WO2021146864A1 - 小区接入方法、设备及存储介质 - Google Patents

小区接入方法、设备及存储介质 Download PDF

Info

Publication number
WO2021146864A1
WO2021146864A1 PCT/CN2020/073314 CN2020073314W WO2021146864A1 WO 2021146864 A1 WO2021146864 A1 WO 2021146864A1 CN 2020073314 W CN2020073314 W CN 2020073314W WO 2021146864 A1 WO2021146864 A1 WO 2021146864A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
terminal device
frequency domain
bandwidth
cell
Prior art date
Application number
PCT/CN2020/073314
Other languages
English (en)
French (fr)
Inventor
贺传峰
王淑坤
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080073300.6A priority Critical patent/CN114557102A/zh
Priority to EP20914929.3A priority patent/EP4093128A4/en
Priority to PCT/CN2020/073314 priority patent/WO2021146864A1/zh
Publication of WO2021146864A1 publication Critical patent/WO2021146864A1/zh
Priority to US17/867,660 priority patent/US20220353807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a cell access method, device, and storage medium.
  • the 5G New Radio (NR) system is mainly designed to support (Enhanced Mobile Broadband, eMBB) services. It is mainly to meet the needs of high speed, high spectrum efficiency, and large bandwidth.
  • eMBB Enhanced Mobile Broadband
  • the capabilities of terminals that support these services are reduced compared to those that support eMBB, such as reduced bandwidth, reduced processing time, and reduced number of antennas.
  • the current cell access scheme of the NR system is as follows: the terminal obtains the PDCCH search space and CORESET through the received SSB, and blindly detects the PDCCH according to the PDCCH search space and CORESET.
  • the terminal obtains the PDCCH search space and CORESET through the received SSB, and blindly detects the PDCCH according to the PDCCH search space and CORESET.
  • the PDCCH bandwidth is larger, the bandwidth supported by the low-capability terminal If it is smaller, it may take a long time to detect the PDDCH, and eventually the PDCCH cannot be detected, resulting in a longer time to access the network.
  • the embodiments of the present application provide a cell access method, device, and storage medium to reduce the time for a terminal device to access the network.
  • the embodiments of the present application may provide a cell access method, including:
  • the terminal device receives the first synchronization signal block SSB;
  • the terminal device accesses the target cell.
  • the embodiments of the present application may provide a cell access method, including:
  • the network device sends a first synchronization signal block SSB, where the first SSB includes bandwidth information; the bandwidth information and the preset bandwidth are used to indicate a target cell that supports access.
  • embodiments of the present application may provide a terminal device, including:
  • a receiving module for receiving the first synchronization signal block SSB
  • the determining module is configured to determine the target cell that supports the terminal device to access according to the preset bandwidth and the bandwidth information contained in the first SSB.
  • embodiments of the present application may provide a network device, including:
  • the sending module is configured to send a first synchronization signal block SSB, where the first SSB includes bandwidth information; the bandwidth information and the preset bandwidth are used to indicate a target cell that supports access.
  • the embodiments of the present application may also provide a terminal device, including:
  • Processor memory, and interface for communication with network equipment
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the cell access method provided in any one of the first aspect.
  • the embodiments of the present application may also provide a network device, including:
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the cell access method provided in any one of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions. When the computer-executable instructions are executed by a processor, they are used to implement any of the The cell access method described in item.
  • an embodiment of the present application provides a computer-readable storage medium having computer-executable instructions stored in the computer-readable storage medium.
  • the computer-executable instructions are executed by a processor, the The cell access method described in one item.
  • an embodiment of the present application provides a program, when the program is executed by a processor, it is used to execute the cell access method described in any one of the first aspect above.
  • the embodiments of the present application also provide a program, when the program is executed by a processor, it is used to execute the cell access method described in any one of the second aspect above.
  • the foregoing processor may be a chip.
  • an embodiment of the present application provides a computer program product, including program instructions, which are used to implement the cell access method described in any one of the first aspects.
  • an embodiment of the present application provides a computer program product, including program instructions, and the program instructions are used to implement the cell access method described in any one of the second aspect.
  • an embodiment of the present application provides a chip, including a processing module and a communication interface, and the processing module can execute the cell access method described in any one of the first aspect.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to perform the first aspect. Any one of the cell access methods.
  • an embodiment of the present application provides a chip, including a processing module and a communication interface, and the processing module can execute the cell access method described in any one of the second aspect.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the second aspect Any one of the cell access methods.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the second aspect Any one of the cell access methods.
  • the terminal device receives the first synchronization signal block SSB; the terminal device determines the target cell that supports the terminal device to access according to the preset bandwidth and the bandwidth information contained in the first SSB , The terminal device can determine whether the cell corresponding to the first SSB is a target cell that supports access by the terminal device according to the preset bandwidth and the bandwidth information contained in the first SSB.
  • the terminal device does not need to perform blind detection on the PDCCH of the cell, which saves time for access to the network, and only determines the first SSB corresponding to the first SSB based on the preset bandwidth and the bandwidth information contained in the first SSB.
  • the cell is a target cell, no additional signaling overhead is added, the impact on the existing NR system is small, and the complexity is low.
  • Figure 1 is a schematic diagram of the SSB structure
  • FIG. 2 is a schematic diagram of a communication system applied in an embodiment of this application
  • FIG. 3 is a flowchart of an embodiment of a data transmission method provided by this application.
  • FIG. 4 is a schematic diagram of the principle of determining the frequency domain position of the second SSB according to an embodiment of the method provided by this application;
  • FIG. 5 is a schematic diagram of the principle of determining the frequency domain position of the second SSB according to another embodiment of the method provided by this application;
  • FIG. 6 is a schematic flowchart of another embodiment of the method provided by this application.
  • FIG. 7 is a schematic flowchart of another embodiment of the method provided by this application.
  • FIG. 8 is a schematic flowchart of another embodiment of the method provided by this application.
  • FIG. 9 is an interaction flowchart of an embodiment of a data transmission method provided by this application.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a terminal device provided by this application.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a network device provided by this application.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of a terminal device provided by this application.
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a network device provided by this application.
  • 5G is mainly designed to support (Enhanced Mobile Broadband, eMBB) services. It is mainly to meet the needs of high speed, high spectrum efficiency, and large bandwidth.
  • eMBB Enhanced Mobile Broadband
  • Synchronization signal block (SS/PBCH block, SSB):
  • Common channels and signals in the NR system need to cover the entire cell by means of multi-beam scanning to facilitate reception by terminal devices in the cell.
  • the multi-beam transmission of the synchronization signal SS is realized by defining a burst set of SS/PBCH.
  • An SS burst set contains one or more SS/PBCH blocks (hereinafter referred to as SSB).
  • SSB is used to carry the synchronization signal and broadcast channel of one beam. Therefore, one SS burst set can include synchronization signals of number beams of the number of SSBs in the cell.
  • the maximum number L of SSB number is related to the frequency band of the system:
  • L is 4;
  • L is 8;
  • L is 64.
  • One SSB contains one symbol of PSS, one symbol of SSS, and two symbols of NR physical broadcast channel (PBCH), as shown in Figure 1.
  • the time-frequency resources occupied by the PBCH include a demodulation reference signal (Demodulation Reference Signal, DMRS), which is used for demodulation of the PBCH.
  • DMRS Demodulation Reference Signal
  • the frequency domain position of the synchronization signal block is defined by the synchronization raster, as shown in Table 1 below.
  • the possible frequency domain position of the synchronization signal block is determined by the formula in Table 1, and Numbering through SSREF.
  • the resource mapping of the synchronization signal block is determined according to Table 2 below. That is, the synchronization raster is located in the resource unit RE with the number 0 in the PRB with the PRB number of 10 in the 20 physical resource blocks (Physical Resource Block, PRB) of the synchronization signal block.
  • PRB Physical Resource Block
  • the distribution of the synchronous raster in the frequency band is determined by Table 3 below.
  • the number range of the synchronous raster is 7711-8329, and there are a total of 619 synchronous rasters. This number is called Global Synchronization Channel Number (GSCN).
  • the terminal device searches for the SS/PBCH block according to the location of the synchronization raster in a specific frequency band, thereby obtaining synchronization and receiving master information block (MIB) and system information block (System information block, SIB) information.
  • MIB master information block
  • SIB system information block
  • eMBB In practical applications, in addition to eMBB, there are many different types of services, such as sensor networks, video surveillance, wearables, etc., which have different requirements from eMBB services in terms of rate, bandwidth, power consumption, and cost.
  • the capabilities of terminals that support these services are reduced compared to those that support eMBB, such as reduced bandwidth, reduced processing time, and reduced number of antennas.
  • the NR system needs to be optimized for the above-mentioned services and corresponding low-capacity terminals, and the optimized system becomes the NR-light system.
  • the frequency of 5G is divided into two parts: FR1 (f ⁇ 6GHz, low frequency) and FR2 (f>6GHz, high frequency, millimeter wave).
  • the bandwidth of FR1 can be 5MHz, 10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz, 60MHz, 80MHz and 100MHz.
  • the bandwidth of FR2 can be 50MHz, 100MHz, 200MHz and 400MHz and so on.
  • the bandwidth of the terminal equipment needs to support 100MHz.
  • the bandwidth of the terminal device needs to support 400MHz.
  • the main features is the reduction of the supported bandwidth, thereby reducing power consumption and cost.
  • the current cell access scheme of the NR system is as follows: the terminal obtains the physical downlink control channel (Physical Downlink Control Channel, PDCCH) search space through the received SSB, that is, type0PDCCH search space and control resource set (Control Resource Set, CORESET). ), according to the type0PDCCH search space and CORESET blind detection of PDCCH, in the above solution, if the PDCCH bandwidth is larger, and the bandwidth supported by the low-capacity terminal of the NR-light system is smaller, it may go through a longer period of PDDCH detection, and ultimately fail The PDCCH is detected, resulting in a long time to access the network.
  • PDCCH Physical Downlink Control Channel
  • CORESET Control Resource Set
  • the technical concept of the method in the embodiments of the application is as follows: On the premise of being compatible with the cell access process of the current NR system, a cell access method is proposed for NR-light terminal equipment, so that NR-light terminal equipment can reduce network access.
  • the specific solution is as follows: Before blindly detecting the PDCCH, the NR-light terminal device determines whether the cell supports the access of the terminal device, for example, determines whether the cell supports the access of the terminal device according to the bandwidth information sent by the network device.
  • Fig. 2 is a schematic diagram of a communication system applied in an embodiment of this application.
  • the communication system includes at least a network device 11 and a terminal device 12. It can be understood that, in an actual communication system, there may be one or more network devices 11 and terminal devices 12, and FIG. 2 only uses one as an example.
  • the network device 11 may be an access network device, for example, it may be an access device in an LTE network and its evolved network, such as an evolved base station (Evolutional Node B, eNB or eNodeB for short), or may also include 5G The next generation node B (gNB) in the NR system, or a relay station, or a base station in a new network system in the future, and so on.
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB next generation node B
  • the terminal device 12 may also be referred to as a mobile terminal, user equipment (User Equipment, UE for short), access terminal, user unit, user station, mobile station, mobile station, user terminal, terminal, wireless communication equipment, user agent or User device.
  • UE User Equipment
  • it can be smart phones, cellular phones, cordless phones, personal digital assistant (PDA) devices, handheld devices with wireless communication functions, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, etc.
  • the terminal device has an interface for communicating with the network device.
  • NR-light terminal equipment is taken as an example for description, but the following solutions are also applicable to NR terminal equipment and terminal equipment of other systems, which is not limited in this application.
  • Fig. 3 is a flowchart of an embodiment of a cell access method provided by this application. As shown in Fig. 3, the specific implementation steps of this embodiment include:
  • Step 101 The terminal device receives the first synchronization signal block SSB.
  • the terminal device receives the first SSB sent by the network device, where the principle of the SSB can be referred to the foregoing introduction.
  • the network device can implicitly indicate the target cell that supports access, for example, whether the NR-light terminal device can access the cell through the bandwidth information contained in the synchronization signal block.
  • Step 102 The terminal device determines a target cell that supports the terminal device to access according to the preset bandwidth and the bandwidth information contained in the first SSB.
  • Step 103 The terminal device accesses the target cell.
  • the terminal device determines the target cell that supports the terminal device to access according to the preset bandwidth and the bandwidth information contained in the first SSB sent by the network device.
