WO2021147278A1 - 多相电感器 - Google Patents

多相电感器 Download PDF

Info

Publication number
WO2021147278A1
WO2021147278A1 PCT/CN2020/103444 CN2020103444W WO2021147278A1 WO 2021147278 A1 WO2021147278 A1 WO 2021147278A1 CN 2020103444 W CN2020103444 W CN 2020103444W WO 2021147278 A1 WO2021147278 A1 WO 2021147278A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
housing
coil winding
phase inductor
recess
Prior art date
Application number
PCT/CN2020/103444
Other languages
English (en)
French (fr)
Inventor
龚新快
王楚歆
Original Assignee
益仕敦电子(珠海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 益仕敦电子(珠海)有限公司 filed Critical 益仕敦电子(珠海)有限公司
Publication of WO2021147278A1 publication Critical patent/WO2021147278A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions

Definitions

  • the present invention relates to the technical field of inductors, in particular to a multi-phase inductor.
  • This application is based on a Chinese invention patent application with an application date of January 21, 2020 and an application number of CN 202010072213.0. The content of this application is incorporated herein by reference .
  • An existing three-phase inductor includes a first magnet, a second magnet, and three coil windings.
  • the first magnet has three first magnetic columns in the middle
  • the second magnet has three second magnetic columns in the middle.
  • the two magnets are fixedly connected to each other, each first magnetic column is butted with a second magnetic column, and the coil winding is wound on the first magnetic column and the second magnetic column.
  • the three-phase inductor has a large current impedance value and a large working current, which will generate a large amount of heat after a long time of operation.
  • the magnet is the main heat transfer medium on the coil winding.
  • the existing three-phase inductors have the problem that the three-phase inductors are reduced in size, the three-phase coil windings share the first magnet and the second magnet, and the surface area of the first magnet and the second magnet is reduced and three-phase The reduction of the distance between the phase coil windings will cause the heat to be unable to be transferred to the air medium in time.
  • the heat accumulates on the three-phase inductor. Excessive temperature will cause the loss of the first magnet and the second magnet to increase, and the inductor cannot reach its application. Some electrical characteristics may even cause damage to the three-phase inductor.
  • the object of the present invention is to provide a multi-phase inductor with good heat dissipation performance.
  • the multi-phase inductor provided by the present invention includes a housing and at least three inductance units; the housing has a peripheral wall, a mounting recess is formed between the peripheral walls, and the entrance of the mounting recess is oriented in a first direction; the inductance unit includes a first magnet and a second magnet.
  • the multi-phase inductor also includes a potting layer, which is attached to the mounting recess and located on the peripheral wall Between and the inductance unit.
  • a further solution is that the shell forms a grid body at the bottom of the installation recess, the inductance unit is fixed on the grid body, and the potting layer is attached to the grid body.
  • the shell has a bottom wall, and the peripheral wall is hermetically connected to the outer peripheral edge of the bottom wall; the grid body is protruding on the inner surface of the bottom wall.
  • a further solution is that a plurality of network ports are formed on the grid body, and the network ports are connected between the installation recess and the outside of the housing; the multi-phase inductor also includes a heat dissipation plate, which is fixedly connected to the grid body and separated from the housing. The outer side shields the mesh body, and the potting layer is attached to the heat sink through the mesh port.
  • a further solution is that a plurality of connecting protrusions are provided on the grid body, a plurality of connecting holes are provided on the heat dissipation plate, and the connecting protrusions are matched with the connecting holes.
  • the multi-phase inductor further includes conductive terminals, and the coil windings have lead-out ends; the conductive terminals are inserted into the housing, and the lead-out ends are clamped between the conductive terminals and the housing.
  • the conductive terminal includes a first electrical connection portion, a first clamping portion and an insertion portion, the first clamping portion has a first clamping surface, and the first electrical connection portion is disposed opposite to the first clamping portion;
  • the shell has a third clamping surface and a first insertion hole; the insertion part is inserted into the first insertion hole, and the leading end abuts between the first clamping surface and the third clamping surface.
  • the conductive terminal includes a second electrical connection portion and a second clamping portion, the second clamping portion has a second clamping surface; the housing has a fourth clamping surface and a second insertion hole, and the second insertion portion The hole is a through hole; the second electrical connection part passes through the second insertion hole, and the leading end abuts between the second clamping surface and the fourth clamping surface.
  • the housing includes a connecting arm, which extends from the outer side of the peripheral wall; the connecting arm has a terminal recess, and the terminal recess communicates with the mounting recess; the lead-out end and the conductive terminal are located in the terminal recess, and the potting layer Located in the terminal recess, the potting layer covers the leading end and the conductive terminal.
  • coil windings are made of flat coils.
  • the shell is used for shielding and heat dissipation
  • the first magnet is fixed in the mounting recess of the shell and potted with resin
  • the entire surface of the first magnet is bonded with the resin
