WO2021140942A1 - 診断装置、診断方法およびプログラム - Google Patents

診断装置、診断方法およびプログラム Download PDF

Info

Publication number
WO2021140942A1
WO2021140942A1 PCT/JP2020/048494 JP2020048494W WO2021140942A1 WO 2021140942 A1 WO2021140942 A1 WO 2021140942A1 JP 2020048494 W JP2020048494 W JP 2020048494W WO 2021140942 A1 WO2021140942 A1 WO 2021140942A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
abnormality
samples
distribution
determination unit
Prior art date
Application number
PCT/JP2020/048494
Other languages
English (en)
French (fr)
Inventor
一郎 永野
斎藤 真由美
慶治 江口
青山 邦明
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to DE112020006451.4T priority Critical patent/DE112020006451T5/de
Priority to KR1020227019404A priority patent/KR20220098202A/ko
Priority to CN202080082514.XA priority patent/CN114746821A/zh
Priority to US17/781,612 priority patent/US11789436B2/en
Publication of WO2021140942A1 publication Critical patent/WO2021140942A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure

Definitions

  • the MT method (Maharanobis Taguchi System) using the Mahalanobis distance is widely used in the abnormality detection detection system in power generation equipment and remote monitoring systems (for example, Patent Document 1).
  • the Mahalanobis distance is a method on the premise that normal data follows a normal distribution, and in actual data, it often does not follow a normal distribution. Therefore, in the abnormality detection pretreatment apparatus described in Patent Document 1, it is determined whether or not the distribution data relating to the two variables within the predetermined period measured at the normal time has a distribution according to the normal distribution, and the normal distribution is determined.
  • a predetermined number of distribution data selected from the distribution data determined not to follow the above are fitted to the tentative non-linear model, and the correction term for correcting the distribution data is calculated by the difference between the tentative non-linear model and the regression line. ..
  • a tentative nonlinear model in which the distribution data corrected by this correction term produces a distribution that most follows the normal distribution is selected as the anomaly detection model when used in anomaly detection, and the correction term calculated based on the anomaly detection model is used. It is selected as a correction term used for abnormality detection.
  • the abnormality detection device described in Patent Document 1 corrects the correction judgment data, which is the measurement data to be determined as normal / abnormal, based on the correction term selected by the abnormality detection pretreatment device. Calculate and determine whether the correction determination data is abnormal or not based on the Mahalanobis distance.
  • the abnormality detection pretreatment device and the abnormality detection device described in Patent Document 1 the normal distribution of the normal data is quantitatively evaluated, and the abnormality detection model and the abnormality are based on the distribution data measured at the normal time. Since the correction term used for detection is selected, it is possible to accurately detect data that deviates from the measurement data obtained in the normal state (that is, abnormal data).
  • the correction term is selected based on the result of determining whether or not the data distribution follows a normal distribution. Therefore, a plurality of data that can determine whether or not the data follows a normal distribution are required.
  • equipment such as the gas turbine equipment shown as an example in Patent Document 1, which may continue to operate for a while (for example, several months) once started, only one data is measured at one start. For data that cannot be obtained (for example, the time required for a predetermined state change at startup, the maximum value, minimum value, average value, total value, etc. of the data at startup), it takes a long time to collect multiple data. There was a problem that it would be necessary.
  • the present disclosure has been made to solve the above problems, and provides a diagnostic device, a diagnostic method, and a program capable of accurately detecting an abnormality even when the amount of data is small or the number of data fluctuates. With the goal.
  • the diagnostic apparatus determines the presence or absence of an abnormality based on the Mahalanobis distance calculation unit that calculates the Mahalanobis distance (hereinafter referred to as MD value) of the detected value and the MD value.
  • MD value the Mahalanobis distance
  • An abnormality determination unit is provided, and the abnormality determination unit makes it easier to determine that there is no abnormality as the number of samples in the unit space is smaller than when the number of samples is larger. To judge.
  • the step of calculating the MD value of the detected value and the smaller the number of samples in the unit space the easier it is to determine that there is no abnormality as compared with the case where the number of samples is larger. Then, there is a step of determining the presence or absence of an abnormality based on the MD value.
  • the program according to the present disclosure has a step of calculating the MD value of the detected value, and the smaller the number of samples in the unit space, the easier it is to determine that there is no abnormality as compared with the case where the number of samples is larger. Then, the computer is made to execute the step of determining the presence or absence of an abnormality based on the MD value.
  • diagnostic device diagnostic method and program of the present disclosure, it is possible to accurately detect an abnormality even when the amount of data is small or the number of data fluctuates.
  • the diagnostic apparatus according to the embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
  • the same reference numerals are used for the same or corresponding configurations, and the description thereof will be omitted as appropriate.
  • the diagnostic device 10 will be provided in a monitoring center for monitoring the gas turbine and will be described assuming that it is used for detecting an abnormality in the gas turbine, but the present invention is not limited thereto.
  • FIG. 1 is a diagram showing a configuration example of the diagnostic apparatus 10 according to the first embodiment of the present disclosure.
  • the diagnostic device 10 shown in FIG. 1 is, for example, a device that monitors the gas turbine equipment 31 provided in the power plant and diagnoses the presence or absence of an abnormality.
  • the gas turbine equipment 31 and the diagnostic apparatus 10 are connected to each other via a network 32 so that information can be exchanged.
  • the diagnostic device 10 receives gas turbine operation data, alarm information, inquiry information, and the like transmitted from the gas turbine equipment 31 at a predetermined timing.
  • the diagnostic device 10 stores various acquired information in the storage unit 13 (details will be described later). In the present embodiment, it is described that the diagnostic device 10 is provided at a remote location from the gas turbine equipment 31 via the network 32, but the position of the diagnostic device 10 is not limited to this.
  • the diagnostic device 10 can be configured by using, for example, a computer such as a server or a personal computer and its peripheral devices.
  • the diagnostic device 10 has a Mahalanobis distance calculation unit 11, an abnormality determination unit 12, and a storage as a functional configuration composed of a combination of hardware such as a computer and its peripheral devices and software such as a program executed by the computer.
  • a unit 13 is provided.
  • the storage unit 13 stores measurement data (operation data, etc.) within a predetermined period obtained from measuring instruments provided at a plurality of locations of the gas turbine equipment 31.
  • the measurement data includes, for example, measurement data within a predetermined period measured in an unsteady state in which normal data varies particularly, such as when the gas turbine is started, and measurement data that is a target for determining normality or abnormality of gas turbine equipment. And are included.
  • the plurality of locations of the gas turbine equipment are, for example, a combustor, a compressor, etc.
  • the measurement data includes the temperature, voltage, current, rotation speed, pressure value, and start-up obtained from the plurality of locations.
  • the storage unit 13 stores values such as the number of samples (number of data) related to the unit space, the average value, the standard deviation, the inverse matrix of the correlation matrix, and the threshold value for abnormality determination in the MT method.
  • the Mahalanobis distance calculation unit 11 calculates the MD value of the measurement data (detection value).
  • the Mahalanobis distance calculation unit 11 obtains the k-dimensional MD value by the following formula.
  • k is the number of items
  • i and j are 1 to k
  • ⁇ ij is the i and j components of the inverse matrix of the correlation matrix
  • mi, mj, ⁇ i and ⁇ j are the average value and standard deviation in the unit space, respectively.
  • the unit space is a reference data group consisting of a plurality of MD values based on the measurement data in the normal state, and is calculated based on a plurality of samples of a set of measurement data of k items.