  • the PBCH in the synchronization signal block carries the MIB information
  • the pdcch-ConfigSIB1 information field in the MIB information includes the resource control set (Control Resource Set, CORESET) #0 information of the type0PDCCH, which is used to indicate the RB and the frequency domain of the type0PDCCH. Symbols in the time domain.
  • the CORESET#0 information indicates one of the indexes in Table 4 below. According to the index, the number of RBs and the number of symbols of CORESET#0, and the RB offset offset compared to SSB are obtained. It can be seen from Table 4 below that when the subcarrier spacing is 15kHz, the bandwidth of CORESET#0 can be configured as 24, 48, 96 RBs, corresponding to bandwidths of 5MHz, 10MHz, and 20MHz.
  • ⁇ SS/PBCH block PDCCH ⁇ SCS is ⁇ 15, 15 ⁇ kHz
  • the frequency band is the minimum channel bandwidth of 5-10MHz Type0-PDCCH search space set CORESET in the frequency domain and the symbol set in the time domain
  • the supported bandwidth may be limited, for example, only 10MHz is supported.
  • the bandwidth of CORESET#0 in the NR system is configured to 20MHz (which can be obtained according to the number of resource blocks)
  • the NR-light terminal device will not be able to receive type0PDCCH information, and therefore cannot receive SIB1 information, and cannot access according to the system information of the cell.
  • the cell is configured to 20MHz (which can be obtained according to the number of resource blocks).
  • the information carried by the PBCH in the SSB can be used to explicitly indicate whether the corresponding cell allows NR-light UE access. But it is necessary to redefine the bits in the PBCH, such as reserved bits. However, currently available reserved bits are very limited.
  • the bandwidth information contained in the first SSB can be used to implicitly indicate whether the NR-light terminal device can access.
  • the CORESET information in the PBCH included in the first SSB can be used to implicitly indicate whether the NR-light terminal device can be accessed.
  • the NR-light terminal device can determine that the cell supports the terminal device's access, and can use the type0PDCCH search space and CORESET information blindly. PDCCH is detected, SIB1 is received, and the cell is accessed according to the system information of the cell.
  • the bandwidth indicated by the bandwidth information contained in the first SSB is greater than the preset bandwidth, it is implicitly indicated that the cell does not support the access of the NR-light terminal device.
  • NR-light terminal equipment does not need to try to detect PDCCH and receive SIB1.
  • the terminal device may continue to search for other SSBs until the bandwidth of the CORESET indicated by the bandwidth information contained in the searched SSB is less than or equal to the preset bandwidth.
  • the preset bandwidth may be the bandwidth supported by the current NR-light terminal device, or may also be at least one bandwidth corresponding to the NR-light system.
  • the terminal device receives the first synchronization signal block SSB; the terminal device determines the target cell that supports the terminal device’s access according to the preset bandwidth and the bandwidth information contained in the first SSB. Can determine whether the cell corresponding to the first SSB is a target cell that supports access by the terminal device.
  • the terminal device does not need to perform blind detection on the PDCCH of the cell, saving time for access to the network, and only determines whether the cell corresponding to the first SSB is the target cell based on the preset bandwidth and the bandwidth information contained in the first SSB, without adding additional information
  • the cost has less impact on the existing NR system, and the complexity is low.
  • step 102 may include the following specific implementation manners:
  • the terminal device determines that the cell corresponding to the first SSB is a target cell that supports the terminal device to access.
  • the terminal device determines that the cell corresponding to the first SSB is not a target cell that supports access by the terminal device.
  • the terminal device determines that the cell corresponding to the first SSB is the target cell that supports the terminal device to access. Further, the PDCCH can be blindly detected through the type0PDCCH search space and CORESET information, and then SIB1 can be received, and the cell can be accessed according to the system information of the cell. If the bandwidth indicated by the bandwidth information contained in the first SSB is greater than the preset bandwidth, the terminal device determines that the cell corresponding to the first SSB is not a target cell that supports terminal device access, and the terminal device does not need to blindly detect the PDCCH of the cell, and subsequent operate.
  • the method may further include:
  • the terminal device receives first indication information; the first indication information is used to indicate whether the cell corresponding to the first SSB supports terminal device access;
  • the terminal device determines that the cell corresponding to the first SSB is the target cell that supports the terminal device's access, which can be implemented in the following manner:
  • the terminal device determines that the cell corresponding to the first SSB is a target cell that supports terminal device access.
  • the terminal device may further receive the first indication information of the network device, and determine whether the cell supports the terminal through the first indication information Access to equipment.
  • the first indication information may be carried by the system information block.
  • the terminal device may blindly detect the PDCCH, and then receive the system information block, for example, SIB1.
  • a field may be added to the SIB1 to carry the first indication information.
  • the network device may not want the cell to access the terminal device, for example, when the cell is congested or configured in system information
  • the other bandwidth information does not match the bandwidth of the terminal device.
  • the bandwidth of the initial partial bandwidth (Bandwidth Part, BWP) configured in SIB1 is greater than the bandwidth supported by the terminal device.
  • the terminal device determines that the cell corresponding to the first SSB is a target cell that supports terminal device access.
  • the terminal device receives the SIB1 by receiving the PDCCH information, and then accesses the target cell.
  • the terminal device determines that the cell corresponding to the first SSB is not a target cell that supports terminal device access.
  • the terminal device acquires the second SSB, and the cell corresponding to the second SSB is a target cell that supports terminal device access.
  • the first indication information indicates that the cell corresponding to the first SSB does not support terminal device access, and the terminal device no longer attempts to detect the PDCCH and receive the SIB.
  • the first indication information can be carried by the system information block SIB, such as SIB1.
  • SIB system information block
  • the impact is small and the complexity is low.
  • the method may further include:
  • the terminal device obtains the second SSB, and the cell corresponding to the second SSB is a target cell that supports the terminal device to access.
  • the terminal device no longer attempts to detect PDCCH and receive SIB, and continues to search for other second SSBs to find a target cell that supports terminal device access.
  • the cell corresponding to the first SSB that does not support terminal device access can be directly determined by the bandwidth indicated by the bandwidth information contained in the first SSB and the preset bandwidth, or further needs to be determined according to the first indication information. limited.
  • the bandwidth information contained in the first SSB implicitly indicates whether the NR-light terminal device can access the cell, and further, the first indication information may be used to indicate whether the cell allows the NR-light terminal device to access. , Can make the network more flexible to control NR-light terminal equipment to access the cell.
  • the step "obtain the second SSB" can be implemented in the following manner:
  • the terminal device determines the frequency domain position of the second SSB according to the frequency domain position of the first SSB;
  • the terminal device obtains the second SSB according to the frequency domain position of the second SSB.
  • the terminal device may continue to search for the second SSB until the bandwidth indicated by the bandwidth information contained in the searched second SSB is less than or equal to the preset bandwidth.
  • the first indication information indicates that the cell corresponding to the second SSB supports access by the terminal device.
  • the PDCCH may be detected according to the PDCCH search space and CORESET information contained in the second SSB, and then SIB1 may be received, and the cell may be accessed according to the system information of the cell.
  • the terminal device determines the frequency domain position of the second SSB according to the currently known frequency domain position of the first SSB, and then according to the frequency domain position of the second SSB , Get the second SSB.
  • the terminal device searches for the second SSB around the frequency domain position of the first SSB, that is, searches for the second SSB within a frequency range larger and/or smaller than the first SSB.
  • the frequency domain position of the second SSB can be determined in the following ways:
  • the terminal device determines the frequency domain position of the second SSB according to the frequency domain position of the first SSB and the preset frequency domain offset.
  • the frequency domain position of the first SSB can be obtained by synchronizing raster (see the introduction of synchronizing raster), and then according to the frequency domain position of the first SSB and the preset frequency domain offset, the frequency domain position of the second SSB is obtained .
  • the first SSB indicating that NR-light terminal device access is not supported and the second SSB indicating that NR-light terminal device access is supported have a preset frequency domain offset.
  • the NR-light terminal device detects the first SSB and determines that the cell corresponding to the first SSB does not support the terminal device's access, it will determine the corresponding cell that supports NR-light terminal device access based on the preset frequency domain offset
  • the frequency domain location where the second SSB is located such as the location of the sync raster corresponding to the second SSB.
  • the second SSB is searched downward. In other embodiments, the second SSB may also be searched upward, which is not limited in this application.
  • the network device may also give the search direction through indication information, for example, whether the frequency relative to the first SSB is high or low, that is, relative to the first SSB.
  • the range of the frequency domain position of the SSB may be given.
  • the preset frequency domain offset may be the number of synchronized rasters.
  • the preset frequency domain offset may be one frequency domain offset value or multiple values, which is not limited in the embodiment of the present application.
  • the bandwidth information contained in the first SSB implicitly indicates whether the NR-light terminal device can access the cell. If the cell corresponding to the first SSB does not support the terminal device access, the preset The frequency domain offset information determines the frequency domain position of the second SSB corresponding to the cell that supports the access of the NR-light terminal device, which can reduce the complexity and power consumption of the NR-light terminal device searching for the second SSB, and reduce the access delay. Moreover, this method does not need to introduce indication information, has low complexity, has little impact on the existing NR system, and can be compatible with the existing NR system.
  • the terminal device determines the frequency domain position of the second SSB according to the frequency domain position of the first SSB and the second indication information; the second indication information is used to indicate the relationship between the frequency domain position of the second SSB and the frequency domain position of the first SSB.
  • the terminal device may obtain the second indication information from the network device before determining the frequency domain position of the second SSB.
  • the physical broadcast channel PBCH included in the first SSB carries the second indication information
  • the system information block SIB carries the second indication information
  • the second indication information is used to instruct the NR-light terminal device to search for the relationship between the frequency domain position of the second SSB corresponding to the cell that can support its access and the frequency domain position of the first SSB, for example, indicating the frequency domain position of the second SSB
  • the second indication information (for example, 1 bit) is used to indicate whether the frequency domain position of the second SSB is higher or lower than the frequency domain position of the first SSB.
  • the NR-light terminal device may use the frequency domain position of the first SSB as a starting point, and continue to search for the second SSB in the corresponding frequency domain. As shown in Fig.
  • the terminal device searches for the second SSB in the range lower than the frequency of the first SSB, or searches the second SSB in the range higher than the frequency of the first SSB, for example, in the frequency domain range of 3GHz-24GHz,
  • the interval of the synchronization raster is 1.44 MHz, and the terminal device searches for the second SSB according to the position of the synchronization raster of the first SSB.
  • the second indication information may also be used to indicate the frequency range of the second SSB, for example, aMHz-bMHz.
  • the second indication information may also indicate more accurate frequency domain location information of the second SSB of the cell that supports the access of the NR-light terminal device. For example, it specifically indicates the frequency domain interval between the second SSB and the current first SSB, such as the number of synchronized rasters in the interval. This method may require more bit fields.
  • the above-mentioned second indication information may be indicated by a specific bit field in the PBCH included in the SSB, or a specific bit field in other information, such as a system information block SIB.
  • the second indication information is used to instruct the NR-light terminal device to search for the cell corresponding to the cell that can support its access.
  • the frequency domain location information of the second SSB can reduce the blind detection of the NR-light terminal device, reduce the complexity and power consumption of the NR-light terminal device searching for the SSB, and reduce the access delay.
  • the terminal device receives the first SSB, obtains the CORESET information of the typeOPDCCH carried in the PBCH contained in the first SSB, and can determine the first SSB based on the bandwidth indicated by the CORESET information and the preset bandwidth. Whether the cell corresponding to the SSB supports terminal device access, for example, the bandwidth indicated by the CORESET information is less than or equal to the preset bandwidth, then it is determined that the cell supports the access of NR-light terminal devices; if the bandwidth indicated by the CORESET information is greater than the preset bandwidth, then It is determined that the cell does not support the access of NR-light terminal equipment.
  • the terminal device receives the first SSB, obtains the CORESET information of the type0PDCCH carried in the PBCH contained in the first SSB, and can determine the first SSB based on the bandwidth indicated by the CORESET information and the preset bandwidth.
