WO2021141072A1 - セグメント型アミダイトを用いた核酸合成法 - Google Patents

セグメント型アミダイトを用いた核酸合成法 Download PDF

Info

Publication number
WO2021141072A1
WO2021141072A1 PCT/JP2021/000273 JP2021000273W WO2021141072A1 WO 2021141072 A1 WO2021141072 A1 WO 2021141072A1 JP 2021000273 W JP2021000273 W JP 2021000273W WO 2021141072 A1 WO2021141072 A1 WO 2021141072A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleoside
phosphoramidite
substituted
group
nucleoside phosphoramidite
Prior art date
Application number
PCT/JP2021/000273
Other languages
English (en)
French (fr)
Inventor
智▲祥▼ 飯田
正史 岩本
康太 阪本
パレデス,エデュアルド
Original Assignee
日東電工株式会社
日東電工アベシア・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 日東電工アベシア・インコーポレーテッド filed Critical 日東電工株式会社
Priority to EP21738639.0A priority Critical patent/EP4089099A1/en
Priority to CN202180008662.1A priority patent/CN115315430A/zh
Priority to JP2021570077A priority patent/JPWO2021141072A1/ja
Priority to KR1020227027277A priority patent/KR20220123300A/ko
Publication of WO2021141072A1 publication Critical patent/WO2021141072A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for synthesizing an oligonucleotide using segmented amidite.
  • oligonucleotides with the desired sequence are typically synthesized by sequentially adding appropriately protected nucleosides one at a time. However, the reaction does not occur with a 100% probability, and the added nucleoside may be decomposed during the synthetic reaction, so that the length is 1 or more (n) shorter than the desired length (N). Oligonucleotide (Nn) mer with the same value can inevitably occur.
  • the oligonucleotide is purified by chromatography or the like, but is an oligonucleotide having a desired length (N) mer and one nucleotide shorter than the desired length (N) (N-1). Since the mer has a close chromatographic mobility, the presence of the (N-1) mer has a great influence on the purification efficiency of the oligonucleotide and the purity of the refined product.
  • Patent Documents 1 and 2 and Non-Patent Document 1 describe nucleoside phosphoramidite (segments) having two or three nucleoside moieties in synthesis as a method for suppressing the production of oligonucleotides of (N-1) mer.
  • Patent Document 3 describes a derivative of saccharin as an activator that can be used more safely than 1H-tetrazole in the synthesis of oligonucleotides. However, in Patent Document 3, the performance of a saccharin derivative as an activator has not been sufficiently studied.
  • Patent Document 4 describes an activator containing at least one pyridinium salt and at least one substituted imidazolium, an imidazolium salt, and a benzoimidazolium salt as activators in place of 1H-tetrazole. However, Patent Document 4 does not describe the use of a salt with saccharin as an activator.
  • An object of the present invention is to provide a method for synthesizing an oligonucleotide using segmented amidite.
  • the present inventors have found a useful activator in the method while working diligently on a method for synthesizing an oligonucleotide using segmented amidite. Then, as a result of further research based on such findings, the present invention was completed.
  • the present invention relates to the following.
  • a method for producing an oligonucleotide In the presence of the activator, the coupling step of binding the nucleoside phosphoramidite to the 3'or 5'hydroxyl or thiol group of the nucleotide or nucleoside is performed one or more times.
  • the nucleoside phosphoramidite is (a) a nucleoside phosphoramidite having two or more nucleoside moieties, or (b) a nucleoside phosphoramidite having one or more nucleoside moieties and a linker moiety.
  • the activator has the following formula: During the ceremony X is an organic base, Or the following formula: During the ceremony R 1 and R 2 are each independently, H, are selected from linear or C 1 ⁇ 7 branched alkyl group, and the group consisting of an aromatic group which may be optionally substituted, The method having a structure represented by.
  • X is N-methylimidazole, pyridine or 3-methylpyridine.
  • R 1 is an H, C n H 2n + 1 or benzyl group.
  • R 2 is H, CH 3 , or C 6 H 5 and n is 1, 2 or 3, The method according to [1].
  • the activator is 5-mercapto-1-methyltetrazole (1-Me-MCT), 5-mercapto-1-phenyltetrazole (1-Ph-MCT), saccharin 1-methylimidazole (SMI), or 5 -The method according to [1] or [2], which is ethylthio-1H-tetrazole (ETT).
  • ETT ethylthio-1H-tetrazole
  • the nucleoside phosphoramidite is (a) a nucleoside phosphoramidite having two or more nucleoside moieties, or (b) a nucleoside phosphoramidite having one or more nucleoside moieties and a linker moiety, [1]-[3].
  • the method described in any one of. [5] In at least the last one of the coupling steps performed two or more times.
  • Nucleoside phosphoramidite is a nucleoside phosphoramidite having three nucleoside moieties, The method according to any one of [1] to [4]. [6] In at least one of the coupling steps performed two or more times.
  • Nucleoside phosphoramidite is a nucleoside phosphoramidite having one nucleoside moiety, The method according to any one of [1] to [5]. [7] In the last one of the coupling steps performed two or more times, The nucleoside phosphoramidite is (a) a nucleoside phosphoramidite having three nucleoside moieties, or (b) a nucleoside phosphoramidite having one or more nucleoside moieties and a linker moiety. In the other coupling process Nucleoside phosphoramidite is a nucleoside phosphoramidite having one nucleoside moiety, The method according to any one of [1] to [6].
  • a nucleoside phosphoramidite having two or more nucleoside moieties is represented by the following formula (I).
  • X 1 is -O- or -S-, respectively;
  • X 2 is -O- or -S-, respectively;
  • X 3 are each independently -O-, -S-, -CH 2- or-(CH 2 ) 2- ;
  • R 1 is a protecting group;
  • R 2 is each independently a hydroxyl group protected with -H, -NHR 6 , halogen, -CN, -CF 3 , or an acyl protecting group, an ether protecting group or a silyl protecting group;
  • R 3 are independently -OCH 2 CH 2 CN, -SCH 2 CH 2 CN, substituted or unsubstituted aliphatic groups, -OR 7 or -SR 7 ;
  • R 4 and R 5 are independently substituted or unsubstituted aliphatic groups, substituted or unsubstituted
  • R 7 are independently substituted or unsubstituted aliphatic groups, substituted or unsubstituted aromatic groups, or substituted or unsubstituted alalkyl groups;
  • B 1 , B 2 and B 3 are independently -H, or protected or unprotected bases; and
  • n is 0 or a positive integer; The method according to any one of [1] to [7], which is a nucleoside phosphoramidite represented by (1) or a stereoisomer thereof.
  • a nucleoside phosphoramidite having one or more nucleoside moieties and a linker moiety is represented by the following formula (II).
  • X 1 is -O- or -S-, respectively;
  • X 2 is -O- or -S-, respectively;
  • X 3 are each independently -O-, -S-, -CH 2- or-(CH 2 ) 2- ;
  • L is a linker;
  • R 2 is each independently a hydroxyl group protected with -H, -NHR 6 , halogen, -CN, -CF 3 , or an acyl protecting group, an ether protecting group or a silyl protecting group;
  • R 3 are independently -OCH 2 CH 2 CN, -SCH 2 CH 2 CN, substituted or unsubstituted aliphatic groups, -OR 7 or -SR 7 ;
  • R 4 and R 5 are independently substituted or unsubstituted aliphatic groups, substituted
  • R 7 are independently substituted or unsubstituted aliphatic groups, substituted or unsubstituted aromatic groups, or substituted or unsubstituted alalkyl groups;
  • B 1 and B 2 are independently -H, or protected or unprotected bases; and
  • n is 0 or a positive integer;
  • a method for producing an oligonucleotide In the presence of the activator, the coupling step of binding the nucleoside phosphoramidite to the 3'or 5'hydroxyl or thiol group of the nucleotide or nucleoside is performed one or more times.
  • the nucleoside phosphoramidite is (a) a nucleoside phosphoramidite having two or three nucleoside moieties, or (b) a nucleoside phosphoramidite having one or more nucleoside and linker moieties.
  • the activator has the following formula:
  • X is an organic base, Or the following formula:
  • R 1 and R 2 are each, independently, H, are selected from linear or C 1 ⁇ 7 branched alkyl group, and the group consisting of an aromatic group which may be optionally substituted, in expressed The method according to the above method.
  • X is N-methylimidazole, pyridine or 3-methylpyridine.
  • R 1 is an H, C n H 2n + 1 or benzyl group.
  • R 2 is H, CH 3 , or C 6 H 5 and n is 1, 2 or 3, The method according to [13].
  • [15] A method for producing an oligonucleotide. In the presence of the activator, the coupling step of binding the nucleoside phosphoramidite to the 3'or 5'hydroxyl or thiol group of the nucleotide or nucleoside is performed one or more times.
  • the nucleoside phosphoramidite is (a) a nucleoside phosphoramidite having two or more nucleoside moieties, or (b) a nucleoside phosphoramidite having one or more nucleoside moieties and a linker moiety.
  • the HOMO energy (au) of the activator is -0.21407 to -0.16858 in acetonitrile and The orbital coefficient of the activator is 0.31531 to 0.59405 in acetonitrile.
  • the method. [16] The method according to [15], wherein the pKa of the activator is 3.65 to 7 in water.
  • nucleoside phosphoramidite is (a) a nucleoside phosphoramidite having two or three nucleoside moieties, or (b) a nucleoside phosphoramidite having one or more nucleoside and linker moieties.
  • the HOMO energy (au) of the activator is -0.22024 to -0.16858 in acetonitrile and The orbital coefficient of the activator is 0.31531 to 0.59405 in acetonitrile.
  • the method. [18] The method according to [17], wherein the activator pKa is 3.65-7 in water. [19] A method for producing an oligonucleotide. In the presence of the activator, the coupling step of binding the nucleoside phosphoramidite to the 3'or 5'hydroxyl or thiol group of the nucleotide or nucleoside is performed one or more times.
  • the nucleoside phosphoramidite is (a) a nucleoside phosphoramidite having two or three nucleoside moieties, or (b) a nucleoside phosphoramidite having one or more nucleoside and linker moieties.
  • Amidite, The activator pKa is 3.65-7 in water.
  • the method. [20] A method for producing an oligonucleotide. In the presence of the activator, the coupling step of binding the nucleoside phosphoramidite to the 3'or 5'hydroxyl or thiol group of the nucleotide or nucleoside is performed one or more times.
  • the nucleoside phosphoramidite is (a) a nucleoside phosphoramidite having two or more nucleoside moieties, or (b) a nucleoside phosphoramidite having one or more nucleoside moieties and a linker moiety.
  • the activator pKa is 4.3-7 in water. The method.
  • nucleoside phosphoramidite having two or more nucleoside moieties that is, a segmented amidite, or a nucleoside phosphoramidite having one or more nucleoside moieties and a linker moiety.
  • Oligonucleotides can be synthesized with.
  • nucleoside phosphoramidite having two or more nucleoside moieties, that is, a segmented amidite in the final one of the coupling steps, the desired oligonucleotide and the chromatographic mobility are close to each other, and by purification.
  • the formation of (N-1) mer which is difficult to remove, can be suppressed.
  • the use of the activator of the present invention as the activator also contributes to the suppression of decomposition of segmented amidite in the synthetic process.
  • the present invention in one aspect, is a method of producing an oligonucleotide, which, in the presence of an activator, couples a nucleoside phosphoramidite to a nucleotide or nucleoside having an unsubstituted hydroxyl group or an unsubstituted thiol group.
  • the present invention relates to the above method, which comprises performing the step one or more times.
  • the production of an oligonucleotide is a so-called phosphorotide in which nucleotides are added by a condensation reaction between a nucleoside phosphoramidite and a nucleoside in the presence of a suitable activator in a solution or on a solid support. It is performed using the amidite method.
  • the oligonucleotide refers to a compound having a structure in which a base, a sugar, and a phosphoric acid are linked by a phosphodiester bond, and a naturally occurring oligonucleotide such as 2'-deoxyribonucleic acid (hereinafter, "DNA”) and Includes ribonucleic acid (“RNA”) and nucleic acids containing modified sugar moieties, modified phosphate moieties, or modified nucleobases. Modifications to the sugar moiety include replacing the ribose ring with a hexose, cyclopentyl, or cyclohexyl ring.
  • the D-ribose ring of a naturally occurring nucleic acid may be replaced with an L-ribose ring, or the ⁇ -anomer of a naturally occurring nucleic acid may be replaced with an ⁇ -anomer.
  • Oligonucleotides may also contain one or more non-basic moieties. Modified phosphate moieties include phosphorothioate, phosphorodithioate, methylphosphonate, and methyl phosphate. Such nucleic acid analogs are known to those of skill in the art.
  • Oligonucleotides comprising the above two or more mixtures include, for example, mixtures of deoxyribo and ribonucleosides, particularly 2'-O such as deoxyribonucleoside and 2'-O-methyl or 2'-O-methoxyethylribonucleoside.
  • Examples of oligonucleotides comprising a mixture of nucleosides include ribozymes.
  • nucleoside phosphoramidite refers to a nucleoside derivatized with amidite.
  • Amiditeization can be carried out, for example, by using 1H-tetrazole as an activator and reacting a properly protected nucleoside with 2-cyanoethyl-N, N, N', N'-tetraisopropylphosphorodiamidite. it can.
  • the nucleoside refers to a compound in which a base and a sugar are bound, and may be a naturally occurring nucleoside such as adenosine, thymidine, guanosine, cytidine, or uridine, or a modified nucleoside.
  • the base may be a naturally occurring base such as adenine, guanine, cytosine, thymine, and uracil, or a modified base.
  • the sugar moiety of the nucleoside may be naturally occurring deoxyribose or ribose, and may be in the D or L configuration.
  • the activator is used for reacting a nucleoside phosphoramidite with a nucleotide or a nucleoside, and is also referred to as an activator or a coupling agent.
  • the activator is defined by the following formula:
  • X is an organic base that forms a salt complex with saccharin, preferably N-methylimidazole, pyridine or 3-methylpyridine.
  • R 1 and R 2 are each independently, H, are selected from linear or C 1 ⁇ 7 branched alkyl group, and the group consisting of an aromatic group which may be optionally substituted, It has a structure represented by.
  • R 1 and R 2 are independently H, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, phenyl group and benzyl group, and more preferably R 1 is. , H, C n H 2n + 1 or a benzyl group, R 2 is H, CH 3 , or C 6 H 5 , and n is 1, 2 or 3.
  • the activator is, for example, 5-mercapto-1-methyltetrazole (1-Me-MCT): 5-Mercapto-1-phenyltetrazole (1-Ph-MCT): 5-Benzylthiotetrazole (BTT): Saccharin 1-methylimidazole (SMI): 5-Ethylthio-1H-Tetrazole (ETT) 4,5-Dicyanoimidazole (DCI): Or benzimidazole trifluoromethanesulfonate (BIT): It is preferably 1-Me-MCT, 1-Ph-MCT, SMI, ETT, or BTT, and more preferably 1-Me-MCT, 1-Ph-MCT, or SMI.
  • the HOMO energy (au) of the activator of the invention is -0.22024 to -0.16858 in acetonitrile.
  • the HOMO energy (au) of the activator of the present invention is -0.21995 to -0.16858, -0.21407 to -0.16858, -0.19928 to -0.16858 in acetonitrile. , -0.18904 to -0.16858, or -0.18741 to -0.16885, preferably -0.21407 to -0.16858 (a.u.), and more preferably-. It is 0.18904 to ⁇ 0.16858 (au).
  • the orbital coefficients of the activators of the invention are 0.31531 to 0.59405 in acetonitrile.
  • the orbital coefficients of the activators of the present invention are 0.31531 to 0.59405, 0.39931 to 0.59405, 0.51802 to 0.59405, or 0.53787 to 0.59405 in acetonitrile.
  • it is 0.39931 to 0.59405.
  • the HOMO energy (au) of the activator is -0.22024 to -0.16858 in acetonitrile, and the orbital coefficient of the activator is 0. It is 31531 to 0.59405.
  • the HOMO energy (a.u.) of the activator is -0.21407 to -0.16858 in acetonitrile, and the orbital coefficient of the activator is 0. It is 31531 to 0.59405.
  • the HOMO energy and orbital coefficient can be obtained by a quantum chemistry calculation program. For example, in the quantum chemistry calculation program Gaussian16 manufactured by Gaussian, an optimization calculation using the Becke-type 3-parameter density functional theory (B3LYP) is performed. Can be sought.
  • the pKa of the activator of the invention in water at 25 ° C. is 3.65 to 7.0, eg, 3.86 to 7.0, 4.1 to 7.0, 4. It is 3 to 7.0, 4.5 to 7.0, 5.0 to 7.0, 5.5 to 7.0, 6.0 to 7.0, or 6.5 to 7.0.
  • the nucleoside phosphoramidite in at least one coupling step in the method of producing said oligonucleotides, is (a) a nucleoside phosphoramidite having two or more nucleoside moieties, or (b). ) A nucleoside phosphoramidite having one or more nucleoside and linker moieties.
  • the nucleoside phosphoramidite in at least one coupling step in the method of producing said oligonucleotides, is (a) a nucleoside phosphoramidite having two or three nucleoside moieties, or (B) A nucleoside phosphoramidite having one or more nucleoside and linker moieties.
  • a nucleoside phosphoramidite having two or three nucleoside moieties reacts because it has a smaller molecular size, is more motivated and has a faster reaction rate than a nucleoside phosphoramidite having four or more nucleoside moieties. It is presumed that the rate will increase.
  • the nucleoside phosphoramidite in at least the last one of the two or more coupling steps in the method of producing the oligonucleotide, is (a) a nucleoside having two or more nucleoside moieties. Phosphoramidite, or (b) a nucleoside phosphoramidite having one or more nucleoside and linker moieties.
  • the nucleoside phosphoramidite in at least the last one of the two or more coupling steps in the method of producing said oligonucleotides, is a nucleoside phosphoramidite having three nucleoside moieties. is there.
  • the nucleoside phosphoramidite is a nucleoside phosphoramidite having one nucleoside moiety in at least one of the coupling steps performed two or more times in the method for producing the oligonucleotide.
  • the nucleoside phosphoramidite in only the last one of the two or more coupling steps in the method of producing the oligonucleotide, is (a) a nucleoside phosphorami having three nucleoside moieties. Loamidite, or (b) a nucleoside phosphoramidite having one or more nucleoside and linker moieties, and in the other coupling steps, the nucleoside phosphoramidite is a nucleoside phosphorami having one nucleoside moiety. Amidite.
