CN110395971A - 一种高性能陶瓷-合金复合蓄热球及其制备方法 - Google Patents

一种高性能陶瓷-合金复合蓄热球及其制备方法 Download PDF

Info

Publication number
CN110395971A
CN110395971A CN201910650151.4A CN201910650151A CN110395971A CN 110395971 A CN110395971 A CN 110395971A CN 201910650151 A CN201910650151 A CN 201910650151A CN 110395971 A CN110395971 A CN 110395971A
Authority
CN
China
Prior art keywords
ceramic
shell
hemispherical
heat storage
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910650151.4A
Other languages
English (en)
Inventor
张美杰
黄奥
顾华志
王建东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YIXING RUIHUA INDUSTRIAL FURNACE SCIENCE & TECHNOLOGY Co Ltd
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
YIXING RUIHUA INDUSTRIAL FURNACE SCIENCE & TECHNOLOGY Co Ltd
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YIXING RUIHUA INDUSTRIAL FURNACE SCIENCE & TECHNOLOGY Co Ltd, Wuhan University of Science and Engineering WUSE filed Critical YIXING RUIHUA INDUSTRIAL FURNACE SCIENCE & TECHNOLOGY Co Ltd
Priority to CN201910650151.4A priority Critical patent/CN110395971A/zh
Publication of CN110395971A publication Critical patent/CN110395971A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

本发明涉及一种高性能陶瓷‑合金复合蓄热球及其制备方法。其技术方案是:将铝硅合金球置于陶瓷外壳内;铝硅合金球由铝硅合金棒轧制而成球体。陶瓷外壳是由两个材质相同和半径相同的带有螺纹的半球形陶瓷壳体螺纹连接为球形封闭体。所述陶瓷半球形壳体的制备方法是:将刚玉细粉、莫来石细粉、α‑氧化铝粉微粉、二氧化钛微粉和二氧化硅微粉混合,再加入二氧化锆溶胶,搅匀,用注塑成型机成型,干燥,烧成。制得的陶瓷半球形壳体有两种:一种是半球形陶瓷壳体边缘处的环形内壁设有内螺纹,一种是半球形陶瓷壳体边缘处的环形外壁设有外螺纹。本发明热量利用效率高、使用温度高和热循环稳定性好;用于蓄热式燃烧系统时换向时间短,温度和压力稳定。