  • multiple inductors The units are independent of each other and have intervals. Therefore, the entire outer peripheral surface of the first magnet is bonded with resin, a part of the coil winding is bonded with resin, and the resin fills the entire space of the installation recess.
  • the above settings can effectively increase the inductance
  • the heat transfer area between the potting layer and the housing is further increased, and the heat dissipation performance of the inductor is further improved.
  • the stability of the connection between the heat sink and the connecting protrusion is improved, and the structure of the multi-phase inductor is more stable.
  • connection between the conductive terminal and the lead-out end is more stable, and the heat conduction effect is better at the same time, the bonding between the potting layer and the shell is more stable, and the structure of the multiphase inductor is closer.
  • the flat coil has a better heat dissipation effect, so that the inductor has a better heat dissipation effect.
  • Fig. 1 is a structural diagram of a first embodiment of a multiphase inductor of the present invention.
  • Fig. 2 is an exploded view of the structure of the first embodiment of the multiphase inductor of the present invention.
  • Fig. 3 is an enlarged view of A in Fig. 2.
  • FIG 4 is an exploded view of the first structure of the second embodiment of the multiphase inductor of the present invention.
  • FIG. 5 is an exploded view of the second structure of the second embodiment of the multiphase inductor of the present invention.
  • Fig. 1 is a structural diagram of a first embodiment of a multi-phase inductor of the present invention.
  • the multi-phase inductor provided by the utility model is a three-phase inductor, and the three-phase inductor is composed of a shell 1, three inductance units 2, six conductive terminals 3, and a potting layer 8.
  • the housing 1 has a peripheral wall 11, a mounting recess 100 is formed between the peripheral walls 11, the entrance 101 of the mounting recess 100 (shown in Figure 2) faces the positive z-axis direction, the housing 1 extends in the y-axis direction, and three inductance units 2 It is arranged and fixed in the mounting recess 100 along the y-axis direction, and the housing 1 and the three inductance units 2 are bonded to each other through the potting layer 8.
  • the six conductive terminals 3 are inserted into the housing 1.
  • FIG. 2 is an exploded view of the structure of the first embodiment of the multiphase inductor of the present invention.
  • Each inductance unit 2 is composed of an insulating sheet 25, a first magnet 21, an insulating film 24, a coil winding 23, and a second magnet 22 that are sequentially combined along the positive direction of the z-axis.
  • the insulating sheet 25 is made of nomex material, and the insulating film 24 is made of PI
  • the coil winding 23 is made of flat coils.
  • the first magnet 21 has a first wall 211, three first support walls 212 protruding from the first wall 211 in the positive z-axis direction (that is, the first direction), and a magnetic column 213.
  • the magnetic column 213 is located at the first wall.
  • three first supporting walls 212 are located on the outer periphery of the magnetic column 213;
  • the second magnet 22 has a second wall 221, and three second walls 221 protruding from the second wall 221 in the negative direction along the z-axis.
  • Two support wall 222 The outer circumference of the first wall 211 forms a semicircular first recess 215, and the outer circumference of the second wall 221 forms a semicircular second recess 225.
  • the first wall 21 and the second magnet 22 are opposed and combined.
  • the three first support walls 212 and the three second support walls 222 are fixed to each other.
  • the first wall 211 and the second wall 221 are formed between the first wall 211 and the second wall 221 for receiving The coil winding space 200 of the coil winding 23.
  • the insulating sheet 25 is pasted on the lower surface of the first wall 21, and the insulating film 24 is pasted on the first wall 21 facing the upper surface of the coil winding space 200.
  • the coil winding 23 is wound in the coil winding space 300 along the z-axis Wound around the outer circumference of the magnetic column 213.
  • FIG. 3 is an enlarged view of A in FIG. 2.
  • the shell 1 is an aluminum alloy shell, and the shell 1 is composed of a peripheral wall 11, a bottom wall 12 and six terminal blocks 15.
  • the peripheral wall 11 is hermetically connected to the outer peripheral edge of the bottom wall 12.
  • the six terminal seats 15 protrude in the positive direction along the z-axis from the edge of the bottom wall 12, and the six terminal seats 15 are respectively located on opposite sides of the mounting recess 100.
  • the seat 15 is connected to the peripheral wall 11 in a sealed manner.
  • a raised mesh body 13 is formed on the inner surface of the bottom wall 12 facing the installation recess 100, the mesh body 13 is connected between the inner surfaces of the peripheral wall 11 in various directions, and a plurality of mesh openings 131 are formed on the mesh body 13.
  • the grid body 13 protrudes in the middle of the installation recess 100 to form a barrier wall 14, and a limit protrusion 142 is formed between the grid body 13 and the inner surface of the peripheral wall 11.
  • the three inductance units 2 are fixed in the installation recess 100 along the y-axis direction.
  • the first magnet 21 is fixed in the installation recess 142, the first magnet 21 is restricted between the barrier wall 14 and the limiting protrusion 142, the front surface of the first magnet 21 faces the bottom wall 12, and the outer circumference of the first magnet 21 The surface faces the peripheral wall 11.
  • Two adjacent first magnets 21 are blocked by a barrier wall 14.
  • the installation recess 100 is potted with resin to form a potting layer 8, and the potting layer 8 is bonded and attached between the bottom wall 12, the peripheral wall 11, the mesh body 13, the first magnet 21 and the coil winding 23.
