WO2021139831A1 - 参考信号发送方法、参考信号接收方法及通信装置 - Google Patents

参考信号发送方法、参考信号接收方法及通信装置 Download PDF

Info

Publication number
WO2021139831A1
WO2021139831A1 PCT/CN2021/077676 CN2021077676W WO2021139831A1 WO 2021139831 A1 WO2021139831 A1 WO 2021139831A1 CN 2021077676 W CN2021077676 W CN 2021077676W WO 2021139831 A1 WO2021139831 A1 WO 2021139831A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication node
binding
time
capability
time binding
Prior art date
Application number
PCT/CN2021/077676
Other languages
English (en)
French (fr)
Inventor
王化磊
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Priority to JP2022542785A priority Critical patent/JP2023540153A/ja
Priority to EP21739005.3A priority patent/EP4089949A4/en
Publication of WO2021139831A1 publication Critical patent/WO2021139831A1/zh
Priority to US17/861,169 priority patent/US20220345273A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • This application relates to the field of communication technology, and in particular to a reference signal sending method, a reference signal receiving method, and a communication device.
  • 5G communication systems can support different services, such as enhanced Mobile Broadband (eMBB) services, massive machine type communication (MTC) services, ultra-reliable and low latency communications communications, URLLC) services, multimedia broadcast multicast (MBMS) services and positioning services, etc.
  • eMBB enhanced Mobile Broadband
  • MTC massive machine type communication
  • URLLC ultra-reliable and low latency communications communications
  • MBMS multimedia broadcast multicast
  • the URLLC service is an important service in the 5G communication system, requiring very high reliability and very short time delay during transmission. Therefore, in order to ensure the reliability of the URLLC service, the network device and the terminal device in the 5G communication system can adopt multiple repetitions to transmit the URLLC service data. That is, the network device and the terminal device can repeatedly transmit the same URLLC service data N times through N transmission opportunities.
  • SRS sounding reference signal
  • the embodiments of the present application disclose a reference signal sending method, a reference signal receiving method, and a communication device, which can reduce transmission delay and improve communication efficiency.
  • an embodiment of the present application provides a reference signal transmission method.
  • the method includes: a first communication node sends one or more reference signals to a second communication node through N bound and continuous time units; Said N is an integer greater than 1.
  • the first communication node is a terminal device (for example, a mobile phone), the second communication node is a network device (for example, a base station), and the reference signal is an uplink reference signal, such as a sounding reference signal (Sounding Reference Signal, SRS).
  • the first communication node is a network device (for example, a base station)
  • the second communication node is a terminal device (for example, a mobile phone)
  • the reference signal is a downlink reference signal, such as a cell reference signal (Cell Reference Signal, CRS).
  • the second communication node may process the one or more reference signals as a whole to obtain the target reference signal.
  • the second communication node performs soft combining processing on the one or more reference signals to obtain the target reference signal.
  • the time unit may be a time slot, a subframe, a mini-slot, a radio frame transmission time interval (Transmission Time Interval, TTI), and the like.
  • TTI Transmission Time Interval
  • the number of bound and continuous time units corresponding to each reference signal in the one or more reference signals is the same.
  • each time unit corresponds to a reference signal.
  • each time unit corresponds to multiple reference signals, such as 2, 3, 4, etc., which are not limited in this application. It can be understood that the first communication node may send one or more reference signals to the second communication node through multiple consecutive time units, and the multiple consecutive time units are bound together.
  • the first communication node can maintain the phase continuity of N continuous time units, and therefore can send one or more reference signals to the second communication node through N bound and continuous time units.
  • the continuous time unit refers to a continuous upstream time unit.
  • the binding manner of the N binding and continuous time units refers to repeatedly sending the same channel or signal in N consecutive time units.
  • the binding manner (Time bundling) of the N binding and continuous time units is similar to subframe bundling (TTI bundling).
  • the current reference signal transmission scheme is to transmit one or more reference signals through a time unit. When the transmission power of the first communication node is low or the channel quality is poor, the second communication node may not be able to accurately obtain the first communication node. A reference signal sent by a communication node will affect the performance of the system.
  • the first communication node sends one or more reference signals to the second communication node through N bound and continuous time units, so that the second communication node can take the multiple reference signals as a whole Processing to obtain an accurate reference signal, through time accumulation can increase the signal energy, thereby improving system performance.
  • the method further includes: the first communication node sends capability signaling to the second communication node; the capability signaling indicates that the first communication node has time binding capability Or it does not have the time binding ability, and the time binding ability is the ability to repeatedly send the reference signal through at least two bound and continuous time units.
  • the first communication node can indicate whether the first communication node has the time binding capability by sending a capability instruction to the second communication node, so as to facilitate subsequent transfers to the second communication node through N binding and continuous time units.
  • the communication node sends one or more reference signals.
  • the capability signaling includes a first field and a second field
  • the first field indicates that the first communication node has the time binding capability or does not have the time binding capability
  • the second field indicates a maximum time binding size
  • the maximum time binding size is the maximum number of binding and continuous time units that can be occupied by the first communication node to send a reference signal.
  • the first communication node can accurately indicate the target time binding size by sending a capability instruction to the second communication node, and occupies fewer bits.
  • the first communication node sending one or more reference signals to the second communication node through N bound and continuous time units includes: the first communication node according to configuration information, The one or more reference signals are sent to the second communication node through the N binding and continuous time units; the configuration information is used to configure a target time binding size, and the target time binding size The number of bound and continuous time units that can be occupied by sending a reference signal for the first communication node.
  • the method before the first communication node sends one or more reference signals to the second communication node through N bound and continuous time units, the method further includes: The communication node receives the control information sent by the second communication node; the control information indicates a target time binding size, and the target time binding size is a binding and continuous amount that can be occupied by the first communication node to send a reference signal The number of time units;
  • the first communication node sending one or more reference signals to the second communication node through N binding and continuous time units includes: according to the control information, the first communication node uses the N binding And a continuous time unit sends the one or more reference signals to the second communication node.
  • the first communication node is a terminal device
  • the second communication node is a network device
  • the method further includes: the first communication node receives high-level signaling; Let it be used to configure multiple candidate time binding sizes, the multiple candidate time binding sizes including the target time binding size; the first communication node according to the control information, through the N binding and continuous
  • the time unit sending the one or more reference signals to the second communication node includes: the first communication node determines the target time binding size from the multiple candidate time bindings according to the control information And send the one or more reference signals to the second communication node through the N bound and continuous time units.
  • an embodiment of the present application provides a reference signal receiving method, which may include: a second communication node receiving one or more reference signals sent by the first communication node through N bound and continuous time units ;
  • the N is an integer greater than 1.
  • the second communication node processes the one or more reference signals as a whole to obtain a target reference signal.
  • the second communication node performs soft combining processing on the one or more reference signals to obtain a target reference signal.
  • the time unit may be a time slot, a subframe, a mini-slot, a radio frame transmission time interval (Transmission Time Interval, TTI), and the like.
  • TTI Transmission Time Interval
  • the number of bound and continuous time units corresponding to each reference signal in the one or more reference signals is the same.
  • each time unit corresponds to a reference signal.
  • each time unit corresponds to multiple reference signals, such as 2, 3, 4, etc., which are not limited in this application.
  • the second communication node processes one or more reference signals as a whole to obtain accurate reference signals and improve system performance.
  • the method further includes: the second communication node receives capability signaling sent by the first communication node; the capability signaling indicates that the first communication node has time binding Ability or lack of the time binding ability, the time binding ability is the ability to repeatedly send the reference signal through at least two bound and continuous time units.
  • the capability signaling includes a first field and a second field
  • the first field indicates that the first communication node has the time binding capability or does not have the time binding capability
  • the second field indicates a maximum time binding size
  • the maximum time binding size is the maximum number of binding and continuous time units that can be occupied by the first communication node to send a reference signal.
  • the method before the second communication node receives one or more reference signals sent by the first communication node through N bound and continuous time units, the method further includes: 2.
  • the communication node sends control information to the first communication node; the control information indicates a target time binding size, and the target time binding size is a binding and continuous amount that can be occupied by the first communication node to send a reference signal The number of time units.
  • the first communication node is a terminal device
  • the second communication node is a network device.
  • the method further includes: the second communication node sends a high-level communication node to the first communication node. Signaling, the high-level signaling is used to configure one or more candidate time binding sizes of the first communication node, and any one candidate time binding size is a binding that can be occupied by the first communication node for sending a reference signal And the number of consecutive time units, the multiple candidate time binding sizes include the target time binding size.
  • an embodiment of the present application provides a communication method, the method includes: a first communication node sends capability signaling to a second communication node; the capability signaling indicates that the first communication node has a time binding capability Or it does not have the time binding ability, and the time binding ability is the ability to repeatedly send one or more reference signals through at least two bound and continuous time units.
  • the second communication node by sending a capability instruction to the second communication node, it can indicate whether it has the time binding capability, so as to confirm whether to repeatedly send 1 OR to the second communication node through at least two bound and continuous time units. Multiple reference signals.
  • the capability signaling includes a first field and/or a second field
  • the first field indicates that the first communication node has the time binding capability or does not have the time binding Capability
  • the second field indicates a maximum time binding size
  • the maximum time binding size is the maximum number of binding and continuous time units that can be occupied by the first communication node to send a reference signal.
  • an embodiment of the present application provides a communication method, the method includes: a second communication node receives capability signaling from a first communication node; the capability signaling indicates that the first communication node has time binding Ability or lack of the time binding ability, the time binding ability is the ability to repeatedly send one or more reference signals through at least two bound and continuous time units.
  • the capability signaling includes a first field and/or a second field
  • the first field indicates that the first communication node has the time binding capability or does not have the time binding Capability
  • the second field indicates a maximum time binding size
  • the maximum time binding size is the maximum number of binding and continuous time units that can be occupied by the first communication node to send a reference signal.
  • an embodiment of the present application provides a communication device, including: a sending unit, configured to send one or more reference signals to a second communication node through N bound and continuous time units; where N is An integer greater than 1.
  • the sending unit is further configured to send capability signaling to the second communication node; the capability signaling indicates that the first communication node has the time binding capability or does not have all the time binding capabilities.
  • the time binding capability is the ability to repeatedly send a reference signal through at least two bound and continuous time units.
  • the capability signaling includes a first field and a second field
  • the first field indicates that the first communication node has the time binding capability or does not have the time binding capability
  • the second field indicates a maximum time binding size
  • the maximum time binding size is the maximum number of binding and continuous time units that can be occupied by the first communication node to send a reference signal.
  • the sending unit is specifically configured to send the one or more reference signals to the second communication node through the N bound and continuous time units according to configuration information
  • the configuration information is used to configure a target time binding size, and the target time binding size is the number of binding and continuous time units that can be occupied by the first communication node to send a reference signal.
  • the communication device further includes: a receiving unit configured to receive control information sent by the second communication node; the control information indicates a target time binding size, and the target time binding The size is the number of bound and continuous time units that can be occupied by the first communication node to send the reference signal;
  • the sending unit is specifically configured to send the one or more reference signals to the second communication node through the N bound and continuous time units according to the control information.
  • the receiving unit is further configured to receive high-level signaling; the high-level signaling is used to configure multiple candidate time binding sizes; the multiple candidate time binding sizes include the Target time bound size;
  • the sending unit is specifically configured to determine the target time binding size from the multiple candidate time bindings according to the control information, and communicate to the second communication through the N binding and continuous time units
  • the node sends the one or more reference signals.
  • an embodiment of the present application provides another communication device, including: a receiving unit, configured to receive one or more reference signals sent by a first communication node through N bound and continuous time units; N is an integer greater than 1.
  • the device further includes: a processing unit, configured to process the one or more reference signals as a whole to obtain a target reference signal.
  • the receiving unit is further configured to receive capability signaling sent by the first communication node; the capability signaling indicates that the first communication node has the time binding capability or does not have For the time binding capability, the time binding capability is the ability to repeatedly send a reference signal through at least two bound and continuous time units.
  • the capability signaling includes a first field and a second field
  • the first field indicates that the first communication node has the time binding capability or does not have the time binding capability
  • the second field indicates a maximum time binding size
  • the maximum time binding size is the maximum number of binding and continuous time units that can be occupied by the first communication node to send a reference signal.
  • the communication device further includes: a sending unit, configured to send control information to the first communication node; the control information indicates a target time binding size, and the target time binding size The number of bound and continuous time units that can be occupied by sending a reference signal for the first communication node.
  • the sending unit is further configured to send high-level signaling to the first communication node, and the high-level information is used to configure one or more candidate time bindings of the first communication node.
  • a fixed size, any one candidate time binding size is the number of binding and continuous time units that can be occupied by the first communication node to send a reference signal, and the multiple candidate time binding sizes include the target time binding size.
  • an embodiment of the present application provides another communication device, including: a sending unit, configured to send capability signaling to a second communication node; the capability signaling indicates that the first communication node has time binding capability or does not Possesses the time binding capability, the time binding capability is the ability to repeatedly send one or more reference signals through at least two bound and continuous time units.
  • an embodiment of the present application provides another communication device, including: a receiving unit, configured to receive capability signaling from a first communication node; the capability signaling indicates that the first communication node has time binding Ability or lack of the time binding ability, the time binding ability is the ability to repeatedly send one or more reference signals through at least two bound and continuous time units.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the Code instructions to perform the method as described in any one of the above-mentioned first aspect to the above-mentioned fourth aspect.
  • an embodiment of the present application provides a communication system.
  • the communication system includes a network device and a terminal device.
  • the terminal device can be used to execute the method according to any one of the first aspect. For performing the method as described in any one of the second aspect.
  • an embodiment of the present application provides a communication system.
  • the communication system includes a network device and a terminal device.
  • the terminal device can be used to execute the method according to any one of the third aspects.