Description

一种高性能陶瓷-合金复合蓄热球及其制备方法
技术领域
本发明属于复合蓄热球技术领域。具体涉及提供一种高性能陶瓷-合金复合蓄热球及其制备方法。
背景技术
高温空气燃烧技术(简称HTAC技术)又称为蓄热式燃烧技术,使高温烟气的热量储存在蓄热体中,然后再用来预热助燃空气,从而回收烟气余热,是节能、高效、环保燃烧的高新技术。这种燃烧技术自出现后发展十分迅速,广泛应用于冶金、化工、机械等各行业中。而蓄热体是蓄热式燃烧技术的核心部件之一,要求其具有比表面积大、蓄热密度高、高温强度大、导热性好、耐热震和抗氧化,可用于大于1000℃以上的高温环境。陶瓷小球是常用的蓄热体,广泛用于太阳能集热器、蓄热式燃烧等节能设备。但普通的陶瓷蓄热球导热系数小、换热强度低,用于蓄热式燃烧时换向时间长,炉内温度和压力波动大,而且在热循环过程中,由于蓄热球表面剥落堵塞间隙而导致气体流动阻力大。针对普通陶瓷蓄热球存在的问题,相关学者开展了一些研究,在材质选择、结构与制备方法上进行了一些改进,但仍然存在一些缺点和不足。
“高性能陶瓷蓄热球开发及应用研究”(饶文涛等,全国能源与热工2008学术年会)在剖析进口小球的基础上,采用α-Al2O3微粉为主要原料(加入量>97wt%),以ρ-Al2O3为结合剂,外加促烧剂,经1650℃高温烧成后,制备了刚玉质陶瓷蓄热球。该蓄热球虽然较普通的刚玉质蓄热球力学性能高,但其储热密度没有显著改变,且导热系数低,用于蓄热式燃烧换向时间长。“一种包裹相变材料的陶瓷蓄热球的制备方法”(CN101788239A)专利技术,先分别制备出SiC陶瓷球壳和封装剂泥料,然后再将相变材料注入球壳内占空腔体积的2/3。该方法制备的蓄热球较普通蓄热球蓄热量增加,但SiC陶瓷壳高温下易氧化,热循环稳定性差,寿命短;而且该技术没有介绍相变材料的制备方法。“一种合金—氧化物复相蓄热耐火材料及其制备方法”(ZL201610687516.7)专利技术,采用铝硅合金粉为原料,通过冷拔制备合金丝、合金丝缠绕成合金球,然后在合金球表面喷涂陶瓷料浆,高温烧成后制得了蓄热量大、耐高温、耐侵蚀的复合相变蓄热球。但该技术制备工艺复杂和铝硅合金粉原料成本高,工业化生产困难。
发明内容
本发明旨在克服现有技术缺陷,目的是提供一种成本低、工艺简单和易于工业化生产的高性能陶瓷-合金复合蓄热球制备方法;所制备的高性能陶瓷-合金复合蓄热球能提高热量的利用效率、使用温度高和热循环稳定性好;用于蓄热式燃烧系统时,换向时间短、炉内温度波动小和压力稳定。
为实现上述任务,本发明采用的技术方案是:
高性能陶瓷-合金复合蓄热球由陶瓷外壳和铝硅合金球组成,铝硅合金球置于陶瓷外壳内。所述铝硅合金球由铝硅合金棒轧制而成,铝硅合金球的直径为15~30mm。所述陶瓷外壳是由两个材质相同和半径相同的带有螺纹的半球形陶瓷壳体通过螺纹连接的球形封闭体;两个带有螺纹的半球形陶瓷壳体的壁厚相同,所述壁厚为1~3mm;外径为18~41mm。
所述铝硅合金棒的直径为16~32mm;铝硅合金棒的Si含量为3~28wt%。
所述带有螺纹的陶瓷半球形壳体的制备方法是:
步骤一、先将80~90wt%的刚玉细粉、5~15wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉、0.5~1wt%的二氧化钛微粉和1~3wt%的二氧化硅微粉混合,然后在球磨机内球磨5~8min,得到混合粉料。
步骤二、向所述混合粉料中加入占所述混合粉料5~20wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料。
步骤三、将所述混合泥料采用注塑成型机进行成型,得到带有螺纹的半球形壳体泥坯,然后于110~180℃条件下干燥24~36h,获得干燥后的带有螺纹的半球形壳体坯体。
