WO2021144853A1 - Power conversion board - Google Patents

Power conversion board Download PDF

Info

Publication number
WO2021144853A1
WO2021144853A1 PCT/JP2020/000903 JP2020000903W WO2021144853A1 WO 2021144853 A1 WO2021144853 A1 WO 2021144853A1 JP 2020000903 W JP2020000903 W JP 2020000903W WO 2021144853 A1 WO2021144853 A1 WO 2021144853A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
power
substrate
drive circuit
wiring
Prior art date
Application number
PCT/JP2020/000903
Other languages
French (fr)
Japanese (ja)
Inventor
基 高原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/000903 priority Critical patent/WO2021144853A1/en
Priority to JP2020531549A priority patent/JP6752400B1/en
Publication of WO2021144853A1 publication Critical patent/WO2021144853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conversion board having one or both of a function of converting DC power into AC power and a function of converting AC power into DC power.
  • the inverter device has a short-circuiting means located between the full-bridge inverter and the reactor to short-circuit the output of the full-bridge inverter.
  • the short circuit means has two switching elements.
  • the inverter device reduces the ripple generated in the alternating current output by the full-bridge inverter near the point where the average value of the alternating current becomes zero. As a result, the conversion efficiency from direct current to alternating current is improved, and noise is reduced.
  • the inverter device suppresses the fluctuation range of the potential at the negative output end of the DC voltage. This reduces the leakage current.
  • a conventional inverter device when a surge voltage is generated when AC power supplied from a power system is converted into DC power and DC power is output to a power storage device, the surge voltage constitutes a full bridge inverter. It is applied to the element. Therefore, in the conventional inverter device, when a surge voltage is generated, a part or all of the plurality of switching elements may fail. It is required to provide a power conversion substrate that suppresses ripples generated in alternating current, reduces leakage current, and suppresses failure of each of a plurality of switching elements included in an inverter when a surge voltage occurs. Has been done.
  • the present disclosure has been made in view of the above, in which ripples generated in alternating current are suppressed, leakage current is reduced, and when a surge voltage is generated, each of a plurality of switching elements included in the inverter fails.
  • the purpose is to obtain a power conversion substrate that suppresses this.
  • the power conversion substrate includes a smoothing capacitor for smoothing a DC voltage, a function for converting DC power to AC power, and a function for converting AC power to DC power. It has a full bridge portion having one or both functions, a short circuit portion for short-circuiting AC power, and a substrate on which a smoothing capacitor, a full bridge portion, and a short-circuit portion are arranged.
  • the full bridge section includes a first switching element, a second switching element, a third switching element, and a fourth switching element that form a full bridge circuit.
  • the short-circuit portion has a fifth switching element and a sixth switching element.
  • Each of the first switching element, the second switching element, the third switching element, the fourth switching element, the fifth switching element, and the sixth switching element has a body portion and a terminal portion.
  • Each of the first switching element, the second switching element, the third switching element, the fourth switching element, the fifth switching element, and the sixth switching element is placed on the substrate with the terminal portion located closer to the smoothing capacitor than the body portion. Have been placed.
  • FIG. 1 The figure which shows the outline of the structure of the power conditioner which concerns on Embodiment 1.
  • An example of the direction in which current flows in the circuit of the power conversion board when the power conditioner according to the first embodiment converts the AC power supplied from the power system into DC power and outputs the DC power to the power storage device is shown.
  • Figure 1 An example of the direction in which current flows in the circuit of the power conversion board when the power conditioner according to the first embodiment converts the AC power supplied from the power system into DC power and outputs the DC power to the power storage device is shown.
  • Figure 2 The figure which shows the example of the wiring which influences the magnitude of a surge voltage in the circuit of the power conversion board which concerns on Embodiment 1.
  • FIG. 1 An example of the direction in which current flows in the circuit of the power conversion board when the power conditioner according to the first embodiment converts the AC power supplied from the power system into DC power and outputs the DC power to the power storage device is shown
  • FIG. 1 schematically shows a state in which a plurality of elements included in the power conversion board according to the first embodiment are arranged on the board.
  • FIG. 2 schematically shows a state in which a plurality of elements included in the power conversion board according to the first embodiment are arranged on the board.
  • FIG. 1 for explaining the effect of the first drive circuit included in the power conversion board according to the first embodiment.
  • FIG. 2 for explaining the effect of the first drive circuit included in the power conversion board according to the first embodiment.
  • FIG. 1 is a diagram showing an outline of the configuration of the power conditioner 1 according to the first embodiment.
  • the power conditioner 1 has a function of converting AC power supplied from the power system 71 into DC power and outputting the DC power to the power storage device 72, and converting the DC power supplied from the power storage device 72 into AC power. It has a function of outputting AC power to one or both of the power system 71 and the load 73.
  • FIG. 1 also shows a power system 71, a power storage device 72, and a load 73.
  • the load 73 is a device that operates based on AC power.
  • the load 73 can also operate based on the AC power supplied from the power system 71.
  • the power conditioner 1 has a power conversion board 2 having a function of converting DC power into AC power and a function of converting AC power into DC power, and a control device 3 for controlling the power conversion board 2.
  • the power conversion board 2 includes a converter 4 having a function of boosting and lowering a DC voltage, a smoothing capacitor 5 for smoothing the DC voltage, a function of converting DC power into AC power, and a function of converting AC power into DC power. It has an inverter 6 having a function to perform the function.
  • An example of a smoothing capacitor 5 is an electrolytic capacitor.
  • FIG. 2 is a diagram showing a configuration of a circuit of the power conversion board 2 according to the first embodiment.
  • the power conversion board 2 includes a converter 4, a smoothing capacitor 5, and an inverter 6.
  • the converter 4 is not shown in FIG.
  • the power conversion board 2 further includes a first reactor 7 and a second reactor 8 for removing high frequency components in AC power.
  • the power conversion board 2 further includes a snubber capacitor 9 located between the smoothing capacitor 5 and the inverter 6. Details of the snubber capacitor 9 will be described later.
  • the inverter 6 has a full bridge portion 10 having a function of converting DC power into AC power and a function of converting AC power into DC power, and a short-circuit portion 11 that short-circuits AC power.
  • the power conversion board 2 further includes a board 12 on which a converter 4, a smoothing capacitor 5, an inverter 6, a first reactor 7, a second reactor 8, and a snubber capacitor 9 are arranged.
  • the board 12 is formed with the first wiring 13 and the second wiring 14 for connecting the converter 4 and the inverter 6, and the third wiring 15 and the fourth wiring 16 for connecting the inverter 6 and the power system 71. ing.
  • the smoothing capacitor 5 and the snubber capacitor 9 are connected in parallel to the first wiring 13 and the second wiring 14.
  • One end of the first reactor 7 is connected to the third wire 15, and one end of the second reactor 8 is connected to the fourth wire 16.
  • the other end of each of the first reactor 7 and the second reactor 8 is connected to the power system 71.
  • the power system 71 is not shown in FIG.
  • the full bridge unit 10 includes a first switching element 21, a second switching element 22, a third switching element 23, and a fourth switching element 24 that form a full bridge circuit.
  • each of the first switching element 21, the second switching element 22, the third switching element 23, and the fourth switching element 24 is a metal oxide silicon field effect transmitter.
  • the first switching element 21 and the second switching element 22 operate based on the first drive signal
  • the third switching element 23 and the fourth switching element 24 operate based on the second drive signal.
  • the first drive signal and the second drive signal are generated by the control device 3.
  • the collector terminal 211 of the first switching element 21 is connected to the first wiring 13, and the emitter terminal 212 of the first switching element 21 is connected to the third wiring 15.
  • each of the collector terminal 211 and the emitter terminal 212 is indicated by a broken line ellipse.
  • the collector terminal 221 of the second switching element 22 is connected to the fourth wiring 16, and the emitter terminal 222 of the second switching element 22 is connected to the second wiring 14.
  • each of the collector terminal 221 and the emitter terminal 222 is indicated by a broken line ellipse.
  • the collector terminal 231 of the third switching element 23 is connected to the third wiring 15, and the emitter terminal 232 of the third switching element 23 is connected to the second wiring 14.
  • each of the collector terminal 231 and the emitter terminal 232 is indicated by a broken line ellipse.
  • the collector terminal 241 of the fourth switching element 24 is connected to the first wiring 13, and the emitter terminal 242 of the fourth switching element 24 is connected to the fourth wiring 16.
  • each of the collector terminal 241 and the emitter terminal 242 is indicated by a broken line ellipse.
  • a voltage corresponding to the first drive signal is supplied to the gate terminal 213 of the first switching element 21 and the gate terminal 223 of the second switching element 22.
  • each of the gate terminal 213 and the gate terminal 223 is indicated by a broken line ellipse.
  • the first switching element 21 and the second switching element 22 are turned on or off based on the voltage.
  • the first drive signal is generated by the control device 3.
  • a voltage corresponding to the second drive signal is supplied to the gate terminal 233 of the third switching element 23 and the gate terminal 243 of the fourth switching element 24.
  • each of the gate terminal 233 and the gate terminal 243 is indicated by a broken line ellipse.
  • the third switching element 23 and the fourth switching element 24 are turned on or off based on the voltage.
  • the second drive signal is generated by the control device 3.
  • the first switching element 21 has a diode 214 that connects the emitter terminal 212 of the first switching element 21 and the collector terminal 211 of the first switching element 21.
  • the second switching element 22 has a diode 224 that connects the emitter terminal 222 of the second switching element 22 and the collector terminal 221 of the second switching element 22.
  • the third switching element 23 has a diode 234 that connects the emitter terminal 232 of the third switching element 23 and the collector terminal 231 of the third switching element 23.
  • the fourth switching element 24 has a diode 244 that connects the emitter terminal 242 of the fourth switching element 24 and the collector terminal 241 of the fourth switching element 24.
  • the short-circuit portion 11 has a fifth switching element 25 and a sixth switching element 26.
  • each of the fifth switching element 25 and the sixth switching element 26 is a metal oxide silicon field effect transmitter.
  • the fifth switching element 25 and the sixth switching element 26 are connected in series.
  • the collector terminal 251 of the fifth switching element 25 and the collector terminal 261 of the sixth switching element 26 are connected.
  • each of the collector terminal 251 and the collector terminal 261 is indicated by a broken line ellipse.
  • the emitter terminal 252 of the fifth switching element 25 is connected to the third wiring 15, and the emitter terminal 262 of the sixth switching element 26 is connected to the fourth wiring 16.
  • each of the emitter terminal 252 and the emitter terminal 262 is indicated by a broken line ellipse. Since the power conversion board 2 has a short-circuit portion 11 having a fifth switching element 25 and a sixth switching element 26, it is possible to suppress ripples generated in alternating current and reduce leakage current.
  • the fifth switching element 25 has a gate terminal 253 to which a voltage corresponding to the third drive signal is supplied.
  • the sixth switching element 26 has a gate terminal 263 to which a voltage corresponding to the fourth drive signal is supplied.
  • each of the gate terminal 253 and the gate terminal 263 is indicated by a broken line ellipse.
  • the third drive signal and the fourth drive signal are generated by the control device 3.
  • the fifth switching element 25 has a diode 254 that connects the emitter terminal 252 of the fifth switching element 25 and the collector terminal 251 of the fifth switching element 25.
  • the sixth switching element 26 has a diode 264 that connects the emitter terminal 262 of the sixth switching element 26 and the collector terminal 261 of the sixth switching element 26.
  • FIG. 3 shows a current in the circuit of the power conversion board 2 when the power conditioner 1 according to the first embodiment converts the AC power supplied from the power system 71 into DC power and outputs the DC power to the power storage device 72.
  • FIG. 1 is a diagram showing an example of a direction in which power flows.
  • FIG. 3 shows the direction of the current when the system voltage is positive. In FIG. 3, the arrows drawn by relatively thick lines indicate the direction in which the current flows.
  • the first switching element 21, the second switching element 22, and the fifth switching element 25 are in the on state, and the third switching element 23, the fourth switching element 24, and the sixth switching element 26 are in the off state.
  • the current flows in the order of the first reactor 7 and the diode 214 of the first switching element 21, and also flows in the order of the diode 224 of the second switching element 22 and the second reactor 8.
  • FIG. 4 shows a current in the circuit of the power conversion board 2 when the power conditioner 1 according to the first embodiment converts the AC power supplied from the power system 71 into DC power and outputs the DC power to the power storage device 72.
  • FIG. 2 is a diagram showing an example of the direction in which power flows. Next to the state shown in FIG. 3, the state shown in FIG. 4 is obtained. In FIG. 4, the arrows drawn by relatively thick lines indicate the direction in which the current flows.
  • the first switching element 21 and the second switching element 22 change from the on state to the off state, and the sixth switching element 26 is in the off state. Changes from to the on state.
  • the third switching element 23 and the fourth switching element 24 are maintained in the off state, and the fifth switching element 25 is maintained in the on state.
  • the current flows in the order of the first reactor 7, the diode 254 of the fifth switching element 25, the collector terminal 261 of the sixth switching element 26, the emitter terminal 262 of the sixth switching element 26, and the second reactor 8. Since the sixth switching element 26 is in the ON state, the current energy is stored in the first reactor 7 and the second reactor 8.
  • the state shown in FIG. 3 is obtained. In this way, the state shown in FIG. 3 and the state shown in FIG. 4 alternately occur.
  • the first reactor 7, the diode 254 of the fifth switching element 25, the collector terminal 261 of the sixth switching element 26, and the emitter of the sixth switching element 26 are obtained. The current flowing in the order of the terminal 262 and the second reactor 8 is maintained.
  • V SURGE L ⁇ dI / dt ⁇ ⁇ ⁇ (1)
  • V SURGE indicates the magnitude of the surge voltage in the switching element.
  • L indicates the magnitude of the wiring inductance component for the wiring connecting the capacitor connected to the switching element and the switching element.
  • I indicates the current flowing between the collector and the emitter of the switching element.
  • T indicates time.
  • D is a symbol indicating differentiation.
  • FIG. 5 is a diagram showing an example of wiring 30 that affects the magnitude of surge voltage in the circuit of the power conversion board 2 according to the first embodiment.
  • FIG. 5 shows the wiring 30 that affects the magnitude of the surge voltage when the system voltage is positive.
  • the wiring 30 is shown by a relatively thick line.
  • the length of the wiring 30 depends on the distance between the first switching element 21, the second switching element 22, the fifth switching element 25 and the sixth switching element 26, and the snubber capacitor 9.
  • the length of the wiring that affects the magnitude of the surge voltage is the third switching element 23, the fourth switching element 24, the fifth switching element 25, the sixth switching element 26, and the snubber capacitor 9.
  • the snubber capacitor 9 is located between the smoothing capacitor 5 and the inverter 6.
  • the magnitude of the surge voltage in the circuit of the power conversion board 2 is the first switching element 21, the second switching element 22, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element. It depends on the length of the wiring connecting 26 and the smoothing capacitor 5.
  • FIG. 6 is a diagram schematically showing a state in which a plurality of elements included in the power conversion board 2 according to the first embodiment are arranged on the board 12.
  • FIG. 6 shows a state of the front surface of the substrate 12 and a state of the back surface of the substrate 12.
  • the substrate 12 is not shown in FIG. All the elements included in the power conversion substrate 2 are arranged on the front surface of the substrate 12, not on the back surface of the substrate 12. Wiring is formed on the back surface of the substrate 12.
  • On the back surface of the substrate 12 of FIG. 6, a figure showing the position of each of the plurality of elements shown on the front surface of the substrate 12 of FIG. 6 is shown.
  • FIG. 6 shows the first smoothing capacitor 5A, the second smoothing capacitor 5B, and the third smoothing capacitor 5C.
  • the first smoothing capacitor 5A, the second smoothing capacitor 5B, and the third smoothing capacitor 5C are examples of the smoothing capacitor 5.
  • FIG. 6 shows a first snubber capacitor 9A and a second snubber capacitor 9B.
  • the first snubber capacitor 9A and the second snubber capacitor 9B are examples of the snubber capacitor 9.
  • Wiring 31 is provided on the front surface of the substrate 12, and wiring 32 is provided on the back surface of the substrate 12.
  • the second switching element 22 has a body portion 41 and a terminal portion 42.
  • the body portion 41 of the second switching element 22 is a portion having a switching function of the second switching element 22.
  • the terminal portion 42 of the second switching element 22 is a collector terminal 221 and an emitter terminal 222 and a gate terminal 223.
  • the symbol “C” is described on the right side of the collector terminal
  • the symbol “E” is described on the right side of the emitter terminal
  • the symbol “G” is described on the right side of the gate terminal.
  • each of the first switching element 21, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26 also has a body portion 41 and a terminal portion 42. And have.
  • each terminal portion 42 of the first switching element 21, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26 is indicated by a broken ellipse.
  • the terminal portion 42 is a smoothing capacitor 5 from the body portion 41. It is arranged on the substrate 12 in a state of being located on the side of.
  • the terminal portion 42 is smoother than the body portion 41. Close to capacitor 5.
  • the lengths of the wiring 31 and the wiring 32 are shorter than those when the body portion 41 is closer to the smoothing capacitor 5 than the terminal portion 42.
  • the surge voltage in the switching element becomes smaller as the wiring length becomes shorter.
  • the surge voltage in each switching element of the first embodiment is smaller than that in the case where the body portion 41 is closer to the smoothing capacitor 5 than the terminal portion 42.
  • the power conversion board 2 can prevent each of the plurality of switching elements included in the inverter 6 from failing when a surge voltage is generated.
  • the pair of the first switching element 21 and the second switching element 22 that operates based on the first drive signal is defined as the first set 51, and operates based on the second drive signal.
  • the pair of the third switching element 23 and the fourth switching element 24 is defined as the second set 52, and the pair of the fifth switching element 25 and the sixth switching element 26 of the short-circuit portion 11 is defined as the third set 53.
  • NS the pair of the first group 51, the second group 52, and the third group 53 is shown by a broken line frame.
  • the first switching element 21, the second switching element 22, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26 included in the inverter 6 are the third.