  • the network device For performing the method according to any one of the fourth aspect.
  • an embodiment of the present application provides a readable storage medium, the readable storage medium is used to store instructions, and when the instructions are executed, any one of the foregoing first aspect to the foregoing fourth aspect The described method is implemented.
  • embodiments of the present application provide a computer program product including instructions, which when executed, enable the method described in any one of the foregoing first aspect to the foregoing fourth aspect to be implemented.
  • Figure 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for sending a reference signal according to an embodiment of this application
  • FIG. 3 is a schematic diagram of N bound and continuous time units for transmitting one or more reference signals according to an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a capability command provided by an embodiment of this application.
  • FIG. 5 is a flowchart of a method for receiving a reference signal according to an embodiment of the application
  • FIG. 6 is an interaction flowchart of a reference signal transmission method provided by an embodiment of this application.
  • FIG. 7 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 8 is a flowchart of another communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • the embodiment of the present application discloses a reference signal sending method, a reference signal receiving method, and a communication device, and multiple identical reference signals are transmitted through multiple binding (also called bundling, that is, bundling) and continuous time units.
  • bundling also called bundling
  • the method disclosed in the embodiments of this application can be applied to 5G new radio access technology (New RAT (radio access technology), NR) system; it can also be applied to other communication systems, as long as there is an entity in the communication system that needs to send to another entity Reference signal (e.g. SRS).
  • New RAT radio access technology
  • NR new radio access technology
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present application.
  • the network architecture is suitable for scenarios where reference signals are transmitted in multiple time units, that is, a scenario where reference signals are transmitted through multiple bound and continuous time units.
  • a network device is an entity on the network side that is used to transmit or receive signals, such as gNB.
  • a terminal device is an entity on the user side that is used to receive or transmit signals, such as a mobile phone. Since there are many application scenarios for base stations and UEs, the base station is used as an example of network equipment in the following, and user equipment (UE) is used as an example of terminal equipment.
  • the network architecture includes a base station, UE1, UE2, and UE3.
  • the base station can send downlink reference signals to UE1 to UE3; UE1 to UE3 can perform downlink channel estimation, downlink channel quality measurement, cell search, etc. according to the downlink reference signal.
  • UE1 to UE3 can send uplink reference signals (such as SRS) to the base station; the base station can perform uplink channel estimation, uplink channel quality measurement, etc. according to the uplink reference signal.
  • uplink reference signals such as SRS
  • FIG. 2 is a flowchart of a method for sending a reference signal according to an embodiment of the application. As shown in Figure 2, the method may include:
  • the first communication node sends one or more reference signals to the second communication node through N bound and continuous time units.
  • the number of bound and continuous time units corresponding to each of the above-mentioned one or more reference signals is the same, and the above-mentioned N is an integer greater than 1.
  • the first communication node is a terminal device (for example, a mobile phone)
  • the second communication node is a network device (for example, a base station)
  • the reference signal is an uplink reference signal, such as a sounding reference signal (SRS).
  • the first communication node is a network device (for example, a base station)
  • the second communication node is a terminal device (for example, a mobile phone)
  • the reference signal is a downlink reference signal, such as a cell reference signal (CRS).
  • CRS cell reference signal
  • the second communication node may process the one or more reference signals as a whole to obtain the target reference signal.
  • the second communication node performs soft combining processing on the one or more reference signals to obtain the target reference signal.
  • the second communication node may also perform soft combining processing on the channel estimation results of the one or more reference signals to obtain the target channel estimation result.
  • the foregoing time unit may be a time slot, a subframe, a mini-slot, a radio frame transmission time interval (Transmission Time Interval, TTI), etc., which are not limited in this application.
  • TTI Transmission Time Interval
  • the number of bound and continuous time units corresponding to each of the one or more reference signals is the same.
  • each time unit corresponds to a parameter signal.
  • each time unit corresponds to multiple parameter signals, such as 2, 3, 4, etc., which are not limited in this application.
  • the first communication node may send one or more reference signals to the second communication node through multiple consecutive time units, and the multiple consecutive time units are bound together.
  • the first communication node can maintain the phase continuity of N continuous time units, and therefore can send one or more reference signals to the second communication node through N bound and continuous time units.
  • the continuous time unit refers to a continuous upstream time unit.
  • the binding manner of the N binding and continuous time units refers to repeatedly sending the same channel or signal in N consecutive time units.
  • FIG. 3 is a schematic diagram of N bound and continuous time units for transmitting one or more reference signals according to an embodiment of the application. As shown in FIG. 3, 301, 302, 303, and 304 respectively correspond to a time unit, and each time unit sends a reference signal. FIG. 3 is only an example, and this application only limits the foregoing N to an integer greater than 1, and the foregoing N can be 2, 3, 4, and so on.
  • step 201 is executed, that is, the SRS is sent aperiodically.
  • the first communication node may send SRS periodically.
  • the first passable node may periodically perform step 201.
  • the first communication node sends one or more reference signals to the second communication node through N bound and continuous time units, so that the second communication node can use the one or more reference signals Processing as a whole to obtain an accurate reference signal, and then more accurate channel estimation, channel quality detection, etc., can reduce transmission delay and improve system performance.
  • Fig. 1 describes the manner in which the first communication node sends one or more reference signals to the second communication node through N bound and continuous time units. It should be understood that the first communication node needs to have time bundling capability, that is, the ability to send reference signals through multiple bound and continuous time units. The following describes how the second communication node determines whether the first communication node has The way of time binding capacity.
  • the first communication node may send a capability instruction to the second communication node to indicate that the first communication node has the time bundling capability or does not have the above-mentioned time bundling capability.
  • the first communication node after receiving the capability query instruction from the second communication node, the first communication node sends the capability instruction to the second communication node.
  • the foregoing capability query instruction is used to query whether the foregoing first communication node has a time binding capability.
  • the above-mentioned time binding capability is an SRS time bundling (SRS time bundling) capability.
  • SRS time bundling SRS time bundling
  • the above-mentioned time binding capability is the ability to repeatedly send the reference signal through at least two bound and continuous time units. It can be understood that after the first communication node sends the capability instruction to the second communication node, if the second communication node enables the time binding of the reference signal, the first communication node can use the time binding capability to communicate with the second communication node.
  • the node sends the reference signal, that is, sends one or more reference signals to the second communication node through multiple bound and continuous time units.
  • the foregoing capability signaling includes a first field and a second field.
  • the foregoing first field indicates that the first communication node has the time binding capability or does not have the foregoing time binding capability
  • the second field indicates the maximum time binding capability.
  • Size time bundling size
  • the maximum time bundling size is the maximum number of bundling and continuous time units that can be occupied by the first communication node to send the reference signal.
  • the target time bundling size is the SRS target time bundling size (SRS time bundling size), that is, the number of continuously transmitted SRSs.
  • the first field includes a bit.
  • the second field includes K bits, the K bits are used to indicate the target time binding size, and K is an integer greater than 1. For example, K is 2, the second field is 10, and the second field indicates that the maximum time binding size is 2. For another example, K is 2, the second field is 11, and the second field indicates that the maximum time binding size is 3.
  • Fig. 4 is a schematic structural diagram of a capability command provided by an embodiment of the application. As shown in FIG. 4, the capability instruction includes a first field 401 and a second field 402.
  • the first field 401 is 1, and the first field 401 indicates that the first communication node has the time binding capability.
  • the first field 401 is 1, and the second field is 10.
  • the first field 401 indicates that the first communication node has time binding capability
  • the second field 402 indicates that the maximum time binding size is 2.
  • step 201 has not detailed the implementation of step 201, and several implementations of step 201 are introduced below.
  • the first communication node sends the above-mentioned one or more reference signals to the above-mentioned second communication node through the above-mentioned N bound and continuous time units according to the configuration information.
  • the configuration information is used to configure the target time binding size, and the target time binding size is the number of bound and continuous time units that can be occupied by the first communication node to send the reference signal.
  • the first communication node is a terminal device
  • the second communication node is a network device
  • the second communication node sends high-level signaling to the first communication node; the high-level signaling is used to configure the target time binding size.
  • the second communication node can configure the target time binding size (corresponding to the configuration information) to be used by the first communication node through high-level signaling, and the first communication node can use the target time binding size ( Corresponding to N) bound and continuous time units send the target time bound size reference signals to the second communication node.
  • the first communication node receives control information sent by the second communication node, such as Downlink Control Information (DCI); the first communication node sends the control information to the second communication node through N bound and continuous time units according to the control information.
  • the communication node sends one or more reference signals; the control information indicates a target time binding size, and the target time binding size is the number of bound and continuous time units that can be occupied by the first communication node to send the reference signal.
  • the aforementioned control information is further used to instruct the aforementioned first communication node to send a reference signal to the aforementioned second communication node.
  • the above control information can also be used as an SRS trigger signaling.
  • the first communication node parses the control information to obtain the target time binding size, and then passes N (that is, the target time binding size) number of bindings A fixed and continuous time unit sends one or more reference signals to the second communication node.
  • the first communication node receives the control information sent by the second communication node; the first communication node determines the target time binding size from the multiple candidate time bindings according to the control information, and passes the above N (that is, the target time binding size)
  • a bound and continuous time unit sends the above-mentioned one or more reference signals to the above-mentioned second communication node.
  • the first communication node is a terminal device
  • the second communication node is a network device
  • the second communication node sends high-level signaling to the first communication node; the high-level signaling is used to configure multiple candidate time bindings.
  • Fixed size; the multiple candidate time binding sizes include the target time binding size.
  • the first communication node receives high-level signaling; the high-level signaling is used to configure a total of 4 candidate time binding sizes 2, 3, and 4; the first communication node can be based on the control information from the second communication node.
  • the indicated candidate time binding size (that is, the target time binding size) sends a reference signal to the second communication node.
  • FIG. 5 is a flowchart of a method for receiving a reference signal according to an embodiment of the application. As shown in Figure 5, the method may include:
  • the second communication node receives one or more reference signals sent by the first communication node through N bound and continuous time units.
  • the number of bound and continuous time units corresponding to each of the above-mentioned one or more reference signals is the same, and the above-mentioned N is an integer greater than 1.
  • one or more reference signals sent by the first communication node through N bound and continuous time units can be understood as the first communication node repeatedly transmitting the reference signal through N consecutive time units, that is, every time The unit transmits a reference signal.
  • the first communication node is a terminal device (for example, a mobile phone), the second communication node is a network device (for example, a base station), and the reference signal is an uplink reference signal, such as an SRS.
  • the first communication node is a network device (for example, a base station), the second communication node is a terminal device (for example, a mobile phone), and the reference signal is a downlink reference signal, such as a CRS.
  • the second communication node may perform the following operations: the second communication node sends control information to the first communication node; the control information indicates the target time binding size, and the target time binding The size is the number of bound and continuous time units that can be occupied by the first communication node to send the reference signal.
  • the aforementioned control information is further used to instruct the aforementioned first communication node to send a reference signal to the aforementioned second communication node. That is to say, the above-mentioned control information can also be used as an SRS trigger signaling, so that the first communication node can send a reference signal after receiving the control information.
  • the second communication node processes the above-mentioned one or more reference signals as a whole to obtain a target reference signal.
  • the second communication node performs soft combining processing on the one or more reference signals to obtain the target reference signal. It can be understood that combining one or more reference signals by the second communication node can obtain a true reference signal more accurately.
  • the second communication node may perform operations such as channel estimation and channel quality measurement, which are not limited in this application. Step 502 is optional, not necessary.
  • the second communication node may combine reference signals on multiple time units to obtain an accurate reference signal, so as to achieve the purpose of improving the quality of transmission of SRS.
  • the second communication node receives the capability signaling sent by the first communication node; the capability signaling indicates that the first communication node has the time binding capability or does not have the time binding capability, and the time binding
  • the fixed ability is the ability to repeatedly transmit the reference signal through at least two bound and continuous time units.
  • FIG. 5 describes the manner in which the second communication node receives one or more reference signals sent by the first communication node through N bound and continuous time units. It should be understood that the first communication node needs to have time bundling capability, that is, the ability to send reference signals through multiple bound and continuous time units. The following describes how the second communication node determines whether the first communication node has The way of time binding capacity.
  • the second communication node receives the capability signaling sent by the first communication node; the capability signaling indicates that the first communication node has the time binding capability or does not have the time binding capability, and the time binding
  • the fixed ability is the ability to repeatedly transmit the reference signal through at least two bound and continuous time units.
  • the above-mentioned time binding capability is an SRS time bundling (SRS time bundling) capability.
  • SRS time bundling SRS time bundling
  • the above-mentioned time binding capability is the ability to repeatedly send the reference signal through at least two bound and continuous time units. It can be understood that after the first communication node sends the capability instruction to the second communication node, the first communication node can use the time binding capability to send a reference signal to the second communication node, that is, through multiple binding and continuous time The unit sends one or more reference signals to the second communication node.
  • the foregoing capability signaling includes a first field and a second field.
  • the foregoing first field indicates that the first communication node has the time binding capability or does not have the foregoing time binding capability
  • the second field indicates the maximum time binding capability.
  • Size time bundling size
  • the foregoing maximum time bundling size is the maximum number of bundling and continuous time units that can be occupied by the first communication node to send the reference signal.
  • the target time bundling size is the SRS target time bundling size (SRS time bundling size), that is, the number of continuously transmitted SRSs.
  • the first communication node can accurately indicate the target time binding size by sending a capability instruction to the second communication node, and occupies fewer bits.
  • the first communication node is a terminal device
  • the second communication node is a network device
  • the second communication node sends high-level signaling to the first communication node
  • the above-mentioned high-level information is used to configure the configuration of the first communication node.
  • Multiple candidate time binding sizes any one candidate time binding size is the number of binding and continuous time units that can be occupied by the first communication node to send the reference signal; this high-level signaling is used to configure multiple candidate time bindings Fixed size; the multiple candidate time binding sizes include the target time binding size.
  • the first communication node receives high-level signaling; the high-level signaling is configured with 4 candidate time binding sizes 2, 3, and 4; the first communication section may be indicated according to the control information from the second communication node A candidate time-binding size (ie, target time-binding size) of, sending a reference signal to the second communication node.