步骤四、将所述干燥后的半球形壳体坯体置于高温炉中,以3~5℃/min的速率升温至1350~1650℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体。
所述带有螺纹的陶瓷半球形壳体为两种,一种为半球形陶瓷壳体边缘处的环形内壁设有内螺纹,另一种为半球形陶瓷壳体边缘处的环形外壁设有外螺纹,内螺纹和外螺纹的公称直径为17~38mm,螺纹的高度为3~5mm。
所述刚玉细粉的Al2O3含量≥98wt%;刚玉细粉的粒径≤15μm。
所述莫来石细粉:Al2O3含量≥70wt%,SiO2含量≥22wt%;莫来石细粉的粒径≤15μm。
所述α-氧化铝微粉的Al2O3含量≥97wt%;α-氧化铝微粉的粒径≤8μm。
所述二氧化硅微粉的SiO2含量≥92wt%;二氧化硅微粉的粒径≤0.6μm。
所述二氧化钛微粉的TiO2含量≥98wt%;二氧化钛微粉的粒径≤8μm。
于所述二氧化锆溶胶的中位粒径D50=10~35nm,固含量为10~30%。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
本发明采用的铝硅合金球由致密的铝硅合金棒轧制而成,由于铝硅合金粉成球对结合剂和成球设备要求高和工艺复杂,与铝硅合金粉比较,本发明不仅工艺简单、成本低和易于工业化生产,且蓄热密度高。
本发明所制备的陶瓷外壳为经高温烧成所制得的刚玉-莫来石复合材料,Al2O3含量大于90wt%,可直接用于高温烟气气氛,而且导热系数高、高温抗氧化性好、耐铝硅合金侵蚀和抗热震性好,储热、放热速度快,用于蓄热式燃烧系统时换向时间短,炉内温度波动小和压力稳定。在带有螺纹的陶瓷半球形壳体制备过程中,加入的纳米ZrO2溶胶均匀分散于混合泥料中,高温烧成后在刚玉-莫来石复合陶瓷半球形壳体材料中弥散分布,阻止裂纹的扩展,进一步提高陶瓷外壳的热震稳定性,延长冷热循环次数。
本发明制备的高性能陶瓷-合金复合蓄热球:使用温度为1250~1500℃;蓄热密度为228.8~407.7J/g;导热系数为32.1~98.5W/(m·K);热循环稳定性好。
因此,本发明具有成本低、工艺简单和易于工业化生产的特点,所制备的高性能陶瓷-合金复合蓄热球能提高热量的利用效率、使用温度高、热循环稳定性好;用于蓄热式燃烧系统时,换向时间短、炉内温度波动小和压力稳定,尤其适用于工业炉窑高温热交换和高温工业废气的热量回收。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
为避免重复,先将本具体实施方式所涉及的物料统一描述如下,实施例中不再赘述:
所述刚玉细粉的Al2O3含量≥98wt%;刚玉细粉的粒径≤15μm。
所述莫来石细粉:Al2O3含量≥70wt%,SiO2含量≥22wt%;莫来石细粉的粒径≤15μm。
所述α-氧化铝微粉的Al2O3含量≥97wt%;α-氧化铝微粉的粒径≤8μm。
所述二氧化硅微粉的SiO2含量≥92wt%;二氧化硅微粉的粒径≤0.6μm。
所述二氧化钛微粉的TiO2含量≥98wt%;二氧化钛微粉的粒径≤8μm。
所述二氧化锆溶胶的中位粒径D50=10~35nm,固含量为10~30%。
实施例1
一种高性能陶瓷-合金复合蓄热球及其制备方法。本实施例所述制备方法是:
高性能陶瓷-合金复合蓄热球由陶瓷外壳和铝硅合金球组成,铝硅合金球置于陶瓷外壳内。所述铝硅合金球由铝硅合金棒轧制而成,铝硅合金球的直径为15~20mm。所述陶瓷外壳是由两个材质相同和半径相同的带有螺纹的半球形陶瓷壳体通过螺纹连接的球形封闭体;两个带有螺纹的半球形陶瓷壳体的壁厚相同,所述壁厚为1~1.5mm;外径为18~25mm。
所述铝硅合金棒的直径为16~22mm;铝硅合金棒的Si含量为3~12wt%。
所述带有螺纹的陶瓷半球形壳体的制备方法是:
步骤一、先将80~83wt%的刚玉细粉、7~10wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉、0.5~1wt%的二氧化钛微粉和1~3wt%的二氧化硅微粉混合,然后在球磨机内球磨5~8min,得到混合粉料。