  • the first set 51, the third set 53, and the second set 52 are arranged on the substrate 12 in this order.
  • the wiring becomes shorter than when the six switching elements are arranged in an order other than the above order. Therefore, the surge voltage in each switching element of the first embodiment becomes small. Therefore, the power conversion board 2 can prevent each of the plurality of switching elements included in the inverter 6 from failing when a surge voltage is generated.
  • the first switching element 21, the second switching element 22, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26 are the first group 51 and the third group 53.
  • the second set 52 is arranged on the substrate 12 in this order. That is, the third set 53, which is a set of the fifth switching element 25 and the sixth switching element 26 included in the short-circuit portion 11, is located between the first set 51 and the second set 52.
  • the length of the wiring connecting the first switching element 21 and the third switching element 23 is longer than the case where the first switching element 21 and the third switching element 23 are arranged next to each other.
  • the short-circuit current generated by the malfunction of the switching element becomes large when the wiring inductance component is short, that is, in a short path, and may cause the switching element to be destroyed. Therefore, the power conversion board 2 can reduce the short-circuit current flowing from the first switching element 21 to the third switching element 23. Similarly, the power conversion board 2 can reduce the short-circuit current flowing from the second switching element 22 to the fourth switching element 24.
  • the power conversion board 2 has a snubber capacitor 9 located between the smoothing capacitor 5 and the inverter 6.
  • the power conversion board 2 has a first snubber capacitor 9A and a second snubber capacitor 9B.
  • the first snubber capacitor 9A protects the first switching element 21 and the second switching element 22 when an overvoltage is applied to the first switching element 21 and the second switching element 22 that operate based on the first drive signal. It is a capacitor.
  • the second snubber capacitor 9B protects the third switching element 23 and the fourth switching element 24 when an overvoltage is applied to the third switching element 23 and the fourth switching element 24 that operate based on the second drive signal. It is a capacitor.
  • the first snubber capacitor 9A is connected to the wiring 31 connecting the smoothing capacitor 5 and the full bridge portion 10, and includes the first set 51 and the smoothing capacitor 5, which are a set of the first switching element 21 and the second switching element 22. Located between. Furthermore, the first snubber capacitor 9A is located between the collector terminal 211 of the first switching element 21 and the emitter terminal 222 of the second switching element 22. The portion between the collector terminal 211 of the first switching element 21 and the emitter terminal 222 of the second switching element 22 is a portion affected by the surge voltage.
  • the second snubber capacitor 9B is connected to the wiring 31 connecting the smoothing capacitor 5 and the full bridge portion 10, and includes the second set 52 and the smoothing capacitor 5, which are a set of the third switching element 23 and the fourth switching element 24. Located between. Furthermore, the second snubber capacitor 9B is located between the emitter terminal 232 of the third switching element 23 and the collector terminal 241 of the fourth switching element 24. The portion between the emitter terminal 232 of the third switching element 23 and the collector terminal 241 of the fourth switching element 24 is a portion affected by the surge voltage.
  • the power conversion board 2 Since the power conversion board 2 has the first snubber capacitor 9A and the second snubber capacitor 9B, it is possible to protect the first switching element 21, the second switching element 22, the third switching element 23, and the fourth switching element 24. At the same time, the surge voltage applied to each of the fifth switching element 25 and the sixth switching element 26 included in the short-circuit portion 11 can be suppressed. Therefore, the power conversion board 2 can prevent each of the plurality of switching elements included in the inverter 6 from failing when a surge voltage is generated.
  • FIG. 7 is a second diagram schematically showing a state in which a plurality of elements included in the power conversion board 2 according to the first embodiment are arranged on the board 12.
  • FIG. 7 shows the state of the surface of the substrate 12.
  • the substrate 12 is not shown in FIG. As described above, all the elements of the power conversion board 2 are arranged on the surface of the board 12.
  • the power conversion board 2 includes a first drive circuit 61 for driving the first switching element 21, a second drive circuit 62 for driving the second switching element 22, and the like.
  • a third drive circuit 63 that drives the third switching element 23, a fourth drive circuit 64 that drives the fourth switching element 24, a fifth drive circuit 65 that drives the fifth switching element 25, and a sixth switching element 26. It further has a sixth drive circuit 66 for driving the above.
  • the first drive circuit 61 charges and discharges the gate of the first switching element 21 according to the first drive signal generated by the control device 3, and controls the on and off of the first switching element 21.
  • the first drive circuit 61 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the first switching element 21 but on the body portion 41 side.
  • the terminal portion 42 of the first switching element 21 is indicated by a broken line ellipse.
  • the side of the terminal portion 42 is described as “main circuit portion side”
  • the side of the body portion 41 is described as “control unit side”.
  • the second drive circuit 62 charges and discharges the gate of the second switching element 22 according to the first drive signal generated by the control device 3, and controls the on and off of the second switching element 22.
  • the second drive circuit 62 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the second switching element 22 but on the body portion 41 side.
  • the third drive circuit 63 charges and discharges the gate of the third switching element 23 according to the second drive signal generated by the control device 3, and controls the on and off of the third switching element 23.
  • the third drive circuit 63 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the third switching element 23 but on the body portion 41 side.
  • the fourth drive circuit 64 charges and discharges the gate of the fourth switching element 24 according to the second drive signal generated by the control device 3, and controls the on and off of the fourth switching element 24.
  • the fourth drive circuit 64 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the fourth switching element 24 but on the body portion 41 side.
  • the fifth drive circuit 65 charges and discharges the gate of the fifth switching element 25 according to the third drive signal generated by the control device 3, and controls the on and off of the fifth switching element 25.
  • the fifth drive circuit 65 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the fifth switching element 25 but on the body portion 41 side.
  • the sixth drive circuit 66 charges and discharges the gate of the sixth switching element 26 according to the fourth drive signal generated by the control device 3, and controls the on and off of the sixth switching element 26.
  • the sixth drive circuit 66 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the sixth switching element 26 but on the body portion 41 side.
  • the configuration of the first drive circuit 61 is the same as that of each of the second drive circuit 62, the third drive circuit 63, the fourth drive circuit 64, the fifth drive circuit 65, and the sixth drive circuit 66.
  • the first drive circuit 61 will be further referred to on behalf of the first drive circuit 61, the second drive circuit 62, the third drive circuit 63, the fourth drive circuit 64, the fifth drive circuit 65, and the sixth drive circuit 66. explain.
  • FIG. 8 is a diagram for explaining the effect of the first drive circuit 61 included in the power conversion board 2 according to the first embodiment.
  • FIG. 8 corresponds to FIG. 7, and is a case where the first drive circuit 61 is arranged on the substrate 12 in a state where the first drive circuit 61 is located not on the terminal portion 42 side of the first switching element 21 but on the body portion 41 side. It is a figure.
  • FIG. 8 shows a main circuit unit 67 through which the main current flows when power conversion is performed, and a gate drive circuit unit 68 connecting the first drive circuit 61 and the emitter terminal 212 of the first switching element 21.
  • FIG. 8 further shows a common circuit unit 69, which is a common portion between the main circuit unit 67 and the gate drive circuit unit 68. In FIG. 8, the common circuit unit 69 is shown by a relatively thick line.
  • FIG. 9 is a second diagram for explaining the effect of the first drive circuit 61 included in the power conversion board 2 according to the first embodiment.
  • FIG. 9 is a diagram showing a comparative example, which does not correspond to FIG. 7.
  • FIG. 9 is a diagram in the case where the first drive circuit 61 is arranged on the substrate 12 in a state where it is located not on the side of the body portion 41 of the first switching element 21 but on the side of the terminal portion 42.
  • FIG. 9 shows the main circuit unit 67, the gate drive circuit unit 68, and the common circuit unit 69, as in FIG. In FIG. 9, the common circuit unit 69 is shown by a relatively thick line.
  • the common circuit unit 69 of the first embodiment is shorter than the common circuit unit 69 of the comparative example. That is, the inductance of the common circuit unit 69 of the first embodiment is smaller than the inductance of the common circuit unit 69 of the comparative example.
  • the first drive circuit 61 is arranged on the substrate 12 in a state where it is located not on the terminal portion 42 side of the first switching element 21 but on the body portion 41 side. Therefore, the power conversion board 2 can prevent the first drive circuit 61 from malfunctioning due to the voltage generated by the fluctuation of the current flowing through the main circuit unit 67. Furthermore, the power conversion board 2 can prevent the first drive circuit 61 from malfunctioning due to voltage noise generated by fluctuations in the current flowing through the main circuit unit 67.
  • the power conversion substrate 2 since the power conversion substrate 2 according to the first embodiment has the short-circuit portion 11 having the fifth switching element 25 and the sixth switching element 26, the ripple generated in the alternating current is suppressed and the leakage current is reduced. be able to.
  • the power conversion board 2 has a full bridge portion 10 having a first switching element 21, a second switching element 22, a third switching element 23, and a fourth switching element 24 that form a full bridge circuit.
  • the terminal portion 42 is a smoothing capacitor 5 from the body portion 41. It is arranged on the substrate 12 in a state of being located on the side of. Therefore, the surge voltage in each switching element of the first embodiment is smaller than that in the case where the body portion 41 is located closer to the smoothing capacitor 5 than the terminal portion 42. As a result, the power conversion board 2 can prevent each of the six switching elements included in the inverter 6 from failing when a surge voltage is generated.
  • ripples generated in the alternating current are suppressed, leakage current is reduced, and when a surge voltage is generated, each of the plurality of switching elements included in the inverter 6 fails. Can be suppressed. Furthermore, when a surge voltage is generated while some or all of the plurality of switching elements included in the inverter 6 are off, each of the plurality of switching elements included in the inverter 6 fails in the power conversion board 2. Can be suppressed.
  • a surge voltage is generated when the power conditioner 1 converts the DC power supplied from the power storage device 72 into AC power and outputs the AC power to one or both of the power system 71 and the load 73. Even in such a case, it is possible to prevent each of the plurality of switching elements included in the inverter 6 from failing.
  • the six switching elements included in the inverter 6 include a first set 51 of a first switching element 21 and a second switching element 22 that operate based on a first drive signal, and a short-circuit portion 11.
  • the substrate is in the order of the third set 53 of the fifth switching element 25 and the sixth switching element 26, and the second set 52 of the third switching element 23 and the fourth switching element 24 that operate based on the second drive signal. It is arranged at 12.
  • the six switching elements are arranged in the above order, the wiring becomes shorter than when the six switching elements are arranged in an order other than the above order. Therefore, the surge voltage in each of the six switching elements becomes small.
  • the power conversion board 2 can prevent each of the plurality of switching elements included in the inverter 6 from failing when a surge voltage is generated.
  • the wiring connecting the first switching element 21 and the third switching element 23 is the first switching element. It is longer than the case where the 21 and the third switching element 23 are arranged next to each other.
  • the short-circuit current generated by the malfunction of the switching element becomes large when the wiring inductance component is short, that is, in a short path, and may cause the switching element to be destroyed. Therefore, the power conversion board 2 can suppress the short-circuit current flowing from the first switching element 21 to the third switching element 23.
  • the power conversion board 2 can suppress the short-circuit current flowing from the third switching element 23 to the first switching element 21.
  • the power conversion board 2 can suppress the short-circuit current flowing from the second switching element 22 to the fourth switching element 24 and the short-circuit current flowing from the fourth switching element 24 to the second switching element 22.
  • the first drive circuit 61 for driving the first switching element 21 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the first switching element 21 but on the body portion 41 side. There is. Similarly, each of the second drive circuit 62, the third drive circuit 63, the fourth drive circuit 64, the fifth drive circuit 65, and the sixth drive circuit 66 is not on the side of the terminal portion 42 of the switching element to be driven, but on the body portion. It is arranged on the substrate 12 in a state of being located on the side of 41. As a result, the common circuit section 69, which is a common portion between the main circuit section 67 through which the main current flows when the power is converted and the gate drive circuit section 68, becomes relatively short.
  • the power conversion board 2 has a first drive circuit 61, a second drive circuit 62, a third drive circuit 63, a fourth drive circuit 64, and a fifth drive circuit depending on the voltage generated when the current flows through the main circuit unit 67. It is possible to prevent each of the 65 and the sixth drive circuit 66 from malfunctioning.
  • the gate drive circuit unit 68 is a wiring connecting the drive circuit and the emitter terminal of the switching element driven by the drive circuit.
  • the full bridge unit 10 may have only one of a function of converting DC power into AC power and a function of converting AC power into DC power.
  • FIG. 10 is a diagram schematically showing a substrate 12A included in the power conditioner according to the second embodiment.
  • the substrate 12 of the first embodiment is replaced with the substrate 12A.
  • the difference between the second embodiment and the first embodiment is that the substrate 12 of the first embodiment is replaced with the substrate 12A.
  • the differences from the first embodiment will be mainly described.
  • FIG. 10 is an exploded perspective view of the substrate 12A.
  • the substrate 12A is a four-layer substrate having a first wiring layer 121, a second wiring layer 122, a third wiring layer 123, and a fourth wiring layer 124.
  • the first wiring layer 121, the second wiring layer 122, the third wiring layer 123, and the fourth wiring layer 124 are in the order of the first wiring layer 121, the second wiring layer 122, the third wiring layer 123, and the fourth wiring layer 124. It is piled up with.
  • the substrate 12A has a first insulating layer 125 located between the first wiring layer 121 and the second wiring layer 122, and a second insulating layer 126 located between the second wiring layer 122 and the third wiring layer 123. And a third insulating layer 127 located between the third wiring layer 123 and the fourth wiring layer 124.
  • the first switching element 21, the second switching element 22, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26 are the first wirings. It is arranged on the layer 121.
  • the first wiring layer 121 is one layer outside the substrate 12A, which is a four-layer substrate.
  • the converter 4, the smoothing capacitor 5, the first reactor 7, the second reactor 8, the first snubber capacitor 9A and the second snubber capacitor 9B are also arranged in the first wiring layer 121. ..
  • the second wiring layer 122 of the substrate 12A is a layer having a copper foil pattern other than the through hole where the wiring is located. That is, the second wiring layer 122 is a layer in which one surface of the substrate is covered with a copper film and through holes for wiring are formed. Wiring is located in the through hole. The second wiring layer 122 is one layer in the middle of the four-layer substrate. Wiring is provided in each of the third wiring layer 123 and the fourth wiring layer 124.
  • FIG. 11 is a diagram for explaining the effect obtained by the substrate 12A of the power conditioner according to the second embodiment.
  • FIG. 11 shows the first wiring layer 121, the first insulating layer 125, and the second wiring layer 122 of the substrate 12A.
  • the first wiring layer 121 is one layer outside the substrate 12A, which is a four-layer substrate
  • the second wiring layer 122 is a layer having a copper foil pattern except for the through holes.
  • the straight arrow 131 in the first wiring layer 121 of FIG. 11 schematically indicates the direction of the current flowing in a part of the wiring of the first wiring layer 121.
  • a concentric magnetic field centered on the part of the wiring is generated.
  • the circular arrow 132 in FIG. 11 indicates one magnetic field line in the magnetic field. The magnetic field becomes an inductance component of the wiring.
  • the second wiring layer 122 is a layer of a copper foil pattern
  • an eddy current 133 that generates a magnetic field that cancels the above magnetic field flows through the second wiring layer 122. That is, the eddy current 133 reduces the inductance component of the wiring provided in each of the third wiring layer 123 and the fourth wiring layer 124. That is, in the power conditioner according to the second embodiment, since the second wiring layer 122 of the substrate 12A, which is a four-layer substrate, is a layer of the copper foil pattern, each of the third wiring layer 123 and the fourth wiring layer 124 can be used. It is possible to reduce the inductance component of the provided wiring.
  • FIG. 12 is a diagram showing a processor 91 when a part or all of the control device 3 included in the power conditioner 1 according to the first embodiment is realized by the processor 91. That is, some or all of the functions of the control device 3 may be realized by the processor 91 that executes the program stored in the memory 92.
  • the processor 91 is a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, or a DSP (Digital Signal Processor).
  • the memory 92 is also shown in FIG.
  • the processor 91 When a part or all the functions of the control device 3 are realized by the processor 91, the part or all the functions are realized by the processor 91 and the software, the firmware, or the combination of the software and the firmware.
  • the software or firmware is written as a program and stored in the memory 92.
  • the processor 91 realizes a part or all the functions of the control device 3 by reading and executing the program stored in the memory 92.
  • the power conditioner 1 is a program in which some or all of the steps executed by the control device 3 are eventually executed. It has a memory 92 for storing. It can be said that the program stored in the memory 92 causes the computer to execute a part or all of the procedure or method executed by the control device 3.
  • the memory 92 is, for example, non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory)
  • EEPROM registered trademark
  • it may be a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disk), or the like.
  • FIG. 13 is a diagram showing a processing circuit 93 when a part or all of the control device 3 included in the power conditioner 1 according to the first embodiment is realized by the processing circuit 93. That is, a part or all of the control device 3 may be realized by the processing circuit 93.
  • the processing circuit 93 is dedicated hardware.
  • the processing circuit 93 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Is.
  • a part of the control device 3 may be dedicated hardware separate from the rest.
  • some of the plurality of functions may be realized by software or firmware, and the rest of the plurality of functions may be realized by dedicated hardware.
  • the plurality of functions of the control device 3 can be realized by hardware, software, firmware, or a combination thereof.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