  • a candidate time-binding size ie, target time-binding size
  • the second communication node configures multiple candidate time binding sizes for the first communication node, and instructs the first communication node to use one of the candidate binding sizes to send a reference signal through control information, which can be based on different applications.
  • the scene is used to select which candidate time binding size to send the reference signal through, which has a wide range of application scenarios.
  • the foregoing embodiments describe the reference signal sending method implemented by the first communication node and the reference signal receiving method implemented by the second communication node.
  • the interaction process of the first communication node and the second communication node to implement reference signal transmission is described below.
  • FIG. 6 is an interaction flowchart of a reference signal transmission method provided by an embodiment of this application.
  • Figure 6 is a further refinement and improvement of the method in Figure 1 and Figure 5.
  • the reference signal transmission method includes:
  • the first communication node sends a capability instruction to the second communication node.
  • step 601 is optional, not necessary.
  • the first passing node may receive a capability query instruction from the second communication node.
  • the foregoing capability query instruction is used to query whether the foregoing first communication node has a time binding capability.
  • the second communication node sends high-level signaling to the first communication node.
  • the above-mentioned high-level information is used to configure multiple candidate time binding sizes of the first communication node, and any one candidate time binding size is the number of bound and continuous time units that can be occupied by the first communication node to send a reference signal,
  • the multiple candidate time binding sizes include the target time binding size.
  • the above-mentioned high-level information is used to configure multiple candidate time binding sizes.
  • the second communication node sends control information to the first communication node.
  • the control information indicates the target time binding size, and the target time binding size is the number of bound and continuous time units that can be occupied by the first communication node to send the reference signal.
  • the first communication node determines the target time binding size from the multiple candidate time binding sizes according to the control information, and sends to the second communication node through a number of bound and continuous time units of the target time binding size.
  • the above-mentioned target time binds a number of reference signals.
  • the second communication node processes the above-mentioned target time binding size reference signals as a whole to obtain the target reference signal.
  • the first communication node sends one or more reference signals to the second communication node through N bound and continuous time units, so that the second communication node uses the one or more reference signals as Processing as a whole to obtain an accurate reference signal can reduce transmission delay and improve communication efficiency.
  • Step 605 is optional, not necessary.
  • the foregoing embodiment did not describe the structure of the first communication node and the structure of the second communication node.
  • the following describes the manner in which the first communication node performs the reference signal transmission method in combination with the structure of the first communication node, and the manner in which the second communication node performs reference signal reception and transmission in combination with the structure of the second communication node.
  • FIG. 7 is a flowchart of a communication method provided by an embodiment of the application. As shown in Figure 7, the method may include:
  • the first communication node sends capability signaling to the second communication node; the foregoing capability signaling indicates that the first communication node has the time binding capability or does not have the time binding capability, and the time binding capability is passed at least two The ability to repeatedly send one or more reference signals in a bound and continuous time unit.
  • the first communication node is a terminal device, such as a mobile phone
  • the second communication node is a network device, such as a base station.
  • the above-mentioned capability signaling includes a first field and/or a second field
  • the above-mentioned first field indicates that the above-mentioned first communication node has the time binding ability or does not have the above-mentioned time binding ability
  • the above-mentioned second field indicates the maximum time
  • the binding size, the maximum time binding size is the maximum number of binding and continuous time units that can be occupied by the first communication node to send the reference signal.
  • the number of binding and continuous time units that can be occupied by the first communication node to send the parameter signal is less than or equal to the foregoing maximum time binding size.
  • the target time binding size is not greater than the maximum time binding size.
  • the first communication node repeatedly sends one or more reference signals to the second communication node through at least N bound and continuous time units.
  • the first communication node sends a capability instruction to the second communication node so as to send multiple identical reference signals through N bound and continuous time units, which is simple to implement.
  • FIG. 8 is a flowchart of a communication method provided by an embodiment of the application. As shown in Figure 8, the method may include:
  • the second communication node receives capability signaling from the first communication node; the foregoing capability signaling indicates that the first communication node has the time binding capability or does not have the time binding capability, and the time binding capability is passed at least two The ability to repeatedly send 1 or more reference signals in a bound and continuous time unit.
  • the second communication node receives one or more reference signals repeatedly sent by the first communication node through at least N bound and continuous time units.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device in FIG. 9 corresponds to the above-mentioned first communication node.
  • the communication device includes:
  • the sending unit 901 is configured to send one or more reference signals to the second communication node through N bound and continuous time units; the foregoing N is an integer greater than 1.
  • the sending unit 901 is further configured to send capability signaling to the second communication node; the capability signaling indicates that the first communication node has the time binding capability or does not have the time binding capability ,
  • the above-mentioned time binding capability is the ability to repeatedly send the reference signal through at least two bound and continuous time units.
  • the above-mentioned capability signaling includes a first field and a second field
  • the above-mentioned first field indicates that the above-mentioned first communication node has the time-binding capability or does not have the above-mentioned time-binding capability
  • the above-mentioned second field Indicate the maximum time binding size
  • the maximum time binding size is the maximum number of binding and continuous time units that can be occupied by the first communication node to send the reference signal.
  • the sending unit 901 is specifically configured to send the above-mentioned one or more reference signals to the above-mentioned second communication node through the above-mentioned N bound and continuous time units according to the configuration information; the above-mentioned configuration information It is used to configure the target time binding size, where the target time binding size is the number of bound and continuous time units that can be occupied by the first communication node to send the reference signal.
  • the above-mentioned communication device further includes:
  • the receiving unit 902 is configured to receive control information sent by the second communication node; the control information indicates a target time binding size, and the target time binding size is a binding and continuous amount that can be occupied by the reference signal sent by the first communication node The number of time units;
  • the sending unit 901 is specifically configured to send the above-mentioned one or more reference signals to the above-mentioned second communication node through the above-mentioned N bound and continuous time units according to the above-mentioned control information.
  • the receiving unit 902 is further configured to receive high-level signaling; the above-mentioned high-level signaling is used to configure multiple candidate time binding sizes; the multiple candidate time binding sizes include the aforementioned target time binding size;
  • the sending unit 901 is specifically configured to determine the target time binding size from the multiple candidate time bindings according to the control information, and send the 1 or 1 to the second communication node through the N binding and continuous time units. Multiple reference signals.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device in FIG. 10 corresponds to the above-mentioned second communication node.
  • the communication device includes:
  • the receiving unit 1001 is configured to receive one or more reference signals sent by the first communication node through N bound and continuous time units, where N is an integer greater than 1.
  • the device further includes: a processing unit 1002, configured to process the above-mentioned one or more reference signals as a whole to obtain a target reference signal.
  • a processing unit 1002 configured to process the above-mentioned one or more reference signals as a whole to obtain a target reference signal.
  • the receiving unit 1001 is further configured to receive capability signaling sent by the first communication node; the capability signaling indicates that the first communication node has the time binding capability or does not have the time binding capability Ability, the above-mentioned time binding ability is the ability to repeatedly send a reference signal through at least two bound and continuous time units.
  • the above-mentioned capability signaling includes a first field and a second field
  • the above-mentioned first field indicates that the above-mentioned first communication node has the time-binding capability or does not have the above-mentioned time-binding capability
  • the above-mentioned second field Indicate the maximum time binding size
  • the maximum time binding size is the maximum number of binding and continuous time units that can be occupied by the first communication node to send the reference signal.
  • the above-mentioned communication device further includes:
  • the sending unit 1003 is configured to send control information to the first communication node; the control information indicates a target time binding size, and the target time binding size is the binding and continuous time that can be occupied by the first communication node to send the reference signal The number of units.
  • the sending unit 1003 is further configured to send high-level signaling to the first communication node, and the high-level information is used to configure multiple candidate time binding sizes of the first communication node.
  • the time binding size is the number of binding and continuous time units that can be occupied by the first communication node to send the reference signal, and the multiple candidate time binding sizes include the target time binding size.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device in FIG. 11 corresponds to the above-mentioned first communication node.
  • the communication device includes:
  • the sending unit 1101 is configured to send a sending unit to send capability signaling to the second communication node; the foregoing capability signaling indicates that the first communication node has the time binding capability or does not have the time binding capability, and the time binding capability is The ability to repeatedly send one or more reference signals through at least two bound and continuous time units.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device in FIG. 12 corresponds to the above-mentioned second communication node.
  • the communication device includes:
  • the receiving unit 1201 is configured to receive capability signaling from a first communication node; the foregoing capability signaling indicates that the first communication node has the time binding capability or does not have the time binding capability, and the time binding capability is passed at least two The ability to repeatedly send 1 or more reference signals in a bound and continuous time unit.
  • the division of the units of the communication device in FIG. 9 to FIG. 12 is only a division of logical functions, and may be fully or partially integrated into one physical entity during actual implementation, or may be physically separated.
  • the above units can be separately set up processing elements, or they can be integrated in a certain chip of the terminal for implementation.
  • they can also be stored in the storage element of the controller in the form of program codes and processed by a certain processor.
  • the component calls and executes the functions of the above units.
  • the various units can be integrated together or implemented independently.
  • the processing element here can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method or each of the above units can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the processing element may be a general-purpose processor, such as a network processor or a central processing unit (English: central processing unit, CPU for short), or one or more integrated circuits configured to implement the above methods, such as one or Multiple specific integrated circuits (English: application-specific integrated circuit, abbreviation: ASIC), or, one or more microprocessors (English: digital signal processor, abbreviation: DSP), or, one or more field programmable gates Array (English: field-programmable gate array, referred to as FPGA), etc.
  • ASIC application-specific integrated circuit
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • FIG. 13 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • the terminal device 130 includes a processor 1301, a memory 1302, and a communication interface 1303; the processor 1301, the memory 1302, and the communication interface 1303 are connected to each other through a bus.
  • the terminal device in FIG. 13 may be the first communication node in the foregoing embodiment.
  • the memory 1302 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read only memory (EPROM), or portable Read-only memory (compact disc read-only memory, CDROM), the memory 1302 is used for related instructions and data.
  • the communication interface 1303 is used to receive and send data.
  • the processor 1301 may use a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an application specific integrated circuit (Application Specific Integrated Circuit, ASIC) or one or more integrated circuits for executing related programs to achieve The reference signal sending method provided in the foregoing embodiment.
  • the processor 1301 may implement the function of the configuration unit 903 in FIG. 13.
  • the processor 1301 may also be an integrated circuit chip with signal processing capability. In the implementation process, each step of the reference signal sending method of the present application can be completed by an integrated logic circuit of hardware in the processor 1301 or instructions in the form of software.
  • the aforementioned processor 1301 may also be a general-purpose processor, a digital signal processor (Digital Signal Processing, DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices , Discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processing
  • ASIC application specific integrated circuit
  • FPGA field Programmable Gate Array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1302, and the processor 1301 reads information in the memory 1302, and completes the reference signal sending method and the communication method provided in the embodiments of the present application in combination with its hardware.
  • the communication interface 1303 uses a transceiving device such as but not limited to a transceiver to implement communication between the terminal device 130 and other devices or a communication network.
  • the bus 1304 may include a path for transferring information between various components of the terminal device 130 (for example, the memory 1302, the processor 1301, and the communication interface 1303).
  • the communication interface 1303 can realize the functions of the sending unit 901 and the receiving unit 902 in FIG. 9, and can also realize the functions of the sending unit 1101 in FIG. 11.
  • the processor 1301 in the terminal device 130 is configured to read the program code stored in the memory 1302 to implement the reference signal sending method provided in the foregoing embodiment.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • the network device 140 includes a processor 1401, a memory 1402, and a communication interface 1403; the processor 1401, the memory 1402, and the communication interface 1403 are connected to each other through a bus.
  • the network device in FIG. 14 may be the second communication node in the foregoing embodiment.
  • the memory 1402 includes but is not limited to RAM, ROM, EPROM, or CDROM, and the memory 1402 is used for related instructions and data.
  • the communication interface 1403 is used to receive and send data.
  • the processor 1401 may adopt a general CPU, a microprocessor, an ASIC, or one or more integrated circuits for executing related programs to implement the reference signal receiving method provided in the foregoing embodiments.
  • the processor 1401 can implement the functions of the processing unit 1002 in FIG. 10.
  • the communication interface 1403 uses a transceiving device such as but not limited to a transceiver to implement communication between the network device 140 and other devices or a communication network.
  • the bus 1404 may include a path for transferring information between various components of the network device 140 (for example, the memory 1402, the processor 1401, and the communication interface 1403).
  • the communication interface 1403 can realize the functions of the receiving unit 1001 and the sending unit 1003 in FIG. 10, and can also realize the functions of the receiving unit 1201 in FIG.
  • a computer-readable storage medium stores a computer program.
  • the communication node sends one or more reference signals; the above-mentioned N is an integer greater than 1.
  • another computer-readable storage medium stores a computer program.
  • the computer program When the computer program is executed by a processor, it is realized that: receiving the first communication node through N binding and continuous One or more reference signals sent by the time unit; the above-mentioned N is an integer greater than 1.
  • a computer-readable storage medium stores a computer program, and the above-mentioned computer program is executed by a processor to realize: sending capability signaling to a second communication node; Let it indicate that the first communication node has the time binding capability or does not have the above-mentioned time binding capability, and the above-mentioned time binding capability is the ability to repeatedly send one or more reference signals through at least two bound and continuous time units.
  • a computer-readable storage medium stores a computer program.
  • the above-mentioned computer program When executed by a processor, it realizes: receiving capability signaling from a first communication node; The signaling indicates that the first communication node has the time binding ability or does not have the time binding ability, and the time binding ability is to repeatedly send one or more identical reference signals through at least two bound and continuous time units Ability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种参考信号发送方法、参考信号接收方法及通信装置,该方法包括:第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号;所述N为大于1的整数。本申请实施例中,第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号,使得该第二通信节点将该1个或多个参考信号作为一个整体进行处理以得到准确的参考信号,提高通信效率。

