WO2021144481A1 - Procedimiento electroquímico para platinar tetones de titanio y celda - Google Patents

Procedimiento electroquímico para platinar tetones de titanio y celda Download PDF

Info

Publication number
WO2021144481A1
WO2021144481A1 PCT/ES2020/070791 ES2020070791W WO2021144481A1 WO 2021144481 A1 WO2021144481 A1 WO 2021144481A1 ES 2020070791 W ES2020070791 W ES 2020070791W WO 2021144481 A1 WO2021144481 A1 WO 2021144481A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
titanium
electrodeposition
process according
stud
Prior art date
Application number
PCT/ES2020/070791
Other languages
English (en)
French (fr)
Inventor
Ramón Manuel Fernández Domene
José García Antón
Rita Sánchez Tovar
Dionisio García García
Gemma Roselló Márquez
María Encarnación Blasco Tamarit
María José Muñoz Portero
Original Assignee
Universitat Politècnica De València
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De València filed Critical Universitat Politècnica De València
Publication of WO2021144481A1 publication Critical patent/WO2021144481A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0642Anodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • Electrochemical process for plating titanium studs and cell refers to a process for plating titanium studs, which comprises stages of pretreatment of the surface of the titanium stud prior to the platinum electrodeposition stage and to an electrochemical cell where to carry carry out this procedure.
  • the invention can be encompassed in the area of electrochemistry, particularly in electrodeposition processes.
  • Platinum is a precious metal and one of the rarest elements in the earth's crust. It is a malleable and ductile material with a very high resistance to corrosion, which is why it is considered a noble metal. Platinum is commonly used as a catalyst, for example in catalytic converters, in fuel cells or in numerous electrolytic processes. It also has applications in the manufacture of pieces of equipment that work under severe temperature conditions and / or corrosive environments. It is also used in electronics due to its high conductivity.
  • Titanium is a metal with a high resistance to corrosion due to the spontaneous formation of a thin but compact oxide film on its surface. (passive film), which isolates it from the electrolyte and protects it against corrosion.
  • Passive film which isolates it from the electrolyte and protects it against corrosion.
  • This property makes titanium used in many electrochemical processes, especially those in which anodes with high corrosion resistance are needed.
  • the resistance of the passive film of titanium is no longer stable and tends to break locally when high potential differences such as industrial electrochemical cells are used and consequently intense corrosion processes occur.
  • said titanium anodes are usually coated with thin layers of platinum, especially in the areas of electrical contact, particularly in the areas where the current is preferably supplied or shifted.
  • the low interfacial resistance between the platinum layer and the electrolyte means that the potential drop across the passive film of titanium remains within safe values and that the titanium / platinum composite anode remains intact.
  • the present invention describes a process to form adherent, resistant and homogeneous coatings of a noble metal such as platinum on titanium parts or substrates, using surface pretreatment steps that solve the complexity and safety problems that other methods present. mentioned in the section on the state of the art.
  • the main advantage of this procedure is that it lengthens the life of the electrode.
  • the process as a whole is simple, without the need to use steps whose consumption of resources, energy and time is high, and easily scalable, which provides a fundamental advantage over the state of the art.
  • the substrates obtained by this procedure, such as parts or electrodes, are capable of being used in electrochemical processes.
  • the present invention refers to a process for coating titanium studs with platinum (Pt) (hereinafter the process of the invention), characterized in that it comprises the following steps: a) stripping of the surface of the titanium stud, b) chemical cleaning of the surface of the titanium stud based on the stage
  • step (b) of chemical cleaning is carried out by impregnating the debulked surface of the titanium post obtained in step (a) with a concentrated solution of NaOH at a temperature of between 75 ° C and 80 ° C.
  • concentration of the NaOH solution ranges from 30 g / L to 60 g / L.
  • step (c) of chemical polishing the surface obtained in step (b) is immersed in a concentrated solution of HNO 3 and NaF.
  • HNO 3 concentration is between 300 g / L and 500 g / L and where the NaF concentration is between 40 g / L and 60 g / L.
  • Stage (d) of the procedure refers to electrochemical anodizing in the presence of oxalic acid, at a temperature between 20 ° C and 45 ° C, where the anode is the titanium obtained in stage (c) and the cathode is platinum. .
  • the acid of step (d) is oxalic acid.
  • the oxalic acid concentration is between 80 g / L and 100 g / L.
  • electrochemical anodizing is understood in the present invention as the electrolytic process used to increase the thickness of the natural oxide layer on the surface of the titanium obtained in step (c). It cannot be considered as a passive film due to its porous and not very compact character In fact, it is precisely this porous character that is desired by the process of the invention, in order to obtain a suitable surface for the subsequent anchoring of the platinum.
  • the electrochemical anodizing of step (d) is carried out by applying a potential between 60 V and 65 V for a period of time between 20 min and 40 min.
  • step (e) of electrodeposition is carried out at a temperature between 20 ° C and 45 ° C applying a current density of between 20 mA / cm 2 and 40 mA / cm 2 for a period of time between 10 min and 20 min.
  • an electrolyte comprising H 2 PtCl 6 .6H 2 O and concentrated HCl.
  • the thickness of the platinum layer deposited in step (e) is between 2 ⁇ m and 4 ⁇ m.
