WO2021139387A1 - Procédé de commande de dispositif de chauffage et dispositif de chauffage - Google Patents

Procédé de commande de dispositif de chauffage et dispositif de chauffage Download PDF

Info

Publication number
WO2021139387A1
WO2021139387A1 PCT/CN2020/127859 CN2020127859W WO2021139387A1 WO 2021139387 A1 WO2021139387 A1 WO 2021139387A1 CN 2020127859 W CN2020127859 W CN 2020127859W WO 2021139387 A1 WO2021139387 A1 WO 2021139387A1
Authority
WO
WIPO (PCT)
Prior art keywords
matching unit
matching
electromagnetic wave
impedance
impedance value
Prior art date
Application number
PCT/CN2020/127859
Other languages
English (en)
Chinese (zh)
Inventor
韩志强
王铭
李春阳
王海娟
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2021139387A1 publication Critical patent/WO2021139387A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control

Definitions

  • the present invention relates to the field of food processing, in particular to a control method and heating device for electromagnetic wave heating devices.
  • the quality of the food is maintained, but frozen food needs to be thawed before being processed or eaten.
  • the food is usually defrosted by an electromagnetic wave heating device.
  • Defrosting food through an electromagnetic wave heating device is not only fast and efficient, but also has low nutrient loss.
  • the prior art generally judges the end of thawing by the user setting time, which not only imposes excessive requirements on the user, it is easy to cause the food after thawing to be too cold or overheated, but also due to the penetration and absorption of water and ice by microwaves. Differences, and the distribution of substances inside the food is uneven, and the melted area absorbs a lot of energy, which is prone to uneven thawing and local overheating.
  • An object of the first aspect of the present invention is to overcome at least one technical defect in the prior art and provide a control method for an electromagnetic wave heating device.
  • a further object of the first aspect of the present invention is to improve the accuracy of the characteristic parameters.
  • Another further object of the first aspect of the present invention is to improve the efficiency of load matching.
  • An object of the second aspect of the present invention is to provide an electromagnetic wave heating device.
  • a control method for a heating device includes an electromagnetic wave generating module that generates an electromagnetic wave signal for heating an object to be processed, and adjusting the electromagnetic wave by adjusting its own impedance.
  • a matching module for the load impedance of the generating module, the matching module includes a first matching unit that adjusts the frequency point of the matching and a second matching unit that adjusts the amplitude of the frequency point, wherein the control method includes:
  • the characteristic parameters of the object to be processed are determined according to the impedance value of the first matching unit.
  • an optional combination for achieving optimal load matching and the impedance value of the first matching unit corresponding to the optional combination are determined.
  • the step of traversing the optional combination of the first matching unit and the second matching unit includes:
  • the impedance set including all optional combinations of the impedance values of the first matching unit and the impedance values of the second matching unit;
  • the first matching unit’s impedance value is first sorted in ascending order, and then the optional combinations with the same impedance value of the first matching unit are sorted according to the second matching unit’s
  • the impedance values are sorted in descending order.
  • the method further includes:
  • the characteristic parameter is weight and/or temperature and/or heating time and/or heating power for heating to a set temperature.
  • the step of determining the characteristic parameter of the object to be processed according to the impedance value of the first matching unit includes:
  • the corresponding characteristic parameter is matched according to a preset comparison table, and the comparison table records the corresponding relationship between the impedance value and the characteristic parameter.
  • control method further includes:
  • control the electromagnetic wave generating module to generate an electromagnetic wave signal with a preset heating power.
  • a heating device which includes:
  • Cavity capacitance used to place objects to be processed
  • An electromagnetic wave generating module configured to generate an electromagnetic wave signal for heating the object to be processed in the cavity capacitor
  • the matching module is configured to adjust the load impedance of the electromagnetic wave generating module by adjusting its own impedance, and includes a first matching unit that adjusts the frequency point of the matching and a second matching unit that adjusts the amplitude of the frequency point; and
  • the controller is configured to execute any of the above control methods.
  • the first matching unit and the second matching unit are both variable capacitors.
  • the second matching unit is connected in series between the electromagnetic wave generating module and the cavity capacitor, one end of the first matching unit is connected in series between the second matching unit and the cavity capacitor, and the other end is grounded.
  • the first matching unit and the second matching unit are both variable inductors.
  • the first matching unit is connected in series between the electromagnetic wave generating module and the cavity capacitor, one end of the first matching unit is connected in series between the electromagnetic wave generating module and the second matching unit, and the other end is grounded.
  • the present invention determines the characteristic parameters of the object to be processed through the impedance value of the first matching unit that achieves optimal load matching, not only does not require the user to manually input the characteristic parameters of the object to be processed based on experience or through measurement, but also reduces the capacitance in the cavity.
  • the corresponding sensing device for sensing characteristic parameters further saves cost and reduces the error of characteristic parameters.