Description

参考信号发送方法、参考信号接收方法及通信装置
本申请要求于2020年01月10日提交中国专利局、申请号为202010026660.2、申请名称为“参考信号发送方法、参考信号接收方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号发送方法、参考信号接收方法及通信装置。
背景技术
为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)通信系统应运而生。5G通信系统可以支持不同的业务,例如,增强的移动宽带(enhanced Mobile Broadband,eMBB)业务、海量机器类型通信(massive machine type communication,MTC)业务、超可靠低延迟通信(ultra-reliable and low latency communications,URLLC)业务、多媒体广播多播(multimedia broadcast multicast service,MBMS)业务和定位业务等。
URLLC业务为5G通信系统中的一个重要的业务,传输时要求非常高的可靠性和非常短的时延。因此,为了保证URLLC业务的可靠性,5G通信系统中的网络设备和终端设备之间可以采用多次重复传输(repetition)的方式,传输URLLC业务数据。即,网络设备和终端设备之间可以通过N次传输机会重复传输同一URLLC业务数据N次。
现有协议支持探测参考信号(Sounding reference signal,SRS)的重传(repetition)。但是,对于非周期SRS,仅支持时隙内的重传,并不支持时隙间的重传,从而,潜在地,存在SRS的覆盖问题。因此,需要研究新的SRS传输方法。
发明内容
本申请实施例公开了一种参考信号发送方法、参考信号接收方法及通信装置,能够减少传输时延,提高通信效率。
第一方面,本申请实施例提供了一种参考信号传输方法,该方法包括:第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号;所述N为大于1的整数。
可选的,所述第一通信节点为终端设备(例如手机),所述第二通信节点为网络设备(例如基站),所述参考信号为上行参考信号,例如探测参考信号(Sounding reference signal,SRS)。可选的,所述第一通信节点为网络设备(例如基站),所述第二通信节点为终端设备(例如手机),所述参考信号为下行参考信号,例如小区参考信号(Cell Reference Signal,CRS)。可选地,所述第二通信节点可以将所述1个或多个参考信号作为一个整体进行处理以得到目标参考信号。示例性的,所述第二通信节点将所述1个或多个参考信号做软合并 处理以得到目标参考信号。所述时间单元可以是时隙、子帧、微时隙、无线帧传输时间间隔(Transmission Time Interval,TTI)等。可选的,所述1个或多个参考信号中每个参考信号对应的绑定且连续的时间单元的个数相同。示例性的,每个时间单元对应一个参考信号。示例性的,每个时间单元对应多个参考信号,例如2、3、4等,本申请不作限定。可以理解,所述第一通信节点可通过多个连续的时间单元向所述第二通信节点发送1个或多个参考信号,并且所述多个连续的时间单元是绑定在一起的。应理解,第一通信节点可维持着N个连续时间单元的相位连续性,因此可以通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号。示例性的,所述连续的时间单元,是指连续的上行时间单元。可选地,所述N个绑定且连续的时间单元的绑定方式,是指在N个连续的时间单元重复发送相同的信道或者信号。可选的,所述N个绑定且连续的时间单元的绑定方式(Time bundling)类似于子帧捆绑(TTI bundling)。在当前采用的参考信号传输方案是通过一个时间单元传输一个或者多个参考信号,当第一通信节点的发射功率较低或者信道质量较差时,第二通信节点很可能不能准确地获得该第一通信节点发送的参考信号,这样则会影响系统地性能。
本申请实施例中,第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号,使得该第二通信节点可以将该多个参考信号作为一个整体进行处理以得到准确的参考信号,通过时间累积能够提升信号能量,从而提高系统性能。
在一些可选的实现方式中,所述方法还包括:所述第一通信节点向所述第二通信节点发送能力信令;所述能力信令指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送参考信号的能力。
在该实现方式中,第一通信节点通过向第二通信节点发送能力指令,可以指示该第一通信节点是否具备时间绑定能力,以便于后续通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号。
在一些可选的实现方式中,所述能力信令包括第一字段和第二字段,所述第一字段指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述第二字段指示最大时间绑定尺寸,所述最大时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。
在该实现方式中,第一通信节点通过向第二通信节点发送能力指令可以准确地指示目标时间绑定尺寸,占用的比特位较少。
在一些可选的实现方式中,所述第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号包括:所述第一通信节点根据配置信息,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号;所述配置信息用于配置目标时间绑定尺寸,所述目标时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。
在一些可选的实现方式中,所述第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号之前,所述方法还包括:所述第一通信节点接收所述第二通信节点发送的控制信息;所述控制信息指示目标时间绑定尺寸,所述目标时间绑定尺 寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数;
所述第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号包括:所述第一通信节点根据所述控制信息,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号。
在一些可选的实现方式中,所述第一通信节点为终端设备,所述第二通信节点为网络设备,所述方法还包括:所述第一通信节点接收高层信令;所述高层信令用于配置多个候选时间绑定尺寸,所述多个候选时间绑定尺寸包含所述目标时间绑定尺寸;所述第一通信节点根据控制信息,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号包括:所述第一通信节点根据所述控制信息从所述多个候选时间绑定中确定所述目标时间绑定尺寸,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号。
第二方面,本申请实施例提供了一种参考信号接收方法,该方法可包括:第二通信节点接收第一通信节点通过N个绑定且连续的时间单元发送的1个或多个参考信号;所述N为大于1的整数。
可选的,所述第二通信节点将所述1个或多个参考信号作为一个整体进行处理,得到目标参考信号。可选的,所述第二通信节点将所述1个或多个参考信号做软合并处理以得到目标参考信号。所述时间单元可以是时隙、子帧、微时隙、无线帧传输时间间隔(Transmission Time Interval,TTI)等。可选的,所述1个或多个参考信号中每个参考信号对应的绑定且连续的时间单元的个数相同。示例性的,每个时间单元对应一个参考信号。示例性的,每个时间单元对应多个参考信号,例如2、3、4等,本申请不作限定。本申请实施例中,第二通信节点将1个或多个参考信号作为一个整体进行处理以得到准确的参考信号,提高系统性能。
在一些可选的实现方式中,所述方法还包括:所述第二通信节点接收所述第一通信节点发送的能力信令;所述能力信令指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送参考信号的能力。
在一些可选的实现方式中,所述能力信令包括第一字段和第二字段,所述第一字段指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述第二字段指示最大时间绑定尺寸,所述最大时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。
在一些可选的实现方式中,所述第二通信节点接收第一通信节点通过N个绑定且连续的时间单元发送的1个或多个参考信号之前,所述方法还包括:所述第二通信节点向所述第一通信节点发送控制信息;所述控制信息指示目标时间绑定尺寸,所述目标时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。
在一些可选的实现方式中,所述第一通信节点为终端设备,所述第二通信节点为网络设备,所述方法还包括:所述第二通信节点向所述第一通信节点发送高层信令,所述高层信令用于配置所述第一通信节点的一个或多个候选时间绑定尺寸,任一个候选时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数,所述多个候 选时间绑定尺寸包含所述目标时间绑定尺寸。
第三方面,本申请实施例提供了一种通信方法,该方法包括:第一通信节点向第二通信节点发送能力信令;所述能力信令指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
本申请实施例中,通过向第二通信节点发送能力指令可以指示是否具备时间绑定能力,以便于确认是否通过至少两个绑定且连续的时间单元向该第二通信节点重复发送1个或多个参考信号。
在一个可选的实现方式中,所述能力信令包括第一字段和/或第二字段,所述第一字段指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述第二字段指示最大时间绑定尺寸,所述最大时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。
第四方面,本申请实施例提供了一种通信方法,该方法包括:第二通信节点接收来自第一通信节点的能力信令;所述能力信令指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
在一个可选的实现方式中,所述能力信令包括第一字段和/或第二字段,所述第一字段指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述第二字段指示最大时间绑定尺寸,所述最大时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。
第五方面,本申请实施例提供了一种通信装置,包括:发送单元,用于通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号;所述N为大于1的整数。
在一些可选的实现方式中,所述发送单元,还用于向所述第二通信节点发送能力信令;所述能力信令指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送参考信号的能力。
在一些可选的实现方式中,所述能力信令包括第一字段和第二字段,所述第一字段指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述第二字段指示最大时间绑定尺寸,所述最大时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。
在一些可选的实现方式中,所述发送单元,具体用于根据配置信息,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号;所述配置信息用于配置目标时间绑定尺寸,所述目标时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。
在一些可选的实现方式中,所述通信装置还包括:接收单元,用于接收所述第二通信节点发送的控制信息;所述控制信息指示目标时间绑定尺寸,所述目标时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数;
所述发送单元,具体用于根据所述控制信息,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号。
在一些可选的实现方式中,所述接收单元,还用于接收高层信令;所述高层信令用于配置多个候选时间绑定尺寸;所述多个候选时间绑定尺寸包含所述目标时间绑定尺寸;
所述发送单元,具体用于根据所述控制信息从所述多个候选时间绑定中确定所述目标时间绑定尺寸,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号。
第六方面,本申请实施例提供了另一种通信装置,包括:接收单元,用于接收第一通信节点通过N个绑定且连续的时间单元发送的1个或多个参考信号;所述N为大于1的整数。
在一些可选的实现方式中,所述装置还包括:处理单元,用于将所述1个或多个参考信号作为一个整体进行处理,得到目标参考信号。
在一些可选的实现方式中,所述接收单元,还用于接收所述第一通信节点发送的能力信令;所述能力信令指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送参考信号的能力。
在一些可选的实现方式中,所述能力信令包括第一字段和第二字段,所述第一字段指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述第二字段指示最大时间绑定尺寸,所述最大时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。
在一些可选的实现方式中,所述通信装置还包括:发送单元,用于向所述第一通信节点发送控制信息;所述控制信息指示目标时间绑定尺寸,所述目标时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。