This power conversion board (2) comprises a smoothing capacitor (5), a full bridge section (10) that has a function to convert direct-current power into alternating-current power and/or a function to convert alternating-current power into direct-current power, a short-circuit section (11) that short-circuits alternating-current power, and a board (12). The full bridge section (10) comprises a first switching element (21), a second switching element (22), a third switching element (23), and a fourth switching element (24) that form a full bridge circuit. The short-circuit section (11) comprises a fifth switching element (25) and a sixth switching element (26). The first switching element (21), the second switching element (22), the third switching element (23), the fourth switching element (24), the fifth switching element (25), and the sixth switching element (26) are each disposed on a board so that a terminal section (42) is disposed on the smoothing capacitor (5) side of a body section (41).

Description

電力変換基板Power conversion board
 本開示は、直流電力を交流電力に変換する機能と交流電力を直流電力に変換する機能との一方又は双方を有する電力変換基板に関する。 The present disclosure relates to a power conversion board having one or both of a function of converting DC power into AC power and a function of converting AC power into DC power.
 従来、フルブリッジインバータによって得られた交流電力をリアクトルを介して電力系統に出力するインバータ装置が提案されている(例えば、特許文献1参照)。当該インバータ装置は、フルブリッジインバータとリアクトルとの間に位置していてフルブリッジインバータの出力を短絡する短絡手段を有する。短絡手段は、二つのスイッチング素子を有する。当該インバータ装置は、フルブリッジインバータが出力する交流電流に生じるリプルを当該交流電流の平均値が零となる辺りで小さくする。これにより、直流から交流への変換効率が向上すると共に、ノイズが低減する。また、当該インバータ装置は、直流電圧の負側出力端の電位の変動幅を抑える。これにより、漏洩電流が低減される。 Conventionally, an inverter device that outputs AC power obtained by a full-bridge inverter to an electric power system via a reactor has been proposed (see, for example, Patent Document 1). The inverter device has a short-circuiting means located between the full-bridge inverter and the reactor to short-circuit the output of the full-bridge inverter. The short circuit means has two switching elements. The inverter device reduces the ripple generated in the alternating current output by the full-bridge inverter near the point where the average value of the alternating current becomes zero. As a result, the conversion efficiency from direct current to alternating current is improved, and noise is reduced. In addition, the inverter device suppresses the fluctuation range of the potential at the negative output end of the DC voltage. This reduces the leakage current.
特開2009-89541号公報JP-A-2009-89541
 従来のインバータ装置は、電力系統から供給される交流電力を直流電力に変換して直流電力を蓄電機器に出力する際にサージ電圧が発生した場合、サージ電圧がフルブリッジインバータを構成する複数のスイッチング素子に印加される。そのため、従来のインバータ装置では、サージ電圧が発生した場合に当該複数のスイッチング素子の一部又は全部が故障する可能性がある。交流電流に生じるリプルを抑制すると共に漏洩電流を低減させ、かつサージ電圧が発生した場合にインバータに含まれる複数のスイッチング素子の各々が故障することを抑制する電力変換基板が提供されることが要求されている。 In a conventional inverter device, when a surge voltage is generated when AC power supplied from a power system is converted into DC power and DC power is output to a power storage device, the surge voltage constitutes a full bridge inverter. It is applied to the element. Therefore, in the conventional inverter device, when a surge voltage is generated, a part or all of the plurality of switching elements may fail. It is required to provide a power conversion substrate that suppresses ripples generated in alternating current, reduces leakage current, and suppresses failure of each of a plurality of switching elements included in an inverter when a surge voltage occurs. Has been done.
 本開示は、上記に鑑みてなされたものであって、交流電流に生じるリプルを抑制すると共に漏洩電流を低減させ、かつサージ電圧が発生した場合にインバータに含まれる複数のスイッチング素子の各々が故障することを抑制する電力変換基板を得ることを目的とする。 The present disclosure has been made in view of the above, in which ripples generated in alternating current are suppressed, leakage current is reduced, and when a surge voltage is generated, each of a plurality of switching elements included in the inverter fails. The purpose is to obtain a power conversion substrate that suppresses this.
 上述した課題を解決し、目的を達成するために、本開示にかかる電力変換基板は、直流電圧を平滑する平滑コンデンサと、直流電力を交流電力に変換する機能と交流電力を直流電力に変換する機能との一方又は双方を有するフルブリッジ部と、交流電力を短絡する短絡部と、平滑コンデンサ、フルブリッジ部及び短絡部が配置されている基板とを有する。フルブリッジ部は、フルブリッジ回路を構成する第1スイッチング素子、第2スイッチング素子、第3スイッチング素子及び第4スイッチング素子を有する。短絡部は、第5スイッチング素子及び第6スイッチング素子を有する。第1スイッチング素子、第2スイッチング素子、第3スイッチング素子、第4スイッチング素子、第5スイッチング素子及び第6スイッチング素子の各々は、ボディ部と、端子部とを有する。第1スイッチング素子、第2スイッチング素子、第3スイッチング素子、第4スイッチング素子、第5スイッチング素子及び第6スイッチング素子の各々は、端子部がボディ部より平滑コンデンサの側に位置する状態で基板に配置されている。 In order to solve the above-mentioned problems and achieve the object, the power conversion substrate according to the present disclosure includes a smoothing capacitor for smoothing a DC voltage, a function for converting DC power to AC power, and a function for converting AC power to DC power. It has a full bridge portion having one or both functions, a short circuit portion for short-circuiting AC power, and a substrate on which a smoothing capacitor, a full bridge portion, and a short-circuit portion are arranged. The full bridge section includes a first switching element, a second switching element, a third switching element, and a fourth switching element that form a full bridge circuit. The short-circuit portion has a fifth switching element and a sixth switching element. Each of the first switching element, the second switching element, the third switching element, the fourth switching element, the fifth switching element, and the sixth switching element has a body portion and a terminal portion. Each of the first switching element, the second switching element, the third switching element, the fourth switching element, the fifth switching element, and the sixth switching element is placed on the substrate with the terminal portion located closer to the smoothing capacitor than the body portion. Have been placed.
 本開示によれば、交流電流に生じるリプルを抑制すると共に漏洩電流を低減させ、かつサージ電圧が発生した場合にインバータに含まれる複数のスイッチング素子の各々が故障することを抑制することができるという効果を奏する。 According to the present disclosure, it is possible to suppress ripples generated in alternating current, reduce leakage current, and prevent failure of each of a plurality of switching elements included in an inverter when a surge voltage is generated. It works.
実施の形態1にかかるパワーコンディショナの構成の概略を示す図The figure which shows the outline of the structure of the power conditioner which concerns on Embodiment 1. 実施の形態1にかかる電力変換基板の回路の構成を示す図The figure which shows the structure of the circuit of the power conversion board which concerns on Embodiment 1. 実施の形態1にかかるパワーコンディショナが電力系統から供給される交流電力を直流電力に変換して直流電力を蓄電機器に出力する場合の電力変換基板の回路において電流が流れる向きの例を示す第1図An example of the direction in which current flows in the circuit of the power conversion board when the power conditioner according to the first embodiment converts the AC power supplied from the power system into DC power and outputs the DC power to the power storage device is shown. Figure 1 実施の形態1にかかるパワーコンディショナが電力系統から供給される交流電力を直流電力に変換して直流電力を蓄電機器に出力する場合の電力変換基板の回路において電流が流れる向きの例を示す第2図An example of the direction in which current flows in the circuit of the power conversion board when the power conditioner according to the first embodiment converts the AC power supplied from the power system into DC power and outputs the DC power to the power storage device is shown. Figure 2 実施の形態1にかかる電力変換基板の回路におけるサージ電圧の大きさに影響を与える配線の例を示す図The figure which shows the example of the wiring which influences the magnitude of a surge voltage in the circuit of the power conversion board which concerns on Embodiment 1. 実施の形態1にかかる電力変換基板が有する複数の素子が基板に配置されている状態を模式的に示す第1図FIG. 1 schematically shows a state in which a plurality of elements included in the power conversion board according to the first embodiment are arranged on the board. 実施の形態1にかかる電力変換基板が有する複数の素子が基板に配置されている状態を模式的に示す第2図FIG. 2 schematically shows a state in which a plurality of elements included in the power conversion board according to the first embodiment are arranged on the board. 実施の形態1にかかる電力変換基板が有する第1駆動回路の効果を説明するための第1図FIG. 1 for explaining the effect of the first drive circuit included in the power conversion board according to the first embodiment. 実施の形態1にかかる電力変換基板が有する第1駆動回路の効果を説明するための第2図FIG. 2 for explaining the effect of the first drive circuit included in the power conversion board according to the first embodiment. 実施の形態2にかかるパワーコンディショナが有する基板を模式的に示す図The figure which shows typically the substrate which the power conditioner which concerns on Embodiment 2 have. 実施の形態2にかかるパワーコンディショナが有する基板によって得られる効果を説明するための図The figure for demonstrating the effect obtained by the substrate which the power conditioner which concerns on Embodiment 2 have. 実施の形態1にかかるパワーコンディショナが有する制御装置の一部又は全部がプロセッサによって実現される場合のプロセッサを示す図The figure which shows the processor when a part or all of the control apparatus which the power conditioner which concerns on Embodiment 1 have are realized by a processor. 実施の形態1にかかるパワーコンディショナが有する制御装置の一部又は全部が処理回路によって実現される場合の処理回路を示す図The figure which shows the processing circuit when a part or all of the control device which the power conditioner which concerns on Embodiment 1 has is realized by a processing circuit.
 以下に、実施の形態にかかる電力変換基板を図面に基づいて詳細に説明する。なお、この実施の形態によりこの開示が限定されるものではない。 The power conversion board according to the embodiment will be described in detail below based on the drawings. It should be noted that this embodiment does not limit this disclosure.
実施の形態1.
 図1は、実施の形態1にかかるパワーコンディショナ1の構成の概略を示す図である。パワーコンディショナ1は、電力系統71から供給される交流電力を直流電力に変換して直流電力を蓄電機器72に出力する機能と、蓄電機器72から供給される直流電力を交流電力に変換して交流電力を電力系統71と負荷73との一方又は双方に出力する機能とを有する。図1には、電力系統71、蓄電機器72及び負荷73も示されている。負荷73は、交流電力をもとに動作する装置である。負荷73は、電力系統71から供給される交流電力をもとに動作することもできる。
Embodiment 1.
FIG. 1 is a diagram showing an outline of the configuration of the power conditioner 1 according to the first embodiment. The power conditioner 1 has a function of converting AC power supplied from the power system 71 into DC power and outputting the DC power to the power storage device 72, and converting the DC power supplied from the power storage device 72 into AC power. It has a function of outputting AC power to one or both of the power system 71 and the load 73. FIG. 1 also shows a power system 71, a power storage device 72, and a load 73. The load 73 is a device that operates based on AC power. The load 73 can also operate based on the AC power supplied from the power system 71.
 パワーコンディショナ1は、直流電力を交流電力に変換する機能と交流電力を直流電力に変換する機能とを有する電力変換基板2と、電力変換基板2を制御する制御装置3とを有する。電力変換基板2は、直流電圧を昇圧する機能と降圧する機能とを有するコンバータ4と、直流電圧を平滑する平滑コンデンサ5と、直流電力を交流電力に変換する機能と交流電力を直流電力に変換する機能とを有するインバータ6とを有する。平滑コンデンサ5の例は、電解コンデンサである。 The power conditioner 1 has a power conversion board 2 having a function of converting DC power into AC power and a function of converting AC power into DC power, and a control device 3 for controlling the power conversion board 2. The power conversion board 2 includes a converter 4 having a function of boosting and lowering a DC voltage, a smoothing capacitor 5 for smoothing the DC voltage, a function of converting DC power into AC power, and a function of converting AC power into DC power. It has an inverter 6 having a function to perform the function. An example of a smoothing capacitor 5 is an electrolytic capacitor.
 図2は、実施の形態1にかかる電力変換基板2の回路の構成を示す図である。電力変換基板2は、上述の通り、コンバータ4、平滑コンデンサ5及びインバータ6を有する。図2には、コンバータ4は示されていない。電力変換基板2は、交流電力における高周波成分を除去するための第1リアクトル7及び第2リアクトル8を更に有する。電力変換基板2は、平滑コンデンサ5とインバータ6との間に位置しているスナバコンデンサ9を更に有する。スナバコンデンサ9の詳細については、後述する。 FIG. 2 is a diagram showing a configuration of a circuit of the power conversion board 2 according to the first embodiment. As described above, the power conversion board 2 includes a converter 4, a smoothing capacitor 5, and an inverter 6. The converter 4 is not shown in FIG. The power conversion board 2 further includes a first reactor 7 and a second reactor 8 for removing high frequency components in AC power. The power conversion board 2 further includes a snubber capacitor 9 located between the smoothing capacitor 5 and the inverter 6. Details of the snubber capacitor 9 will be described later.
 インバータ6は、直流電力を交流電力に変換する機能と交流電力を直流電力に変換する機能とを有するフルブリッジ部10と、交流電力を短絡する短絡部11とを有する。電力変換基板2は、コンバータ4、平滑コンデンサ5、インバータ6、第1リアクトル7、第2リアクトル8及びスナバコンデンサ9が配置されている基板12を更に有する。基板12には、コンバータ4とインバータ6とを接続する第1配線13及び第2配線14と、インバータ6と電力系統71とを接続するための第3配線15及び第4配線16とが形成されている。 The inverter 6 has a full bridge portion 10 having a function of converting DC power into AC power and a function of converting AC power into DC power, and a short-circuit portion 11 that short-circuits AC power. The power conversion board 2 further includes a board 12 on which a converter 4, a smoothing capacitor 5, an inverter 6, a first reactor 7, a second reactor 8, and a snubber capacitor 9 are arranged. The board 12 is formed with the first wiring 13 and the second wiring 14 for connecting the converter 4 and the inverter 6, and the third wiring 15 and the fourth wiring 16 for connecting the inverter 6 and the power system 71. ing.
 平滑コンデンサ5及びスナバコンデンサ9は、第1配線13及び第2配線14に並列に接続されている。第1リアクトル7の一方の端部は第3配線15に接続されており、第2リアクトル8の一方の端部は第4配線16に接続されている。第1リアクトル7及び第2リアクトル8の各々の他方の端部は、電力系統71に接続されている。図2には、電力系統71は示されていない。 The smoothing capacitor 5 and the snubber capacitor 9 are connected in parallel to the first wiring 13 and the second wiring 14. One end of the first reactor 7 is connected to the third wire 15, and one end of the second reactor 8 is connected to the fourth wire 16. The other end of each of the first reactor 7 and the second reactor 8 is connected to the power system 71. The power system 71 is not shown in FIG.
 フルブリッジ部10は、フルブリッジ回路を構成する第1スイッチング素子21、第2スイッチング素子22、第3スイッチング素子23及び第4スイッチング素子24を有する。例えば、第1スイッチング素子21、第2スイッチング素子22、第3スイッチング素子23及び第4スイッチング素子24の各々は、金属酸化物シリコン電界効果トランスミッタである。第1スイッチング素子21及び第2スイッチング素子22は第1駆動信号をもとに動作し、第3スイッチング素子23及び第4スイッチング素子24は第2駆動信号をもとに動作する。第1駆動信号及び第2駆動信号は、制御装置3によって生成される。 The full bridge unit 10 includes a first switching element 21, a second switching element 22, a third switching element 23, and a fourth switching element 24 that form a full bridge circuit. For example, each of the first switching element 21, the second switching element 22, the third switching element 23, and the fourth switching element 24 is a metal oxide silicon field effect transmitter. The first switching element 21 and the second switching element 22 operate based on the first drive signal, and the third switching element 23 and the fourth switching element 24 operate based on the second drive signal. The first drive signal and the second drive signal are generated by the control device 3.
 第1スイッチング素子21のコレクタ端子211は第1配線13に接続されており、第1スイッチング素子21のエミッタ端子212は第3配線15に接続されている。図2では、コレクタ端子211及びエミッタ端子212の各々は、破線の楕円で示されている。第2スイッチング素子22のコレクタ端子221は第4配線16に接続されており、第2スイッチング素子22のエミッタ端子222は第2配線14に接続されている。図2では、コレクタ端子221及びエミッタ端子222の各々は、破線の楕円で示されている。 The collector terminal 211 of the first switching element 21 is connected to the first wiring 13, and the emitter terminal 212 of the first switching element 21 is connected to the third wiring 15. In FIG. 2, each of the collector terminal 211 and the emitter terminal 212 is indicated by a broken line ellipse. The collector terminal 221 of the second switching element 22 is connected to the fourth wiring 16, and the emitter terminal 222 of the second switching element 22 is connected to the second wiring 14. In FIG. 2, each of the collector terminal 221 and the emitter terminal 222 is indicated by a broken line ellipse.
 第3スイッチング素子23のコレクタ端子231は第3配線15に接続されており、第3スイッチング素子23のエミッタ端子232は第2配線14に接続されている。図2では、コレクタ端子231及びエミッタ端子232の各々は、破線の楕円で示されている。第4スイッチング素子24のコレクタ端子241は第1配線13に接続されており、第4スイッチング素子24のエミッタ端子242は第4配線16に接続されている。図2では、コレクタ端子241及びエミッタ端子242の各々は、破線の楕円で示されている。 The collector terminal 231 of the third switching element 23 is connected to the third wiring 15, and the emitter terminal 232 of the third switching element 23 is connected to the second wiring 14. In FIG. 2, each of the collector terminal 231 and the emitter terminal 232 is indicated by a broken line ellipse. The collector terminal 241 of the fourth switching element 24 is connected to the first wiring 13, and the emitter terminal 242 of the fourth switching element 24 is connected to the fourth wiring 16. In FIG. 2, each of the collector terminal 241 and the emitter terminal 242 is indicated by a broken line ellipse.
 第1スイッチング素子21のゲート端子213及び第2スイッチング素子22のゲート端子223には、第1駆動信号に対応する電圧が供給される。図2では、ゲート端子213及びゲート端子223の各々は、破線の楕円で示されている。第1スイッチング素子21及び第2スイッチング素子22は、当該電圧をもとにオン又はオフの状態になる。上述の通り、第1駆動信号は制御装置3によって生成される。 A voltage corresponding to the first drive signal is supplied to the gate terminal 213 of the first switching element 21 and the gate terminal 223 of the second switching element 22. In FIG. 2, each of the gate terminal 213 and the gate terminal 223 is indicated by a broken line ellipse. The first switching element 21 and the second switching element 22 are turned on or off based on the voltage. As described above, the first drive signal is generated by the control device 3.
 第3スイッチング素子23のゲート端子233及び第4スイッチング素子24のゲート端子243には、第2駆動信号に対応する電圧が供給される。図2では、ゲート端子233及びゲート端子243の各々は、破線の楕円で示されている。第3スイッチング素子23及び第4スイッチング素子24は、当該電圧をもとにオン又はオフの状態になる。上述の通り、第2駆動信号は制御装置3によって生成される。 A voltage corresponding to the second drive signal is supplied to the gate terminal 233 of the third switching element 23 and the gate terminal 243 of the fourth switching element 24. In FIG. 2, each of the gate terminal 233 and the gate terminal 243 is indicated by a broken line ellipse. The third switching element 23 and the fourth switching element 24 are turned on or off based on the voltage. As described above, the second drive signal is generated by the control device 3.
