WO2021147592A1 - 间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法 - Google Patents

间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法 Download PDF

Info

Publication number
WO2021147592A1
WO2021147592A1 PCT/CN2020/138172 CN2020138172W WO2021147592A1 WO 2021147592 A1 WO2021147592 A1 WO 2021147592A1 CN 2020138172 W CN2020138172 W CN 2020138172W WO 2021147592 A1 WO2021147592 A1 WO 2021147592A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
alloy
phase change
heat storage
refractory material
Prior art date
Application number
PCT/CN2020/138172
Other languages
English (en)
French (fr)
Inventor
张美杰
顾华志
王瑶
黄奥
付绿平
杨爽
夏求林
Original Assignee
武汉科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉科技大学 filed Critical 武汉科技大学
Publication of WO2021147592A1 publication Critical patent/WO2021147592A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon

Definitions

  • the invention belongs to the technical field of intermittently operated high-temperature kiln linings, and specifically relates to a near-zero heat loss refractory lining of intermittently operated high-temperature kilns and a preparation method thereof.
  • the operation mode of industrial kilns it can be divided into intermittent industrial kilns and continuous industrial kilns.
  • the heat loss of the lining material includes heat loss and heat storage loss.
  • nano thermal insulation boards with low thermal conductivity are usually used as thermal insulation materials to reduce the temperature of the outer wall, thereby reducing heat dissipation losses.
  • the use of nano-insulation panels will increase the total thermal resistance, and the temperature of the hot surface of the nano-insulation panels will increase, causing the nano-insulation panels to crystallize and reduce their strength.
  • Pulverization causes structural damage to the thermal insulation layer of industrial kilns, which not only fails to achieve the expected reduction in heat dissipation, but also causes damage to the lining structure of the kiln due to its pulverization, resulting in safety accidents. Therefore, simply reducing the thermal conductivity of thermal insulation materials cannot fundamentally solve the problem of high energy consumption in intermittent industrial kilns.
  • lightweight refractory materials are used for furnace lining materials. Especially with the development of refractory materials such as microporous corundum and dense calcium hexaaluminate, it is possible to reduce the weight of high-temperature furnace lining materials. Heat storage loss of furnace lining.
  • Such as “a lightweight corundum-spinel castable and its preparation method” (CN 105236995B) patented technology, using microporous corundum as the main aggregate to prepare a lightweight corundum-spinel castable with low thermal conductivity.
  • the thermal conductivity and body density have been greatly reduced.
  • the resistance of lightweight refractories to the erosion and erosion of high-temperature media (such as molten steel, steel slag, special atmosphere, etc.) at high temperatures has not been verified in practice, which limits their performance. Application in actual industrial kilns.
  • the lining refractories periodically heat up and cool down, and the temperature gradient generates thermal stress. Under the action of such thermal fatigue or thermal shock, the refractory materials will crack and peel, reducing the lining refractory The service life of the material.
  • the present invention aims to overcome the defects of the prior art, and aims to provide an intermittently operated high-temperature kiln with near zero heat loss refractory lining with low heat loss and long life of the lining refractory, and a preparation method thereof,
  • phase change heat storage refractory material has three components, which are respectively a high temperature phase change heat storage refractory material, a medium temperature phase change heat storage refractory material and a low temperature phase change heat storage refractory material;
  • the preparation method of the high temperature phase change heat storage refractory material is:
  • ⁇ 0.2wt% of polycarboxylic acid is uniformly mixed to obtain a first premixed matrix material; then the first premixed matrix material and the first aggregate are mixed, and then 3 to 5wt% of water is added to the first raw material , Stir uniformly, pour into shape, cure for 24-30h at 25-28°C, air relative humidity 75-80%, demould, and then dry at 110-300°C for 24-36h to obtain high temperature phase change Heat storage refractory materials;
  • phase change temperature of the high-temperature phase change heat storage refractory material is 1150-1300°C;
  • the preparation method of the intermediate temperature phase change heat storage refractory material is:
  • ⁇ 0.2wt% of the polycarboxylic acid is uniformly mixed to obtain a second premixed matrix material; then the second premixed matrix material and the second aggregate are mixed, and then 3 to 5wt% of water is added to the second raw material , Stir uniformly, pour into shape, cure for 24-30h at 25-28°C, air relative humidity 75-80%, demould, and then dry at 110-300°C for 24-36h to produce medium temperature phase change Heat storage refractory materials;
  • the phase change temperature of the intermediate temperature phase change heat storage refractory material is 800 to 950°C;
  • the preparation method of the low-temperature phase change heat storage refractory material is:
  • the third matrix is composed of silica micropowder of wt% and calcium aluminate cement of 4 to 5 wt%, and the sum of the third aggregate and the third matrix is the third raw material; first, the third matrix and the third raw material account for 0.1 to 0.2
  • the weight% of the polycarboxylic acid is uniformly mixed to obtain a third premixed base material; the third premixed base material and the third aggregate are mixed, and then water accounting for 3 to 5 wt% of the third raw material is added and stirred Homogeneous, casting molding, curing for 24-30h at 25-28°C and air relative humidity of 75-80%, demoulding, and then drying at 110-300°C for 24-36h to produce low-temperature phase change heat
  • the phase change temperature of the low temperature phase change heat storage refractory material is 500 to 650°C;
  • the Al-Si-Ni alloy powder is washed alternately with alkali and deionized water for 3 to 5 times, and then dried in a nitrogen atmosphere at 60 to 110°C for 8 to 12 hours, and then placed in a high-temperature atmosphere furnace and sintered in six stages. Natural cooling, aluminum-silicon-nickel alloy @Alumina microcapsules are prepared;
  • the Al-Si-Fe alloy powder is washed alternately with alkali and deionized water for 3 to 5 times, and then dried in a nitrogen atmosphere at 60 to 110°C for 8 to 12 hours, and then placed in a high-temperature atmosphere furnace and roasted in six stages. Cooling to obtain Al-Si-Fe alloy@Alumina microcapsules;
  • the aluminum-silicon alloy powder is washed alternately with alkali and deionized water for 3 to 5 times, and then dried in a nitrogen atmosphere at 60 to 110°C for 8 to 12 hours, and then placed in a high-temperature atmosphere furnace, and roasted in six stages. Cooling to obtain Al-Si alloy@Alumina microcapsules;
  • the six stages of roasting are:
  • the first stage the high-temperature atmosphere furnace is heated from room temperature to 550-650°C at a rate of 5-10°C/min; the atmosphere in the furnace is a steam atmosphere, and the steam: inlet gauge pressure is 0.01-0.9 MPa, The temperature before the inlet is 110 ⁇ 300°C, and the flow rate is 3 ⁇ 5L/min;
  • the second stage heating the high-temperature atmosphere furnace to 700-800°C at a rate of 10-20°C/min; the atmosphere in the furnace is an air atmosphere;
  • the third stage heating the high-temperature atmosphere furnace to 850-950°C at a rate of 5-8°C/min; the atmosphere in the furnace is an oxidizing atmosphere, and the pressure in the furnace is 0.01-0.05 MPa;
  • the fourth stage heating the high-temperature atmosphere furnace to 1050-1250°C at a rate of 3 to 5°C/min; the atmosphere in the furnace is an oxidizing atmosphere, and the internal pressure of the furnace is greater than 0.05 and less than or equal to 0.1 MPa;
  • the fifth stage heating the high-temperature atmosphere furnace to 1350-1500°C at a rate of 5-10°C/min; the furnace atmosphere is an oxidizing atmosphere, and the furnace pressure is greater than 0.1 and less than or equal to 0.5MPa;
  • the sixth stage heat preservation of the high-temperature atmosphere furnace at 1350-1500°C for 30-180 minutes, and the atmosphere in the furnace is an air atmosphere;
  • the diameters of the Al-Si-Ni alloy balls, Al-Si-Fe alloy balls and Al-Si alloy balls are independently 2-18 mm; Al-Si-Ni alloy balls, Al-Si-Fe alloy balls and Al-Si alloy balls are respectively composed of their corresponding Al-Si-Ni alloy balls.
  • Rod, Al-Si-Fe alloy rod and Al-Si alloy rod are independently 2-18 mm;
  • the preparation method of the ceramic spherical shell is:
  • 80 ⁇ 90wt% of corundum fine powder, 5 ⁇ 15wt% of mullite fine powder, 3 ⁇ 5wt% of ⁇ -alumina powder and 1 ⁇ 3wt% of silica fine powder are ball milled in a ball mill for 5 ⁇ 8min, Obtain a mixed powder; add 5-20wt% of the zirconium dioxide sol to the mixed powder and stir uniformly to obtain a mixed mud; then use an injection molding machine to shape the mixed mud, Obtain the hemispherical shell mud with threads; then dry the hemispherical shell mud with threads at 110-180°C for 24 to 36 hours, and heat up to 1350 at a rate of 3 to 5°C/min ⁇ 1650°C, heat preservation for 2 ⁇ 4h, make a ceramic hemispherical shell with thread;
  • the ceramic hemispherical shells with threads are two types: ceramic hemispherical shells with internal threads and ceramic hemispherical shells with external threads; ceramic hemispherical shells with internal threads and ceramic hemispherical shells with external threads
  • the threaded ceramic hemispherical shell is connected to a hollow sphere through the thread to obtain a ceramic spherical shell;
  • the annular inner wall at the edge of the hemispherical ceramic shell with internal threads is provided with internal threads
  • the annular outer wall at the edge of the hemispherical ceramic shell with external threads is provided with external threads;
  • the ceramic hemispherical shell with internal threads The outer diameter and wall thickness of the ceramic hemispherical shell with external threads are the same; the wall thickness is 0.6-2mm, the outer diameter is 3.5-24mm; the nominal diameters of the internal and external threads are 2.7-21mm
  • the content of Al 2 O 3 in the fine corundum powder is ⁇ 98wt%; the particle size of the fine corundum powder is ⁇ 15 ⁇ m;
  • the content of Al 2 O 3 in the fine mullite powder is ⁇ 70wt%, and the content of SiO 2 is ⁇ 22wt%; the particle size of the mullite fine powder is ⁇ 15 ⁇ m;
  • the solid content of the zirconia sol is 30 wt%, and the particle size is 20-50 nm.
  • the present invention also provides a near-zero heat loss refractory lining of an intermittently operated high-temperature kiln.
  • the near-zero heat loss refractory lining of the intermittently operated high-temperature kiln is in the order from the inside to the outside along the thickness direction: working lining Refractory materials, permanent lining refractory materials and thermal insulation lining materials;
  • the working lining refractory is located on the hot surface contacting the high-temperature medium in the kiln, and has a thickness of 150-250mm;
  • the thermal insulation lining material adopts nano thermal insulation board with a thickness of 5-20mm;
  • the permanent lining refractory material is a phase change heat storage refractory material, and the phase change heat storage refractory material is the phase change heat storage refractory material according to claim 1 or 2;
  • the high temperature phase change heat storage refractory material, the medium temperature phase change heat storage refractory material and the low temperature phase change heat storage refractory material are composed of the inside and outside in sequence, wherein:
  • the thickness of the high temperature phase change heat storage refractory material is 30 ⁇ 80mm;
  • the thickness of the medium temperature phase change heat storage refractory material is 20 ⁇ 60mm;
  • the thickness of the low temperature phase change heat storage refractory material is 30 ⁇ 110mm;
  • the refractory lining includes a top, a bottom and a wall.
  • the intermittently operated high-temperature kiln is one of ladle, torpedo, ladle, shuttle kiln and inverted flame kiln.
  • the present invention provides a method for preparing a near-zero heat loss refractory lining of the intermittently operated high-temperature kiln.
  • the steps of the preparation method are:
  • Step 1 The preparation methods of Al-Silicon-Nickel@Aluminum Oxide Microcapsule, Al-Silicon-Fe-Alloy@Alumina Microcapsule and Al-Silicon Alloy@Alumina Microcapsule are:
  • the Al-Si-Ni alloy powder is washed alternately with alkali and deionized water for 3 to 5 times, and then dried in a nitrogen atmosphere at 60 to 110°C for 8 to 12 hours, and then placed in a high-temperature atmosphere furnace and sintered in six stages. Natural cooling, aluminum-silicon-nickel alloy @Alumina microcapsules are prepared;
  • the Al-Si-Fe alloy powder is washed alternately with alkali and deionized water for 3 to 5 times, and then dried in a nitrogen atmosphere at 60 to 110°C for 8 to 12 hours, and then placed in a high-temperature atmosphere furnace and roasted in six stages. Cooling to obtain Al-Si-Fe alloy@Alumina microcapsules;
  • the aluminum-silicon alloy powder is washed alternately with alkali and deionized water for 3 to 5 times, and then dried in a nitrogen atmosphere at 60 to 110°C for 8 to 12 hours, and then placed in a high-temperature atmosphere furnace, and roasted in six stages. After cooling, an aluminum-silicon alloy @Alumina microcapsule is prepared.
  • step 1 The six stages of roasting described in step 1 are:
  • the first stage the high-temperature atmosphere furnace is heated from room temperature to 550-650°C at a rate of 5-10°C/min; the atmosphere in the furnace is a steam atmosphere, and the steam: inlet gauge pressure is 0.01-0.9 MPa, The temperature before the inlet is 110 ⁇ 300°C, and the flow rate is 3 ⁇ 5L/min;
  • the second stage heating the high-temperature atmosphere furnace to 700-800°C at a rate of 10-20°C/min; the atmosphere in the furnace is an air atmosphere;
  • the third stage heating the high-temperature atmosphere furnace to 850-950°C at a rate of 5-8°C/min; the atmosphere in the furnace is an oxidizing atmosphere, and the pressure in the furnace is 0.01-0.05 MPa;
  • the fourth stage heating the high-temperature atmosphere furnace to 1050-1250°C at a rate of 3 to 5°C/min; the atmosphere in the furnace is an oxidizing atmosphere, and the internal pressure of the furnace is greater than 0.05 and less than or equal to 0.1 MPa;
  • the fifth stage heating the high-temperature atmosphere furnace to 1350-1500°C at a rate of 5-10°C/min; the furnace atmosphere is an oxidizing atmosphere, and the furnace pressure is greater than 0.1 and less than or equal to 0.5MPa;
  • the sixth stage the high-temperature atmosphere furnace is kept at a temperature of 1350-1500°C for 30-180 minutes, and the atmosphere in the furnace is an air atmosphere.
  • Step 2 The preparation methods of Al-Silicon-Nickel@Ceramics Big Capsule, Al-Silicon-Fe-Alloy@Ceramics Big Capsule and Al-Silicon Alloy@Ceramics Big Capsule are:
  • the diameters of the Al-Si-Ni alloy balls, Al-Si-Fe alloy balls and Al-Si alloy balls are independently 2-18 mm; Al-Si-Ni alloy balls, Al-Si-Fe alloy balls and Al-Si alloy balls are respectively composed of their corresponding Al-Si-Ni alloy balls.
  • Rod, Al-Si-Fe alloy rod and Al-Si alloy rod are independently 2-18 mm;
  • Step 3 The preparation method of the high temperature phase change heat storage refractory material is:
  • the first aggregate Take 55 ⁇ 65wt% of Al-Si-Ni alloy@ceramic large capsule as the first aggregate, take 25 ⁇ 35wt% of Al-Si-Ni alloy@Alumina microcapsule, 4 ⁇ 6wt% of ⁇ -Al 2 O 3 micropowder, 0.1 ⁇ 1wt% of silica powder and 4 ⁇ 6wt% of calcium aluminate cement are the first matrix, and the sum of the first aggregate and the first matrix is the first raw material; first, the first matrix and the first raw material account for 0.1 ⁇ 0.2wt% of the polycarboxylic acid is mixed uniformly to obtain the first premixed matrix material; then the first premixed matrix material and the first aggregate are mixed, and then 3 to 5wt% of water is added to the first raw material, Stir uniformly, pour into shape, cure for 24-30h at 25-28°C, air relative humidity 75-80%, demould, and then dry at 110-300°C for 24-36h to prepare high temperature phase change storage Thermal re
  • phase change temperature of the high-temperature phase change heat storage refractory material is 1150-1300°C.
  • Step 4 The preparation method of the intermediate temperature phase change heat storage refractory material is:
  • the second matrix Using 55 ⁇ 65wt% ferro-silicon alloy@ceramic large capsule as the second aggregate, with 25 ⁇ 35wt% ferro-silicon alloy@alumina microcapsules, 4 ⁇ 6wt% ⁇ -Al 2 O 3 micropowder, 0.1 ⁇ 1wt % Silica powder and 4-6wt% calcium aluminate cement are the second matrix, and the sum of the second aggregate and the second matrix is the second raw material; firstly, the second matrix is combined with 0.1-0.2wt% of the second raw material.
  • % Of the polycarboxylic acid is mixed uniformly to obtain a second pre-mixed base material; then the second pre-mixed base material and the second aggregate are mixed, and then 3 to 5 wt% of water is added to the second raw material, and the mixture is evenly stirred , Pouring molding, curing for 24-30h at 25 ⁇ 28°C and air relative humidity of 75 ⁇ 80%, demoulding, and then drying at 110 ⁇ 300°C for 24 ⁇ 36h to prepare medium temperature phase change heat storage refractory Material.
  • the phase change temperature of the intermediate temperature phase change heat storage refractory material is 800 to 950°C.
  • Step 5 The preparation method of the low temperature phase change heat storage refractory material is:
  • Use 55 ⁇ 65wt% aluminum-silicon alloy@ceramic large capsule as the third aggregate, 25 ⁇ 35wt% aluminum-silicon alloy@alumina microcapsule, 4 ⁇ 6wt% ⁇ -Al 2 O 3 micropowder, 0.1 ⁇ 1wt % Silica powder and 4-6wt% calcium aluminate cement are the third matrix, and the sum of the third aggregate and the third matrix is the third raw material; first, the third matrix and the third raw material account for 0.1-0.2wt % Of the polycarboxylic acid is mixed uniformly to obtain the third pre-mixed base material; then the third pre-mixed base material and the third aggregate are mixed, and then 3 to 5 wt% of water is added to the third raw material and stirred evenly , Pouring molding, curing for 24-30h at 25-28°C and air relative humidity of 75-80%, demoulding, and then drying at 110-300°C for 24-36h to produce low-temperature phase change heat storage refractory Material.
  • phase change temperature of the low-temperature phase change heat storage refractory material is 500-650°C.