  • a second aspect of the present invention refers to the electrochemical cell (hereinafter the cell of the invention) for plating titanium studs, preferably according to the procedure described above, which is characterized in that it comprises:
  • a lower part of Teflon with a cylindrical configuration adapted to position the upper part said lower part comprises either a ring-shaped protrusion on an upper surface configured to house a cylindrical stud on which the electrodeposition is to be carried out, where the lug has with a T-type configuration, or and a through inner opening,
  • a cylindrical stud with a T-type configuration with a first upper part and a second lower part, where the first upper part in turn comprises an upper threaded hole configured to join with the head of the connection piece and rest on the piece lower part and where the second part is configured to be housed in the internal through opening of the lower part,
  • a connecting piece comprising a threaded head and a stem, where the head is configured to thread with the upper threaded hole of the stud
  • the upper part has an outer diameter of between 51mm and 300mm, and its circular inner through hole has an inner diameter of between 35mm and 210mm.
  • the lower piece has an outer diameter of between 61mm and 366mm.
  • the protrusion of the lower part is in the shape of a ring and its function is to accommodate the upper surface of the post and thus join the upper Teflon part.
  • the first upper part of the post with a T-type configuration has a first diameter of between 32.5mm and 195mm. Said first part in turn comprises a threaded hole with a diameter of between 10 mm to 30 mm.
  • the second lower part of the stud is externally threaded with a second diameter of between 16mm and 103mm.
  • the stem of the connecting piece preferably has a length of between 70mm and 100mm and a diameter of between 4mm and 12mm.
  • the threaded head of the connecting piece preferably has a diameter of between 10 mm and 30 mm and a height of between 10 mm and 50 mm.
  • the circular platinum electrode comprises a central hole to be inserted through the connecting piece and housed in the inner circular hole of the upper piece.
  • the platinum electrode is not connected to the connection piece, it is housed around this connection piece without touching, to avoid short circuits.
  • the outer diameter of the circular platinum electrode is between 35mm and 210mm.
  • the central hole of the platinum electrode preferably has a diameter of between 6mm and 20mm.
  • Figure 1 shows the cell of the invention in exploded perspective (disassembled or disassembled) and a detailed view of the pin (5).
  • Figure 2 shows an image of the electrode surface, of the titanium stud, after carrying out the pretreatment and platinum electrodeposition, obtained by field emission scanning electron microscopy (FESEM).
  • FESEM field emission scanning electron microscopy
  • Figure 3 shows an image of the space between the platinum nodules, after carrying out their electrodeposition, obtained by field emission scanning electron microscopy (FESEM).
  • FESEM field emission scanning electron microscopy
  • Figure 4 a and b shows an image of the surface of the electrode, of the titanium stud, after carrying out the platinum electrodeposition obtained by confocal microscopy and field emission scanning electron microscopy (FESEM), respectively. Without pretreatment.
  • Figure 1 shows the cell of the invention in exploded perspective (disassembled or disassembled) where the following elements are observed:
  • the upper part (1) has an external diameter of 102 mm.
  • the internal circular through hole (2) of the upper part (1) has an internal diameter of 70 mm.
  • the lower part (3) has an outside diameter of 122 mm.
  • the lug (5) has a T-type configuration, where the first upper part has a first diameter of 65 mm and a threaded hole (7) with a diameter of 14 mm and where the second lower part has a second diameter of 36 mm.
  • the stem (9) of the connecting piece (8) has a length of 71 mm and a diameter of 6 mm.
  • the threaded head (10) of the connection piece (8) has a diameter of 16 mm and a height of 24 mm.
  • the outer diameter of the circular platinum electrode (11) is 68 mm.
  • the central hole of the platinum electrode (12) has a diameter of 16 mm.
  • Example 1 Manufacture of titanium electrodes coated with a platinum layer Before proceeding with the platinum electrodeposition, the surface of the titanium electrode was adequately conditioned to ensure correct adhesion of the coating.
  • said electrode was subjected to a physical roughing with SiC sandpaper, in order to eliminate possible heterogeneities.
  • an electrochemical anodizing was carried out under potentiostatic conditions, applying a cell potential of 60-65 V for a time of 20-40 minutes, using a platinum mesh as cathode and using a solution of oxalic acid (80-100 g / L) at room temperature.
  • the platinum electrodeposition process itself was carried out using the experimental setup described in Figure 1. For this, a Teflon cell made up of two coupled pieces is used that allow the stud on which the electrodeposition is to be carried out to be housed inside. .
  • the composition of the electrolyte was 10-30 g / L of H 2 PtCl 6 .6H 2 O in concentrated HCl medium (100-400 g / L). Electrodeposition was carried out at room temperature and galvanostatically, applying a current density of 20-40 mA cm -2 for several minutes (10-20 minutes).
  • the electrodeposited platinum layers are 2-4 ⁇ m thick, fully adherent and are made up of small platinum nodules homogeneously distributed along the entire surface of the titanium electrode ( Figure 2). In the space between these nodules and above them, the presence of small platinum crystals can be observed ( Figure 3).
  • Figures 4 (a) and (b) present, by way of comparison, microscope images of the surface of a sample to which no pretreatment was applied, clearly observing that the platinum coatings are very thin and that they exfoliate simply when they are taken out of solution and brought into contact with air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