  • nucleoside phosphoramidite having two or more nucleoside moieties can be prepared, for example, as described in WO 2019/212061.
  • the nucleoside phosphoramidite having two or more nucleoside moieties is represented by the following formula (I). Nucleoside phosphoramidite represented by or a stereoisomer thereof.
  • X 1 is -O- or -S-, respectively.
  • X 2 is -O- or -S-, respectively.
  • X 3 is independently of -O-, -S-, -CH 2- or-(CH 2 ) 2- .
  • R 1 is a protecting group, preferably an acid-labile protecting group, or a trialkylsilyl group such as t-butyldimethylsilyl or triisopropylsilyl.
  • Acid-labile protecting groups are protecting groups that can be removed by contacting the group with a protonic acid or Lewis acid. Acid-labile protecting groups are known to those of skill in the art. Examples of acid-unstable protecting groups include substituted or unsubstituted trityl groups, substituted or unsubstituted tetrahydropyranyl groups, substituted or unsubstituted tetrahydrofuranyl groups, pixyl groups and the like.
  • R 1 is a substituted or unsubstituted trityl, 9-phenylxanthenyl (hereinafter “Pixil”) or tetrahydropyranyl (hereinafter "THP").
  • R 1 is an unsubstituted trityl, monoalkoxytrityl, dialkoxytrityl, trialkoxytrityl, THP or pixil. Most preferably, R 1 is 4,4'-dimethoxytrityl.
  • R 2 is independently any of H, NHR 6 , halogen, CN, CF 3 , or hydroxyl group protected with an acyl protecting group, an ether protecting group or a silyl protecting group. It is one.
  • Halogen is, for example, F, Cl, Br, and I.
  • the acyl-based protecting group include acetyl, benzoyl, pivaloyl and the like.
  • the ether-based protecting group include benzyl, p-methoxybenzyl (PMB), allyl and the like.
  • silyl protecting group examples include t-butyldimethylsilyl (TBS), t-butyldiphenylsilyl (TBDPS), t-triisopropylsilyl (TIPS), triethylsilyl (TES), trimethylsilyl (TMS) and the like. ..
  • TBS t-butyldimethylsilyl
  • TDPS t-butyldiphenylsilyl
  • TIPS t-triisopropylsilyl
  • TES triethylsilyl
  • TMS trimethylsilyl
  • R 3 is independently each of -OCH 2 CH 2 CN, -SCH 2 CH 2 CN, substituted or unsubstituted aliphatic group, -OR 7 or -SR 7 .
  • it is ⁇ OCH 2 CH 2 CN.
  • Substituted or unsubstituted aliphatic groups include, but are not limited to, 4-cyanobut-2-enylthio, 4-cyanobut-2-enyloxy, allylthio, allyloxy, crotylthio or crotyloxy and the like.
  • R 4 and R 5 are independently substituted or unsubstituted aliphatic groups, substituted or unsubstituted aromatic groups, substituted or unsubstituted alalkyl groups, respectively. Or R 4 and R 5 together with the nitrogen to which they are attached form a heterocycloalkyl group or a heteroaromatic group.
  • Substituted or unsubstituted aliphatic groups include, but are not limited to, methyl, ethyl, isopropyl and the like, and isopropyl is preferable.
  • Substituted or unsubstituted aromatic groups include, but are not limited to, phenyl, benzyl, naphthyl, 2-pyrenylmethyl, and are preferably phenyl and benzyl.
  • Substituted or unsubstituted alalkyl groups include, but are not limited to, 2-fluorophenylmethoxypiperidine-4-yl and the like.
  • the heterocycloalkyl group is not limited to these, and examples thereof include pyrrolidino and morpholino, and morpholino is preferable.
  • each of R 6 is independently ⁇ H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted alalkyl group.
  • one of the protective groups including the acyl group.
  • Substituted or unsubstituted aliphatic groups include, but are not limited to, methyl, ethyl, allyl, 1-pentenyl, 2-methoxyethyl, preferably methyl, allyl, 2-methoxyethyl. is there.
  • Substituted or unsubstituted aromatic groups include, but are not limited to, phenyl, benzyl, naphthyl, 2-pyrenylmethyl, and are preferably phenyl and benzyl.
  • Substituted or unsubstituted alalkyl groups include, but are not limited to, 2-fluorophenylmethoxypiperidine-4-yl and the like.
  • Protecting groups are, for example, t-butyldimethylsilyl, trifluoroacetyl, tert-butoxycarbonyl, benzyloxycarbonyl, phthaloyl, p-toluenesulfonyl.
  • R 7 is a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted alalkyl group.
  • Substituted or unsubstituted aliphatic groups include, but are not limited to, THP, 4-methoxytetrahydropyranyl and the like.
  • Substituted or unsubstituted aromatic groups include, but are not limited to, o-chlorophenyl, p-chlorophenyl, and the like.
  • Substituted or unsubstituted alalkyl groups include, but are not limited to, 2-fluorophenylmethoxypiperidine-4-yl and the like.
  • B 1 , B 2 and B 3 are H, or protected or unprotected bases, respectively.
  • Protected or unprotected bases include, but are not limited to, naturally occurring bases such as adenin, guanine, cytosine, thymine, and uracil, as well as 7-deazaguanine, 7-deaza-8-azaguanine.
  • n is 0 or a positive integer, preferably an integer of 0 or more and 4 or less, and more preferably 0 or 1.
  • a nucleoside phosphoramidite having one or more nucleoside and linker moieties is located at the 5'position of the nucleoside via a phosphorus atom, eg, a phosphite ester, a phosphate ester, a thiophosphate. It is a nucleoside phosphoramidite in which a linker is bound via an ester and a dithiophosphate.
  • the nucleoside phosphoramidite having one or more nucleoside moieties and linker moieties is not limited to these, but can be obtained from, for example, Glen Research, as shown below. It may be prepared from phosphoramidite having: PC Linker Phosphoramidite (3- (4,4'-dimethoxytrityl) -1- (2-nitrophenyl) -propane-1-yl-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoroamidite )
  • ⁇ -Tocopherol-TEG Phosphoramidite (1-dimethoxytrityloxy-3-O-[(9-DL- ⁇ -tocopherol) -triethylene glycol-1-yl] -glyceryl-2-O-[(2-cyanoethyl)- (N, N, -diisopropyl)]-Phosphoramidite)
  • 5'-DBCO-TEG Phosphoramidite (10- (6-oxo-6- (dibenzo [b, f] azacycloocta-4-in-1-yl) -caproamide-N-ethyl) -O-triethylene glycol- 1-[(2-Cyanoethyl)-(N, N-diisopropyl)]-Phosphoramidite)
  • DNP-TEG Phosphoramidite (1-dimethoxytrityloxy-3-O- [N- (2,4-dinitrophenyl) -3-N-aminopropyl- (triethylene glycol)]-glyceryl-2-O- (2-) Cyanoethyl)-(N, N-diisopropyl) -phosphoromidite)
  • Cholesteryl-TEG Phosphoramidite (1-dimethoxytrityloxy-3-O- (N-cholesteryl-3-aminopropyl) -triethylene glycol-glyceryl-2-O- (2-cyanoethyl)-(N, N, -diisopropyl) -Phosphoramidite)
  • TEG CE-Phosphoramidite (10- (O-trifluoroacetamide-N-ethyl) -triethylene glycol-1-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoroamidite )
  • Spacer Phosphoramidite 18 (18-O-dimethoxytritylhexaethylene glycol, 1-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoroamidite)
  • Spacer Phosphoramidite 9 (9-O-dimethoxytrityl-triethylene glycol, 1-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoroamidite)
  • PC Amino-Modifier Phosphoramidite [(6-trifluoroacetylamide caproamide methyl) -1- (2-nitrophenyl) -ethyl] -2-cyanoethyl- (N, N-diisopropyl) -phosphoroamidite)
  • Thiol-Modifier C6 SS (1-O-dimethoxytrityl-hexyl-disulfide, 1'-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoroamidite)
  • 5'-Carboxy-Modifier C10 (10-carboxy-decyl- (2-cyanoethyl)-(N, N-diisopropyl) -phosphoromidite, N-hydroxysuccinimide ester)
  • PC Biotin Phosphoramidite (1- [2-nitro-5-(6- (N- (4,4'-dimethoxytrityl))-biotinamide caproamide methyl) phenyl] -ethyl- [2-cyanoethyl- (N, N) -Diisopropyl)]-Phosphoramidite)
  • Azobenzene Phosphoramidite (3-O- (dimethoxytrityl) -2-N- (4-carboxyazobenzene) -D-threonine-1-yl-O-[(2-cyanoethyl)-(N, N-diisopropyl)]-phospho Loamidite)
  • Psoralen C6 Phosphoramidite (6- [4'-(hydroxymethyl) -4,5', 8-trimethylsoleran] -hexyl-1-O- (2-cyanoethyl)-(N, N-diisopropyl) -phosphoroamidite )
  • Psoralen C2 Phosphoramidite (2- [4'-(hydroxymethyl) -4,5', 8-trimethylsoleran] -ethyl-1-O- (2-cyanoethyl)-(N, N-diisopropyl) -phosphoroamidite )
  • CNVK 3-Cyanovinylcarbazole Phosphoramidite
  • nucleoside phosphoramidite having one or more nucleoside moieties and a linker moiety is represented by the following formula (II). Nucleoside phosphoramidite represented by or a stereoisomer thereof.
  • X 1 is -O- or -S-, respectively.
  • X 2 is -O- or -S-, respectively.
  • X 3 is independently of -O-, -S-, -CH 2- or-(CH 2 ) 2- .
  • L is a linker. The linker is not limited to these, but for example,
  • R 2 was independently protected with -H, -NHR 6 , halogen, -CN, -CF 3 , or an acyl-based protecting group, an ether-based protecting group, or a silyl-based protecting group. It is one of the hydroxyl groups.
  • Halogen is, for example, F, Cl, Br, and I.
  • Examples of the acyl-based protecting group include acetyl, benzoyl, pivaloyl and the like.
  • the ether-based protecting group include benzyl, p-methoxybenzyl (PMB), allyl and the like.
  • silyl protecting group examples include t-butyldimethylsilyl (TBS), t-butyldiphenylsilyl (TBDPS), t-triisopropylsilyl (TIPS), triethylsilyl (TES), trimethylsilyl (TMS) and the like. ..
  • TBS t-butyldimethylsilyl
  • TDPS t-butyldiphenylsilyl
  • TIPS t-triisopropylsilyl
  • TES triethylsilyl
  • TMS trimethylsilyl
  • R 3 are independently -OCH 2 CH 2 CN, -SCH 2 CH 2 CN, substituted or unsubstituted aliphatic groups, -OR 7 or -SR 7 .
  • it is ⁇ OCH 2 CH 2 CN.
  • Substituted or unsubstituted aliphatic groups include, but are not limited to, 4-cyanobut-2-enylthio, 4-cyanobut-2-enyloxy, allylthio, allyloxy, crotylthio or crotyloxy and the like.
  • R 4 and R 5 are independently substituted or unsubstituted aliphatic groups, substituted or unsubstituted aromatic groups, substituted or unsubstituted alalkyl groups, respectively. Or R 4 and R 5 together with the nitrogen to which they are attached form a heterocycloalkyl group or a heteroaromatic group.
  • Substituted or unsubstituted aliphatic groups include, but are not limited to, methyl, ethyl, isopropyl and the like, and isopropyl is preferable.
  • Substituted or unsubstituted aromatic groups include, but are not limited to, phenyl, benzyl, toluyl, aniryl and the like, with preference given to phenyl and benzyl.
  • Heterocycloalkyl groups include, but are not limited to, pyrrolidino, morpholino, and the like.
  • each of R 6 is independently ⁇ H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted alalkyl group.
  • one of the protective groups including the acyl group.
  • Substituted or unsubstituted aliphatic groups include, but are not limited to, methyl, ethyl, allyl, 1-pentenyl, 2-methoxyethyl, preferably methyl, allyl, 2-methoxyethyl. is there.
  • Substituted or unsubstituted aromatic groups include, but are not limited to, phenyl, benzyl, naphthyl, 2-pyrenylmethyl, and are preferably phenyl and benzyl.
  • the protecting group is, for example, t-butyldimethylsilyl.
  • R 7 is a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted alalkyl group.
  • Substituted or unsubstituted aliphatic groups include, but are not limited to, THP, 4-methoxytetrahydropyranyl and the like.
  • Substituted or unsubstituted aromatic groups include, but are not limited to, o-chlorophenyl, p-chlorophenyl, and the like.
  • Substituted or unsubstituted alalkyl groups include, but are not limited to, 2-fluorophenylmethoxypiperidine-4-yl and the like.
  • B 1 and B 2 are H, or protected or unprotected bases, respectively.
  • Protected or unprotected bases include, but are not limited to, naturally occurring bases such as adenin, guanine, cytosine, thymine, and uracil, as well as 7-deazaguanine, 7-deaza-8-azaguanine.
  • B 1 and B 2 are adenine.
  • n is 0 or a positive integer, preferably an integer of 0 or more and 4 or less, and more preferably 0 or 1.
  • Example 1 Comparison between sequential method and segment method (1) Synthesis of oligonucleotides dT NittoPhase (registered trademark) HL dT300 (manufactured by Nitto Denko KK) was packed in a reaction column in an amount corresponding to 1573 ⁇ mol, and a nucleic acid synthesizer AKTA oligopilot was added. A 17mer (5'CCG ATT AAG CGA AGC TT 3') DNA oligonucleotide was synthesized using plus100 (Cytiva, formerly manufactured by GE Healthcare Japan).
  • a solid phase carrier with 17mer DNA was packed in the reaction column in an amount corresponding to 205 ⁇ mol, and dC, dT, using 5-ethylthio-1H-tetrazole (ETT) as an activator with the nucleic acid synthesizer AKTA oligopilot plus100.
  • ETT 5-ethylthio-1H-tetrazole
  • the dATC was made as described in International Publication No. 2019/212061.
  • the solid-phase carrier to which the DNA oligonucleotide was bound was immersed in 28% aqueous ammonia, and the DNA oligonucleotide was cut out from the solid-phase carrier. A part of this solution was diluted with water to prepare a DNA oligonucleotide sample solution. The remaining solution was a crude solution.
  • the contents of impurity I and impurity II were 2.9% and 2.8%, respectively, whereas when synthesized by the segment method 1, impurities I and impurities were contained.
  • the content of II was 0.6% and 0.4%, respectively, and when synthesized by the segment method 2, it was 0.7% and 1.8%, respectively.
  • the contents of impurity I and impurity II could be significantly reduced as compared with the case of synthesis by the successive method.
  • Table 2 shows the analysis results of the purified DNA oligonucleotide sample solution.
  • the purity of the target oligonucleotide was 90.46% in the successive method, 92.34% in the segment method 1, and 92.53% in the segment method 2, and the oligonucleotide was synthesized by the segment method. In some cases, the desired oligonucleotide could be obtained with higher purity than when synthesized by the successive method. Further, the FLP (total length product, purity ⁇ total OD) is 9302 in the successive method, 10702 in the segment method 1, and 10724 in the segment method 2, and when synthesized by the segment method, it is 10724. Compared with the case of synthesis by the successive method, the desired oligonucleotide could be obtained with a high yield.
  • Example 2 Comparison of reaction rates (1) Synthesis of DNA oligonucleotide Nitto Phase (registered trademark) HL UnyLinker 350 (manufactured by Nitto Denko KK) was packed in a reaction column in an amount corresponding to 2935 ⁇ mol, and a nucleic acid synthesizer AKTA oligopilot plus 100 was used. A 17mer (5'CCG ATT AAG CGA AGC TT 3') DNA oligonucleotide was synthesized.
  • HL UnyLinker 350 manufactured by Nitto Denko KK
  • Suitable synthetic reagents include 3% DCA in toluene as a deprotecting agent, pyridine in water and iodine as an oxidizing agent, pyridine in acetonitrile as a capping agent, N-methylimidazole, acetic anhydride or isobutyric anhydride, and an amine wash reaction solution. TBA in acetonitrile was used.
  • the dGCC was made as described in International Publication No. 2019/212061.
  • the solid-phase carrier to which the DNA oligonucleotide was bound was immersed in aqueous ammonia, and the DNA oligonucleotide was cut out from the solid-phase carrier.
  • Activator42 has the following structure: Have.
  • RNA oligonucleotide NittoPhase registered trademark
  • HL rU250 manufactured by Kinovate Life Science
  • 17mer synthesis was performed using a nucleic acid synthesizer AKTA oligopilot plus100.
  • RNA oligonucleotides of CCG AUU AAG CGA AGC UU 3' were synthesized.
  • a solid phase carrier with 17 mer RNA was loaded into the reaction column in an amount corresponding to 85 ⁇ mol, and 5-mercapto-1-methyltetrazole (1-Me-MCT) and saccharin were used as activators with the nucleic acid synthesizer AKTA oligopilot plus10.
  • RNA oligonucleotide was excised from the solid-phase carrier by slowly dropping 3HF and shaking.
  • Table 3 shows the results in DNA synthesis
  • Table 4 shows the results in RNA synthesis.
  • the HOMO energy and orbital coefficients of the activators used in this experiment are also shown in Tables 3 and 4.
  • the HOMO energy and orbital coefficient were obtained by optimization calculation using the Gaussian quantum chemistry calculation program Gaussian16 manufactured by Gaussian and adopting the Becke-type 3-parameter density functional theory (B3LYP).
  • the structure of the active species BIT is a neutral species, the others are anionic species
  • the actuator makes a nucleophilic attack on amidite
  • the activators showing higher reaction rates than Activator 42 had higher HOMO energy levels and / or higher orbital coefficients. It is considered that the high HOMO energy level of the activator reduces the energy difference between the HOMO energy level of the activator and the LUMO energy level of the segmented amidite, and facilitates the reaction. Further, it is considered that the large orbital coefficient of the activator causes the orbital overlap between the nitrogen atom of the activator and the phosphorus atom of the segmented amidite to be large, and the reaction is likely to occur.
  • Example 3 Comparison of degradation of segmented amidite (1) Synthesis of oligonucleotide using dGCC as segmented amidite Reaction column using the solid phase carrier with 17mer DNA obtained in Example 2 (1) in an amount corresponding to 90 ⁇ mol.
  • nucleic acid synthesizer AKTA oligopilot plus10 0.6M 5-mercapto-1-methyltetrazole (1-Me-MCT) and 0.5M 5-mercapto-1-phenyltetrazole (1-Ph-MCT) were used as activators.
  • BTT 0.25M 5-benzylthiotetrazole
  • SMI 0.25M saccharin 1-methylimidazole
  • ETT 0.6M 5-ethylthio-1H-tetrazole
  • Activator42 0.25M 5- [3,5 -Bis (trifluoromethyl) phenyl] -1H-tetrazole
  • Other synthetic reagents include 3% DCA in toluene as a deprotecting agent, pyridine in water and iodine as an oxidizing agent, pyridine in acetonitrile as a capping agent, N-methylimidazole, acetic anhydride, and TBA in acetonitrile as an amine wash reaction solution.
  • the dGCC was made as described in International Publication No. 2019/212061.
  • the solid-phase carrier to which the DNA oligonucleotide was bound was immersed in aqueous ammonia at 55 ° C. for 12 to 16 hours, and the DNA oligonucleotide was cut out from the solid-phase carrier.
  • Table 5 also shows the pKa values of the activators used in this experiment in water.
  • the peak area of Impurity II was 9.089%, and remarkable decomposition of segmented amidite was observed.
  • the peak area of Impurity II was about 1 to 2%, and almost no decomposition was observed. It is highly probable that Impurity II was generated by the decomposition of the phosphoric acid diester bond that connects the oligonucleotide and the segmented amidite with an acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