  • the top of the terminal base 15 has a third clamping surface 151 and two first insertion holes 152 respectively located on opposite sides of the third clamping surface 151.
  • the third clamping surface 151 is a plane and the first insertion holes 152 are along the z-axis. Direction extension.
  • the conductive terminal 3 is Y-shaped.
  • the conductive terminal 3 is composed of a first electrical connection portion 32, a first clamping portion 31, and an insertion portion 33 that are sequentially connected.
  • the first clamping portion 31 extends in the y-axis direction and has a long shape.
  • the insertion portion 33 respectively protrudes from both ends of the first clamping portion 31 in the y-axis direction in the negative direction of the z-axis, and the first electrical connection portion 32 protrudes from the first clamping portion 31 in the positive direction of the z-axis.
  • the first clamping portion 31 has a first clamping surface 311, and the first clamping surface 311 is a plane facing the negative direction of the z-axis.
  • the insertion portion 33 has bumps 331 for reinforcing the insertion.
  • the leading end 231 of the coil winding 23 is located on the third clamping surface 151 on the top of the terminal base 15.
  • the conductive terminal 3 is inserted into the terminal base 15, and the insertion part After 33 is inserted into the first jack 152, the flat leading end 231 is clamped between the conductive terminal 3 and the housing 1.
  • the fixing between the leading end 231 and the housing 1 and the electrical connection between the leading end 231 and the conductive terminal 3 are completed at the same time. ,Increase productivity.
  • the housing 1 made of aluminum alloy is used for shielding and heat dissipation.
  • the first magnet 21 is fixed in the mounting recess 100 of the housing 1 and is potted with resin.
  • the entire surface of the first magnet 21 is glued with resin, and multiple inductors
  • the units 2 are independent of each other and have intervals. Therefore, the entire outer peripheral surface of the first magnet 21 is bonded with resin, a part of the coil winding 23 is bonded with resin, and the resin potting the entire space of the installation recess 100, the above setting is
  • the energy efficiency increases the heat transfer area between the inductance unit 2, the potting layer 8 and the casing 1, so that the heat of the coil winding 23 can fully reach the casing 1 and be dissipated to the air medium.
  • FIG. 4 is an exploded view of the first structure of the second embodiment of the multi-phase inductor of the present invention
  • FIG. 5 is an exploded view of the second structure of the second embodiment of the multi-phase inductor of the present invention.
  • the difference from the previous embodiment is that the lead-out direction of the conductive terminals in this embodiment requires that the three conductive terminals on the first side of the housing 4 face the positive z-axis, and the three conductive terminals on the other side face the positive z-axis.
  • the z-axis is in the negative direction.
  • the housing 4 includes a connecting arm 42 extending from the outer side of the peripheral wall 41; the connecting arm 42 has a terminal recess 420 therein, and the terminal recess 420 is in communication with the mounting recess 400.
  • the connecting arm 42 is formed with a second insertion hole 421 penetrating along the z-axis direction.
  • the second insertion hole 421 is a through hole.
  • the bottom wall of the connecting arm 42 has a fourth clamping surface 422 facing the terminal recess 420; the conductive terminal 3 is formed by The second clamping portion 51 and the second electrical connection portion 52 connected by bending at right angles are formed, and the second clamping portion 51 has a second clamping surface 511.
  • the leading end 631 of the coil winding 63 and the conductive terminal 5 are located in the terminal recess 420, the second electrical connection portion 52 passes through the second insertion hole 421, and the leading end 631 is clamped on the second clamping surface 511 and the fourth clamping Between face 422. Since the terminal recess 420 and the mounting recess 400 are connected in a horizontal direction, the resin is simultaneously filled in the mounting recess 400 and the terminal recess 420 when the resin is potted, and the potting layer 8 covers the lead-out end 631 and the conductive terminal 3.
  • the housing 4 does not have a bottom wall, and the mesh port 431 of the mesh body 43 is connected between the installation recess 400 and the outside of the housing 4.
  • This embodiment also includes a heat dissipation plate 7, the heat dissipation plate 7 is a stainless steel plate, and a plurality of connecting holes 71 are provided on the heat dissipation plate 7.
  • the grid body 43 has a plurality of connecting protrusions 432, and the heat dissipation plate 7 and the grid body 13 are fixed to each other through the cooperation between the connecting protrusions 432 and the connecting holes 71.
  • the heat dissipation plate 7 shields the mesh body 43 from the outside of the housing 4, and the potting layer is attached to the heat dissipation plate 7 through the mesh opening 431.
  • the use of the heat dissipation plate 7 with higher thermal conductivity to contact the potting layer can improve the heat transfer efficiency.
  • the multi-phase inductor of the present invention can be used as an electrical device to be installed in a vehicle-mounted charger.
  • the shell is used for shielding and heat dissipation
  • the first magnet is fixed in the mounting recess of the shell and potted with resin
  • the entire surface of the first magnet is bonded with the resin
  • multiple inductors The units are independent of each other and have intervals. Therefore, the entire outer peripheral surface of the first magnet is bonded with resin, a part of the coil winding is bonded with resin, and the resin fills the entire space of the installation recess.
  • the above settings can effectively increase the inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