  • the unit space is updated based on new measurement data by, for example, the Mahalanobis distance calculation unit 11.
  • the judgment using the Mahalanobis distance represents the characteristic amount (multivariable) of a certain group with one parameter (Mahalanobis distance), and the good / bad of a certain measurement data is a healthy group (measurement data at normal time). It is a method of evaluating by the distance from the basic data of. If some measurement data is bad, the distance from a healthy population is large, and if the measurement data is good, the distance from a healthy population is small.
  • the abnormality determination unit 12 determines the presence or absence of an abnormality based on the MD value calculated by the Mahalanobis distance calculation unit 11. At that time, the abnormality determination unit 12 determines whether or not there is an abnormality so that the smaller the number of samples in the unit space, the easier it is to determine that there is no abnormality as compared with the case where the number of samples is larger. For example, the abnormality determination unit 12 sets a threshold value (also referred to as MD threshold value) for the Mahalanobis distance, and if it is equal to or less than the threshold value, it is regarded as normal, and if it is larger than the threshold value, it is determined as abnormal.
  • a threshold value also referred to as MD threshold value
  • FIG. 2 is a flowchart showing an operation example of the diagnostic apparatus according to the first embodiment of the present disclosure.
  • the process shown in FIG. 2 is started according to, for example, a predetermined operation input of the operator. It is assumed that the storage unit 13 stores the measurement data related to the operation of the gas turbine measured by the gas turbine equipment 31.
  • the Mahalanobis distance calculation unit 11 first calculates the MD value of the measurement data (detection value) (step S11).
  • the abnormality determination unit 12 determines whether or not there is an abnormality so that the smaller the number of samples in the unit space, the easier it is to determine that there is no abnormality as compared with the case where the number of samples is larger (step S12). ..
  • the abnormality determination unit 12 increases the threshold value for abnormality determination with respect to the MD value to determine the presence or absence of an abnormality.
  • the abnormality determination unit 12 reduces the MD value, for example, by multiplying the MD value calculated by the Mahalanobis distance calculation unit 11 by a coefficient that reduces the value as the number of samples in the unit space decreases. It may be corrected as follows. When the MD value becomes small, it is less likely that it is determined that there is an abnormality even if the threshold value for determining the abnormality does not change.
  • the abnormality determination unit 12 may combine the correction of the threshold value and the correction of the MD value.
  • the distribution of MD values which is the basis of the unit space, often does not follow the normal distribution.
  • the threshold value is set assuming a normal distribution
  • the number of samples in the unit space is smaller, it is easier to determine that there is no abnormality as compared with the case where the number of samples is larger. It is possible to reduce the case where false detection is performed. That is, it is possible to suppress the occurrence of erroneous detection and improve the accuracy of abnormality detection.
  • the abnormality determination unit 12 uses, for example, a combination of the abnormality detection methods described in Patent Document 1 to prevent the occurrence of erroneous detection that is determined to be normal even though it is abnormal. be able to.
  • the determination result of the presence or absence of an abnormality by the abnormality determination unit 12 is stored in the storage unit 13, for example, output from a display device, a printing device, an acoustic output device, etc. (not shown) included in the diagnostic device 10, or the diagnostic device 10 It can be transmitted to an external terminal via a communication device (not shown) provided in the device.
  • FIG. 3 is a schematic diagram for explaining the diagnostic apparatus according to the second embodiment of the present disclosure.
  • FIG. 4 is a flowchart showing an operation example of the diagnostic apparatus according to the second embodiment of the present disclosure.
  • FIG. 5 is a system flow diagram showing an operation example of the diagnostic apparatus according to the second embodiment of the present disclosure.
  • the basic configuration of the diagnostic device of the second embodiment is the same as that of the diagnostic device 10 of the first embodiment shown in FIG. In the second embodiment, as compared with the first embodiment, a part of the operation of the abnormality determination unit 12 shown in FIG. 1 is detailed.
  • FIG. 3 is a diagram schematically showing the probability distribution of the Mahalanobis distance MD with a normal distribution and n (or Student's t-distition). Further, FIG. 3 shows the normal distribution cumulative probability of MD ⁇ 3 (inverse cumulative distribution function of normal distribution) and the t distribution cumulative probability of MD ⁇ 5 (inverse cumulative distribution function of t distribution) by shading. ..
  • the mathematically correct probability density function approaches the t distribution when the number of specimens is small, and approaches the normal distribution when the number of samples is large.
  • the number of samples is infinite, and the t distribution and the normal distribution match. Further, when the number of sensors is small and 1, it is equal to the t-test. Even with the same MD, the cumulative probability changes depending on the assumed probability density function. In particular, the t distribution is wider than the normal distribution.
  • the abnormality determination unit 12 accumulates the cumulative probability of the t distribution having a degree of freedom according to the number of samples (hereinafter referred to as the cumulative probability of the t distribution) and the cumulative probability of the normal distribution corresponding to the cumulative probability of the t distribution.
  • the MD value calculated by the Maharanobis distance calculation unit 11 based on the probability is corrected to the MD'value (second MD value), and the presence or absence of an abnormality is determined based on the result of comparing the MD'value with a predetermined threshold value.
  • the Mahalanobis distance calculation unit 11 first calculates the MD value of the measurement data (detection value) (step S21). In this case, it is assumed that the MD value is "5".
  • the abnormality determination unit 12 obtains the cumulative probability of t distribution up to the MD value (“5”) in the t distribution for the MD value calculated by the Mahalanobis distance calculation unit 11 by the MT method (step S22).
  • the abnormality determination unit 12 obtains an MD'value that has the same cumulative probability (normal distribution cumulative probability) as the obtained t distribution cumulative probability in the normal distribution (step S23). In this case, it is assumed that the MD'value is "3".
  • the abnormality determination unit 12 compares the MD'value with the threshold value to make an abnormality diagnosis (step S24).
  • the abnormality determination unit 12 can obtain the MD'value, which is the corrected MD value, using, for example, the following equation.
  • tcdf is the cumulative distribution function of the t distribution
  • erfinv is the inverse function of the error function
  • is the degree of freedom (NA)
  • N is the number of samples in the unit space (the number of data)
  • A is the number of sensors.
  • the abnormality determination unit 12 has a t distribution cumulative probability based on the MD value (101) calculated by the MD Mahalanobis distance calculation unit 11 by the MT method and the number of samples (sample number) (102). (103) is calculated. Further, the abnormality determination unit 12 calculates the MD'value (104) in a normal distribution having the same cumulative probability. Then, the abnormality determination unit 12 compares the MD'value (104) with the MD threshold value (105).
  • the second embodiment it is possible to reduce the case where an abnormality is erroneously detected even though it is normal, as in the first embodiment. Further, by using the above formula, the same calculation formula can be used from when the number of samples is small to when the number of samples is large.
  • FIG. 6 is a schematic diagram for explaining the diagnostic apparatus according to the third embodiment of the present disclosure.
  • FIG. 7 is a flowchart showing an operation example of the diagnostic apparatus according to the third embodiment of the present disclosure.
  • FIG. 8 is a system flow diagram showing an operation example of the diagnostic apparatus according to the third embodiment of the present disclosure.
  • the basic configuration of the diagnostic device of the third embodiment is the same as that of the diagnostic device 10 of the first embodiment shown in FIG.
  • a part of the operation of the abnormality determination unit 12 shown in FIG. 1 is detailed.