本発明は、セグメント型アミダイトを用いてオリゴヌクレオチドを合成する方法の提供を目的とする。オリゴヌクレオチドを製造する方法であって、アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3'または5'の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、少なくとも1回のカップリング工程において、前記ヌクレオシドホスホロアミダイトが(a)2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトであり、前記アクチベータが、以下の式(1): 式(1)中、Xは、有機塩基である、 または、以下の式(2): 式(2)中、RおよびRは、それぞれ独立して、H、直鎖または分岐鎖のC1~7アルキル基、および任意に置換されていてもよい芳香族基からなる群から選択される、で表される構造を有する、前記方法などにより、上記課題が解決された。

Description

セグメント型アミダイトを用いた核酸合成法
 本発明は、セグメント型アミダイトを用いてオリゴヌクレオチドを合成する方法に関する。
 DNAオリゴヌクレオチドやRNAオリゴヌクレオチド等の核酸の化学合成において、ホスホロアミダイト法が広く用いられている。この方法において、所望の配列を有するオリゴヌクレオチドは、典型的には、適切に保護されたヌクレオシドを1つずつ、順次付加していくことによって合成される。しかしながら、反応は100%の確率で生じることはなく、また、付加されたヌクレオシドが合成反応中に分解されてしまうこともあり、所望の長さ(N)に対して1以上(n)短い長さを有するオリゴヌクレオチド(N-n)merは必然的に生じ得る。合成後、オリゴヌクレオチドは、クロマトグラフィー等によって精製されるが、所望の長さを有するオリゴヌクレオチドである(N)merと、所望の長さ(N)に対して1ヌクレオチド短い(N-1)merは、クロマトグラフィー移動度が近いため、(N-1)merの存在は、オリゴヌクレオチドの精製効率や精製品の純度に大きな影響を与える。
 特許文献1および2ならびに非特許文献1には、(N-1)merのオリゴヌクレオチドの生成を抑えるための方法として、合成において、2個または3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイト(セグメント型アミダイト)を利用する方法が記載されているが、それらの方法は十分に効率な方法ではなかった。
 また、特許文献3には、オリゴヌクレオチドの合成において1H-テトラゾールよりも安全に使用することができるアクチベータとして、サッカリンの誘導体が記載されている。しかしながら、特許文献3においては、サッカリンの誘導体のアクチベータとしての性能については十分に検討されていない。また、特許文献4には、1H-テトラゾールに代わるアクチベータとして、少なくとも1つのピリジニウム塩および少なくとも1つの置換されたイミダゾールを含むアクチベータ、イミダゾリウム塩およびベンゾイミダゾリウム塩が記載されている。しかしながら、特許文献4においては、アクチベータとして、サッカリンとの塩を用いることについては記載されていない。
国際公開第02/20543号 特表第2017-514479号 米国特許第7,501,505号 米国特許第6,642,373号
RNA synthesis via dimer and trimer phosphoramidite block coupling [Tetrahedron Letters 52 (2011) 2575-2578]
 本発明は、セグメント型アミダイトを用いてオリゴヌクレオチドを合成する方法の提供を目的とする。
 本発明者らは、セグメント型アミダイトを用いてオリゴヌクレオチドを合成する方法について鋭意研究に取り組む中で、当該方法において有用なアクチベータを見出した。そしてかかる知見に基づいてさらに研究を続けた結果、本発明を完成させた。
 すなわち、本発明は以下に関する。
 [1]オリゴヌクレオチドを製造する方法であって、
アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
少なくとも1回のカップリング工程において、前記ヌクレオシドホスホロアミダイトが
(a)2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイト
であり、
前記アクチベータが、以下の式:
Figure JPOXMLDOC01-appb-C000007
 