一种多相电感器,包括外壳(1)与至少三个电感单元(2);外壳(1)的周壁(11)之间形成安装凹位(100),电感单元(2)包括第一磁体(21)、第二磁体(22)和线圈绕组(23);第一磁体(21)设置于安装凹位(100)内,第一磁体(21)与第二磁体(22)相对设置,线圈绕组(23)设于第一磁体(21)与第二磁体(22)之间,线圈绕组(23)卷绕在第一磁体(21)的磁柱(213)的外周;灌封层(8)附着于安装凹位(100)内并位于周壁(11)与电感单元(2)之间。第一磁体(21)固定在外壳(1)的安装凹位(100)内并以树脂灌封,第一磁体(21)表侧表面的整体与树脂粘合,多个电感单元(2)之间相互独立而具有间隔,第一磁体(21)表侧表面、外周表面、线圈绕组(23)的一部分均与树脂粘合,树脂则灌封安装凹位(100)的整体空间,有效增大电感单元(2)、灌封层(8)与外壳(1)之间的热传递面积,提升散热效果。

Description

多相电感器 技术领域
本发明涉及电感器技术领域,具体涉及一种多相电感器,本申请是基于申请日为2020年1月21日,申请号为CN 202010072213.0的中国发明专利申请,该申请的内容引入本文作为参考。
背景技术
现有一种三相电感器包括第一磁体、第二磁体和三个线圈绕组,第一磁体中部具有三个第一磁柱,第二磁体中部具有三个第二磁柱,第一磁体与第二磁体相对地固接,每个第一磁柱与一个第二磁柱对接,线圈绕组卷绕在第一磁柱和第二磁柱上。
技术问题
三相电感器电流阻抗值及工作电流大,在长时间工作后产生较大发热量,磁体为线圈绕组上热量的主要传递媒介。现有的该种三相电感器存在的问题是,三相电感器为缩小体积,三相线圈绕组共用第一磁体和第二磁体,第一磁体和第二磁体的表侧面积减小和三相线圈绕组之间距离减小均导致热量无法及时传递至空气媒介,热量累积在三相电感器上,过高的温度会导致第一磁体和第二磁体损耗增大,电感器无法达到它应有的电气特性,甚至造成三相电感器损坏。
技术解决方案
本发明的目的在于提供一种具有良好散热性能的多相电感器。
本发明提供的多相电感器包括外壳与至少三个电感单元;外壳具有周壁,周壁之间形成安装凹位,安装凹位的入口的朝向为第一方向;电感单元包括第一磁体、第二磁体和线圈绕组;第一磁体设置于安装凹位内,第一磁体与第二磁体在第一方向上相对设置,第一磁体与第二磁体形成线圈绕组空间,第一磁体具有位于线圈绕组空间中的磁柱;线圈绕组设置于线圈绕组空间内,线圈绕组沿第一方向卷绕在磁柱的外周;多相电感器还包括灌封层,灌封层附着于安装凹位内并位于周壁与电感单元之间。
进一步的方案是,外壳在安装凹位的底部形成网格体,电感单元固定在网格体上,灌封层附着于网格体上。
进一步的方案是,外壳具有底壁,周壁密封连接在底壁的外周边缘;网格体凸起于底壁的内表面上。
进一步的方案是,网格体上形成多个网口,网口连通于安装凹位与外壳的外部之间;多相电感器还包括散热板,散热板与网格体固定连接并从外壳的外侧遮挡网格体,灌封层通过网口附着在散热板上。
进一步的方案是,网格体上具有多个连接凸起,散热板上设有多个连接孔,连接凸起与连接孔配合。
进一步的方案是,多相电感器还包括导电端子,线圈绕组具有引出端;导电端子插装于外壳上,引出端夹紧于导电端子与外壳之间。
进一步的方案是,导电端子包括第一电连接部、第一夹持部和插装部,第一夹持部具有第一夹持面,第一电连接部与第一夹持部相对设置;外壳具有第三夹持面和第一插孔;插装部插入第一插孔,引出端抵接于第一夹持面与第三夹持面之间。
另一进一步的方案是,导电端子包括第二电连接部和第二夹持部,第二夹持部具有第二夹持面;外壳具有第四夹持面和第二插孔,第二插孔为通孔;第二电连接部穿过第二插孔,引出端抵接于第二夹持面与第四夹持面之间。
进一步的方案是,外壳包括连接臂,连接臂从周壁的外侧伸出;连接臂内具有端子凹位,端子凹位与安装凹位连通;引出端和导电端子位于端子凹位中,灌封层位于端子凹位中,灌封层覆盖引出端和导电端子。
进一步的方案是,线圈绕组采用扁平线圈制作。
有益效果
