable frame, and the phase change heat storage self-flowing refractory castable is prepared, and the process is simple.
  • the alloy@ceramics large capsule used in this embodiment can effectively prevent the alloy in the alloy@ceramics capsule from reacting with the high-temperature environment, and control the volume change during the phase transformation of the alloy, thereby significantly prolonging the cycle stability of the alloy phase transformation heat storage Performance and temperature stability of phase-change heat storage self-flowing refractory castables.
  • the phase-change heat storage artesian refractory castable prepared by this specific embodiment is in the high-temperature service process, the matrix material is sintered to achieve densification, so that the strength of the castable is significantly improved; when the service temperature reaches the melting point of the alloy, the alloy@ceramics large capsule The alloy begins to melt and stores heat in the form of latent heat of phase change.
  • the advantages of large latent heat of phase change, good heat transfer performance and low degree of subcooling are used to significantly improve the performance of phase change heat storage self-flowing refractory castables in high temperature applications. Heat storage density and thermal efficiency.
  • the alloy@ceramic large capsule is used as the aggregate, and the high thermal conductivity of the alloy is used to improve the thermal conductivity of the phase-change heat storage self-flowing refractory castable and make it have higher thermal shock stability.
  • the phase change heat storage artesian refractory castable stores heat through sensible heat storage and latent heat storage; when the temperature in the furnace decreases, phase change storage Thermal self-flowing refractory castables release sensible heat storage and latent heat storage and transfer the stored heat to the working lining, reducing the temperature gradient of the working lining, alleviating thermal stress, and improving the thermal shock resistance of the working lining.