  • FIG. 6 is a diagram schematically showing the probability distribution of the Mahalanobis distance MD with a normal distribution and a t distribution, as in FIG. Further, FIG. 6 shows the normal distribution cumulative probability of MD ⁇ 3 (inverse cumulative distribution function of the normal distribution) and the t distribution cumulative probability of MD ⁇ 5 by shading. In FIG. 6, the value of the threshold MDc is “3”.
  • the abnormality determination unit 12 obtains the cumulative probability (normal distribution cumulative probability) up to a predetermined threshold MDc with the normal distribution, and is free according to the number of samples having the t distribution cumulative probability equal to the normal distribution cumulative probability. Based on the result of comparing the MD'value (second MD value) obtained by obtaining the corresponding value MDt corresponding to the threshold MDc in the t distribution of degrees and correcting the MD value based on the threshold MDc and the corresponding value MDt and the threshold MDc. , Judge the presence or absence of abnormality. In the example shown in FIG. 6, the corresponding value MDt corresponding to the threshold value MDc “3” is assumed to be “5”. In this case, for example, the value obtained by multiplying the MD value by 3/5 (MD'value) is compared with the threshold value MDc.
  • the Mahalanobis distance calculation unit 11 first calculates the MD value of the measurement data (detection value) (step S31).
  • the abnormality determination unit 12 obtains the cumulative probability up to the threshold value (MDc) in the normal distribution (step S32).
  • the abnormality determination unit 12 obtains a corresponding value (MDt) in the t distribution so that the cumulative probability is equal to the cumulative probability of the obtained normal distribution (step S33).
  • the abnormality determination unit 12 can obtain the MD'value, which is the corrected MD value, using, for example, the following equation.
  • MDc is the threshold of the MT method
  • timv is the inverse cumulative distribution function of the t distribution
  • erf is the error function
  • is the degree of freedom (NA)
  • N is the number of samples in the unit space (the number of data)
  • A is the sensor. It is a number.
  • the abnormality determination unit 12 of the third embodiment includes the MD (MD value) (201) calculated by the MD Mahalanobis distance calculation unit 11 by the MT method, and the number of samples (number of samples) (205). ) May be compared with the MD threshold selected from the normal distribution MD threshold (203) or the t distribution MD threshold (204). In this case, the t-distribution MD threshold value (204) is selected when it is smaller than the normal distribution MD threshold value (203) and the number of samples is small. That is, in the third embodiment, the abnormality determination unit 12 increases a predetermined threshold value to be compared with the MD value when the number of samples is small, and determines that there is an abnormality when the MD value is larger than the threshold value.
  • the third embodiment it is possible to reduce the case where an abnormality is erroneously detected even though it is normal, as in the first embodiment. Further, by using the above equation, the calculation process can be simplified (the parameter of the function can be the threshold value MDc which is a constant instead of the MD value), and the processing load is reduced as compared with the second embodiment. it can.
  • FIG. 9 is a system flow diagram showing an operation example of the diagnostic apparatus according to the fourth embodiment of the present disclosure.
  • the basic configuration of the diagnostic device of the fourth embodiment is the same as that of the diagnostic device 10 of the first embodiment shown in FIG.
  • a part of the operation of the abnormality determination unit 12 shown in FIG. 1 is detailed.
  • the abnormality determination unit 12 of the fourth embodiment is t based on the MD value (301) calculated by the MD Mahalanobis distance calculation unit 11 by the MT method and the number of samples (sample number) (302).
  • the distribution cumulative probability (303) is calculated, and the abnormality determination is performed by comparing the t distribution cumulative probability (303) with the cumulative probability threshold (304), which is the cumulative probability of the normal distribution corresponding to the predetermined threshold. That is, in the diagnostic device 10 of the fourth embodiment, the Mahalanobis distance calculation unit 11 calculates the MD value of the measurement data (detection value).
  • the abnormality determination unit 12 compares the cumulative probability up to the MD value obtained according to the number of samples in the unit space with a predetermined cumulative probability threshold value, and determines the presence or absence of an abnormality based on the comparison result. , The presence or absence of abnormality is determined based on the MD value.
  • FIG. 10 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 90 includes a processor 91, a main memory 92, a storage 93, and an interface 94.
  • the diagnostic device 10 described above is mounted on the computer 90.
  • the operation of each processing unit described above is stored in the storage 93 in the form of a program.
  • the processor 91 reads a program from the storage 93, expands it into the main memory 92, and executes the above processing according to the program. Further, the processor 91 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 92 according to the program.
  • the program may be for realizing a part of the functions exerted on the computer 90.
  • the program may exert its function in combination with another program already stored in the storage or in combination with another program mounted on another device.
  • the computer may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • PLDs Programmable Integrated Circuit
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Examples of the storage 93 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, optical magnetic disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory). , Semiconductor memory and the like.
  • the storage 93 may be internal media directly connected to the bus of the computer 90, or external media connected to the computer 90 via the interface 94 or a communication line. When this program is distributed to the computer 90 via a communication line, the distributed computer 90 may expand the program in the main memory 92 and execute the above process.
  • the storage 93 is a non-temporary tangible storage medium.
  • the diagnostic device 10 is grasped as follows, for example.
  • the diagnostic device 10 includes a Mahalanobis distance calculation unit 11 that calculates an MD value of measurement data (detection value), an abnormality determination unit 12 that determines the presence or absence of an abnormality based on the MD value, and an abnormality determination unit 12.
  • the abnormality determination unit 12 determines whether or not there is an abnormality so that the smaller the number of samples in the unit space, the easier it is to determine that there is no abnormality as compared with the case where the number of samples is larger.
  • the diagnostic device 10 of the second aspect is the diagnostic device 10 of (1), and the abnormality determination unit 12 corresponds to the t distribution cumulative probability of the degree of freedom according to the number of samples and the t distribution cumulative probability.
  • the MD value is corrected to the MD'value (second MD value) based on the cumulative probability of the normal distribution to be performed, and the presence or absence of an abnormality is determined based on the result of comparing the MD' value (second MD value) with a predetermined threshold. ..
  • the diagnostic device of the third aspect is the diagnostic device 10 of (1), and the abnormality determination unit 12 obtains the cumulative probability up to a predetermined threshold value MDc with a normal distribution, and the cumulative probability equal to the cumulative probability is obtained.
  • the corresponding value MDt corresponding to the threshold value in the t distribution of the degree of freedom corresponding to the number of samples to be obtained is obtained, and the MD'value (second MD value) obtained by correcting the MD value based on the threshold value Mdc and the corresponding value MDt and the threshold value MDc Based on the result of comparison with, the presence or absence of abnormality is determined.
  • the diagnostic device of the fourth aspect is the diagnostic device 10 of (1), and the abnormality determination unit 12 increases a predetermined threshold value to be compared with the MD value when the number of samples is small, and increases the MD value. When is larger than the threshold value, it is determined that there is an abnormality.
  • the diagnostic device of the fourth aspect includes a Mahalanobis distance calculation unit 11 that calculates the Mahalanobis distance of the measurement data (detection value), and an abnormality determination unit 12 that determines the presence or absence of an abnormality based on the MD value.
  • the abnormality determination unit 12 compares the cumulative probability (303) up to the MD value obtained according to the number of samples in the unit space with the predetermined cumulative probability threshold (304), and based on the result of the comparison, the presence or absence of an abnormality. To judge.
  • the forecasting accuracy can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