  • the present invention determines the characteristic parameters of the object to be processed by combining the impedance value of the first matching unit for optimal load matching with the comparison table, that is, the characteristic parameter of the object to be processed is determined by the capacitance value range of the cavity capacitance. Compared with directly measuring the capacitance value of the cavity capacitance and then calculating the characteristic parameters of the object to be processed based on the capacitance value, it saves the cost of increasing the measuring device. Moreover, the inventor of the present application creatively found that the characteristic parameters can be determined by the capacitance value range. Tolerate the error of the measuring device, obtain the characteristic parameters with higher accuracy, and then obtain the excellent heating effect.
  • the present invention re-determines the optional combination for achieving optimal load matching among the optional combinations in which the impedance value of the first matching unit is less than or equal to the impedance value of the first matching unit for achieving optimal load matching, which shortens the subsequent reprocessing.
  • the time required for load matching effectively improves the heating effect.
  • Fig. 1 is a schematic structural diagram of a heating device according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of the controller in Fig. 1;
  • Fig. 3 is a schematic circuit diagram of a matching module according to an embodiment of the present invention.
  • Fig. 4 is a schematic circuit diagram of a matching module according to another embodiment of the present invention.
  • Fig. 5 is a schematic flowchart of a control method for a heating device according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of the steps of adjusting the impedance of the matching module in FIG. 5, and determining the impedance value of the matching module that realizes the optimal load matching of the electromagnetic wave generating module;
  • Fig. 7 is a detailed flowchart of a control method for a heating device according to an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a heating device 100 according to an embodiment of the present invention.
  • the heating device 100 may include a cavity capacitor 110, an electromagnetic wave generating module 120, a matching module 130 and a controller 140.
  • the cavity capacitor 110 may include a cavity for placing the to-be-processed object 150 and a radiator plate arranged in the cavity.
  • a receiving plate may be further provided in the cavity to form a capacitor with the radiating plate.
  • the cavity can be made of metal to form a capacitor as a receiving plate and a radiating plate.
  • the electromagnetic wave generating module 120 may be configured to generate electromagnetic wave signals and be electrically connected to the radiating plate of the cavity capacitor 110 to generate electromagnetic waves in the cavity capacitor 110 to heat the object 150 in the cavity capacitor 110.
  • the matching module 130 can be connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110 or in parallel at both ends of the cavity capacitor 110, and is configured to adjust the load impedance of the electromagnetic wave generating module 120 by adjusting its own impedance to achieve load matching. Improve heating efficiency.
  • the matching module 130 may include a first matching unit 131 and a second matching unit 132.
  • the first matching unit 131 may be mainly used to adjust the frequency of the matching, that is, to achieve optimal matching at a specific electromagnetic wave frequency.
  • the second matching unit 132 may be mainly used to adjust the amplitude of the frequency point, that is, to adjust the effect of load matching.
  • FIG. 2 is a schematic structural diagram of the controller 140 in FIG. 1.
  • the controller 140 may include a processing unit 141 and a storage unit 142.
  • the storage unit 142 stores a computer program 143, which is used to implement the control method of the embodiment of the present invention when the computer program 143 is executed by the processing unit 141.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power after obtaining the heating instruction, adjust the impedance of the first matching unit 131 and the second matching unit 132, and determine the realization
  • the impedance value of the first matching unit 131 of the optimal load matching of the electromagnetic wave generating module 120 is further determined according to the impedance value of the first matching unit 131 to determine the characteristic parameters of the object 150 to be processed.
  • the present invention determines the characteristic parameters of the object 150 to be processed by the impedance value of the first matching unit 131 that achieves optimal load matching. It not only does not require the user to manually input the characteristic parameters of the object 150 based on experience or through measurement, but also reduces the cavity.
  • the corresponding sensing device for sensing the characteristic parameter in the capacitor 110 saves cost and reduces the error of the characteristic parameter.
  • the optimal load matching of the electromagnetic wave generating module 120 refers to the largest proportion of the output power allocated to the cavity capacitor 110 by the electromagnetic wave generating module 120 under the same heating device.
  • the preset initial power may be 10-20W, such as 10W, 15W, or 20W, so as to save energy and obtain the impedance value of the matching module 130 that achieves optimal load matching with high accuracy.
  • the characteristic parameter may be one parameter or a combination of multiple parameters among weight, temperature, heating time to a set temperature, and heating power according to actual application requirements.
  • the processing unit 141 may be configured to traverse the optional combinations of the first matching unit 131 and the second matching unit 132, and obtain the corresponding load matching degree of the electromagnetic wave generating module 120 corresponding to each optional combination.
  • the storage unit 142 may pre-store an impedance set including the impedance value of the first matching unit 131 and the impedance value of the second matching unit 132 in all optional combinations.
  • the processing unit 141 may be configured to adjust the impedance value of the first matching unit 131 and the impedance value of the second matching unit 132 one by one according to the impedance set to perform impedance matching.
  • the impedance value of the first matching unit 131 is sorted first, and then the optional combinations with the same impedance value of the first matching unit 131 are sorted according to the impedance value of the second matching unit 132.