  • phase change heat storage self-flowing refractory castable prepared in this embodiment has been tested: after drying at 110°C ⁇ 24h, the normal temperature flexural strength is 10-18MPa, and the normal temperature compressive strength is 60 ⁇ 75MPa; at 1200°C ⁇ After firing under 3h conditions, normal temperature flexural strength is 20-29MPa, normal temperature compressive strength is 130-165MPa, thermal conductivity at 1000°C is 1.00 ⁇ 1.70W/(m ⁇ K), after 1000°C air cooling cycle 10 times , The surface has no damage, no obvious cracks, and the loss rate of flexural strength at room temperature is ⁇ 20%.
  • the process in this specific embodiment is simple, and the prepared phase change heat storage self-flowing refractory castable has high heat storage density, high strength, good thermal shock resistance, high thermal efficiency and temperature stability in high-temperature applications.

Abstract

一种相变蓄热自流式耐火浇注料及其制备方法。以55~75质量份的矾土颗粒、10~30质量份的矾土细粉、6~10质量份的α-氧化铝粉、1~3质量份的硅微粉和4~6质量份的铝酸钙水泥为原料,混合得混合料。向混合料中加入0.1~0.3质量份的减水剂和6~7质量份的水,搅拌均匀,即得矾土基自流式浇注料;再将55~75质量份的合金@陶瓷大胶囊颗粒堆积于模具中,得到浇注料骨架;然后将所述矾土基自流式浇注料浇注到所述浇注料骨架中,制得相变蓄热自流式耐火浇注料。其工艺简单,浇注料蓄热密度大、强度高、抗热震性能好、高温应用时热效率高、温度稳定。

Description

一种相变蓄热自流式耐火浇注料及其制备方法 技术领域
本发明属于自流式耐火浇注料技术领域。具体涉及一种相变蓄热自流式耐火浇注料及其制备方法。
背景技术
随着人类社会经济的发展及能耗增加,开发新能源及提高能源利用效率已成为各国研究开发的重点。利用储热材料实现能量供应与需求的平衡,能有效提高能源利用效率,达到节能环保的目的,在能源、航天、建筑、农业、化工等诸多领域具有广阔的应用前景。
储热材料通常有三种方式储存热能:显热储热、潜热储热和化学反应储热。其中潜热储热也称为相变蓄热,在材料相变过程中吸收或释放热量,具有储热密度大、体积小、温度稳定和易于控制等优点而得到了广泛应用。如:(1)“一种中温用相变蓄热材料及其制备方法”(CN104559936A)专利技术,以乙二酸为蓄热材料,稀土氧化物为耐热改性剂,石墨为导热增强材料,所制备的蓄热材料导热性和热稳定性良好,但是使用温度低,不能用于高温热能的利用。(2)“一种核壳结构的高温相变蓄热材料的制备”(CN109054758A)专利技术,将铝粉加入氯化镍溶液中,滴加氟化氨溶液,焙烧,即得到核壳结构的Al@NiO-Al 2O 3高温相变蓄热材料,所制备的Al@NiO-Al 2O 3高温相变蓄热材料虽具有较大的熔化热和高导热系数,但是镍盐有致癌性,对人体有害而限制了应用。(3)“一种核壳结构的高温相变蓄热材料的制备”(CN106367035A)专利技术,以NaCl为相变材料,制得了相变温度为800℃的高温相变蓄热材料,但高温下NaCl熔盐具有较强的腐蚀性,且其导热系数低,对温度的调控能力不足。
耐火浇注料是用于高温工业的支撑材料,因其成本低,施工方便,不需要高温烧成而得到了广泛应用。而常用的耐火浇注料主要是显然储热,储热密度低,且不具备调控温度的能力。
发明内容
本发明旨在克服现有技术的缺陷,目的在于提供一种工艺简单的相变蓄热自流式耐火浇注料制备方法;用该方法制备的相变蓄热自流式耐火浇注料蓄热密度大、强度高、抗热震性能好、高温应用时热效率高和温度稳定。
为实现上述目的,本发明采用的技术方案是:
以55~75质量份的矾土颗粒、10~30质量份的矾土细粉、6~10质量份的α-氧化铝粉、1~3质量份的硅微粉和4~6质量份的铝酸钙水泥为原料,混合,即得混合料。
向所述混合料中加入0.1~0.3质量份的减水剂和6~7质量份的水,搅拌均匀,即得矾土基自流式浇注料;再将55~75质量份的合金@陶瓷大胶囊颗粒堆积于模具中,得到浇注料骨架;然后将所述矾土基自流式浇注料浇注到所述浇注料骨架中,制得相变蓄热自流式耐火浇注料。
所述合金@陶瓷大胶囊的制备方法是:
所述合金@陶瓷大胶囊由陶瓷球形壳体和合金球组成,所述合金球置于所述陶瓷 球形壳体内。
所述合金球的直径为2~18mm,合金球为铝硅镍合金球、铝硅铁合金球、铝硅合金球中的一种;铝硅镍合金球、铝硅铁合金球、铝硅合金球由各自对应的铝硅镍合金棒、铝硅铁合金棒和铝硅合金棒制成。
所述陶瓷球形壳体的制备方法是:
将80~90wt%的刚玉细粉、5~15wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉和1~3wt%的二氧化硅微粉在球磨机内球磨5~8min,得到混合粉料;向所述混合粉料中加入占所述混合粉料5~20wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料。再采用注塑成型机将所述混合泥料成型,得到带有螺纹的半球形壳体泥坯。然后将所述带有螺纹的半球形壳体泥坯于110~180℃条件下干燥24~36h,以3~5℃/min的速率升温至1350~1650℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体。
所述带有螺纹的陶瓷半球形壳体为带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体两种;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体通过螺纹连接为空心球体,即得陶瓷球形壳体。
所述带有内螺纹的半球形陶瓷壳体的边缘处的环形内壁设有内螺纹,带有外螺纹的半球形陶瓷壳体的边缘处的环形外壁设有外螺纹。带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体的外径和壁厚均相同,所述壁厚为0.6~2mm,所述外径为3.5~24mm;所述内螺纹和所述外螺纹的公称直径为2.7~21mm。
所述刚玉细粉的Al 2O 3含量≥98wt%;刚玉细粉的粒径≤15μm;
所述莫来石细粉:Al 2O 3含量≥70wt%,SiO 2含量≥22wt%;莫来石细粉的粒径≤15μm;
所述二氧化锆溶胶的固含量30wt%,粒度20~50nm。
所述矾土颗粒的级配是:粒径小于3mm且大于等于1mm的占矾土颗粒65~70wt%,粒径小于1mm且大于等于0.088mm的占矾土颗粒30~35wt%;矾土颗粒的Al 2O 3≥85wt%。
所述合金@陶瓷大胶囊的颗粒级配是:外径小于10mm且大于等于3.5mm的占合金@陶瓷大胶囊15~25wt%,外径小于18mm且大于等于10mm的占合金@陶瓷大胶囊5~15wt%;外径小于等于24mm且大于等于18mm的占合金@陶瓷大胶囊65~75wt%。
所述矾土细粉中的Al 2O 3含量≥85wt%,粒径≤8μm。
所述α-氧化铝粉中的Al 2O 3含量≥97wt%,粒径≤8μm。
所述硅微粉中的SiO 2含量≥92wt%,粒径≤0.6μm。
所述纯铝酸钙水泥的化学成分是:Al 2O 3为50~60wt%,SiO 2<8wt%,Fe 2O 3<2.5wt%;纯铝酸钙水泥的粒径≤10μm。
所述减水剂为三聚磷酸钠、四聚磷酸钠和六偏磷酸钠的一种以上。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
本发明将合金@陶瓷大胶囊置于模具中,得到浇注料骨架;再向混合后的原料中加入减水剂和水,即得矾土基自流式浇注料;然后将矾土基自流式浇注料浇注到浇注料骨架中,制得相变蓄热自流式耐火浇注料,工艺简单。
本发明采用的合金@陶瓷大胶囊能够有效阻止合金@陶瓷大胶囊中的合金与高温环境发生反应,控制合金相变过程中的体积变化,从而能显著延长合金相变蓄热的周期稳 定性和相变蓄热自流式耐火浇注料的温度稳定性。
本发明制备的相变蓄热自流式耐火浇注料在高温服役过程中,基质料烧结实现致密化,使浇注料的强度明显提高;当服役温度达到合金熔点时,合金@陶瓷大胶囊内的合金开始熔化,以相变潜热的方式存储热量,利用合金相变潜热大、传热性能良好和过冷度小的优点,显著提高了相变蓄热自流式耐火浇注料在高温使用时的蓄热密度和热效率。
本发明采用的合金@陶瓷大胶囊作为骨料,利用合金导热系数高的特点,提高了相变蓄热自流式耐火浇注料的导热系数,使其具有较高的热震稳定性。应用于高温工业窑炉的永久衬时,当炉内温度升高时,相变蓄热自流式耐火浇注料通过显热储热和潜热储热存储热量;当炉内温度降低时,相变蓄热自流式耐火浇注料释放显热储热和潜热储热所存储的热量传递给工作衬,降低工作衬的温度梯度,缓解热应力,提高工作衬的抗热震性能。
本发明制备的相变蓄热自流式耐火浇注料经检测:在110℃×24h条件下干燥后,常温抗折强度为10~18MPa,常温耐压强度为60~75MPa;在1200℃×3h条件下烧后,常温抗折强度为20~29MPa,常温耐压强度为130~165MPa,1000℃下的导热系数为1.00~1.70W/(m·K),经1000℃风冷循环10次,表面无破损、无明显裂纹,常温抗折强度损失率≤20%。
因此,本发明工艺简单,所制备的相变蓄热自流式耐火浇注料蓄热密度大、强度高、抗热震性能好、高温应用时热效率高和温度稳定。
具体实施方式
下面结合具体实施方式对本发明做进一步的描述,并非对其保护的限制。
为避免重复,先将本具体实施方式所采用的的原料统一描述如下,实施例中不再赘述:
所述合金@陶瓷大胶囊的制备方法是:
所述合金@陶瓷大胶囊由陶瓷球形壳体和合金球组成,所述合金球置于所述陶瓷球形壳体内。
所述合金球的直径为2~18mm。
所述陶瓷球形壳体的制备方法是:
将80~90wt%的刚玉细粉、5~15wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉和1~3wt%的二氧化硅微粉在球磨机内球磨5~8min,得到混合粉料;向所述混合粉料中加入占所述混合粉料5~20wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料。再采用注塑成型机将所述混合泥料成型,得到带有螺纹的半球形壳体泥坯。然后将所述带有螺纹的半球形壳体泥坯于110~180℃条件下干燥24~36h,以3~5℃/min的速率升温至1350~1650℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体。