式中、
Xは、有機塩基である、
または、以下の式:
Figure JPOXMLDOC01-appb-C000008
 
式中、
およびRは、それぞれ独立して、H、直鎖または分岐鎖のC1~7アルキル基、および任意に置換されていてもよい芳香族基からなる群から選択される、
で表される構造を有する、前記方法。
 [2]Xは、N-メチルイミダゾール、ピリジンまたは3-メチルピリジンであり、
は、H、C2n+1またはベンジル基であり、
は、H、CH、またはCであり、
nは、1、2または3である、
[1]に記載の方法。
 [3]前記アクチベータが、5-メルカプト-1-メチルテトラゾール(1-Me-MCT)、5-メルカプト-1-フェニルテトラゾール(1-Ph-MCT)、サッカリン1-メチルイミダゾール(SMI)、または5-エチルチオ-1H-テトラゾール(ETT)である、[1]または[2]に記載の方法。
 [4]2回以上行われるカップリング工程の少なくとも最後の1回において、
ヌクレオシドホスホロアミダイトが
(a)2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイト
である、[1]~[3]のいずれか一つに記載の方法。
 [5]2回以上行われるカップリング工程の少なくとも最後の1回において、
ヌクレオシドホスホロアミダイトが3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイトである、
[1]~[4]のいずれか一つに記載の方法。
 [6]2回以上行われるカップリング工程の少なくとも1回において、
ヌクレオシドホスホロアミダイトが1個のヌクレオシド部分を有するヌクレオシドホスホロアミダイトである、
[1]~[5]のいずれか一つに記載の方法。
 [7]2回以上行われるカップリング工程の最後の1回のみにおいて、
ヌクレオシドホスホロアミダイトが
(a)3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイト
であり、
 その他の回のカップリング工程において、
ヌクレオシドホスホロアミダイトが1個のヌクレオシド部分を有するヌクレオシドホスホロアミダイトである、
[1]~[6]のいずれか一つに記載の方法。
 [8]2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイトが、下記式(I)
Figure JPOXMLDOC01-appb-C000009
式中、
は、各々独立して、-O-または-S-であり;
は、各々独立して、-O-または-S-であり;
は、各々独立して、-O-、-S-、-CH-または-(CH-であり;
は保護基であり;
は、各々独立して、-H、-NHR、ハロゲン、-CN、-CF、またはアシル系保護基、エーテル系保護基もしくはシリル系保護基で保護された水酸基であり;
は、各々独立して、-OCHCHCN、-SCHCHCN、置換されたもしくは未置換の脂肪族基、-ORまたは-SRであり;
およびRは、各々独立して、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基であり;または
およびRは、それらが結合している窒素と一緒になって、ヘテロシクロアルキル基またはヘテロ芳香族基を形成し;
は、各々独立して、-H、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基、または保護基であり;
は、各々独立して、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、または置換されたもしくは未置換のアルアルキル基であり;
、BおよびBは、各々独立して、-H、または保護されたもしくは無保護の塩基であり;および
nは0または正の整数である; 
で示されるヌクレオシドホスホロアミダイトまたはその立体異性体である、[1]~[7]のいずれか一つに記載の方法。
 [9]nが0または1である、[8]に記載の方法。
 [10]Rが-Hである、[8]または[9]に記載の方法。
 [11]Rが-OCHCHCNである、[8]~[10]のいずれか一つに記載の方法。
 [12]1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトが、下記式(II)
Figure JPOXMLDOC01-appb-C000010
式中、
は、各々独立して、-O-または-S-であり;
は、各々独立して、-O-または-S-であり;
は、各々独立して、-O-、-S-、-CH-または-(CH-であり;
Lはリンカーであり;
は、各々独立して、-H、-NHR、ハロゲン、-CN、-CF、またはアシル系保護基、エーテル系保護基もしくはシリル系保護基で保護された水酸基であり;
は、各々独立して、-OCHCHCN、-SCHCHCN、置換されたもしくは未置換の脂肪族基、-ORまたは-SRであり;
およびRは、各々独立して、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基であり;または
およびRは、それらが結合している窒素と一緒になって、ヘテロシクロアルキル基またはヘテロ芳香族基を形成し;Rは、各々独立して、-H、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基、または保護基であり;
は、各々独立して、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、または置換されたもしくは未置換のアルアルキル基であり;
およびBは、各々独立して、-H、または保護されたもしくは無保護の塩基であり;および
nは0または正の整数である; 
で示されるヌクレオシドホスホロアミダイトまたはその立体異性体である、[1]~[11]のいずれか一つに記載の方法。
 [13]オリゴヌクレオチドを製造する方法であって、
アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
少なくとも1回のカップリング工程において、前記ヌクレオシドホスホロアミダイトが
(a)2個または3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイト
であり、
前記アクチベータが、以下の式:
Figure JPOXMLDOC01-appb-C000011
式中、
Xは、有機塩基である、
または、以下の式:
Figure JPOXMLDOC01-appb-C000012
式中、
およびRは、それぞれ独立して、H、直鎖または分岐鎖のC1~7アルキル基、および任意に置換されていてもよい芳香族基からなる群から選択される、で表される構造を有する、前記方法。
 [14]Xは、N-メチルイミダゾール、ピリジンまたは3-メチルピリジンであり、
は、H、C2n+1またはベンジル基であり、
は、H、CH、またはCであり、
nは、1、2または3である、
[13]に記載の方法。
 [15]オリゴヌクレオチドを製造する方法であって、
アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
少なくとも1回のカップリング工程において、前記ヌクレオシドホスホロアミダイトが
(a)2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイト
であり、
前記アクチベータのHOMOエネルギー(a.u.)が、アセトニトリル中において、-0.21407~-0.16858であり、かつ、
前記アクチベータの軌道係数が、アセトニトリル中において、0.31531~0.59405である、
前記方法。
 [16]前記アクチベータのpKaが、水中において、3.65~7である、[15]に記載の方法。
 [17]オリゴヌクレオチドを製造する方法であって、
アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
少なくとも1回のカップリング工程において、ヌクレオシドホスホロアミダイトが
(a)2個または3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトであり、
前記アクチベータのHOMOエネルギー(a.u.)が、アセトニトリル中において、-0.22024~-0.16858であり、かつ、
前記アクチベータの軌道係数が、アセトニトリル中において、0.31531~0.59405である、
前記方法。
 [18]アクチベータのpKaが、水中において、3.65~7である、[17]に記載の方法。
 [19]オリゴヌクレオチドを製造する方法であって、
アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
少なくとも1回のカップリング工程において、ヌクレオシドホスホロアミダイトが
(a)2個または3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトであり、
前記アクチベータのpKaが、水中において、3.65~7である、
前記方法。
 [20]オリゴヌクレオチドを製造する方法であって、
アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
少なくとも1回のカップリング工程において、ヌクレオシドホスホロアミダイトが
(a)2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトであり、
前記アクチベータのpKaが、水中において、4.3~7である、
前記方法。
 本発明のアクチベータを用いることにより、2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、すなわちセグメント型アミダイト、または、1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトを用いて、高効率でオリゴヌクレオチドを合成することができる。また、カップリング工程の最後の1回において、2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、すなわちセグメント型アミダイトを用いることにより、所望の目的のオリゴヌクレオチドとクロマトグラフィー移動度が近く、精製により取り除き困難な(N-1)merの生成を抑制することができる。また、アクチベータとして、本発明のアクチベータを用いることは、合成過程におけるセグメント型アミダイトの分解の抑制にも寄与する。
 以下、本発明を詳細に説明する。
 本明細書において別様に定義されない限り、本明細書で用いる全ての技術用語および科学用語は、当業者が通常理解しているものと同じ意味を有する。本明細書中で参照する全ての特許、出願および他の出版物や情報は、その全体を参照により本明細書に援用する。また本明細書において参照された出版物と本明細書の記載に矛盾が生じた場合は、本明細書の記載が優先されるものとする。
 本発明は、一側面において、オリゴヌクレオチドを製造する方法であって、アクチベータの存在下で、未置換の水酸基または未置換のチオール基を有するヌクレオチドまたはヌクレオシドに、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含む、前記方法に関する。
 本発明において、オリゴヌクレオチドの製造は、溶液中または固体支持体上で、好適な活性化剤の存在下で、ヌクレオシドホスホロアミダイトとヌクレオシドとの縮合反応によってヌクレオチドの付加が行われる、いわゆるホスホロアミダイト法を用いて行われる。
 本発明において、オリゴヌクレオチドとは、塩基、糖、リン酸がホスホジエステル結合で連なった構造を有する化合物を指し、天然に存在するオリゴヌクレオチド、例えば2’-デオキシリボ核酸(以下、「DNA」)およびリボ核酸(以下、「RNA」)と、修飾糖部分、修飾リン酸部分、または修飾ヌクレオ塩基を含有する核酸とが含まれる。糖部分への修飾には、リボース環をヘキソース、シクロペンチル、またはシクロヘキシル環に置き換えることが含まれる。あるいは、天然に存在する核酸のD-リボース環をL-リボース環に置き換えてもよく、または、天然に存在する核酸のβ-アノマーをα-アノマーに置き換えてもよい。オリゴヌクレオチドはまた、1以上の非塩基性部分を含んでいてもよい。修飾リン酸部分には、ホスホロチオエート、ホスホロジチオエート、メチルホスホネート、およびリン酸メチルが含まれる。こうした核酸類似体は当業者に知られている。上記の2以上の混合物を含んでなるオリゴヌクレオチドは、例えば、デオキシリボおよびリボヌクレオシドの混合物、特にデオキシリボヌクレオシドと2’-O-メチルまたは2’-O-メトキシエチルリボヌクレオシドのような2’-O-置換リボヌクレオシドの混合物を含んでなるオリゴヌクレオチドから製造可能である。ヌクレオシドの混合物を含んでなるオリゴヌクレオチドの例には、リボザイムが含まれる。
 本発明において、ヌクレオシドホスホロアミダイト(セグメント型アミダイト)とは、アミダイトで誘導体化されたヌクレオシドを指す。アミダイト化は、例えば、アクチベータとして1H-テトラゾールを用い、適切に保護されたヌクレオシドに対し、2-シアノエチル-N,N,N’,N’-テトライソプロピルホスホロジアミダイトを反応させることによって行うことができる。
 本発明において、ヌクレオシドとは、塩基と糖が結合した化合物を指し、アデノシン、チミジン、グアノシン、シチジン、ウリジンのような天然に存在するヌクレオシド、または修飾ヌクレオシドであってもよい。塩基は、アデニン、グアニン、シトシン、チミン、およびウラシルのような天然に存在する塩基、または修飾塩基であってもよい。ヌクレオシドの糖部分は、天然に存在するデオキシリボースやリボースであってもよく、D配置もしくはL配置をとってもよい。
 本発明において、アクチベータは、ヌクレオシドホスホロアミダイトと、ヌクレオチドまたはヌクレオシドとを反応させるために用いられ、活性化剤またはカップリング剤とも称される。
 本発明の一態様において、アクチベータは、以下の式:
Figure JPOXMLDOC01-appb-C000013
式中、
Xは、有機塩基であり、サッカリンと塩複合体を形成し、好ましくはN-メチルイミダゾール、ピリジンまたは3-メチルピリジンである、
または、以下の式:
Figure JPOXMLDOC01-appb-C000014
式中、
およびRは、それぞれ独立して、H、直鎖または分岐鎖のC1~7アルキル基、および任意に置換されていてもよい芳香族基からなる群から選択される、
で表される構造を有する。
 好ましくは、RおよびRは、それぞれ独立して、H、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、フェニル基、ベンジル基であり、さらに好ましくは、Rは、H、C2n+1またはベンジル基であり、Rは、H、CH、またはCであり、nは、1、2または3である。
 本発明の一態様において、アクチベータは、例えば、5-メルカプト-1-メチルテトラゾール(1-Me-MCT):
Figure JPOXMLDOC01-appb-C000015
5-メルカプト-1-フェニルテトラゾール(1-Ph-MCT):
Figure JPOXMLDOC01-appb-C000016
5-ベンジルチオテトラゾール(BTT):
Figure JPOXMLDOC01-appb-C000017
サッカリン 1-メチルイミダゾール(SMI):
Figure JPOXMLDOC01-appb-C000018
5-エチルチオ-1H-テトラゾール(ETT)
Figure JPOXMLDOC01-appb-C000019
4,5-ジシアノイミダゾール(DCI):
Figure JPOXMLDOC01-appb-C000020
またはベンズイミダゾールトリフルオロメタンスルホン酸塩(BIT):
Figure JPOXMLDOC01-appb-C000021
であり、好ましくは、1-Me-MCT、1-Ph-MCT、SMI、ETT、またはBTTであり、より好ましくは、1-Me-MCT、1-Ph-MCT、またはSMIである。
 本発明の一態様において、本発明のアクチベータのHOMOエネルギー(a.u.)は、アセトニトリル中において、-0.22024~-0.16858である。例えば、本発明のアクチベータのHOMOエネルギー(a.u.)は、アセトニトリル中において、-0.21995~-0.16858、-0.21407~-0.16858、-0.19928~-0.16858、-0.18904~-0.16858、または-0.18741~-0.16858であり、好ましくは、-0.21407~-0.16858(a.u.)であり、より好ましくは、-0.18904~-0.16858(a.u.)である。
 本発明の一態様において、本発明のアクチベータの軌道係数は、アセトニトリル中において、0.31531~0.59405である。例えば、本発明のアクチベータの軌道係数は、アセトニトリル中において、0.31531~0.59405、0.39931~0.59405、0.51802~0.59405、または0.53787~0.59405であり、好ましくは、0.39931~0.59405である。
 本発明の一態様において、アクチベータのHOMOエネルギー(a.u.)は、アセトニトリル中において、-0.22024~-0.16858であり、かつ、前記アクチベータの軌道係数は、アセトニトリル中において、0.31531~0.59405である。
 本発明の一態様において、アクチベータのHOMOエネルギー(a.u.)は、アセトニトリル中において、-0.21407~-0.16858であり、かつ、前記アクチベータの軌道係数は、アセトニトリル中において、0.31531~0.59405である。
 HOMOエネルギーおよび軌道係数は、量子化学計算プログラムによって求めることができ、例えば、Gaussian社製の量子化学計算プログラムGaussian16において、Becke-型3-パラメータ密度汎関数法(B3LYP)を採用した最適化計算によって求めることができる。
 本発明の一態様において、本発明のアクチベータの25℃の水中におけるpKaは、3.65~7.0であり、例えば、3.86~7.0、4.1~7.0、4.3~7.0、4.5~7.0、5.0~7.0、5.5~7.0、6.0~7.0、または6.5~7.0である。
 本発明の一態様において、前記オリゴヌクレオチドを製造する方法における、少なくとも1回のカップリング工程において、ヌクレオシドホスホロアミダイトは、(a)2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトである。
 本発明の一態様において、前記オリゴヌクレオチドを製造する方法における、少なくとも1回のカップリング工程において、ヌクレオシドホスホロアミダイトは、(a)2個または3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトである。