  • Step 6 The preparation method of the near-zero heat loss refractory lining of the intermittently operated high-temperature kiln is as follows:
  • Intermittently operated high-temperature furnaces with near-zero heat loss refractory linings in the thickness direction from the inside to the outside are: working lining refractories, permanent lining refractories, and thermal insulation lining materials.
  • the working lining refractory material is located on the hot surface contacting the high-temperature medium in the kiln, and has a thickness of 150-250 mm.
  • the thermal insulation lining material adopts nano thermal insulation board with a thickness of 5-20mm.
  • the permanent lining refractory material is a phase change heat storage refractory material
  • the phase change heat storage refractory material is a high temperature phase change heat storage refractory material, a medium temperature phase change heat storage refractory material and a low temperature phase change heat storage refractory material from the inside to the outside.
  • Composition of which:
  • the thickness of the high temperature phase change heat storage refractory material is 30 ⁇ 80mm;
  • the thickness of the medium temperature phase change heat storage refractory material is 20 ⁇ 60mm;
  • the thickness of the low temperature phase change heat storage refractory material is 30 to 110 mm.
  • the intermittently operated high-temperature kiln is one of ladle, torpedo, ladle, shuttle kiln and inverted flame kiln, and the refractory lining includes a top, a bottom and a wall.
  • the preparation method of the ceramic spherical shell is:
  • 80 ⁇ 90wt% of corundum fine powder, 5 ⁇ 15wt% of mullite fine powder, 3 ⁇ 5wt% of ⁇ -alumina powder and 1-3wt% of silica fine powder are ball milled in a ball mill for 5 ⁇ 8min, Obtain a mixed powder; add 5-20wt% of the zirconium dioxide sol to the mixed powder, stir uniformly to obtain a mixed mud; then use an injection molding machine to shape the mixed mud, Obtain the hemispherical shell mud with threads; then dry the hemispherical shell mud with threads at 110-180°C for 24 to 36 hours, and heat up to 1350 at a rate of 3 to 5°C/min ⁇ 1650°C, heat preservation for 2 ⁇ 4h, make a ceramic hemispherical shell with threads;
  • the ceramic hemispherical shells with threads are two types: ceramic hemispherical shells with internal threads and ceramic hemispherical shells with external threads; ceramic hemispherical shells with internal threads and ceramic hemispherical shells with external threads
  • the threaded ceramic hemispherical shell is connected to a hollow sphere through the thread to obtain a ceramic spherical shell;
  • the annular inner wall at the edge of the hemispherical ceramic shell with internal threads is provided with internal threads
  • the annular outer wall at the edge of the hemispherical ceramic shell with external threads is provided with external threads.
  • the outer diameter and wall thickness of the ceramic hemispherical shell with internal threads and the ceramic hemispherical shell with external threads are the same; the wall thickness is 0.6-2mm, and the outer diameter is 3.5-24mm; The nominal diameter of the thread is 2.7 ⁇ 21mm.
  • the content of Al 2 O 3 in the fine corundum powder is ⁇ 98wt%; the particle size of the fine corundum powder is ⁇ 15 ⁇ m;
  • the content of Al 2 O 3 in the fine mullite powder is ⁇ 70wt%, and the content of SiO 2 is ⁇ 22wt%; the particle size of the mullite fine powder is ⁇ 15 ⁇ m;
  • the solid content of the zirconia sol is 30 wt%, and the particle size is 20-50 nm.
  • the chemical composition of the aluminum-silicon-nickel alloy rod is: Al content is 17-25wt%, Si content is 53-60wt%, Ni content is 20-28wt%; the composition of said aluminum-silicon-nickel alloy powder and aluminum-silicon-nickel alloy rod The chemical composition is the same, and the particle size of the Al-Si-Ni alloy powder is 13-250 ⁇ m.
  • the chemical composition of the Al-Si-Fe alloy rod is: Al content is 40 ⁇ 45wt%, Si content is 40 ⁇ 45wt%, Fe content is 10-15wt%; the chemical composition of the Al-Si-Fe alloy powder and Al-Si-Fe alloy rod is the same , The particle size of Al-Si-Fe alloy powder is 13-250 ⁇ m.
  • the Si content of the aluminum-silicon alloy rod is 12 to 45 wt%; the silicon content of the aluminum-silicon alloy powder and the aluminum-silicon alloy rod are the same, and the particle size of the aluminum-silicon alloy powder is 13-250 ⁇ m.
  • the Al 2 O 3 content of the ⁇ -Al 2 O 3 fine powder is ⁇ 97wt%; the particle size of the ⁇ -Al 2 O 3 fine powder is ⁇ 8 ⁇ m.
  • the SiO 2 content of the silicon micropowder is >92wt%; the particle size of the silicon micropowder is ⁇ 1 ⁇ m.
  • the chemical composition of the calcium aluminate cement is: Al 2 O 3 content is 50-60 wt%, SiO 2 content is less than 8 wt%, Fe 2 O 3 content is less than 2.5 wt%, and the particle size of calcium aluminate cement is less than or equal to 10 ⁇ m.
  • the present invention has the following positive effects compared with the prior art:
  • the permanent lining refractory material used in the present invention is a high-temperature phase-change heat storage refractory prepared from different phase-change temperatures, a medium-temperature phase-change heat storage refractory material, and a low-temperature phase-change heat storage refractory material according to the temperature gradient from high temperature to low temperature.
  • the variable heat storage refractory material forms a relatively stable temperature distribution in the furnace lining, reduces the temperature fluctuation of the working lining refractory material during the heating and cooling process, and improves the service life.
  • the alloy@Alumina ceramic large capsule is used as the aggregate, and the alloy@Alumina microcapsule is used as the matrix to store heat to the maximum.
  • the shell temperature of the intermittently operated high-temperature furnace is close to the ambient temperature, and the heat loss is close to zero, that is, nearly zero heat loss is achieved.
  • the working process of the present invention is:
  • T h is the temperature change curve in the intermittent operation high temperature kiln
  • T 1-2 is the high temperature phase change heat storage refractory material of the working lining and the permanent lining Interface temperature change curve
  • T 2-3 is the temperature change curve of the interface between the permanent lining high temperature phase change heat storage refractory material and the medium temperature phase change heat storage refractory material
  • T 3-4 is the medium temperature phase change heat storage refractory material and the low temperature phase change
  • T 4-5 is the temperature change curve of the interface between the permanent lining low temperature phase change heat storage refractory material and the thermal insulation lining
  • T 5-S is the temperature change curve of the interface between the thermal insulation lining and the steel shell
  • T w is the temperature change curve of the high temperature kiln shell.
  • the temperature distribution changes in the refractory material of the furnace lining during the heating and cooling process of the intermittently operated high-temperature kiln are:
  • the temperature of the working lining and the permanent lining rises in turn.
  • the temperature of the high-temperature phase change heat storage refractory material of the permanent lining rises to the phase change temperature t ch of the aluminum-silicon-nickel alloy, the aluminum-silicon Nickel alloy undergoes a phase change and absorbs heat.
  • the temperature of the medium-temperature phase-change heat storage material, the temperature of the low-temperature phase-change heat storage material, the temperature of the thermal insulation lining, and the outer wall temperature T w remain unchanged; Phase change alloys all undergo phase transformation, the heat storage reaches saturation, the temperature of the intermediate temperature phase change heat storage refractory material rises, and when the phase change temperature t cm of the Al Si Fe alloy is higher than the Al Si Fe alloy phase transformation, the low temperature phase change heat storage The temperature of the material, the temperature of the thermal insulation lining and the temperature of the outer wall T w remain unchanged; all the intermediate temperature phase change alloys undergo phase change, and the heat storage reaches saturation.
  • the temperature of the low temperature phase change heat storage refractory material rises higher than that of the aluminum silicon alloy
  • the aluminum-silicon alloy undergoes a phase transition, and the temperature of the thermal insulation lining and the temperature of the outer wall T w remain unchanged; as the temperature in the kiln increases, the low-temperature phase-change heat storage refractory material reaches saturation ,
  • the maximum interface temperature of the thermal insulation layer is the phase transition temperature t cl of the aluminum-silicon alloy. Because the maximum use temperature of the nano thermal insulation board is greater than t cl , and the thermal conductivity of the thermal insulation layer nano thermal insulation board is low, the thermal resistance is large, so that the shell temperature remains basically unchanged.
  • the temperature of the working lining is lowered first, followed by the permanent lining and the thermal insulation lining.
  • the temperature of the permanent lining high-temperature phase change heat storage refractory material is lower than the phase transition temperature t ch of the Al-Si-Ni alloy, the Al-Si-Ni alloy undergoes phase change and exothermic heat, which delays the rate of decrease of the working lining temperature and maintains the shell temperature t w constant.
  • the temperature in the intermittent high-temperature kiln continues to drop, when the temperature of the permanent lining medium-temperature phase change heat storage refractory material is lower than the phase transformation temperature t cm of the Al-Si-Fe alloy, the Al-Si-Fe alloy undergoes phase change and heat release, which delays the working lining
  • the temperature and the temperature of the permanent lining high-temperature phase change heat storage refractory material decrease speed, and keep the shell temperature t w constant.
  • the temperature in the intermittent high-temperature kiln continues to drop, when the temperature of the permanent lining low-temperature phase change heat storage refractory material is lower than the phase transition temperature t cl of the aluminum-silicon alloy, the aluminum-silicon alloy undergoes phase change and heat release, which delays the working lining
  • the temperature, the temperature of the permanent lining high temperature phase change heat storage refractory material and the temperature of the permanent lining medium temperature phase change heat storage refractory material decrease speed, and keep the shell temperature t w constant. Close to the ambient temperature t 0 , it is approximately zero heat loss.
  • the invention uses the difference in the phase change temperature and the phase change enthalpy in the three permanent lining phase change heat storage refractories, and designs three different phase changes through heat transfer calculations.
  • the thickness of the heat storage refractory material and the thickness of the heat insulation layer realize the stability of the shell temperature, which is close to the ambient temperature, and the heat loss is approximately zero; at the same time, it delays the temperature drop rate of the working lining and the temperature fluctuation of the shell and the insulation layer, reducing the working lining and insulation.
  • the stress change of the heat lining prevents the outer shell from deforming, ensuring the integrity and long life of the high-temperature kiln body structure.
  • the main performance parameters of the near-zero heat loss refractory lining body of the intermittently operated high-temperature kiln prepared by the present invention are:
  • High temperature phase change heat storage refractory material bulk density is 3.12 ⁇ 3.86g/cm 3 ; thermal conductivity (1000 ⁇ 1200°C) is 5.23 ⁇ 12.78W/(m ⁇ °C); heat storage density (1150 ⁇ 1300°C) is 260.2 ⁇ 380.8J/g; Compressive strength of 60 ⁇ 115MPa; Thermal shock (1200°C) 30 times air-cooled compressive strength of 25 ⁇ 60MPa.
  • Intermediate temperature phase change heat storage refractory material bulk density is 2.62 ⁇ 3.36g/cm 3 ; thermal conductivity (600 ⁇ 800°C) is 2.23 ⁇ 7.56W/(m ⁇ °C); heat storage density (800 ⁇ 950°C) is 180.2 ⁇ 240.8J/g; Compressive strength of 80 ⁇ 125MPa; Thermal shock (800°C) 30 times air-cooled compressive strength of 15 ⁇ 40MPa.
  • Low temperature phase change heat storage refractory material bulk density is 2.02 ⁇ 2.56g/cm 3 ; thermal conductivity (300 ⁇ 600°C) is 6.23 ⁇ 18.56W/(m ⁇ °C); heat storage density (500 ⁇ 650°C) is 110.2 ⁇ 180.8J/g; Compressive strength is 70 ⁇ 120MPa; Thermal shock (600°C) 30 times air-cooled compressive strength is 30 ⁇ 70MPa.
  • the intermittently operated high-temperature kiln prepared by the present invention has a near-zero heat loss refractory lining body, which has the characteristics of near zero heat loss and long service life of the lining refractory material.
  • Fig. 1 is a graph showing the temperature change curve of a refractory lining body with near zero heat loss in an intermittently operated high-temperature kiln according to the present invention.
  • the refractory lining includes a top, a bottom and a wall.
  • the preparation method of the ceramic spherical shell is:
  • 80 ⁇ 90wt% of corundum fine powder, 5 ⁇ 15wt% of mullite fine powder, 3 ⁇ 5wt% of ⁇ -alumina powder and 1 ⁇ 3wt% of silica fine powder are ball milled in a ball mill for 5 ⁇ 8min, Obtain a mixed powder; add 5-20wt% of the zirconium dioxide sol to the mixed powder and stir uniformly to obtain a mixed mud; then use an injection molding machine to shape the mixed mud, Obtain the hemispherical shell mud with threads; then dry the hemispherical shell mud with threads at 110-180°C for 24 to 36 hours, and heat up to 1350 at a rate of 3 to 5°C/min ⁇ 1650°C, heat preservation for 2 ⁇ 4h, make a ceramic hemispherical shell with thread;
  • the ceramic hemispherical shells with threads are two types: ceramic hemispherical shells with internal threads and ceramic hemispherical shells with external threads; ceramic hemispherical shells with internal threads and ceramic hemispherical shells with external threads
  • the threaded ceramic hemispherical shell is connected to a hollow sphere through the thread to obtain a ceramic spherical shell;
  • the annular inner wall at the edge of the hemispherical ceramic shell with internal threads is provided with internal threads
  • the annular outer wall at the edge of the hemispherical ceramic shell with external threads is provided with external threads; the ceramic hemispherical shell with internal threads
  • the outer diameter and wall thickness of the ceramic hemispherical shell with external threads are the same.
  • the wall thickness is 0.6-2mm, the outer diameter is 3.5-24mm; the nominal diameter of the internal thread and the external thread is 2.7-21mm.
  • the Al 2 O 3 content of the fine corundum powder is ⁇ 98wt%; the particle size of the fine corundum powder is ⁇ 15 ⁇ m;
  • the mullite fine powder Al 2 O 3 content ⁇ 70wt%, SiO 2 content ⁇ 22wt%; the particle size of the mullite fine powder ⁇ 15 ⁇ m;
  • the zirconia sol has a solid content of 30 wt% and a particle size of 20-50 nm.
  • the chemical composition of the aluminum-silicon-nickel alloy rod is: Al content is 17-25wt%, Si content is 53-60wt%, Ni content is 20-28wt%; the composition of said aluminum-silicon-nickel alloy powder and aluminum-silicon-nickel alloy rod The chemical composition is the same, and the particle size of the Al-Si-Ni alloy powder is 13-250 ⁇ m.
  • the chemical composition of the Al-Si-Fe alloy rod is: Al content is 40 ⁇ 45wt%, Si content is 40 ⁇ 45wt%, Fe content is 10-15wt%; the chemical composition of the Al-Si-Fe alloy powder and Al-Si-Fe alloy rod is the same , The particle size of Al-Si-Fe alloy powder is 13-250 ⁇ m.
  • the Si content of the aluminum-silicon alloy rod is 12 to 45 wt%; the silicon content of the aluminum-silicon alloy powder and the aluminum-silicon alloy rod are the same, and the particle size of the aluminum-silicon alloy powder is 13-250 ⁇ m.
  • the Al 2 O 3 content of the ⁇ -Al 2 O 3 fine powder is ⁇ 97wt%; the particle size of the ⁇ -Al 2 O 3 fine powder is ⁇ 8 ⁇ m.
  • the SiO 2 content of the silicon micropowder is >92wt%; the particle size of the silicon micropowder is less than 1 ⁇ m.
  • the chemical composition of the calcium aluminate cement is: Al 2 O 3 content is 50-60 wt%, SiO 2 content is less than 8 wt%, Fe 2 O 3 content is less than 2.5 wt%, and the particle size of calcium aluminate cement is less than or equal to 10 ⁇ m.
  • the preparation method is:
  • Step 1 The preparation methods of Al-Silicon-Nickel@Aluminum Oxide Microcapsule, Al-Silicon-Fe-Alloy@Alumina Microcapsule and Al-Silicon Alloy@Alumina Microcapsule are:
  • the Al-Si-Ni alloy powder is washed alternately with alkali and deionized water for 3 to 5 times, and then dried in a nitrogen atmosphere at 60 to 110°C for 8 to 12 hours, and then placed in a high-temperature atmosphere furnace and sintered in six stages. Cooling to obtain Al-Si-Ni alloy@Alumina microcapsules;
  • the Al-Si-Fe alloy powder is washed alternately with alkali and deionized water for 3 to 5 times, and then dried in a nitrogen atmosphere at 60 to 110°C for 8 to 12 hours, and then placed in a high-temperature atmosphere furnace, roasted in six stages, and cooled naturally , To obtain Al-Si-Fe alloy@Alumina microcapsules;
  • the aluminum-silicon alloy powder is washed alternately with alkali and deionized water for 3 to 5 times, and then dried in a nitrogen atmosphere at 60 to 110°C for 8 to 12 hours, and then placed in a high-temperature atmosphere furnace, roasted in six stages, and cooled naturally ,
  • the aluminum-silicon alloy @Alumina microcapsules are prepared;
  • step 1 The six stages of roasting described in step 1 are:
  • the first stage the high-temperature atmosphere furnace is heated from room temperature to 550-650°C at a rate of 5-10°C/min; the atmosphere in the furnace is a steam atmosphere, and the steam: inlet gauge pressure is 0.01-0.9 MPa, The temperature before the inlet is 110 ⁇ 300°C, and the flow rate is 3 ⁇ 5L/min;
  • the second stage heating the high-temperature atmosphere furnace to 700-800°C at a rate of 10-20°C/min, and the atmosphere in the furnace is an air atmosphere;
  • the third stage heating the high-temperature atmosphere furnace to 850-950°C at a rate of 5-8°C/min; the atmosphere in the furnace is an oxidizing atmosphere, and the pressure in the furnace is 0.01-0.05 MPa;
  • the fourth stage heating the high-temperature atmosphere furnace to 1050-1250°C at a rate of 3 to 5°C/min; the atmosphere in the furnace is an oxidizing atmosphere, and the internal pressure of the furnace is greater than 0.05 and less than or equal to 0.1 MPa;
  • the fifth stage heating the high-temperature atmosphere furnace to 1350-1500°C at a rate of 5-10°C/min; the furnace atmosphere is an oxidizing atmosphere, and the furnace pressure is greater than 0.1 and less than or equal to 0.5MPa;