本发明提供的多相电感器中,外壳用于屏蔽以及散热,第一磁体固定在外壳的安装凹位内并以树脂灌封,第一磁体表侧表面的整体与树脂粘合,多个电感单元之间相互独立而具有间隔,因此第一磁体的外周表面的整体与树脂粘合,线圈绕组的一部分与树脂粘合,树脂则灌封安装凹位的整体空间,以上设置能有效增大电感单元、灌封层与外壳之间的热传递面积,从而使线圈绕组的热量充分到达外壳并散发到空气媒介。
进一步地,多相电感器中灌封层与外壳之间的粘合稳定性得到提高。
进一步地,多相电感器中进一步增大灌封层与外壳之间的热传递面积,进一步提高电感器的散热性能。
进一步地,采用导热率更高的散热板与灌封层接触能提高热传递效率。
进一步地,提高散热板与连接凸起之间的连接稳定性,多相电感器结构更稳固。
进一步地,线圈绕组引出端与外壳之间的固定以及引出端与导电端子的电连接同时完成,提高生产效率。
进一步地,在完成引出端固定、引出端与导电端子电连接的同时,能分别满足导电端子不同朝向的设计要求。
进一步地,导电端子与引出端之间的连接更稳固,同时导热效果更好,灌封层与外壳之间粘结更稳固,多相电感器结构更紧密。
进一步地,扁平线圈具有更好地散热效果,使得电感器具有更好的散热效果。
附图说明
图1为本发明多相电感器第一实施例的结构图。
图2为本发明多相电感器第一实施例的结构分解图。
图3为图2中A处的放大图。
图4为本发明多相电感器第二实施例的第一结构分解图。
图5为本发明多相电感器第二实施例的第二结构分解图。
本发明的实施方式
多相电感器第一实施例
参见图1,图1为本发明多相电感器第一实施例的结构图。本实用新型提供的多相电感器为三相电感器,三相电感器由外壳1、三个电感单元2、六个导电端子3和灌封层8组成。外壳1具有周壁11,周壁11之间形成安装凹位100,安装凹位100的入口101(图2示)朝向z轴正向,外壳1在y轴方向上延伸成长形,三个电感单元2沿y轴方向布置并固定在安装凹位100中,且外壳1与三个电感单元2之间通过灌封层8相互粘合。六个导电端子3则插装在外壳1上。
结合图1和图2,图2为本发明多相电感器第一实施例的结构分解图。每个电感单元2均由沿z轴正向依次结合的绝缘片25、第一磁体21、绝缘膜24、线圈绕组23和第二磁体22构成,绝缘片25采用nomex材料,绝缘膜24采用PI材料制成,线圈绕组23采用扁平线圈制作而成。
第一磁体21具有第一壁体211、从第一壁体211上沿z轴正向(即第一方向)凸起的三道第一支撑壁212以及磁柱213,磁柱213位于第一壁体211的中央处,三道第一支撑壁212位于磁柱213的外周;第二磁体22具有第二壁体221、从第二壁体221上沿z轴负向凸起的三道第二支撑壁222。第一壁体211的外周形成半圆形的第一凹位215,第二壁体221的外周形成半圆形的第二凹位225。
第一壁体21和第二磁体22相对而结合,三道第一支撑壁212与三道第二支撑壁222相互固定,第一壁体211与第二壁体221之间形成一个用于容纳线圈绕组23的线圈绕组空间200。绝缘片25粘贴在第一壁体21的下表面,绝缘膜24粘贴在第一壁体21上朝向线圈绕组空间200的上表面,线圈绕组23为于线圈绕组空间300内并沿z轴方向卷绕在磁柱213的外周。
再结合图3,图3为图2中A处的放大图。外壳1为铝合金壳体,外壳1由周壁11、底壁12和六个端子座15组成。周壁11密封连接在底壁12的外周边缘,六个端子座15从底壁12的边缘处沿z轴正向凸起,且六个端子座15分别位于安装凹位100的相对两侧,端子座15与周壁11密封连接。
底壁12朝向安装凹位100的内表面上形成凸起的网格体13,网格体13连接于周壁11各个方向的内表面之间,网格体13上形成多个网口131。网格体13在安装凹位100的中部凸起形成阻隔壁14,在网格体13于周壁11的内表面之间形成限位凸起142。
三个电感单元2沿y轴方向固定在安装凹位100内。第一磁体21固定在安装凹位142内,第一磁体21限制在阻隔壁14与限位凸起142之间,第一磁体21朝向的表侧表面朝向底壁12,第一磁体21的外周表面朝周壁11。相邻的两个第一磁体21之间由阻隔壁14阻隔。此后采用树脂对安装凹位100进行灌封而形成灌封层8,灌封层8粘结、附着在底壁12、周壁11、网格体13、第一磁体21以及线圈绕组23之间。