步骤二、向所述混合粉料中加入占所述混合粉料5~9wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料。
步骤三、将所述混合泥料采用注塑成型机进行成型,得到带有螺纹的半球形壳体泥坯,然后于110~130℃条件下干燥24~30h,获得干燥后的带有螺纹的半球形壳体坯体。
步骤四、将所述干燥后的半球形壳体坯体置于高温炉中,以3~5℃/min的速率升温至1350~1450℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体。
所述带有螺纹的陶瓷半球形壳体为两种,一种为半球形陶瓷壳体边缘处的环形内壁设有内螺纹,另一种为半球形陶瓷壳体边缘处的环形外壁设有外螺纹,内螺纹和外螺纹的公称直径为17~23.5mm,螺纹的高度为3~5mm。
实施例2
一种高性能陶瓷-合金复合蓄热球及其制备方法。本实施例所述制备方法是:
高性能陶瓷-合金复合蓄热球由陶瓷外壳和铝硅合金球组成,铝硅合金球置于陶瓷外壳内。所述铝硅合金球由铝硅合金棒轧制而成,铝硅合金球的直径为18~23mm。所述陶瓷外壳是由两个材质相同和半径相同的带有螺纹的半球形陶瓷壳体通过螺纹连接的球形封闭体;两个带有螺纹的半球形陶瓷壳体的壁厚相同,所述壁厚为1.2~2mm;外径为23~29mm。
所述铝硅合金棒的直径为20~25mm;铝硅合金棒的Si含量为11~18wt%。
所述带有螺纹的陶瓷半球形壳体的制备方法是:
步骤一、先将82~85wt%的刚玉细粉7~10wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉、0.5~1wt%的二氧化钛微粉和1~3wt%的二氧化硅微粉混合,然后在球磨机内球磨5~8min,得到混合粉料。
步骤二、向所述混合粉料中加入占所述混合粉料8~13wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料。
步骤三、将所述混合泥料采用注塑成型机进行成型,得到带有螺纹的半球形壳体泥坯,然后于120~150℃条件下干燥26~32h,获得干燥后的带有螺纹的半球形壳体坯体。
步骤四、将所述干燥后的半球形壳体坯体置于高温炉中,以3~5℃/min的速率升温至1420~1500℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体。
所述带有螺纹的陶瓷半球形壳体为两种,一种为半球形陶瓷壳体边缘处的环形内壁设有内螺纹,另一种为半球形陶瓷壳体边缘处的环形外壁设有外螺纹,内螺纹和外螺纹的公称直径为21.8~27mm,螺纹的高度为3~5mm。
实施例3
一种高性能陶瓷-合金复合蓄热球及其制备方法。本实施例所述制备方法是:
高性能陶瓷-合金复合蓄热球由陶瓷外壳和铝硅合金球组成,铝硅合金球置于陶瓷外壳内。所述铝硅合金球由铝硅合金棒轧制而成,铝硅合金球的直径为22~26mm。所述陶瓷外壳是由两个材质相同和半径相同的带有螺纹的半球形陶瓷壳体通过螺纹连接的球形封闭体;两个带有螺纹的半球形陶瓷壳体的壁厚相同,所述壁厚为1.8~2.5mm;外径为28~35mm。
所述铝硅合金棒的直径为24~28mm;铝硅合金棒的Si含量为16~25wt%。
所述带有螺纹的陶瓷半球形壳体的制备方法是:
步骤一、先将84~87wt%的刚玉细粉、5~8wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉、0.5~1wt%的二氧化钛微粉和1~3wt%的二氧化硅微粉混合,然后在球磨机内球磨5~8min,得到混合粉料。
步骤二、向所述混合粉料中加入占所述混合粉料12~17wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料。