在一些可选的实现方式中,所述发送单元,还用于向所述第一通信节点发送高层信令,所述高层信息用于配置所述第一通信节点的一个或多个候选时间绑定尺寸,任一个候选时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数,所述多个候选时间绑定尺寸包含所述目标时间绑定尺寸。
第七方面,本申请实施例提供了另一种通信装置,包括:发送单元,用于向第二通信节点发送能力信令;所述能力信令指示第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
第八方面,本申请实施例提供了另一种通信装置,包括:接收单元,用于接收来自第一通信节点的能力信令;所述能力信令指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
第九方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如上述第一方面至上述第四方面中任一项所述的方法。
第十方面,本申请实施例提供一种通信系统,所述通信系统包括网络设备和终端设备,所述终端设备可用于执行如第一方面中任一项所述的方法,所述网络设备用于执行如第二方面中任一项所述的方法。
第十一方面,本申请实施例提供一种通信系统,所述通信系统包括网络设备和终端设备,所述终端设备可用于执行如第三方面中任一项所述的方法,所述网络设备用于执行如第四方面中任一项所述的方法。
第十二方面,本申请实施例提供一种可读存储介质,所述可读存储介质用于存储指令,当所述指令被执行时,使得上述第一方面至上述第四方面中任一项所述的方法被实现。
第十三方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得上述第一方面至上述第四方面中任一项所述的方法被实现。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例公开的一种网络构架示意图;
图2为本申请实施例提供的一种参考信号发送方法流程图;
图3为本申请实施例提供的一种传输1个或多个参考信号的N个绑定且连续的时间单元的示意图;
图4为本申请实施例提供的一种能力指令的结构示意图;
图5为本申请实施例提供的一种参考信号接收方法流程图;
图6为本申请实施例提供的一种参考信号传输方法的交互流程图;
图7为本申请实施例提供的一种通信方法流程图;
图8为本申请实施例提供的另一种通信方法流程图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的结构示意图;
图11为本申请实施例提供的又一种通信装置的结构示意图;
图12为本申请实施例提供的又一种通信装置的结构示意图;
图13为本申请实施例提供的又一种通信装置的结构示意图;
图14为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
本申请的说明书实施例和权利要求书及上述附图中的术语“第一”、“第二”、和“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。“和/或”用于表示在其所连接的两个对象之间选择一个或全部。例如“A和/或B”表示A、B或A+B。
本申请实施例公开了参考信号发送方法、参考信号接收方法及通信装置,通过多个绑定(也称捆绑,即bundling)且连续的时间单元来传输多个相同的参考信号。为了更好理解本申请实施例公开的参考信号发送方法、参考信号接收方法及通信装置,下面先对本申 请实施例适用的网络构架进行描述。本申请实施例公开的方法可以应用于5G新无线接入技术(New RAT(radio access technology),NR)系统;也可以应用于其它通信系统,只要该通信系统中存在实体需要向另外的实体发送参考信号(例如SRS)。下面先介绍本申请实施例公开的方法所适用的一种网络架构。
请参阅图1,图1是本申请实施例公开的一种网络构架示意图。如图1所示,该网络构架适用于多时间单元传输参考信号的场景,即通过多个绑定且连续的时间单元传输参考信号的场景。网络设备是网络侧的一种用于发射或接收信号的实体,如gNB。终端设备是用户侧的一种用于接收或发射信号的实体,如手机。由于基站和UE的应用场景较多,下面以基站作为网络设备的示例,以用户设备(user equipment,UE)作为终端设备的示例。如图1所示,该网络架构包括基站(base station)、UE1、UE2以及UE3。在该通信系统中,基站可以给UE1~UE3发送下行参考信号;UE1~UE3可以根据下行参考信号进行下行信道估计、下行信道质量测量、小区搜索等。在该通信系统中,UE1~UE3可以向基站发送上行参考信号(例如SRS);基站可以根据上行参考信号进行上行信道估计、上行信道质量测量等。
下面来详细描述本申请实施例提供的参考信号发送方法和参考信号接收方法。
图2为本申请实施例提供的一种参考信号发送方法流程图。如图2所示,该方法可包括:
201、第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号。
可选的,上述1个或多个参考信号中每个参考信号对应的绑定且连续的时间单元的个数相同,上述N为大于1的整数。可选的,上述第一通信节点为终端设备(例如手机),上述第二通信节点为网络设备(例如基站),上述参考信号为上行参考信号,例如探测参考信号(Sounding reference signal,SRS)。可选的,上述第一通信节点为网络设备(例如基站),上述第二通信节点为终端设备(例如手机),上述参考信号为下行参考信号,例如小区参考信号(Cell Reference Signal,CRS)。
可选地,上述第二通信节点可以将上述1个或多个参考信号作为一个整体进行处理以得到目标参考信号。示例性的,上述第二通信节点将上述1个或多个参考信号做软合并处理以得到目标参考信号。示例性的,上述第二通信节点也可以将上述1个或多个参考信号的信道估计结果做软合并处理以得到目标信道估计结果。上述时间单元可以是时隙、子帧、微时隙、无线帧传输时间间隔(Transmission Time Interval,TTI)等,本申请不作限定。可选的,上述1个或多个参考信号中每个参考信号对应的绑定且连续的时间单元的个数相同。示例性的,每个时间单元对应一个参数信号。示例性的,每个时间单元对应多个参数信号,例如2、3、4等,本申请不作限定。可以理解,上述第一通信节点可通过多个连续的时间单元向上述第二通信节点发送1个或多个参考信号,并且上述多个连续的时间单元是绑定在一起的。应理解,第一通信节点可以维持着N个连续时间单元的相位连续性,因此可以通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号。示例性的,所述连续的时间单元,是指连续的上行时间单元。可选地,所述N个绑定且连续的时间单元的绑定方式,是指在N个连续的时间单元重复发送相同的信道或者信号。可选的,上述N 个绑定且连续的时间单元的绑定方式类似于子帧捆绑(TTI bounding),即将一个SRS在连续多个时间单元上重复进行传输。图3为本申请实施例提供的一种传输1个或多个参考信号的N个绑定且连续的时间单元的示意图。如图3所示,301、302、303以及304分别对应一个时间单元,每个时间单元发送一个参考信号。图3仅为一个示例,本申请仅将上述N仅限定为大于1的整数,上述N可以是2、3、4等。
在一些实施例中,第一通信节点在接收来自第二通信节点发送的SRS触发指令之后,执行步骤201,即非周期性发送SRS。
在一些实施例中,第一通信节点可以周期性发送SRS。也就是说,第一通行节点可以周期性的执行步骤201。
本申请实施例中,第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号,使得该第二通信节点可以将该1个或多个参考信号作为一个整体进行处理以得到准确的参考信号,进而更准确地进行信道估计、信道质量检测等,能够减少传输时延,提高系统性能。
图1描述了第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号的方式。应理解,第一通信节点需要具备时间绑定(time bundling)能力,即通过多个绑定且连续的时间单元发送参考信号的能力,下面来介绍第二通信节点如何确定第一通信节点是否具备时间绑定能力的方式。
在一些实施例中,第一通信节点可以向第二通信节点发送能力指令,以指示该第一通信节点具备时间绑定(time bundling)能力或者不具备上述时间绑定能力。可选的,第一通信节点接收来自第二通信节点的能力查询指令之后,向上述第二通信节点发送上述能力指令。上述能力查询指令用于查询上述第一通信节点是否具备时间绑定能力。
可选的,上述时间绑定能力为SRS时间绑定(SRS time bundling)能力。上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送参考信号的能力。可以理解,第一通信节点向第二通信节点发送能力指令之后,如果第二通信节点使能参考信号的时间绑定,则该第一通信节点就可以利用该时间绑定能力向该第二通信节点发送参考信号,即通过多个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号。
可选的,上述能力信令包括第一字段和第二字段,上述第一字段指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述第二字段指示最大时间绑定尺寸(time bundling size),上述最大时间绑定尺寸为上述第一通信节点发送参考信号最多可占用的绑定且连续的时间单元的最大个数。可选的,目标时间绑定尺寸为SRS目标时间绑定尺寸(SRS time bundling size),即连续发送的SRS的个数。示例性的,第一字段包括一个比特位,若该比特位为0,表示第一通信节点不具备时间绑定能力;若该比特位为1,表示该第一通信节点具备时间绑定能力。示例性的,第二字段包括K个比特位,该K个比特用于指示目标时间绑定尺寸,K为大于1的整数。例如,K为2,第二字段为10,该第二字段表示最大时间绑定尺寸为2。又例如,K为2,第二字段为11,该第二字段表示最大时间绑定尺寸为3。图4为本申请实施例提供的一种能力指令的结构示意图。如图4所示,能力指令包括第一字段401和第二字段402。举例来说,第一字段401为1,该第一字段401表示第一通信节点具备时间绑定能力。又举例来说,第一字段401为1,第二字段为10, 该第一字段401表示第一通信节点,具备时间绑定能力,该第二字段402指示最大时间绑定尺寸为2。
前述实施例未详述步骤201的实现方式,下面介绍几种实现步骤201的实现方式。
方式一
第一通信节点根据配置信息,通过上述N个绑定且连续的时间单元向上述第二通信节点发送上述1个或多个参考信号。上述配置信息用于配置目标时间绑定尺寸,上述目标时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。示例性的,第一通信节点为终端设备,第二通信节点为网络设备,该第二通信节点向该第一通信节点发送高层信令;该高层信令用于配置目标时间绑定尺寸。在一些实施例中,第二通信节点可通过高层信令来配置第一通信节点待采用的目标时间绑定尺寸(对应于配置信息),该第一通信节点可通过该目标时间绑定尺寸(对应于N)个绑定且连续的时间单元向该第二通信节点发送该目标时间绑定尺寸个参考信号。
方式二
第一通信节点接收第二通信节点发送的控制信息,例如下行控制信息(Downlink Control Information,DCI);该第一通信节点根据该控制信息,通过N个绑定且连续的时间单元向该第二通信节点发送1个或多个参考信号;上述控制信息指示目标时间绑定尺寸,上述目标时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。可选的,上述控制信息还用于指示上述第一通信节点向上述第二通信节点发送参考信号。也就是说,上述控制信息还可以作为一个SRS触发信令。在一些实施例中,第一通信节点在接收到来自第二通信节点的控制信息之后,解析该控制信息以得到的目标时间绑定尺寸,然后,通过N(即目标时间绑定尺寸)个绑定且连续的时间单元向该第二通信节点发送1个或多个参考信号。
方式三
第一通信节点接收第二通信节点发送的控制信息;该第一通信节点根据该控制信息从上述多个候选时间绑定中确定目标时间绑定尺寸,通过上述N(即目标时间绑定尺寸)个绑定且连续的时间单元向上述第二通信节点发送上述1个或多个参考信号。在一些实施例中,第一通信节点为终端设备,第二通信节点为网络设备,该第二通信节点向该第一通信节点发送高层信令;该高层信令用于配置多个候选时间绑定尺寸;上述多个候选时间绑定尺寸包含上述目标时间绑定尺寸。举例来说,第一通信节点接收高层信令;该高层信令用于配置2、3、4共4个候选时间绑定尺寸;该第一通信节可根据来自第二通信节点的控制信息所指示的一个候选时间绑定尺寸(即目标时间绑定尺寸),向该第二通信节点发送参考信号。
前述实施例描述了参考信号发送方法,下面来描述本申请实施例提供的参考信号接收方法。
图5为本申请实施例提供的一种参考信号接收方法流程图。如图5所示,该方法可包括:
501、第二通信节点接收第一通信节点通过N个绑定且连续的时间单元发送的1个或多个参考信号。
上述1个或多个参考信号中每个参考信号对应的绑定且连续的时间单元的个数相同,上述N为大于1的整数。示例地,第一通信节点通过N个绑定且连续的时间单元发送的1个或多个参考信号可以理解为上述第一通信节点将参考信号通过连续N个时间单元重复传输,即每个时间单元传输一个参考信号。
可选的,上述第一通信节点为终端设备(例如手机),上述第二通信节点为网络设备(例如基站),上述参考信号为上行参考信号,例如SRS。可选的,上述第一通信节点为网络设备(例如基站),上述第二通信节点为终端设备(例如手机),上述参考信号为下行参考信号,例如CRS。
在一些实施例中,第二通信节点在执行步骤501之前,可执行如下操作:第二通信节点向上述第一通信节点发送控制信息;上述控制信息指示目标时间绑定尺寸,上述目标时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。可选的,上述控制信息还用于指示上述第一通信节点向上述第二通信节点发送参考信号。也就是说,上述控制信息还可以作为一个SRS触发信令,以便于第一通信节点在接收到控制信息后,发送参考信号。