  • the cell corresponding to the SSB supports terminal device access, for example, if the bandwidth indicated by the CORESET information is greater than the preset bandwidth, it is determined that the cell does not support NR-light terminal device access; if the bandwidth indicated by the CORESET information is less than or equal to the preset bandwidth , Then further receive SIB1 through type0PDCCH, determine whether the indication information in SIB1 indicates whether the cell supports the access of NR-light terminal equipment, and if the indication information indicates that the cell supports the access of NR-light terminal equipment, it is determined that the cell supports NR-light terminal equipment access; if the indication information indicates that the cell does not support NR-light terminal equipment access, it is determined that the cell does not support NR-light terminal equipment access.
  • the terminal device receives the first SSB, obtains the CORESET information of the type0PDCCH carried in the PBCH contained in the first SSB, and can determine the first SSB based on the bandwidth indicated by the CORESET information and the preset bandwidth.
  • the cell corresponding to the SSB supports terminal device access, for example, if the bandwidth indicated by the CORESET information is less than or equal to the preset bandwidth, it is determined that the cell supports NR-light terminal device access; if the bandwidth indicated by the CORESET information is greater than the preset bandwidth, It is determined that the cell does not support the access of NR-light terminal equipment; if the indication information indicates that the cell does not support the access of NR-light terminal equipment, the frequency domain position of the second SSB is determined, that is, the frequency domain of the second SSB is passed. The domain location acquires the second SSB, and the cell corresponding to the second SSB is a target cell that supports the access of the NR-light terminal device.
  • the embodiment of the present application also provides a cell access method.
  • the specific implementation steps of this embodiment include:
  • the network device sends a first synchronization signal block SSB, where the first SSB contains bandwidth information; the bandwidth information and the preset bandwidth are used to indicate the target cell that supports access.
  • the network device may implicitly indicate the target cell that supports access through the bandwidth information contained in the first SSB, for example, instruct the NR-light terminal device whether the cell corresponding to the first SSB is the cell that supports access Target cell.
  • the network device first obtains the first SSB, and the first SSB includes bandwidth information for indicating target cells that support access.
  • the terminal device can determine the target cell that supports the terminal device to access according to the bandwidth information and the preset bandwidth.
  • the cell corresponding to the first SSB is the target cell; if the bandwidth indicated by the bandwidth information is greater than the preset bandwidth, the cell corresponding to the first SSB is not Target cell.
  • the NR-light terminal device can determine that the cell supports the terminal device's access, and can use the type0PDCCH search space and CORESET information blindly. PDCCH is detected, SIB1 is received, and the cell is accessed according to the system information of the cell.
  • the bandwidth indicated by the bandwidth information contained in the first SSB is greater than the preset bandwidth, it is implicitly indicated that the cell does not support the access of the NR-light terminal device.
  • NR-light terminal equipment does not need to try to detect PDCCH and receive SIB1.
  • the terminal device may continue to search for other SSBs until the bandwidth of the CORESET indicated by the bandwidth information contained in the searched SSB is less than or equal to the preset bandwidth.
  • the preset bandwidth may be the bandwidth supported by the current NR-light terminal device, or may also be at least one bandwidth corresponding to the NR-light system.
  • the method further includes:
  • the network device sends first indication information; the first indication information is used to indicate whether the cell corresponding to the first SSB is a target cell supporting access.
  • the network device may further send first indication information to indicate whether the cell corresponding to the first SSB is a target supporting access In the cell, the terminal device may further receive the first indication information of the network device, and determine whether the cell supports the access of the terminal device through the first indication information.
  • the method in this embodiment may further include:
  • the network device sends the second SSB, and the cell corresponding to the second SSB is the target cell that supports access.
  • the method of this embodiment may further include:
  • the network device sends second indication information, where the second indication information is used to indicate the relationship between the frequency domain position of the second SSB and the frequency domain position of the first SSB.
  • the second indication information is used to indicate: the range of the frequency domain position of the second SSB relative to the frequency domain position of the first SSB, and/or the frequency domain offset between the second SSB and the first SSB shift.
  • the frequency domain offset includes the number of synchronization grid rasters.
  • the system information block SIB carries the first indication information.
  • the physical broadcast channel PBCH included in the first SSB carries the second indication information
  • the system information block SIB carries the second indication information
  • control resource set CORESET information included in the first SSB includes bandwidth information.
  • the network device sends the first synchronization signal block SSB; the bandwidth information contained in the first SSB is used to indicate the target cell that supports access, and the above solution is determined according to the bandwidth information contained in the first SSB and the preset bandwidth
  • the target cell that supports access does not add additional signaling overhead, has less impact on the existing NR system, and has low complexity.
  • the terminal device does not need to target Blind detection is performed on the PDCCH of this cell, which saves time for access to the network.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a terminal device provided by this application. As shown in FIG. 10, the terminal device includes:
  • the receiving module 110 is configured to receive the first synchronization signal block SSB;
  • the determining module 111 is configured to determine a target cell that supports the terminal device to access according to the preset bandwidth and the bandwidth information contained in the first SSB;
  • the processing module 112 is used to access the target cell.
  • the determining module 111 is specifically configured to:
  • bandwidth indicated by the bandwidth information is less than or equal to the preset bandwidth, determining that the cell corresponding to the first SSB is the target cell;
  • bandwidth indicated by the bandwidth information is greater than the preset bandwidth, it is determined that the cell corresponding to the first SSB is not the target cell.
  • the receiving module 110 is further configured to:
  • the first indication information is used to indicate whether the cell corresponding to the first SSB supports access by the terminal device;
  • the determining module 111 is specifically configured to:
  • the first indication information indicates that the cell corresponding to the first SSB supports access by the terminal device, it is determined that the cell corresponding to the first SSB is the target cell.
  • the determining module 111 is specifically configured to:
  • the first indication information indicates that the cell corresponding to the first SSB does not support access by the terminal device, it is determined that the cell corresponding to the first SSB is not the target cell.
  • it also includes:
  • the obtaining module is configured to obtain a second SSB, and a cell corresponding to the second SSB is a target cell that supports access by the terminal device.
  • the acquisition module includes:
  • a determining subunit configured to determine the frequency domain position of the second SSB according to the frequency domain position of the first SSB
  • the obtaining subunit is configured to obtain the second SSB according to the frequency domain position of the second SSB.
  • the determining subunit is configured to:
  • the second indication information is used to indicate the frequency domain position of the second SSB and the first The relationship between the frequency domain position of the SSB.
  • the second indication information is used to indicate: the range of the frequency domain position of the second SSB relative to the frequency domain position of the first SSB, and/or, the second Frequency domain offset between the SSB and the first SSB.
  • the frequency domain offset includes the number of synchronization grid rasters.
  • the system information block SIB carries the first indication information.
  • the physical broadcast channel PBCH included in the first SSB carries the second indication information
  • the system information block SIB carries the second indication information
  • control resource set CORESET information included in the first SSB includes the bandwidth information.
  • the terminal device of this embodiment is used to implement the technical solution on the terminal device side.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a network device provided by this application. As shown in FIG. 11, the network device includes:
  • the first sending module 210 is configured to send a first synchronization signal block SSB, where the first SSB includes bandwidth information; the bandwidth information and the preset bandwidth are used to indicate a target cell that supports access.
  • the cell corresponding to the first SSB is the target cell; if the bandwidth indicated by the bandwidth information is greater than For the preset bandwidth, the cell corresponding to the first SSB is not the target cell.
  • the first sending module 210 is further configured to:
  • the first indication information is used to indicate whether the cell corresponding to the first SSB is a target cell supporting access.
  • it also includes:
  • the second sending module 211 is configured to send a second SSB, and a cell corresponding to the second SSB is a target cell supporting access.
  • the sending module 211 is further configured to:
  • Send second indication information where the second indication information is used to indicate the relationship between the frequency domain position of the second SSB and the frequency domain position of the first SSB.
  • the second indication information is used to indicate: the range of the frequency domain position of the second SSB relative to the frequency domain position of the first SSB, and/or, the second Frequency domain offset between the SSB and the first SSB.
  • the frequency domain offset includes the number of synchronization grid rasters.
  • the system information block SIB carries the first indication information.
  • the physical broadcast channel PBCH included in the first SSB carries the second indication information
  • the system information block SIB carries the second indication information
  • control resource set CORESET information included in the first SSB includes the bandwidth information.
  • the network device of this embodiment is used to implement the technical solution on the network device side.
  • FIG. 12 is a schematic structural diagram of Embodiment 5 of a terminal device provided by this application. As shown in FIG. 12, the terminal device includes:
  • the memory 312 stores computer execution instructions
  • the processor 311 executes the computer-executable instructions stored in the memory, so that the processor 311 executes the technical solution on the terminal device side in any of the foregoing method embodiments.
  • FIG. 12 is a simple design of the terminal device.
  • the embodiment of the present application does not limit the number of processors and memories in the terminal device.
  • FIG. 12 only takes the number of 1 as an example for illustration.
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a network device provided by this application. As shown in FIG. 13, the network device includes:
  • a processor 411 a memory 412, and an interface 413 for communicating with a terminal device;
  • the memory 412 stores computer execution instructions
  • the processor 411 executes the computer-executable instructions stored in the memory 412, so that the processor 411 executes the technical solution on the network device side in any of the foregoing method embodiments.
  • FIG. 13 is a simple design of a network device.
  • the embodiment of the present application does not limit the number of processors and memories in the network device.
  • FIG. 13 only uses 1 as an example for illustration.
  • the memory, the processor, and the interface may be connected by a bus.
  • the memory may be integrated inside the processor.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions. When the computer-executable instructions are executed by a processor, they are used to implement the terminal device in any of the foregoing method embodiments.
  • Technical solutions are provided.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, it is used to implement the network in any of the foregoing method embodiments.
  • the technical solution of the equipment is also provided.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution of the terminal device in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution of the network device in any of the foregoing method embodiments.
  • the foregoing processor may be a chip.
  • the embodiment of the present application also provides a computer program product, including program instructions, which are used to implement the technical solution of the terminal device in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a computer program product, including program instructions, which are used to implement the technical solution of the network device in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution on the terminal device side in any of the foregoing method embodiments.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing The technical solution on the terminal device side in the method embodiment.
  • a storage module such as a memory
  • An embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution on the network device side in any of the foregoing method embodiments.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing The technical solution on the network device side in the method embodiment.
  • a storage module such as a memory
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces.
  • the indirect coupling or communication connection of the modules may be in electrical, mechanical or other forms.
  • the processor may be a central processing unit (English: Central Processing Unit, abbreviated as: CPU), or other general-purpose processors, digital signal processors (English: Digital Signal Processor, referred to as DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, referred to as ASIC), etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like. The steps in the method disclosed in this application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • All or part of the steps in the foregoing method embodiments may be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a readable memory.
  • the program executes the steps of the above-mentioned method embodiments; and the aforementioned memory (storage medium) includes: read-only memory (English: read-only memory, abbreviated as: ROM), RAM, flash memory, hard disk, Solid state hard disk, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种小区接入方法、设备及存储介质,该方法包括:终端设备接收第一同步信号块SSB;所述终端设备根据预设带宽和第一SSB包含的带宽信息,确定支持所述终端设备接入的目标小区,终端设备接入目标小区。本申请实施例的方案中,若该第一SSB对应的小区不为支持该终端设备接入的目标小区,则终端设备无需针对该小区的PDCCH进行盲检测,节省接入网络的时间,而且仅根据第一SSB包含的带宽信息和预设带宽确定该第一SSB对应的小区是否为目标小区,不额外增加信令开销,对现有NR系统的影响较小,复杂度较低。