步骤三、将所述混合泥料采用注塑成型机进行成型,得到带有螺纹的半球形壳体泥坯,然后于140~170℃条件下干燥28~34h,获得干燥后的带有螺纹的半球形壳体坯体。
步骤四、将所述干燥后的半球形壳体坯体置于高温炉中,以3~5℃/min的速率升温至1520~1600℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体。
所述带有螺纹的陶瓷半球形壳体为两种,一种为半球形陶瓷壳体边缘处的环形内壁设有内螺纹,另一种为半球形陶瓷壳体边缘处的环形外壁设有外螺纹,内螺纹和外螺纹的公称直径为26.2~32.5mm,螺纹的高度为3~5mm。
实施例4
一种高性能陶瓷-合金复合蓄热球及其制备方法。本实施例所述制备方法是:
高性能陶瓷-合金复合蓄热球由陶瓷外壳和铝硅合金球组成,铝硅合金球置于陶瓷外壳内。所述铝硅合金球由铝硅合金棒轧制而成,铝硅合金球的直径为25~30mm。所述陶瓷外壳是由两个材质相同和半径相同的带有螺纹的半球形陶瓷壳体通过螺纹连接的球形封闭体;两个带有螺纹的半球形陶瓷壳体的壁厚相同,所述壁厚为2.4~3mm;外径为34~41mm。
所述铝硅合金棒的直径为27~32mm;铝硅合金棒的Si含量为24~28wt%。
所述带有螺纹的陶瓷半球形壳体的制备方法是:
步骤一、先将86~90wt%的刚玉细粉、5~8wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉、0.5~1wt%的二氧化钛微粉和1~3wt%的二氧化硅微粉混合,然后在球磨机内球磨5~8min,得到混合粉料。
步骤二、向所述混合粉料中加入占所述混合粉料16~20wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料。
步骤三、将所述混合泥料采用注塑成型机进行成型,得到带有螺纹的半球形壳体泥坯,然后于160~180℃条件下干燥30~36h,获得干燥后的带有螺纹的半球形壳体坯体。
步骤四、将所述干燥后的半球形壳体坯体置于高温炉中,以3~5℃/min的速率升温至1580~1650℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体。
所述带有螺纹的陶瓷半球形壳体为两种,一种为半球形陶瓷壳体边缘处的环形内壁设有内螺纹,另一种为半球形陶瓷壳体边缘处的环形外壁设有外螺纹,内螺纹和外螺纹的公称直径为31.6~38mm,螺纹的高度为3~5mm。
本具体实施方式与现有技术相比具有如下积极效果:
本具体实施方式采用的铝硅合金球由致密的铝硅合金棒轧制而成,由于铝硅合金粉成球对结合剂和成球设备要求高和工艺复杂,与铝硅合金粉比较,本具体实施方式不仅工艺简单、成本低和易于工业化生产,且蓄热密度高。
本具体实施方式所制备的陶瓷外壳为经高温烧成所制得的刚玉-莫来石复合材料,Al2O3含量大于90wt%,可直接用于高温烟气气氛,而且导热系数高、高温抗氧化性好、耐铝硅合金侵蚀和抗热震性好,储热、放热速度快,用于蓄热式燃烧系统时换向时间短,炉内温度波动小和压力稳定。在带有螺纹的陶瓷半球形壳体制备过程中,加入的纳米ZrO2溶胶均匀分散于混合泥料中,高温烧成后在刚玉-莫来石复合陶瓷半球形壳体材料中弥散分布,阻止裂纹的扩展,进一步提高陶瓷外壳的热震稳定性,延长冷热循环次数。
本具体实施方式制备的高性能陶瓷-合金复合蓄热球:使用温度为1250~1500℃;蓄热密度为228.8~407.7J/g;导热系数为32.1~98.5W/(m·K);热循环稳定性好。
因此,本具体实施方式具有成本低、工艺简单和易于工业化生产的特点,所制备的高性能陶瓷-合金复合蓄热球能提高热量的利用效率、使用温度高、热循环稳定性好;用于蓄热式燃烧系统时,换向时间短、炉内温度波动小和压力稳定,尤其适用于工业炉窑高温热交换和高温工业废气的热量回收。