502、第二通信节点将上述1个或多个参考信号作为一个整体进行处理,得到目标参考信号。
可选的,上述第二通信节点将上述1个或多个参考信号做软合并处理以得到目标参考信号。可以理解,第二通信节点合并1个或多个参考信号可以更准确地得到真实的参考信号。在一些实施例中,第二通信节点执行步骤502之后,可以执行信道估计、信道质量测量等操作,本申请不作限定。步骤502是可选的,而非必要的。
本申请实施例中,第二通信节点可以合并多个时间单元上的参考信号以得到准确地参考信号,达到提高传输SRS的质量的目的。
在一些实施例中,上述第二通信节点接收上述第一通信节点发送的能力信令;上述能力信令指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送参考信号的能力。
图5描述了第二通信节点接收第一通信节点通过N个绑定且连续的时间单元发送的1个或多个参考信号的方式。应理解,第一通信节点需要具备时间绑定(time bundling)能力,即通过多个绑定且连续的时间单元发送参考信号的能力,下面来介绍第二通信节点如何确定第一通信节点是否具备时间绑定能力的方式。
在一些实施例中,上述第二通信节点接收上述第一通信节点发送的能力信令;上述能力信令指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送参考信号的能力。
可选的,上述时间绑定能力为SRS时间绑定(SRS time bundling)能力。上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送参考信号的能力。可以理解,第一通信节点向第二通信节点发送能力指令之后,该第一通信节点就可以利用该时间绑定能力向该第二通信节点发送参考信号,即通过多个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号。
可选的,上述能力信令包括第一字段和第二字段,上述第一字段指示上述第一通信节 点具备时间绑定能力或者不具备上述时间绑定能力,上述第二字段指示最大时间绑定尺寸(time bundling size),上述最大时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。可选的,目标时间绑定尺寸为SRS目标时间绑定尺寸(SRS time bundling size),即连续发送的SRS的个数。
在这些实施例中,第一通信节点通过向第二通信节点发送能力指令可以准确地指示目标时间绑定尺寸,占用的比特位较少。
在一些实施例中,第一通信节点为终端设备,第二通信节点为网络设备,该第二通信节点向该第一通信节点发送高层信令,上述高层信息用于配置上述第一通信节点的多个候选时间绑定尺寸,任一个候选时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数;该高层信令用于配置多个候选时间绑定尺寸;上述多个候选时间绑定尺寸包含上述目标时间绑定尺寸。举例来说,第一通信节点接收高层信令;该高层信令,配置2、3、4共4个候选时间绑定尺寸;该第一通信节可根据来自第二通信节点的控制信息所指示的一个候选时间绑定尺寸(即目标时间绑定尺寸),向该第二通信节点发送参考信号。
本申请实施例中,第二通信节点给第一通信节点配置多个候选时间绑定尺寸,并通过控制信息指示该第一通信节点利用其中一个候选绑定尺寸发送参考信号,可以根据不同的应用场景来选择通过哪个候选时间绑定尺寸发送参考信号,应用场景较广。
前述实施例描述了第一通信节点实现的参考信号发送方法以及第二通信节点实现的参考信号接收方法,下面描述第一通信节点和该第二通信节点实现参考信号传输的交互流程。
图6为本申请实施例提供的一种参考信号传输方法的交互流程图。图6是对图1和图5中的方法的进一步细化和完善。如图6所示,该参考信号传输方法包括:
601、第一通信节点向第二通信节点发送能力指令。
在该实施例中,步骤601是可选的,而不是必要的。可选的,第一通过节点在执行步骤601之前,可接收来自第二通信节点的能力查询指令。上述能力查询指令用于查询上述第一通信节点是否具备时间绑定能力。
602、第二通信节点向第一通信节点发送高层信令。
上述高层信息用于配置上述第一通信节点的多个候选时间绑定尺寸,任一个候选时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数,上述多个候选时间绑定尺寸包含目标时间绑定尺寸。上述高层信息用于配置多个候选时间绑定尺寸。
603、第二通信节点向第一通信节点发送控制信息。
上述控制信息指示目标时间绑定尺寸,上述目标时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。
604、第一通信节点根据上述控制信息从上述多个候选时间绑定尺寸中确定上述目标时间绑定尺寸,通过上述目标时间绑定尺寸个绑定且连续的时间单元向上述第二通信节点发送上述目标时间绑定尺寸个参考信号。
605、第二通信节点将上述目标时间绑定尺寸个参考信号作为一个整体进行处理,得到目标参考信号。
本申请实施例中,第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号,使得该第二通信节点将该1个或多个参考信号作为一个整体进行处理以得到准确的参考信号,能够减少传输时延,提高通信效率。步骤605是可选的,而非必要的。
前述实施例未描述第一通信节点的结构以及第二通信节点的结构。下面结合第一通信节点的结构来描述该第一通信节点执行参考信号发送方法的方式,以及结合第二通信节点的结构来描述该第二通信节点执行参考信号接收发送的方式。
图7为本申请实施例提供的一种通信方法流程图。如图7所示,该方法可包括:
701、第一通信节点向第二通信节点发送能力信令;上述能力信令指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
可选的,第一通信节点为终端设备,例如手机,第二通信节点为网络设备,例如基站。可选的,上述能力信令包括第一字段和/或第二字段,上述第一字段指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述第二字段指示最大时间绑定尺寸,上述最大时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。应理解,所述第一通信节点发送参数信号可占用的绑定且连续的时间单元的个数小于或者等于上述最大时间绑定尺寸。本申请实施例中,目标时间绑定尺寸不大于最大时间绑定尺寸。
702、第一通信节点通过至少N个绑定且连续的时间单元向第二通信节点重复发送1个或多个参考信号。
本申请实施例中,第一通信节点通过向第二通信节点发送能力指令,以便于通过N个绑定且连续的时间单元发送多个相同的参考信号,实现简单。
图8为本申请实施例提供的一种通信方法流程图。如图8所示,该方法可包括:
801、第二通信节点接收来自第一通信节点的能力信令;上述能力信令指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
802、第二通信节点接收第一通信节点通过至少N个绑定且连续的时间单元重复发送的一个或多个参考信号。
图9为本申请实施例提供的一种通信装置的结构示意图。图9中的通信装置对应于上述第一通信节点。如图9所示,该通信装置包括:
发送单元901,用于通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号;上述N为大于1的整数。
在一个可选的实现方式中,发送单元901,还用于向上述第二通信节点发送能力信令;上述能力信令指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送参考信号的能力。
在一个可选的实现方式中,上述能力信令包括第一字段和第二字段,上述第一字段指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述第二字段指示最大时间绑定尺寸,上述最大时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑 定且连续的时间单元的最大个数。
在一个可选的实现方式中,发送单元901,具体用于根据配置信息,通过上述N个绑定且连续的时间单元向上述第二通信节点发送上述1个或多个参考信号;上述配置信息用于配置目标时间绑定尺寸,上述目标时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。
在一个可选的实现方式中,上述通信装置还包括:
接收单元902,用于接收上述第二通信节点发送的控制信息;上述控制信息指示目标时间绑定尺寸,上述目标时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数;
发送单元901,具体用于根据上述控制信息,通过上述N个绑定且连续的时间单元向上述第二通信节点发送上述1个或多个参考信号。
在一个可选的实现方式中,
接收单元902,还用于接收高层信令;上述高层信令用于配置多个候选时间绑定尺寸;上述多个候选时间绑定尺寸包含上述目标时间绑定尺寸;
发送单元901,具体用于根据上述控制信息从上述多个候选时间绑定中确定上述目标时间绑定尺寸,通过上述N个绑定且连续的时间单元向上述第二通信节点发送上述1个或多个参考信号。
图10为本申请实施例提供的一种通信装置的结构示意图。图10中的通信装置对应于上述第二通信节点。如图10所示,该通信装置包括:
接收单元1001,用于接收第一通信节点通过N个绑定且连续的时间单元发送的1个或多个参考信号,上述N为大于1的整数。
在一个可选的实现方式中,所述装置还包括:处理单元1002,用于将上述1个或多个参考信号作为一个整体进行处理,得到目标参考信号。
在一个可选的实现方式中,接收单元1001,还用于接收上述第一通信节点发送的能力信令;上述能力信令指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送参考信号的能力。
在一个可选的实现方式中,上述能力信令包括第一字段和第二字段,上述第一字段指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述第二字段指示最大时间绑定尺寸,上述最大时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。
在一个可选的实现方式中,上述通信装置还包括:
发送单元1003,用于向上述第一通信节点发送控制信息;上述控制信息指示目标时间绑定尺寸,上述目标时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。
在一个可选的实现方式中,发送单元1003,还用于向上述第一通信节点发送高层信令,上述高层信息用于配置上述第一通信节点的多个候选时间绑定尺寸,任一个候选时间绑定尺寸为上述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数,上述多个候选时间绑定尺寸包含上述目标时间绑定尺寸。
图11为本申请实施例提供的一种通信装置的结构示意图。图11中的通信装置对应于上述第一通信节点。如图11所示,该通信装置包括:
发送单元1101,用于发送单元,用于向第二通信节点发送能力信令;上述能力信令指示第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
图12为本申请实施例提供的一种通信装置的结构示意图。图12中的通信装置对应于上述第二通信节点。如图12所示,该通信装置包括:
接收单元1201,用于接收来自第一通信节点的能力信令;上述能力信令指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
应理解图9至图12中的通信装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。例如,以上各个单元可以为单独设立的处理元件,也可以集成在终端的某一个芯片中实现,此外,也可以以程序代码的形式存储于控制器的存储元件中,由处理器的某一个处理元件调用并执行以上各个单元的功能。此外各个单元可以集成在一起,也可以独立实现。这里的处理元件可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。该处理元件可以是通用处理器,例如网络处理器或中央处理器(英文:central processing unit,简称:CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(英文:application-specific integrated circuit,简称:ASIC),或,一个或多个微处理器(英文:digital signal processor,简称:DSP),或,一个或者多个现场可编程门阵列(英文:field-programmable gate array,简称:FPGA)等。
图13为本申请实施例提供的一种终端设备的结构示意图。如图13所示,该终端设备130包括处理器1301、存储器1302和通信接口1303;该处理器1301、存储器1302和通信接口1303通过总线相互连接。图13中的终端设备可以为前述实施例中的第一通信节点。
存储器1302包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmableread only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CDROM),该存储器1302用于相关指令及数据。通信接口1303用于接收和发送数据。
处理器1301可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC)或者一个或多个集成电路,用于执行相关程序,以实现前述实施例提供的参考信号发送方法。处理器1301可实现图13中的配置单元903的功能。
处理器1301还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的参考信号发送方法的各个步骤可以通过处理器1301中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1301还可以是通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组 件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1302,处理器1301读取存储器1302中的信息,结合其硬件完成本申请实施例提供的参考信号发送方法以及通信方法。