端子座15的顶部具有第三夹持面151和分别位于第三夹持面151相对两侧的两个第一插孔152,第三夹持面151为平面,第一插孔152沿z轴方向延伸。
导电端子3呈Y型,导电端子3由依次连接的第一电连接部32、第一夹持部31和插装部33组成,第一夹持部31沿y轴方向延伸成长形,两个插装部33分别从第一夹持部31在y轴方向上的两端沿z轴负向伸出,第一电连接部32从第一夹持部31沿z轴正向伸出。第一夹持部31上具有第一夹持面311,第一夹持面311为朝向z轴负向的平面。插装部33上具有用于加固插装的凸点331。
电感单元2固定于安装凹位100后,此时线圈绕组23的引出端231位于端子座15顶部的第三夹持面151上,此时将导电端子3插入到端子座15上,插装部33插入第一插孔152后,扁平的引出端231则夹紧于导电端子3与外壳1之间,引出端231与外壳1之间的固定以及引出端231与导电端子3的电连接同时完成,提高生产效率。
铝合金制成的外壳1用于屏蔽以及散热,第一磁体21固定在外壳1的安装凹位100内并以树脂灌封,第一磁体21表侧表面的整体与树脂粘合,多个电感单元2之间相互独立而具有间隔,因此第一磁体21的外周表面的整体与树脂粘合,线圈绕组23的一部分与树脂粘合,树脂则灌封安装凹位100的整体空间,以上设置就能效增大电感单元2、灌封层8与外壳1之间的热传递面积,从而使线圈绕组23的热量充分到达外壳1并散发到空气媒介。
多相电感器第二实施例
参加图4和图5,图4为本发明多相电感器第二实施例的第一结构分解图,图5为本发明多相电感器第二实施例的第二结构分解图。本实施例中,与上一实施例不同的是,本实施例中导电端子的引出方向要求为外壳4第一侧的三个导电端子朝z轴正向,另一侧的三个导电端子朝z轴负向。
因此,本实施例中,外壳4包括连接臂42,连接臂42从周壁41的外侧伸出;连接臂42内具有端子凹位420,端子凹位420与安装凹位400连通。连接臂42上形成沿z轴方向贯穿的第二插孔421,第二插孔421为通孔,连接臂42的底壁具有朝向端子凹位420的第四夹持面422;导电端子3由直角弯折相连的第二夹持部51和第二电连接部52组成,第二夹持部51具有第二夹持面511。
线圈绕组63的引出端631和导电端子5位于端子凹位420中,第二电连接部52穿过第二插孔421,引出端631被夹紧于第二夹持面511与第四夹持面422之间。由于端子凹位420与安装凹位400沿水平方向连通,灌封树脂时,树脂同时填充于安装凹位400和端子凹位420中,灌封层8覆盖引出端631和导电端子3。
另外,本实施例中,外壳4不具有底壁,网格体43的网口431连通于安装凹位400与外壳4的外部之间。本实施例还包括散热板7,散热板7为不锈钢板,散热板7上设有多个连接孔71。网格体43上具有多个连接凸起432,散热板7与网格体13之间通过连接凸起432和连接孔71之间的配合相互固定。散热板7从外壳4的外侧遮挡网格体43,灌封层通过网口431附着在散热板7上。采用导热率更高的散热板7与灌封层接触能提高热传递效率。
最后需要强调的是,以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种变化和更改,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明的多相电感器可作为电器件设置于车载充电机中。
本发明提供的多相电感器中,外壳用于屏蔽以及散热,第一磁体固定在外壳的安装凹位内并以树脂灌封,第一磁体表侧表面的整体与树脂粘合,多个电感单元之间相互独立而具有间隔,因此第一磁体的外周表面的整体与树脂粘合,线圈绕组的一部分与树脂粘合,树脂则灌封安装凹位的整体空间,以上设置能有效增大电感单元、灌封层与外壳之间的热传递面积,从而使线圈绕组的热量充分到达外壳并散发到空气媒介。