La presente invención se refiere a un procedimiento para platinar tetones de titanio que comprende unas etapas de pretratamiento de la superficie del tetón de titanio previa a la etapa de electrodeposición del platino y a una celda electroquímica donde llevar a cabo dicho procedimiento. Por tanto, la invención se puede englobar en el área de la electroquímica, particularmente en procesos de electrodeposición.

Description

DESCRIPCIÓN
Procedimiento electroquímico para platinar tetones de titanio y celda La presente invención se refiere a un procedimiento para platinar tetones de titanio, que comprende unas etapas de pretratamiento de la superficie del tetón de titanio previa a la etapa de electrodeposición del platino y a una celda electroquímica donde llevar a cabo dicho procedimiento.
Por tanto, la invención se puede englobar en el área de la electroquímica, particularmente en procesos de electrodeposición.
ANTECEDENTES DE LA INVENCIÓN El platino es un metal precioso y uno de los elementos más escasos en la corteza terrestre. Es un material maleable, dúctil y con una resistencia muy elevada a la corrosión, con lo que es considerado como un metal noble. El platino se usa normalmente como catalizador, por ejemplo, en conversores catalíticos, en pilas de combustible o en numerosos procesos electrolíticos. También tiene aplicaciones en la fabricación de piezas de equipos que trabajan bajo condiciones severas de temperatura y/o ambientes corrosivos. Asimismo, se emplea en electrónica debido a su elevada conductividad.
A pesar de sus excelentes propiedades, al tratarse de un metal muy escaso, los elevados costes asociados con la fabricación de piezas o electrodos de platino han restringido mucho su uso a gran escala. La disponibilidad de materiales conductores recubiertos de platino, bastante más asequibles desde un punto de vista económico, puede solventar este problema. Por ejemplo, en el campo de la electrocatálisis, los electrodos compuestos formados por un sustrato conductor sobre el que se deposita una capa de platino se usan ampliamente en multitud de procesos. En otras áreas de la electroquímica, como en la protección catódica por corriente Impresa o en la electrólisis de disoluciones concentradas de cloruros de metales alcalinos (industria cloro-alcalina), el desarrollo comercial de ánodos de base titanio y recubiertos con platino ha supuesto un gran avance.
El titanio es un metal con una elevada resistencia a la corrosión debido a la formación espontánea de una delgada pero compacta película de óxido sobre su superficie (película pasiva), que lo aísla del electrolito y lo protege frente a la corrosión. Esta propiedad hace que el titanio se emplee en muchos procesos electroquímicos, especialmente en aquellos en los que se necesitan ánodos con una gran resistencia a la corrosión. Sin embargo, la resistencia de la película pasiva del titanio deja de ser estable y tiende a romperse localmente cuando se utilizan altas diferencias de potencial como son las celdas electroquímicas industriales y en consecuencia se producen procesos de corrosión intensos. Para evitar los problemas asociados a la rotura de la película de pasivación, es decir, alargar la vida útil del electrodo de titanio, dichos ánodos de titanio suelen recubrirse con finas capas de platino, especialmente en las zonas de contacto eléctrico, particularmente por las zonas donde se suministra o se desplaza preferentemente la corriente. De esta manera, la mayor parte de la corriente aplicada al sistema pasa a través del platino. Así, la baja resistencia interfacial entre la capa de platino y el electrolito hace que la caída de potencial a través de la película pasiva del titanio se mantenga dentro de valores seguros y que el ánodo compuesto de titanio/platino se mantenga intacto.
La primera publicación destacable sobre los electrodos de titanio recubiertos con platino data de 1958 (Cotton, J.B., Platinum-faced Titanium for Electrochemical Anodes, Platinum Metals Review 2 (1958) 45-47), y desde entonces se han publicado numerosos estudios al respecto (Preiser, H.S., Cathodic Protection Applications Using Platinum Anodes, Platinum Metals Review 3 (1959) 38-43; Yoshimura, K., Aoki, K., Honda, S., Electrodeposition of platinum group metáis on titanium, US Patent 3,373,092 (1968); Shreir, L.L., Platinum Provides Protection for Steel Structures - An economic way to prevent corrosión, Platinum Metals Review 21 (1977) 110-121; Wame, M.A., Hayfield, P.C.S., Electrolytic process employing electrodes having coatings which comprise platinum, US Patent 4,203,810 (1980); ¡tai, R., Kanai, H., Shinagawa, A., Yamazaki, T., Anode for electrolyzing sea water, JPS56146887A (1981); Gauger, J.F., Hinden, J.M., Katz, M., Electrode coatí ng with platinum-group metal catalyst and semi-conducting polymer, US Patent 4,402,996 (1983); Hayfield, P.C.S., Platinised Titanium Electrodes for Cathodic Protection, Platinum Metals Review 27 (1983) 2-8; Sakai, K., Yoshihara, R., Sakurai, H., Minamida, K., Long-life insoluble electrode and process for preparing the same, US Patent 4,477,316 (1984); Baumgártner, M.E., Raub, Ch.J., The Electrodeposition of Platinum and Platinum Alloys, Platinum Metals Review 32 (1988) 188-197; Skinner, P.E., Improvements in Platinum Plating - A new generation of electroplating baths, Platinum Metals Review 33 (1989) 