  • the sixth stage the high-temperature atmosphere furnace is kept at a temperature of 1350-1500°C for 30-180 minutes, and the atmosphere in the furnace is an air atmosphere.
  • Step 2 The preparation methods of Al-Silicon-Nickel@Ceramics Big Capsule, Al-Silicon-Fe-Alloy@Ceramics Big Capsule and Al-Silicon Alloy@Ceramics Big Capsule are as follows:
  • the diameters of the Al-Si-Ni alloy balls, Al-Si-Fe alloy balls and Al-Si alloy balls are independently 2-18 mm; Al-Si-Ni alloy balls, Al-Si-Fe alloy balls and Al-Si alloy balls are respectively composed of their corresponding Al-Si-Ni alloy balls.
  • Rod, Al-Si-Fe alloy rod and Al-Si alloy rod are independently 2-18 mm;
  • Step 3 The preparation method of the high temperature phase change heat storage refractory material is:
  • ⁇ 0.2wt% of polycarboxylic acid is uniformly mixed to obtain a first premixed matrix material; then the first premixed matrix material and the first aggregate are mixed, and then 3 to 5wt% of water is added to the first raw material , Stir uniformly, pour into shape, cure for 24-30h at 25-28°C, air relative humidity 75-80%, demould, and then dry at 110-300°C for 24-36h to obtain high temperature phase change Heat storage refractory materials;
  • phase change temperature of the high-temperature phase change heat storage refractory material is 1150-1300°C.
  • Step 4 The preparation method of the intermediate temperature phase change heat storage refractory material is:
  • ⁇ 0.2wt% of the polycarboxylic acid is uniformly mixed to obtain a second premixed matrix material; then the second premixed matrix material and the second aggregate are mixed, and then 3 to 5wt% of water is added to the second raw material , Stir uniformly, pour into shape, cure for 24-30h at 25-28°C, air relative humidity 75-80%, demould, and then dry at 110-300°C for 24-36h to produce medium temperature phase change Heat storage refractory materials;
  • the phase change temperature of the intermediate temperature phase change heat storage refractory material is 800 to 950°C.
  • Step 5 The preparation method of the low temperature phase change heat storage refractory material is:
  • the third matrix is composed of silica micropowder of wt% and calcium aluminate cement of 4 to 5 wt%, and the sum of the third aggregate and the third matrix is the third raw material; first, the third matrix and the third raw material account for 0.1 to 0.2
  • the weight% of the polycarboxylic acid is uniformly mixed to obtain a third premixed base material; the third premixed base material and the third aggregate are mixed, and then water accounting for 3 to 5 wt% of the third raw material is added and stirred Homogeneous, casting molding, curing for 24-30h at 25-28°C and air relative humidity of 75-80%, demoulding, and then drying at 110-300°C for 24-36h to produce low-temperature phase change heat
  • phase change temperature of the low-temperature phase change heat storage refractory material is 500-650°C.
  • Step 6 The preparation method of the near-zero heat loss refractory lining of the intermittently operated high-temperature kiln is as follows:
  • Intermittently operated high-temperature kilns with near-zero heat loss refractory linings in the thickness direction from inside to outside are: working lining refractories, permanent lining refractories, and thermal insulation lining materials;
  • the working lining refractory material is located on the hot surface contacting molten steel and steel slag, and has a thickness of 200-250mm;
  • the thermal insulation lining material adopts nano thermal insulation board with a thickness of 15-20mm;
  • the permanent lining refractory material is a phase change heat storage refractory material
  • the phase change heat storage refractory material is a high temperature phase change heat storage refractory material, a medium temperature phase change heat storage refractory material, and a low temperature phase change heat storage refractory material from the inside to the outside.
  • the thickness of the high temperature phase change heat storage refractory material is 50 ⁇ 80mm;
  • the thickness of the medium temperature phase change heat storage refractory is 40-60mm;
  • the thickness of the low temperature phase change heat storage refractory material is 30-60mm;
  • the intermittently operated high-temperature furnace is a ladle.
  • the preparation method is:
  • Step 1 is the same as Step 1 of Example 1.
  • Step 2 is the same as Step 2 of Example 1.
  • Step 3 The preparation method of the high temperature phase change heat storage refractory material is:
  • phase change temperature of the high-temperature phase change heat storage refractory material is 1150-1300°C.
  • Step 4 The preparation method of the intermediate temperature phase change heat storage refractory material is:
  • 61 ⁇ 65wt% ferrosilicon alloy@ceramic large capsule as the second aggregate, 25 ⁇ 29wt% ferrosilicon alloy@alumina microcapsule, 5 ⁇ 6wt% ⁇ -Al 2 O 3 micropowder, 0.5 ⁇ 1.0 wt% silica powder and 4-5 wt% calcium aluminate cement are the second matrix, and the sum of the second aggregate and the second matrix is the second raw material; first, the second matrix and the second raw material account for 0.1 to 0.2 % by weight of polycarboxylic acid is mixed uniformly to obtain a second premixed base material; then the second premixed base material and the second aggregate are mixed, and then water accounting for 3 to 5 wt% of the second raw material is added and stirred Uniform, cast molding, curing for 24-30h at 25-28°C and air relative humidity of 75-80%, demoulding, and then drying at 110-300°C for 24 ⁇ 36h to prepare medium temperature phase change heat storage Refractory
  • the phase change temperature of the intermediate temperature phase change heat storage refractory material is 800 to 950°C.
  • Step 5 The preparation method of the low temperature phase change heat storage refractory material is:
  • Use 55-59wt% aluminum-silicon alloy@ceramic large capsule as the third aggregate, 31-35wt% aluminum-silicon alloy@alumina microcapsule, 4-5wt% ⁇ -Al 2 O 3 micropowder, 0.1-0.6 wt% silica powder and 5-6 wt% calcium aluminate cement are the third matrix, and the sum of the third aggregate and the third matrix is the third raw material; first, the third matrix and the third raw material account for 0.1-0.2
  • the weight% of the polycarboxylic acid is uniformly mixed to obtain a third premixed base material; the third premixed base material and the third aggregate are mixed, and then water accounting for 3 to 5 wt% of the third raw material is added and stirred Homogeneous, casting molding, curing for 24-30h at 25-28°C and air relative humidity of 75-80%, demoulding, and then drying at 110-300°C for 24-36h to produce low-temperature phase change heat storage Refractory
  • phase change temperature of the low-temperature phase change heat storage refractory material is 500-650°C.
  • Step 6 The preparation method of the near-zero heat loss refractory lining of the intermittently operated high-temperature kiln is as follows:
  • Intermittently operated high-temperature kilns with near-zero heat loss refractory linings in the thickness direction from inside to outside are: working lining refractories, permanent lining refractories, and thermal insulation lining materials;
  • the working lining refractory is located on the hot surface contacting the high-temperature gas in the kiln, and has a thickness of 170-230mm;
  • the thermal insulation lining thermal insulation material adopts nano thermal insulation board with a thickness of 10-15mm;
  • the permanent lining refractory material is a phase change heat storage refractory material
  • the phase change heat storage refractory material is a high temperature phase change heat storage refractory material, a medium temperature phase change heat storage refractory material, and a low temperature phase change heat storage refractory material from the inside to the outside.
  • the thickness of the high temperature phase change heat storage refractory material is 45 ⁇ 65mm;
  • the thickness of the medium temperature phase change heat storage refractory material is 30-50mm;
  • the thickness of the low temperature phase change heat storage refractory material is 50 ⁇ 80mm;
  • the intermittently operated high-temperature kiln is a shuttle kiln.
  • the preparation method is:
  • Step 1 is the same as Step 1 of Example 1.
  • Step 2 is the same as Step 2 of Example 1.
  • Step 3 The preparation method of the high temperature phase change heat storage refractory material is:
  • ⁇ 0.2wt% of polycarboxylic acid is uniformly mixed to obtain a first premixed matrix material; then the first premixed matrix material and the first aggregate are mixed, and then 3 to 5wt% of water is added to the first raw material , Stir uniformly, pour into shape, cure for 24-30h at 25-28°C, air relative humidity 75-80%, demould, and then dry at 110-300°C for 24-36h to obtain high temperature phase change Heat storage refractory materials;
  • phase change temperature of the high-temperature phase change heat storage refractory material is 1150-1300°C.
  • Step 4 The preparation method of the intermediate temperature phase change heat storage refractory material is:
  • Use 55-59wt% ferrosilicon alloy@ceramic large capsule as the second aggregate, use 31-35wt% ferrosilicon alloy@alumina microcapsule, 4-5wt% ⁇ -Al 2 O 3 micropowder, 0.1-0.6 wt% silica powder and 5-6 wt% calcium aluminate cement are the second matrix, and the sum of the second aggregate and the second matrix is the second raw material; first, the second matrix and the second raw material account for 0.1 to 0.2 % by weight of polycarboxylic acid is mixed uniformly to obtain a second premixed base material; then the second premixed base material and the second aggregate are mixed, and then water accounting for 3 to 5 wt% of the second raw material is added and stirred Uniform, cast molding, curing for 24-30h at 25-28°C and air relative humidity of 75-80%, demoulding, and then drying at 110-300°C for 24 ⁇ 36h to prepare medium temperature phase change heat storage Refractory materials,
  • the phase change temperature of the intermediate temperature phase change heat storage refractory material is 800 to 950°C.
  • Step 5 The preparation method of the low temperature phase change heat storage refractory material is:
  • phase change temperature of the low-temperature phase change heat storage refractory material is 500-650°C.
  • Step 6 The preparation method of the near-zero heat loss refractory lining of the intermittently operated high-temperature kiln is as follows:
  • Intermittently operated high-temperature kilns with near-zero heat loss refractory linings in the thickness direction from inside to outside are: working lining refractories, permanent lining refractories, and thermal insulation lining materials;
  • the working lining refractory is located on the hot surface contacting molten iron or iron slag in the kiln, and has a thickness of 150-200mm;
  • the thermal insulation lining material adopts nano thermal insulation board with a thickness of 5-10mm;
  • the permanent lining refractory material is a phase change heat storage refractory material
  • the phase change heat storage refractory material is a high temperature phase change heat storage refractory material, a medium temperature phase change heat storage refractory material, and a low temperature phase change heat storage refractory material from the inside to the outside.
  • the thickness of the high temperature phase change heat storage refractory material is 30 ⁇ 45mm;
  • the thickness of the medium temperature phase change heat storage refractory is 20-40mm;
  • the thickness of the low temperature phase change heat storage refractory material is 80 ⁇ 110mm;
  • the intermittently operated high-temperature kiln is a ladle.
  • the permanent lining refractory used in this embodiment is composed of high-temperature phase-change heat storage refractories, medium-temperature phase-change heat storage refractories and low-temperature phase-change heat storage refractories prepared from different phase change temperatures according to the temperature gradient from high temperature to low temperature.
  • the phase change heat storage refractory material forms a relatively stable temperature distribution in the furnace lining, reduces the temperature fluctuation of the working lining refractory material during the heating and cooling process, and improves the service life.
  • the alloy@Alumina ceramic large capsule is used as the aggregate, and the alloy@Alumina microcapsule is used as the matrix to store heat to the maximum.
  • the shell temperature of the intermittently operated high-temperature furnace is close to the ambient temperature, and the heat loss is close to zero, that is, nearly zero heat loss is achieved.
  • T h is the temperature change curve in the intermittent operation high temperature kiln
  • T 1-2 is the high temperature phase change heat storage refractory material of the working lining and the permanent lining Interface temperature change curve
  • T 2-3 is the temperature change curve of the interface between the permanent lining high temperature phase change heat storage refractory material and the medium temperature phase change heat storage refractory material
  • T 3-4 is the medium temperature phase change heat storage refractory material and the low temperature phase change
  • T 4-5 is the temperature change curve of the interface between the permanent lining low temperature phase change heat storage refractory material and the thermal insulation lining
  • T 5-S is the temperature change curve of the interface between the thermal insulation lining and the steel shell
  • T w is the temperature change curve of the high temperature kiln shell.
  • Figure 1 is an intermittently operating high-temperature kiln in Example 1.
  • the temperature change curve of the refractory lining with near zero heat loss can be seen from Figure 1:
  • the temperature of the working lining and the permanent lining increase in turn.
  • the high temperature phase change of the permanent lining accumulates
  • the temperature of the thermal refractory material rises to the phase transition temperature t ch of the Al-Si-Ni alloy
  • the Al-Si-Ni alloy undergoes a phase transformation and absorbs heat.
  • the temperature of the medium-temperature phase-change heat storage material and the temperature of the low-temperature phase-change heat storage material remain unchanged; in the same way, when all the high temperature phase change alloy undergoes phase change and the heat storage reaches saturation, the temperature of the medium temperature phase change heat storage refractory material rises higher than that of aluminum silicon
  • the phase transition temperature of the ferroalloy is t cm
  • the Al-Si-Fe alloy undergoes a phase transition
  • the temperature of the low-temperature phase-change heat storage material, the temperature of the thermal insulation lining, and the outer wall temperature T w remain unchanged; the intermediate-temperature phase-change alloys all undergo phase transition, and
  • the heat reaches saturation the temperature of the low-temperature phase change heat storage refractory material rises, and when it is higher than the phase transition temperature t cl of the aluminum-silicon alloy, the aluminum-silicon alloy undergoes a phase transformation
  • the temperature of the working lining is lowered first, followed by the permanent lining and the thermal insulation lining.
  • the temperature of the permanent lining high-temperature phase change heat storage refractory material is lower than the phase transition temperature t ch of the Al-Si-Ni alloy, the Al-Si-Ni alloy undergoes phase change and exothermic heat, which delays the rate of decrease of the working lining temperature and maintains the shell temperature t w constant.
  • the temperature in the intermittent high-temperature kiln continues to drop, when the temperature of the permanent lining medium-temperature phase change heat storage refractory material is lower than the phase transformation temperature t cm of the Al-Si-Fe alloy, the Al-Si-Fe alloy will generate phase change and heat release, delaying the working lining
  • the temperature and the temperature of the permanent lining high-temperature phase change heat storage refractory material decrease speed, and keep the shell temperature t w constant.
  • the temperature in the intermittent high-temperature kiln continues to drop, when the temperature of the permanent lining low-temperature phase change heat storage refractory material is lower than the phase transition temperature t cl of the aluminum-silicon alloy, the aluminum-silicon alloy undergoes phase change and heat release, which delays the working lining
  • the temperature, the temperature of the permanent lining high temperature phase change heat storage refractory material and the temperature of the permanent lining medium temperature phase change heat storage refractory material decrease speed, and keep the shell temperature t w constant. Close to the ambient temperature t 0 , it is approximately zero heat loss.
  • this embodiment uses the difference in the phase change temperature and the phase change enthalpy in the three permanent lining phase change heat storage refractories, and designs three different types through heat transfer calculations.
  • the thickness of the phase-change heat storage refractory material and the thickness of the insulation layer realize the stable shell temperature, which is close to the ambient temperature, and the heat loss is approximately zero; at the same time, it delays the temperature drop rate of the working lining and the temperature fluctuation of the shell and the insulation layer, reducing the working lining
  • the stress change with the thermal insulation lining prevents the outer shell from deforming, ensuring the integrity and long life of the high-temperature kiln body structure.
  • High temperature phase change heat storage refractory material bulk density is 3.12 ⁇ 3.86g/cm 3 ; thermal conductivity (1000 ⁇ 1200°C) is 5.23 ⁇ 12.78W/(m ⁇ °C); heat storage density (1150 ⁇ 1300°C) is 260.2 ⁇ 380.8J/g; Compressive strength of 60 ⁇ 115MPa; Thermal shock (1200°C) 30 times air-cooled compressive strength of 25 ⁇ 60MPa.
  • Intermediate temperature phase change heat storage refractory material bulk density is 2.62 ⁇ 3.36g/cm 3 ; thermal conductivity (600 ⁇ 800°C) is 2.23 ⁇ 7.56W/(m ⁇ °C); heat storage density (800 ⁇ 950°C) is 180.2 ⁇ 240.8J/g; Compressive strength of 80 ⁇ 125MPa; Thermal shock (800°C) 30 times air-cooled compressive strength of 15 ⁇ 40MPa.
  • Low temperature phase change heat storage refractory material bulk density is 2.02 ⁇ 2.56g/cm 3 ; thermal conductivity (300 ⁇ 600°C) is 6.23 ⁇ 18.56W/(m ⁇ °C); heat storage density (500 ⁇ 650°C) is 110.2 ⁇ 180.8J/g; Compressive strength is 70 ⁇ 120MPa; Thermal shock (600°C) 30 times air-cooled compressive strength is 30 ⁇ 70MPa.
  • the near-zero heat loss refractory lining of the intermittently operated high-temperature kiln prepared in this embodiment has the characteristics of approximately zero heat loss and long service life of the lining refractory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