  • the ordering is performed to improve the accuracy of the impedance value of the first matching unit 131 that is determined to achieve optimal load matching. That is, the processing unit 141 can be configured to first fix the impedance value of the first matching unit 131 at its maximum impedance value, traverse all the impedance values of the second matching unit 132, and then fix the impedance value of the first matching unit 131 to a value smaller than that.
  • the impedance value of the previous impedance value traverses all the impedance values of the second matching unit 132, and so on, traverses all optional combinations of the first matching unit 131 and the second matching unit 132.
  • FIG. 3 is a schematic circuit diagram of the matching module 130 according to an embodiment of the present invention, where "IN” represents an end electrically connected to the electromagnetic wave generating module 120, and "OUT" represents an end electrically connected to the cavity capacitor 110.
  • the first matching unit 131 and the second matching unit 132 may both be variable capacitors.
  • the second matching unit 132 can be connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110, and the first matching unit 131 can be connected in series between the second matching unit 132 and the cavity capacitor 110 at one end and grounded at the other end to improve the matching module.
  • the stability of 130 improves the accuracy of the impedance value of the first matching unit 131 for optimal load matching.
  • FIG. 4 is a schematic circuit diagram of a matching module 130 according to another embodiment of the present invention.
  • the first matching unit 131 and the second matching unit 132 may both be variable inductors.
  • the first matching unit 131 may be connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110, and the first matching unit 131 may be connected in series between the electromagnetic wave generating module 120 and the second matching unit 132 at one end and grounded at the other end.
  • the heating device 100 may further include a two-way coupler connected in series between the cavity capacitor 110 and the electromagnetic wave generating module 120 for real-time monitoring of the forward power signal output by the electromagnetic wave generating module 120 and the return electromagnetic wave generating module 120 The reverse power signal.
  • the processing unit 141 may be configured to obtain the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal returning to the electromagnetic wave generating module 120 after each adjustment of the impedance value of the first matching unit 131 and/or the second matching unit 132 , And calculate the matching degree parameter according to the forward power signal and the reverse power signal.
  • S11 -20log (reverse power/forward power)
  • the smaller the value of the return loss S11 reflects the electromagnetic wave generation module 120
  • the impedance value of the matching module 130 corresponding to the minimum return loss S11 is the impedance value for achieving optimal load matching.
  • electromagnetic wave absorption rate (1-reverse power/forward power).
  • the greater the value of electromagnetic wave absorption rate reflects the electromagnetic wave generation module
  • the impedance value of the matching module 130 corresponding to the maximum electromagnetic wave absorption rate is the impedance value for achieving optimal load matching.
  • the matching degree parameter can also be another parameter that can reflect the proportion of the output power allocated by the electromagnetic wave generating module 120 to the cavity capacitor 110.
  • the storage unit 142 may store a pre-configured comparison table, which records the correspondence between the impedance value of the first matching unit 131 and the characteristic parameter.
  • the processing unit 141 may be configured to match the corresponding characteristic parameter according to a preset comparison table according to the impedance value of the first matching unit 131 that achieves optimal load matching.
  • the heating device 100 of the present invention determines the characteristic parameters of the to-be-processed object 150 by combining the impedance value of the first matching unit 131 for optimal load matching with the comparison table, that is, the to-be-processed object 150 is determined by the capacitance value range of the cavity capacitor 110 Compared with directly measuring the capacitance value of the cavity capacitance 110 and then calculating the characteristic parameters of the object to be processed 150 based on the capacitance value, it saves the cost of increasing the measurement device, and the inventor of the present application creatively found that the capacitance value is The range is used to determine the characteristic parameters, which can accommodate the error of the measuring device and obtain the characteristic parameters with higher accuracy, thereby obtaining an excellent heating effect.
  • only one correspondence is recorded in the comparison table, and the characteristic parameter can be directly obtained from the impedance value according to the comparison table, so as to simplify the acquisition process of the characteristic parameter.
  • the corresponding relationship at different initial temperatures is recorded in the comparison table.
  • the processing unit 141 may be further configured to obtain the initial temperature of the object 150 to be processed, match the corresponding relationship according to the initial temperature, and further match the corresponding characteristic parameters according to the corresponding relationship in combination with impedance values, so as to avoid temperature influence on the capacitance value of the cavity capacitor 110 Influence, and further improve the accuracy of feature parameters.
  • the characteristic parameter may be one parameter or a combination of multiple parameters among weight, heating time to a set temperature, and heating power.
  • the corresponding relationship under different weights of the objects 150 to be processed is recorded in the comparison table.
  • the processing unit 141 may be further configured to obtain the weight of the object 150 to be processed, match the corresponding relationship according to the weight, and further match the corresponding characteristic parameters according to the corresponding relationship in combination with impedance values, so as to avoid the influence of the weight on the capacitance value of the cavity capacitor 110, Further improve the accuracy of feature parameters.
  • the characteristic parameter may be one parameter or a combination of multiple parameters among the initial temperature, the heating time to the set temperature, and the heating power.