所述带有螺纹的陶瓷半球形壳体为带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体两种;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体通过螺纹连接为空心球体,即得陶瓷球形壳体。
所述带有内螺纹的半球形陶瓷壳体的边缘处的环形内壁设有内螺纹,带有外螺纹的半球形陶瓷壳体的边缘处的环形外壁设有外螺纹。带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体的外径和壁厚均相同,所述壁厚为0.6~2mm,所述外径为3.5~24mm;所述内螺纹和所述外螺纹的公称直径为2.7~21mm。
所述刚玉细粉的Al 2O 3含量≥98wt%;刚玉细粉的粒径≤15μm;
所述莫来石细粉:Al 2O 3含量≥70wt%,SiO 2含量≥22wt%;莫来石细粉的粒径≤15μm;
所述二氧化锆溶胶的固含量30wt%,粒度20~50nm。
所述矾土颗粒的级配是:粒径小于3mm且大于等于1mm的占矾土颗粒65~70wt%,粒径小于1mm且大于等于0.088mm的占矾土颗粒30~35wt%;矾土颗粒的Al 2O 3≥85wt%。
所述合金@陶瓷大胶囊的颗粒级配是:外径小于10mm且大于等于3.5mm的占合金@陶瓷大胶囊15~25wt%,外径小于18mm且大于等于10mm的占合金@陶瓷大胶囊5~15wt%;外径小于等于24mm且大于等于18mm的占合金@陶瓷大胶囊65~75wt%。
所述矾土细粉中的Al 2O 3含量≥85wt%,粒径≤8μm。
所述α-氧化铝粉中的Al 2O 3含量≥97wt%,粒径≤8μm。
所述硅微粉中的SiO 2含量≥92wt%,粒径≤0.6μm。
所述纯铝酸钙水泥的化学成分是:Al 2O 3为50~60wt%,SiO 2<8wt%,Fe 2O 3<2.5wt%;纯铝酸钙水泥的粒径≤10μm。
实施例1
一种相变蓄热自流式耐火浇注料及其制备方法。本实例所述制备方法是:
以55~60质量份的矾土颗粒、25~30质量份的矾土细粉、6~7质量份的α-氧化铝粉、1~3质量份的硅微粉和4~6质量份的铝酸钙水泥为原料,混合,即得混合料。
向所述混合料中加入0.1~0.3质量份的减水剂和6~7质量份的水,搅拌均匀,即得矾土基自流式浇注料;再将70~75质量份的合金@陶瓷大胶囊颗粒堆积于模具中,得到浇注料骨架;然后将所述矾土基自流式浇注料浇注到所述浇注料骨架中,制得相变蓄热自流式耐火浇注料。
所述合金球为铝硅镍合金球;铝硅镍合金球由铝硅镍合金棒制成。
所述减水剂为三聚磷酸钠。
本实例制备的相变蓄热自流式耐火浇注料经检测:在110℃×24h条件下干燥后,常温抗折强度为10~15.1MPa,常温耐压强度为60~71.9MPa;在1200℃×3h条件下烧后,常温抗折强度为20~26.2MPa,常温耐压强度为130~154MPa,1000℃下的导热系数为1.21~1.70W/(m·K),经1000℃风冷循环10次,表面无破损、无明显裂纹,常温抗折强度损失率10~16.8%。
实施例2
一种相变蓄热自流式耐火浇注料及其制备方法。本实例所述制备方法是:
以60~65质量份的矾土颗粒、20~25质量份的矾土细粉、7~8质量份的α-氧化铝粉、1~3质量份的硅微粉和4~6质量份的铝酸钙水泥为原料,混合,即得混合料。
向所述混合料中加入0.1~0.3质量份的减水剂和6~7质量份的水,搅拌均匀,即得矾土基自流式浇注料;再将65~70质量份的合金@陶瓷大胶囊颗粒堆积于模具中,得到浇注料骨架;然后将所述矾土基自流式浇注料浇注到所述浇注料骨架中,制得相变蓄热自流式耐火浇注料。
所述合金球为铝硅铁合金球;铝硅铁合金球由铝硅铁合金棒制成。
所述减水剂为六偏磷酸钠。
本实例制备的相变蓄热自流式耐火浇注料经检测:在110℃×24h条件下干燥后,常温抗折强度为11.1~16.3MPa,常温耐压强度为62.3~74.2MPa;在1200℃×3h条件下烧后,常温抗折强度为21.3~27.1MPa,常温耐压强度为133~160MPa,1000℃下的导热系数为1.30~1.68W/(m·K),经1000℃风冷循环10次,表面无破损、无明显裂纹,常温抗折强度损失率11.2~17.9%。
实施例3
一种相变蓄热自流式耐火浇注料及其制备方法。本实例所述制备方法是:
以65~70质量份的矾土颗粒、15~20质量份的矾土细粉、8~9质量份的α-氧化铝粉、1~3质量份的硅微粉和4~6质量份的铝酸钙水泥为原料,混合,即得混合料。
向所述混合料中加入0.1~0.3质量份的减水剂和6~7质量份的水,搅拌均匀,即得矾土基自流式浇注料;再将60~65质量份的合金@陶瓷大胶囊颗粒堆积于模具中,得到浇注料骨架;然后将所述矾土基自流式浇注料浇注到所述浇注料骨架中,制得相变蓄热自流式耐火浇注料。
所述合金球为铝硅合金球;铝硅合金球由铝硅合金棒制成。
所述减水剂为四聚磷酸钠。
本实例制备的相变蓄热自流式耐火浇注料经检测:在110℃×24h条件下干燥后,常温抗折强度为12.3~17.2MPa,常温耐压强度为61.1~73.1MPa;在1200℃×3h条件下烧后,常温抗折强度为23.1~29MPa,常温耐压强度为136~162MPa,1000℃下的导热系数为1.11~1.58W/(m·K),经1000℃风冷循环10次,表面无破损、无明显裂纹,常温抗折强度损失率12.5~19.1%。