 第1スイッチング素子21は、第1スイッチング素子21のエミッタ端子212と第1スイッチング素子21のコレクタ端子211とを接続するダイオード214を有する。第2スイッチング素子22は、第2スイッチング素子22のエミッタ端子222と第2スイッチング素子22のコレクタ端子221とを接続するダイオード224を有する。 The first switching element 21 has a diode 214 that connects the emitter terminal 212 of the first switching element 21 and the collector terminal 211 of the first switching element 21. The second switching element 22 has a diode 224 that connects the emitter terminal 222 of the second switching element 22 and the collector terminal 221 of the second switching element 22.
 第3スイッチング素子23は、第3スイッチング素子23のエミッタ端子232と第3スイッチング素子23のコレクタ端子231とを接続するダイオード234を有する。第4スイッチング素子24は、第4スイッチング素子24のエミッタ端子242と第4スイッチング素子24のコレクタ端子241とを接続するダイオード244を有する。 The third switching element 23 has a diode 234 that connects the emitter terminal 232 of the third switching element 23 and the collector terminal 231 of the third switching element 23. The fourth switching element 24 has a diode 244 that connects the emitter terminal 242 of the fourth switching element 24 and the collector terminal 241 of the fourth switching element 24.
 短絡部11は、第5スイッチング素子25及び第6スイッチング素子26を有する。例えば、第5スイッチング素子25及び第6スイッチング素子26の各々は、金属酸化物シリコン電界効果トランスミッタである。第5スイッチング素子25と第6スイッチング素子26とは、直列に接続されている。具体的には、第5スイッチング素子25のコレクタ端子251と第6スイッチング素子26のコレクタ端子261とが接続されている。図2では、コレクタ端子251及びコレクタ端子261の各々は、破線の楕円で示されている。 The short-circuit portion 11 has a fifth switching element 25 and a sixth switching element 26. For example, each of the fifth switching element 25 and the sixth switching element 26 is a metal oxide silicon field effect transmitter. The fifth switching element 25 and the sixth switching element 26 are connected in series. Specifically, the collector terminal 251 of the fifth switching element 25 and the collector terminal 261 of the sixth switching element 26 are connected. In FIG. 2, each of the collector terminal 251 and the collector terminal 261 is indicated by a broken line ellipse.
 第5スイッチング素子25のエミッタ端子252は第3配線15に接続されており、第6スイッチング素子26のエミッタ端子262は第4配線16に接続されている。図2では、エミッタ端子252及びエミッタ端子262の各々は、破線の楕円で示されている。電力変換基板2は、第5スイッチング素子25及び第6スイッチング素子26を有する短絡部11を有するので、交流電流に生じるリプルを抑制すると共に漏洩電流を低減させることができる。 The emitter terminal 252 of the fifth switching element 25 is connected to the third wiring 15, and the emitter terminal 262 of the sixth switching element 26 is connected to the fourth wiring 16. In FIG. 2, each of the emitter terminal 252 and the emitter terminal 262 is indicated by a broken line ellipse. Since the power conversion board 2 has a short-circuit portion 11 having a fifth switching element 25 and a sixth switching element 26, it is possible to suppress ripples generated in alternating current and reduce leakage current.
 第5スイッチング素子25は、第3駆動信号に対応する電圧が供給されるゲート端子253を有する。第6スイッチング素子26は、第4駆動信号に対応する電圧が供給されるゲート端子263を有する。図2では、ゲート端子253及びゲート端子263の各々は、破線の楕円で示されている。第3駆動信号及び第4駆動信号は、制御装置3によって生成される。 The fifth switching element 25 has a gate terminal 253 to which a voltage corresponding to the third drive signal is supplied. The sixth switching element 26 has a gate terminal 263 to which a voltage corresponding to the fourth drive signal is supplied. In FIG. 2, each of the gate terminal 253 and the gate terminal 263 is indicated by a broken line ellipse. The third drive signal and the fourth drive signal are generated by the control device 3.
 第5スイッチング素子25は、第5スイッチング素子25のエミッタ端子252と第5スイッチング素子25のコレクタ端子251とを接続するダイオード254を有する。第6スイッチング素子26は、第6スイッチング素子26のエミッタ端子262と第6スイッチング素子26のコレクタ端子261とを接続するダイオード264を有する。 The fifth switching element 25 has a diode 254 that connects the emitter terminal 252 of the fifth switching element 25 and the collector terminal 251 of the fifth switching element 25. The sixth switching element 26 has a diode 264 that connects the emitter terminal 262 of the sixth switching element 26 and the collector terminal 261 of the sixth switching element 26.
 図3は、実施の形態1にかかるパワーコンディショナ1が電力系統71から供給される交流電力を直流電力に変換して直流電力を蓄電機器72に出力する場合の電力変換基板2の回路において電流が流れる向きの例を示す第1図である。図3は、系統電圧が正である場合の電流の向きを示している。図3において、相対的に太い線で記載されている矢印は、電流が流れる向きを示している。 FIG. 3 shows a current in the circuit of the power conversion board 2 when the power conditioner 1 according to the first embodiment converts the AC power supplied from the power system 71 into DC power and outputs the DC power to the power storage device 72. FIG. 1 is a diagram showing an example of a direction in which power flows. FIG. 3 shows the direction of the current when the system voltage is positive. In FIG. 3, the arrows drawn by relatively thick lines indicate the direction in which the current flows.
 第1スイッチング素子21、第2スイッチング素子22及び第5スイッチング素子25はオンの状態であって、第3スイッチング素子23、第4スイッチング素子24及び第6スイッチング素子26はオフの状態である。電流は、第1リアクトル7、第1スイッチング素子21のダイオード214の順番に流れると共に、第2スイッチング素子22のダイオード224、第2リアクトル8の順番に流れる。 The first switching element 21, the second switching element 22, and the fifth switching element 25 are in the on state, and the third switching element 23, the fourth switching element 24, and the sixth switching element 26 are in the off state. The current flows in the order of the first reactor 7 and the diode 214 of the first switching element 21, and also flows in the order of the diode 224 of the second switching element 22 and the second reactor 8.
 図4は、実施の形態1にかかるパワーコンディショナ1が電力系統71から供給される交流電力を直流電力に変換して直流電力を蓄電機器72に出力する場合の電力変換基板2の回路において電流が流れる向きの例を示す第2図である。図3が示す状態の次に、図4が示す状態が得られる。図4において、相対的に太い線で記載されている矢印は、電流が流れる向きを示している。 FIG. 4 shows a current in the circuit of the power conversion board 2 when the power conditioner 1 according to the first embodiment converts the AC power supplied from the power system 71 into DC power and outputs the DC power to the power storage device 72. FIG. 2 is a diagram showing an example of the direction in which power flows. Next to the state shown in FIG. 3, the state shown in FIG. 4 is obtained. In FIG. 4, the arrows drawn by relatively thick lines indicate the direction in which the current flows.
 図3が示す状態の次に図4が示す状態が得られる場合、第1スイッチング素子21及び第2スイッチング素子22はオンの状態からオフの状態に変化し、第6スイッチング素子26はオフの状態からオンの状態に変化する。第3スイッチング素子23及び第4スイッチング素子24についてはオフの状態が維持され、第5スイッチング素子25についてはオンの状態が維持される。電流は、第1リアクトル7、第5スイッチング素子25のダイオード254、第6スイッチング素子26のコレクタ端子261、第6スイッチング素子26のエミッタ端子262、第2リアクトル8の順番に流れる。第6スイッチング素子26がオンの状態であるので、電流エネルギが第1リアクトル7及び第2リアクトル8に蓄えられる。 When the state shown in FIG. 4 is obtained after the state shown in FIG. 3, the first switching element 21 and the second switching element 22 change from the on state to the off state, and the sixth switching element 26 is in the off state. Changes from to the on state. The third switching element 23 and the fourth switching element 24 are maintained in the off state, and the fifth switching element 25 is maintained in the on state. The current flows in the order of the first reactor 7, the diode 254 of the fifth switching element 25, the collector terminal 261 of the sixth switching element 26, the emitter terminal 262 of the sixth switching element 26, and the second reactor 8. Since the sixth switching element 26 is in the ON state, the current energy is stored in the first reactor 7 and the second reactor 8.
 図4が示す状態の次に、図3が示す状態が得られる。このように、図3が示す状態と、図4が示す状態とが交互に生じる。図4が示す状態の次に図3が示す状態が得られた直後、第1リアクトル7、第5スイッチング素子25のダイオード254、第6スイッチング素子26のコレクタ端子261、第6スイッチング素子26のエミッタ端子262、第2リアクトル8の順番に流れる電流は、維持される。 Next to the state shown in FIG. 4, the state shown in FIG. 3 is obtained. In this way, the state shown in FIG. 3 and the state shown in FIG. 4 alternately occur. Immediately after the state shown in FIG. 3 is obtained next to the state shown in FIG. 4, the first reactor 7, the diode 254 of the fifth switching element 25, the collector terminal 261 of the sixth switching element 26, and the emitter of the sixth switching element 26 are obtained. The current flowing in the order of the terminal 262 and the second reactor 8 is maintained.
 ところで、スイッチング素子におけるサージ電圧の大きさは、下記の式(1)により表される。
   VSURGE=L×dI/dt ・・・(1)
 式(1)において、“VSURGE”は、スイッチング素子におけるサージ電圧の大きさを示している。“L”は、スイッチング素子に接続されているコンデンサとスイッチング素子とを接続する配線についての配線インダクタンス成分の大きさを示している。“I”は、スイッチング素子のコレクタとエミッタとを流れる電流を示している。“t”は、時間を示している。“d”は、微分を示す記号である。
By the way, the magnitude of the surge voltage in the switching element is expressed by the following equation (1).
V SURGE = L × dI / dt ・ ・ ・ (1)
In the formula (1), "V SURGE " indicates the magnitude of the surge voltage in the switching element. “L” indicates the magnitude of the wiring inductance component for the wiring connecting the capacitor connected to the switching element and the switching element. “I” indicates the current flowing between the collector and the emitter of the switching element. “T” indicates time. “D” is a symbol indicating differentiation.
 配線インダクタンス成分Lは配線の長さに比例するため、式(1)に示される通り、スイッチング素子におけるサージ電圧の大きさは、配線の長さに比例する。図5は、実施の形態1にかかる電力変換基板2の回路におけるサージ電圧の大きさに影響を与える配線30の例を示す図である。図5は、系統電圧が正である場合のサージ電圧の大きさに影響を与える配線30を示している。図5において、配線30は、相対的に太い線で示されている。 Since the wiring inductance component L is proportional to the length of the wiring, the magnitude of the surge voltage in the switching element is proportional to the length of the wiring as shown in the equation (1). FIG. 5 is a diagram showing an example of wiring 30 that affects the magnitude of surge voltage in the circuit of the power conversion board 2 according to the first embodiment. FIG. 5 shows the wiring 30 that affects the magnitude of the surge voltage when the system voltage is positive. In FIG. 5, the wiring 30 is shown by a relatively thick line.
 図5に示される通り、配線30の長さは、第1スイッチング素子21、第2スイッチング素子22、第5スイッチング素子25及び第6スイッチング素子26とスナバコンデンサ9との距離に依存する。系統電圧が負である場合、サージ電圧の大きさに影響を与える配線の長さは、第3スイッチング素子23、第4スイッチング素子24、第5スイッチング素子25及び第6スイッチング素子26とスナバコンデンサ9との距離に依存する。上述の通り、スナバコンデンサ9は平滑コンデンサ5とインバータ6との間に位置している。 As shown in FIG. 5, the length of the wiring 30 depends on the distance between the first switching element 21, the second switching element 22, the fifth switching element 25 and the sixth switching element 26, and the snubber capacitor 9. When the system voltage is negative, the length of the wiring that affects the magnitude of the surge voltage is the third switching element 23, the fourth switching element 24, the fifth switching element 25, the sixth switching element 26, and the snubber capacitor 9. Depends on the distance to. As described above, the snubber capacitor 9 is located between the smoothing capacitor 5 and the inverter 6.
 すなわち、電力変換基板2の回路におけるサージ電圧の大きさは、第1スイッチング素子21、第2スイッチング素子22、第3スイッチング素子23、第4スイッチング素子24、第5スイッチング素子25及び第6スイッチング素子26と、平滑コンデンサ5とを接続する配線の長さに依存する。 That is, the magnitude of the surge voltage in the circuit of the power conversion board 2 is the first switching element 21, the second switching element 22, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element. It depends on the length of the wiring connecting 26 and the smoothing capacitor 5.
 図6は、実施の形態1にかかる電力変換基板2が有する複数の素子が基板12に配置されている状態を模式的に示す第1図である。図6は、基板12の表面の状態と基板12の裏面の状態とを示している。説明の便宜上、図6には、基板12は示されていない。電力変換基板2が有するすべての素子は、基板12の表面に配置されていて、基板12の裏面には配置されていない。基板12の裏面には、配線が形成されている。図6の基板12の裏面には、図6の基板12の表面に示されている複数の素子の各々の位置を示す図形が示されている。 FIG. 6 is a diagram schematically showing a state in which a plurality of elements included in the power conversion board 2 according to the first embodiment are arranged on the board 12. FIG. 6 shows a state of the front surface of the substrate 12 and a state of the back surface of the substrate 12. For convenience of explanation, the substrate 12 is not shown in FIG. All the elements included in the power conversion substrate 2 are arranged on the front surface of the substrate 12, not on the back surface of the substrate 12. Wiring is formed on the back surface of the substrate 12. On the back surface of the substrate 12 of FIG. 6, a figure showing the position of each of the plurality of elements shown on the front surface of the substrate 12 of FIG. 6 is shown.
 図6には、第1平滑コンデンサ5A、第2平滑コンデンサ5B及び第3平滑コンデンサ5Cが示されている。第1平滑コンデンサ5A、第2平滑コンデンサ5B及び第3平滑コンデンサ5Cは、平滑コンデンサ5の例である。図6には、第1スナバコンデンサ9A及び第2スナバコンデンサ9Bが示されている。第1スナバコンデンサ9A及び第2スナバコンデンサ9Bは、スナバコンデンサ9の例である。基板12の表面には配線31が設けられており、基板12の裏面には配線32が設けられている。 FIG. 6 shows the first smoothing capacitor 5A, the second smoothing capacitor 5B, and the third smoothing capacitor 5C. The first smoothing capacitor 5A, the second smoothing capacitor 5B, and the third smoothing capacitor 5C are examples of the smoothing capacitor 5. FIG. 6 shows a first snubber capacitor 9A and a second snubber capacitor 9B. The first snubber capacitor 9A and the second snubber capacitor 9B are examples of the snubber capacitor 9. Wiring 31 is provided on the front surface of the substrate 12, and wiring 32 is provided on the back surface of the substrate 12.
 第2スイッチング素子22は、ボディ部41と、端子部42とを有する。第2スイッチング素子22のボディ部41は、第2スイッチング素子22のスイッチング機能を有する部位である。第2スイッチング素子22の端子部42は、コレクタ端子221、エミッタ端子222及びゲート端子223である。図6では、コレクタ端子の右側に記号「C」が記載されており、エミッタ端子の右側に記号「E」が記載されており、ゲート端子の右側に記号「G」が記載されている。 The second switching element 22 has a body portion 41 and a terminal portion 42. The body portion 41 of the second switching element 22 is a portion having a switching function of the second switching element 22. The terminal portion 42 of the second switching element 22 is a collector terminal 221 and an emitter terminal 222 and a gate terminal 223. In FIG. 6, the symbol “C” is described on the right side of the collector terminal, the symbol “E” is described on the right side of the emitter terminal, and the symbol “G” is described on the right side of the gate terminal.
 第1スイッチング素子21、第3スイッチング素子23、第4スイッチング素子24、第5スイッチング素子25及び第6スイッチング素子26の各々も、第2スイッチング素子22と同様に、ボディ部41と、端子部42とを有する。図6では、第1スイッチング素子21、第3スイッチング素子23、第4スイッチング素子24、第5スイッチング素子25及び第6スイッチング素子26の各々の端子部42は、破線の楕円で示されている。 Like the second switching element 22, each of the first switching element 21, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26 also has a body portion 41 and a terminal portion 42. And have. In FIG. 6, each terminal portion 42 of the first switching element 21, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26 is indicated by a broken ellipse.
 第1スイッチング素子21、第2スイッチング素子22、第3スイッチング素子23、第4スイッチング素子24、第5スイッチング素子25及び第6スイッチング素子26の各々は、端子部42がボディ部41より平滑コンデンサ5の側に位置する状態で基板12に配置されている。 In each of the first switching element 21, the second switching element 22, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26, the terminal portion 42 is a smoothing capacitor 5 from the body portion 41. It is arranged on the substrate 12 in a state of being located on the side of.
 つまり、第1スイッチング素子21、第2スイッチング素子22、第3スイッチング素子23、第4スイッチング素子24、第5スイッチング素子25及び第6スイッチング素子26の各々において、端子部42はボディ部41より平滑コンデンサ5に近い。端子部42がボディ部41より平滑コンデンサ5に近い場合、配線31及び配線32の長さは、ボディ部41が端子部42より平滑コンデンサ5に近い場合に比べて短い。式(1)を用いた説明から理解することができるように、スイッチング素子におけるサージ電圧は配線の長さが短いほど小さい。 That is, in each of the first switching element 21, the second switching element 22, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26, the terminal portion 42 is smoother than the body portion 41. Close to capacitor 5. When the terminal portion 42 is closer to the smoothing capacitor 5 than the body portion 41, the lengths of the wiring 31 and the wiring 32 are shorter than those when the body portion 41 is closer to the smoothing capacitor 5 than the terminal portion 42. As can be understood from the explanation using the equation (1), the surge voltage in the switching element becomes smaller as the wiring length becomes shorter.
 したがって、実施の形態1の各スイッチング素子におけるサージ電圧は、ボディ部41が端子部42より平滑コンデンサ5に近い場合に比べて小さくなる。その結果、電力変換基板2は、サージ電圧が発生した場合にインバータ6に含まれる複数のスイッチング素子の各々が故障することを抑制することができる。 Therefore, the surge voltage in each switching element of the first embodiment is smaller than that in the case where the body portion 41 is closer to the smoothing capacitor 5 than the terminal portion 42. As a result, the power conversion board 2 can prevent each of the plurality of switching elements included in the inverter 6 from failing when a surge voltage is generated.
 図6に示される通り、第1駆動信号をもとに動作する第1スイッチング素子21と第2スイッチング素子22との組は第1組51と定義され、第2駆動信号をもとに動作する第3スイッチング素子23と第4スイッチング素子24との組は第2組52と定義され、短絡部11が有する第5スイッチング素子25と第6スイッチング素子26との組は第3組53と定義される。図6では、第1組51、第2組52及び第3組53の各々は、破線の枠で示されている。 As shown in FIG. 6, the pair of the first switching element 21 and the second switching element 22 that operates based on the first drive signal is defined as the first set 51, and operates based on the second drive signal. The pair of the third switching element 23 and the fourth switching element 24 is defined as the second set 52, and the pair of the fifth switching element 25 and the sixth switching element 26 of the short-circuit portion 11 is defined as the third set 53. NS. In FIG. 6, each of the first group 51, the second group 52, and the third group 53 is shown by a broken line frame.
 図6に示される通り、インバータ6に含まれる第1スイッチング素子21、第2スイッチング素子22、第3スイッチング素子23、第4スイッチング素子24、第5スイッチング素子25及び第6スイッチング素子26は、第1組51、第3組53、第2組52の順番で基板12に配置されている。配線は、インバータ6に含まれる6個のスイッチング素子が上記の順番で配置されると、当該6個のスイッチング素子が上記の順番以外の順番で配置された場合に比べて短くなる。そのため、実施の形態1の各スイッチング素子におけるサージ電圧は小さくなる。したがって、電力変換基板2は、サージ電圧が発生した場合にインバータ6に含まれる複数のスイッチング素子の各々が故障することを抑制することができる。 As shown in FIG. 6, the first switching element 21, the second switching element 22, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26 included in the inverter 6 are the third. The first set 51, the third set 53, and the second set 52 are arranged on the substrate 12 in this order. When the six switching elements included in the inverter 6 are arranged in the above order, the wiring becomes shorter than when the six switching elements are arranged in an order other than the above order. Therefore, the surge voltage in each switching element of the first embodiment becomes small. Therefore, the power conversion board 2 can prevent each of the plurality of switching elements included in the inverter 6 from failing when a surge voltage is generated.