 2個または3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイトは、4個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイトと比較して、分子サイズの小ささから運動性が高く反応速度が速いため、反応率が高くなることが推測される。
 本発明の一態様において、前記オリゴヌクレオチドを製造する方法における、2回以上行われるカップリング工程の少なくとも最後の1回において、ヌクレオシドホスホロアミダイトは、(a)2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトである。
 本発明の一態様において、前記オリゴヌクレオチドを製造する方法における、2回以上行われるカップリング工程の少なくとも最後の1回において、ヌクレオシドホスホロアミダイトは、3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイトである。
 本発明の一態様において、前記オリゴヌクレオチドを製造する方法における、2回以上行われるカップリング工程の少なくとも1回において、ヌクレオシドホスホロアミダイトは、1個のヌクレオシド部分を有するヌクレオシドホスホロアミダイトである。
 本発明の一態様において、前記オリゴヌクレオチドを製造する方法における、2回以上行われるカップリング工程の最後の1回のみにおいて、ヌクレオシドホスホロアミダイトは、(a)3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または(b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトであり、その他の回のカップリング工程において、ヌクレオシドホスホロアミダイトは、1個のヌクレオシド部分を有するヌクレオシドホスホロアミダイトである。
 本発明において、2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイトは、例えば、国際公開第2019/212061号に記載のように作製することができる。
 本発明の一態様において、2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイトは、下記式(I)
Figure JPOXMLDOC01-appb-C000022
で示されるヌクレオシドホスホロアミダイトまたはその立体異性体である。
 式(I)において、Xは、各々独立して、-O-または-S-である。
 式(I)において、Xは、各々独立して、-O-または-S-である。
 式(I)において、Xは、各々独立して、-O-、-S-、-CH-または-(CH-である。
 式(I)において、Rは保護基であり、好ましくは、酸に不安定な保護基、またはt-ブチルジメチルシリルまたはトリイソプロピルシリルのようなトリアルキルシリル基である。酸に不安定な保護基とは、プロトン酸またはルイス酸と該基を接触させることによって除去可能である保護基である。酸に不安定な保護基は、当業者に知られている。酸に不安定保護基の例としては、置換または非置換トリチル基、置換または非置換テトラヒドロピラニル基、置換または非置換テトラヒドロフラニル基、またはピキシル基などが挙げられる。トリチル基は、通常、アルコキシ基のような電子供与基により置換される。より好ましい態様において、Rは、置換されたもしくは未置換のトリチル、9-フェニルキサンテニル(以下、「ピキシル」)またはテトラヒドロピラニル(以下、「THP」)である。なお一層好ましい態様において、Rは、未置換のトリチル、モノアルコキシトリチル、ジアルコキシトリチル、トリアルコキシトリチル、THPまたはピキシルである。最も好ましくは、Rは4,4’-ジメトキシトリチルである。
 式(I)において、Rは、各々独立して、H、NHR、ハロゲン、CN、CF、またはアシル系保護基、エーテル系保護基もしくはシリル系保護基で保護された水酸基のいずれか一つである。ハロゲンは、例えば、F、Cl、Br、およびIである。アシル系保護基としては、例えば、アセチル、ベンゾイル、ピバロイルなどが挙げられる。エーテル系保護基としては、例えば、ベンジル、p-メトキシベンジル(PMB)、アリルなどが挙げられる。シリル系保護基としては、例えば、t-ブチルジメチルシリル(TBS)、t-ブチルジフェニルシリル(TBDPS)、t-トリイソプロピルシリル(TIPS)、トリエチルシリル(TES)、トリメチルシリル(TMS)などが挙げられる。好ましくは、-Hである。
 式(I)において、Rは、各々独立して、-OCHCHCN、-SCHCHCN、置換されたもしくは未置換の脂肪族基、-ORまたは-SRであり、好ましくは、-OCHCHCNである。置換されたもしくは未置換の脂肪族基としては、これらに限定されないが、例えば、4-シアノブト-2-エニルチオ、4-シアノブト-2-エニルオキシ、アリルチオ、アリルオキシ、クロチルチオまたはクロチルオキシなどが挙げられる。
 式(I)において、RおよびRは、各々独立して、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基であり;またはRおよびRは、それらが結合している窒素と一緒になって、ヘテロシクロアルキル基またはヘテロ芳香族基を形成する。置換されたもしくは未置換の脂肪族基としては、これらに限定されないが、例えば、メチル、エチル、イソプロピルなどが挙げられ、好ましくはイソプロピルである。置換されたもしくは未置換の芳香族基としては、これらに限定されないが、例えば、フェニル、ベンジル、ナフチル、2-ピレニルメチルが挙げられ、好ましくはフェニル、ベンジルである。置換されたもしくは未置換のアルアルキル基としては、これらに限定されないが、例えば、2-フルオロフェニルメトキシピペリジン-4-イルなどが挙げられる。ヘテロシクロアルキル基としては、これらに限定されないが、例えば、ピロリジノ、モルホリノなどが挙げられ、好ましくはモルホリノである。
 式(I)において、Rは、各々独立して、-H、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基、またはアシル基をはじめとする保護基のいずれか一つである。置換されたもしくは未置換の脂肪族基としては、これらに限定されないが、例えば、メチル、エチル、アリル、1-ペンテニル、2-メトキシエチルが挙げられ、好ましくはメチル、アリル、2-メトキシエチルである。置換されたもしくは未置換の芳香族基としては、これらに限定されないが、例えば、フェニル、ベンジル、ナフチル、2-ピレニルメチルが挙げられ、好ましくはフェニル、ベンジルである。置換されたもしくは未置換のアルアルキル基としては、これらに限定されないが、例えば、2-フルオロフェニルメトキシピペリジン-4-イルなどが挙げられる。保護基は、例えば、t-ブチルジメチルシリル、トリフルオロアセチル、tert-ブトキシカルボニル、ベンジルオキシカルボニル、フタロイル、p-トルエンスルホニルである。
 式(I)において、Rは、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、または置換されたもしくは未置換のアルアルキル基である。置換されたもしくは未置換の脂肪族基としては、これらに限定されないが、例えば、THP、4-メトキシテトラヒドロピラニルなどが挙げられる。置換されたもしくは未置換の芳香族基としては、これらに限定されないが、例えば、o-クロロフェニルまたはp-クロロフェニルなどが挙げられる。置換されたもしくは未置換のアルアルキル基としては、これらに限定されないが、例えば、2-フルオロフェニルメトキシピペリジン-4-イルなどが挙げられる。
 式(I)において、B、BおよびBは、各々独立して、H、または保護されたもしくは無保護の塩基である。保護されたもしくは無保護の塩基としては、これらに限定されないが、例えば、アデニン、グアニン、シトシン、チミン、およびウラシルのような天然に存在する塩基や、7-デアザグアニン、7-デアザ-8-アザグアニン、5-プロピニルシトシン、5-プロピニルウラシル、7-デアザアデニン、7-デアザ-8-アザアデニン、7-デアザ-6-オキソプリン、6-オキソプリン、3-デアザアデノシン、2-オキソ-5-メチルピリミジン、2-オキソ-4-メチルチオ-5-メチルピリミジン、2-チオカルボニル-4-オキソ-5-メチルピリミジン、4-オキソ-5-メチルピリミジン、2-アミノプリン、5-フルオロウラシル、2,6-ジアミノプリン、8-アミノプリン、4-トリアゾロ-5-メチルチミン、および4-トリアゾロ-5-メチルウラシルのような修飾塩基などが挙げられる。
 式(I)において、nは0または正の整数であり、好ましくは、0以上4以下の整数であり、より好ましくは、0または1である。
 本発明の一態様において、1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトは、ヌクレオシドの5’位において、リン原子を介して、例えば、亜リン酸エステル、リン酸エステル、チオリン酸エステル、ジチオリン酸エステルを介してリンカーが結合しているヌクレオシドホスホロアミダイトである。
 本発明の一態様において、1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトは、これらに限定されないが、例えば、Glen Research社からから入手することができる、以下に示すようなリンカー部分を有するホスホロアミダイトを原料として調製されてもよい:
PC Linker Phosphoramidite(3-(4,4’-ジメトキシトリチル)-1-(2-ニトロフェニル)-プロパン-1-イル-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000023
5'-Aminooxy-Modifier-11-CE Phosphoramidite(10-[N-ジメトキシトリチル-アミノオキシエチル)]-トリエチレングリコール-1-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000024
α-Tocopherol-TEG Phosphoramidite(1-ジメトキシトリチルオキシ-3-O-[(9-DL-α-トコフェリル)-トリエチレングリコール-1-イル]-グリセリル-2-O-[(2-シアノエチル)-(N,N,-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000025
5'-DBCO-TEG Phosphoramidite(10-(6-オキソ-6-(ジベンゾ[b,f]アザシクロオクタ-4-イン-1-イル)-カプロアミド-N-エチル)-O-トリエチレングリコール-1-[(2-シアノエチル)-(N,N-ジイ
ソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000026
5'-Cholesteryl-TEG Phosphoramidite(10-O-[1-プロピル-3-N-カルバモイルコレステリル]-トリエチレングリコール-1-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000027
DNP-TEG Phosphoramidite(1-ジメトキシトリチルオキシ-3-O-[N-(2,4-ジニトロフェニル)-3-N-アミノプロピル-(トリエチレングリコール)]-グリセリル-2-O-(2-シアノエチル)-(N,N-ジイソプロピル)-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000028
Cholesteryl-TEG Phosphoramidite(1-ジメトキシトリチルオキシ-3-O-(N-コレステリル-3-アミノプロピル)-トリエチレングリコール-グリセリル-2-O-(2-シアノエチル)-(N,N,-ジイソプロピル)-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000029
5'-Amino-Modifier TEG CE-Phosphoramidite(10-(O-トリフルオロアセトアミド-N-エチル)-トリエチレングリコール-1-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000030
Spacer Phosphoramidite 18(18-O-ジメトキシトリチルヘキサエチレングリコール,1-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000031
Spacer Phosphoramidite 9(9-O-ジメトキシトリチル-トリエチレングリコール,1-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000032
PC Amino-Modifier Phosphoramidite([(6-トリフルオロアセチルアミドカプロアミドメチル)-1-(2-ニトロフェニル)-エチル]-2-シアノエチル-(N,N-ジイソプロピル)-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000033
Thiol-Modifier C6 S-S(1-O-ジメトキシトリチル-ヘキシル-ジスルフィド,1’-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000034
5'-Carboxy-Modifier C10(10-カルボキシ-デシル-(2-シアノエチル)-(N,N-ジイソプロピル)-ホスホロアミダイト,N-ヒドロキシスクシンイミドエステル)
Figure JPOXMLDOC01-appb-C000035
5'-Thiol-Modifier C6(S-トリチル-6-メルカプトヘキシル-1-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000036
Dithiol Serinol Phosphoramidite(3-ジメトキシトリチルオキシ-2-(3-((R)-α-リポアミド)プロパンアミド)プロピル-1-O-(2-シアノエチル)-(N,N-ジイソプロピル)-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000037
5'-Maleimide-Modifier Phosphoramidite(2-(1,7-ジメチル-3,5-ジオキソ-10-オキサ-4-アザトリシクロ[5.2.1.02,6]デカ-8-エン-4-イル)-エチル-1-O-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000038
PC Biotin Phosphoramidite(1-[2-ニトロ-5-(6-(N-(4,4’-ジメトキシトリチル))-ビオチンアミドカプロアミドメチル)フェニル]-エチル-[2-シアノエチル-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000039
Protected BiotinLC Serinol Phosphoramidite(3-ジメトキシトリチルオキシ-2-(3-((4-t-ブチルベンゾイル)-ビオチニル-3-アミノプロピル)-ジエチレングリコリル-プロピルアミド-グリカノイルアミド)プロピル-1-O-(2-シアノエチル)-(N,N-ジイソプロピル)-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000040
6-Fluorescein Serinol Phosphoramidite(3-ジメトキシトリチルオキシ-2-(3-(6-カルボキシ-(di-O-ピバロイル-フルオレセイン)プロパンアミド)プロピル)-1-O-(2-シアノエチル)-(N,N-ジイソプロピル)-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000041
Protected Biotin Serinol Phosphoramidite(3-ジメトキシトリチルオキシ-2-(3-((4-t-ブチルベンゾイル)-ビオチニル)プロパンアミド)プロピル-1-O-(2-シアノエチル)-(N,N-ジイソプロピル)-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000042
1-Ethynyl-dSpacer CE Phosphoramidite(5’-O-ジメトキシトリチル-1’-エチニル-2’-デオキシリボース-3’-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000043
Azobenzene Phosphoramidite(3-O-(ジメトキシトリチル)-2-N-(4-カルボキシアゾベンゼン)-D-トレオニン-1-イル-O-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000044
5'-I-dT-CE Phosphoramidite(5’-ヨード-2’-デオキシチミジン,3’-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000045
Psoralen C6 Phosphoramidite(6-[4’-(ヒドロキシメチル)-4,5’,8-トリメチルソレラン]-ヘキシル-1-O-(2-シアノエチル)-(N,N-ジイソプロピル)-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000046
Psoralen C2 Phosphoramidite(2-[4’-(ヒドロキシメチル)-4,5’,8-トリメチルソレラン]-エチル-1-O-(2-シアノエチル)-(N,N-ジイソプロピル)-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000047
3-Cyanovinylcarbazole Phosphoramidite (CNVK)(5’-O-(4,4’-ジメトキシトリチル)-1’-(3-シアノビニルカルバゾール-9-イル)-2’-デオキシ-β-D-リボフラノシル-3’-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)
Figure JPOXMLDOC01-appb-C000048
 本発明の一態様において、1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトは、下記式(II)
Figure JPOXMLDOC01-appb-C000049
で示されるヌクレオシドホスホロアミダイトまたはその立体異性体である。
 式(II)において、Xは、各々独立して、-O-または-S-である。
 式(II)において、Xは、各々独立して、-O-または-S-である。
 式(II)において、Xは、各々独立して、-O-、-S-、-CH-または-(CH-である。
 式(II)において、Lはリンカーである。リンカーとしては、これらに限定されないが、例えば、
 