102-105; Imanishi, K., Matsuzawa, H., Suzuki, I., Takenami, M., Tashiro, H., Electrode for electrolysis, JPH06200391A (1994); Iniesta, J., González-García, J., Fernández, J., Montiel, V., Aldaz, A., an the voltammetric behavior of a platinized titanium surface with respect to the specific hydrogen and anión adsorption and charge transfer process, Journal of Materials Chemistry 9 (1999) 3141-3145; Mudali, U.K., Raju, V.R., Dayal, R.K., Preparation and characterisation of platinum and platinum-iridium coated titanium electrodes, Journal of Nuclear Materials 277 (2000) 49-56.; Rao, C.R.K., Trivedi, D.C., Chemical and electrochemical depositions of platinum group metáis and their applications, Coordination Chemistry Reviews 249 (2005) 613-631; Evans, S.A.G., Terry, J.G., Plank, N.O.V., Walton, A.J., Keane, L.M., Campbell, C.J., Ghazal, P., Beattie, J.S., Su, T.J., Crain, J., Mount, A.R.; Electrodeposition of platinum metal on TIN thin films, Electrochemistry Communications 7 (2005) 125-129; Vladimirovich, A.V., Borisovich, L.A., Aleksandrovich, K.S., Valentinovich, V.V., Aleksandrovich, J.A., Nikolaevich, K.D., Salavatovna, C.S., Jur'evich, S.D., Aleksandrovna, S.I., Platinum- titanium anodes forming method, RU2004108494A (2005); Pushpavanam, M., High speed platinum deposition from a sulphamate formulation, Journal of Applied Electrochemistry 36 (2006) 1069-1074; China Shipping Heavy Ind. Gro., Method for preprocessing metal oxide anode substrate, CN1880509A (2006); Arenas, L.F., Ponce de León, C.; Boardman, R.P., Walsh, F.C., Electrodeposition of Platinum on Titanium Felt in a Rectangular Channel Flow Cell, Journal of the Electrochemical Society 164 (2017) D57-D66). En estos estudios se proponen varios métodos para la preparación de este tipo de electrodos platinados como son la electrodeposición, la descomposición térmica, la reducción química de compuestos de platino, etc. Preferentemente, se emplea la electrodeposición, ya que es un método relativamente simple, de fácil control y escalado y más barato que otros métodos en los que se emplean cantidades superiores de material.
No obstante, en todos esos estudios se mencionan las dificultades asociadas al proceso de electrodeposición de platino sobre electrodos de titanio. Asi, con frecuencia, la adherencia de las capas electrodepositadas de platino no es buena y estas se exfolian hasta el punto de dejar expuesta una parte importante de la superficie subyacente de titanio. Este problema, aparece especialmente para capas electrodepositadas con espesores superiores a 1 μm.
En la literatura se han propuesto distintos pretratamientos para preparar la superficie del titanio y mejorar la adherencia de los depósitos de platino sobre dicha superficie de titanio. Sin embargo, los procedimientos que dan resultados aceptables suelen implicar tratamientos químicos complejos e intensivos en tiempo y energía consumida, con reactivos peligrosos como el ácido fluorhídrico, en condiciones elevadas de temperatura como son en ebullición o incluso trabajando con sales fundidas durante largos tiempos. En otros casos, además del pulido químico, el pretratamiento de la superficie implica la formación de capas adicionales de platino subyacentes a la capa electrodepositada, fabricadas, por ejemplo, mediante la aplicación de pinturas o resinas, que se descomponen posteriormente al someter la superficie a laboriosos tratamientos térmicos.
En la literatura también es relativamente frecuente encontrar procedimientos de electrodeposición de Pt sobre Ti que comprenden una etapa adicional posterior a la electrodeposición de tratamiento térmico a elevadas temperaturas (500° C o superiores) en atmósfera inerte con el fin de aumentar su adherencia.
DESCRIPCIÓN DE LA INVENCIÓN
En la presente invención se describe un procedimiento para formar recubrimientos adherentes, resistentes y homogéneos de un metal noble como es el platino sobre piezas o sustratos de titanio, empleando unas etapas de pretratamiento superficial que solventan los problemas de complejidad y de seguridad que presentan otros métodos mencionados en el apartado del estado de la técnica. La principal ventaja de dicho procedimiento es que alarga la vida del electrodo. Además, el proceso en su conjunto es sencillo, sin necesidad de emplear etapas cuyo consumo de recursos, de energía y de tiempo sea elevado, y fácilmente escaladle, lo que proporciona una ventaja fundamental sobre el estado de la técnica. Los sustratos obtenidos por este procedimiento, como piezas o electrodos, son susceptibles de ser utilizados en procesos electroquímicos.
Por tanto, en un primer aspecto, la presente invención se refiere a un procedimiento para recubrir tetones de titanio con platino (Pt) (a partir de aquí el procedimiento de la invención), caracterizado por que comprende las siguientes etapas: a) debastado de la superficie del tetón de titanio, b) limpieza química de la superficie del tetón de titanio debastada en la etapa
(a), c) pulido químico de la superficie del tetón de titanio obtenida en la etapa (b), d) anodizado electroquímico en presencia de ácido oxálico, a una temperatura de entre 20 °C y 45 °C, donde el ánodo es el tetón de titanio obtenido en la etapa (c) y el cátodo es de platino, y e) electrodeposición de platino sobre el tetón de titanio obtenido en la etapa (d).
Dicho procedimiento se lleva a cabo preferiblemente en la celda de la Invención.