Claims (8)

1.一种高性能陶瓷-合金复合蓄热球的制备方法,其特征在于所述复合蓄热球由陶瓷外壳和铝硅合金球组成,铝硅合金球置于陶瓷外壳内;所述铝硅合金球由铝硅合金棒轧制而成,铝硅合金球的直径为15~30mm;所述陶瓷外壳是由两个材质相同和半径相同的带有螺纹的半球形陶瓷壳体通过螺纹连接的球形封闭体;两个带有螺纹的半球形陶瓷壳体的壁厚相同,所述壁厚为1~3mm;外径为18~41mm;
所述铝硅合金棒的直径为16~32mm;铝硅合金棒的Si含量为3~28wt%;
所述带有螺纹的陶瓷半球形壳体的制备方法是:
步骤一、先将80~90wt%的刚玉细粉、5~15wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉、0.5~1wt%的二氧化钛微粉和1~3wt%的二氧化硅微粉混合,然后在球磨机内球磨5~8min,得到混合粉料;
步骤二、向所述混合粉料中加入占所述混合粉料5~20wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料;
步骤三、将所述混合泥料采用注塑成型机进行成型,得到带有螺纹的半球形壳体泥坯,然后于110~180℃条件下干燥24~36h,获得干燥后的带有螺纹的半球形壳体坯体;
步骤四、将所述干燥后的半球形壳体坯体置于高温炉中,以3~5℃/min的速率升温至1350~1650℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体;
所述带有螺纹的陶瓷半球形壳体为两种,一种为半球形陶瓷壳体边缘处的环形内壁设有内螺纹,另一种为半球形陶瓷壳体边缘处的环形外壁设有外螺纹,内螺纹和外螺纹的公称直径为17~38mm,螺纹的高度为3~5mm。
2.根据权利要求1所述的高性能陶瓷-合金复合蓄热球的制备方法,其特征在于所述刚玉细粉的Al2O3含量≥98wt%;刚玉细粉的粒径≤15μm。
3.根据权利要求1所述的高性能陶瓷-合金复合蓄热球的制备方法,其特征在于所述莫来石细粉:Al2O3含量≥70wt%,SiO2含量≥22wt%;莫来石细粉的粒径≤15μm。
4.根据权利要求1所述的高性能陶瓷-合金复合蓄热球的制备方法,其特征在于所述α-氧化铝微粉的Al2O3含量≥97wt%;α-氧化铝微粉的粒径≤8μm。
5.根据权利要求1所述的高性能陶瓷-合金复合蓄热球的制备方法,其特征在于所述二氧化硅微粉的SiO2含量≥92wt%;二氧化硅微粉的粒径≤0.6μm。
6.根据权利要求1所述的高性能陶瓷-合金复合蓄热球的制备方法,其特征在于所述二氧化钛微粉的TiO2含量≥98wt%;二氧化钛微粉的粒径≤8μm。
7.根据权利要求1所述的高性能陶瓷-合金复合蓄热球的制备方法,其特征在于所述二氧化锆溶胶的中位粒径D50=10~35nm,固含量为10~30%。
8.一种高性能陶瓷-合金复合蓄热球,其特征在于所述高性能陶瓷-合金复合蓄热球是根据权利要求1~7项中任一项所述的高性能陶瓷-合金复合蓄热球的制备方法所制备的高性能陶瓷-合金复合蓄热球。
CN201910650151.4A 2019-07-18 2019-07-18 一种高性能陶瓷-合金复合蓄热球及其制备方法 Pending CN110395971A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910650151.4A CN110395971A (zh) 2019-07-18 2019-07-18 一种高性能陶瓷-合金复合蓄热球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910650151.4A CN110395971A (zh) 2019-07-18 2019-07-18 一种高性能陶瓷-合金复合蓄热球及其制备方法