Description

小区接入方法、设备及存储介质 技术领域
本申请实施例涉及通信技术,尤其涉及一种小区接入方法、设备及存储介质。
背景技术
5G新空口(New Radio,NR)系统主要是为了支持(Enhanced Mobile Broadband,eMBB)业务而设计的。其主要是为了满足高速率、高频谱效率、大带宽的需要。实际应用中,除了eMBB,还存在多种不同的业务类型,例如传感器网络、视频监控、可穿戴等,它们在速率、带宽、功耗、成本等方面与eMBB业务有着不同的需求。支持这些业务的终端相比支持eMBB的终端的能力是降低的,如支持的带宽减小、处理时间放松、天线数减少等。
目前NR系统的小区接入方案如下:终端通过接收到的SSB获取PDCCH搜索空间和CORESET,根据PDCCH搜索空间和CORESET盲检测PDCCH,上述方案中,若PDCCH带宽较大,而低能力终端支持的带宽较小,则可能经过较长时间的PDDCH检测,最终无法检测到PDCCH,导致接入网络时间较长。
发明内容
本申请实施例提供一种小区接入方法、设备及存储介质,以减少终端设备接入网络的时间。
第一方面,本申请实施例可提供一种小区接入方法,包括:
终端设备接收第一同步信号块SSB;
所述终端设备根据预设带宽和第一SSB包含的带宽信息,确定支持所述终端设备接入的目标小区;
所述终端设备接入所述目标小区。
第二方面,本申请实施例可提供一种小区接入方法,包括:
网络设备发送第一同步信号块SSB,所述第一SSB包含带宽信息;所述带宽信息和预设带宽用于指示支持接入的目标小区。
第三方面,本申请实施例可提供一种终端设备,包括:
接收模块,用于接收第一同步信号块SSB;
确定模块,用于根据预设带宽和第一SSB包含的带宽信息,确定支持所述终端设备接入的目标小区。
第四方面,本申请实施例可提供一种网络设备,包括:
发送模块,用于发送第一同步信号块SSB,所述第一SSB包含带宽信息;所述带宽信息和预设带宽用于指示支持接入的目标小区。
第五方面,本申请实施例还可提供一种终端设备,包括:
处理器、存储器、与网络设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面任一项提供的小区接入方法。
第六方面,本申请实施例还可提供一种网络设备,包括:
处理器、存储器、与终端设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第二方面任一项提供的小区接入方法。
第七方面,本申请实施例提供一种计算机可读存储介质所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第一方面任一项所述的小区接入方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第二方面任一项所述的小区接入方法。
第九方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如上第一方面任一项所述的小区接入方法。
第十方面,本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行如上第二方面任一项所述的小区接入方法。
可选地,上述处理器可以为芯片。
第十一方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现第一方面任一项所述的小区接入方法。
第十二方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现第二方面任一项所述的小区接入方法。
第十三方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第一方面任一项所述的小区接入方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第一方面任一项所述的小区接入方法。
第十四方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第二方面任一项所述的小区接入方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第二方面任一项所述的小区接入方法。
本申请实施例提供的小区接入方法、设备及存储介质,终端设备接收第一同步信号块SSB;终端设备根据预设带宽和第一SSB包含的带宽信息,确定支持终端设备接入的目标小区,实现了终端设备根据预设带宽和第一SSB包含的带宽信息,可以确定该第一SSB对应的小区是否为支持该终端设备接入的目标小区,若该第一SSB对应的小区不为支持该终端设备接入的目标小区,则终端设备无需针对该小区的PDCCH进行盲检测,节省接入网络的时间,而且仅根据预设带宽和第一SSB包含的带宽信息确定该第一SSB对应的小区是否为目标小区,不额外增加信令开销,对现有NR系统的影响较小,复杂度较低。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为SSB结构示意图;
图2为本申请实施例所应用的一种通信系统的示意图;
图3为本申请提供的数据传输方法一实施例的流程图;
图4为本申请提供的方法一实施例的确定第二SSB的频域位置的原理示意图;
图5为本申请提供的方法另一实施例的确定第二SSB的频域位置的原理示意图;
图6为本申请提供的方法另一实施例的流程示意图;
图7为本申请提供的方法又一实施例的流程示意图;
图8为本申请提供的方法又一实施例的流程示意图;
图9为本申请提供的数据传输方法一实施例的交互流程图;
图10为本申请提供的终端设备实施例一的结构示意图;
图11为本申请提供的网络设备实施例一的结构示意图;
图12为本申请提供的终端设备实施例二的结构示意图;
图13为本申请提供的网络设备实施例二的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
当前,随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此3GPP国际标准组织开始研发5G。5G主要是为了支持(Enhanced Mobile Broadband,eMBB)业务而设计的。其主要是为了满足高速率、高频谱效率、大带宽的需要。
下面对本申请中涉及到的一些概念进行介绍:
1、同步信号块(SS/PBCH block,SSB):
在NR系统中的公共信道和信号,如同步信号(synchronization signal,SS)和广播信道,需要通过多波束扫描的方式覆盖整个小区,便于小区内的终端设备接收。同步信号SS的多波束发送是通过定义SS/PBCH突发集合(burst set)实现的。一个SS burst set包含一个或多个SS/PBCH block(下文简称SSB)。一个SSB用于承载一个波束的同步信号和广播信道。因此,一个SS burst set可以包含小区内SSB数量number个波束的同步信号。SSB number的最大数目L与系统的频段有关:
对于3GHz以上频段,L为4;
对于3GHz-6GHz频段,L为8;
对于6GHz-52.6GHz,L为64。
一个SSB中包含一个符号的PSS,一个符号的SSS和两个符号的NR物理广播信道(Physical broadcast channel,PBCH),如图1所示。其中,PBCH所占的时频资源中,包含解调参考信号(Demodulation Reference Signal,DMRS),用于PBCH的解调。
2、同步栅格raster
对于NR中的无线频谱,同步信号块的频域位置通过同步raster来定义,如下表1所示,在不同的频率范围,同步信号块的可能的频域位置通过表1中公式来确定,并且通过SSREF来进行编号。
表1 不同频段SS raster
Figure PCTCN2020073314-appb-000001
确定了同步raster之后,同步信号块的资源映射根据下表2确定。即同步raster位于同步信号块的20个物理资源块(Physical Resource Block,PRB)中的PRB编号为10的PRB中的编号0的资源单元RE。
表2 同步Raster与SSB RE映射
RE index k 0
PRB number n PRB of the SSB n PRB=10
对于同步raster,在不同的频段下,同步raster在频段内的分布通过下表3确定。例如,对于频段d n77,同步raster的编号范围为7711–8329,共619个同步raster。该编号称为全球同步信道号(Global Synchronization Channel Number,GSCN)。终端设备根据特定频段下的同步raster的位置,搜索SS/PBCH block,从而获得同步和接收主信息块(Master information block,MIB)和系统信息块(System information block,SIB)信息。
表3 每个工作频段适用的SS raster条目
Figure PCTCN2020073314-appb-000002
实际应用中,除了eMBB,还存在多种不同的业务类型,例如传感器网络、视频监控、可穿戴等,它们在速率、带宽、功耗、成本等方面与eMBB业务有着不同的需求。支持这些业务的终端相比支持eMBB的终端的能力是降低的,如支持的带宽减小、处理时间放松、天线数减少等。针对上述业务和相应的低能力终端需要对NR系统进行优化,优化的系统成为NR-light系统。
5G的频点分为两部分:FR1(f<6GHz,低频)和FR2(f>6GHz,高频、毫米波)。FR1的带宽可以是5MHz,10MHz,15MHz,20MHz,25MHz,30MHz,40MHz,50MHz,60MHz,80MHz和100MHz。FR2的带宽可以是50MHz,100MHz,200MHz和400MHz等。为了使终端设备能够支持在5G频段上接入网络,对于FR1来说,终端设备的带宽需要支持100MHz。相应的,对于FR2的频段,终端设备的带宽需要支持400MHz。但是对于NR-light系统的终端设备来说,其中一个主要的特点是支持的带宽的减少,从而减少功耗、降低成本。
目前NR系统的小区接入方案如下:终端通过接收到的SSB获取物理下行控制信道(Physical Downlink Control Channel,PDCCH)搜索空间(search space),即type0PDCCH search space和控制资源集合(Control Resource Set,CORESET),根据type0PDCCH search space和CORESET盲检测PDCCH,上述方案中,若PDCCH带宽较大,而对于NR-light系统的低能力终端支持的带宽较小,则可能经过较长时间的PDDCH检测,最终无法检测到PDCCH,导致接入网络时间较长。
本申请实施例的方法的技术构思如下:在兼容目前NR系统的小区接入流程的前提下,针对NR-light终端设备提出一种小区接入方法,使得NR-light终端设备能够减少网络接入时间,具体解决思路如下:NR-light终端设备在盲检测PDCCH之前,判断该小区是否支持终端设备的接入,例如根据网络设备发送的带宽信息,判断该小区是否支持终端设备的接入。若判断该小区不支持终端设备的接入,则无需盲检测PDCCH,继续搜索其他小区接入,则可以减少终端设备接入小区的时间,同时不改变目前NR系统终端设备接入小区的流程,即兼容目前NR系统的接入流程。
下面以具体的实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本申请实施例所应用的一种通信系统的示意图。如图2所示,该通信系统中至少包括网络设备11和终端设备12。可以理解的是,在实际通信系统中,网络设备11以及终端设备12均可以有一个或多个,该图2仅以一个作为示例。
在图2中,网络设备11可以是接入网设备,例如可以是LTE网络及其演进网络中的接入设备,例如演进型基站(Evolutional Node B,简称eNB或eNodeB),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB),或者中继站,或者未来新的网络系统中的基站等等。
终端设备12,也可以称为移动终端、用户设备(User Equipment,简称:UE)、接入终端、用户单元、用户站、移动站、移动台、用户终端、终端、无线通信设备、用户代理或用户装置。具体可以是智能手机、蜂窝电话、无绳电话、个人数字处理(Personal Digital Assistant,简称:PDA)设备、具有无线通信功能的手持设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备等。在本申请实施例中,该终端设备具有与网络设备进行通信的接口。
在本申请的以下实施例中以NR-light终端设备为例进行说明,但是以下方案也同样适用于NR终端设备以及其他系统的终端设备,本申请对此并不限定。