En una realización preferida del procedimiento de la presente invención la etapa (b) de limpieza química se lleva a cabo impregnando la superficie debastada del tetón de titanio obtenida en la etapa (a) con una disolución concentrada de NaOH a una temperatura de entre 75 °C y 80 °C. Preferiblemente la concentración de la disolución de NaOH oscila de entre 30 g/L y 60 g/L.
En otra realización preferida del procedimiento de la presente invención, en la etapa (c) de pulido químico, la superficie obtenida en la etapa (b) se sumerge en una disolución concentrada de HNO3 y NaF. Preferentemente la concentración de HNO3 es de entre 300 g/L y 500 g/L y donde la concentración de NaF es de entre 40 g/L y 60 g/L.
La etapa (d) del procedimiento se refiere al anodizado electroquímico en presencia de ácido oxálico, a una temperatura de entre 20 °C y 45 °C, donde el ánodo es el titanio obtenido en la etapa (c) y el cátodo es de platino. Preferiblemente el ácido de la etapa (d) es el ácido oxálico. Aún más preferentemente la concentración de ácido oxálico es de entre 80 g/L y 100 g/L. Por el término “anodizado electroquímico" se entiende en la presente invención como el proceso electrolítico utilizado para incrementar el espesor de la capa natural de óxido en la superficie del titanio obtenido en la etapa (c). No puede considerarse como una película pasiva debido a su carácter poroso y poco compacto. De hecho, es precisamente este carácter poroso el que se quiere obtener mediante el procedimiento de la invención, para poder obtener una superficie adecuada para el anclaje posterior del platino.
En otra realización preferida del procedimiento de la presente invención el anodizado electroquímico de la etapa (d) se lleva a cabo aplicando un potencial de entre 60 V y 65 V por un periodo de tiempo de entre 20 min y 40 min.
La última etapa del procedimiento de la presente invención se refiere a una electrodeposición de platino (etapa (e)). En una realización preferida del procedimiento de la presente invención la etapa (e) de electrodeposición se lleva a cabo a una temperatura de entre 20 °C y 45 °C aplicando una densidad de corriente de entre 20 mA/cm2 y 40 mA/cm2 durante un periodo de tiempo de entre 10 min y 20 min.
En otra realización preferida del procedimiento de la presente invención, en la etapa (e) de electrodeposición, se utiliza un electrolito que comprende H2PtCl6.6H2O y HCI concentrado. En otra realización preferida del procedimiento de la presente invención el espesor de la capa de platino depositada en la etapa (e) es de entre 2 μm y 4 μm.
Un segundo aspecto de la presente invención se refiere a la celda electroquímica (a partir de aquí la celda de la invención) para platinar tetones de titanio, preferentemente según el procedimiento descrito anteriormente, que está caracterizada por que comprende:
• una pieza superior de teflón con una configuración cilindrica que presenta un orificio circular interior pasante,
• una pieza inferior de teflón con una configuración cilindrica adaptada para colocar la pieza superior, dicha pieza inferior comprende o una protuberancia en forma de anillo en una superficie superior configurada para alojar un tetón cilindrico sobre el que se va a realizar la electrodeposición, donde el tetón tiene con una configuración de tipo T, o y una abertura interior pasante,
. un tetón cilindrico, con una configuración de tipo T con una primera parte superior y una segunda parte inferior, donde la primera parte superior comprende a su vez un orificio superior roscado configurado para unirse con la cabeza de la pieza de conexión y apoyarse en la pieza inferior y donde la segunda parte está configurada para ser alojada en la abertura interior pasante de la pieza inferior,
• una pieza de conexión que comprende una cabeza roscada y un vástago, donde la cabeza está configurada para roscar con el orificio superior roscado del tetón,
• y un electrodo de platino con una configuración cilindrica que se utiliza como contraelectrodo en la electrodeposición de platino sobre los tetones, que comprende un orificio central para ser insertado a través de la pieza de conexión y alojarse en el orificio circular interior de la pieza superior. Preferentemente, la pieza superior tiene un diámetro externo de entre 51 mm y 300 mm, y su orificio circular interior pasante tiene un diámetro interior de entre 35 mm y 210 mm.
Preferentemente, la pieza inferior tiene un diámetro exterior de entre 61 mm y 366 mm.
Preferentemente, la protuberancia de la pieza inferior tiene forma de anillo y su función es alojar la superficie superior del tetón y, de este modo, unirse a la pieza superior de teflón. Preferentemente la primera parte superior del tetón con una configuración de tipo T tiene un primer diámetro de entre 32,5 mm y 195 mm. Dicha primera parte comprende a su vez un orificio roscado de diámetro de entre 10 mm a 30 mm.
Preferentemente la segunda parte inferior del tetón está roscada exteriormente con un segundo diámetro de entre 16 mm y 103 mm.
El vástago de la pieza de conexión tiene preferentemente una longitud de entre 70 mm y 100 mm y un diámetro de entre 4 mm y 12 mm. La cabeza roscada de la pieza de conexión tiene preferentemente un diámetro de entre 10 mm y 30 mm y una altura de entre 10 mm y 50 mm.