一种间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法。技术方案是所述耐火材料衬体的永久衬耐火材料为相变蓄热耐火材料,即为高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料由内向外依次组成。相变蓄热耐火材料是由合金@陶瓷大胶囊、合金@氧化铝微胶囊、α-Al 2O 3微粉、硅微粉、铝酸钙水泥和聚羧酸加水混合,经成型、脱模和干燥制得。制备时合金@陶瓷大胶囊的铝硅镍合金@陶瓷大胶囊、铝硅铁合金@陶瓷大胶囊和铝硅合金@陶瓷大胶囊与合金@氧化铝微胶囊中对应的铝硅镍合金@氧化铝微胶囊、铝硅铁合金@氧化铝微胶囊和铝硅合金@氧化铝微胶囊分别配料。热损失近似于零和炉衬耐火材料寿命长。

Description

间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法
本申请要求于2020年01月20日提交中国专利局、申请号为CN202010065422.2、发明名称为“间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于间歇式操作高温窑炉衬体技术领域,具体涉及一种间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法。
背景技术
能源是社会发展的基础,工业能耗占全球总能耗的32~35%,而我国工业能耗高达总能耗的70%。高温工业炉是主要能耗大户,占工业能耗的48%以上(Laveet Kumar,M.Hasanuzazzaman,N.A.Rahim.Global advancement of solar thermal energy technologies for industrial process heat and its future prospects:A review.Energy Conversion and Management,2019,195:885-908.)。炉衬耐火材料对工业炉能耗具有决定性的影响,通常根据传热计算,采用多种耐火材料和隔热保温材料组合,尽可能减少窑体的散热损失和蓄热损失,达到节能降耗的目的。
根据工业窑炉的作业方式,可分为间歇式工业窑炉与连续式工业窑炉。对于间歇式工业窑炉来说,炉衬材料的热损失包括散热损失与蓄热损失。随着隔热保温材料的发展与技术进步,通常采用低导热的纳米隔热板作为隔热保温材料,降低外壁温度,从而降低散热损失。但是对于高温工业窑炉,如当炉内温度大于1500℃时,纳米隔热板的采用使总热阻增加,纳米隔热板热面温度升高,导致纳米隔热板析晶,强度降低或粉化,造成工业窑炉隔热层结构破坏,不仅达不到预期的降低热耗散作用,还会因其粉化导致窑炉炉衬结构破坏,带来安全事故。因此,单纯降低隔热保温材料的导热系数,无法从根本上解决间歇式工业窑炉能耗高的问题。为降低炉衬材料的蓄热损失,炉衬材料采用轻量耐火材料,特别是随着微孔刚玉、致密六铝酸钙等耐火原材料的发展,使高温窑炉炉衬材料轻量化成为可能,大大降低了炉衬蓄热损失。如“一种轻量刚玉-尖晶石浇注料及其制备方法”(CN 105236995B)专利技术,采用微孔刚玉为主要骨料,制备了热导率低的轻量刚玉-尖晶石浇注料,热导率和体密均有较大幅度降低,然而,轻量耐火材料在高温下抵抗高温介质(如钢液、钢渣、特殊气氛等)的冲刷与侵蚀性能还未得到实践验证,限制了其在实际工业窑炉中的应 用。
此外,间歇式工作的高温工业窑炉,其炉衬耐火材料周期性升温、降温,温度梯度产生热应力,在这种热疲劳或热震的作用下,会导致耐火材料开裂和剥落,降低炉衬耐火材料的使用寿命。
发明内容
本发明旨在克服现有技术缺陷,目的在于提供一种热损失低和炉衬耐火材料寿命长的间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法,
为实现上述目的,本发明采用的技术方案是:
提供了一种相变蓄热耐火材料,所述相变蓄热耐火材料为三组分,分别为高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料;
所述高温相变蓄热耐火材料的制备方法为:
以55~59wt%的铝硅镍合金@陶瓷大胶囊为第一骨料,以31~35wt%的铝硅镍合金@氧化铝微胶囊、4~5wt%的α-Al 2O 3微粉、0.1~0.6wt%的硅微粉和5~6wt%的铝酸钙水泥为第一基质,第一骨料和第一基质之和为第一原料;先将所述第一基质与占第一原料0.1~0.2wt%的聚羧酸混合均匀,得第一预混基质料;再将所述第一预混基质料和所述第一骨料混合,然后加入占第一原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得高温相变蓄热耐火材料;
所述高温相变蓄热耐火材料的相变温度为1150~1300℃;
所述中温相变蓄热耐火材料的制备方法为:
以58~62wt%的铝硅铁合金@陶瓷大胶囊为第二骨料,以28~32wt%的铝硅铁合金@氧化铝微胶囊、4.5~5.5wt%的α-Al 2O 3微粉、0.3~0.8wt%的硅微粉和4.5~5.5wt%的铝酸钙水泥为第二基质,第二骨料和第二基质之和为第二原料;先将所述第二基质与占第二原料0.1~0.2wt%的聚羧酸混合均匀,得第二预混基质料;再将所述第二预混基质料和所述第二骨料混合,然后加入占第二原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得中温相变蓄热耐火材料;
所述中温相变蓄热耐火材料的相变温度为800~950℃;
所述低温相变蓄热耐火材料的制备方法为:
以61~65wt%的铝硅合金@陶瓷大胶囊为第三骨料,以25~29wt%的 铝硅合金@氧化铝微胶囊、5~6wt%的α-Al 2O 3微粉、0.5~1.0wt%的硅微粉和4~5wt%的铝酸钙水泥为第三基质,第三骨料和第三基质之和为第三原料;先将所述第三基质与占第三原料0.1~0.2wt%的聚羧酸混合均匀,得第三预混基质料;再将所述第三预混基质料和所述第三骨料混合,然后加入占第三原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得低温相变蓄热耐火材料;
所述低温相变蓄热耐火材料的相变温度为500~650℃;
所述铝硅镍合金@氧化铝微胶囊、铝硅铁合金@氧化铝微胶囊和铝硅合金@氧化铝微胶囊的制备方法分别是:
将铝硅镍合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅镍合金@氧化铝微胶囊;
将铝硅铁合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅铁合金@氧化铝微胶囊;
将铝硅合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅合金@氧化铝微胶囊;
所述六个阶段进行焙烧均为:
第一阶段:以5~10℃/min的速率将所述高温气氛炉由室温升温至550~650℃;炉内气氛为水蒸气气氛,所述水蒸气:入口表压为0.01~0.9MPa,入口前温度为110~300℃,流量为3~5L/min;
第二阶段:以10~20℃/min的速率将所述高温气氛炉升温至700~800℃;炉内气氛为空气气氛;
第三阶段:以5~8℃/min的速率将所述高温气氛炉升温至850~950℃;炉内气氛为氧化气氛,炉内压强为0.01~0.05MPa;
第四阶段:以3~5℃/min的速率将所述高温气氛炉升温至1050~1250℃;炉内气氛为氧化气氛,炉内压强大于0.05且小于等于0.1MPa;
第五阶段:以5~10℃/min的速率将所述高温气氛炉升温至1350~1500℃;炉内气氛为氧化气氛,炉内压强大于0.1且小于等于0.5MPa;
第六阶段:将所述高温气氛炉在1350~1500℃条件下保温30~180min, 炉内气氛为空气气氛;
铝硅镍合金@陶瓷大胶囊、铝硅铁合金@陶瓷大胶囊和铝硅合金@陶瓷大胶囊的制备方法分别是:
将铝硅镍合金球置入陶瓷球形壳体内,即得铝硅镍合金@陶瓷大胶囊;
将铝硅铁合金球置入陶瓷球形壳体内,即得铝硅铁合金@陶瓷大胶囊;
将铝硅合金球置入陶瓷球形壳体内,即得铝硅合金@陶瓷大胶囊;
所述铝硅镍合金球、铝硅铁合金球和铝硅合金球的直径独立地为2~18mm;铝硅镍合金球、铝硅铁合金球和铝硅合金球分别由各自对应的铝硅镍合金棒、铝硅铁合金棒和铝硅合金棒制成。
优选的,所述陶瓷球形壳体的制备方法是:
将80~90wt%的刚玉细粉、5~15wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉和1~3wt%的二氧化硅微粉在球磨机内球磨5~8min,得到混合粉料;向所述混合粉料中加入占所述混合粉料5~20wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料;再采用注塑成型机将所述混合泥料成型,得到带有螺纹的半球形壳体泥坯;然后将所述带有螺纹的半球形壳体泥坯于110~180℃条件下干燥24~36h,以3~5℃/min的速率升温至1350~1650℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体;
所述带有螺纹的陶瓷半球形壳体为带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体两种;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体通过螺纹连接为空心球体,即得陶瓷球形壳体;
带有内螺纹的半球形陶瓷壳体边缘处的环形内壁设有内螺纹,带有外螺纹的半球形陶瓷壳体边缘处的环形外壁设有外螺纹;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体的外径和壁厚均相同;所述壁厚为0.6~2mm,所述外径为3.5~24mm;内螺纹和外螺纹的公称直径为2.7~21mm;所述刚玉细粉中Al 2O 3含量≥98wt%;刚玉细粉的粒径≤15μm;
所述莫来石细粉中Al 2O 3含量≥70wt%,SiO 2含量≥22wt%;莫来石细粉的粒径≤15μm;
所述二氧化锆溶胶的固含量为30wt%,粒度为20~50nm。
本发明还提供了一种间歇式操作高温窑炉近零热损耐火材料衬体,所述间歇式操作高温窑炉近零热损耐火材料衬体沿厚度方向由内到外依次为:工作衬耐火材料、永久衬耐火材料和隔热衬保温材料;
所述工作衬耐火材料位于接触窑炉内高温介质的热面,厚度为 150~250mm;
所述隔热衬保温材料采用纳米隔热板,厚度为5~20mm;
所述永久衬耐火材料为相变蓄热耐火材料,所述相变蓄热耐火材料为权利要求1或2所述的相变蓄热耐火材料;
所述高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料由内向外依次组成,其中:
高温相变蓄热耐火材料的厚度为30~80mm;
中温相变蓄热耐火材料的厚度为20~60mm;
低温相变蓄热耐火材料的厚度为30~110mm;
所述耐火材料衬体包括顶部、底部和墙体。
优选的,所述间歇式操作高温窑炉为铁水包、鱼雷罐、钢包、梭式窑和倒焰窑中的一种。
本发明提供了所述间歇式操作高温窑炉近零热损耐火材料衬体的制备方法,所述制备方法的步骤是:
步骤1、铝硅镍合金@氧化铝微胶囊、铝硅铁合金@氧化铝微胶囊和铝硅合金@氧化铝微胶囊的制备方法分别是:
将铝硅镍合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅镍合金@氧化铝微胶囊;
将铝硅铁合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅铁合金@氧化铝微胶囊;
将铝硅合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅合金@氧化铝微胶囊。
步骤1所述六个阶段进行焙烧均为:
第一阶段:以5~10℃/min的速率将所述高温气氛炉由室温升温至550~650℃;炉内气氛为水蒸气气氛,所述水蒸气:入口表压为0.01~0.9MPa,入口前温度为110~300℃,流量为3~5L/min;
第二阶段:以10~20℃/min的速率将所述高温气氛炉升温至700~800℃;炉内气氛为空气气氛;
第三阶段:以5~8℃/min的速率将所述高温气氛炉升温至850~950℃;炉内气氛为氧化气氛,炉内压强为0.01~0.05MPa;
第四阶段:以3~5℃/min的速率将所述高温气氛炉升温至 1050~1250℃;炉内气氛为氧化气氛,炉内压强大于0.05且小于等于0.1MPa;
第五阶段:以5~10℃/min的速率将所述高温气氛炉升温至1350~1500℃;炉内气氛为氧化气氛,炉内压强大于0.1且小于等于0.5MPa;
第六阶段:将所述高温气氛炉在1350~1500℃条件下保温30~180min,炉内气氛为空气气氛。
步骤2、铝硅镍合金@陶瓷大胶囊、铝硅铁合金@陶瓷大胶囊和铝硅合金@陶瓷大胶囊的制备方法分别是:
将铝硅镍合金球置入陶瓷球形壳体内,即得铝硅镍合金@陶瓷大胶囊;
将铝硅铁合金球置入陶瓷球形壳体内,即得铝硅铁合金@陶瓷大胶囊;
将铝硅合金球置入陶瓷球形壳体内,即得铝硅合金@陶瓷大胶囊。
所述铝硅镍合金球、铝硅铁合金球和铝硅合金球的直径独立地为2~18mm;铝硅镍合金球、铝硅铁合金球和铝硅合金球分别由各自对应的铝硅镍合金棒、铝硅铁合金棒和铝硅合金棒制成。
步骤3、高温相变蓄热耐火材料的制备方法为:
以55~65wt%的铝硅镍合金@陶瓷大胶囊为第一骨料,以25~35wt%的铝硅镍合金@氧化铝微胶囊、4~6wt%的α-Al 2O 3微粉、0.1~1wt%的硅微粉和4~6wt%的铝酸钙水泥为第一基质,第一骨料和第一基质之和为第一原料;先将所述第一基质与占第一原料0.1~0.2wt%的聚羧酸混合均匀,得第一预混基质料;再将所述第一预混基质料和所述第一骨料混合,然后加入占第一原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得高温相变蓄热耐火材料。
所述高温相变蓄热耐火材料的相变温度为1150~1300℃。
步骤4、中温相变蓄热耐火材料的制备方法为:
以55~65wt%的铝硅铁合金@陶瓷大胶囊为第二骨料,以25~35wt%的铝硅铁合金@氧化铝微胶囊、4~6wt%的α-Al 2O 3微粉、0.1~1wt%的硅微粉和4~6wt%的铝酸钙水泥为第二基质,第二骨料和第二基质之和为第二原料;先将所述第二基质与占第二原料0.1~0.2wt%的聚羧酸混合均匀,得第二预混基质料;再将所述第二预混基质料和所述第二骨料混合,然后加入占第二原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气 相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得中温相变蓄热耐火材料。
所述中温相变蓄热耐火材料的相变温度为800~950℃。
步骤5、低温相变蓄热耐火材料的制备方法为:
以55~65wt%的铝硅合金@陶瓷大胶囊为第三骨料,以25~35wt%的铝硅合金@氧化铝微胶囊、4~6wt%的α-Al 2O 3微粉、0.1~1wt%的硅微粉和4~6wt%的铝酸钙水泥为第三基质,第三骨料和第三基质之和为第三原料;先将所述第三基质与占第三原料0.1~0.2wt%的聚羧酸混合均匀,得第三预混基质料;再将所述第三预混基质料和所述第三骨料混合,然后加入占第三原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得低温相变蓄热耐火材料。