データが少ない場合やデータ数が変動する場合でも精度良く異常を検出することができる診断装置、診断方法およびプログラムを提供する。 診断装置は、検出値のマハラノビス距離(以下、MD値という。)を算出するマハラノビス距離算出部と、MD値に基づいて異常の有無を判定する異常判定部と、を備え、異常判定部は、単位空間のサンプル数が少ないほど、サンプル数がより多い場合と比較して異常が無いと判定され易くなるようにして、異常の有無を判定する。

Description

診断装置、診断方法およびプログラム
 本開示は、診断装置、診断方法およびプログラムに関する。本願は、2020年1月6日に、日本に出願された特願2020-000427号に基づき優先権を主張し、その内容をここに援用する。
 発電設備や遠隔監視システムでの異常検知知システムでは、マハラノビス距離を用いたMT法(Maharanobis Taguchi System)が広く利用されている(例えば特許文献1)。特許文献1に記載されているように、マハラノビス距離は、正常データが正規分布に従うことを前提とした手法であり、現実のデータにおいては、正規分布に従わないことが多々ある。そこで、特許文献1に記載されている異常検出前処理装置では、正常時に測定された所定期間内の2変数に関する分布データが、正規分布に従った分布になるか否かが判定され、正規分布に従う分布でないと判定された分布データのうち所定数選定された分布データが仮の非線形モデルにフィッティングされ、仮の非線形モデルと回帰直線との差によって、分布データを補正する補正項が算出される。この補正項により補正された分布データが、最も正規分布に従う分布をもたらす仮の非線形モデルが、異常検出で使用する場合の異常検出モデルとして選定され、異常検出モデルに基づいて算出された補正項を異常検出に用いる補正項として選定される。
 また、特許文献1に記載されている異常検出装置は、異常検出前処理装置によって選定された補正項に基づいて、正常異常の判定対象となる測定データである判定データを補正した補正判定データを算出し、補正判定データをマハラノビス距離に基づいて、異常か否かを判定する。特許文献1に記載されている異常検出前処理装置および異常検出装置によれば、正常データの正規分布性を定量的に評価し、正常時に測定された分布データに基づいて、異常検出モデルおよび異常検出に用いる補正項が選定されるので、正常時に得られる測定データから逸脱したデータ(つまり、異常データ)を精度よく検出することができる。
特許第6129508号公報
 上述したように、特許文献1に記載されている異常検出前処理装置では、データの分布が正規分布に従っているか否かを判定した結果に基づいて補正項が選出される。そのため、正規分布に従っているか否かを判定できるだけの複数のデータが必要となる。しかしながら、特許文献1に一例として示されているガスタービン設備のように、1度起動するとしばらく(例えば数ヶ月)運転し続けるような場合がある設備では、1回の起動で1つのデータしか計測することができないようなデータ(例えば、起動時における所定の状態変化に要する時間、起動時におけるデータの最大値、最小値、平均値や合計値等)については、複数データの収集に長期間を要することになるという課題があった。
 本開示は、上記課題を解決するためになされたものであって、データが少ない場合やデータ数が変動する場合でも精度良く異常を検出することができる診断装置、診断方法およびプログラムを提供することを目的とする。
 上記課題を解決するために、本開示に係る診断装置は、検出値のマハラノビス距離(以下、MD値という。)を算出するマハラノビス距離算出部と、前記MD値に基づいて異常の有無を判定する異常判定部と、を備え、前記異常判定部は、単位空間のサンプル数が少ないほど、前記サンプル数がより多い場合と比較して異常が無いと判定され易くなるようにして、前記異常の有無を判定する。
 また、本開示に係る診断方法は、検出値のMD値を算出するステップと、単位空間のサンプル数が少ないほど、前記サンプル数がより多い場合と比較して異常が無いと判定され易くなるようにして、前記MD値に基づき異常の有無を判定するステップとを有する。
 また、本開示に係るプログラムは、検出値のMD値を算出するステップと、単位空間のサンプル数が少ないほど、前記サンプル数がより多い場合と比較して異常が無いと判定され易くなるようにして、前記MD値に基づき異常の有無を判定するステップとをコンピュータに実行させる。
 本開示の診断装置、診断方法およびプログラムによれば、データが少ない場合やデータ数が変動する場合でも精度良く異常を検出することができる。
本開示の第1実施形態に係る診断装置の構成例を示す図である。 本開示の第1実施形態に係る診断装置の動作例を示すフローチャートである。 本開示の第2実施形態に係る診断装置を説明するための模式図である。 本開示の第2実施形態に係る診断装置の動作例を示すフローチャートである。 本開示の第2実施形態に係る診断装置の動作例を示すシステムフロー図である。 本開示の第3実施形態に係る診断装置を説明するための模式図である。 本開示の第3実施形態に係る診断装置の動作例を示すフローチャートである。 本開示の第3実施形態に係る診断装置の動作例を示すシステムフロー図である。 本開示の第4実施形態に係る診断装置の動作例を示すシステムフロー図である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
<第1実施形態>
(診断装置の構成)
 以下、本開示の実施形態に係る診断装置について、図1および図2を参照して説明する。なお、各図において同一または対応する構成には同一の符号を用いて説明を適宜省略する。なお、本実施形態では、診断装置10を、ガスタービンを監視する監視センターに設け、ガスタービンの異常の検出に用いる場合を想定して説明するが、本発明はこれに限定されない。
 図1は、本開示の第1実施形態に係る診断装置10の構成例を示す図である。図1に示す診断装置10は、例えば、発電所に設けられるガスタービン設備31を監視し、異常の有無を診断する装置である。ガスタービン設備31と診断装置10とは、情報の授受可能にネットワーク32を介して接続されている。例えば、診断装置10は、ガスタービン設備31から所定のタイミングで送信されるガスタービンの運転データ、アラーム情報、および問い合わせ情報等を受信する。診断装置10は、取得した各種情報を記憶部13(詳細は後述する)に記憶させる。本実施形態においては、ガスタービン設備31からネットワーク32を介した遠隔地に診断装置10を設けることとして説明しているが、診断装置10の位置はこれに限定されない。
 診断装置10は、例えば、サーバ、パーソナルコンピュータ等のコンピュータとその周辺装置等を用いて構成することができる。診断装置10は、コンピュータとその周辺装置等のハードウェアと、コンピュータが実行するプログラム等のソフトウェアとの組み合わせで構成される機能的構成として、マハラノビス距離算出部11と、異常判定部12と、記憶部13を備える。
 記憶部13には、ガスタービン設備31の複数箇所に設けられる計測器から得られた所定期間内の測定データ(運転データ等)が記憶されている。測定データには、例えば、ガスタービンの起動時など、正常データが特にバラつく非定常的な状態で測定された所定期間内の測定データと、ガスタービン設備の正常異常の判定対象となる測定データとが含まれる。また、本実施形態において、ガスタービン設備の複数箇所とは、例えば、燃焼器、圧縮機等であり、測定データは、それら複数箇所から得られる温度、電圧、電流、回転速度、圧力値、起動時等における所定の状態変化に要する時間、起動時等におけるデータの最大値、最小値、平均値や合計値等の情報である。また、記憶部13は、MT法において単位空間に係るサンプル数(データ数)、平均値、標準偏差、相関行列の逆行列、異常判定の閾値等の値を記憶する。