Como se ha mencionado con anterioridad, el electrodo de platino circular comprende un orificio central para ser insertado a través de la pieza de conexión y alojarse en el orificio circular interior de la pieza superior. El electrodo de platino no se conecta a la pieza de conexión, se aloja alrededor de esta pieza de conexión sin tocar, para evitar cortocircuitos.
Preferentemente, el diámetro exterior del electrodo circular de platino es de entre 35 mm y 210 mm. El orificio central del electrodo de platino tiene preferentemente un diámetro de entre 6 mm y 20 mm.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y caracteristicas de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra la celda de la invención en perspectiva en explosión (desarmada o desensamblada) y una vista en detalle del tetón (5).
La Figura 2 muestra una imagen de la superficie del electrodo, del tetón de titanio, tras llevar a cabo el pretratamiento y la electrodeposición de platino, obtenida mediante microscopía electrónica de barrido de emisión de campo (FESEM).
La Figura 3 muestra una imagen del espacio existente entre los nódulos de platino, tras llevar a cabo su electrodeposición obtenida mediante microscopía electrónica de barrido de emisión de campo (FESEM).
La Figura 4 a y b muestra una imagen de la superficie del electrodo, del tetón de titanio, tras llevar a cabo la electrodeposición de platino obtenidas mediante microscopía confocal y microscopía electrónica de barrido de emisión de campo (FESEM), respectivamente. Sin pretratamiento.
EJEMPLOS
A continuación, se ¡lustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad de la invención.
La Figura 1 muestra la celda de la invención en perspectiva en explosión (desarmada o desensamblada) donde se observan los siguientes elementos:
(1) pieza superior de teflón
(2) orificio circular interior pasante de la pieza superior
(3) pieza inferior de teflón
(4) protuberancia de la pieza inferior de teflón
(5) tetón
(6) abertura interior pasante de la pieza inferior
(7) orificio superior roscado del tetón
(8) pieza de conexión (9) vástago de la pieza de conexión
(10) cabeza de la pieza de conexión
(11) electrodo de platino
(12) orificio central del electrodo de platino y una vista en detalle del tetón (5).
En este ejemplo de realización se ha utilizado una celda con las siguientes dimensiones:
• La pieza superior (1) tiene un diámetro extemo de 102 mm.
• El orificio circular interior pasante (2) de la pieza superior (1) tiene un diámetro interior de 70 mm.
• La pieza inferior (3) tiene un diámetro exterior de 122 mm.
. El tetón (5) tiene una configuración de tipo T, donde la primera parte superior tiene un primer diámetro de 65 mm y un orificio roscado (7) de diámetro de 14 mm y donde la segunda parte inferior tiene un segundo diámetro de 36 mm.
. El vástago (9) de la pieza de conexión (8) tiene una longitud de 71 mm y un diámetro de 6 mm.
• La cabeza roscada (10) de la pieza de conexión (8) tiene un diámetro de 16 mm y una altura de 24 mm.
• El diámetro exterior del electrodo circular de platino (11) es de 68 mm.
• El orificio central del electrodo de platino (12) tiene un diámetro de 16 mm.
Ejemplo 1. Fabricación de electrodos de titanio recubiertos con una capa de platino Antes de proceder con la electrodeposición de platino, la superficie del electrodo de titanio se acondicionó de forma adecuada para garantizar una correcta adherencia del recubrimiento.
En primer lugar, dicho electrodo se sometió a un desbastado físico con lijas de SiC, con el fin de eliminar posibles heterogeneidades.
Seguidamente, se llevó a cabo una etapa de limpieza de la superficie debastada impregnándola con una disolución concentrada (30-60 g/L) de NaOH caliente (75° C - 80° C).
Posteriormente se realizó un pulido químico sumergiendo la superficie en una disolución muy concentrada de HNO3 (300-500 g/L) en presencia de aniones fluoruro en concentraciones también elevadas (40-60 g/L) durante varios minutos.
Finalmente, se llevó a cabo un anodizado electroquímico en condiciones potenciostáticas, aplicando un potencial de celda de 60-65 V durante un tiempo de 20- 40 minutos, usando como cátodo una malla de platino y empleando una disolución de ácido oxálico (80-100 g/L) a temperatura ambiente.
El proceso de electrodeposición de platino en sí se realizó usando el montaje experimental descrito en la Figura 1. Para ello se utiliza una celda de teflón formada por dos piezas acopladas que permiten alojar en su interior el tetón sobre el cual se va a realizar la electrodeposición. La composición del electrolito fue de 10-30 g/L de H2PtCl6.6H2O en medio HCI concentrado (100-400 g/L). La electrodeposición se llevó a cabo a temperatura ambiente y de forma galvanostática, aplicando una densidad de comente de 20-40 mA cm- 2 durante varios minutos (10-20 minutos).
Las capas de platino electrodepositadas tienen unos espesores de 2-4 μm, son totalmente adherentes y están formadas por pequeños nódulos de platino distribuidos de forma homogénea a lo largo de toda la superficie del electrodo de titanio (Figura 2). En el espacio existente entre estos nódulos y sobre ellos, se puede observar la presencia de pequeños cristales de platino (Figura 3).
En las Figuras 4 (a) y (b) se presentan, a modo de comparación, imágenes al microscopio de la superficie de una muestra a la que no se le aplicado un pretratamiento, observándose claramente que los recubrimientos de platino son muy delgados y que se exfolian simplemente al sacarse de la disolución y ponerse en contacto con el aire.