  • the processing unit 141 may be configured to achieve optimal load matching when the impedance value of the first matching unit 131 is greater than or equal to the preset upper threshold ,
  • the electromagnetic wave generating module 120 is controlled to stop working to avoid that the weight of the object 150 to be processed is too small, which causes the matching module 130 to generate heat, which seriously reduces the heating efficiency, and the excessive heat causes safety hazards; the impedance of the first matching unit 131 that achieves optimal load matching
  • the electromagnetic wave generating module 120 is controlled to stop working, so as to prevent the object 150 from being too heavy and the heating effect is too poor.
  • the preset upper threshold may be greater than the maximum impedance value of the first matching unit 131, and the preset lower threshold may be less than the minimum impedance value of the first matching unit 131.
  • the heating device 100 may further include an interactive module for sending visual and/or audible signals to the user.
  • the processing unit 141 may also be configured to control the interaction module to send a visual and/or audible signal prompting the user to no-load when the impedance value of the first matching unit 131 for optimal load matching is greater than or equal to the preset upper threshold;
  • the control interaction module sends a visual and/or audible signal prompting the overload to the user, so as to improve the user experience.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to generate preset heating within the preset heating time.
  • the electromagnetic wave signal of high power starts to heat the object 150 to be processed.
  • the preset heating time and the preset heating power are both obtained by matching the impedance value according to the preset comparison table.
  • the processing unit 141 may be configured to be optional when the impedance value of the first matching unit 131 is less than or equal to the impedance value of the first matching unit 131 for optimal load matching.
  • the optional combination to achieve optimal load matching is re-determined to shorten the time required for subsequent load matching and effectively improve the heating effect.
  • the impedance set is re-determined and the optional combination that realizes the optimal load matching is re-determined in the impedance set, where the new impedance set is the first
  • the impedance value of the matching unit 131 is less than or equal to all optional combinations of the impedance value of the first matching unit 131 that achieved the optimal load matching last time.
  • Fig. 5 is a schematic flowchart of a control method for the heating device 100 according to an embodiment of the present invention.
  • the control method for the heating device 100 executed by the controller 140 of any of the above embodiments of the present invention may include the following steps:
  • Step S502 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • the preset initial power may be 10-20W, such as 10W, 15W, or 20W, so as to save energy and obtain the impedance value of the matching module 130 that achieves optimal load matching with high accuracy.
  • Step S504 Adjust the impedance of the first matching unit 131 and the second matching unit 132, and determine the impedance value of the first matching unit 131 that realizes the optimal load matching of the electromagnetic wave generating module 120.
  • Step S506 Determine the characteristic parameter of the object to be processed 150 according to the impedance value of the first matching unit 131.
  • the control method of the present invention determines the characteristic parameters of the to-be-processed object 150 through the impedance value of the first matching unit 131 that achieves optimal load matching, not only does not require the user to manually input the characteristic parameters of the to-be-processed object 150 based on experience or through measurement, but also reduces The corresponding sensing device for sensing the characteristic parameter in the cavity capacitor 110 is further saved, and the error of the characteristic parameter is reduced.
  • the characteristic parameter may be one parameter or a combination of multiple parameters among weight, temperature, heating time to a set temperature, and heating power according to actual application requirements.
  • the characteristic parameter may be obtained by matching according to a comparison table recording the correspondence between the impedance value of the first matching unit 131 and the characteristic parameter.
  • the control method of the present invention determines the characteristic parameters of the object 150 by combining the impedance value of the first matching unit 131 for optimal load matching with the comparison table, that is, the capacitance value range of the cavity capacitor 110 determines the value of the object 150 Compared with directly measuring the capacitance value of the cavity capacitance 110 and then calculating the characteristic parameters of the object 150 according to the capacitance value, the characteristic parameters of the object to be processed 150 are calculated, which saves the cost of increasing the measuring device, and the inventor of this application creatively found that the capacitance value range To determine the characteristic parameters, the error of the measuring device can be accommodated, and the characteristic parameters with higher accuracy can be obtained, and then an excellent heating effect can be obtained.
  • only one correspondence is recorded in the comparison table, and the characteristic parameter can be directly obtained from the impedance value according to the comparison table, so as to simplify the acquisition process of the characteristic parameter.
  • the corresponding relationship at different initial temperatures is recorded in the comparison table.
  • the processing unit 141 may be further configured to obtain the initial temperature of the object 150 to be processed, match the corresponding relationship according to the initial temperature, and further match the corresponding characteristic parameters according to the corresponding relationship in combination with impedance values, so as to avoid temperature influence on the capacitance value of the cavity capacitor 110 Influence, and further improve the accuracy of feature parameters.
  • the characteristic parameter may be one parameter or a combination of multiple parameters among weight, heating time to a set temperature, and heating power.