 上述の通り、第1スイッチング素子21、第2スイッチング素子22、第3スイッチング素子23、第4スイッチング素子24、第5スイッチング素子25及び第6スイッチング素子26は、第1組51、第3組53、第2組52の順番で基板12に配置されている。つまり、短絡部11が有する第5スイッチング素子25と第6スイッチング素子26との組である第3組53は、第1組51と第2組52との間に位置する。 As described above, the first switching element 21, the second switching element 22, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26 are the first group 51 and the third group 53. , The second set 52 is arranged on the substrate 12 in this order. That is, the third set 53, which is a set of the fifth switching element 25 and the sixth switching element 26 included in the short-circuit portion 11, is located between the first set 51 and the second set 52.
 すなわち、第1スイッチング素子21と第3スイッチング素子23とを結ぶ配線の長さは、第1スイッチング素子21と第3スイッチング素子23とが隣り合って配置される場合に比べて長い。スイッチング素子の誤動作によって発生する短絡電流は、配線インダクタンス成分が短い、つまり短い経路だと大きくなり、スイッチング素子の破壊を引き起こす場合がある。そのため、電力変換基板2は、第1スイッチング素子21から第3スイッチング素子23に流れる短絡電流を低減することができる。同様に、電力変換基板2は、第2スイッチング素子22から第4スイッチング素子24に流れる短絡電流を低減することができる。 That is, the length of the wiring connecting the first switching element 21 and the third switching element 23 is longer than the case where the first switching element 21 and the third switching element 23 are arranged next to each other. The short-circuit current generated by the malfunction of the switching element becomes large when the wiring inductance component is short, that is, in a short path, and may cause the switching element to be destroyed. Therefore, the power conversion board 2 can reduce the short-circuit current flowing from the first switching element 21 to the third switching element 23. Similarly, the power conversion board 2 can reduce the short-circuit current flowing from the second switching element 22 to the fourth switching element 24.
 上述の通り、電力変換基板2は、平滑コンデンサ5とインバータ6との間に位置しているスナバコンデンサ9を有する。具体的には、図6に示される通り、電力変換基板2は、第1スナバコンデンサ9A及び第2スナバコンデンサ9Bを有する。第1スナバコンデンサ9Aは、第1駆動信号をもとに動作する第1スイッチング素子21及び第2スイッチング素子22に過電圧が印加される場合に第1スイッチング素子21及び第2スイッチング素子22を保護するコンデンサである。第2スナバコンデンサ9Bは、第2駆動信号をもとに動作する第3スイッチング素子23及び第4スイッチング素子24に過電圧が印加される場合に第3スイッチング素子23及び第4スイッチング素子24を保護するコンデンサである。 As described above, the power conversion board 2 has a snubber capacitor 9 located between the smoothing capacitor 5 and the inverter 6. Specifically, as shown in FIG. 6, the power conversion board 2 has a first snubber capacitor 9A and a second snubber capacitor 9B. The first snubber capacitor 9A protects the first switching element 21 and the second switching element 22 when an overvoltage is applied to the first switching element 21 and the second switching element 22 that operate based on the first drive signal. It is a capacitor. The second snubber capacitor 9B protects the third switching element 23 and the fourth switching element 24 when an overvoltage is applied to the third switching element 23 and the fourth switching element 24 that operate based on the second drive signal. It is a capacitor.
 第1スナバコンデンサ9Aは、平滑コンデンサ5とフルブリッジ部10とを接続する配線31に接続され、第1スイッチング素子21と第2スイッチング素子22との組である第1組51と平滑コンデンサ5との間に位置する。更に言うと、第1スナバコンデンサ9Aは、第1スイッチング素子21のコレクタ端子211と第2スイッチング素子22のエミッタ端子222との間に位置する。第1スイッチング素子21のコレクタ端子211と第2スイッチング素子22のエミッタ端子222との間は、サージ電圧の影響を受ける部位である。 The first snubber capacitor 9A is connected to the wiring 31 connecting the smoothing capacitor 5 and the full bridge portion 10, and includes the first set 51 and the smoothing capacitor 5, which are a set of the first switching element 21 and the second switching element 22. Located between. Furthermore, the first snubber capacitor 9A is located between the collector terminal 211 of the first switching element 21 and the emitter terminal 222 of the second switching element 22. The portion between the collector terminal 211 of the first switching element 21 and the emitter terminal 222 of the second switching element 22 is a portion affected by the surge voltage.
 第2スナバコンデンサ9Bは、平滑コンデンサ5とフルブリッジ部10とを接続する配線31に接続され、第3スイッチング素子23と第4スイッチング素子24との組である第2組52と平滑コンデンサ5との間に位置する。更に言うと、第2スナバコンデンサ9Bは、第3スイッチング素子23のエミッタ端子232と第4スイッチング素子24のコレクタ端子241との間に位置する。第3スイッチング素子23のエミッタ端子232と第4スイッチング素子24のコレクタ端子241との間は、サージ電圧の影響を受ける部位である。 The second snubber capacitor 9B is connected to the wiring 31 connecting the smoothing capacitor 5 and the full bridge portion 10, and includes the second set 52 and the smoothing capacitor 5, which are a set of the third switching element 23 and the fourth switching element 24. Located between. Furthermore, the second snubber capacitor 9B is located between the emitter terminal 232 of the third switching element 23 and the collector terminal 241 of the fourth switching element 24. The portion between the emitter terminal 232 of the third switching element 23 and the collector terminal 241 of the fourth switching element 24 is a portion affected by the surge voltage.
 電力変換基板2は、第1スナバコンデンサ9A及び第2スナバコンデンサ9Bを有するので、第1スイッチング素子21、第2スイッチング素子22、第3スイッチング素子23及び第4スイッチング素子24を保護することができると共に、短絡部11が有する第5スイッチング素子25及び第6スイッチング素子26の各々に印加されるサージ電圧を抑制することができる。したがって、電力変換基板2は、サージ電圧が発生した場合にインバータ6に含まれる複数のスイッチング素子の各々が故障することを抑制することができる。 Since the power conversion board 2 has the first snubber capacitor 9A and the second snubber capacitor 9B, it is possible to protect the first switching element 21, the second switching element 22, the third switching element 23, and the fourth switching element 24. At the same time, the surge voltage applied to each of the fifth switching element 25 and the sixth switching element 26 included in the short-circuit portion 11 can be suppressed. Therefore, the power conversion board 2 can prevent each of the plurality of switching elements included in the inverter 6 from failing when a surge voltage is generated.
 図7は、実施の形態1にかかる電力変換基板2が有する複数の素子が基板12に配置されている状態を模式的に示す第2図である。図7は、基板12の表面の状態を示している。説明の便宜上、図7には、基板12は示されていない。上述の通り、電力変換基板2が有するすべての素子は、基板12の表面に配置されている。 FIG. 7 is a second diagram schematically showing a state in which a plurality of elements included in the power conversion board 2 according to the first embodiment are arranged on the board 12. FIG. 7 shows the state of the surface of the substrate 12. For convenience of explanation, the substrate 12 is not shown in FIG. As described above, all the elements of the power conversion board 2 are arranged on the surface of the board 12.
 説明の都合により図6には示されていないが、電力変換基板2は、第1スイッチング素子21を駆動する第1駆動回路61と、第2スイッチング素子22を駆動する第2駆動回路62と、第3スイッチング素子23を駆動する第3駆動回路63と、第4スイッチング素子24を駆動する第4駆動回路64と、第5スイッチング素子25を駆動する第5駆動回路65と、第6スイッチング素子26を駆動する第6駆動回路66とを更に有する。 Although not shown in FIG. 6 for convenience of explanation, the power conversion board 2 includes a first drive circuit 61 for driving the first switching element 21, a second drive circuit 62 for driving the second switching element 22, and the like. A third drive circuit 63 that drives the third switching element 23, a fourth drive circuit 64 that drives the fourth switching element 24, a fifth drive circuit 65 that drives the fifth switching element 25, and a sixth switching element 26. It further has a sixth drive circuit 66 for driving the above.
 第1駆動回路61は、制御装置3によって生成される第1駆動信号にしたがって第1スイッチング素子21のゲートについて充放電を行い、第1スイッチング素子21のオンとオフとを制御する。第1駆動回路61は、第1スイッチング素子21の端子部42の側でなくボディ部41の側に位置する状態で基板12に配置されている。図7では、第1スイッチング素子21の端子部42は、破線の楕円で示されている。図7では、端子部42の側は「主回路部側」と記載されており、ボディ部41の側は「制御部側」と記載されている。 The first drive circuit 61 charges and discharges the gate of the first switching element 21 according to the first drive signal generated by the control device 3, and controls the on and off of the first switching element 21. The first drive circuit 61 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the first switching element 21 but on the body portion 41 side. In FIG. 7, the terminal portion 42 of the first switching element 21 is indicated by a broken line ellipse. In FIG. 7, the side of the terminal portion 42 is described as “main circuit portion side”, and the side of the body portion 41 is described as “control unit side”.
 第2駆動回路62は、制御装置3によって生成される第1駆動信号にしたがって第2スイッチング素子22のゲートについて充放電を行い、第2スイッチング素子22のオンとオフとを制御する。第2駆動回路62は、第2スイッチング素子22の端子部42の側でなくボディ部41の側に位置する状態で基板12に配置されている。 The second drive circuit 62 charges and discharges the gate of the second switching element 22 according to the first drive signal generated by the control device 3, and controls the on and off of the second switching element 22. The second drive circuit 62 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the second switching element 22 but on the body portion 41 side.
 第3駆動回路63は、制御装置3によって生成される第2駆動信号にしたがって第3スイッチング素子23のゲートについて充放電を行い、第3スイッチング素子23のオンとオフとを制御する。第3駆動回路63は、第3スイッチング素子23の端子部42の側でなくボディ部41の側に位置する状態で基板12に配置されている。 The third drive circuit 63 charges and discharges the gate of the third switching element 23 according to the second drive signal generated by the control device 3, and controls the on and off of the third switching element 23. The third drive circuit 63 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the third switching element 23 but on the body portion 41 side.
 第4駆動回路64は、制御装置3によって生成される第2駆動信号にしたがって第4スイッチング素子24のゲートについて充放電を行い、第4スイッチング素子24のオンとオフとを制御する。第4駆動回路64は、第4スイッチング素子24の端子部42の側でなくボディ部41の側に位置する状態で基板12に配置されている。 The fourth drive circuit 64 charges and discharges the gate of the fourth switching element 24 according to the second drive signal generated by the control device 3, and controls the on and off of the fourth switching element 24. The fourth drive circuit 64 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the fourth switching element 24 but on the body portion 41 side.
 第5駆動回路65は、制御装置3によって生成される第3駆動信号にしたがって第5スイッチング素子25のゲートについて充放電を行い、第5スイッチング素子25のオンとオフとを制御する。第5駆動回路65は、第5スイッチング素子25の端子部42の側でなくボディ部41の側に位置する状態で基板12に配置されている。 The fifth drive circuit 65 charges and discharges the gate of the fifth switching element 25 according to the third drive signal generated by the control device 3, and controls the on and off of the fifth switching element 25. The fifth drive circuit 65 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the fifth switching element 25 but on the body portion 41 side.
 第6駆動回路66は、制御装置3によって生成される第4駆動信号にしたがって第6スイッチング素子26のゲートについて充放電を行い、第6スイッチング素子26のオンとオフとを制御する。第6駆動回路66は、第6スイッチング素子26の端子部42の側でなくボディ部41の側に位置する状態で基板12に配置されている。 The sixth drive circuit 66 charges and discharges the gate of the sixth switching element 26 according to the fourth drive signal generated by the control device 3, and controls the on and off of the sixth switching element 26. The sixth drive circuit 66 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the sixth switching element 26 but on the body portion 41 side.
 第1駆動回路61の構成は、第2駆動回路62、第3駆動回路63、第4駆動回路64、第5駆動回路65及び第6駆動回路66の各々と同じである。以下では、第1駆動回路61、第2駆動回路62、第3駆動回路63、第4駆動回路64、第5駆動回路65及び第6駆動回路66を代表して、第1駆動回路61を更に説明する。 The configuration of the first drive circuit 61 is the same as that of each of the second drive circuit 62, the third drive circuit 63, the fourth drive circuit 64, the fifth drive circuit 65, and the sixth drive circuit 66. In the following, the first drive circuit 61 will be further referred to on behalf of the first drive circuit 61, the second drive circuit 62, the third drive circuit 63, the fourth drive circuit 64, the fifth drive circuit 65, and the sixth drive circuit 66. explain.
 図8は、実施の形態1にかかる電力変換基板2が有する第1駆動回路61の効果を説明するための第1図である。図8は、図7に対応していて、第1駆動回路61が第1スイッチング素子21の端子部42の側でなくボディ部41の側に位置する状態で基板12に配置されている場合の図である。図8は、電力の変換が行われる場合の主の電流が流れる主回路部67と、第1駆動回路61と第1スイッチング素子21のエミッタ端子212とを結ぶゲート駆動回路部68とを示している。図8は、主回路部67とゲート駆動回路部68との共通の部位である共通回路部69を更に示している。図8において、共通回路部69は、相対的に太い線で示されている。 FIG. 8 is a diagram for explaining the effect of the first drive circuit 61 included in the power conversion board 2 according to the first embodiment. FIG. 8 corresponds to FIG. 7, and is a case where the first drive circuit 61 is arranged on the substrate 12 in a state where the first drive circuit 61 is located not on the terminal portion 42 side of the first switching element 21 but on the body portion 41 side. It is a figure. FIG. 8 shows a main circuit unit 67 through which the main current flows when power conversion is performed, and a gate drive circuit unit 68 connecting the first drive circuit 61 and the emitter terminal 212 of the first switching element 21. There is. FIG. 8 further shows a common circuit unit 69, which is a common portion between the main circuit unit 67 and the gate drive circuit unit 68. In FIG. 8, the common circuit unit 69 is shown by a relatively thick line.
 図9は、実施の形態1にかかる電力変換基板2が有する第1駆動回路61の効果を説明するための第2図である。図9は、図7に対応しておらず、比較例を示す図である。具体的には、図9は、第1駆動回路61が第1スイッチング素子21のボディ部41の側でなく端子部42の側に位置する状態で基板12に配置される場合の図である。図9は、図8と同様に、主回路部67、ゲート駆動回路部68及び共通回路部69を示している。図9において、共通回路部69は、相対的に太い線で示されている。 FIG. 9 is a second diagram for explaining the effect of the first drive circuit 61 included in the power conversion board 2 according to the first embodiment. FIG. 9 is a diagram showing a comparative example, which does not correspond to FIG. 7. Specifically, FIG. 9 is a diagram in the case where the first drive circuit 61 is arranged on the substrate 12 in a state where it is located not on the side of the body portion 41 of the first switching element 21 but on the side of the terminal portion 42. FIG. 9 shows the main circuit unit 67, the gate drive circuit unit 68, and the common circuit unit 69, as in FIG. In FIG. 9, the common circuit unit 69 is shown by a relatively thick line.
 図8と図9とを比較すると明らかな通り、第1駆動回路61が第1スイッチング素子21の端子部42の側でなくボディ部41の側に位置する状態で基板12に配置されると、実施の形態1の共通回路部69は、比較例の共通回路部69より短くなる。つまり、実施の形態1の共通回路部69のインダクタンスは、比較例の共通回路部69のインダクタンスより小さい。 As is clear from a comparison between FIGS. 8 and 9, when the first drive circuit 61 is arranged on the substrate 12 in a state where it is located not on the terminal portion 42 side of the first switching element 21 but on the body portion 41 side, The common circuit unit 69 of the first embodiment is shorter than the common circuit unit 69 of the comparative example. That is, the inductance of the common circuit unit 69 of the first embodiment is smaller than the inductance of the common circuit unit 69 of the comparative example.
 上述の通り、実施の形態1では、第1駆動回路61が第1スイッチング素子21の端子部42の側でなくボディ部41の側に位置する状態で基板12に配置されている。そのため、電力変換基板2は、主回路部67を流れる電流の変動によって発生する電圧により第1駆動回路61が誤動作することを抑制することができる。更に言うと、電力変換基板2は、主回路部67を流れる電流の変動で発生する電圧のノイズによって第1駆動回路61が誤動作することを抑制することができる。 As described above, in the first embodiment, the first drive circuit 61 is arranged on the substrate 12 in a state where it is located not on the terminal portion 42 side of the first switching element 21 but on the body portion 41 side. Therefore, the power conversion board 2 can prevent the first drive circuit 61 from malfunctioning due to the voltage generated by the fluctuation of the current flowing through the main circuit unit 67. Furthermore, the power conversion board 2 can prevent the first drive circuit 61 from malfunctioning due to voltage noise generated by fluctuations in the current flowing through the main circuit unit 67.
 上述の通り、実施の形態1にかかる電力変換基板2は、第5スイッチング素子25及び第6スイッチング素子26を有する短絡部11を有するので、交流電流に生じるリプルを抑制すると共に漏洩電流を低減させることができる。加えて、電力変換基板2は、フルブリッジ回路を構成する第1スイッチング素子21、第2スイッチング素子22、第3スイッチング素子23及び第4スイッチング素子24を有するフルブリッジ部10を有する。 As described above, since the power conversion substrate 2 according to the first embodiment has the short-circuit portion 11 having the fifth switching element 25 and the sixth switching element 26, the ripple generated in the alternating current is suppressed and the leakage current is reduced. be able to. In addition, the power conversion board 2 has a full bridge portion 10 having a first switching element 21, a second switching element 22, a third switching element 23, and a fourth switching element 24 that form a full bridge circuit.
 第1スイッチング素子21、第2スイッチング素子22、第3スイッチング素子23、第4スイッチング素子24、第5スイッチング素子25及び第6スイッチング素子26の各々は、端子部42がボディ部41より平滑コンデンサ5の側に位置する状態で基板12に配置されている。そのため、実施の形態1の各スイッチング素子におけるサージ電圧は、ボディ部41が端子部42より平滑コンデンサ5の側に位置する場合に比べて小さくなる。その結果、電力変換基板2は、サージ電圧が発生した場合にインバータ6に含まれる6個のスイッチング素子の各々が故障することを抑制することができる。 In each of the first switching element 21, the second switching element 22, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26, the terminal portion 42 is a smoothing capacitor 5 from the body portion 41. It is arranged on the substrate 12 in a state of being located on the side of. Therefore, the surge voltage in each switching element of the first embodiment is smaller than that in the case where the body portion 41 is located closer to the smoothing capacitor 5 than the terminal portion 42. As a result, the power conversion board 2 can prevent each of the six switching elements included in the inverter 6 from failing when a surge voltage is generated.