图3为本申请提供的小区接入方法一实施例的流程图,如图3所示,本实施例的具体实现步骤包括:
步骤101、终端设备接收第一同步信号块SSB。
在一实施例中,终端设备接收网络设备发送的第一SSB,其中SSB的原理参见前述介绍。
在一实施例中,网络设备可以通过同步信号块中包含的带宽信息,隐含的指示支持接入的目标小区,例如NR-light终端设备是否可以接入该小区。
步骤102、终端设备根据预设带宽和第一SSB包含的带宽信息,确定支持终端设备接入的目标小区。
步骤103、终端设备接入目标小区。
在一实施例中,终端设备根据预设带宽和网络设备发送的第一SSB包含的带宽信息,确定支持该终端设备接入的目标小区。
例如,同步信号块中PBCH承载MIB信息,MIB信息中的pdcch-ConfigSIB1信息域,包括type0PDCCH的资源控制集合(Control Resource Set,CORESET)#0信息,用于指示type0PDCCH的在频域上的RB和时域上的符号。CORESET#0信息指示下表4中的其中一个索引index,根据index,得到CORESET#0的RB个数和符号数,以及相比SSB的RB偏移offset。从下表4可以看出,在子载波间隔为15kHz情况下,CORESET#0的带宽可以配置为24、48、96个RB,对应5MHz、10MHz、20MHz的带宽。
表4:{SS/PBCH block,PDCCH}SCS为{15,15}kHz,频段为最小信道带宽5-10MHz Type0-PDCCH搜索空间集合的CORESET在频域上的RB和时域上的符号集合
Figure PCTCN2020073314-appb-000003
对于低能力的NR-light终端设备,其支持的带宽可能有限,例如只支持10MHz。当NR系统中CORESET#0的带宽配置为20MHz(可以根据资源块个数得到),那么NR-light终端设备将无法接收type0PDCCH信息,从而无法接收SIB1信息,也就无法根据小区的系统信息接入该小区。
在一实施例中,可以通过SSB中PBCH承载的信息显式的指示对应的小区是否允许NR-light UE的接入。但是需要重新定义PBCH中的比特,如预留比特。而目前可以利用的预留比特非常有限。
因此,在本申请实施例中,可以通过第一SSB包含的带宽信息,隐含的指示NR-light终端设备是否可以接入。
可选的,可以通过第一SSB包括的PBCH中的CORESET信息,隐含的指示NR-light终端设备是否可以接入。
在一实施例中,当第一SSB包含的带宽信息指示的带宽小于或等于预设带宽时,NR-light终端设备可以确定该小区支持该终端设备接入,可以通过type0PDCCH搜索空间和CORESET信息盲检测PDCCH,进而接收SIB1,根据该小区的系统信息接入该小区。
在一实施例中,当第一SSB包含的带宽信息指示的带宽大于预设带宽时,隐含的指示该小区不支持NR-light终端设备的接入。NR-light终端设备不需要再尝试检测PDCCH,以及接收SIB1。具体的,终端设备可以继续搜索其他SSB,直到搜索到的SSB包含的带宽信息指示的CORESET的带宽小于等于预设带宽。
在一实施例中,预设带宽可以为当前的NR-light终端设备支持的带宽,或,也可以为NR-light系统对应的至少一种带宽。
本实施例的方法,终端设备接收第一同步信号块SSB;终端设备根据预设带宽和第一SSB包含的带宽信息,确定支持终端设备接入的目标小区,实现了终端设备根据第一SSB包含的带宽信息和预设带宽,可以确定该第一SSB对应的小区是否为支持该终端设备接入的目标小区,若该第一SSB对应的小区不为支持该终端设备接入的目标小区,则终端设备无需针对该小区的PDCCH进行盲检测,节省接入网络的时间,而且仅根据预设带宽和第一SSB包含的带宽信息确定该第一SSB对应的小区是否为目标小区,不额外增加信令开销,对现有NR系统的影响较小,复杂度较低。
在上述实施例的基础上,步骤102可以包括如下的具体实现方式:
若带宽信息指示的带宽小于或等于预设带宽,则终端设备确定第一SSB对应的小区为支持终端设备接入的目标小区。
若带宽信息指示的带宽大于预设带宽,则终端设备确定第一SSB对应的小区不为支持终端设备接入的目标小区。
具体的,若第一SSB包含的带宽信息指示的带宽小于或等于预设带宽,则终端设备确定第一SSB对应的小区为支持终端设备接入的目标小区。进一步,可以通过type0PDCCH搜索空间和CORESET信息盲检测PDCCH,进而接收SIB1,根据该小区的系统信息接入该小区。若第一SSB包含的带宽信息指示的带宽大于预设带宽,则终端设备确定第一SSB对应的小区不为支持终端设备接入的目标小区,终端设备无需盲检测该小区的PDCCH,以及后续的操作。
在一实施例中,在终端设备确定第一SSB对应的小区为支持终端设备接入的目标小区之前,还可以包括:
终端设备接收第一指示信息;第一指示信息用于指示第一SSB对应的小区是否支持终端设备接入;
终端设备确定第一SSB对应的小区为支持终端设备接入的目标小区,可以通过如下方式实现:
若第一指示信息指示第一SSB对应的小区支持终端设备接入,则终端设备确定第一SSB对应的小区为支持终端设备接入的目标小区。
具体的,在第一SSB包含的带宽信息指示的带宽小于或等于预设带宽的情况下,终端设备可以进一步接收网络设备的第一指示信息,通过该第一指示信息确定该小区是否支持该终端设备的接入。
其中,第一指示信息可以通过系统信息块携带。
在带宽小于或等于预设带宽的情况下,终端设备可以通过盲检测PDCCH,进而接收系统信息块,例如SIB1,SIB1中可以增加字段携带该第一指示信息。
该方式中,虽然第一SSB包含的带宽信息指示的带宽可以满足NR-light终端设备接收SIB1,但是网络设备可能并不希望该小区接入该终端设备,例如在小区拥塞,或者系统信息中配置的其他带宽信息与该终端设备的带宽并不匹配,例如SIB1中配置的初始部分带宽(Bandwidth Part,BWP)的带宽大于该终端设备支持的带宽。
若第一指示信息指示第一SSB对应的小区支持终端设备接入,则终端设备确定第一SSB对应的小区为支持终端设备接入的目标小区。终端设备通过接收PDCCH信息,接收SIB1,进而接入该目标小区。
在一实施例中,若第一指示信息指示第一SSB对应的小区不支持终端设备接入,则终端设备确定第一SSB对应的小区不为支持终端设备接入的目标小区。
在一实施例中,若第一指示信息指示第一SSB对应的小区不支持终端设备接入,则终端设备获取第二SSB,第二SSB对应的小区为支持终端设备接入的目标小区。
具体的,第一指示信息指示第一SSB对应的小区不支持终端设备接入,则终端设备不再尝试检测PDCCH以及接收SIB。
第一指示信息可以通过系统信息块SIB,例如SIB1携带,无需修改第一SSB的结构,特别是第一SSB包括的PBCH的结构,也即无需修改PBCH承载的MIB信息,对现有NR系统的影响较小,复杂度低。
在另一实施例中,在第一SSB对应的小区不为支持终端设备接入的目标小区,即第一SSB对应的小区不支持终端设备接入时,该方法还可以包括:
终端设备获取第二SSB,第二SSB对应的小区为支持终端设备接入的目标小区。
具体的,第一SSB对应的小区不支持终端设备接入,则终端设备不再尝试检测PDCCH以及接收SIB,继续搜索获取其他的第二SSB,以找到支持该终端设备接入的目标小区。第一SSB对应的小区不支持终端设备接入可以通过第一SSB包含的带宽信息指示的带宽以及预设带宽直接确定,或进一步还需根据第一指示信息确定,本申请实施例对此并不限定。
上述实施方式中,通过第一SSB包含的带宽信息隐含的指示NR-light终端设备是否可以接入该小区,进一步还可以通过第一指示信息指示该小区是否允许该NR-light终端设备接入,可以使网络更加灵活的控制NR-light终端设备接入小区。
在一实施例中,步骤“获取第二SSB”可以通过如下方式实现:
终端设备根据第一SSB的频域位置,确定第二SSB的频域位置;
终端设备根据第二SSB的频域位置,获取第二SSB。
具体的,终端设备在确定第一SSB对应的小区不支持该终端设备接入时,可以继续搜索第二SSB,直到搜索到的第二SSB包含的带宽信息指示的带宽小于或等于预设带宽,或第一指示信息指示该第二SSB对应的小区支持该终端设备接入。进一步,可以根据该第二SSB包含的PDCCH搜索空间和CORESET信息,检测PDCCH,进而接收SIB1,根据该小区的系统信息接入该小区。
为了减少终端设备的搜索时间,以及接入网络的时延,终端设备根据当前已知的第一SSB的频域位置,确定第二SSB的频域位置,进而根据该第二SSB的频域位置,获取第二SSB。
例如如图4所示,终端设备在第一SSB的频域位置的周围搜索第二SSB,即在大于和/或小于第一SSB的频率的范围内搜索第二SSB。
在一实施例中,可以通过如下几种方式确定第二SSB的频域位置:
一种实现方式:
终端设备根据第一SSB的频域位置以及预设的频域偏移,确定第二SSB的频域位置。
具体的,第一SSB的频域位置可以通过同步raster得到(参见同步raster处的介绍),进而根据第一SSB的频域位置以及预设的频域偏移,得到第二SSB的频域位置。
如图5所示,对于网络设备来说,指示不支持NR-light终端设备接入的第一SSB与指示支持NR-light终端设备接入的第二SSB具有预设的频域偏移。当NR-light终端设备检测到第一SSB,并确定第一SSB对应的小区不支持该终端设备接入,则根据预设的频域偏移,确定支持NR-light终端设备接入的小区对应的第二SSB所在的频域位置,如第二SSB对应的同步raster的位置。图5中是向下搜索第二SSB,在其他实施例中,还可以是向上搜索第二SSB,本申请对此并不限定。
在一实施例中,在预设的频域偏移的基础上,网络设备还可以通过指示信息给出搜索 的方向,例如相对于第一SSB的频率是高还是低,也即相对于第一SSB的频域位置的范围。
在一实施例中,预设的频域偏移可以是同步raster的个数。
在一实施例中,预设的频域偏移可以是一个频域偏移的值,或多个值,本申请实施例对此并不限定。
上述具体实施方式中,通过第一SSB包含的带宽信息隐含的指示NR-light终端设备是否可以接入该小区,若第一SSB对应的小区不支持该终端设备接入,进一步通过预设的频域偏移信息确定支持NR-light终端设备接入的小区对应的第二SSB的频域位置,可以减少NR-light终端设备搜索第二SSB的复杂度和功耗,减少接入时延。而且该方式中不需要引入指示信息,复杂度低,对现有NR系统影响小,可以兼容现有的NR系统。
另一种实现方式:
终端设备根据第一SSB的频域位置以及第二指示信息,确定第二SSB的频域位置;第二指示信息用于指示第二SSB的频域位置与第一SSB的频域位置的关系。
在一实施例中,终端设备在确定第二SSB的频域位置之前,可以获取来自网络设备的第二指示信息。
其中,第一SSB包括的物理广播信道PBCH中携带该第二指示信息,或系统信息块SIB携带该第二指示信息。
具体的,第二指示信息用于指示NR-light终端设备搜索可以支持其接入的小区对应的第二SSB的频域位置与第一SSB的频域位置的关系,例如指示该第二SSB的频域位置的范围信息,或,第二SSB与第一SSB之间的频域偏移,即第二SSB的频域位置与第一SSB的频域位置之间的偏移。
例如,使用第二指示信息(例如1比特)指示该第二SSB的频域位置比第一SSB的频域位置的频率高还是低。NR-light终端设备得到该第二指示信息后,可以以第一SSB的频域位置为起点,在相应的频域范围继续搜索第二SSB。如图4所示,终端设备在低于第一SSB的频率的范围内搜索第二SSB,或高于第一SSB的频率的范围内搜索第二SSB,例如在频域范围3GHz-24GHz时,同步raster的间隔为1.44MHz,终端设备根据第一SSB的同步raster的位置搜索第二SSB。当检测到一个SSB时,确定SSB包含的带宽信息指示的带宽是否大于预设带宽,若否,则确定该SSB对应的小区支持该终端设备接入,或进一步根据第一指示信息,确定该SSB对应的小区支持该终端设备接入
在一实施例中,还可以通过第二指示信息指示第二SSB的频率范围,例如aMHz-bMHz。
在一实施例中,第二指示信息,还可以指示更加精确的支持NR-light终端设备接入的小区的第二SSB的频域位置信息。例如,具体指示第二SSB与当前第一SSB之间的频域间隔,如间隔的同步raster的个数。该方式可能需要更多的比特域。
上述第二指示信息可以通过SSB包括的PBCH中的特定比特域指示,或者,其他信息中的特定比特域指示,例如系统信息块SIB。
上述具体实施方式中,在确定当前的第一SSB对应的小区不支持终端设备接入的情况下,进一步,通过第二指示信息,指示NR-light终端设备搜索可以支持其接入的小区对应的第二SSB的频域位置信息,可以减少NR-light终端设备的盲检测,减少NR-light终端设备搜索SSB的复杂度和功耗,减少接入时延。