  • the corresponding relationship under different weights of the objects 150 to be processed is recorded in the comparison table.
  • the processing unit 141 may be further configured to obtain the weight of the object 150 to be processed, match the corresponding relationship according to the weight, and further match the corresponding characteristic parameters according to the corresponding relationship in combination with impedance values, so as to avoid the influence of the weight on the capacitance value of the cavity capacitor 110, Further improve the accuracy of feature parameters.
  • the characteristic parameter may be one parameter or a combination of multiple parameters among the initial temperature, the heating time to the set temperature, and the heating power.
  • FIG. 6 is a flowchart of the steps of adjusting the impedance of the matching module 130 in FIG. 5 and determining the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120.
  • the step of adjusting the impedance of the matching module 130 according to an embodiment of the present invention and determining the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120 may specifically include the following steps:
  • Step S602 traverse the optional combinations of the first matching unit 131 and the second matching unit 132, and obtain a matching degree parameter reflecting the load matching degree of the electromagnetic wave generating module 120 corresponding to each optional combination.
  • the impedance value of the first matching unit 131 and the impedance value of the second matching unit 132 can be adjusted one by one according to a preset impedance set.
  • Step S604 Compare the matching degree parameters of all optional combinations.
  • Step S606 Determine an optional combination for achieving optimal load matching and the impedance value of the first matching unit 131 corresponding to the optional combination according to the comparison result.
  • the impedance value of the first matching unit 131 is sorted in descending order, and then the optional combinations with the same impedance value of the first matching unit 131 are sorted according to the second matching unit 132.
  • the impedance values are sorted in descending order to improve the accuracy of the impedance value of the first matching unit 131 that is determined to achieve optimal load matching.
  • the matching degree parameter can be calculated based on the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal returning to the electromagnetic wave generating module 120 obtained by the bidirectional coupler.
  • Fig. 7 is a detailed flowchart of a control method for the heating device 100 according to an embodiment of the present invention, wherein "Y" represents “Yes” and “N” represents "No".
  • the control method for the heating device 100 according to an embodiment of the present invention may include the following steps:
  • Step S702 Obtain a heating instruction.
  • Step S704 Obtain the initial temperature of the object 150 to be processed.
  • Step S706 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • Step S708 Traverse the optional combinations of the first matching unit 131 and the second matching unit 132, obtain the matching degree parameter reflecting the load matching degree of the electromagnetic wave generating module 120 corresponding to each optional combination, and compare the matching degree of all the optional combinations Parameters, and determine the optional combination for achieving optimal load matching and the impedance value of the first matching unit 131 corresponding to the optional combination according to the comparison result.
  • Step S710 Determine whether the impedance value for achieving optimal load matching is greater than or equal to a preset upper threshold. If yes, go to step S712; if not, go to step S714. In this step, the preset upper limit threshold may be greater than the maximum impedance value of the first matching unit 131.
  • Step S712 Control the electromagnetic wave generating module 120 to stop working, and send a visual and/or audible signal to the user to indicate no-load, so as to avoid the weight of the object 150 to be processed is too small, causing the matching module 130 to generate heat and seriously reduce the heating efficiency, and excessive heat may cause safety Hidden dangers.
  • Step S714 Determine whether the impedance value for achieving optimal load matching is less than or equal to the preset lower threshold. If yes, go to step S716; if not, go to step S718.
  • the preset lower threshold may be smaller than the minimum impedance value of the first matching unit 131.
  • Step S716 Control the electromagnetic wave generating module 120 to stop working, and send a visual and/or auditory signal prompting the overload to the user, so as to prevent the object 150 from being too heavy and the heating effect is too poor.
  • Step S718 Match the corresponding heating time and heating power according to the initial temperature matching and the impedance value of the first matching unit 131 that achieves optimal load matching.
  • Step S720 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal of heating power.
  • Step S722 Determine whether the heating has reached the heating time. If yes, go to step S724; if not, go to step S726.
  • Step S724 Control the electromagnetic wave generating module 120 to stop working. Return to step S702.
  • Step S726 Re-determine the optional combination for achieving optimal load matching among the optional combinations in which the impedance value of the first matching unit 131 is less than or equal to the impedance value of the first matching unit 131 for achieving optimal load matching.
  • Step S720 is performed, that is, before the heating of the object 150 is completed, the electromagnetic wave generating module 120 always generates the electromagnetic wave signal of the heating power determined by the impedance value of the first matching unit 131 and the initial temperature of the object 150, and the matching module 130 always generates the electromagnetic wave signal of the heating power determined by the impedance value of the first matching unit 131 and the initial temperature of the object 150. Re-match the load at a preset time interval to further improve the heating power and heating effect.
  • the heating device 100 and the control method of the present invention are particularly suitable for thawing food, especially thawing food to -4 to 0°C, that is, the aforementioned set temperature is -4 to 0°C, and more accurate characteristic parameter values can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