Publications (1)

Publication Number Publication Date
CN110395971A true CN110395971A (zh) 2019-11-01

Family

ID=68324697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910650151.4A Pending CN110395971A (zh) 2019-07-18 2019-07-18 一种高性能陶瓷-合金复合蓄热球及其制备方法

Country Status (1)

Country Link
CN (1) CN110395971A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110976836A (zh) * 2019-11-11 2020-04-10 武汉科技大学 一种低热耗散长寿命钢包衬体及其制备方法
CN111196735A (zh) * 2020-01-20 2020-05-26 武汉科技大学 一种相变蓄热自流式耐火浇注料及其制备方法
CN111676406A (zh) * 2020-06-05 2020-09-18 武汉科技大学 一种相变蓄热陶瓷及其制备方法
CN112250428A (zh) * 2020-10-30 2021-01-22 武汉科技大学 一种双壳层相变蓄热球及其制备方法
CN112408959A (zh) * 2020-11-04 2021-02-26 武汉理工大学 一种刚玉基储热陶瓷及其制备方法
CN112480873A (zh) * 2020-11-30 2021-03-12 武汉科技大学 一种刚玉-莫来石复合壳层相变蓄热球及其制备方法
CN114180967A (zh) * 2021-12-30 2022-03-15 浙江立泰复合材料股份有限公司 一种中空陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830717A (zh) * 2010-05-11 2010-09-15 浙江大学 锆溶胶增强刚玉莫来石制品及其生产方法
CN102399082A (zh) * 2010-09-19 2012-04-04 晋城市富基新材料股份有限公司 刚玉莫来石质蜂窝陶瓷蓄热体
CN106318338A (zh) * 2016-08-19 2017-01-11 武汉科技大学 原位合金‑氧化物复相蓄热耐火材料及其制备方法
CN106518125A (zh) * 2016-12-08 2017-03-22 赵岩 耐火材料包覆的复合相变蓄热砖
CN107988506A (zh) * 2017-11-29 2018-05-04 武汉科技大学 一种复合材料相变蓄热球及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830717A (zh) * 2010-05-11 2010-09-15 浙江大学 锆溶胶增强刚玉莫来石制品及其生产方法
CN102399082A (zh) * 2010-09-19 2012-04-04 晋城市富基新材料股份有限公司 刚玉莫来石质蜂窝陶瓷蓄热体
CN106318338A (zh) * 2016-08-19 2017-01-11 武汉科技大学 原位合金‑氧化物复相蓄热耐火材料及其制备方法
CN106518125A (zh) * 2016-12-08 2017-03-22 赵岩 耐火材料包覆的复合相变蓄热砖
CN107988506A (zh) * 2017-11-29 2018-05-04 武汉科技大学 一种复合材料相变蓄热球及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杜丽娟主编: "《材料成形工艺》", 28 February 2009 *
郭海珠: "《实用耐火材料手册》", 30 September 2000 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110976836A (zh) * 2019-11-11 2020-04-10 武汉科技大学 一种低热耗散长寿命钢包衬体及其制备方法
CN110976836B (zh) * 2019-11-11 2021-09-14 武汉科技大学 一种低热耗散长寿命钢包衬体及其制备方法
WO2021147411A1 (zh) * 2020-01-20 2021-07-29 武汉科技大学 一种相变蓄热自流式耐火浇注料及其制备方法
CN111196735A (zh) * 2020-01-20 2020-05-26 武汉科技大学 一种相变蓄热自流式耐火浇注料及其制备方法
CN111196735B (zh) * 2020-01-20 2021-12-21 武汉科技大学 一种相变蓄热自流式耐火浇注料及其制备方法
CN111676406A (zh) * 2020-06-05 2020-09-18 武汉科技大学 一种相变蓄热陶瓷及其制备方法
CN111676406B (zh) * 2020-06-05 2021-09-14 武汉科技大学 一种相变蓄热陶瓷及其制备方法
CN112250428A (zh) * 2020-10-30 2021-01-22 武汉科技大学 一种双壳层相变蓄热球及其制备方法
CN112250428B (zh) * 2020-10-30 2022-04-01 武汉科技大学 一种双壳层相变蓄热球及其制备方法
CN112408959A (zh) * 2020-11-04 2021-02-26 武汉理工大学 一种刚玉基储热陶瓷及其制备方法
CN112408959B (zh) * 2020-11-04 2023-07-18 武汉理工大学 一种刚玉基储热陶瓷及其制备方法
CN112480873B (zh) * 2020-11-30 2021-07-20 武汉科技大学 一种刚玉-莫来石复合壳层相变蓄热球及其制备方法
CN112480873A (zh) * 2020-11-30 2021-03-12 武汉科技大学 一种刚玉-莫来石复合壳层相变蓄热球及其制备方法
CN114180967A (zh) * 2021-12-30 2022-03-15 浙江立泰复合材料股份有限公司 一种中空陶瓷材料及其制备方法
CN114180967B (zh) * 2021-12-30 2023-01-31 浙江立泰复合材料股份有限公司 一种中空陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN110395971A (zh) 一种高性能陶瓷-合金复合蓄热球及其制备方法
KR101776738B1 (ko) 다공성 세라믹 복합입자 및 그 제조방법
WO2021147411A1 (zh) 一种相变蓄热自流式耐火浇注料及其制备方法
CN102815951B (zh) 一种耐火耐蚀涂料
CN102219495B (zh) 一种红外辐射涂料及其使用方法
CN107892581B (zh) 一种高强抗腐锆刚玉蜂窝陶瓷体及其制备方法
CN103305039B (zh) 一种红外辐射涂料及其制备方法和一种红外辐射涂层
CN105861972A (zh) 一种氧化铬-氧化钛基高温高发射率涂层及其制备方法
CN107573731B (zh) 一种高温红外辐射涂料及其制备方法和应用
CN102775163A (zh) 一种碳化硅-堇青石复相陶瓷窑具及其制备方法
CN107954745A (zh) 耐腐蚀微孔莫来石轻质耐火砖及其制备方法
CN109650882A (zh) 一种纤维内衬用复合涂料及其制备方法
CN112645699A (zh) 晶须协同max相增韧的稀土硅酸盐材料及其制备方法
CN109535984A (zh) 一种超高温红外辐射保温节能涂料
CN106927839B (zh) 一种微孔绝热砖
CN105819851B (zh) 钛酸铝蜂窝陶瓷材料及其制备方法
CN112876291B (zh) 一种自洁抗菌陶瓷板的制备方法
CN107954743A (zh) 耐腐蚀微孔轻质耐火砖及其制备方法
CN107815148A (zh) 一种耐高温红外辐射节能涂料及其制备方法
CN106278202A (zh) 轻质耐火砖及其制备方法
WO2022062340A1 (zh) 一种热循环高效率相变蓄热材料及其制备方法
CN107881357A (zh) 一种氧化锆基金属陶瓷材料的制备方法
CN107459335A (zh) 一种蜂窝陶瓷蓄热材料的制备方法
CN109136488B (zh) 一种用于硅钢退火炉的节能高温辐射喷涂料及其制备方法和应用
CN103396705A (zh) 一种抗氧化涂料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191101