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
などが挙げられる。
 式(II)において、Rは、各々独立して、-H、-NHR、ハロゲン、-CN、-CF、またはアシル系保護基、エーテル系保護基もしくはシリル系保護基で保護された水酸基のいずれか一つである。ハロゲンは、例えば、F、Cl、Br、およびIである。アシル系保護基としては、例えば、アセチル、ベンゾイル、ピバロイルなどが挙げられる。エーテル系保護基としては、例えば、ベンジル、p-メトキシベンジル(PMB)、アリルなどが挙げられる。シリル系保護基としては、例えば、t-ブチルジメチルシリル(TBS)、t-ブチルジフェニルシリル(TBDPS)、t-トリイソプロピルシリル(TIPS)、トリエチルシリル(TES)、トリメチルシリル(TMS)などが挙げられる。好ましくは、-Hである。
 式(II)において、Rは、各々独立して、-OCHCHCN、-SCHCHCN、置換されたもしくは未置換の脂肪族基、-ORまたは-SRであり、好ましくは、-OCHCHCNである。置換されたもしくは未置換の脂肪族基としては、これらに限定されないが、例えば、4-シアノブト-2-エニルチオ、4-シアノブト-2-エニルオキシ、アリルチオ、アリルオキシ、クロチルチオまたはクロチルオキシなどが挙げられる。
 式(II)において、RおよびRは、各々独立して、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基であり;またはRおよびRは、それらが結合している窒素と一緒になって、ヘテロシクロアルキル基またはヘテロ芳香族基を形成する。置換されたもしくは未置換の脂肪族基としては、これらに限定されないが、例えば、メチル、エチル、イソプロピルなどが挙げられ、好ましくはイソプロピルである。置換されたもしくは未置換の芳香族基としては、これらに限定されないが、例えば、フェニル、ベンジル、トルイル、アニリルなどが挙げられ、好ましくはフェニル、ベンジルである。ヘテロシクロアルキル基としては、これらに限定されないが、例えば、ピロリジノ、モルホリノなどが挙げられる。
 式(II)において、Rは、各々独立して、-H、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基、またはアシル基をはじめとする保護基のいずれか一つである。置換されたもしくは未置換の脂肪族基としては、これらに限定されないが、例えば、メチル、エチル、アリル、1-ペンテニル、2-メトキシエチルが挙げられ、好ましくはメチル、アリル、2-メトキシエチルである。置換されたもしくは未置換の芳香族基としては、これらに限定されないが、例えば、フェニル、ベンジル、ナフチル、2-ピレニルメチルが挙げられ、好ましくはフェニル、ベンジルである。保護基は、例えば、t-ブチルジメチルシリルである。
 式(II)において、Rは、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、または置換されたもしくは未置換のアルアルキル基である。置換されたもしくは未置換の脂肪族基としては、これらに限定されないが、例えば、THP、4-メトキシテトラヒドロピラニルなどが挙げられる。置換されたもしくは未置換の芳香族基としては、これらに限定されないが、例えば、o-クロロフェニルまたはp-クロロフェニルなどが挙げられる。置換されたもしくは未置換のアルアルキル基としては、これらに限定されないが、例えば、2-フルオロフェニルメトキシピペリジン-4-イルなどが挙げられる。
 式(II)において、BおよびBは、各々独立して、H、または保護されたもしくは無保護の塩基である。保護されたもしくは無保護の塩基としては、これらに限定されないが、例えば、アデニン、グアニン、シトシン、チミン、およびウラシルのような天然に存在する塩基や、7-デアザグアニン、7-デアザ-8-アザグアニン、5-プロピニルシトシン、5-プロピニルウラシル、7-デアザアデニン、7-デアザ-8-アザアデニン、7-デアザ-6-オキソプリン、6-オキソプリン、3-デアザアデノシン、2-オキソ-5-メチルピリミジン、2-オキソ-4-メチルチオ-5-メチルピリミジン、2-チオカルボニル-4-オキソ-5-メチルピリミジン、4-オキソ-5-メチルピリミジン、2-アミノプリン、5-フルオロウラシル、2,6-ジアミノプリン、8-アミノプリン、4-トリアゾロ-5-メチルチミン、および4-トリアゾロ-5-メチルウラシルのような修飾塩基などが挙げられる。好ましい態様において、BおよびBの少なくとも一つは、アデニンである。
 式(II)において、nは0または正の整数であり、好ましくは、0以上4以下の整数であり、より好ましくは、0または1である。
 本発明を以下の例を参照してより詳細に説明するが、これらは本発明の特定の具体例を示すものであり、本発明はこれらに限定されるものではない。
例1 逐次法とセグメント法の比較
(1)オリゴヌクレオチドの合成
 dT NittoPhase(登録商標)HL dT300(日東電工株式会社製))を1573μmolに相当する量で反応カラムに充填し、核酸合成装置AKTA oligopilot plus100(Cytiva社、旧GEヘルスケアジャパン社製)を用いて、17mer(5’ CCG ATT AAG CGA AGC TT 3’)のDNAオリゴヌクレオチドを合成した。その後、17mer DNA付固相担体を205μmolに相当する量で反応カラム内に充填し、核酸合成装置AKTA oligopilot plus100で、アクチベータとして5-エチルチオ-1H-テトラゾール(ETT)を用いて、dC、dT、dAを順に縮合する逐次法、dATCをアミダイト当量1.8当量、縮合時間5分で縮合したセグメント法1、dATCをアミダイト当量3.0当量、縮合時間10分で縮合したセグメント法2の3条件で合成した。その他の合成試薬は、通常用いられる脱保護試薬、キャッピング試薬及び酸化溶液を用いた。dATCは、国際公開第2019/212061号に記載されるように作製した。
 DNAオリゴヌクレオチドが結合した固相担体を28%アンモニア水に浸し、固相担体から該DNAオリゴヌクレオチドの切り出しを行った。この液の一部を水で希釈し、DNAオリゴヌクレオチド試料溶液を作成した。残る溶液はクルード溶液とした。
(2)オリゴヌクレオチドの精製
 得られたクルード溶液について、精製装置AKTA pure 25(Cytiva社、旧GEヘルスケアジャパン社製)による精製を行った。(精製条件:カラム;25cm×10mm CV=19.6mL GE source 15Q resin、Buffer;NaOH、NaCl、超純水で調整)。
(3)DNAオリゴヌクレオチドの分析
 精製前および精製後のDNAオリゴヌクレオチド試料溶液について、高速液体クロマトグラフィー(HPLC)による測定を行った(測定条件:カラム;Waters XBridge OST C18 2.5μm 50×4.6mm、UV検出;260nm、BufferA;HFIP/TEA in Water、BufferB;メタノール)。
(4)結果
 精製前のDNAオリゴヌクレオチド試料溶液の分析結果を表1に示す。
Figure JPOXMLDOC01-appb-T000055
 
 ここで、不純物Iは、HPLC測定においてN-1mer付近に出る不純物を、不純物IIは、HPLC測定においてN-2mer付近に出る不純物を、不純物IIIは、HPLC測定においてN-3mer付近に出る不純物をそれぞれ指す、以下同じ。
 逐次法で合成した場合には、不純物Iと不純物IIの含有量が、それぞれ2.9%、2.8%であったのに対し、セグメント法1によって合成した場合には、不純物Iと不純物IIの含有量は、それぞれ0.6%、0.4%であり、またセグメント法2によって合成した場合には、それぞれ0.7%、1.8%であった。セグメント法で合成した場合には、逐次法で合成した場合と比較して、不純物Iと不純物IIの含有量を大幅に低下させることができた。
 精製後のDNAオリゴヌクレオチド試料溶液の分析結果を表2に示す。
Figure JPOXMLDOC01-appb-T000056
 