 したがって、実施の形態1にかかる電力変換基板2は、交流電流に生じるリプルを抑制すると共に漏洩電流を低減させ、かつサージ電圧が発生した場合にインバータ6に含まれる複数のスイッチング素子の各々が故障することを抑制することができる。更に言うと、インバータ6に含まれる複数のスイッチング素子の一部又は全部がオフの状態でサージ電圧が発生した場合、電力変換基板2は、インバータ6に含まれる複数のスイッチング素子の各々が故障することを抑制することができる。 Therefore, in the power conversion board 2 according to the first embodiment, ripples generated in the alternating current are suppressed, leakage current is reduced, and when a surge voltage is generated, each of the plurality of switching elements included in the inverter 6 fails. Can be suppressed. Furthermore, when a surge voltage is generated while some or all of the plurality of switching elements included in the inverter 6 are off, each of the plurality of switching elements included in the inverter 6 fails in the power conversion board 2. Can be suppressed.
 電力変換基板2は、パワーコンディショナ1が蓄電機器72から供給される直流電力を交流電力に変換して交流電力を電力系統71と負荷73との一方又は双方に出力する際にサージ電圧が発生した場合においても、インバータ6に含まれる複数のスイッチング素子の各々が故障することを抑制することができる。 In the power conversion board 2, a surge voltage is generated when the power conditioner 1 converts the DC power supplied from the power storage device 72 into AC power and outputs the AC power to one or both of the power system 71 and the load 73. Even in such a case, it is possible to prevent each of the plurality of switching elements included in the inverter 6 from failing.
 実施の形態1では、インバータ6に含まれる6個のスイッチング素子は、第1駆動信号をもとに動作する第1スイッチング素子21と第2スイッチング素子22との第1組51、短絡部11が有する第5スイッチング素子25と第6スイッチング素子26との第3組53、第2駆動信号をもとに動作する第3スイッチング素子23と第4スイッチング素子24との第2組52の順番で基板12に配置されている。配線は、6個のスイッチング素子が上記の順番で配置されると、上記の順番以外の順番で配置された場合に比べて短くなる。そのため、6個のスイッチング素子の各々におけるサージ電圧は小さくなる。その結果、電力変換基板2は、サージ電圧が発生した場合にインバータ6に含まれる複数のスイッチング素子の各々が故障することを抑制することができる。 In the first embodiment, the six switching elements included in the inverter 6 include a first set 51 of a first switching element 21 and a second switching element 22 that operate based on a first drive signal, and a short-circuit portion 11. The substrate is in the order of the third set 53 of the fifth switching element 25 and the sixth switching element 26, and the second set 52 of the third switching element 23 and the fourth switching element 24 that operate based on the second drive signal. It is arranged at 12. When the six switching elements are arranged in the above order, the wiring becomes shorter than when the six switching elements are arranged in an order other than the above order. Therefore, the surge voltage in each of the six switching elements becomes small. As a result, the power conversion board 2 can prevent each of the plurality of switching elements included in the inverter 6 from failing when a surge voltage is generated.
 6個のスイッチング素子が第1組51、第3組53、第2組52の順番で配置されているので、第1スイッチング素子21と第3スイッチング素子23とを結ぶ配線は、第1スイッチング素子21と第3スイッチング素子23とが隣り合って配置されている場合に比べて長い。スイッチング素子の誤動作によって発生する短絡電流は、配線インダクタンス成分が短い、つまり短い経路だと大きくなり、スイッチング素子の破壊を引き起こす場合がある。そのため、電力変換基板2は、第1スイッチング素子21から第3スイッチング素子23に流れる短絡電流を抑制することができる。同様に、電力変換基板2は、第3スイッチング素子23から第1スイッチング素子21に流れる短絡電流を抑制することができる。同様に、電力変換基板2は、第2スイッチング素子22から第4スイッチング素子24に流れる短絡電流と、第4スイッチング素子24から第2スイッチング素子22に流れる短絡電流を抑制することができる。 Since the six switching elements are arranged in the order of the first group 51, the third group 53, and the second group 52, the wiring connecting the first switching element 21 and the third switching element 23 is the first switching element. It is longer than the case where the 21 and the third switching element 23 are arranged next to each other. The short-circuit current generated by the malfunction of the switching element becomes large when the wiring inductance component is short, that is, in a short path, and may cause the switching element to be destroyed. Therefore, the power conversion board 2 can suppress the short-circuit current flowing from the first switching element 21 to the third switching element 23. Similarly, the power conversion board 2 can suppress the short-circuit current flowing from the third switching element 23 to the first switching element 21. Similarly, the power conversion board 2 can suppress the short-circuit current flowing from the second switching element 22 to the fourth switching element 24 and the short-circuit current flowing from the fourth switching element 24 to the second switching element 22.
 実施の形態1では、第1スイッチング素子21を駆動する第1駆動回路61は、第1スイッチング素子21の端子部42の側でなくボディ部41の側に位置する状態で基板12に配置されている。同様に、第2駆動回路62、第3駆動回路63、第4駆動回路64、第5駆動回路65及び第6駆動回路66の各々は、駆動するスイッチング素子の端子部42の側でなくボディ部41の側に位置する状態で基板12に配置されている。これにより、電力の変換が行われる場合の主の電流が流れる主回路部67とゲート駆動回路部68との共通の部位である共通回路部69が比較的短くなる。そのため、共通回路部69のインダクタンスが比較的小さくなる。したがって、電力変換基板2は、電流が主回路部67を流れる場合に発生する電圧によって第1駆動回路61、第2駆動回路62、第3駆動回路63、第4駆動回路64、第5駆動回路65及び第6駆動回路66の各々が誤動作することを抑制することができる。なお、上述の通り、ゲート駆動回路部68は、駆動回路と当該駆動回路が駆動するスイッチング素子のエミッタ端子とを結ぶ配線である。 In the first embodiment, the first drive circuit 61 for driving the first switching element 21 is arranged on the substrate 12 in a state of being located not on the terminal portion 42 side of the first switching element 21 but on the body portion 41 side. There is. Similarly, each of the second drive circuit 62, the third drive circuit 63, the fourth drive circuit 64, the fifth drive circuit 65, and the sixth drive circuit 66 is not on the side of the terminal portion 42 of the switching element to be driven, but on the body portion. It is arranged on the substrate 12 in a state of being located on the side of 41. As a result, the common circuit section 69, which is a common portion between the main circuit section 67 through which the main current flows when the power is converted and the gate drive circuit section 68, becomes relatively short. Therefore, the inductance of the common circuit unit 69 becomes relatively small. Therefore, the power conversion board 2 has a first drive circuit 61, a second drive circuit 62, a third drive circuit 63, a fourth drive circuit 64, and a fifth drive circuit depending on the voltage generated when the current flows through the main circuit unit 67. It is possible to prevent each of the 65 and the sixth drive circuit 66 from malfunctioning. As described above, the gate drive circuit unit 68 is a wiring connecting the drive circuit and the emitter terminal of the switching element driven by the drive circuit.
 フルブリッジ部10は、直流電力を交流電力に変換する機能と交流電力を直流電力に変換する機能との一方のみを有していてもよい。 The full bridge unit 10 may have only one of a function of converting DC power into AC power and a function of converting AC power into DC power.
実施の形態2.
 図10は、実施の形態2にかかるパワーコンディショナが有する基板12Aを模式的に示す図である。実施の形態2では、実施の形態1の基板12が基板12Aに置き換えられている。実施の形態1の基板12が基板12Aに置き換えられている点が、実施の形態2と実施の形態1との相違点である。実施の形態2では、実施の形態1との相違点を主に説明する。
Embodiment 2.
FIG. 10 is a diagram schematically showing a substrate 12A included in the power conditioner according to the second embodiment. In the second embodiment, the substrate 12 of the first embodiment is replaced with the substrate 12A. The difference between the second embodiment and the first embodiment is that the substrate 12 of the first embodiment is replaced with the substrate 12A. In the second embodiment, the differences from the first embodiment will be mainly described.
 図10は、基板12Aの分解斜視図である。図10に示される通り、基板12Aは、第1配線層121、第2配線層122、第3配線層123及び第4配線層124を有する4層基板である。第1配線層121、第2配線層122、第3配線層123及び第4配線層124は、第1配線層121、第2配線層122、第3配線層123、第4配線層124の順番で重ねられている。 FIG. 10 is an exploded perspective view of the substrate 12A. As shown in FIG. 10, the substrate 12A is a four-layer substrate having a first wiring layer 121, a second wiring layer 122, a third wiring layer 123, and a fourth wiring layer 124. The first wiring layer 121, the second wiring layer 122, the third wiring layer 123, and the fourth wiring layer 124 are in the order of the first wiring layer 121, the second wiring layer 122, the third wiring layer 123, and the fourth wiring layer 124. It is piled up with.
 基板12Aは、第1配線層121と第2配線層122との間に位置する第1絶縁層125と、第2配線層122と第3配線層123との間に位置する第2絶縁層126と、第3配線層123と第4配線層124との間に位置する第3絶縁層127とを更に有する。 The substrate 12A has a first insulating layer 125 located between the first wiring layer 121 and the second wiring layer 122, and a second insulating layer 126 located between the second wiring layer 122 and the third wiring layer 123. And a third insulating layer 127 located between the third wiring layer 123 and the fourth wiring layer 124.
 図10には示されていないが、第1スイッチング素子21、第2スイッチング素子22、第3スイッチング素子23、第4スイッチング素子24、第5スイッチング素子25及び第6スイッチング素子26は、第1配線層121に配置されている。第1配線層121は、4層基板である基板12Aの外側のひとつの層である。図10には示されていないが、コンバータ4、平滑コンデンサ5、第1リアクトル7、第2リアクトル8、第1スナバコンデンサ9A及び第2スナバコンデンサ9Bも、第1配線層121に配置されている。 Although not shown in FIG. 10, the first switching element 21, the second switching element 22, the third switching element 23, the fourth switching element 24, the fifth switching element 25, and the sixth switching element 26 are the first wirings. It is arranged on the layer 121. The first wiring layer 121 is one layer outside the substrate 12A, which is a four-layer substrate. Although not shown in FIG. 10, the converter 4, the smoothing capacitor 5, the first reactor 7, the second reactor 8, the first snubber capacitor 9A and the second snubber capacitor 9B are also arranged in the first wiring layer 121. ..
 基板12Aの第2配線層122は、配線が位置する貫通孔以外が銅箔パターンである層である。つまり、第2配線層122は、基板の一方の面が銅のフィルムで覆われていて、配線のための貫通孔が形成されている層である。貫通孔には、配線が位置する。第2配線層122は、4層基板の中間のひとつの層である。第3配線層123及び第4配線層124の各々には、配線が設けられている。 The second wiring layer 122 of the substrate 12A is a layer having a copper foil pattern other than the through hole where the wiring is located. That is, the second wiring layer 122 is a layer in which one surface of the substrate is covered with a copper film and through holes for wiring are formed. Wiring is located in the through hole. The second wiring layer 122 is one layer in the middle of the four-layer substrate. Wiring is provided in each of the third wiring layer 123 and the fourth wiring layer 124.
 図11は、実施の形態2にかかるパワーコンディショナが有する基板12Aによって得られる効果を説明するための図である。図11は、基板12Aのうちの第1配線層121、第1絶縁層125及び第2配線層122を示している。上述の通り、第1配線層121は4層基板である基板12Aの外側のひとつの層であり、第2配線層122は、貫通孔以外が銅箔パターンの層である。 FIG. 11 is a diagram for explaining the effect obtained by the substrate 12A of the power conditioner according to the second embodiment. FIG. 11 shows the first wiring layer 121, the first insulating layer 125, and the second wiring layer 122 of the substrate 12A. As described above, the first wiring layer 121 is one layer outside the substrate 12A, which is a four-layer substrate, and the second wiring layer 122 is a layer having a copper foil pattern except for the through holes.
 図11の第1配線層121における直線の矢印131は、第1配線層121の配線の一部において流れる電流の向きを模式的に示している。当該配線の一部において電流が矢印131の向きに流れると、当該配線の一部を中心とする同心円状の磁場が発生する。図11の円状の矢印132は、当該磁場のなかのひとつの磁力線を示している。当該磁場は、配線のインダクタンス成分となる。 The straight arrow 131 in the first wiring layer 121 of FIG. 11 schematically indicates the direction of the current flowing in a part of the wiring of the first wiring layer 121. When a current flows in the direction of arrow 131 in a part of the wiring, a concentric magnetic field centered on the part of the wiring is generated. The circular arrow 132 in FIG. 11 indicates one magnetic field line in the magnetic field. The magnetic field becomes an inductance component of the wiring.
 第2配線層122が銅箔パターンの層であるので、第2配線層122には上記の磁場を打ち消す磁場を生成する渦電流133が流れる。つまり、渦電流133は、第3配線層123及び第4配線層124の各々に設けられている配線のインダクタンス成分を低減する。すなわち、実施の形態2にかかるパワーコンディショナは、4層基板である基板12Aの第2配線層122が銅箔パターンの層であるので、第3配線層123及び第4配線層124の各々に設けられている配線のインダクタンス成分を低減することができる。 Since the second wiring layer 122 is a layer of a copper foil pattern, an eddy current 133 that generates a magnetic field that cancels the above magnetic field flows through the second wiring layer 122. That is, the eddy current 133 reduces the inductance component of the wiring provided in each of the third wiring layer 123 and the fourth wiring layer 124. That is, in the power conditioner according to the second embodiment, since the second wiring layer 122 of the substrate 12A, which is a four-layer substrate, is a layer of the copper foil pattern, each of the third wiring layer 123 and the fourth wiring layer 124 can be used. It is possible to reduce the inductance component of the provided wiring.
 図12は、実施の形態1にかかるパワーコンディショナ1が有する制御装置3の一部又は全部がプロセッサ91によって実現される場合のプロセッサ91を示す図である。つまり、制御装置3の一部又は全部の機能は、メモリ92に格納されるプログラムを実行するプロセッサ91によって実現されてもよい。プロセッサ91は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、又はDSP(Digital Signal Processor)である。図12には、メモリ92も示されている。 FIG. 12 is a diagram showing a processor 91 when a part or all of the control device 3 included in the power conditioner 1 according to the first embodiment is realized by the processor 91. That is, some or all of the functions of the control device 3 may be realized by the processor 91 that executes the program stored in the memory 92. The processor 91 is a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, or a DSP (Digital Signal Processor). The memory 92 is also shown in FIG.
 制御装置3の一部又は全部の機能がプロセッサ91によって実現される場合、当該一部又は全部の機能は、プロセッサ91と、ソフトウェア、ファームウェア、又は、ソフトウェア及びファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラムを読み出して実行することにより、制御装置3の一部又は全部の機能を実現する。 When a part or all the functions of the control device 3 are realized by the processor 91, the part or all the functions are realized by the processor 91 and the software, the firmware, or the combination of the software and the firmware. The software or firmware is written as a program and stored in the memory 92. The processor 91 realizes a part or all the functions of the control device 3 by reading and executing the program stored in the memory 92.
 制御装置3の一部又は全部の機能がプロセッサ91によって実現される場合、パワーコンディショナ1は、制御装置3によって実行されるステップの一部又は全部が結果的に実行されることになるプログラムを格納するためのメモリ92を有する。メモリ92に格納されるプログラムは、制御装置3が実行する手順又は方法の一部又は全部をコンピュータに実行させるものであるともいえる。 When some or all of the functions of the control device 3 are realized by the processor 91, the power conditioner 1 is a program in which some or all of the steps executed by the control device 3 are eventually executed. It has a memory 92 for storing. It can be said that the program stored in the memory 92 causes the computer to execute a part or all of the procedure or method executed by the control device 3.
 メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)等の不揮発性もしくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disk)等である。 The memory 92 is, for example, non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). Alternatively, it may be a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disk), or the like.
 図13は、実施の形態1にかかるパワーコンディショナ1が有する制御装置3の一部又は全部が処理回路93によって実現される場合の処理回路93を示す図である。つまり、制御装置3の一部又は全部は、処理回路93によって実現されてもよい。 FIG. 13 is a diagram showing a processing circuit 93 when a part or all of the control device 3 included in the power conditioner 1 according to the first embodiment is realized by the processing circuit 93. That is, a part or all of the control device 3 may be realized by the processing circuit 93.
 処理回路93は、専用のハードウェアである。処理回路93は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものである。 The processing circuit 93 is dedicated hardware. The processing circuit 93 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Is.
 制御装置3の一部は、残部とは別個の専用のハードウェアであってもよい。 A part of the control device 3 may be dedicated hardware separate from the rest.
 制御装置3の複数の機能について、当該複数の機能の一部がソフトウェア又はファームウェアで実現され、当該複数の機能の残部が専用のハードウェアで実現されてもよい。このように、制御装置3の複数の機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって実現することができる。 Regarding the plurality of functions of the control device 3, some of the plurality of functions may be realized by software or firmware, and the rest of the plurality of functions may be realized by dedicated hardware. As described above, the plurality of functions of the control device 3 can be realized by hardware, software, firmware, or a combination thereof.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 1 パワーコンディショナ、2 電力変換基板、3 制御装置、4 コンバータ、5 平滑コンデンサ、5A 第1平滑コンデンサ、5B 第2平滑コンデンサ、5C 第3平滑コンデンサ、6 インバータ、7 第1リアクトル、8 第2リアクトル、9 スナバコンデンサ、9A 第1スナバコンデンサ、9B 第2スナバコンデンサ、10 フルブリッジ部、11 短絡部、12,12A 基板、13 第1配線、14 第2配線、15 第3配線、16 第4配線、21 第1スイッチング素子、22 第2スイッチング素子、23 第3スイッチング素子、24 第4スイッチング素子、25 第5スイッチング素子、26 第6スイッチング素子、30,31,32 配線、41 ボディ部、42 端子部、51 第1組、52 第2組、53 第3組、61 第1駆動回路、62 第2駆動回路、63 第3駆動回路、64 第4駆動回路、65 第5駆動回路、66 第6駆動回路、67 主回路部、68 ゲート駆動回路部、69 共通回路部、71 電力系統、72 蓄電機器、73 負荷、91 プロセッサ、92 メモリ、93 処理回路、121 第1配線層、122 第2配線層、123 第3配線層、124 第4配線層、125 第1絶縁層、126 第2絶縁層、127 第3絶縁層、131,132 矢印、133 渦電流、211,221,231,241,251,261 コレクタ端子、212,222,232,242,252,262 エミッタ端子、213,223,233,243,253,263 ゲート端子、214,224,234,244,254,264 ダイオード。 1 power conditioner, 2 power conversion board, 3 controller, 4 converter, 5 smoothing capacitor, 5A 1st smoothing capacitor, 5B 2nd smoothing capacitor, 5C 3rd smoothing capacitor, 6 inverter, 7 1st reactor, 8th 2nd Reactor, 9 snubber capacitor, 9A 1st snubber capacitor, 9B 2nd snubber capacitor, 10 full bridge, 11 short circuit, 12, 12A board, 13 1st wiring, 14 2nd wiring, 15 3rd wiring, 16 4th Wiring, 21 1st switching element, 22 2nd switching element, 23 3rd switching element, 24 4th switching element, 25 5th switching element, 26 6th switching element, 30, 31, 32 wiring, 41 body part, 42 Terminals, 51 1st set, 52 2nd set, 53 3rd set, 61 1st drive circuit, 62 2nd drive circuit, 63 3rd drive circuit, 64 4th drive circuit, 65 5th drive circuit, 66th 6 drive circuit, 67 main circuit, 68 gate drive circuit, 69 common circuit, 71 power system, 72 capacitor, 73 load, 91 processor, 92 memory, 93 processing circuit, 121 1st wiring layer, 122 2nd Wiring layer, 123 3rd wiring layer, 124 4th wiring layer, 125 1st insulating layer, 126 2nd insulating layer, 127 3rd insulating layer, 131, 132 arrow 133 vortex current, 211, 221, 231,241, 251,261 collector terminal, 212,222,2232,242,252,262 emitter terminal, 213,223,233,243,253,263 gate terminal, 214,224,234,244,254,264 capacitor.