 マハラノビス距離算出部11は、測定データ(検出値)のMD値を算出する。マハラノビス距離算出部11は、k次元のMD値を、以下の式により求める。ここで、kは項目数、i、jは1~k、αijは相関行列の逆行列のi,j成分、mi、mj、σi、σjはそれぞれ単位空間における平均値および標準偏差である。単位空間は、正常時の測定データに基づく複数のMD値からなる基準データ群であり、k項目の測定データの組の複数のサンプルに基づいて算出される。単位空間は、例えばマハラノビス距離算出部11によって、新たな測定データに基づき更新される。
Figure JPOXMLDOC01-appb-M000001
 なお、マハラノビス距離を用いた判定とは、ある集団の特徴量(多変数)を一つのパラメータ(マハラノビス距離)で表し、ある測定データの良・不良を、健全な集団(正常時の測定データ)の基本データからの距離で評価する方法である。ある測定データが不良であれば、健全な集団からの距離は大きくなり、測定データが良であれば健全な集団からの距離は小さくなる。
 異常判定部12は、マハラノビス距離算出部11が算出したMD値に基づいて異常の有無を判定する。その際、異常判定部12は、単位空間のサンプル数が少ないほど、サンプル数がより多い場合と比較して異常が無いと判定され易くなるようにして、異常の有無を判定する。異常判定部12は、例えば、マハラノビス距離に閾値(MD閾値ともいう)を設け、閾値以下であれば正常とし、閾値より大きい場合には異常として判定する。
(診断装置の動作)
 次に、図2を参照して、図1に示す診断装置10の基本的な動作について説明する。図2は、本開示の第1実施形態に係る診断装置の動作例を示すフローチャートである。
 図2に示す処理は、例えばオペレータの所定の操作入力に従って開始される。なお、記憶部13には、ガスタービン設備31で測定されたガスタービンの運転に関する測定データが記憶されているものとする。診断装置10では、まず、マハラノビス距離算出部11が、測定データ(検出値)のMD値を算出する(ステップS11)。次に、異常判定部12が、単位空間のサンプル数が少ないほど、サンプル数がより多い場合と比較して異常が無いと判定され易くなるようにして、異常の有無を判定する(ステップS12)。
 ステップS12において、異常判定部12は、例えば、単位空間のサンプル数が少ないほど、MD値に対する異常判定の閾値を大きくして、異常の有無を判定する。閾値が大きくなると、MD値が大きい場合に異常有りと判定される場合が少なくなる。あるいは、異常判定部12は、例えば、単位空間のサンプル数が少ないほど、マハラノビス距離算出部11が算出したMD値に対して、値が小さくなる係数を乗算するなどして、MD値が小さくなるように補正してもよい。MD値が小さくなると、異常判定の閾値が変化しなくても、異常有りと判定される場合が少なくなる。あるいは、異常判定部12は、閾値の補正と、MD値の補正を組み合わせてもよい。
 サンプル数が少ないと、単位空間の基となったMD値の分布が正規分布に従わない場合が多くなる。この場合、例えば、正規分布を仮定して閾値を設定した場合、正常であるにも関わらずMD値が閾値を超えてしまうときが多くなってしまうと考えられる。これに対し、単位空間のサンプル数が少ないほど、サンプル数がより多い場合と比較して異常が無いと判定され易くなるようにすることで、本実施形態では、正常であるにも関わらず異常であると誤検出してしまう場合を少なくすることができる。すなわち、誤検出の発生を抑え、異常検出の精度を向上させることができる。なお、異常判定部12は、例えば特許文献1に記載されている異常検出の手法を組み合わせて用いることで、異常であるにも関わらず、正常であると判定される誤検出の発生を防止することができる。
 異常判定部12による異常の有無の判定結果は、例えば、記憶部13に記憶したり、診断装置10が備える図示していない表示装置、印刷装置、音響出力装置等から出力したり、診断装置10が備える図示していない通信装置を介して外部の端末へ送信したりすることができる。
<第2実施形態>
 図3~図5を参照して、本開示の第2実施形態について説明する。図3は、本開示の第2実施形態に係る診断装置を説明するための模式図である。図4は、本開示の第2実施形態に係る診断装置の動作例を示すフローチャートである。図5は、本開示の第2実施形態に係る診断装置の動作例を示すシステムフロー図である。
 第2実施形態の診断装置の基本的な構成は、図1に示す第1実施形態の診断装置10と同一である。第2実施形態は、第1実施形態と比較して、図1に示す異常判定部12の動作の一部が詳細化されている。
 図3は、マハラノビス距離MDの確率分布を正規分布とn(またはStudent’s t-distribution)で模式的に表した図である。また、図3は、網掛けによって、MD≧3の正規分布累積確率(正規分布の逆累積分布関数)と、MD≧5のt分布累積確率(t分布の逆累積分布関数)を表している。
 数学的に正しい確率密度関数は、標本が少なければt分布で、多いと正規分布に近づく。サンプル数が無限大でt分布と正規分布は一致する。また、センサー数が少なく1の場合、t-検定と等しくなる。同じMDであっても、仮定する確率密度関数によって累積確率は変わる。特に、t分布は正規分布よりも広く分布する。「3<MD値で異常」と診断する場合に、データ数が少なく、t分布のときは「3<MD値」であることも比較的ありふれた事象にもかかわらず「異常」としてしまう。誤検知が多い。
 そこで、第2実施形態では、異常判定部12が、サンプル数に応じた自由度のt分布の累積確率(以下、t分布累積確率という。)と、t分布累積確率に対応する正規分布の累積確率とに基づいてマハラノビス距離算出部11が算出したMD値をMD’値(第2MD値)に補正し、MD’値と所定の閾値を比較した結果に基づき、異常の有無を判定する。
 図4に示すように、第2実施形態では、まず、マハラノビス距離算出部11が、測定データ(検出値)のMD値を算出する(ステップS21)。この場合、MD値は「5」であったとする。
 次に、異常判定部12が、マハラノビス距離算出部11がMT法で算出したMD値について、t分布でMD値(「5」)までのt分布累積確率を求める(ステップS22)。
 次に、異常判定部12が、正規分布において、求めたt分布累積確率と、等しい累積確率(正規分布累積確率)になるようなMD’値を求める(ステップS23)。この場合、MD’値は「3」であったとする。
 次に、異常判定部12が、MD’値と閾値を比較して異常診断する(ステップS24)。
 なお、異常判定部12は、例えば下式を用いて補正後のMD値であるMD’値を求めることができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、tcdfはt分布の累積分布関数、erfinvは誤差関数の逆関数、νは自由度で(N-A)、Nは単位空間のサンプル数(データ数)、Aはセンサー数である。
 なお、図5に示すように、異常判定部12は、MDマハラノビス距離算出部11がMT法で算出したMD値(101)と、サンプル数(標本数)(102)に基づき、t分布累積確率(103)を算出する。また、異常判定部12は、同じ累積確率となる正規分布でのMD’値(104)を算出する。そして、異常判定部12は、MD’値(104)とMD閾値(105)を比較する。
 以上のように、第2実施形態によれば、第1実施形態と同様に、正常であるにも関わらず異常であると誤検出してしまう場合を少なくすることができる。また、上式を用いることで、サンプル数が少ないときから多いときまで、同じ計算式で対応することができる。
<第3実施形態>
 図6~図8を参照して、本開示の第3実施形態について説明する。図6は、本開示の第3実施形態に係る診断装置を説明するための模式図である。図7は、本開示の第3実施形態に係る診断装置の動作例を示すフローチャートである。図8は、本開示の第3実施形態に係る診断装置の動作例を示すシステムフロー図である。
 第3実施形態の診断装置の基本的な構成は、図1に示す第1実施形態の診断装置10と同一である。第3実施形態は、第1実施形態と比較して、図1に示す異常判定部12の動作の一部が詳細化されている。