实施例4
一种相变蓄热自流式耐火浇注料及其制备方法。本实例所述制备方法是:
以70~75质量份的矾土颗粒、10~15质量份的矾土细粉、9~10质量份的α-氧化铝粉、1~3质量份的硅微粉和4~6质量份的铝酸钙水泥为原料,混合,即得混合料。
向所述混合料中加入0.1~0.3质量份的减水剂和6~7质量份的水,搅拌均匀,即得矾土基自流式浇注料;再将55~60质量份的合金@陶瓷大胶囊颗粒堆积于模具中,得到浇注料骨架;然后将所述矾土基自流式浇注料浇注到所述浇注料骨架中,制得相变蓄热自流式耐火浇注料。
所述合金球为铝硅合金球;铝硅合金球由铝硅合金棒制成。
所述减水剂为三聚磷酸钠、四聚磷酸钠和六偏磷酸钠中的两种或三种的混合物。
本实例制备的相变蓄热自流式耐火浇注料经检测:在110℃×24h条件下干燥后,常温抗折强度为13.2~18MPa,常温耐压强度为62.9~75MPa;在1200℃×3h条件下烧后,常温抗折强度为22.3~27.9MPa,常温耐压强度为140~165MPa,1000℃下的导热系数为1.00~1.48W/(m·K),经1000℃风冷循环10次,表面无破损、无明显裂纹,常温抗折强度损失率13.1~20%。
本具体实施方式与现有技术相比具有如下积极效果:
本具体实施方式将合金@陶瓷大胶囊置于模具中,得到浇注料骨架;再向混合后的原料中加入减水剂和水,即得矾土基自流式浇注料;然后将矾土基自流式浇注料浇注到浇注料骨架中,制得相变蓄热自流式耐火浇注料,工艺简单。
本具体实施方式采用的合金@陶瓷大胶囊能够有效阻止合金@陶瓷大胶囊中的合金与高温环境发生反应,控制合金相变过程中的体积变化,从而能显著延长合金相变蓄热的周期稳定性和相变蓄热自流式耐火浇注料的温度稳定性。
本具体实施方式制备的相变蓄热自流式耐火浇注料在高温服役过程中,基质料烧结实现致密化,使浇注料的强度明显提高;当服役温度达到合金熔点时,合金@陶瓷大胶囊内的合金开始熔化,以相变潜热的方式存储热量,利用合金相变潜热大、传热性能良好和过冷度小的优点,显著提高了相变蓄热自流式耐火浇注料在高温应用时的蓄热密度和热效率。
本具体实施方式采用的合金@陶瓷大胶囊作为骨料,利用合金导热系数高的特点,提高了相变蓄热自流式耐火浇注料的导热系数,使其具有较高的热震稳定性。应用于高温工业窑炉的永久衬时,当炉内温度升高时,相变蓄热自流式耐火浇注料通过显热储热和潜热储热存储热量;当炉内温度降低时,相变蓄热自流式耐火浇注料释放显热储热和潜热储热所存储的热量传递给工作衬,降低工作衬的温度梯度,缓解热应力,提高工作衬的抗热震性能。
本具体实施方式制备的相变蓄热自流式耐火浇注料经检测:在110℃×24h条件下干燥后,常温抗折强度为10~18MPa,常温耐压强度为60~75MPa;在1200℃×3h条件下烧后,常温抗折强度为20~29MPa,常温耐压强度为130~165MPa,1000℃下的导热系数为1.00~1.70W/(m·K),经1000℃风冷循环10次,表面无破损、无明显裂纹,常温抗折强度损失率≤20%。
因此,本具体实施方式工艺简单,所制备的相变蓄热自流式耐火浇注料蓄热密度大、强度高、抗热震性能好、高温应用时热效率高和温度稳定。

Claims (9)

  1. 一种相变蓄热自流式耐火浇注料的制备方法,其特征在于以55~75质量份的矾土颗粒、10~30质量份的矾土细粉、6~10质量份的α-氧化铝粉、1~3质量份的硅微粉和4~6质量份的铝酸钙水泥为原料,混合,即得混合料;
    向所述混合料中加入0.1~0.3质量份的减水剂和6~7质量份的水,搅拌均匀,即得矾土基自流式浇注料;再将55~75质量份的合金@陶瓷大胶囊颗粒堆积于模具中,得到浇注料骨架;然后将所述矾土基自流式浇注料浇注到所述浇注料骨架中,制得相变蓄热自流式耐火浇注料;
    所述合金@陶瓷大胶囊的制备方法是:
    所述合金@陶瓷大胶囊由陶瓷球形壳体和合金球组成,所述合金球置所述于陶瓷球形壳体内;
    所述合金球的直径为2~18mm,合金球为铝硅镍合金球、铝硅铁合金球、铝硅合金球中的一种;铝硅镍合金球、铝硅铁合金球、铝硅合金球由各自对应的铝硅镍合金棒、铝硅铁合金棒和铝硅合金棒制成;
    所述陶瓷球形壳体的制备方法是:
    将80~90wt%的刚玉细粉、5~15wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉和1~3wt%的二氧化硅微粉在球磨机内球磨5~8min,得到混合粉料;向所述混合粉料中加入占所述混合粉料5~20wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料;再采用注塑成型机将所述混合泥料成型,得到带有螺纹的半球形壳体泥坯;然后将所述带有螺纹的半球形壳体泥坯于110~180℃条件下干燥24~36h,以3~5℃/min的速率升温至1350~1650℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体;
    所述带有螺纹的陶瓷半球形壳体为带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体两种;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体通过螺纹连接为空心球体,即得陶瓷球形壳体;