所述低温相变蓄热耐火材料的相变温度为500~650℃。
步骤6、间歇式操作高温窑炉近零热损耐火材料衬体的制备方法为:
间歇式操作高温窑炉近零热损耐火材料衬体沿厚度方向由内到外依次为:工作衬耐火材料、永久衬耐火材料和隔热衬保温材料。
所述工作衬耐火材料位于接触窑炉内高温介质的热面,厚度为150~250mm。
所述隔热衬保温材料采用纳米隔热板,厚度为5~20mm。
所述永久衬耐火材料为相变蓄热耐火材料,所述相变蓄热耐火材料是高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料由内向外依次组成;其中:
高温相变蓄热耐火材料的厚度为30~80mm;
中温相变蓄热耐火材料的厚度为20~60mm;
低温相变蓄热耐火材料的厚度为30~110mm。
所述间歇式操作高温窑炉为铁水包、鱼雷罐、钢包、梭式窑和倒焰窑中的一种,所述耐火材料衬体包括顶部、底部和墙体。
所述陶瓷球形壳体的制备方法是:
将80~90wt%的刚玉细粉、5~15wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉和1~3wt%的二氧化硅微粉在球磨机内球磨5~8min,得到混合粉料;向所述混合粉料中加入占所述混合粉料5~20wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料;再采用注塑成型机将所述混合泥料成型,得到带有螺纹的半球形壳体泥坯;然后将所述带有螺纹的半球形壳体泥坯于110~180℃条件下干燥24~36h,以3~5℃/min的速率升温至1350~1650℃, 保温2~4h,制得带有螺纹的陶瓷半球形壳体;
所述带有螺纹的陶瓷半球形壳体为带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体两种;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体通过螺纹连接为空心球体,即得陶瓷球形壳体;
带有内螺纹的半球形陶瓷壳体边缘处的环形内壁设有内螺纹,带有外螺纹的半球形陶瓷壳体边缘处的环形外壁设有外螺纹。带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体的外径和壁厚均相同;所述壁厚为0.6~2mm,外径为3.5~24mm;内螺纹和外螺纹的公称直径为2.7~21mm。
所述刚玉细粉中Al 2O 3含量≥98wt%;刚玉细粉的粒径≤15μm;
所述莫来石细粉中Al 2O 3含量≥70wt%,SiO 2含量≥22wt%;莫来石细粉的粒径≤15μm;
所述二氧化锆溶胶的固含量为30wt%,粒度为20~50nm。
所述铝硅镍合金棒的化学成分是:Al含量为17~25wt%,Si含量为53~60wt%,Ni含量为20~28wt%;所述铝硅镍合金粉和铝硅镍合金棒的化学成分相同,铝硅镍合金粉的粒径为13~250μm。
所述铝硅铁合金棒的化学成分是:Al含量为40~45wt%,Si含量为40~45wt%,Fe含量为10~15wt%;所述铝硅铁合金粉和铝硅铁合金棒的化学组成相同,铝硅铁合金粉的粒径为13~250μm。
所述铝硅合金棒的Si含量为12~45wt%;所述铝硅合金粉和铝硅合金棒的硅含量相同,铝硅合金粉的粒径为13~250μm。
所述α-Al 2O 3微粉的Al 2O 3含量≥97wt%;α-Al 2O 3微粉的粒径≤8μm。
所述硅微粉的SiO 2含量>92wt%;硅微粉的粒径<1μm。
所述铝酸钙水泥的化学成分是:Al 2O 3含量为50~60wt%,SiO 2含量<8wt%,Fe 2O 3含量<2.5wt%;铝酸钙水泥的粒径≤10μm。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
本发明采用的永久衬耐火材料是根据高温到低温的温度梯度,由不同相变温度制备的高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料组成的相变蓄热耐火材料,在炉衬内形成相对稳定的温度分布,降低了升温和降温过程中工作衬耐火材料温度波动,提高了使用寿命。在相变蓄热耐火材料中,采用合金@氧化铝陶瓷大胶囊作为骨料,合金@氧化铝微胶囊作为基质,最大限度的储存热量。与隔热层采用低导热系数的纳米隔热板相配合,使间歇式操作高温窑炉的外壳温度接近环境温度,热损失近似于零,即实现近零热损。
本发明的工作过程是:
设室温为t 0,间歇式操作高温窑炉的最高工作温度为t h,相变蓄热耐火材料中的铝硅合金、铝硅铁合金和铝硅镍合金的相变温度依次为t cl、t cm和t ch,且t cl<t cm<t ch。间歇式操作高温窑炉一个工作周期内的升温-降温过程中,T h为间歇式操作高温窑炉内的温度变化曲线,T 1-2为工作衬的高温相变蓄热耐火材料和永久衬界面温度变化曲线,T 2-3为永久衬的高温相变蓄热耐火材料和中温相变蓄热耐火材料界面的温度变化曲线、T 3-4为中温相变蓄热耐火材料和低温相变蓄热耐火材料界面的温度变化曲线,T 4-5为永久衬低温相变蓄热耐火材料和隔热衬界面温度变化曲线,T 5-S为隔热衬与钢壳界面温度变化曲线,T w为高温窑炉外壳温度变化曲线。
根据瞬态传热的特点,间歇式操作高温窑炉升温和降温过程中,炉衬耐火材料内的温度分布变化是:
升温过程中,随炉内温度升高,工作衬、永久衬温度依次升高,当永久衬的高温相变蓄热耐火材料的温度升温到铝硅镍合金的相变温度t ch时,铝硅镍合金发生相变,吸收热量,此时,中温相变蓄热材料的温度、低温相变蓄热材料的温度、隔热衬的温度和外壁温度T w均保持不变;同理,当高温相变合金全部发生相变,蓄热达到饱和,中温相变蓄热耐火材料的温度升高,高于铝硅铁合金的相变温度t cm时,铝硅铁合金发生相变,低温相变蓄热材料的温度、隔热衬的温度和外壁温度T w保持不变;当中温相变合金全部发生相变,蓄热达到饱和,低温相变蓄热耐火材料的温度升高,高于铝硅合金的相变温度t cl时,铝硅合金发生相变,隔热衬的温度和外壁温度T w保持不变;随着窑炉内温度的升高,低温相变蓄热耐火材料蓄热达到饱和,隔热层最高界面温度为铝硅合金的相变温度t cl。因纳米隔热板的最高使用温度大于t cl,且隔热层纳米隔热板导热系数低,热阻大,使外壳温度基本保持不变。
根据散热量计算公式:Q=K(t w-t 0),其中:K为换热系数,与外壁温度有关,当外壁温度t w与环境温度t 0相差不大时,换热系数K较低;Q为散热量,当外壳温度t w与环境温度t 0接近时,温差接近于0,散热量几乎为0,近似为零热损。
在间歇式操作高温窑炉降温过程中,工作衬的温度先降低,依次是永久衬和隔热衬。当永久衬的高温相变蓄热耐火材料温度低于铝硅镍合金的相变温度t ch时,铝硅镍合金发生相变放热,延缓工作衬温度的下降速度,并保持外壳温度t w不变。随着间歇式操作高温窑炉内温度的继续下降,永久衬的中温相变蓄热耐火材料温度低于铝硅铁合金的相变温度t cm时, 铝硅铁合金发生相变放热,延缓工作衬温度和永久衬的高温相变蓄热耐火材料温度的下降速度,并保持外壳温度t w不变。随着间歇式操作高温窑炉内温度的继续下降,永久衬的低温相变蓄热耐火材料温度低于铝硅合金的相变温度t cl时,铝硅合金发生相变放热,延缓工作衬温度、永久衬的高温相变蓄热耐火材料温度和永久衬的中温相变蓄热耐火材料温度的下降速度,并保持外壳温度t w不变。接近于环境温度t 0,近似为零热损失。
本发明根据间歇式操作高温窑炉内的温度变化曲线,利用永久衬的三种相变蓄热耐火材料中相变温度和相变焓的不同,通过传热计算,设计三种不同的相变蓄热耐火材料的厚度与隔热层的厚度,实现外壳温度稳定,接近于环境温度,热损近似为零;同时延缓工作衬温度下降速度和外壳与隔热层温度波动,降低工作衬与隔热衬的应力变化,防止外壳变形,保证了高温窑炉窑体结构的整体性和长寿命。
本发明所制备的间歇式操作高温窑炉近零热损耐火材料衬体主要性能参数为:
高温相变蓄热耐火材料:体积密度为3.12~3.86g/cm 3;导热系数(1000~1200℃)为5.23~12.78W/(m·℃);蓄热密度(1150~1300℃)为260.2~380.8J/g;耐压强度为60~115MPa;热震(1200℃)30次风冷的耐压强度为25~60MPa。
中温相变蓄热耐火材料:体积密度为2.62~3.36g/cm 3;导热系数(600~800℃)为2.23~7.56W/(m·℃);蓄热密度(800~950℃)为180.2~240.8J/g;耐压强度为80~125MPa;热震(800℃)30次风冷的耐压强度为15~40MPa。
低温相变蓄热耐火材料:体积密度为2.02~2.56g/cm 3;导热系数(300~600℃)为6.23~18.56W/(m·℃);蓄热密度(500~650℃)为110.2~180.8J/g;耐压强度为70~120MPa;热震(600℃)30次风冷的耐压强度为30~70MPa。
因此,本发明制备的间歇式操作高温窑炉近零热损耐火材料衬体,具有热损失近似于零和炉衬耐火材料寿命长的特点。
说明书附图
图1为本发明的一种间歇式操作高温窑炉近零热损耐火材料衬体的温度变化曲线图。
具体实施方式
下面结合附图和具体实施方式对本发明组进一步的描述,并非对其保护范围的限制。
本具体实施方式中:
所述耐火材料衬体包括顶部、底部和墙体。
所述陶瓷球形壳体的制备方法是:
将80~90wt%的刚玉细粉、5~15wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉和1~3wt%的二氧化硅微粉在球磨机内球磨5~8min,得到混合粉料;向所述混合粉料中加入占所述混合粉料5~20wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料;再采用注塑成型机将所述混合泥料成型,得到带有螺纹的半球形壳体泥坯;然后将所述带有螺纹的半球形壳体泥坯于110~180℃条件下干燥24~36h,以3~5℃/min的速率升温至1350~1650℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体;
所述带有螺纹的陶瓷半球形壳体为带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体两种;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体通过螺纹连接为空心球体,即得陶瓷球形壳体;
带有内螺纹的半球形陶瓷壳体边缘处的环形内壁设有内螺纹,带有外螺纹的半球形陶瓷壳体边缘处的环形外壁设有外螺纹;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体的外径和壁厚均相同。所述壁厚为0.6~2mm,所述外径为3.5~24mm;内螺纹和外螺纹的公称直径为2.7~21mm。
所述刚玉细粉的Al 2O 3含量≥98wt%;刚玉细粉的粒径≤15μm;
所述莫来石细粉:Al 2O 3含量≥70wt%,SiO 2含量≥22wt%;莫来石细粉的粒径≤15μm;
所述二氧化锆溶胶的固含量30wt%,粒度20~50nm。
所述铝硅镍合金棒的化学成分是:Al含量为17~25wt%,Si含量为53~60wt%,Ni含量为20~28wt%;所述铝硅镍合金粉和铝硅镍合金棒的化学成分相同,铝硅镍合金粉粒径为13~250μm。
所述铝硅铁合金棒的化学成分是:Al含量为40~45wt%,Si含量为40~45wt%,Fe含量为10~15wt%;所述铝硅铁合金粉和铝硅铁合金棒的化学组成相同,铝硅铁合金粉的粒径为13~250μm。
所述铝硅合金棒的Si含量为12~45wt%;所述铝硅合金粉和铝硅合金棒的硅含量相同,铝硅合金粉的粒径为13~250μm。
所述α-Al 2O 3微粉的Al 2O 3含量≥97wt%;α-Al 2O 3微粉的粒径≤8μm。
所述硅微粉的SiO 2含量>92wt%;硅微粉的粒径<1μm。
所述铝酸钙水泥的化学成分是:Al 2O 3含量为50~60wt%,SiO 2含量<8wt%,Fe 2O 3含量<2.5wt%;铝酸钙水泥的粒径≤10μm。
实施例1
一种间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法。其制备方法是:
步骤1、铝硅镍合金@氧化铝微胶囊、铝硅铁合金@氧化铝微胶囊和铝硅合金@氧化铝微胶囊的制备方法分别是:
将铝硅镍合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅镍合金@氧化铝微胶囊;
将铝硅铁合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅铁合金@氧化铝微胶囊;
将铝硅合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅合金@氧化铝微胶囊;
步骤1所述六个阶段进行焙烧均为:
第一阶段:以5~10℃/min的速率将所述高温气氛炉由室温升温至550~650℃;炉内气氛为水蒸气气氛,所述水蒸气:入口表压为0.01~0.9MPa,入口前温度为110~300℃,流量为3~5L/min;
第二阶段:以10~20℃/min的速率将所述高温气氛炉升温至700~800℃,炉内气氛为空气气氛;
第三阶段:以5~8℃/min的速率将所述高温气氛炉升温至850~950℃;炉内气氛为氧化气氛,炉内压强为0.01~0.05MPa;
第四阶段:以3~5℃/min的速率将所述高温气氛炉升温至1050~1250℃;炉内气氛为氧化气氛,炉内压强大于0.05且小于等于0.1MPa;
第五阶段:以5~10℃/min的速率将所述高温气氛炉升温至1350~1500℃;炉内气氛为氧化气氛,炉内压强大于0.1且小于等于0.5MPa;
第六阶段:将所述高温气氛炉在1350~1500℃条件下保温30~180min,炉内气氛为空气气氛。
步骤2、铝硅镍合金@陶瓷大胶囊、铝硅铁合金@陶瓷大胶囊和铝硅合金@陶瓷大胶囊的制备方法分别为:
将铝硅镍合金球置入陶瓷球形壳体内,即得铝硅镍合金@陶瓷大胶囊;
将铝硅铁合金球置入陶瓷球形壳体内,即得铝硅铁合金@陶瓷大胶囊;
将铝硅合金球置入陶瓷球形壳体内,即得铝硅合金@陶瓷大胶囊;
所述铝硅镍合金球、铝硅铁合金球、铝硅合金球的直径独立地为2~18mm;铝硅镍合金球、铝硅铁合金球和铝硅合金球分别由各自对应的铝硅镍合金棒、铝硅铁合金棒和铝硅合金棒制成。
步骤3、高温相变蓄热耐火材料的制备方法为:
以55~59wt%的铝硅镍合金@陶瓷大胶囊为第一骨料,以31~35wt%的铝硅镍合金@氧化铝微胶囊、4~5wt%的α-Al 2O 3微粉、0.1~0.6wt%的硅微粉和5~6wt%的铝酸钙水泥为第一基质,第一骨料和第一基质之和为第一原料;先将所述第一基质与占第一原料0.1~0.2wt%的聚羧酸混合均匀,得第一预混基质料;再将所述第一预混基质料和所述第一骨料混合,然后加入占第一原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得高温相变蓄热耐火材料;
所述高温相变蓄热耐火材料的相变温度为1150~1300℃。
步骤4、中温相变蓄热耐火材料的制备方法为:
以58~62wt%的铝硅铁合金@陶瓷大胶囊为第二骨料,以28~32wt%的铝硅铁合金@氧化铝微胶囊、4.5~5.5wt%的α-Al 2O 3微粉、0.3~0.8wt%的硅微粉和4.5~5.5wt%的铝酸钙水泥为第二基质,第二骨料和第二基质之和为第二原料;先将所述第二基质与占第二原料0.1~0.2wt%的聚羧酸混合均匀,得第二预混基质料;再将所述第二预混基质料和所述第二骨料混合,然后加入占第二原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得中温相变蓄热耐火材料;