在一实施例中,如图6所示,终端设备接收第一SSB,获取第一SSB包含的PBCH中承载的type0PDCCH的CORESET信息,可以通过CORESET信息指示的带宽以及预设带宽,确定该第一SSB对应的小区是否支持终端设备接入,例如CORESET信息指示的带宽小于或等于预设带宽,则确定该小区支持NR-light终端设备的接入;若CORESET信息指示的带宽大于预设带宽,则确定该小区不支持NR-light终端设备的接入。
在一实施例中,如图7所示,终端设备接收第一SSB,获取第一SSB包含的PBCH 中承载的type0PDCCH的CORESET信息,可以通过CORESET信息指示的带宽以及预设带宽,确定该第一SSB对应的小区是否支持终端设备接入,例如若CORESET信息指示的带宽大于预设带宽,则确定该小区不支持NR-light终端设备的接入;若CORESET信息指示的带宽小于或等于预设带宽,则进一步通过type0PDCCH接收SIB1,确定SIB1中的指示信息指示该小区是否支持NR-light终端设备的接入,若该指示信息指示该小区支持NR-light终端设备的接入,则确定该小区支持NR-light终端设备的接入;若该指示信息指示该小区不支持NR-light终端设备的接入,则确定该小区不支持NR-light终端设备的接入。
在一实施例中,如图8所示,终端设备接收第一SSB,获取第一SSB包含的PBCH中承载的type0PDCCH的CORESET信息,可以通过CORESET信息指示的带宽以及预设带宽,确定该第一SSB对应的小区是否支持终端设备接入,例如若CORESET信息指示的带宽小于或等于预设带宽,则确定该小区支持NR-light终端设备的接入;若CORESET信息指示的带宽大于预设带宽,则确定该小区不支持NR-light终端设备的接入;若该指示信息指示该小区不支持NR-light终端设备的接入,则确定第二SSB的频域位置,即通过第二SSB的频域位置获取第二SSB,第二SSB对应的小区为支持NR-light终端设备的接入的目标小区。
本申请实施例还提供一种小区接入方法,本实施例的具体实现步骤包括:
网络设备发送第一同步信号块SSB,第一SSB包含带宽信息;带宽信息和预设带宽用于指示支持接入的目标小区。
在一实施例中,网络设备可以通过第一SSB中包含的带宽信息,隐含的指示支持接入的目标小区,例如指示NR-light终端设备该第一SSB对应的小区是否为支持接入的目标小区。
在一实施例中,如图9所示,网络设备先获取第一SSB,第一SSB包含带宽信息,用于指示支持接入的目标小区。终端设备可以根据该带宽信息和预设带宽,确定支持该终端设备接入的目标小区。
在一实施例中,若带宽信息指示的带宽小于或等于预设带宽,则第一SSB对应的小区为目标小区;若带宽信息指示的带宽大于预设带宽,则第一SSB对应的小区不为目标小区。
在一实施例中,当第一SSB包含的带宽信息指示的带宽小于或等于预设带宽时,NR-light终端设备可以确定该小区支持该终端设备接入,可以通过type0PDCCH搜索空间和CORESET信息盲检测PDCCH,进而接收SIB1,根据该小区的系统信息接入该小区。
在一实施例中,当第一SSB包含的带宽信息指示的带宽大于预设带宽时,隐含的指示该小区不支持NR-light终端设备的接入。NR-light终端设备不需要再尝试检测PDCCH,以及接收SIB1。具体的,终端设备可以继续搜索其他SSB,直到搜索到的SSB包含的带宽信息指示的CORESET的带宽小于等于预设带宽。
在一实施例中,预设带宽可以为当前的NR-light终端设备支持的带宽,或,也可以为NR-light系统对应的至少一种带宽。
在一实施例中,网络设备发送第一同步信号块SSB之后,还包括:
网络设备发送第一指示信息;第一指示信息用于指示第一SSB对应的小区是否为支持接入的目标小区。
具体的,在第一SSB包含的带宽信息指示的带宽小于或等于预设带宽的情况下,网络设备可以进一步发送第一指示信息,用于指示第一SSB对应的小区是否为支持接入的目标小区,终端设备可以进一步接收网络设备的第一指示信息,通过该第一指示信息确定该小区是否支持该终端设备的接入。
在一实施例中,在第一SSB对应的小区不为支持终端设备接入的目标小区,即第一SSB对应的小区不支持终端设备接入时,本实施例的方法,还可以包括:
网络设备发送第二SSB,第二SSB对应的小区为支持接入的目标小区。
在一实施例中,本实施例的方法,还可以包括:
网络设备发送第二指示信息,第二指示信息用于指示第二SSB的频域位置与第一SSB的频域位置的关系。
在一实施例中,第二指示信息用于指示:第二SSB的频域位置相对于第一SSB的频域位置的范围,和/或,第二SSB与第一SSB之间的频域偏移。
在一实施例中,频域偏移包括同步栅格raster的个数。
在一实施例中,系统信息块SIB携带第一指示信息。
在一实施例中,第一SSB包括的物理广播信道PBCH中携带第二指示信息,或,系统信息块SIB携带第二指示信息。
在一实施例中,第一SSB包括的控制资源集合CORESET信息包含带宽信息。
本实施例的方法,网络设备发送第一同步信号块SSB;第一SSB包含的带宽信息,用于指示支持接入的目标小区,上述方案中根据第一SSB包含的带宽信息和预设带宽确定支持接入的目标小区,不额外增加信令开销,对现有NR系统的影响较小,复杂度较低,而且若第一SSB对应的小区不是支持接入的目标小区,则终端设备无需针对该小区的PDCCH进行盲检测,节省接入网络的时间。
图10为本申请提供的终端设备实施例一的结构示意图,如图10所示,该终端设备包括:
接收模块110,用于接收第一同步信号块SSB;
确定模块111,用于根据预设带宽和第一SSB包含的带宽信息,确定支持所述终端设备接入的目标小区;
处理模块112,用于接入目标小区。
在一种可能的实现方式中,所述确定模块111,具体用于:
若所述带宽信息指示的带宽小于或等于所述预设带宽,则确定所述第一SSB对应的小区为所述目标小区;
若所述带宽信息指示的带宽大于所述预设带宽,则确定所述第一SSB对应的小区不为所述目标小区。
在一种可能的实现方式中,所述接收模块110,还用于:
接收第一指示信息;所述第一指示信息用于指示所述第一SSB对应的小区是否支持所述终端设备接入;
所述确定模块111,具体用于:
若所述第一指示信息指示所述第一SSB对应的小区支持所述终端设备接入,则确定所述第一SSB对应的小区为所述目标小区。
在一种可能的实现方式中,所述确定模块111,具体用于:
若所述第一指示信息指示所述第一SSB对应的小区不支持所述终端设备接入,则确定所述第一SSB对应的小区不为所述目标小区。
在一种可能的实现方式中,还包括:
获取模块,用于获取第二SSB,所述第二SSB对应的小区为支持所述终端设备接入的目标小区。
在一种可能的实现方式中,所述获取模块,包括:
确定子单元,用于根据所述第一SSB的频域位置,确定所述第二SSB的频域位置;
获取子单元,用于根据所述第二SSB的频域位置,获取所述第二SSB。
在一种可能的实现方式中,所述确定子单元,用于:
根据所述第一SSB的频域位置以及预设的频域偏移,确定所述第二SSB的频域位置;或,
根据所述第一SSB的频域位置以及第二指示信息,确定所述第二SSB的频域位置;所述第二指示信息用于指示所述第二SSB的频域位置与所述第一SSB的频域位置的关系。
在一种可能的实现方式中,所述第二指示信息用于指示:所述第二SSB的频域位置相对于所述第一SSB的频域位置的范围,和/或,所述第二SSB与所述第一SSB之间的频域偏移。
在一种可能的实现方式中,所述频域偏移包括同步栅格raster的个数。
在一种可能的实现方式中,系统信息块SIB携带所述第一指示信息。
在一种可能的实现方式中,所述第一SSB包括的物理广播信道PBCH中携带所述第二指示信息,或系统信息块SIB携带所述第二指示信息。
在一种可能的实现方式中,所述第一SSB包括的控制资源集合CORESET信息包含所述带宽信息。
本实施例的终端设备,用于实现终端设备侧的技术方案,其实现原理和技术效果参见前述终端设备侧的方法实施例,此处不再赘述。
图11为本申请提供的网络设备实施例一的结构示意图,如图11所示,该网络设备包括:
第一发送模块210,用于发送第一同步信号块SSB,所述第一SSB包含带宽信息;所述带宽信息和预设带宽用于指示支持接入的目标小区。
在一种可能的实现方式中,若所述带宽信息指示的带宽小于或等于所述预设带宽,则所述第一SSB对应的小区为所述目标小区;若所述带宽信息指示的带宽大于所述预设带宽,则所述第一SSB对应的小区不为所述目标小区。
在一种可能的实现方式中,所述第一发送模块210,还用于:
发送第一指示信息;所述第一指示信息用于指示所述第一SSB对应的小区是否为支持接入的目标小区。
在一种可能的实现方式中,还包括:
第二发送模块211,用于发送第二SSB,所述第二SSB对应的小区为支持接入的目标小区。
在一种可能的实现方式中,所述发送模块211,还用于:
发送第二指示信息,所述第二指示信息用于指示所述第二SSB的频域位置与所述第一SSB的频域位置的关系。
在一种可能的实现方式中,所述第二指示信息用于指示:所述第二SSB的频域位置相对于所述第一SSB的频域位置的范围,和/或,所述第二SSB与所述第一SSB之间的频域偏移。
在一种可能的实现方式中,所述频域偏移包括同步栅格raster的个数。
在一种可能的实现方式中,系统信息块SIB携带所述第一指示信息。
在一种可能的实现方式中,所述第一SSB包括的物理广播信道PBCH中携带所述第二指示信息,或,系统信息块SIB携带所述第二指示信息。
在一种可能的实现方式中,所述第一SSB包括的控制资源集合CORESET信息包含所述带宽信息。
本实施例的网络设备,用于实现网络设备侧的技术方案,其实现原理和技术效果参见前述网络设备侧的方法实施例,此处不再赘述。
图12为本申请提供的终端设备实施例五的结构示意图,如图12所示,该终端设备包 括:
处理器311、存储器312、与网络设备进行通信的接口313;
所述存储器312存储计算机执行指令;
所述处理器311执行所述存储器存储的计算机执行指令,使得所述处理器311执行前述任一方法实施例中终端设备侧的技术方案。
图12为终端设备的一种简单设计,本申请实施例不限制终端设备中处理器和存储器的个数,图12仅以个数为1作为示例说明。
图13为本申请提供的网络设备实施例二的结构示意图,如图13所示,该网络设备包括:
处理器411、存储器412、与终端设备进行通信的接口413;
所述存储器412存储计算机执行指令;
所述处理器411执行所述存储器412存储的计算机执行指令,使得所述处理器411执行前述任一方法实施例中网络设备侧的技术方案。
图13为网络设备的一种简单设计,本申请实施例不限制网络设备中处理器和存储器的个数,图13仅以个数为1作为示例说明。
在上述图12所示的终端设备和图13所述的网络设备的一种具体实现中,存储器、处理器以及接口之间可以通过总线连接,可选的,存储器可以集成在处理器内部。
本申请实施例还提供一种计算机可读存储介质所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中终端设备的技术方案。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中网络设备的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中终端设备的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中网络设备的技术方案。
可选地,上述处理器可以为芯片。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中终端设备的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中网络设备的技术方案。
本申请实施例还提供一种芯片,包括:处理模块与通信接口,该处理模块能执行前述任一方法实施例中终端设备侧的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中终端设备侧的技术方案。
本申请实施例还提供一种芯片,包括:处理模块与通信接口,该处理模块能执行前述任一方法实施例中网络设备侧的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中网络设备侧的技术方案。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或 者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述终端设备和网络设备的具体实现中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,简称:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。