Claims (5)

  1.  直流電圧を平滑する平滑コンデンサと、
     直流電力を交流電力に変換する機能と交流電力を直流電力に変換する機能との一方又は双方を有するフルブリッジ部と、
     交流電力を短絡する短絡部と、
     前記平滑コンデンサ、前記フルブリッジ部及び前記短絡部が配置されている基板とを備え、
     前記フルブリッジ部は、フルブリッジ回路を構成する第1スイッチング素子、第2スイッチング素子、第3スイッチング素子及び第4スイッチング素子を有し、
     前記短絡部は、第5スイッチング素子及び第6スイッチング素子を有し、
     前記第1スイッチング素子、前記第2スイッチング素子、前記第3スイッチング素子、前記第4スイッチング素子、前記第5スイッチング素子及び前記第6スイッチング素子の各々は、ボディ部と、端子部とを有し、
     前記第1スイッチング素子、前記第2スイッチング素子、前記第3スイッチング素子、前記第4スイッチング素子、前記第5スイッチング素子及び前記第6スイッチング素子の各々は、前記端子部が前記ボディ部より前記平滑コンデンサの側に位置する状態で前記基板に配置されている
     ことを特徴とする電力変換基板。
    A smoothing capacitor that smoothes DC voltage,
    A full bridge section that has one or both of a function to convert DC power to AC power and a function to convert AC power to DC power.
    A short-circuited part that short-circuits AC power,
    The smoothing capacitor, the full bridge portion, and the substrate on which the short-circuit portion is arranged are provided.
    The full bridge portion includes a first switching element, a second switching element, a third switching element, and a fourth switching element constituting the full bridge circuit.
    The short-circuited portion has a fifth switching element and a sixth switching element.
    Each of the first switching element, the second switching element, the third switching element, the fourth switching element, the fifth switching element, and the sixth switching element has a body portion and a terminal portion.
    In each of the first switching element, the second switching element, the third switching element, the fourth switching element, the fifth switching element, and the sixth switching element, the terminal portion is a smoothing capacitor from the body portion. A power conversion board characterized in that it is arranged on the board in a state of being located on the side of the above.
  2.  前記第1スイッチング素子及び前記第2スイッチング素子は、第1駆動信号をもとに動作し、
     前記第3スイッチング素子及び前記第4スイッチング素子は、第2駆動信号をもとに動作し、
     前記第1スイッチング素子、前記第2スイッチング素子、前記第3スイッチング素子、前記第4スイッチング素子、前記第5スイッチング素子及び前記第6スイッチング素子は、前記第1スイッチング素子と前記第2スイッチング素子との組、前記第5スイッチング素子と前記第6スイッチング素子との組、前記第3スイッチング素子と前記第4スイッチング素子との組の順番で前記基板に配置されている
     ことを特徴とする請求項1に記載の電力変換基板。
    The first switching element and the second switching element operate based on the first drive signal.
    The third switching element and the fourth switching element operate based on the second drive signal.
    The first switching element, the second switching element, the third switching element, the fourth switching element, the fifth switching element and the sixth switching element are the first switching element and the second switching element. The first aspect of the present invention is characterized in that the sets, the set of the fifth switching element and the sixth switching element, and the set of the third switching element and the fourth switching element are arranged on the substrate in this order. The power conversion board described.
  3.  前記平滑コンデンサと前記フルブリッジ部とを接続する配線に接続され、前記第1スイッチング素子と前記第2スイッチング素子との組と前記平滑コンデンサとの間に位置すると共に、前記第1スイッチング素子のコレクタ端子と前記第2スイッチング素子のエミッタ端子との間に位置する第1スナバコンデンサと、
     前記配線に接続され、前記第3スイッチング素子と前記第4スイッチング素子との組と前記平滑コンデンサとの間に位置すると共に、前記第3スイッチング素子のエミッタ端子と前記第4スイッチング素子のコレクタ端子との間に位置する第2スナバコンデンサと
     を更に備えることを特徴とする請求項2に記載の電力変換基板。
    It is connected to the wiring connecting the smoothing capacitor and the full bridge portion, is located between the pair of the first switching element and the second switching element and the smoothing capacitor, and is a collector of the first switching element. A first snubber capacitor located between the terminal and the emitter terminal of the second switching element,
    It is connected to the wiring and is located between the pair of the third switching element and the fourth switching element and the smoothing capacitor, and the emitter terminal of the third switching element and the collector terminal of the fourth switching element. The power conversion board according to claim 2, further comprising a second snubber capacitor located between the two.
  4.  前記第1スイッチング素子の前記端子部の側でなく前記ボディ部の側に位置する状態で前記基板に配置されていて前記第1スイッチング素子を駆動する第1駆動回路と、
     前記第2スイッチング素子の前記端子部の側でなく前記ボディ部の側に位置する状態で前記基板に配置されていて前記第2スイッチング素子を駆動する第2駆動回路と、
     前記第3スイッチング素子の前記端子部の側でなく前記ボディ部の側に位置する状態で前記基板に配置されていて前記第3スイッチング素子を駆動する第3駆動回路と、
     前記第4スイッチング素子の前記端子部の側でなく前記ボディ部の側に位置する状態で前記基板に配置されていて前記第4スイッチング素子を駆動する第4駆動回路と、
     前記第5スイッチング素子の前記端子部の側でなく前記ボディ部の側に位置する状態で前記基板に配置されていて前記第5スイッチング素子を駆動する第5駆動回路と、
     前記第6スイッチング素子の前記端子部の側でなく前記ボディ部の側に位置する状態で前記基板に配置されていて前記第6スイッチング素子を駆動する第6駆動回路と
     を更に備えることを特徴とする請求項1から3のいずれか1項に記載の電力変換基板。
    A first drive circuit that is arranged on the substrate and drives the first switching element in a state of being located not on the terminal portion side of the first switching element but on the body portion side.
    A second drive circuit that is arranged on the substrate and drives the second switching element so as to be located not on the terminal portion side of the second switching element but on the body portion side.
    A third drive circuit that is arranged on the substrate and drives the third switching element so as to be located not on the terminal portion side of the third switching element but on the body portion side.
    A fourth drive circuit that is arranged on the substrate and drives the fourth switching element in a state of being located not on the terminal portion side of the fourth switching element but on the body portion side.
    A fifth drive circuit that is arranged on the substrate and drives the fifth switching element in a state of being located not on the terminal portion side of the fifth switching element but on the body portion side.
    It is characterized by further including a sixth drive circuit that is arranged on the substrate in a state of being located not on the terminal portion side of the sixth switching element but on the body portion side and drives the sixth switching element. The power conversion board according to any one of claims 1 to 3.
  5.  前記基板は、4層基板であって、
     前記第1スイッチング素子、前記第2スイッチング素子、前記第3スイッチング素子、前記第4スイッチング素子、前記第5スイッチング素子及び前記第6スイッチング素子は、前記4層基板の外側のひとつの層に配置されており、
     前記4層基板の中間のひとつの層は、配線が位置する貫通孔以外が銅箔パターンである層である
     ことを特徴とする請求項1から4のいずれか1項に記載の電力変換基板。
    The substrate is a four-layer substrate.
    The first switching element, the second switching element, the third switching element, the fourth switching element, the fifth switching element, and the sixth switching element are arranged in one layer outside the four-layer substrate. And
    The power conversion substrate according to any one of claims 1 to 4, wherein one layer in the middle of the four-layer substrate is a layer having a copper foil pattern other than the through hole in which the wiring is located.
PCT/JP2020/000903 2020-01-14 2020-01-14 Power conversion board WO2021144853A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/000903 WO2021144853A1 (en) 2020-01-14 2020-01-14 Power conversion board
JP2020531549A JP6752400B1 (en) 2020-01-14 2020-01-14 Power conversion board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000903 WO2021144853A1 (en) 2020-01-14 2020-01-14 Power conversion board