所述中温相变蓄热耐火材料的相变温度为800~950℃。
步骤5、低温相变蓄热耐火材料的制备方法为:
以61~65wt%的铝硅合金@陶瓷大胶囊为第三骨料,以25~29wt%的铝硅合金@氧化铝微胶囊、5~6wt%的α-Al 2O 3微粉、0.5~1.0wt%的硅微粉和4~5wt%的铝酸钙水泥为第三基质,第三骨料和第三基质之和为第三原料;先将所述第三基质与占第三原料0.1~0.2wt%的聚羧酸混合均匀,得第三预混基质料;再将所述第三预混基质料和所述第三骨料混合,然后加入占第三原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下 干燥24~36h,制得低温相变蓄热耐火材料;
所述低温相变蓄热耐火材料的相变温度为500~650℃。
步骤6、间歇式操作高温窑炉近零热损耐火材料衬体的制备方法为:
间歇式操作高温窑炉近零热损耐火材料衬体沿厚度方向由内到外依次为:工作衬耐火材料、永久衬耐火材料和隔热衬保温材料;
所述工作衬耐火材料位于接触钢液和钢渣的热面,厚度为200~250mm;
所述隔热衬保温材料采用纳米隔热板,厚度为15~20mm;
所述永久衬耐火材料为相变蓄热耐火材料,所述相变蓄热耐火材料是高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料由内向外依次组成,其中:
高温相变蓄热耐火材料的厚度为50~80mm;
中温相变蓄热耐火材料的厚度为40~60mm;
低温相变蓄热耐火材料的厚度为30~60mm;
所述间歇式操作高温窑炉为钢包。
实施例2
一种间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法。其制备方法是:
步骤1、同实施例1的步骤1。
步骤2、同实施例1的步骤2。
步骤3、高温相变蓄热耐火材料的制备方法为:
以58~62wt%的铝硅镍合金@陶瓷大胶囊为第一骨料,以28~32wt%的铝硅镍合金@氧化铝微胶囊、4.5~5.5wt%的α-Al 2O 3微粉、0.3~0.8wt%的硅微粉和4.5~5.5wt%的铝酸钙水泥为第一基质,第一骨料和第一基质之和为第一原料;先将所述第一基质与占第一原料0.1~0.2wt%的聚羧酸混合均匀,得第一预混基质料;再将所述第一预混基质料和所述第一骨料混合,然后加入占第一原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得高温相变蓄热耐火材料;
所述高温相变蓄热耐火材料的相变温度为1150~1300℃。
步骤4、中温相变蓄热耐火材料的制备方法为:
以61~65wt%的铝硅铁合金@陶瓷大胶囊为第二骨料,以25~29wt%的铝硅铁合金@氧化铝微胶囊、5~6wt%的α-Al 2O 3微粉、0.5~1.0wt%的硅微粉和4~5wt%的铝酸钙水泥为第二基质,第二骨料和第二基质之和为第 二原料;先将所述第二基质与占第二原料0.1~0.2wt%的聚羧酸混合均匀,得第二预混基质料;再将所述第二预混基质料和所述第二骨料混合,然后加入占第二原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得中温相变蓄热耐火材料;
所述中温相变蓄热耐火材料的相变温度为800~950℃。
步骤5、低温相变蓄热耐火材料的制备方法为:
以55~59wt%的铝硅合金@陶瓷大胶囊为第三骨料,以31~35wt%的铝硅合金@氧化铝微胶囊、4~5wt%的α-Al 2O 3微粉、0.1~0.6wt%的硅微粉和5~6wt%的铝酸钙水泥为第三基质,第三骨料和第三基质之和为第三原料;先将所述第三基质与占第三原料0.1~0.2wt%的聚羧酸混合均匀,得第三预混基质料;再将所述第三预混基质料和所述第三骨料混合,然后加入占第三原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得低温相变蓄热耐火材料;
所述低温相变蓄热耐火材料的相变温度为500~650℃。
步骤6、间歇式操作高温窑炉近零热损耐火材料衬体的制备方法为:
间歇式操作高温窑炉近零热损耐火材料衬体沿厚度方向由内到外依次为:工作衬耐火材料、永久衬耐火材料和隔热衬保温材料;
所述工作衬耐火材料位于接触窑炉内高温气体的热面,厚度为170~230mm;
所述隔热衬保温材料采用纳米隔热板,厚度为10~15mm;
所述永久衬耐火材料为相变蓄热耐火材料,所述相变蓄热耐火材料是高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料由内向外依次组成,其中:
高温相变蓄热耐火材料的厚度为45~65mm;
中温相变蓄热耐火材料的厚度为30~50mm;
低温相变蓄热耐火材料的厚度为50~80mm;
所述间歇式操作高温窑炉为梭式窑。
实施例3
一种间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法。其制备方法是:
步骤1、同实施例1的步骤1。
步骤2、同实施例1的步骤2。
步骤3、高温相变蓄热耐火材料的制备方法为:
以61~65wt%的铝硅镍合金@陶瓷大胶囊为第一骨料,以25~29wt%的铝硅镍合金@氧化铝微胶囊、5~6wt%的α-Al 2O 3微粉、0.5~1.0wt%的硅微粉和4~5wt%的铝酸钙水泥为第一基质,第一骨料和第一基质之和为第一原料;先将所述第一基质与占第一原料0.1~0.2wt%的聚羧酸混合均匀,得第一预混基质料;再将所述第一预混基质料和所述第一骨料混合,然后加入占第一原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得高温相变蓄热耐火材料;
所述高温相变蓄热耐火材料的相变温度为1150~1300℃。
步骤4、中温相变蓄热耐火材料的制备方法为:
以55~59wt%的铝硅铁合金@陶瓷大胶囊为第二骨料,以31~35wt%的铝硅铁合金@氧化铝微胶囊、4~5wt%的α-Al 2O 3微粉、0.1~0.6wt%的硅微粉和5~6wt%的铝酸钙水泥为第二基质,第二骨料和第二基质之和为第二原料;先将所述第二基质与占第二原料0.1~0.2wt%的聚羧酸混合均匀,得第二预混基质料;再将所述第二预混基质料和所述第二骨料混合,然后加入占第二原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得中温相变蓄热耐火材料,
所述中温相变蓄热耐火材料的相变温度为800~950℃。
步骤5、低温相变蓄热耐火材料的制备方法为:
以58~62wt%的铝硅合金@陶瓷大胶囊为第三骨料,以28~32wt%的铝硅合金@氧化铝微胶囊、4.5~5.5wt%的α-Al 2O 3微粉、0.3~0.8wt%的硅微粉和4.5~5.5wt%的铝酸钙水泥为第三基质,第三骨料和第三基质之和为第三原料;先将所述第三基质与占第三原料0.1~0.2wt%的聚羧酸混合均匀,得第三预混基质料;再将所述第三预混基质料和所述第三骨料混合,然后加入占第三原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得低温相变蓄热耐火材料;
所述低温相变蓄热耐火材料的相变温度为500~650℃。
步骤6、间歇式操作高温窑炉近零热损耐火材料衬体的制备方法为:
间歇式操作高温窑炉近零热损耐火材料衬体沿厚度方向由内到外依次为:工作衬耐火材料、永久衬耐火材料和隔热衬保温材料;
所述工作衬耐火材料位于接触窑炉内铁水或铁渣的热面,厚度为 150~200mm;
所述隔热衬保温材料采用纳米隔热板,厚度为5~10mm;
所述永久衬耐火材料为相变蓄热耐火材料,所述相变蓄热耐火材料是高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料由内向外依次组成,其中:
高温相变蓄热耐火材料的厚度为30~45mm;
中温相变蓄热耐火材料的厚度为20~40mm;
低温相变蓄热耐火材料的厚度为80~110mm;
所述间歇式操作高温窑炉为铁水包。
本具体实施方式与现有技术相比具有如下积极效果:
本具体实施方式采用的永久衬耐火材料是根据高温到低温的温度梯度,由不同相变温度制备的高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料组成的相变蓄热耐火材料,在炉衬内形成相对稳定的温度分布,降低了升温和降温过程中工作衬耐火材料温度波动,提高了使用寿命。在相变蓄热耐火材料中,采用合金@氧化铝陶瓷大胶囊作为骨料,合金@氧化铝微胶囊作为基质,最大限度的储存热量。与隔热层采用低导热系数的纳米隔热板相配合,使间歇式操作高温窑炉的外壳温度接近环境温度,热损失近似于零,即实现近零热损。
本具体实施方式的工作过程是:
设室温为t 0,间歇式操作高温窑炉的最高工作温度为t h,相变蓄热耐火材料中的铝硅合金、铝硅铁合金和铝硅镍合金的相变温度依次为t cl、t cm和t ch,且t cl<t cm<t ch。间歇式操作高温窑炉一个工作周期内的升温-降温过程中,T h为间歇式操作高温窑炉内的温度变化曲线,T 1-2为工作衬的高温相变蓄热耐火材料和永久衬界面温度变化曲线,T 2-3为永久衬的高温相变蓄热耐火材料和中温相变蓄热耐火材料界面的温度变化曲线、T 3-4为中温相变蓄热耐火材料和低温相变蓄热耐火材料界面的温度变化曲线,T 4-5为永久衬低温相变蓄热耐火材料和隔热衬界面温度变化曲线,T 5-S为隔热衬与钢壳界面温度变化曲线,T w为高温窑炉外壳温度变化曲线。
根据瞬态传热的特点,间歇式操作高温窑炉升温和降温过程中,炉衬耐火材料内的温度分布变化如图1所示,图1为本实施例1的一种间歇式操作高温窑炉近零热损耐火材料衬体的温度变化曲线图,从图1可以看出:升温过程中,随炉内温度升高,工作衬、永久衬温度依次升高,当永久衬的高温相变蓄热耐火材料的温度升温到铝硅镍合金的相变温度t ch时,铝硅镍合金发生相变,吸收热量,此时,中温相变蓄热材料的温度、 低温相变蓄热材料的温度、隔热衬的温度和外壁温度T w均保持不变;同理,当高温相变合金全部发生相变,蓄热达到饱和,中温相变蓄热耐火材料的温度升高,高于铝硅铁合金的相变温度t cm时,铝硅铁合金发生相变,低温相变蓄热材料的温度、隔热衬的温度和外壁温度T w保持不变;当中温相变合金全部发生相变,蓄热达到饱和,低温相变蓄热耐火材料的温度升高,高于铝硅合金的相变温度t cl时,铝硅合金发生相变,隔热衬的温度和外壁温度T w保持不变;随着窑炉内温度的升高,低温相变蓄热耐火材料蓄热达到饱和,隔热层最高界面温度为铝硅合金的相变温度t cl。因纳米隔热板的最高使用温度大于t cl,且隔热层纳米隔热板导热系数低,热阻大,使外壳温度基本保持不变。
根据散热量计算公式:Q=K(t w-t 0),其中:K为换热系数,与外壁温度有关,当外壁温度t w与环境温度t 0相差不大时,换热系数K较低;Q为散热量,当外壳温度t w与环境温度t 0接近时,温差接近于0,散热量几乎为0,近似为零热热损。
在间歇式操作高温窑炉降温过程中,工作衬的温度先降低,依次是永久衬和隔热衬。当永久衬的高温相变蓄热耐火材料温度低于铝硅镍合金的相变温度t ch时,铝硅镍合金发生相变放热,延缓工作衬温度的下降速度,并保持外壳温度t w不变。随着间歇式操作高温窑炉内温度的继续下降,永久衬的中温相变蓄热耐火材料温度低于铝硅铁合金的相变温度t cm时,铝硅铁合金发生相变放热,延缓工作衬温度和永久衬的高温相变蓄热耐火材料温度的下降速度,并保持外壳温度t w不变。随着间歇式操作高温窑炉内温度的继续下降,永久衬的低温相变蓄热耐火材料温度低于铝硅合金的相变温度t cl时,铝硅合金发生相变放热,延缓工作衬温度、永久衬的高温相变蓄热耐火材料温度和永久衬的中温相变蓄热耐火材料温度的下降速度,并保持外壳温度t w不变。接近于环境温度t 0,近似为零热损失。
本具体实施方式根据间歇式操作高温窑炉内的温度变化曲线,利用永久衬的三种相变蓄热耐火材料中相变温度和相变焓的不同,通过传热计算,设计三种不同的相变蓄热耐火材料的厚度与隔热层的厚度,实现外壳温度稳定,接近于环境温度,热损近似为零;同时延缓工作衬温度下降速度和外壳与隔热层温度波动,降低工作衬与隔热衬的应力变化,防止外壳变形,保证了高温窑炉窑体结构的整体性和长寿命。
本具体实施方式所制备的间歇式操作高温窑炉近零热损耐火材料衬体主要性能参数为:
高温相变蓄热耐火材料:体积密度为3.12~3.86g/cm 3;导热系数 (1000~1200℃)为5.23~12.78W/(m·℃);蓄热密度(1150~1300℃)为260.2~380.8J/g;耐压强度为60~115MPa;热震(1200℃)30次风冷的耐压强度为25~60MPa。
中温相变蓄热耐火材料:体积密度为2.62~3.36g/cm 3;导热系数(600~800℃)为2.23~7.56W/(m·℃);蓄热密度(800~950℃)为180.2~240.8J/g;耐压强度为80~125MPa;热震(800℃)30次风冷的耐压强度为15~40MPa。
低温相变蓄热耐火材料:体积密度为2.02~2.56g/cm 3;导热系数(300~600℃)为6.23~18.56W/(m·℃);蓄热密度(500~650℃)为110.2~180.8J/g;耐压强度为70~120MPa;热震(600℃)30次风冷的耐压强度为30~70MPa。
因此,本具体实施方式制备的间歇式操作高温窑炉近零热损耐火材料衬体具有热损失近似于零和炉衬耐火材料寿命长的特点。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种相变蓄热耐火材料,其特征在于,所述相变蓄热耐火材料为三组分,分别为高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料;
    所述高温相变蓄热耐火材料的制备方法为:
    以55~59wt%的铝硅镍合金@陶瓷大胶囊为第一骨料,以31~35wt%的铝硅镍合金@氧化铝微胶囊、4~5wt%的α-Al 2O 3微粉、0.1~0.6wt%的硅微粉和5~6wt%的铝酸钙水泥为第一基质,第一骨料和第一基质之和为第一原料;先将所述第一基质与占第一原料0.1~0.2wt%的聚羧酸混合均匀,得第一预混基质料;再将所述第一预混基质料和所述第一骨料混合,然后加入占第一原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得高温相变蓄热耐火材料;
    所述高温相变蓄热耐火材料的相变温度为1150~1300℃;
    所述中温相变蓄热耐火材料的制备方法为:
    以58~62wt%的铝硅铁合金@陶瓷大胶囊为第二骨料,以28~32wt%的铝硅铁合金@氧化铝微胶囊、4.5~5.5wt%的α-Al 2O 3微粉、0.3~0.8wt%的硅微粉和4.5~5.5wt%的铝酸钙水泥为第二基质,第二骨料和第二基质之和为第二原料;先将所述第二基质与占第二原料0.1~0.2wt%的聚羧酸混合均匀,得第二预混基质料;再将所述第二预混基质料和所述第二骨料混合,然后加入占第二原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得中温相变蓄热耐火材料;
    所述中温相变蓄热耐火材料的相变温度为800~950℃;
    所述低温相变蓄热耐火材料的制备方法为:
    以61~65wt%的铝硅合金@陶瓷大胶囊为第三骨料,以25~29wt%的铝硅合金@氧化铝微胶囊、5~6wt%的α-Al 2O 3微粉、0.5~1.0wt%的硅微粉和4~5wt%的铝酸钙水泥为第三基质,第三骨料和第三基质之和为第三原料;先将所述第三基质与占第三原料0.1~0.2wt%的聚羧酸混合均匀,得第三预混基质料;再将所述第三预混基质料和所述第三骨料混合,然后加入占第三原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得低温相变蓄热耐火材料;
    所述低温相变蓄热耐火材料的相变温度为500~650℃;
    所述铝硅镍合金@氧化铝微胶囊、铝硅铁合金@氧化铝微胶囊和铝硅合金@氧化铝微胶囊的制备方法分别是:
    将铝硅镍合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅镍合金@氧化铝微胶囊;
    将铝硅铁合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅铁合金@氧化铝微胶囊;
    将铝硅合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅合金@氧化铝微胶囊;
    所述六个阶段进行焙烧均为:
    第一阶段:以5~10℃/min的速率将所述高温气氛炉由室温升温至550~650℃;炉内气氛为水蒸气气氛,所述水蒸气:入口表压为0.01~0.9MPa,入口前温度为110~300℃,流量为3~5L/min;
    第二阶段:以10~20℃/min的速率将所述高温气氛炉升温至700~800℃;炉内气氛为空气气氛;
    第三阶段:以5~8℃/min的速率将所述高温气氛炉升温至850~950℃;炉内气氛为氧化气氛,炉内压强为0.01~0.05MPa;
    第四阶段:以3~5℃/min的速率将所述高温气氛炉升温至1050~1250℃;炉内气氛为氧化气氛,炉内压强大于0.05且小于等于0.1MPa;
    第五阶段:以5~10℃/min的速率将所述高温气氛炉升温至1350~1500℃;炉内气氛为氧化气氛,炉内压强大于0.1且小于等于0.5MPa;
    第六阶段:将所述高温气氛炉在1350~1500℃条件下保温30~180min,炉内气氛为空气气氛;
    铝硅镍合金@陶瓷大胶囊、铝硅铁合金@陶瓷大胶囊和铝硅合金@陶瓷大胶囊的制备方法分别是:
    将铝硅镍合金球置入陶瓷球形壳体内,即得铝硅镍合金@陶瓷大胶囊;
    将铝硅铁合金球置入陶瓷球形壳体内,即得铝硅铁合金@陶瓷大胶囊;
    将铝硅合金球置入陶瓷球形壳体内,即得铝硅合金@陶瓷大胶囊;
    所述铝硅镍合金球、铝硅铁合金球和铝硅合金球的直径独立地为2~18mm;铝硅镍合金球、铝硅铁合金球和铝硅合金球分别由各自对应的铝硅镍合金棒、铝硅铁合金棒和铝硅合金棒制成。
  2. 根据权利要求1所述的相变蓄热耐火材料,其特征在于,所述陶瓷球形壳体的制备方法是:
    将80~90wt%的刚玉细粉、5~15wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉和1~3wt%的二氧化硅微粉在球磨机内球磨5~8min,得到混合粉料;向所述混合粉料中加入占所述混合粉料5~20wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料;再采用注塑成型机将所述混合泥料成型,得到带有螺纹的半球形壳体泥坯;然后将所述带有螺纹的半球形壳体泥坯于110~180℃条件下干燥24~36h,以3~5℃/min的速率升温至1350~1650℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体;
    所述带有螺纹的陶瓷半球形壳体为带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体两种;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体通过螺纹连接为空心球体,即得陶瓷球形壳体;
    带有内螺纹的半球形陶瓷壳体边缘处的环形内壁设有内螺纹,带有外螺纹的半球形陶瓷壳体边缘处的环形外壁设有外螺纹;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体的外径和壁厚均相同;所述壁厚为0.6~2mm,所述外径为3.5~24mm;内螺纹和外螺纹的公称直径为2.7~21mm;所述刚玉细粉中Al 2O 3含量≥98wt%;刚玉细粉的粒径≤15μm;
    所述莫来石细粉中Al 2O 3含量≥70wt%,SiO 2含量≥22wt%;莫来石细粉的粒径≤15μm;
    所述二氧化锆溶胶的固含量为30wt%,粒度为20~50nm。
  3. 一种间歇式操作高温窑炉近零热损耐火材料衬体,其特征在于,所述间歇式操作高温窑炉近零热损耐火材料衬体沿厚度方向由内到外依次为:工作衬耐火材料、永久衬耐火材料和隔热衬保温材料;
    所述工作衬耐火材料位于接触窑炉内高温介质的热面,厚度为150~250mm;
    所述隔热衬保温材料采用纳米隔热板,厚度为5~20mm;
    所述永久衬耐火材料为相变蓄热耐火材料,所述相变蓄热耐火材料为权利要求1或2所述的相变蓄热耐火材料;
    所述高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料由内向外依次组成,其中:
    高温相变蓄热耐火材料的厚度为30~80mm;
    中温相变蓄热耐火材料的厚度为20~60mm;
    低温相变蓄热耐火材料的厚度为30~110mm;
    所述耐火材料衬体包括顶部、底部和墙体。
  4. 根据权利要求3所述的一种间歇式操作高温窑炉近零热损耐火材料衬体,其特征在于,所述间歇式操作高温窑炉为铁水包、鱼雷罐、钢包、梭式窑和倒焰窑中的一种。
  5. 一种间歇式操作高温窑炉近零热损耐火材料衬体的制备方法,其特征在于,所述制备方法的步骤是:
    步骤1、铝硅镍合金@氧化铝微胶囊、铝硅铁合金@氧化铝微胶囊和铝硅合金@氧化铝微胶囊的制备方法分别是:
    将铝硅镍合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅镍合金@氧化铝微胶囊;
    将铝硅铁合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅铁合金@氧化铝微胶囊;
    将铝硅合金粉用碱和去离子水交替洗涤3~5次,再于氮气气氛、60~110℃条件下干燥8~12h,然后置于高温气氛炉中,按照六个阶段进行焙烧,自然冷却,制得铝硅合金@氧化铝微胶囊;
    步骤1所述六个阶段进行焙烧均为:
    第一阶段:以5~10℃/min的速率将所述高温气氛炉由室温升温至550~650℃;炉内气氛为水蒸气气氛,所述水蒸气:入口表压为0.01~0.9MPa,入口前温度为110~300℃,流量为3~5L/min;
    第二阶段:以10~20℃/min的速率将所述高温气氛炉升温至700~800℃;炉内气氛为空气气氛;
    第三阶段:以5~8℃/min的速率将所述高温气氛炉升温至850~950℃;炉内气氛为氧化气氛,炉内压强为0.01~0.05MPa;
    第四阶段:以3~5℃/min的速率将所述高温气氛炉升温至1050~1250℃;炉内气氛为氧化气氛,炉内压强大于0.05且小于等于0.1MPa;
    第五阶段:以5~10℃/min的速率将所述高温气氛炉升温至1350~1500℃;炉内气氛为氧化气氛,炉内压强大于0.1且小于等于0.5MPa;
    第六阶段:将所述高温气氛炉在1350~1500℃条件下保温30~180min,炉内气氛为空气气氛;
    步骤2、铝硅镍合金@陶瓷大胶囊、铝硅铁合金@陶瓷大胶囊和铝硅合金@陶瓷大胶囊的制备方法分别是:
    将铝硅镍合金球置入陶瓷球形壳体内,即得铝硅镍合金@陶瓷大胶囊;
    将铝硅铁合金球置入陶瓷球形壳体内,即得铝硅铁合金@陶瓷大胶囊;
    将铝硅合金球置入陶瓷球形壳体内,即得铝硅合金@陶瓷大胶囊;
    所述铝硅镍合金球、铝硅铁合金球和铝硅合金球的直径独立地为2~18mm;铝硅镍合金球、铝硅铁合金球和铝硅合金球分别由各自对应的铝硅镍合金棒、铝硅铁合金棒和铝硅合金棒制成;
    步骤3、高温相变蓄热耐火材料的制备方法为:
    以55~65wt%的铝硅镍合金@陶瓷大胶囊为第一骨料,以25~35wt%的铝硅镍合金@氧化铝微胶囊、4~6wt%的α-Al 2O 3微粉、0.1~1wt%的硅微粉和4~6wt%的铝酸钙水泥为第一基质,第一骨料和第一基质之和为第一原料;先将所述第一基质与占第一原料0.1~0.2wt%的聚羧酸混合均匀,得第一预混基质料;再将所述第一预混基质料和所述第一骨料混合,然后加入占第一原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得高温相变蓄热耐火材料;
    所述高温相变蓄热耐火材料的相变温度为1150~1300℃;
    步骤4、中温相变蓄热耐火材料的制备方法为:
    以55~65wt%的铝硅铁合金@陶瓷大胶囊为第二骨料,以25~35wt%的铝硅铁合金@氧化铝微胶囊、4~6wt%的α-Al 2O 3微粉、0.1~1wt%的硅微粉和4~6wt%的铝酸钙水泥为第二基质,第二骨料和第二基质之和为第二原料;先将所述第二基质与占第二原料0.1~0.2wt%的聚羧酸混合均匀,得第二预混基质料;再将所述第二预混基质料和所述第二骨料混合,然后加入占第二原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得中温相变蓄热耐火材料;
    所述中温相变蓄热耐火材料的相变温度为800~950℃;
    步骤5、低温相变蓄热耐火材料的制备方法
    以55~65wt%的铝硅合金@陶瓷大胶囊为第三骨料,以25~35wt%的 铝硅合金@氧化铝微胶囊、4~6wt%的α-Al 2O 3微粉、0.1~1wt%的硅微粉和4~6wt%的铝酸钙水泥为第三基质,第三骨料和第三基质之和为第三原料;先将所述第三基质与占第三原料0.1~0.2wt%的聚羧酸混合均匀,得第三预混基质料;再将所述第三预混基质料和所述第三骨料混合,然后加入占第三原料3~5wt%的水,搅拌均匀,浇注成型,在25~28℃、空气相对湿度为75~80%的条件下养护24~30h,脱模,然后在110~300℃条件下干燥24~36h,制得低温相变蓄热耐火材料;
    所述低温相变蓄热耐火材料的相变温度为500~650℃;
    步骤6、间歇式操作高温窑炉近零热损耐火材料衬体的制备方法为:
    间歇式操作高温窑炉近零热损耐火材料衬体沿厚度方向由内到外依次为:工作衬耐火材料、永久衬耐火材料和隔热衬保温材料;
    所述工作衬耐火材料位于接触窑炉内高温介质的热面,厚度为150~250mm;
    所述隔热衬保温材料采用纳米隔热板,厚度为5~20mm;
    所述永久衬耐火材料为相变蓄热耐火材料,所述相变蓄热耐火材料是高温相变蓄热耐火材料、中温相变蓄热耐火材料和低温相变蓄热耐火材料由内向外依次组成;其中:
    高温相变蓄热耐火材料的厚度为30~80mm;
    中温相变蓄热耐火材料的厚度为20~60mm;
    低温相变蓄热耐火材料的厚度为30~110mm;
    所述间歇式操作高温窑炉为铁水包、鱼雷罐、钢包、梭式窑和倒焰窑中的一种,所述耐火材料衬体包括顶部、底部和墙体。
  6. 根据权利要求5所述的间歇式操作高温窑炉近零热损耐火材料衬体的制备方法,其特征在于,所述陶瓷球形壳体的制备方法是:
    将80~90wt%的刚玉细粉、5~15wt%的莫来石细粉、3~5wt%的α-氧化铝粉微粉和1~3wt%的二氧化硅微粉在球磨机内球磨5~8min,得到混合粉料;向所述混合粉料中加入占所述混合粉料5~20wt%的二氧化锆溶胶,搅拌均匀,得到混合泥料;再采用注塑成型机将所述混合泥料成型,得到带有螺纹的半球形壳体泥坯;然后将所述带有螺纹的半球形壳体泥坯于110~180℃条件下干燥24~36h,以3~5℃/min的速率升温至1350~1650℃,保温2~4h,制得带有螺纹的陶瓷半球形壳体;
    所述带有螺纹的陶瓷半球形壳体为带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体两种;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体通过螺纹连接为空心球体,即得陶瓷球形壳体;
    带有内螺纹的半球形陶瓷壳体边缘处的环形内壁设有内螺纹,带有外螺纹的半球形陶瓷壳体边缘处的环形外壁设有外螺纹;带有内螺纹的陶瓷半球形壳体和带有外螺纹的陶瓷半球形壳体的外径和壁厚均相同;所述壁厚为0.6~2mm,所述外径为3.5~24mm;内螺纹和外螺纹的公称直径为2.7~21mm;所述刚玉细粉中Al 2O 3含量≥98wt%;刚玉细粉的粒径≤15μm;
    所述莫来石细粉中Al 2O 3含量≥70wt%,SiO 2含量≥22wt%;莫来石细粉的粒径≤15μm;
    所述二氧化锆溶胶的固含量为30wt%,粒度为20~50nm。
  7. 根据权利要求5所述的间歇式操作高温窑炉近零热损耐火材料衬体的制备方法,其特征在于,所述铝硅镍合金棒的化学成分是:Al含量为17~25wt%,Si含量为53~60wt%,Ni含量为20~28wt%;所述铝硅镍合金粉和铝硅镍合金棒的化学成分相同,铝硅镍合金粉的粒径为13~250μm。
  8. 根据权利要求5所述的间歇式操作高温窑炉近零热损耐火材料衬体的制备方法,其特征在于,所述铝硅铁合金棒的化学成分是:Al含量为40~45wt%,Si含量为40~45wt%,Fe含量为10~15wt%;所述铝硅铁合金粉和铝硅铁合金棒的化学组成相同,铝硅铁合金粉的粒径为13~250μm。
  9. 根据权利要求5所述的间歇式操作高温窑炉近零热损耐火材料衬体的制备方法,其特征在于,所述铝硅合金棒的Si含量为12~45wt%;所述铝硅合金粉和铝硅合金棒的硅含量相同,铝硅合金粉的粒径为13~250μm。
  10. 根据权利要求5所述的间歇式操作高温窑炉近零热损耐火材料衬体的制备方法,其特征在于,所述α-Al 2O 3微粉的Al 2O 3含量≥97wt%;α-Al 2O 3微粉的粒径≤8μm。
  11. 根据权利要求5所述的间歇式操作高温窑炉近零热损耐火材料衬体的制备方法,其特征在于,所述硅微粉的SiO 2含量>92wt%;硅微粉的粒径<1μm。
  12. 根据权利要求5所述的间歇式操作高温窑炉近零热损耐火材料衬体的制备方法,其特征在于,所述铝酸钙水泥的化学成分是:Al 2O 3含量为50~60wt%,SiO 2含量<8wt%,Fe 2O 3含量<2.5wt%;铝酸钙水泥的粒径≤10μm。
PCT/CN2020/138172 2020-01-20 2020-12-22 间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法 WO2021147592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010065422.2 2020-01-20
CN202010065422.2A CN111205099B (zh) 2020-01-20 2020-01-20 间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法