La présente invention concerne un procédé de commande de dispositif de chauffage et un dispositif de chauffage. Le dispositif de chauffage comprend un module de génération d'onde électromagnétique conçu pour générer un signal d'onde électromagnétique pour chauffer un objet à traiter, et un module d'adaptation conçu pour ajuster une impédance de charge du module de génération d'onde électromagnétique par réglage de sa propre impédance. Le module d'adaptation comprend une première unité d'adaptation conçue pour ajuster un point de fréquence correspondant et une seconde unité d'adaptation conçue pour ajuster l'amplitude du point de fréquence. Le procédé de commande consiste à : amener le module de génération d'onde électromagnétique à générer un signal d'onde électromagnétique d'une puissance initiale prédéfinie ; ajuster les impédances d'une première unité d'adaptation et d'une seconde unité d'adaptation, et déterminer une valeur d'impédance de la première unité d'adaptation mettant en œuvre une adaptation de charge optimale du module de génération d'onde électromagnétique ; et déterminer un paramètre de caractéristique dudit objet en fonction de la valeur d'impédance de la première unité d'adaptation. Selon le procédé de commande, il n'est pas nécessaire qu'un utilisateur saisisse manuellement les paramètres de caractéristique dudit objet sur la base de l'expérience ou après la mesure, les dispositifs de détection pour détecter de manière correspondante des paramètres de caractéristique dans un condensateur à cavité sont réduits, ce qui permet d'économiser les coûts et de réduire les erreurs de paramètres de caractéristique.
PCT/CN2020/127859 2020-01-08 2020-11-10 Procédé de commande de dispositif de chauffage et dispositif de chauffage WO2021139387A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010018840.6A CN113099569B (zh) 2020-01-08 2020-01-08 用于加热装置的控制方法及加热装置
CN202010018840.6 2020-01-08