    所述带有内螺纹的半球形陶瓷壳体的边缘处的环形内壁设有内螺纹,带有外螺纹的半球形陶瓷壳体的边缘处的环形外壁设有外螺纹;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体的外径和壁厚均相同,所述壁厚为0.6~2mm,所述外径为3.5~24mm;所述内螺纹和所述外螺纹的公称直径为2.7~21mm;
    所述刚玉细粉的Al 2O 3含量≥98wt%;刚玉细粉的粒径≤15μm;
    所述莫来石细粉:Al 2O 3含量≥70wt%,SiO 2含量≥22wt%;莫来石细粉的粒径≤15μm;
    所述二氧化锆溶胶的固含量30wt%,粒度20~50nm。
  2. 根据权利要求1所述的相变蓄热自流式耐火浇注料的制备方法,其特征在于所述矾土颗粒的级配是:粒径小于3mm且大于等于1mm的占矾土颗粒65~70wt%,粒径小于1mm且大于等于0.088mm的占矾土颗粒30~35wt%;矾土颗粒的Al 2O 3≥85wt%。
  3. 根据权利要求1所述的相变蓄热自流式耐火浇注料的制备方法,其特征在于所述合金@陶瓷大胶囊的颗粒级配是:外径小于10mm且大于等于3.5mm的占合金@陶瓷大胶囊15~25wt%,外径小于18mm且大于等于10mm的占合金@陶瓷大胶囊5~15wt%;外径小于等于24mm且大于等于18mm的占合金@陶瓷大胶囊65~75wt%。
  4. 根据权利要求1所述的相变蓄热自流式耐火浇注料的制备方法,其特征在于所述矾土细粉中的Al 2O 3含量≥85wt%,粒径≤8μm。
  5. 根据权利要求1所述的相变蓄热自流式耐火浇注料的制备方法,其特征在于所述α-氧化铝粉中的Al 2O 3含量≥97wt%,粒径≤8μm。
  6. 根据权利要求1所述的相变蓄热自流式耐火浇注料的制备方法,其特征在于所述硅微粉中的SiO 2含量≥92wt%,粒径≤0.6μm。
  7. 根据权利要求1所述的相变蓄热自流式耐火浇注料的制备方法,其特征在于所述纯铝酸钙水泥的化学成分是:Al 2O 3为50~60wt%,SiO 2<8wt%,Fe 2O 3<2.5wt%;纯铝酸钙水泥的粒径≤10μm。
  8. 根据权利要求1所述的相变蓄热自流式耐火浇注料的制备方法,其特征在于所述减水剂为三聚磷酸钠、四聚磷酸钠和六偏磷酸钠的一种以上。
  9. 一种相变蓄热自流式耐火浇注料,其特征在于所述相变蓄热自流式耐火浇注料是根据权利要求1~8项中任一项所述的相变蓄热自流式耐火浇注料的制备方法所制备的相变蓄热自流式耐火浇注料。
PCT/CN2020/123536 2020-01-20 2020-10-26 一种相变蓄热自流式耐火浇注料及其制备方法 WO2021147411A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010067291.1A CN111196735B (zh) 2020-01-20 2020-01-20 一种相变蓄热自流式耐火浇注料及其制备方法
CN202010067291.1 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021147411A1 true WO2021147411A1 (zh) 2021-07-29

Family

ID=70745182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123536 WO2021147411A1 (zh) 2020-01-20 2020-10-26 一种相变蓄热自流式耐火浇注料及其制备方法

Country Status (2)

Country Link
CN (1) CN111196735B (zh)
WO (1) WO2021147411A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409418A (zh) * 2022-01-19 2022-04-29 宜兴市锅炉密封工程有限公司 一种高强度耐磨浇注料及其制备方法和应用
CN114605141A (zh) * 2022-01-24 2022-06-10 郑州振东科技有限公司 一种钢包保温耐蚀永久层浇注料的制备方法
CN114656264A (zh) * 2022-02-10 2022-06-24 安徽宁火新材料有限公司 一种盐浴淬火炉用高强度浇注料
CN115093206A (zh) * 2022-05-11 2022-09-23 新密市鸿瑞冶金建材有限责任公司 一种台包内衬的专用浇注料
CN115141008A (zh) * 2022-07-25 2022-10-04 河北国亮新材料股份有限公司 一种长寿命摆动沟浇注料及其制备方法
CN115321999A (zh) * 2022-09-06 2022-11-11 宜兴市隆昌耐火材料有限公司 一种轻质耐火锆刚玉复合浇注料的制备方法
CN115448685A (zh) * 2022-08-29 2022-12-09 中冶武汉冶金建筑研究院有限公司 用于热风炉炉顶的耐酸灌注料及其制备方法和施工方法
CN115536411A (zh) * 2022-11-01 2022-12-30 江苏新时高温材料股份有限公司 高纯度堆积密度石化填充料用板状刚玉球及其制备方法
CN115611643A (zh) * 2022-09-02 2023-01-17 五冶集团上海有限公司 一种干熄焦炉斜道支柱用新型预制块及其制备方法