Claims (48)

  1. 一种小区接入方法,其特征在于,包括:
    终端设备接收第一同步信号块SSB;
    所述终端设备根据预设带宽和第一SSB中的带宽信息,确定支持所述终端设备接入的目标小区;
    所述终端设备接入所述目标小区。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据预设带宽和所述第一SSB包含的带宽信息,确定支持所述终端设备接入的目标小区,包括:
    若所述带宽信息指示的带宽小于或等于所述预设带宽,则所述终端设备确定所述第一SSB对应的小区为所述目标小区;
    若所述带宽信息指示的带宽大于所述预设带宽,则所述终端设备确定所述第一SSB对应的小区不为所述目标小区。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备确定所述第一SSB对应的小区为支持所述终端设备接入的目标小区之前,还包括:
    所述终端设备接收第一指示信息;所述第一指示信息用于指示所述第一SSB对应的小区是否支持所述终端设备接入;
    所述终端设备确定所述第一SSB对应的小区为所述目标小区,包括:
    若所述第一指示信息指示所述第一SSB对应的小区支持所述终端设备接入,则所述终端设备确定所述第一SSB对应的小区为所述目标小区。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    若所述第一指示信息指示所述第一SSB对应的小区不支持所述终端设备接入,则所述终端设备确定所述第一SSB对应的小区不为所述目标小区。
  5. 根据权利要求2或4所述的方法,其特征在于,所述终端设备确定所述第一SSB对应的小区不为所述目标小区之后,还包括:
    所述终端设备获取第二SSB,所述第二SSB对应的小区为支持所述终端设备接入的目标小区。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备获取第二SSB,包括:
    所述终端设备根据所述第一SSB的频域位置,确定所述第二SSB的频域位置;
    所述终端设备根据所述第二SSB的频域位置,获取所述第二SSB。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备根据所述第一SSB的频域位置,确定所述第二SSB的频域位置,包括:
    所述终端设备根据所述第一SSB的频域位置以及预设的频域偏移,确定所述第二SSB的频域位置;或,
    所述终端设备根据所述第一SSB的频域位置以及第二指示信息,确定所述第二SSB的频域位置;所述第二指示信息用于指示所述第二SSB的频域位置与所述第一SSB的频域位置的关系。
  8. 根据权利要求7所述的方法,其特征在于,所述第二指示信息用于指示:所述第二SSB的频域位置相对于所述第一SSB的频域位置的范围,和/或,所述第二SSB与所述第一SSB之间的频域偏移。
  9. 根据权利要求7或8所述的方法,其特征在于,所述频域偏移包括同步栅格raster的个数。
  10. 根据权利要求3-9任一项所述的方法,其特征在于,系统信息块SIB携带所述第一指示信息。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,所述第一SSB包括的物理 广播信道PBCH中携带所述第二指示信息,或系统信息块SIB携带所述第二指示信息。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一SSB包括的控制资源集合CORESET信息包含所述带宽信息。
  13. 一种小区接入方法,其特征在于,包括:
    网络设备发送第一同步信号块SSB,第一SSB包含带宽信息;所述带宽信息和预设带宽用于指示支持接入的目标小区。
  14. 根据权利要求13所述的方法,其特征在于,若所述带宽信息指示的带宽小于或等于所述预设带宽,则所述第一SSB对应的小区为所述目标小区;若所述带宽信息指示的带宽大于所述预设带宽,则所述第一SSB对应的小区不为所述目标小区。
  15. 根据权利要求13或14所述的方法,其特征在于,所述网络设备发送第一同步信号块SSB之后,还包括:
    所述网络设备发送第一指示信息;所述第一指示信息用于指示所述第一SSB对应的小区是否为支持接入的目标小区。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,还包括:
    所述网络设备发送第二SSB,所述第二SSB对应的小区为支持接入的目标小区。
  17. 根据权利要求16所述的方法,其特征在于,还包括:
    所述网络设备发送第二指示信息,所述第二指示信息用于指示所述第二SSB的频域位置与所述第一SSB的频域位置的关系。
  18. 根据权利要求17所述的方法,其特征在于,所述第二指示信息用于指示:所述第二SSB的频域位置相对于所述第一SSB的频域位置的范围,和/或,所述第二SSB与所述第一SSB之间的频域偏移。
  19. 根据权利要求18所述的方法,其特征在于,所述频域偏移包括同步栅格raster的个数。
  20. 根据权利要求15-19任一项所述的方法,其特征在于,系统信息块SIB携带所述第一指示信息。
  21. 根据权利要求17-20任一项所述的方法,其特征在于,所述第一SSB包括的物理广播信道PBCH中携带所述第二指示信息,或,系统信息块SIB携带所述第二指示信息。
  22. 根据权利要求13-21任一项所述的方法,其特征在于,所述第一SSB包括的控制资源集合CORESET信息包含所述带宽信息。
  23. 一种终端设备,其特征在于,包括:
    接收模块,用于接收第一同步信号块SSB;
    确定模块,用于根据预设带宽和第一SSB包含的带宽信息,确定支持所述终端设备接入的目标小区;
    处理模块用于接入所述目标小区。
  24. 根据权利要求23所述的终端设备,其特征在于,所述确定模块,具体用于:
    若所述带宽信息指示的带宽小于或等于所述预设带宽,则确定所述第一SSB对应的小区为所述目标小区;
    若所述带宽信息指示的带宽大于所述预设带宽,则确定所述第一SSB对应的小区不为所述目标小区。
  25. 根据权利要求24所述的终端设备,其特征在于,所述接收模块,还用于:
    接收第一指示信息;所述第一指示信息用于指示所述第一SSB对应的小区是否支持所述终端设备接入;
    所述确定模块,具体用于:
    若所述第一指示信息指示所述第一SSB对应的小区支持所述终端设备接入,则确定所述第一SSB对应的小区为所述目标小区。
  26. 根据权利要求25所述的终端设备,其特征在于,所述确定模块,具体用于:
    若所述第一指示信息指示所述第一SSB对应的小区不支持所述终端设备接入,则确定所述第一SSB对应的小区不为所述目标小区。
  27. 根据权利要求24或26所述的终端设备,其特征在于,还包括:
    获取模块,用于获取第二SSB,所述第二SSB对应的小区为支持所述终端设备接入的目标小区。
  28. 根据权利要求27所述的终端设备,其特征在于,所述获取模块,包括:
    确定子单元,用于根据所述第一SSB的频域位置,确定所述第二SSB的频域位置;
    获取子单元,用于根据所述第二SSB的频域位置,获取所述第二SSB。
  29. 根据权利要求28所述的终端设备,其特征在于,所述确定子单元,用于:
    根据所述第一SSB的频域位置以及预设的频域偏移,确定所述第二SSB的频域位置;或,
    根据所述第一SSB的频域位置以及第二指示信息,确定所述第二SSB的频域位置;所述第二指示信息用于指示所述第二SSB的频域位置与所述第一SSB的频域位置的关系。
  30. 根据权利要求29所述的终端设备,其特征在于,所述第二指示信息用于指示:所述第二SSB的频域位置相对于所述第一SSB的频域位置的范围,和/或,所述第二SSB与所述第一SSB之间的频域偏移。
  31. 根据权利要求29或30所述的终端设备,其特征在于,所述频域偏移包括同步栅格raster的个数。
  32. 根据权利要求25-31任一项所述的终端设备,其特征在于,系统信息块SIB携带所述第一指示信息。
  33. 根据权利要求29-31任一项所述的终端设备,其特征在于,所述第一SSB包括的物理广播信道PBCH中携带所述第二指示信息,或系统信息块SIB携带所述第二指示信息。
  34. 根据权利要求23-33任一项所述的终端设备,其特征在于,所述第一SSB包括的控制资源集合CORESET信息包含所述带宽信息。
  35. 一种网络设备,其特征在于,包括:
    第一发送模块,用于发送第一同步信号块SSB,第一SSB包含带宽信息;所述带宽信息和预设带宽用于指示支持接入的目标小区。
  36. 根据权利要求35所述的网络设备,其特征在于,若所述带宽信息指示的带宽小于或等于所述预设带宽,则所述第一SSB对应的小区为所述目标小区;若所述带宽信息指示的带宽大于所述预设带宽,则所述第一SSB对应的小区不为所述目标小区。
  37. 根据权利要求35或36所述的网络设备,其特征在于,所述第一发送模块,还用于:
    发送第一指示信息;所述第一指示信息用于指示所述第一SSB对应的小区是否为支持接入的目标小区。
  38. 根据权利要求37所述的网络设备,其特征在于,还包括:
    第二发送模块,用于发送第二SSB,所述第二SSB对应的小区为支持接入的目标小区。
  39. 根据权利要求38所述的网络设备,其特征在于,所述第二发送模块,还用于:
    发送第二指示信息,所述第二指示信息用于指示所述第二SSB的频域位置与所述第一SSB的频域位置的关系。
  40. 根据权利要求39所述的网络设备,其特征在于,所述第二指示信息用于指示:所述第二SSB的频域位置相对于所述第一SSB的频域位置的范围,和/或,所述第二SSB与所述第一SSB之间的频域偏移。
  41. 根据权利要求40所述的网络设备,其特征在于,所述频域偏移包括同步栅格raster的个数。
  42. 根据权利要求37-41任一项所述的网络设备,其特征在于,系统信息块SIB携带所述第一指示信息。
  43. 根据权利要求38-41任一项所述的网络设备,其特征在于,所述第一SSB包括的物理广播信道PBCH中携带所述第二指示信息,或,系统信息块SIB携带所述第二指示信息。
  44. 根据权利要求35-43任一项所述的网络设备,其特征在于,所述第一SSB包括的控制资源集合CORESET信息包含所述带宽信息。
  45. 一种终端设备,其特征在于,包括:
    处理器、存储器、与网络设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至12任一项所述的小区接入方法。
  46. 一种网络设备,其特征在于,包括:
    处理器、存储器、与终端设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求13至22任一项所述的小区接入方法。
  47. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至12任一项所述的小区接入方法。
  48. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求13至22任一项所述的小区接入方法。
PCT/CN2020/073314 2020-01-20 2020-01-20 小区接入方法、设备及存储介质 WO2021146864A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080073300.6A CN114557102A (zh) 2020-01-20 2020-01-20 小区接入方法、设备及存储介质
EP20914929.3A EP4093128A4 (en) 2020-01-20 2020-01-20 CELL ACCESS METHOD, DEVICE AND STORAGE MEDIUM
PCT/CN2020/073314 WO2021146864A1 (zh) 2020-01-20 2020-01-20 小区接入方法、设备及存储介质
US17/867,660 US20220353807A1 (en) 2020-01-20 2022-07-18 Cell access method, device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073314 WO2021146864A1 (zh) 2020-01-20 2020-01-20 小区接入方法、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/867,660 Continuation US20220353807A1 (en) 2020-01-20 2022-07-18 Cell access method, device and storage medium