Claims

REIVINDICACIONES
1. Un procedimiento para recubrir tetones de titanio con platino, caracterizado por que comprende las siguientes etapas: a) debastado de la superficie del tetón de titanio, b) limpieza química de la superficie del tetón de titanio debastada en la etapa
(a). c) pulido químico de la superficie del tetón de titanio obtenida en la etapa (b), d) anodizado electroquímico en presencia de ácido oxálico, a una temperatura de entre 20 °C y 45 °C, donde el ánodo es el tetón de titanio obtenido en la etapa (c) y el cátodo es de platino, y e) electrodeposición de platino sobre el tetón de titanio obtenido en la etapa (d).
2. El procedimiento según la reivindicación 1 , donde la etapa (b) de limpieza química se lleva a cabo impregnando la superficie debastada del tetón de titanio obtenida en la etapa (a) con una disolución concentrada de NaOH a una temperatura de entre 75 °C y 80 °C.
3. El procedimiento de la reivindicación 2, donde la concentración de la disolución de NaOH oscila de entre 30 g/L y 60 g/L.
4. El procedimiento según cualquiera de las reivindicaciones 1 a 3, donde, en la etapa (c) de pulido químico, la superficie del tetón de titanio obtenida en la etapa (b) se sumerge en una disolución concentrada de HNO3 y NaF.
5. El procedimiento según la reivindicación 4, donde la concentración de HNO3 es de entre 300 g/L y 500 g/L y donde la concentración de NaF es de entre 40 g/L y 60 g/L.
6. El procedimiento según cualquiera de las reivindicaciones 1 a 5, donde la concentración de ácido oxálico es de entre 80 g/L y 100 g/L.
7. El procedimiento según cualquiera de las reivindicaciones 1 a 6, donde el anodizado electroquímico de la etapa (d) se lleva a cabo aplicando un potencial de entre 60 V y 65 V por un periodo de tiempo de entre 20 min y 40 min.
8. El procedimiento según cualquiera de las reivindicaciones 1 a 7, donde la etapa (e) de electrodeposición se lleva a cabo a una temperatura de entre 20 °C y 45 °C aplicando una densidad de corriente de entre 20 mA/cm2 y 40 mA/cm2 durante un periodo de tiempo de entre 10 min y 20 min.
9. El procedimiento según cualquiera de las reivindicaciones 1 a 8, donde, en la etapa
(e) de electrodeposición se utiliza un electrolito que comprende H2PtCl6.6H2O y HCI concentrado.
10. El procedimiento según cualquiera de las reivindicaciones 1 a 9, donde el espesor de la capa de platino depositada en la etapa (e) es de entre 2 μm y 4 μm.
11. Una celda electroquímica para platinar tetones de titanio, caracterizada por que comprende:
• una pieza superior (1) de teflón con una configuración cilindrica que presenta un orificio circular interior (2) pasante,
• una pieza inferior (3) de teflón con una configuración cilindrica adaptada para colocar la pieza superior (1), dicha pieza inferior comprende o una protuberancia (4) en forma de anillo en una superficie superior configurada para alojar un tetón cilindrico (5) sobre el que se va a realizar la electrodeposición, donde el tetón con una configuración de tipo T, o y una abertura interior (6) pasante.
• un tetón cilindrico (5), con una configuración de tipo T con una primera parte superior y una segunda parte inferior, donde la primera parte superior comprende a su vez un orificio superior roscado (7) configurado para unirse con la cabeza (10) de la pieza de conexión (8) y apoyarse en la pieza inferior (3) y donde la segunda parte está configurada para ser alojada en la abertura interior pasante de la pieza inferior (6),
• una pieza de conexión (8) que comprende una cabeza roscada (10) y un vástago (9), donde la cabeza (10) está configurada para roscar con el orificio superior roscado del tetón (7), y
• un electrodo de platino (11) que comprende un orificio central (12) para ser insertado a través de la pieza de conexión (8) y alojarse en el orificio circular interior (2) de la pieza superior.
PCT/ES2020/070791 2020-01-16 2020-12-14 Procedimiento electroquímico para platinar tetones de titanio y celda WO2021144481A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202030022A ES2743828B2 (es) 2020-01-16 2020-01-16 Procedimiento electroquimico para platinar tetones de titanio y celda
ESP202030022 2020-01-16