 図6は、図3と同様に、マハラノビス距離MDの確率分布を正規分布とt分布で模式的に表した図である。また、図6は、網掛けによって、MD≧3の正規分布累積確率(正規分布の逆累積分布関数)と、MD≧5のt分布累積確率を表している。なお、図6では、閾値MDcの値が「3」である。
 第3実施形態では、異常判定部12が、正規分布で所定の閾値MDcまでの累積確率(正規分布累積確率)を求め、正規分布累積確率と等しいt分布累積確率となるサンプル数に応じた自由度のt分布での閾値MDcに対応する対応値MDtを求め、閾値MDcと対応値MDtに基づいてMD値を補正したMD’値(第2MD値)と、閾値MDcとを比較した結果に基づき、異常の有無を判定する。図6に示す例では、閾値MDc「3」に対応する対応値MDtは「5」であるとしている。この場合、例えば、MD値に3/5を乗じた値(MD’値)と、閾値MDcとが比較される。
 図7に示すように、第3実施形態では、まず、マハラノビス距離算出部11が、測定データ(検出値)のMD値を算出する(ステップS31)。次に、異常判定部12が、正規分布での閾値(MDc)までの累積確率を求める(ステップS32)。次に、異常判定部12が、t分布において、求めた正規分布の累積確率と等しい累積確率になるような対応値(MDt)を求める(ステップS33)。図6ではMDc=3、MDt=5。ここから、正規分布のMD=3は、t分布では事象の発生確率的にはMD=5相当であることが分かる。ただし、t分布の対応値は、サンプル数によって変化する。
 次に、異常判定部12は、マハラノビス距離算出部11がMT法で算出したMD値を、MDc/MDt倍してMD’値(第2MD値)とする(ステップS34)。図6に示す例では、MD’値=MD値×3/5となる。次に、異常判定部12は、MD’値とMD閾値(MDc)を比較して異常診断する(ステップS35)。
 なお、異常判定部12は、例えば下式を用いて補正後のMD値であるMD’値を求めることができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、MDcはMT法の閾値、tinvはt分布の逆累積分布関数、erfは誤差関数、νは自由度(N-A)、Nは単位空間のサンプル数(データ数)、Aはセンサー数である。
 なお、図8に示すように、第3実施形態の異常判定部12は、MDマハラノビス距離算出部11がMT法で算出したMD(MD値)(201)と、サンプル数(標本数)(205)に基づき正規分布用MD閾値(203)またはt分布用MD閾値(204)から選択したMD閾値とを比較するようにしてもよい。この場合、t分布用MD閾値(204)は、正規分布用MD閾値(203)より小さく、サンプル数が少ない場合に選択される。すなわち、第3実施形態では、異常判定部12は、サンプル数が少ない場合にMD値と比較される所定の閾値を大きくし、MD値が閾値より大きいときに異常が有ると判定する。
 以上のように、第3実施形態によれば、第1実施形態と同様に、正常であるにも関わらず異常であると誤検出してしまう場合を少なくすることができる。また、上式を用いることで、計算処理を簡素化することができ(関数のパラメータをMD値ではなく定数である閾値MDcとすることができ)、第2実施形態と比べて処理負荷が低減できる。
<第4実施形態>
 図9を参照して、本開示の第4実施形態について説明する。図9は、本開示の第4実施形態に係る診断装置の動作例を示すシステムフロー図である。第4実施形態の診断装置の基本的な構成は、図1に示す第1実施形態の診断装置10と同一である。第4実施形態は、第1実施形態と比較して、図1に示す異常判定部12の動作の一部が詳細化されている。
 図9に示すように、第4実施形態の異常判定部12は、MDマハラノビス距離算出部11がMT法で算出したMD値(301)と、サンプル数(標本数)(302)に基づき、t分布累積確率(303)を算出し、t分布累積確率(303)と予め定めた閾値に対応する正規分布の累積確率である累積確率閾値(304)とを比較して異常判定を行う。すなわち、第4実施形態の診断装置10は、マハラノビス距離算出部11が測定データ(検出値)のMD値を算出する。そして、異常判定部12は、単位空間のサンプル数に応じて求めたMD値までの累積確率と、所定の累積確率閾値とを比較し、比較した結果に基づいて異常の有無を判定することで、MD値に基づいて異常の有無を判定する。
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
〈コンピュータ構成〉
 図10は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ90は、プロセッサ91、メインメモリ92、ストレージ93、インタフェース94を備える。
 上述の診断装置10は、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ93に記憶されている。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ92に確保する。
 プログラムは、コンピュータ90に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージに既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータは、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサによって実現される機能の一部または全部が当該集積回路によって実現されてよい。
 ストレージ93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ93は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムをメインメモリ92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ93は、一時的でない有形の記憶媒体である。
<付記>
 各実施形態に係る診断装置10は、例えば以下のように把握される。
(1)第1の態様に係る診断装置10は、測定データ(検出値)のMD値を算出するマハラノビス距離算出部11と、MD値に基づいて異常の有無を判定する異常判定部12と、を備え、異常判定部12は、単位空間のサンプル数が少ないほど、サンプル数がより多い場合と比較して異常が無いと判定され易くなるようにして、異常の有無を判定する。
(2)第2の態様の診断装置10は、(1)の診断装置10であって、異常判定部12は、サンプル数に応じた自由度のt分布累積確率と、t分布累積確率に対応する正規分布の累積確率とに基づいてMD値をMD’値(第2MD値)に補正し、MD’値(第2MD値)と所定の閾値を比較した結果に基づき、異常の有無を判定する。
(3)第3の態様の診断装置は、(1)の診断装置10であって、異常判定部12は、正規分布で所定の閾値MDcまでの累積確率を求め、その累積確率と等しい累積確率となるサンプル数に応じた自由度のt分布での閾値に対応する対応値MDtを求め、閾値Mdcと対応値MDtに基づいてMD値を補正したMD’値(第2MD値)と、閾値MDcとを比較した結果に基づき、異常の有無を判定する。
(4)第4の態様の診断装置は、(1)の診断装置10であって、異常判定部12は、サンプル数が少ない場合にMD値と比較される所定の閾値を大きくし、MD値が閾値より大きいときに、異常が有ると判定する。
(5)第4の態様の診断装置は、測定データ(検出値)のマハラノビス距離を算出するマハラノビス距離算出部11と、MD値に基づいて異常の有無を判定する異常判定部12と、を備え、異常判定部12は、単位空間のサンプル数に応じて求めたMD値までの累積確率(303)と、所定の累積確率閾値(304)とを比較し、比較した結果に基づいて異常の有無を判定する。
 上記各態様によれば、サンプル数(単位空間の算出に用いるデータ)が少ない場合に正常値を異常値であると判定する誤検出を少なくし、検出精度を向上させることができる。
 上述の需要予測装置、需要予測方法およびプログラムによれば、予測精度を向上させることができる。
10 診断装置
11 マハラノビス距離算出部
12 異常判定部