 目的のオリゴヌクレオチドの純度は、逐次法において90.46%であるのに対し、セグメント法1においては、92.34%、セグメント法2においては、92.53%であり、セグメント法で合成した場合には、逐次法で合成した場合と比較して、高い純度で目的のオリゴヌクレオチドを得ることができた。また、FLP(全長生成物、純度×合計OD)は、逐次法では9302であるのに対し、セグメント法1では、10702、セグメント法2では、10724であり、セグメント法で合成した場合には、逐次法で合成した場合と比較して、高い収量で目的のオリゴヌクレオチドを得ることができた。
例2 反応率の比較
(1)DNAオリゴヌクレオチドの合成
 NittoPhase(商標登録)HL UnyLinker 350(日東電工株式会社製)を2935μmolに相当する量で反応カラムに充填し、核酸合成装置AKTA oligopilot plus100を用いて、17mer(5’ CCG ATT AAG CGA AGC TT 3’)のDNAオリゴヌクレオチドを合成した。その後、17mer DNA付固相担体を90μmolに相当する量で反応カラム内に充填し、核酸合成装置AKTA oligopilot plus10で、アクチベータとして、5-メルカプト-1-メチルテトラゾール(1-Me-MCT)、5-メルカプト-1-フェニルテトラゾール(1-Ph-MCT)、5-ベンジルチオテトラゾール(BTT)、サッカリン 1-メチルイミダゾール(SMI)、5-エチルチオ-1H-テトラゾール(ETT)、4,5-ジシアノイミダゾール(DCI)、5-[3,5-ビス(トリフルオロメチル)フェニル]-1H-テトラゾール(Activator42)、またはベンズイミダゾールトリフルオロメタンスルホン酸塩(BIT)を用いて、dGCCをアミダイト当量数1.8当量、縮合時間5分で縮合した。アクチベータは全てアセトニトリルに溶解させ、0.25Mに調製した。その他の合成試薬は、脱保護剤としてトルエン中3%DCA、酸化剤として水中ピリジン、ヨウ素、キャップ化剤としてアセトニトリル中ピリジン、N-メチルイミダゾール、無水酢酸または無水イソ酪酸、アミンウォッシュ反応液として、アセトニトリル中TBAを用いた。dGCCは、国際公開第2019/212061号に記載されるように作製した。
 DNAオリゴヌクレオチドが結合した固相担体をアンモニア水に浸し、固相担体から該DNAオリゴヌクレオチドの切り出しを行った。
 なお、Activator42は、以下の構造:
Figure JPOXMLDOC01-appb-C000057
を有する。
(2)RNAオリゴヌクレオチドの合成
 NittoPhase(商標登録)HL rU250(Kinovate Life Science社製)を327μmolに相当する量で反応カラムに充填し、核酸合成装置AKTA oligopilot plus100を用いて、17mer合成(5’ CCG AUU AAG CGA AGC UU 3’)のRNAオリゴヌクレオチドを合成した。その後、17mer RNA付固相担体を85μmolに相当する量で反応カラム内に充填し、核酸合成装置AKTA oligopilot plus10で、アクチベータとして、5-メルカプト-1-メチルテトラゾール(1-Me-MCT)、サッカリン 1-メチルイミダゾール(SMI)、または5-[3,5-ビス(トリフルオロメチル)フェニル]-1H-テトラゾール(Activator42)を用いてrAUCをアミダイト当量数2.0当量、縮合時間15分で縮合した。アクチベータは全てアセトニトリルに溶解させ、0.25Mに調製した。その他の合成試薬は、脱保護剤としてトルエン中3%DCA、酸化剤として水中ピリジン、ヨウ素、キャップ化剤としてアセトニトリル中ピリジン、N-メチルイミダゾール、無水酢酸、アミンウォッシュ反応液として、アセトニトリル中TBAを用いた。rAUCは、国際公開第2019/212061号に記載されるように作成した。
 RNAオリゴヌクレオチドが結合した固相担体をAMA試薬(28~30%アンモニア水:メチルアミン水溶液=1:1)に浸し、フィルターでろ過し、DMSOで洗浄した。その後、氷浴下でTEA.3HFをゆっくりと滴下し、振盪することで固相担体から該RNAオリゴヌクレオチドの切り出しを行った。
(3)反応率の分析
 切り出し後の各オリゴヌクレオチド試料溶液について、高速液体クロマトグラフィー(HPLC)による測定を行った(測定条件:カラム;Waters XBridge OST C18 2.5μm 50×4.6mm、UV検出;260nm、BufferA;HFIP/TEA in Water、BufferB;メタノール)。
 DNA合成においては、HPLC測定結果において不純物IIIのピークが観測された後、1.1分後までに検出されたピークの面積の総和を100%とし、不純物IIIのピーク面積(%)を差し引くことにより、反応率を算出した。RNA合成においては、HPLC測定結果において不純物IIIのピークが観測された後、1.4分後までに検出されたピークの面積の総和を100%とし、不純物IIIのピーク面積(%)を差し引くことにより、反応率を算出した。
(4)結果
 DNA合成における結果を表3に、RNA合成における結果を表4に示す。
 また、本実験に用いたアクチベータのHOMOエネルギーおよび軌道係数を、併せて表3および表4に示す。HOMOエネルギー、軌道係数は、Gaussian社製の量子化学計算プログラムGaussian16を利用し、Becke-型3-パラメータ密度汎関数法(B3LYP)を採用した最適化計算によって求めた。具体的には、アクチベータがアミダイトに対し求核攻撃をする際の活性種(BITは中性種、その他はアニオン種)の構造、すなわちアクチベータの初期構造を、Webベースの計算支援プログラムWebMOを用いて計算前の分子の初期構造を作成し、基底関数に6-31G(d)、電荷にアニオンの場合は-1、中性種の場合には0、多重度に1重項、溶媒にアセトニトリルを入力し、構造最適化、軌道計算の順に実行することにより、HOMOエネルギーおよび軌道係数を求めた。分子モデルの原子間の衝突を避けるための初期構造の簡易的な構造修正を、WebMOにおいてCleanup機能のMechanics Optimizeを実行することにより、適宜行った。
Figure JPOXMLDOC01-appb-T000058
 
Figure JPOXMLDOC01-appb-T000059
 表3および表4から、Activator42よりも高い反応率を示したアクチベータは、HOMOエネルギー準位が高く、および/または軌道係数が大きいものであったことが分かる。アクチベータのHOMOエネルギー準位が高いことにより、アクチベータのHOMOエネルギー準位とセグメント型アミダイトのLUMOエネルギー準位のエネルギー差が小さくなり、反応が生じやすくなったと考えられる。また、アクチベータの軌道係数が大きいことにより、アクチベータの窒素原子とセグメント型アミダイトのリン原子における軌道の重なりが大きくなり、反応が生じやすくなったと考えられる。
例3 セグメント型アミダイトの分解の比較
(1)セグメント型アミダイトとしてdGCCを用いて行ったオリゴヌクレオチドの合成
 例2(1)で得られた17mer DNA付固相担体を90μmolに相当する量で反応カラムに充填し、核酸合成機AKTA oligopilot plus10で、アクチベータとして0.6M 5-メルカプト-1-メチルテトラゾール(1-Me-MCT)、0.5M 5-メルカプト-1-フェニルテトラゾール(1-Ph-MCT)、0.25M 5-ベンジルチオテトラゾール(BTT)、0.25M サッカリン 1-メチルイミダゾール(SMI)、0.6M 5-エチルチオ-1H-テトラゾール(ETT)、または0.25M 5-[3,5-ビス(トリフルオロメチル)フェニル]-1H-テトラゾール(Activator42)を用いて、dGCCをアミダイト当量数1.8当量、縮合時間10分で縮合した。その他の合成試薬は、脱保護剤としてトルエン中3%DCA、酸化剤として水中ピリジン、ヨウ素、キャップ化剤としてアセトニトリル中ピリジン、N-メチルイミダゾール、無水酢酸、アミンウォッシュ反応液として、アセトニトリル中TBAを用いた。dGCCは、国際公開第2019/212061号に記載されるように作製した。
 DNAオリゴヌクレオチドが結合した固相担体をアンモニア水に55℃で12~16時間浸し、固相担体から該DNAオリゴヌクレオチドの切り出しを行った。
(2)DNAオリゴヌクレオチドの分析
 切り出し後のDNAオリゴヌクレオチド試料溶液について、高速液体クロマトグラフィー(HPLC)による測定を行った(測定条件:カラム;Waters XBridge OST C18 2.5μm 50×4.6mm、UV検出;260nm、BufferA;100mM HFIP/7mM TEA in Water、pH8.0、BufferB;メタノール、温度;60℃)。
 HPLC測定結果において不純物IIIのピークが観測された後、1.1分後までに検出されたピークの面積の総和を100%とした場合における、不純物IIのピーク面積(%)を算出した。
(4)結果
 結果を表5に示す。また、本実験に用いたアクチベータの水中におけるpKa値を、併せて表5に示す。
Figure JPOXMLDOC01-appb-T000060
 
 Activator42を用いて合成した場合には、不純物IIのピーク面積は9.089%であり、セグメント型アミダイトの顕著な分解が観測された。一方で、その他のアクチベータを用いた場合には、不純物IIのピーク面積は、1~2%程度であり、分解はほとんど観測されなかった。不純物IIは、オリゴヌクレオチドとセグメント型アミダイトを繋ぐリン酸ジエステル結合部が酸により分解されることで生じた可能性が高いと推測される。

Claims (20)

  1.  オリゴヌクレオチドを製造する方法であって、
    アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
    少なくとも1回のカップリング工程において、前記ヌクレオシドホスホロアミダイトが
    (a)2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
    (b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイト
    であり、
    前記アクチベータが、以下の式:
    Figure JPOXMLDOC01-appb-C000001
     
    式中、
    Xは、有機塩基である、
    または、以下の式:
    Figure JPOXMLDOC01-appb-C000002
     
    式中、
    およびRは、それぞれ独立して、H、直鎖または分岐鎖のC1~7アルキル基、および任意に置換されていてもよい芳香族基からなる群から選択される、
    で表される構造を有する、前記方法。
  2.  Xは、N-メチルイミダゾール、ピリジンまたは3-メチルピリジンであり、
    は、H、C2n+1またはベンジル基であり、
    は、H、CH、またはCであり、
    nは、1、2または3である、
    請求項1に記載の方法。
  3.  前記アクチベータが、5-メルカプト-1-メチルテトラゾール(1-Me-MCT)、5-メルカプト-1-フェニルテトラゾール(1-Ph-MCT)、サッカリン1-メチルイミダゾール(SMI)、または5-エチルチオ-1H-テトラゾール(ETT)である、請求項1または2に記載の方法。
  4.  2回以上行われるカップリング工程の少なくとも最後の1回において、
    ヌクレオシドホスホロアミダイトが
    (a)2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
    (b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイト
    である、請求項1~3のいずれか一項に記載の方法。
  5.  2回以上行われるカップリング工程の少なくとも最後の1回において、
    ヌクレオシドホスホロアミダイトが3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイトである、
    請求項1~4のいずれか一項に記載の方法。
  6.  2回以上行われるカップリング工程の少なくとも1回において、
    ヌクレオシドホスホロアミダイトが1個のヌクレオシド部分を有するヌクレオシドホスホロアミダイトである、
    請求項1~5のいずれか一項に記載の方法。
  7.  2回以上行われるカップリング工程の最後の1回のみにおいて、
    ヌクレオシドホスホロアミダイトが
    (a)3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
    (b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイト
    であり、
     その他の回のカップリング工程において、
    ヌクレオシドホスホロアミダイトが1個のヌクレオシド部分を有するヌクレオシドホスホロアミダイトである、
    請求項1~6のいずれか一項に記載の方法。
  8.  2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイトが、下記式(I)
    Figure JPOXMLDOC01-appb-C000003
      
    式中、
    は、各々独立して、-O-または-S-であり;
    は、各々独立して、-O-または-S-であり;
    は、各々独立して、-O-、-S-、-CH-または-(CH-であり;
    は保護基であり;
    は、各々独立して、-H、-NHR、ハロゲン、-CN、-CF、またはアシル系保護基、エーテル系保護基もしくはシリル系保護基で保護された水酸基であり;
    は、各々独立して、-OCHCHCN、-SCHCHCN、置換されたもしくは未置換の脂肪族基、-ORまたは-SRであり;
    およびRは、各々独立して、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基であり;または
    およびRは、それらが結合している窒素と一緒になって、ヘテロシクロアルキル基またはヘテロ芳香族基を形成し;
    は、各々独立して、-H、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基、または保護基であり;
    は、各々独立して、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、または置換されたもしくは未置換のアルアルキル基であり;
    、BおよびBは、各々独立して、-H、または保護されたもしくは無保護の塩基であり;および
    nは0または正の整数である; 
    で示されるヌクレオシドホスホロアミダイトまたはその立体異性体である、請求項1~7のいずれか一項に記載の方法。
  9.  nが0または1である、請求項8に記載の方法。
  10.  Rが-Hである、請求項8または9に記載の方法。
  11.  Rが-OCHCHCNである、請求項8~10のいずれか一項に記載の方法。
  12.  1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトが、下記式(II)
    Figure JPOXMLDOC01-appb-C000004
     