Publications (1)

Publication Number Publication Date
WO2021139387A1 true WO2021139387A1 (fr) 2021-07-15

Family

ID=76664107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127859 WO2021139387A1 (fr) 2020-01-08 2020-11-10 Procédé de commande de dispositif de chauffage et dispositif de chauffage

Country Status (2)

Country Link
CN (1) CN113099569B (fr)
WO (1) WO2021139387A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008118A1 (fr) * 2022-07-06 2024-01-11 青岛海尔电冰箱有限公司 Procédé de commande pour dispositif de chauffage et dispositif de chauffage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641098B (zh) * 2022-03-17 2023-08-18 湖北中烟工业有限责任公司 一种射频加热烟具的阻抗匹配方法、装置及电子设备
CN117412422A (zh) * 2022-07-06 2024-01-16 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161833A (ja) * 1999-12-06 2001-06-19 Marutaka Co Ltd 電波加温器
CN107688118A (zh) * 2016-08-05 2018-02-13 恩智浦美国有限公司 用于检测解冻操作完成的设备和方法
CN107710869A (zh) * 2015-07-03 2018-02-16 东洋制罐集团控股株式会社 高频感应加热装置
CN107926088A (zh) * 2015-07-24 2018-04-17 C-技术创新有限公司 射频加热系统
KR20190068091A (ko) * 2017-12-08 2019-06-18 송명수 Rf 전자기파 해동 장치용 임피던스 정합 시스템
CN110521910A (zh) * 2019-09-26 2019-12-03 安徽恒盛实业有限责任公司 一种嫩质调理牛肉的制备方法
CN209893783U (zh) * 2019-01-30 2020-01-03 青岛海尔电冰箱有限公司 加热装置及具有该加热装置的冰箱