Claims (7)

  1.  検出値のマハラノビス距離を算出するマハラノビス距離算出部と、
     前記MD値に基づいて異常の有無を判定する異常判定部と、
     を備え、
     前記異常判定部は、単位空間のサンプル数が少ないほど、前記サンプル数がより多い場合と比較して異常が無いと判定され易くなるようにして、前記異常の有無を判定する
     診断装置。
  2.  前記異常判定部は、前記サンプル数に応じた自由度のt分布の累積確率と、前記t分布の累積確率に対応する正規分布の累積確率とに基づいて前記MD値を第2MD値に補正し、前記第2MD値と所定の閾値を比較した結果に基づき、前記異常の有無を判定する
     請求項1に記載の診断装置。
  3.  前記異常判定部は、正規分布で所定の閾値までの累積確率を求め、前記累積確率と等しい累積確率となる前記サンプル数に応じた自由度のt分布での前記閾値に対応する対応値を求め、前記閾値と前記対応値に基づいて前記MD値を補正した第2MD値と、前記閾値とを比較した結果に基づき、前記異常の有無を判定する
     請求項1に記載の診断装置。
  4.  前記異常判定部は、前記サンプル数が少ない場合に前記MD値と比較される所定の閾値を大きくし、前記MD値が前記閾値より大きいときに、前記異常が有ると判定する
     請求項1に記載の診断装置。
  5.  検出値のマハラノビス距離を算出するマハラノビス距離算出部と、
     前記MD値に基づいて異常の有無を判定する異常判定部と、
     を備え、
     前記異常判定部は、単位空間のサンプル数に応じて求めた前記MD値までの累積確率と、所定の累積確率閾値とを比較し、比較した結果に基づいて前記異常の有無を判定する 診断装置。
  6.  検出値のマハラノビス距離を算出するステップと、
     単位空間のサンプル数が少ないほど、前記サンプル数がより多い場合と比較して異常が無いと判定され易くなるようにして、前記MD値に基づき異常の有無を判定するステップと
     を有する診断方法。
  7.  検出値のマハラノビス距離を算出するステップと、
     単位空間のサンプル数が少ないほど、前記サンプル数がより多い場合と比較して異常が無いと判定され易くなるようにして、前記MD値に基づき異常の有無を判定するステップと
     をコンピュータに実行させるプログラム。
PCT/JP2020/048494 2020-01-06 2020-12-24 診断装置、診断方法およびプログラム WO2021140942A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020006451.4T DE112020006451T5 (de) 2020-01-06 2020-12-24 Diagnosevorrichtung, diagnoseverfahren und programm
KR1020227019404A KR20220098202A (ko) 2020-01-06 2020-12-24 진단 장치, 진단 방법 및 프로그램
CN202080082514.XA CN114746821A (zh) 2020-01-06 2020-12-24 诊断装置、诊断方法及程序
US17/781,612 US11789436B2 (en) 2020-01-06 2020-12-24 Diagnosing device, diagnosing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-000427 2020-01-06
JP2020000427A JP7437163B2 (ja) 2020-01-06 2020-01-06 診断装置、診断方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2021140942A1 true WO2021140942A1 (ja) 2021-07-15