CN115724672A (zh) * 2022-11-28 2023-03-03 云南濮耐昆钢高温材料有限公司 一种钢包复合下水口及其制备方法
CN117285335A (zh) * 2023-11-24 2023-12-26 山东理工大学 高温相变储能陶瓷材料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111196735B (zh) * 2020-01-20 2021-12-21 武汉科技大学 一种相变蓄热自流式耐火浇注料及其制备方法
CN112038060B (zh) * 2020-09-08 2023-07-07 国网上海市电力公司 一种配电变压器过载能力提升方法
CN112321283B (zh) * 2020-10-26 2022-03-15 武汉科技大学 一种复合相变蓄热球及其制备方法
CN112480873B (zh) * 2020-11-30 2021-07-20 武汉科技大学 一种刚玉-莫来石复合壳层相变蓄热球及其制备方法
CN112521137B (zh) * 2020-12-04 2022-04-01 武汉科技大学 一种晶须增强复合相变蓄热球及其制备方法
CN113321494B (zh) * 2021-06-11 2022-10-14 武汉理工大学 一种抗氧化、长寿命吸储热一体的刚玉-莫来石陶瓷及其制备方法
CN115747601B (zh) * 2022-12-06 2024-01-02 浙江红鹰集团股份有限公司 一种相变蓄热耐火砖的制备方法及耐火砖

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139209A (zh) * 2007-08-20 2008-03-12 武汉科技大学 一种耐火自流浇注料及其制备方法
CN101445382A (zh) * 2008-12-31 2009-06-03 南京航空航天大学 仿生自愈合相变吸热a1微胶囊/陶瓷基复合防热材料及制备方法
DE102012111707A1 (de) * 2012-12-03 2014-06-05 Bernhard Sixt Latentwärmespeicher und Verfahren zu seiner Herstellung
CN106316423A (zh) * 2016-08-19 2017-01-11 武汉科技大学 一种用于热工设备衬里的耐火浇注料及其使用方法
CN110395971A (zh) * 2019-07-18 2019-11-01 武汉科技大学 一种高性能陶瓷-合金复合蓄热球及其制备方法
CN111196735A (zh) * 2020-01-20 2020-05-26 武汉科技大学 一种相变蓄热自流式耐火浇注料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384012A (en) * 1976-12-29 1978-07-25 Nippon Tokushu Rozai Kk Refractory composites
CN102503466A (zh) * 2011-10-25 2012-06-20 浙江锦诚耐火材料有限公司 红柱石自流浇注料
CN106045485B (zh) * 2016-08-19 2018-08-21 武汉科技大学 一种用于热工设备衬里的耐火砖及其制备方法
CN106278320B (zh) * 2016-08-19 2018-11-23 武汉科技大学 一种煤气化炉炉衬及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139209A (zh) * 2007-08-20 2008-03-12 武汉科技大学 一种耐火自流浇注料及其制备方法
CN101445382A (zh) * 2008-12-31 2009-06-03 南京航空航天大学 仿生自愈合相变吸热a1微胶囊/陶瓷基复合防热材料及制备方法
DE102012111707A1 (de) * 2012-12-03 2014-06-05 Bernhard Sixt Latentwärmespeicher und Verfahren zu seiner Herstellung
CN106316423A (zh) * 2016-08-19 2017-01-11 武汉科技大学 一种用于热工设备衬里的耐火浇注料及其使用方法
CN110395971A (zh) * 2019-07-18 2019-11-01 武汉科技大学 一种高性能陶瓷-合金复合蓄热球及其制备方法
CN111196735A (zh) * 2020-01-20 2020-05-26 武汉科技大学 一种相变蓄热自流式耐火浇注料及其制备方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409418B (zh) * 2022-01-19 2023-02-07 宜兴市锅炉密封工程有限公司 一种高强度耐磨浇注料及其制备方法和应用
CN114409418A (zh) * 2022-01-19 2022-04-29 宜兴市锅炉密封工程有限公司 一种高强度耐磨浇注料及其制备方法和应用
CN114605141A (zh) * 2022-01-24 2022-06-10 郑州振东科技有限公司 一种钢包保温耐蚀永久层浇注料的制备方法