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111907B2 (ja) * 1987-01-26 1995-11-29 松下電器産業株式会社 高周波加熱装置
US6657173B2 (en) * 1998-04-21 2003-12-02 State Board Of Higher Education On Behalf Of Oregon State University Variable frequency automated capacitive radio frequency (RF) dielectric heating system
KR100870121B1 (ko) * 2007-04-19 2008-11-25 주식회사 플라즈마트 임피던스 매칭 방법 및 이 방법을 위한 매칭 시스템
KR101762161B1 (ko) * 2010-12-23 2017-07-27 엘지전자 주식회사 조리기기
CN103852739B (zh) * 2014-03-12 2017-02-15 苏州众志医疗科技有限公司 一种自适应跳频磁共振射频线圈及其使用方法
EP3280225B1 (fr) * 2016-08-05 2020-10-07 NXP USA, Inc. Appareil de dégivrage avec réseau d'adaptation inductif localisé et leurs procédés de fonctionnement
CN108256368B (zh) * 2016-12-28 2021-10-26 航天信息股份有限公司 双端口网络的生成方法及装置
EP3547801B1 (fr) * 2018-03-29 2022-06-08 NXP USA, Inc. Dispositif de dégivrage et ses procédés d'utilisation
US10952289B2 (en) * 2018-09-10 2021-03-16 Nxp Usa, Inc. Defrosting apparatus with mass estimation and methods of operation thereof
US11800608B2 (en) * 2018-09-14 2023-10-24 Nxp Usa, Inc. Defrosting apparatus with arc detection and methods of operation thereof
CN209251648U (zh) * 2018-11-01 2019-08-16 上海点为智能科技有限责任公司 一种采用开关匹配模块的解冻装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161833A (ja) * 1999-12-06 2001-06-19 Marutaka Co Ltd 電波加温器
CN107710869A (zh) * 2015-07-03 2018-02-16 东洋制罐集团控股株式会社 高频感应加热装置
CN107926088A (zh) * 2015-07-24 2018-04-17 C-技术创新有限公司 射频加热系统
CN107688118A (zh) * 2016-08-05 2018-02-13 恩智浦美国有限公司 用于检测解冻操作完成的设备和方法
KR20190068091A (ko) * 2017-12-08 2019-06-18 송명수 Rf 전자기파 해동 장치용 임피던스 정합 시스템
CN209893783U (zh) * 2019-01-30 2020-01-03 青岛海尔电冰箱有限公司 加热装置及具有该加热装置的冰箱
CN110521910A (zh) * 2019-09-26 2019-12-03 安徽恒盛实业有限责任公司 一种嫩质调理牛肉的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008118A1 (fr) * 2022-07-06 2024-01-11 青岛海尔电冰箱有限公司 Procédé de commande pour dispositif de chauffage et dispositif de chauffage

Also Published As

Publication number Publication date
CN113099569B (zh) 2022-06-24
CN113099569A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2021139387A1 (fr) Procédé de commande de dispositif de chauffage et dispositif de chauffage
JP5400885B2 (ja) マイクロ波加熱装置
WO2022105501A1 (fr) Procédé de commande pour dispositif de chauffage et dispositif de chauffage associé
US20140008357A1 (en) Microwave power source and method of automatic adjustement of operation frequence
WO2021114998A1 (fr) Procédé de commande pour dispositif de chauffage et dispositif de chauffage
WO2021254521A1 (fr) Procédé de commande de rendement en puissance et chauffe-eau électrique instantané
WO2021213441A1 (fr) Procédé de dégivrage pour appareil de chauffage, et appareil de chauffage
WO2021036419A1 (fr) Appareil de chauffage de décongélation comprenant une électrode mobile, et procédé
WO2018040339A1 (fr) Dispositif et procédé de commande de four à micro-ondes, et four à micro-ondes
CN107748522A (zh) 一种超短波治疗仪
CN112969248B (zh) 用于加热装置的控制方法及加热装置
WO2019149252A1 (fr) Dispositif de cuisson par micro-ondes, procédé de commande et support de stockage
CN209251648U (zh) 一种采用开关匹配模块的解冻装置
CN105338675B (zh) 一种高频电磁加热设备及其电力控制方法
US20230025171A1 (en) Control method for heating device, and heating device
CN113316280A (zh) 用于加热装置的控制方法以及加热装置
WO2021056821A1 (fr) Procédé de commande de chauffage par radiofréquence et appareil de chauffage par radiofréquence
WO2021139363A1 (fr) Procédé de commande pour dispositif de chauffage et dispositif de chauffage
CN113288414B (zh) 一种基于小信号扫描检测的自适应宽频微波肿瘤消融仪
WO2024008118A1 (fr) Procédé de commande pour dispositif de chauffage et dispositif de chauffage
CN205322068U (zh) 声波检测免沸节能锅
WO2023005289A1 (fr) Procédé de chauffage, et appareil de réfrigération et de congélation
JPH0395312A (ja) 高周波加熱装置
CN106658804B (zh) 一种加热方法及装置
WO2023103706A1 (fr) Procédé de commande pour appareil de chauffage, et appareil de chauffage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911885

Country of ref document: EP

Kind code of ref document: A1