    式中、
    は、各々独立して、-O-または-S-であり;
    は、各々独立して、-O-または-S-であり;
    は、各々独立して、-O-、-S-、-CH-または-(CH-であり;
    Lはリンカーであり;
    は、各々独立して、-H、-NHR、ハロゲン、-CN、-CF、またはアシル系保護基、エーテル系保護基もしくはシリル系保護基で保護された水酸基であり;
    は、各々独立して、-OCHCHCN、-SCHCHCN、置換されたもしくは未置換の脂肪族基、-ORまたは-SRであり;
    およびRは、各々独立して、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基であり;または
    およびRは、それらが結合している窒素と一緒になって、ヘテロシクロアルキル基またはヘテロ芳香族基を形成し;Rは、各々独立して、-H、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、置換されたもしくは未置換のアルアルキル基、または保護基であり;
    は、各々独立して、置換されたもしくは未置換の脂肪族基、置換されたもしくは未置換の芳香族基、または置換されたもしくは未置換のアルアルキル基であり;
    およびBは、各々独立して、-H、または保護されたもしくは無保護の塩基であり;および
    nは0または正の整数である; 
    で示されるヌクレオシドホスホロアミダイトまたはその立体異性体である、請求項1~11のいずれか一項に記載の方法。
  13.  オリゴヌクレオチドを製造する方法であって、
    アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
    少なくとも1回のカップリング工程において、前記ヌクレオシドホスホロアミダイトが
    (a)2個または3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
    (b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイト
    であり、
    前記アクチベータが、以下の式:
    Figure JPOXMLDOC01-appb-C000005
     
    式中、
    Xは、有機塩基である、
    または、以下の式:
    Figure JPOXMLDOC01-appb-C000006
     
    式中、
    およびRは、それぞれ独立して、H、直鎖または分岐鎖のC1~7アルキル基、および任意に置換されていてもよい芳香族基からなる群から選択される、で表される構造を有する、前記方法。
  14.  Xは、N-メチルイミダゾール、ピリジンまたは3-メチルピリジンであり、
    は、H、C2n+1またはベンジル基であり、
    は、H、CH、またはCであり、
    nは、1、2または3である、
    請求項13に記載の方法。
  15.  オリゴヌクレオチドを製造する方法であって、
    アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
    少なくとも1回のカップリング工程において、前記ヌクレオシドホスホロアミダイトが
    (a)2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
    (b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイト
    であり、
    前記アクチベータのHOMOエネルギー(a.u.)が、アセトニトリル中において、-0.21407~-0.16858であり、かつ、
    前記アクチベータの軌道係数が、アセトニトリル中において、0.31531~0.59405である、
    前記方法。
  16.  前記アクチベータのpKaが、水中において、3.65~7である、請求項15に記載の方法。
  17.  オリゴヌクレオチドを製造する方法であって、
    アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
    少なくとも1回のカップリング工程において、ヌクレオシドホスホロアミダイトが
    (a)2個または3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
    (b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトであり、
    前記アクチベータのHOMOエネルギー(a.u.)が、アセトニトリル中において、-0.22024~-0.16858であり、かつ、
    前記アクチベータの軌道係数が、アセトニトリル中において、0.31531~0.59405である、
    前記方法。
  18.  アクチベータのpKaが、水中において、3.65~7である、請求項17に記載の方法。
  19.  オリゴヌクレオチドを製造する方法であって、
    アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
    少なくとも1回のカップリング工程において、ヌクレオシドホスホロアミダイトが
    (a)2個または3個のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
    (b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトであり、
    前記アクチベータのpKaが、水中において、3.65~7である、
    前記方法。
  20.  オリゴヌクレオチドを製造する方法であって、
    アクチベータの存在下で、ヌクレオチドまたはヌクレオシドの3’または5’の水酸基またはチオール基に、ヌクレオシドホスホロアミダイトを結合させるカップリング工程を1回以上行うことを含み、
    少なくとも1回のカップリング工程において、ヌクレオシドホスホロアミダイトが
    (a)2個以上のヌクレオシド部分を有するヌクレオシドホスホロアミダイト、または
    (b)1個以上のヌクレオシド部分およびリンカー部分を有するヌクレオシドホスホロアミダイトであり、
    前記アクチベータのpKaが、水中において、4.3~7である、
    前記方法。
PCT/JP2021/000273 2020-01-08 2021-01-07 セグメント型アミダイトを用いた核酸合成法 WO2021141072A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21738639.0A EP4089099A1 (en) 2020-01-08 2021-01-07 Nucleic acid synthesis method using segment-type amidite
CN202180008662.1A CN115315430A (zh) 2020-01-08 2021-01-07 使用了链段型亚磷酰胺化合物的核酸合成法
JP2021570077A JPWO2021141072A1 (ja) 2020-01-08 2021-01-07
KR1020227027277A KR20220123300A (ko) 2020-01-08 2021-01-07 분절-타입 아미디트(segment-type amidite)를 사용한 핵산 합성 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062958351P 2020-01-08 2020-01-08
US62/958,351 2020-01-08

Publications (1)

Publication Number Publication Date
WO2021141072A1 true WO2021141072A1 (ja) 2021-07-15

Family

ID=76788087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000273 WO2021141072A1 (ja) 2020-01-08 2021-01-07 セグメント型アミダイトを用いた核酸合成法

Country Status (5)

Country Link
EP (1) EP4089099A1 (ja)
JP (1) JPWO2021141072A1 (ja)
KR (1) KR20220123300A (ja)
CN (1) CN115315430A (ja)
WO (1) WO2021141072A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020543A2 (en) 2000-09-07 2002-03-14 Avecia Biotechnology Inc. Synthons for oligonucleotide synthesis
US6642373B2 (en) 1998-06-02 2003-11-04 Isis Pharmaceuticals, Inc. Activators for oligonucleotide synthesis
JP2004533488A (ja) * 2001-07-03 2004-11-04 アベシア・バイオテクノロジー・インコーポレーテッド オリゴヌクレオチド合成用のアクチベーター
JP2006508081A (ja) * 2002-10-15 2006-03-09 アベシア・バイオテクノロジー・インコーポレーテッド ホスフィチル化方法
JP2006512411A (ja) * 2002-12-18 2006-04-13 アベシア・リミテッド オリゴヌクレオチドの調製方法
JP2017514479A (ja) 2014-05-01 2017-06-08 ジェロン・コーポレーションGeron Corporation オリゴヌクレオチド組成物及びその作製方法
WO2017111137A1 (ja) * 2015-12-22 2017-06-29 味の素株式会社 オリゴヌクレオチドの製造方法
WO2019212061A1 (ja) 2018-05-02 2019-11-07 株式会社四国核酸化学 オリゴヌクレオチド合成用セグメントおよびその製造方法、ならびにそれを用いたオリゴヌクレオチドの合成方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642373B2 (en) 1998-06-02 2003-11-04 Isis Pharmaceuticals, Inc. Activators for oligonucleotide synthesis
WO2002020543A2 (en) 2000-09-07 2002-03-14 Avecia Biotechnology Inc. Synthons for oligonucleotide synthesis
JP2004533488A (ja) * 2001-07-03 2004-11-04 アベシア・バイオテクノロジー・インコーポレーテッド オリゴヌクレオチド合成用のアクチベーター
US7501505B2 (en) 2001-07-03 2009-03-10 Avecia Biotechnology, Inc. Activators for oligonucleotide synthesis
JP2006508081A (ja) * 2002-10-15 2006-03-09 アベシア・バイオテクノロジー・インコーポレーテッド ホスフィチル化方法
JP2006512411A (ja) * 2002-12-18 2006-04-13 アベシア・リミテッド オリゴヌクレオチドの調製方法
JP2017514479A (ja) 2014-05-01 2017-06-08 ジェロン・コーポレーションGeron Corporation オリゴヌクレオチド組成物及びその作製方法
WO2017111137A1 (ja) * 2015-12-22 2017-06-29 味の素株式会社 オリゴヌクレオチドの製造方法
WO2019212061A1 (ja) 2018-05-02 2019-11-07 株式会社四国核酸化学 オリゴヌクレオチド合成用セグメントおよびその製造方法、ならびにそれを用いたオリゴヌクレオチドの合成方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"RNA synthesis via dimer and trimer phosphoramidite block coupling", TETRAHEDRON LETTERS, vol. 52, 2011, pages 2575 - 2578
CHIH-HAU CHEN; CHEN WEI-YU; CHEN YU-CHIE; LEE MING-JUAN; HUANG CHYUAN-DER; CHANDA KAUSHIK; SUN CHUNG-MING: "Convergent Solution Phase Synthesis of Chimeric Oligonucleotides by a 2+2 and 3+3 Phosphoramidite Strategy", AUSTRALIAN JOURNAL OF CHEMISTRY, vol. 63, no. 2, 2010, pages 227 - 235, XP055648558 *
EFIMOV V A, KALINKINA A L, CHAKHMAKHCHEVA O G: "New activators for phosphoramidate synthesis of oligonucleotides", BIOORGANICHESKAYA KHIMIYA, vol. 22, no. 2, 1996, RU , pages 149 - 152, XP009537843, ISSN: 0132-3423 *
HASSLER MATTHEW, WU YI QIAO, MALLIKARJUNA REDDY N., CHAN TAK HANG, DAMHA MASAD J.: "RNA synthesis via dimer and trimer phosphoramidite block coupling", TETRAHEDRON LETTERS, vol. 52, no. 20, 2011, pages 2575 - 2578, XP028194553, DOI: 10.1016/ j.tetlet. 2011.03.04 2 *
MATTHÄUS JANCZYK; APPEL BETTINA; SPRINGSTUBBE DANILO; FRITZ HANS-JOACHIM; MÜLLER SABINE: "A new and convenient approach for the preparation of β-cyanoethyl protected trinucleotide phosphoramidites", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 10, no. 8, 2012, pages 1510 - 1513, XP055648551 *
PAUL GAYTáN, CONTRERAS-ZAMBRANO CASANDRA, ORTIZ-ALVARADO MóNICA, MORALES-PABLOS ALFREDO, YáñEZ JORGE: "TrimerDimer: an oligonucleotide-based saturation mutagenesis approach that removes redundant and stop codons", NUCLEIC ACIDS RESEARCH, vol. 37, no. 18, 1 October 2009 (2009-10-01), GB , pages e125/1 - e125/13, XP055648565, ISSN: 0305-1048, DOI: 10.1093/nar/gkp602 *
RUSSELL MARK A., LAWS ANDREW P., ATHERTON JOHN H., PAGE MICHAEL I.: "The mechanism of the phosphoramidite synthesis of polynucleotides†", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 6, no. 18, 2008, pages 3270 - 3275, XP055842214, DOI: 10.1039/ b808999j *
SINHA NANDA D., FOSTER PATRICK, KUCHIMANCHI SATYA N., MIRANDA GREG, SHAIKH SAIED, MICHAUD DENNIS: "Highly Effective Non-Explosive Activators Based on Saccharin for the Synthesis of Oligonucleotides and Phosphoramidites", NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS, vol. 26, no. 10-12, 2007, pages 1615 - 1618, XP055842222, DOI: 10.1080/15257770701548766 *

Also Published As

Publication number Publication date
CN115315430A (zh) 2022-11-08
EP4089099A1 (en) 2022-11-16
KR20220123300A (ko) 2022-09-06
JPWO2021141072A1 (ja) 2021-07-15

Similar Documents

Publication Publication Date Title
JP7492829B2 (ja) 多重カップリングおよび酸化の方法
CA2577922C (en) Phosphoramidite compound and method for producing oligo-rna
JP4580870B2 (ja) リボヌクレオチド又はリボヌクレオチド誘導体の製造方法
JP7484951B2 (ja) オリゴヌクレオチドの製造方法
WO1988004301A1 (fr) OLIGONUCLEOTIDES alpha
EP1995253B1 (en) Method for detaching protecting group on nucleic acid
US5674856A (en) Modified oligodeoxyribonucleoditides
WO2004085454A1 (en) Silylated oligonucleotide compounds
EP2017282A1 (en) Method of capping oligonucleic acid
CA2642693A1 (en) Method for removal of nucleic acid-protecting group
WO2021141072A1 (ja) セグメント型アミダイトを用いた核酸合成法
WO2021193954A1 (ja) 核酸オリゴマーの製造方法
CN106459133B (zh) 用于“z核苷酸”的保护基团及其方法
JP2003012690A (ja) 置換イミダゾール誘導体又は置換ベンズイミダゾール誘導体を用いたヌクレオチドの製造法
WO2006095739A1 (ja) リボヌクレオシドの2’水酸基の脱保護方法
WO2023054350A1 (ja) 精製ジクロロ酢酸の製造方法
WO2021080021A1 (ja) オリゴヌクレオチドを製造する方法
RU2415862C2 (ru) Производное фосфорамидита и способ получения олиго-рнк
WO2022064908A1 (ja) 核酸オリゴマーの製造方法
JP2023130982A (ja) 2’-ビニルrnaホスホロアミダイトユニットの開発
Stell Synthesis of Phosphonoacetate RNA and a Two-Step RNA Synthesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570077

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227027277

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021738639

Country of ref document: EP

Effective date: 20220808