CN114656264A (zh) * 2022-02-10 2022-06-24 安徽宁火新材料有限公司 一种盐浴淬火炉用高强度浇注料
CN114656264B (zh) * 2022-02-10 2023-04-21 安徽宁火新材料有限公司 一种盐浴淬火炉用高强度浇注料
CN115093206A (zh) * 2022-05-11 2022-09-23 新密市鸿瑞冶金建材有限责任公司 一种台包内衬的专用浇注料
CN115093206B (zh) * 2022-05-11 2023-04-21 新密市鸿瑞冶金建材有限责任公司 一种台包内衬的专用浇注料
CN115141008A (zh) * 2022-07-25 2022-10-04 河北国亮新材料股份有限公司 一种长寿命摆动沟浇注料及其制备方法
CN115141008B (zh) * 2022-07-25 2023-09-01 河北国亮新材料股份有限公司 一种长寿命摆动沟浇注料及其制备方法
CN115448685A (zh) * 2022-08-29 2022-12-09 中冶武汉冶金建筑研究院有限公司 用于热风炉炉顶的耐酸灌注料及其制备方法和施工方法
CN115448685B (zh) * 2022-08-29 2023-05-30 中冶武汉冶金建筑研究院有限公司 用于热风炉炉顶的耐酸灌注料及其制备方法和施工方法
CN115611643A (zh) * 2022-09-02 2023-01-17 五冶集团上海有限公司 一种干熄焦炉斜道支柱用新型预制块及其制备方法
CN115321999B (zh) * 2022-09-06 2023-03-21 宜兴市隆昌耐火材料有限公司 一种轻质耐火锆刚玉复合浇注料的制备方法
CN115321999A (zh) * 2022-09-06 2022-11-11 宜兴市隆昌耐火材料有限公司 一种轻质耐火锆刚玉复合浇注料的制备方法
CN115536411A (zh) * 2022-11-01 2022-12-30 江苏新时高温材料股份有限公司 高纯度堆积密度石化填充料用板状刚玉球及其制备方法
CN115724672A (zh) * 2022-11-28 2023-03-03 云南濮耐昆钢高温材料有限公司 一种钢包复合下水口及其制备方法
CN117285335A (zh) * 2023-11-24 2023-12-26 山东理工大学 高温相变储能陶瓷材料及其制备方法
CN117285335B (zh) * 2023-11-24 2024-01-30 山东理工大学 高温相变储能陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN111196735A (zh) 2020-05-26
CN111196735B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2021147411A1 (zh) 一种相变蓄热自流式耐火浇注料及其制备方法
WO2021147592A1 (zh) 间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法
CN102731118B (zh) 一种刚玉质微孔隔热耐火材料及其制备方法
CN103242051A (zh) 一种轻质刚玉-莫来石浇注料及其制备方法
CN107954745A (zh) 耐腐蚀微孔莫来石轻质耐火砖及其制备方法
CN108546093B (zh) 一种氧化铝短纤增强氧化镁基坩埚及其制备方法
CN106167398A (zh) 蜂窝陶瓷蓄热体及其制备方法
CN104671805A (zh) 一种抗结皮浇注料及其制备方法
CN108424124B (zh) 一种氧化镁晶须原位合成尖晶石增强氧化镁基坩埚及其制备方法
CN112830772A (zh) 一种亚微米二氧化硅微粉结合铁沟浇注料及其制备方法
CN113968724B (zh) 一种金属改性镁砂、低碳转炉镁质滑板及它们的制备方法
CN105272198A (zh) 一种高温抗腐蚀涂层材料及其使用方法和应用
CN107500748A (zh) 一种镁铝尖晶石‑石墨烯耐火材料制品及其制备工艺
CN106365647A (zh) 一种浇注料
CN106699141A (zh) 原位生成cm2a8复相增强钢包浇注料及其制备方法
CN111995417B (zh) 一种用于熔铝炉的镁铝尖晶石质浇注料
CN108467274A (zh) 一种耐高温耐火可塑料的制备方法
CN106365654A (zh) 一种添加ZrN‑SiAlON的抗锂电材料侵蚀耐火坩埚
CN107954743A (zh) 耐腐蚀微孔轻质耐火砖及其制备方法
CN109400145A (zh) 一种节能型铝水流槽预制件的制造方法
CN112811920B (zh) 一种超高温耐火复合材料及其制备方法
CN108191441B (zh) 干熄焦炉斜道立柱用氮化铝增强浇注料及其制备方法
CN114804823A (zh) 一种炼铁高炉送风装置用隔热耐火材料
CN108439959B (zh) 一种二氧化锆短纤与碱式硫酸镁晶须复合增强氧化镁基坩埚及其制备方法
CN107573082A (zh) 一种铝硅质耐火材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915874

Country of ref document: EP

Kind code of ref document: A1