Claims (10)

  1. 多相电感器,其特征在于:
    包括外壳与至少三个电感单元;
    所述外壳具有周壁,所述周壁之间形成安装凹位,所述安装凹位的入口的朝向为第一方向;
    所述电感单元包括第一磁体、第二磁体和线圈绕组;
    所述第一磁体设置于所述安装凹位内,所述第一磁体与所述第二磁体在所述第一方向上相对设置,所述第一磁体与所述第二磁体形成线圈绕组空间,所述第一磁体具有位于所述线圈绕组空间中的磁柱;
    所述线圈绕组设置于所述线圈绕组空间内,所述线圈绕组沿所述第一方向卷绕在所述磁柱的外周;
    所述多相电感器还包括灌封层,所述灌封层位于所述安装凹位内并附着于所述周壁与所述电感单元之间。
  2. 根据权利要求1所述的多相电感器,其特征在于:
    所述外壳在所述安装凹位的底部形成网格体,所述电感单元固定在所述网格体上,所述灌封层附着于所述网格体上。
  3. 根据权利要求2所述的多相电感器,其特征在于:
    所述外壳具有底壁,所述周壁密封连接在所述底壁的外周边缘;
    所述网格体凸起于所述底壁的内表面上。
  4. 根据权利要求2所述的多相电感器,其特征在于:
    所述网格体上形成多个网口,所述网口连通于所述安装凹位与所述外壳的外部之间;
    所述多相电感器还包括散热板,所述散热板与所述网格体固定连接并从所述外壳的外侧遮挡所述网格体,所述灌封层通过所述网口附着在所述散热板上。
  5. 根据权利要求4所述的多相电感器,其特征在于:
    所述网格体上具有多个连接凸起,所述散热板上设有多个连接孔,所述连接凸起与所述连接孔配合。
  6. 根据权利要求1至5任一项所述的多相电感器,其特征在于:
    所述多相电感器还包括导电端子,所述线圈绕组具有引出端;
    所述导电端子插装于所述外壳上,所述引出端夹紧于所述导电端子与所述外壳之间。
  7. 根据权利要求6所述的多相电感器,其特征在于:
    所述导电端子包括第一电连接部、第一夹持部和插装部,所述第一夹持部具有第一夹持面,第一电连接部与第一夹持部相对设置;
    所述外壳具有第三夹持面和第一插孔;
    所述插装部插入所述第一插孔,所述引出端抵接于所述第一夹持面与所述第三夹持面之间。
  8. 根据权利要求6所述的多相电感器,其特征在于:
    所述导电端子包括第二电连接部和第二夹持部,所述第二夹持部具有第二夹持面;
    所述外壳具有第四夹持面和第二插孔,所述第二插孔为通孔;
    所述第二电连接部穿过所述第二插孔,所述引出端抵接于所述第二夹持面与所述第四夹持面之间。
  9. 根据权利要求6所述的多相电感器,其特征在于:
    所述外壳包括连接臂,所述连接臂从所述周壁的外侧伸出;
    所述连接臂内具有端子凹位,所述端子凹位与所述安装凹位连通;
    所述引出端和所述导电端子位于所述端子凹位中,所述灌封层位于所述端子凹位中,所述灌封层覆盖所述引出端和所述导电端子。
  10. 根据权利要求1至5任一项所述的多相电感器,其特征在于:
    所述线圈绕组采用扁平线圈制作。
PCT/CN2020/103444 2020-01-21 2020-07-22 多相电感器 WO2021147278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010072213.0A CN111192743A (zh) 2020-01-21 2020-01-21 多相电感器
CN202010072213.0 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021147278A1 true WO2021147278A1 (zh) 2021-07-29

Family

ID=70710371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103444 WO2021147278A1 (zh) 2020-01-21 2020-07-22 多相电感器