Publications (1)

Publication Number Publication Date
WO2021146864A1 true WO2021146864A1 (zh) 2021-07-29

Family

ID=76991913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073314 WO2021146864A1 (zh) 2020-01-20 2020-01-20 小区接入方法、设备及存储介质

Country Status (4)

Country Link
US (1) US20220353807A1 (zh)
EP (1) EP4093128A4 (zh)
CN (1) CN114557102A (zh)
WO (1) WO2021146864A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022634A1 (zh) * 2020-07-31 2022-02-03 维沃移动通信有限公司 接入控制方法、装置及通信设备
US11659574B2 (en) 2021-08-18 2023-05-23 Qualcomm Incorporated BWP configurations for UEs having different capabilities
WO2023179173A1 (zh) * 2022-03-21 2023-09-28 中兴通讯股份有限公司 数据传输方法及其设备、存储介质、程序产品
WO2023216929A1 (zh) * 2022-05-12 2023-11-16 华为技术有限公司 一种通信的方法和装置
WO2024030270A1 (en) * 2022-08-05 2024-02-08 Qualcomm Incorporated Beam devoted for alignment initiation before p1

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210020397A (ko) * 2019-08-14 2021-02-24 삼성전자주식회사 무선 통신 시스템에서 네트워크에 액세스하기 위한 장치 및 방법
WO2021152728A1 (ja) * 2020-01-29 2021-08-05 株式会社Nttドコモ 端末、無線通信方法及び基地局
US11968032B2 (en) * 2020-04-21 2024-04-23 Samsung Electronics Co., Ltd. Initial access procedure and initial BWP configuration for bandwidth limited UE device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107432028A (zh) * 2015-01-28 2017-12-01 夏普株式会社 终端装置、基站装置及方法
WO2018059168A1 (zh) * 2016-09-28 2018-04-05 华为技术有限公司 传输数据的方法、网络设备和终端设备
CN109937598A (zh) * 2016-11-03 2019-06-25 三星电子株式会社 在下一代蜂窝网络中灵活地发送和接收数据的方法和装置
CN110602731A (zh) * 2019-09-20 2019-12-20 中兴通讯股份有限公司 一种信息指示方法、装置和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020258329A1 (zh) * 2019-06-28 2020-12-30 北京小米移动软件有限公司 初始接入指示方法、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107432028A (zh) * 2015-01-28 2017-12-01 夏普株式会社 终端装置、基站装置及方法
WO2018059168A1 (zh) * 2016-09-28 2018-04-05 华为技术有限公司 传输数据的方法、网络设备和终端设备
CN109937598A (zh) * 2016-11-03 2019-06-25 三星电子株式会社 在下一代蜂窝网络中灵活地发送和接收数据的方法和装置
CN110602731A (zh) * 2019-09-20 2019-12-20 中兴通讯股份有限公司 一种信息指示方法、装置和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA,NOKIA SHANGHAI BELL: "On the Frame structure and Wideband operation for NR-U", 3GPP DRAFT; R1-1810613, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 12 October 2018 (2018-10-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 13, XP051518019 *
See also references of EP4093128A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022634A1 (zh) * 2020-07-31 2022-02-03 维沃移动通信有限公司 接入控制方法、装置及通信设备
US11659574B2 (en) 2021-08-18 2023-05-23 Qualcomm Incorporated BWP configurations for UEs having different capabilities
US11924859B2 (en) 2021-08-18 2024-03-05 Qualcomm Incorporated BWP configurations for UEs having different capabilities
WO2023179173A1 (zh) * 2022-03-21 2023-09-28 中兴通讯股份有限公司 数据传输方法及其设备、存储介质、程序产品
WO2023216929A1 (zh) * 2022-05-12 2023-11-16 华为技术有限公司 一种通信的方法和装置
WO2024030270A1 (en) * 2022-08-05 2024-02-08 Qualcomm Incorporated Beam devoted for alignment initiation before p1

Also Published As

Publication number Publication date
EP4093128A1 (en) 2022-11-23
CN114557102A (zh) 2022-05-27
EP4093128A4 (en) 2023-03-22
US20220353807A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2021146864A1 (zh) 小区接入方法、设备及存储介质
US20210159961A1 (en) Method for transmitting signal, terminal device, and network device
US11096131B2 (en) Wireless communication method and device
JP2020529756A (ja) ランダムアクセス方法および装置
EP4099769A1 (en) Synchronization signal block determining method and related apparatus
CN109152029B (zh) 一种通信方法、网络设备及用户设备
EP3905575A1 (en) Communication method and device
JP2021503791A (ja) 検出ウィンドウ指示方法及び装置
JP6972172B2 (ja) 信号伝送方法、ネットワーク装置及び端末装置
CN116582941A (zh) 一种资源分配的方法,终端以及网络设备
WO2019183972A1 (zh) 一种信息的指示方法及装置、计算机存储介质
WO2019109378A1 (zh) 无线通信方法和设备
US20230362842A1 (en) Wireless communication method, network device and terminal device
US11910336B2 (en) Signal transmission method and related device
EP3820201A1 (en) Communication method and apparatus
EP3813406A1 (en) Method for configuring measurement information, terminal device, and network device
CN114467326B (zh) 一种测量配置方法及装置、终端设备、网络设备
CN109691212A (zh) 非授权上行传输的小区切换方法和设备
JP2022517596A (ja) 無線通信方法及び端末装置
CN116709449A (zh) 一种通信方法及装置
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备
WO2024011461A1 (zh) 一种基于多载波的通信方法及装置、终端设备、网络设备
WO2021168824A1 (zh) 控制信道资源的确定方法、设备及存储介质
WO2022204896A1 (zh) 一种确定smtc的方法及装置、终端设备
WO2022022538A1 (zh) 一种广播数据传输的方法和装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020914929

Country of ref document: EP

Effective date: 20220820