Publications (1)

Publication Number Publication Date
WO2021144853A1 true WO2021144853A1 (en) 2021-07-22

Family

ID=72333533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000903 WO2021144853A1 (en) 2020-01-14 2020-01-14 Power conversion board

Country Status (2)

Country Link
JP (1) JP6752400B1 (en)
WO (1) WO2021144853A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127959A (en) * 1997-07-08 1999-01-29 Toshiba Fa Syst Eng Kk Inverter
JP2002044964A (en) * 2000-07-21 2002-02-08 Hitachi Ltd Semiconductor device, power converter and vehicle
JP2002125381A (en) * 2000-10-13 2002-04-26 Mitsubishi Electric Corp Power converter
JP2009089541A (en) * 2007-10-01 2009-04-23 Toshiba Carrier Corp Grid-interconnection inverter device
JP2013172469A (en) * 2012-02-17 2013-09-02 Mitsubishi Electric Corp Power module and air conditioner
JP2016219715A (en) * 2015-05-26 2016-12-22 住友ベークライト株式会社 Insulation gate bipolar transistor element, resin composition, and surge countermeasure member
JP2017163777A (en) * 2016-03-11 2017-09-14 オムロン株式会社 Inverter device
JP2017168721A (en) * 2016-03-17 2017-09-21 アルプス電気株式会社 Semiconductor device and manufacturing method of semiconductor device
WO2018186353A1 (en) * 2017-04-05 2018-10-11 ローム株式会社 Power module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127959A (en) * 1997-07-08 1999-01-29 Toshiba Fa Syst Eng Kk Inverter
JP2002044964A (en) * 2000-07-21 2002-02-08 Hitachi Ltd Semiconductor device, power converter and vehicle
JP2002125381A (en) * 2000-10-13 2002-04-26 Mitsubishi Electric Corp Power converter
JP2009089541A (en) * 2007-10-01 2009-04-23 Toshiba Carrier Corp Grid-interconnection inverter device
JP2013172469A (en) * 2012-02-17 2013-09-02 Mitsubishi Electric Corp Power module and air conditioner
JP2016219715A (en) * 2015-05-26 2016-12-22 住友ベークライト株式会社 Insulation gate bipolar transistor element, resin composition, and surge countermeasure member
JP2017163777A (en) * 2016-03-11 2017-09-14 オムロン株式会社 Inverter device
JP2017168721A (en) * 2016-03-17 2017-09-21 アルプス電気株式会社 Semiconductor device and manufacturing method of semiconductor device
WO2018186353A1 (en) * 2017-04-05 2018-10-11 ローム株式会社 Power module

Also Published As

Publication number Publication date
JP6752400B1 (en) 2020-09-09
JPWO2021144853A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2019239469A1 (en) Converter
JPWO2013132528A1 (en) Power converter
JP2005065412A (en) Stack structure in power converter
WO2021144853A1 (en) Power conversion board
JP2010041790A (en) Power conversion apparatus
WO2022004602A1 (en) Inverter device
JP4816421B2 (en) Variable speed drive device for induction motor
JP6150017B2 (en) Driving device, matrix converter and elevator system
JP2006311795A (en) Power supply circuit
US10978960B2 (en) Power converter and air conditioner equipped with the same
WO2018030031A1 (en) Induced voltage suppression device, motor system, and power conversion system
JP2007006565A (en) Power converter
JP5407744B2 (en) AC-DC converter
JP2017042040A (en) Power conversion device
JP2018038240A (en) Step-up and step-down power supply device
JP7413980B2 (en) power converter
JP7168872B2 (en) power converter
JP6428384B2 (en) Power converter and board mounting structure
JP7168873B2 (en) Harmonic reduction device
WO2021070403A1 (en) Dc power supply device and servo dc power supply system
WO2024004638A1 (en) Motor control unit, motor, and pump device
JP7227503B2 (en) power converter
JP7405056B2 (en) power converter
JPWO2019073506A1 (en) Semiconductor device and power conversion device
JP7264095B2 (en) power converter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020531549

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913921

Country of ref document: EP

Kind code of ref document: A1