Country Status (2)

Country Link
CN (1) CN111192743A (zh)
WO (1) WO2021147278A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111192743A (zh) * 2020-01-21 2020-05-22 益仕敦电子(珠海)有限公司 多相电感器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068147A1 (en) * 2003-09-30 2005-03-31 Skibinski Gary Leonard Modular inductor for use in power electronic circuits
CN201904180U (zh) * 2010-10-22 2011-07-20 爱华特(广州)通讯有限公司 一种多相耦合电感器
US20120256718A1 (en) * 2011-04-08 2012-10-11 Muzahid Bin Huda Inductor Construction for Power Conversion Module
CN103366946A (zh) * 2012-03-30 2013-10-23 东光株式会社 面安装多相电感器及其制造方法
CN207116165U (zh) * 2017-06-22 2018-03-16 东莞市大忠电子有限公司 一种三相灌封pfc电感
CN107887111A (zh) * 2017-11-24 2018-04-06 深圳市英大科特技术有限公司 一种电感器
CN207690615U (zh) * 2017-11-20 2018-08-03 上海鹰峰电子科技股份有限公司 一种网格垫隔离灌封式电抗器
CN207818316U (zh) * 2018-01-09 2018-09-04 苏州欧姆尼克新能源科技有限公司 一种逆变器电感的安装结构
CN110534319A (zh) * 2019-09-05 2019-12-03 苏州祥崴电子有限公司 自防护型电感及其加工方法
CN111192743A (zh) * 2020-01-21 2020-05-22 益仕敦电子(珠海)有限公司 多相电感器
CN211181854U (zh) * 2020-01-21 2020-08-04 益仕敦电子(珠海)有限公司 多相电感器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068147A1 (en) * 2003-09-30 2005-03-31 Skibinski Gary Leonard Modular inductor for use in power electronic circuits
CN201904180U (zh) * 2010-10-22 2011-07-20 爱华特(广州)通讯有限公司 一种多相耦合电感器
US20120256718A1 (en) * 2011-04-08 2012-10-11 Muzahid Bin Huda Inductor Construction for Power Conversion Module
CN103366946A (zh) * 2012-03-30 2013-10-23 东光株式会社 面安装多相电感器及其制造方法
CN207116165U (zh) * 2017-06-22 2018-03-16 东莞市大忠电子有限公司 一种三相灌封pfc电感
CN207690615U (zh) * 2017-11-20 2018-08-03 上海鹰峰电子科技股份有限公司 一种网格垫隔离灌封式电抗器
CN107887111A (zh) * 2017-11-24 2018-04-06 深圳市英大科特技术有限公司 一种电感器
CN207818316U (zh) * 2018-01-09 2018-09-04 苏州欧姆尼克新能源科技有限公司 一种逆变器电感的安装结构
CN110534319A (zh) * 2019-09-05 2019-12-03 苏州祥崴电子有限公司 自防护型电感及其加工方法
CN111192743A (zh) * 2020-01-21 2020-05-22 益仕敦电子(珠海)有限公司 多相电感器
CN211181854U (zh) * 2020-01-21 2020-08-04 益仕敦电子(珠海)有限公司 多相电感器

Also Published As

Publication number Publication date
CN111192743A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
CN110660563A (zh) 磁性组件及电源模块
WO2021147278A1 (zh) 多相电感器
CN213546039U (zh) 一种共模电感器
CN211181854U (zh) 多相电感器
WO2021147277A1 (zh) 多相变压器
CN220933867U (zh) 一种灌封逆变电感
CN220774093U (zh) 一种高频三相电感器
CN210349514U (zh) 48v汽车动力回收电感器
CN220041545U (zh) 变压器
CN218730294U (zh) 一种分段磁芯的贴片式高频变压器
CN212209364U (zh) 一种电磁继电器的磁路机构
CN218568631U (zh) 带有绝缘垫片的小型高频变压器
CN219936779U (zh) 一种超低损耗的灌封式电感
CN214476864U (zh) 电抗器
CN216054202U (zh) 电感器件、电路板及空气调节器
CN213716685U (zh) 一种低电阻和高散热能力磁件
CN214753270U (zh) 一种低损耗散热佳的贴片电感器
CN217982990U (zh) 一种应用于电力设备组合电感器
CN219759344U (zh) 一种灌封电抗器
CN215731228U (zh) 一种变压器
CN217982984U (zh) 一种电感器
CN215815497U (zh) 一种灌封式电感
CN213635634U (zh) 磁性组件
EP4328940A1 (en) Inverter and integrated inductor
CN219393135U (zh) 一种变压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915350

Country of ref document: EP

Kind code of ref document: A1