Publications (1)

Publication Number Publication Date
WO2021144481A1 true WO2021144481A1 (es) 2021-07-22

Family

ID=69529103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070791 WO2021144481A1 (es) 2020-01-16 2020-12-14 Procedimiento electroquímico para platinar tetones de titanio y celda

Country Status (2)

Country Link
ES (1) ES2743828B2 (es)
WO (1) WO2021144481A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096272A (en) * 1957-10-24 1963-07-02 Amalgamated Curacao Patents Co Noble metal coated titanium electrode and method of making and using it
US3650861A (en) * 1965-07-01 1972-03-21 Imp Metal Ind Kynoch Ltd Surface treatment of titanium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096272A (en) * 1957-10-24 1963-07-02 Amalgamated Curacao Patents Co Noble metal coated titanium electrode and method of making and using it
US3650861A (en) * 1965-07-01 1972-03-21 Imp Metal Ind Kynoch Ltd Surface treatment of titanium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARENAS LUIS F ET AL.: "Characterisation of platinum electrodeposits on a titanium micromesh stack in a rectangular channel flow cell", ELECTROCHIMICA ACTA, vol. 247, 7 August 2017 (2017-08-07), Amsterdam, Nl, pages 994 - 1005, XP085183392, ISSN: 0013-4686, [retrieved on 20200902], DOI: 10.1016/j.electacta. 2017.07.02 9 *

Also Published As

Publication number Publication date
ES2743828A1 (es) 2020-02-20
ES2743828B2 (es) 2020-06-25

Similar Documents

Publication Publication Date Title
JP4673903B2 (ja) 金属酸化物及び/又は金属水酸化物被覆導電性材料
JPS636636B2 (es)
CN103173795B (zh) 一种电镀的方法
HU195679B (en) Electrode for electrochemical processis first of all for elctrochemical celles for producing halogenes and alkali-hydroxides and process for producing them
US11643746B2 (en) Electrode for oxygen evolution in industrial electrochemical processes
JP2003503598A (ja) 銅箔の製造法
PT1507899E (pt) Electrodo para o desenvolvimento de gas e metodo para a sua produção
CN1196813C (zh) 具有高粘附性表面催化层的电极
JP2017533344A (ja) 二層コーティングを備える電極、その使用方法および製造方法
US4180445A (en) Oxygen selective anode
ES2743828B2 (es) Procedimiento electroquimico para platinar tetones de titanio y celda
Bi et al. Physicochemical characterization of electrosynthesized PbO2 coatings: the effect of Pb2+ concentration and current density
CN100429332C (zh) 氧气逸出用的阳极和相关基材
US3503799A (en) Method of preparing an electrode coated with a platinum metal
JPH0257159B2 (es)
Green et al. Pulse electrodeposition of copper in the presence of a corrosion reaction
US3763002A (en) Method of forming protective coatings by electrolysis
FI63784C (fi) Oloeslig elektrod omfattande ett skikt av aedelmetall och foerfarande foer dess framstaellning
JP4615909B2 (ja) 耐食材及びその製造方法
Raub Platinum-Group Metals Plating
Matsuo et al. Effects of Preparation Procedures and Structure of IrO2-Ta2O5 Coated Insoluble Anodes on Durability
JPS5950756B2 (ja) 低過電圧電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914299

Country of ref document: EP

Kind code of ref document: A1