Family

ID=76788426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048494 WO2021140942A1 (ja) 2020-01-06 2020-12-24 診断装置、診断方法およびプログラム

Country Status (6)

Country Link
US (1) US11789436B2 (ja)
JP (1) JP7437163B2 (ja)
KR (1) KR20220098202A (ja)
CN (1) CN114746821A (ja)
DE (1) DE112020006451T5 (ja)
WO (1) WO2021140942A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116111731B (zh) * 2023-04-13 2023-06-20 东莞先知大数据有限公司 一种分布式储能设备异常确定方法、装置、设备和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172567A (ja) * 2001-04-24 2003-06-20 Fuji Electric Co Ltd 故障診断方法、故障診断装置、店舗内機器管理システム、及び記録媒体
JP2006039978A (ja) * 2004-07-28 2006-02-09 Hitachi Ltd 交通情報提供装置,交通情報提供方法
JP2009186463A (ja) * 2008-01-18 2009-08-20 Rolls Royce Plc ノベルティ検出
JP2011170518A (ja) * 2010-02-17 2011-09-01 Nec Corp 状態監視装置及び方法
WO2019124367A1 (ja) * 2017-12-21 2019-06-27 三菱日立パワーシステムズ株式会社 単位空間生成装置、プラント診断システム、単位空間生成方法、プラント診断方法、及びプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453552A (en) 1977-10-04 1979-04-26 Dainippon Printing Co Ltd Preparation of hologram
JPS6129508U (ja) 1984-07-25 1986-02-22 松下電工株式会社 アンテナ構造
US10648888B2 (en) 2008-02-27 2020-05-12 Mitsubishi Hitachi Power Systems, Ltd. Plant state monitoring method, plant state monitoring computer program, and plant state monitoring apparatus
US8423484B2 (en) * 2009-01-23 2013-04-16 Oxfordian, Llc Prognostics and health management method for aging systems
JP5301310B2 (ja) * 2009-02-17 2013-09-25 株式会社日立製作所 異常検知方法及び異常検知システム
JP6129508B2 (ja) 2012-10-04 2017-05-17 三菱重工業株式会社 異常検出前処理装置および方法ならびにプログラム、それを備えた異常検出装置
JP6018106B2 (ja) 2014-02-28 2016-11-02 中国電力株式会社 予測システム、予測方法
JP6520228B2 (ja) 2015-03-05 2019-05-29 中国電力株式会社 電力需要量予測システム、電力需要量予測方法及びプログラム
JP6770802B2 (ja) * 2015-12-28 2020-10-21 川崎重工業株式会社 プラント異常監視方法およびプラント異常監視用のコンピュータプログラム
JP6511702B2 (ja) * 2016-06-01 2019-05-15 三菱日立パワーシステムズ株式会社 監視装置、対象装置の監視方法、およびプログラム
JP7181711B2 (ja) 2018-06-27 2022-12-01 東芝ライフスタイル株式会社 衣類処理装置
US20200074269A1 (en) * 2018-09-05 2020-03-05 Sartorius Stedim Data Analytics Ab Computer-implemented method, computer program product and system for data analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172567A (ja) * 2001-04-24 2003-06-20 Fuji Electric Co Ltd 故障診断方法、故障診断装置、店舗内機器管理システム、及び記録媒体
JP2006039978A (ja) * 2004-07-28 2006-02-09 Hitachi Ltd 交通情報提供装置,交通情報提供方法
JP2009186463A (ja) * 2008-01-18 2009-08-20 Rolls Royce Plc ノベルティ検出
JP2011170518A (ja) * 2010-02-17 2011-09-01 Nec Corp 状態監視装置及び方法
WO2019124367A1 (ja) * 2017-12-21 2019-06-27 三菱日立パワーシステムズ株式会社 単位空間生成装置、プラント診断システム、単位空間生成方法、プラント診断方法、及びプログラム

Also Published As

Publication number Publication date
US20230004153A1 (en) 2023-01-05
DE112020006451T5 (de) 2022-10-27
JP2021110977A (ja) 2021-08-02
JP7437163B2 (ja) 2024-02-22
KR20220098202A (ko) 2022-07-11
CN114746821A (zh) 2022-07-12
US11789436B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
US9122273B2 (en) Failure cause diagnosis system and method
US8751423B2 (en) Turbine performance diagnostic system and methods
WO2011138911A1 (ja) 障害分析装置、障害分析方法および記録媒体
KR20190025474A (ko) 플랜트 데이터 예측 장치 및 방법
CN107710089B (zh) 工厂设备诊断装置以及工厂设备诊断方法
JP5621967B2 (ja) 異常データ分析システム
CN111542792A (zh) 诊断装置和诊断方法
CN112805728A (zh) 机器故障诊断辅助系统以及机器故障诊断辅助方法
WO2021140942A1 (ja) 診断装置、診断方法およびプログラム
JP5771317B1 (ja) 異常診断装置及び異常診断方法
CN115841046A (zh) 基于维纳过程的加速退化试验数据处理方法和装置
JP5535954B2 (ja) 健全性評価装置及びその方法並びにプログラム
US20230280240A1 (en) Abnormality diagnosis device and abnormality diagnosis method
JP2014035282A (ja) 異常診断装置
WO2019124367A1 (ja) 単位空間生成装置、プラント診断システム、単位空間生成方法、プラント診断方法、及びプログラム
JP5271805B2 (ja) 標準時系列データ算出方法、異常検出方法、標準時系列データ算出装置、異常検出装置、標準時系列データ算出プログラム、および異常検出プログラム
CN110458713B (zh) 模型监控方法、装置、计算机设备及存储介质
JP6129508B2 (ja) 異常検出前処理装置および方法ならびにプログラム、それを備えた異常検出装置
JP7469828B2 (ja) 構造物診断システム、構造物診断方法、および構造物診断プログラム
JP5948998B2 (ja) 異常診断装置
JP7347953B2 (ja) 機器予兆監視装置、および、機器予兆監視方法
WO2020204043A1 (ja) 高炉の異常判定装置、高炉の異常判定方法、及び高炉の操業方法
JP7026012B2 (ja) 機器状態監視システム及び機器状態監視方法
Luo et al. Condition-based maintenance policy for systems under dynamic environment
WO2024047859A1 (ja) 異常検知装置、異常検知方法、および、異常検知プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227019404

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20912603

Country of ref document: EP

Kind code of ref document: A1