通信接口1303使用例如但不限于收发器一类的收发装置,来实现终端设备130与其他设备或通信网络之间的通信。总线1304可包括在终端设备130各个部件(例如,存储器1302、处理器1301、通信接口1303)之间传送信息的通路。通信接口1303可实现图9中发送单元901和接收单元902的功能,也可实现图11中发送单元1101的功能。
该终端设备130中的处理器1301用于读取该存储器1302中存储的程序代码,以实现前述实施例提供的参考信号发送方法。
图14为本申请实施例提供的一种网络设备的结构示意图。如图14所示,该网络设备140包括处理器1401、存储器1402和通信接口1403;该处理器1401、存储器1402和通信接口1403通过总线相互连接。图14中的网络设备可以为前述实施例中的第二通信节点。
存储器1402包括但不限于是RAM、ROM、EPROM、或CDROM,该存储器1402用于相关指令及数据。通信接口1403用于接收和发送数据。处理器1401可以采用通用的CPU、微处理器、ASIC或者一个或多个集成电路,用于执行相关程序,以实现前述实施例提供的参考信号接收方法。处理器1401可实现图10中的处理单元1002的功能。
通信接口1403使用例如但不限于收发器一类的收发装置,来实现网络设备140与其他设备或通信网络之间的通信。总线1404可包括在网络设备140各个部件(例如,存储器1402、处理器1401、通信接口1403)之间传送信息的通路。通信接口1403可实现图10中接收单元1001和发送单元1003的功能,也可实现图12中的接收单元1201的功能。
在本发明的实施例中提供一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序被处理器执行时实现:通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号;上述N为大于1的整数。
在本发明的实施例中提供另一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序被处理器执行时实现:接收第一通信节点通过N个绑定且连续的时间单元发送的1个或多个参考信号;上述N为大于1的整数。
在本发明的实施例中提供一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序被处理器执行时实现:向第二通信节点发送能力信令;上述能力信令指示第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
在本发明的实施例中提供一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序被处理器执行时实现:接收来自第一通信节点的能力信令;上述能力信令指示上述第一通信节点具备时间绑定能力或者不具备上述时间绑定能力,上述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个相同的参考信 号的能力。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种参考信号发送方法,其特征在于,包括:
    第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号;所述N为大于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号包括:
    所述第一通信节点根据配置信息,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号;所述配置信息用于配置目标时间绑定尺寸,所述目标时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。
  3. 根据权利要求1所述的方法,其特征在于,所述第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号之前,所述方法还包括:
    所述第一通信节点接收所述第二通信节点发送的控制信息;所述控制信息指示目标时间绑定尺寸,所述目标时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数;
    所述第一通信节点通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号包括:
    所述第一通信节点根据所述控制信息,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号。
  4. 根据权利要求3所述的方法,其特征在于,所述第一通信节点为终端设备,所述第二通信节点为网络设备,所述方法还包括:
    所述第一通信节点接收高层信令;所述高层信令用于配置多个候选时间绑定尺寸;所述多个候选时间绑定尺寸包含所述目标时间绑定尺寸;
    所述第一通信节点根据控制信息,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号包括:
    所述第一通信节点根据所述控制信息从所述多个候选时间绑定中确定所述目标时间绑定尺寸,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号。
  5. 一种参考信号接收方法,其特征在于,包括:
    第二通信节点接收第一通信节点通过N个绑定且连续的时间单元发送的1个或多个参考信号;所述N为大于1的整数。
  6. 根据权利要求5所述的方法,其特征在于,所述第二通信节点接收第一通信节点通过N个绑定且连续的时间单元发送的1个或多个参考信号之前,所述方法还包括:
    所述第二通信节点向所述第一通信节点发送控制信息;所述控制信息指示目标时间绑 定尺寸,所述目标时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一通信节点为终端设备,所述第二通信节点为网络设备,所述方法还包括:
    所述第二通信节点向所述第一通信节点发送高层信令,所述高层信息用于配置所述第一通信节点的一个或多个候选时间绑定尺寸,任一个候选时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。
  8. 一种通信方法,其特征在于,包括:
    第一通信节点向第二通信节点发送能力信令;所述能力信令指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
  9. 根据权利要求8所述的方法,其特征在于,所述能力信令包括第一字段和/或第二字段,所述第一字段指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述第二字段指示最大时间绑定尺寸,所述最大时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。
  10. 一种通信方法,其特征在于,包括:
    第二通信节点接收来自第一通信节点的能力信令;所述能力信令指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
  11. 根据权利要求10所述的方法,其特征在于,所述能力信令包括第一字段和/或第二字段,所述第一字段指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述第二字段指示最大时间绑定尺寸,所述最大时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。
  12. 一种通信装置,其特征在于,包括:
    发送单元,用于通过N个绑定且连续的时间单元向第二通信节点发送1个或多个参考信号;所述1个或多个参考信号中每个参考信号对应的绑定且连续的时间单元的个数相同,所述N为大于1的整数。
  13. 根据权利要求12所述的装置,其特征在于,
    所述发送单元,具体用于根据配置信息,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号;所述配置信息用于配置目标时间绑定尺寸,所述目标时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元 的个数。
  14. 根据权利要求12所述的装置,其特征在于,所述通信装置还包括:
    接收单元,用于接收所述第二通信节点发送的控制信息;所述控制信息指示目标时间绑定尺寸,所述目标时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数;
    所述发送单元,具体用于根据所述控制信息,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述1个或多个参考信号。
  15. 根据权利要求14所述的装置,其特征在于,
    所述接收单元,还用于接收高层信令;所述高层信令用于配置多个候选时间绑定尺寸;所述多个候选时间绑定尺寸包含所述目标时间绑定尺寸;
    所述发送单元,具体用于根据所述控制信息从所述多个候选时间绑定中确定所述目标时间绑定尺寸,通过所述N个绑定且连续的时间单元向所述第二通信节点发送所述多个参考信号。
  16. 一种通信装置,其特征在于,包括:
    接收单元,用于接收第一通信节点通过N个绑定且连续的时间单元发送的1个或多个参考信号;所述N为大于1的整数。
  17. 根据权利要求16所述的装置,其特征在于,所述通信装置还包括:
    发送单元,用于向所述第一通信节点发送控制信息;所述控制信息指示目标时间绑定尺寸,所述目标时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数。
  18. 根据权利要求16或17所述的装置,其特征在于,
    所述发送单元,还用于向所述第一通信节点发送高层信令,所述高层信息用于配置所述第一通信节点的一个或多个候选时间绑定尺寸,任一个候选时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的个数,所述多个候选时间绑定尺寸包含所述目标时间绑定尺寸。
  19. 一种通信装置,其特征在于,包括:
    发送单元,用于向第二通信节点发送能力信令;所述能力信令指示第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
  20. 根据权利要求19所述的装置,其特征在于,所述能力信令包括第一字段和第二字段,所述第一字段指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力, 所述第二字段指示最大时间绑定尺寸,所述最大时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。
  21. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自第一通信节点的能力信令;所述能力信令指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述时间绑定能力为通过至少两个绑定且连续的时间单元重复发送1个或多个参考信号的能力。
  22. 根据权利要求21所述的装置,其特征在于,所述能力信令包括第一字段和/或第二字段,所述第一字段指示所述第一通信节点具备时间绑定能力或者不具备所述时间绑定能力,所述第二字段指示最大时间绑定尺寸,所述最大时间绑定尺寸为所述第一通信节点发送参考信号可占用的绑定且连续的时间单元的最大个数。
  23. 一种通信装置,其特征在于,包括存储器和处理器;所述存储器,用于存储程序;所述处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行如权利要求1至11任一项所述的方法。
  24. 一种可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使如权利要求1至11任一项所述的方法被实现。
PCT/CN2021/077676 2020-01-10 2021-02-24 参考信号发送方法、参考信号接收方法及通信装置 WO2021139831A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022542785A JP2023540153A (ja) 2020-01-10 2021-02-24 リファレンス信号の送信方法、リファレンス信号の受信方法及び通信装置
EP21739005.3A EP4089949A4 (en) 2020-01-10 2021-02-24 METHOD FOR SENDING REFERENCE SIGNALS, METHOD FOR RECEIVING REFERENCE SIGNALS AND COMMUNICATION DEVICE
US17/861,169 US20220345273A1 (en) 2020-01-10 2022-07-09 Method for reference signal transmission, method for reference signal reception, and apparatus for communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010026660.2A CN111224766B (zh) 2020-01-10 2020-01-10 参考信号发送方法、参考信号接收方法及通信装置
CN202010026660.2 2020-01-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/861,169 Continuation US20220345273A1 (en) 2020-01-10 2022-07-09 Method for reference signal transmission, method for reference signal reception, and apparatus for communication