Publications (1)

Publication Number Publication Date
WO2021147592A1 true WO2021147592A1 (zh) 2021-07-29

Family

ID=70780937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138172 WO2021147592A1 (zh) 2020-01-20 2020-12-22 间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法

Country Status (2)

Country Link
CN (1) CN111205099B (zh)
WO (1) WO2021147592A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205099B (zh) * 2020-01-20 2021-06-15 武汉科技大学 间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法
CN111718692A (zh) * 2020-07-04 2020-09-29 山西潞安矿业(集团)有限责任公司 多核壳结构的高温复合相变蓄热材料、制备方法及其应用
CN112371064B (zh) * 2020-10-20 2022-07-05 武汉科技大学 具有框架剪力墙壳层结构的相变蓄热微胶囊及其制备方法
CN112589092B (zh) * 2020-12-08 2023-02-03 武汉科技大学 一种高温相变蓄热复合材料及其制备方法
CN113176295B (zh) * 2021-05-29 2024-04-09 郑州大学 隔热耐火材料最佳使用温度及热疲劳寿命的测试方法
CN115124355B (zh) * 2022-07-21 2023-09-01 新乡市固元陶瓷科技有限公司 大尺寸陶瓷球体埋烧方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012111707A1 (de) * 2012-12-03 2014-06-05 Bernhard Sixt Latentwärmespeicher und Verfahren zu seiner Herstellung
CN105347770A (zh) * 2014-08-18 2016-02-24 武汉理工大学 一种工业用高温蓄热混凝土材料及其制备方法
CN106278320A (zh) * 2016-08-19 2017-01-04 武汉科技大学 一种煤气化炉炉衬及其制备方法
CN206208042U (zh) * 2016-11-28 2017-05-31 中国科学院过程工程研究所 一种烟气净化与换热一体化装置
CN207806609U (zh) * 2018-01-24 2018-09-04 河钢股份有限公司承德分公司 一种应用于钒钛铁水包的内衬
CN109654930A (zh) * 2018-12-05 2019-04-19 南京工业大学 一种基于异型翅片的立式分层相变蓄热装置
CN111205099A (zh) * 2020-01-20 2020-05-29 武汉科技大学 间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833302B (zh) * 2014-03-18 2016-08-17 武汉理工大学 一种包裹相变材料的蓄热混凝土及其制备方法
KR101627183B1 (ko) * 2014-10-20 2016-06-07 한경대학교 산학협력단 상변화 물질을 이용하여 축열성이 증가된 경량 콘크리트 및 이의 제조방법
CN107245326A (zh) * 2017-06-27 2017-10-13 武汉科技大学 一种高温相变蓄热微胶囊及其制备方法
CN109320215A (zh) * 2018-11-02 2019-02-12 安徽工业大学 一种核壳结构碳包铝纳米胶囊Al2O3复合基板及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012111707A1 (de) * 2012-12-03 2014-06-05 Bernhard Sixt Latentwärmespeicher und Verfahren zu seiner Herstellung
CN105347770A (zh) * 2014-08-18 2016-02-24 武汉理工大学 一种工业用高温蓄热混凝土材料及其制备方法
CN106278320A (zh) * 2016-08-19 2017-01-04 武汉科技大学 一种煤气化炉炉衬及其制备方法
CN206208042U (zh) * 2016-11-28 2017-05-31 中国科学院过程工程研究所 一种烟气净化与换热一体化装置
CN207806609U (zh) * 2018-01-24 2018-09-04 河钢股份有限公司承德分公司 一种应用于钒钛铁水包的内衬
CN109654930A (zh) * 2018-12-05 2019-04-19 南京工业大学 一种基于异型翅片的立式分层相变蓄热装置
CN111205099A (zh) * 2020-01-20 2020-05-29 武汉科技大学 间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法

Also Published As

Publication number Publication date
CN111205099A (zh) 2020-05-29
CN111205099B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2021147592A1 (zh) 间歇式操作高温窑炉近零热损耐火材料衬体及其制备方法
CN111196735B (zh) 一种相变蓄热自流式耐火浇注料及其制备方法
CN109628070B (zh) 一种具有复合壳层的相变蓄热颗粒及其制备方法
CN113072364A (zh) 一种轻量化高炉摆动溜槽用耐火浇注料及其制备方法
CN108424124B (zh) 一种氧化镁晶须原位合成尖晶石增强氧化镁基坩埚及其制备方法
CN111848143A (zh) 一种高热态强度的氧化铝-碳化硅-炭质浇注料
CN109650882B (zh) 一种纤维内衬用复合涂料及其制备方法
US20210384426A1 (en) Phase change thermal storage ceramic and preparation method thereof
CN108546093B (zh) 一种氧化铝短纤增强氧化镁基坩埚及其制备方法
CN110976836B (zh) 一种低热耗散长寿命钢包衬体及其制备方法
CN112830772A (zh) 一种亚微米二氧化硅微粉结合铁沟浇注料及其制备方法
CN113968724B (zh) 一种金属改性镁砂、低碳转炉镁质滑板及它们的制备方法
CN106631171A (zh) 氮化硅结合碳化硅陶瓷升液管的涂层及其制备方法
CN111995417B (zh) 一种用于熔铝炉的镁铝尖晶石质浇注料
US20210278142A1 (en) Double-shell phase change heat storage balls and preparation method thereof
CN113200754A (zh) 一种轻质高强耐高温人造球形铸造砂及其制备方法和应用
CN107827456B (zh) 一种氧化锆空心球隔热制品的制备方法
CN101261077B (zh) 用于微波加热熔化金属的陶瓷坩埚
CN113996783B (zh) 裂纹愈合热障涂层粉体材料的制备方法
CN115819075A (zh) 一种低温烧成富钛刚玉复合碳化硅砖及其制备方法
CN114932213A (zh) 一种高热震MgO-Al-C质滑板砖及其制备方法
CN109576559A (zh) 以莫来石和钠长石为组元的陶瓷增强铁基复合材料及其制备方法、机械零件
CN113105219A (zh) 一种坩埚及其制备方法
CN114874003A (zh) 一种含六铝酸钙的低导热钢包永久层浇注料
CN114804823A (zh) 一种炼铁高炉送风装置用隔热耐火材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915579

Country of ref document: EP

Kind code of ref document: A1