Publications (1)

Publication Number Publication Date
WO2021139831A1 true WO2021139831A1 (zh) 2021-07-15

Family

ID=70832436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077676 WO2021139831A1 (zh) 2020-01-10 2021-02-24 参考信号发送方法、参考信号接收方法及通信装置

Country Status (5)

Country Link
US (1) US20220345273A1 (zh)
EP (1) EP4089949A4 (zh)
JP (1) JP2023540153A (zh)
CN (1) CN111224766B (zh)
WO (1) WO2021139831A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339952B (zh) * 2020-09-29 2023-07-25 紫光展锐(重庆)科技有限公司 一种多模终端通信方法及通信装置
WO2022081994A1 (en) * 2020-10-16 2022-04-21 Ntt Docomo, Inc. Terminal and method for performing srs resources time bundling for srs coverage enhancements
WO2022257032A1 (en) * 2021-06-09 2022-12-15 Huawei Technologies Co.,Ltd. Method and apparatus for transmitting reference signal using single-carrier offset-qam

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294686A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 探测参考信号发送、接收方法、装置、ue及基站
US20170325216A1 (en) * 2016-05-09 2017-11-09 Sharp Laboratories Of America, Inc. User equipments, base stations and methods

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159052B2 (en) * 2012-08-03 2018-12-18 Qualcomm Incorporated Method and apparatus for sounding reference signal triggering and power control for coordinated multi-point operations
US9596065B2 (en) * 2012-10-24 2017-03-14 Qualcomm Incorporated Enhanced SRS transmission for MIMO operation in LTE-A
US9369252B2 (en) * 2013-01-25 2016-06-14 Qualcomm Incorporated Common reference signal phase discontinuity and sequence initialization
WO2018082672A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种上行测量参考信号传输方法、装置和系统
CN110034898B (zh) * 2018-01-12 2021-11-16 大唐移动通信设备有限公司 一种参考信号传输方法及装置
US11477809B2 (en) * 2018-04-12 2022-10-18 Qualcomm Incorporated Techniques for channel estimation
US11509372B2 (en) * 2019-05-03 2022-11-22 Qualcomm Incorporated Capability information for sounding reference signal improvements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294686A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 探测参考信号发送、接收方法、装置、ue及基站
US20170325216A1 (en) * 2016-05-09 2017-11-09 Sharp Laboratories Of America, Inc. User equipments, base stations and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089949A4 *

Also Published As

Publication number Publication date
CN111224766A (zh) 2020-06-02
CN111224766B (zh) 2023-04-28
JP2023540153A (ja) 2023-09-22
EP4089949A1 (en) 2022-11-16
EP4089949A4 (en) 2024-03-20
US20220345273A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
RU2768848C2 (ru) Способ подстройки луча и соответствующее устройство
WO2021139831A1 (zh) 参考信号发送方法、参考信号接收方法及通信装置
JP7141467B2 (ja) 無線通信方法、通信デバイス、チップ及びシステム
CN111465110B (zh) 传输数据的方法和终端设备
US11800517B2 (en) Method for transmitting downlink signal and terminal device
WO2019213844A1 (zh) 无线通信方法、设备、芯片和系统
CN111670599B (zh) 控制信息传输方法、网络设备、终端和计算机存储介质
TWI829756B (zh) 一種通訊方法、終端設備和網路設備
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
WO2020199220A1 (zh) 接收信息、发送信息的方法和设备
AU2018442180A1 (en) Communication method and device for sidelink
JP2022532016A (ja) 通信方法、端末機器およびネットワーク機器
JP2022506187A (ja) データ伝送方法及び端末デバイス
CN110720186B (zh) 上报射频能力的方法、终端设备和网络设备
EP3879894B1 (en) Wireless communication method, network device, and terminal device
WO2020073336A1 (zh) 一种重复传输信息的方法、终端设备及网络设备
CN109041223B (zh) 一种通信方法及相关设备
CN110720235A (zh) 上报射频能力的方法、终端设备和网络设备
JP2021508959A (ja) 測定間隔の設定方法、ネットワークデバイス及び端末デバイス
WO2020087528A1 (zh) 无线通信方法、终端设备和网络设备
WO2020206622A1 (zh) 无线通信的方法和设备
JP2021529455A (ja) 情報伝送方法、デバイス及びコンピュータ記憶媒体
WO2023240630A1 (zh) 无线通信方法、终端设备以及网络设备
RU2777033C1 (ru) Способ осуществления связи, терминальное устройство и сетевое устройство
CN109391354B (zh) 信道质量信息的传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21739005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542785

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021739005

Country of ref document: EP

Effective date: 20220810