WO2021139085A1 - Oled 面板、其蒸镀方法和其掩膜版组 - Google Patents

Oled 面板、其蒸镀方法和其掩膜版组 Download PDF

Info

Publication number
WO2021139085A1
WO2021139085A1 PCT/CN2020/095124 CN2020095124W WO2021139085A1 WO 2021139085 A1 WO2021139085 A1 WO 2021139085A1 CN 2020095124 W CN2020095124 W CN 2020095124W WO 2021139085 A1 WO2021139085 A1 WO 2021139085A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
area
cathode
thickness
oled panel
Prior art date
Application number
PCT/CN2020/095124
Other languages
English (en)
French (fr)
Inventor
杜骁
孔香植
李们在
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to EP20736241.9A priority Critical patent/EP3875632A4/en
Priority to US16/982,263 priority patent/US20220020928A1/en
Publication of WO2021139085A1 publication Critical patent/WO2021139085A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present disclosure relates to the field of display technology, in particular to an OLED panel, its evaporation method and its mask set.
  • the panel produced by this design can increase the screen-to-body ratio of the terminal product, the notch and the perforated area are still relatively abrupt to the appearance of the product. Although this type of design still occupies a considerable display area, There is still a big difference from the vision of a true full screen.
  • the OLED panels used in mobile phone panels are all top-emitting OLED devices.
  • the factors that have the greatest influence on the transmittance are polyimide (PI) substrates, Thin film transistor (TFT) metal traces and emissive cathode (emissive layer cathode, EL cathode).
  • PI substrates can be replaced with a colorless polyimide (CPI) substrate to increase the transmission, and the TFT metal traces can be stacked.
  • CPI colorless polyimide
  • the method to increase the transmittance of the cathode of the emitter layer can only try to reduce the thickness of some areas.
  • the anode in the top-emitting device is composed of ITO/Ag/ITO, and the cathode film layer on the uppermost layer of the EL layer can form a microcavity effect to enhance the light-emitting efficiency of the EL device, so the thinning of the cathode in the light-emitting area of the pixel cannot improve this part.
  • the transmittance of OLED will have a greater impact on the efficiency of the OLED device.
  • the purpose of the present disclosure is to provide an OLED panel, its evaporation method and its mask set, which can improve the transmittance of the imaging area.
  • the present disclosure provides a mask set for an OLED panel.
  • the OLED panel includes a display area with a camera area.
  • the mask set includes a first mask and a second mask.
  • the first mask includes a common mask opening area.
  • the size of the opening area of the common mask covers the entire display area.
  • the second mask includes a special-shaped mask opening area.
  • the size of the opening area of the special-shaped mask covers all the display area except the imaging area.
  • the mask set further includes a third mask, the third mask includes a precision mask area, the size of the precision mask area covers the entire camera Area, the opening of the precision mask area corresponds to the pixel opening of the imaging area.
  • the third mask further includes a third mask mask area and a third mask frame, and the precision mask area and the third mask mask area alternate Arranged, the third mask frame carries the third mask mask area, and the boundary of the precision mask area is larger than the boundary of the display area.
  • the boundary of the precision mask area extends from 5 to 500 ⁇ m to the boundary of the display area.
  • the thickness of the first mask, the thickness of the second mask, and the thickness of the third mask are all 0.01 to 0.2 mm.
  • the first mask further includes a first mask masking area and a first mask frame, the common mask opening area and the first mask masking area Alternately arranged, the first mask frame carries the first mask mask area, and the area of the common mask opening area is larger than the area of the entire display area.
  • the size of the common mask opening area extends 5 ⁇ 500 ⁇ m to all boundaries of the display area.
  • the second mask further includes a second mask masking area and a second mask frame, the special-shaped mask opening area and the second mask masking area Alternately arranged, the second mask frame carries the second mask mask area, and the three boundaries of the special-shaped mask opening area are larger than the three boundaries of the display area.
  • the three boundaries of the opening area of the special-shaped mask extend 5 to 500 ⁇ m to the three boundaries of the display area.
  • the present disclosure also provides a vapor deposition method for the OLED panel.
  • the vapor deposition method of the OLED panel includes: performing a first vapor deposition process and a second vapor deposition process of the cathode of the OLED panel on the same substrate using a first mask and a second mask in different sequences.
  • a mask includes a common mask opening area, the size of the common mask opening area covers the entire display area, the second mask includes a special-shaped mask opening area, the size of the special-shaped mask opening area Cover all the display areas except for the imaging area.
  • the cathode evaporation method of the OLED panel further includes: after performing the first evaporation process and the second evaporation process, performing the OLED using a third mask
  • the third mask includes a precision mask area, the size of the precision mask area covers the entire imaging area, and the opening of the precision mask area is The pixel openings in the imaging area correspond to each other.
  • the first evaporation process includes using the first mask to evaporate a first cathode with a first thickness on the display area of the OLED panel with a camera area;
  • the second vapor deposition process includes using the second mask to vaporize a second cathode with a second thickness in all the display areas of the OLED panel except the imaging area, so that the imaging area is The thickness of the cathode is smaller than the thickness of the cathode of all the display areas except the imaging area;
  • the third vapor deposition process includes using the third mask to vaporize the pixel openings of the imaging area of the OLED panel to have The third cathode of the third thickness.
  • the sequence of the first vapor deposition process is earlier than the second vapor deposition process.
  • the sequence of the second vapor deposition process is earlier than the first vapor deposition process.
  • first thickness of the first cathode of the first vapor deposition process is 50-120 ⁇
  • second thickness of the second cathode of the second vapor deposition process is 20 to 130 ⁇
  • third thickness of the third cathode of the third vapor deposition process is 20 to 130 ⁇
  • the cathode thickness of all the display areas except the imaging area is 70 ⁇ 250 ⁇
  • the thickness of the cathode of the non-pixel opening area of the imaging area of the display area is 50-120 ⁇
  • the thickness of the cathode of the pixel opening of the imaging area is 70-250 ⁇ .
  • the present disclosure also provides an OLED panel.
  • the OLED panel includes a cathode structure.
  • the cathode structure includes a display area with an imaging area, a first cathode with a first thickness, which is fully arranged on the display area; and a second cathode with a second thickness, which is arranged on all areas except the imaging area. Mentioned on the display area.
  • the cathode structure of the OLED panel further includes a third cathode having a third thickness, which is disposed on the pixel opening of the imaging area.
  • the first thickness of the first cathode is 50 ⁇ 120 ⁇
  • the second thickness of the second cathode is 20 ⁇ 130 ⁇
  • the third thickness of the third cathode is 20-130 ⁇ .
  • the thickness of the cathode of all the display areas except the imaging area is 70 ⁇ 250 ⁇
  • the thickness of the cathode of the non-pixel opening area of the imaging area of the display area is 50 ⁇ 120 ⁇
  • the cathode thickness of the pixel opening in the imaging area is 70 ⁇ 250 ⁇ .
  • the material of the cathode structure is composed of Ag/Mg alloys in different proportions, and the ratio of Mg content to the Ag/Mg alloy is 0%-95%.
  • the mask set includes a first mask and a second mask.
  • the first mask includes a common mask opening area.
  • the size of the opening area of the common mask covers the entire display area.
  • the second mask includes a special-shaped mask opening area.
  • the size of the opening area of the special-shaped mask covers all the display area except the imaging area.
  • the cathode evaporation method of the OLED panel includes: performing a first evaporation process and a second evaporation process of the cathode of the OLED panel on the same substrate using a first mask and a second mask in different sequences.
  • the first mask is the first mask as described above, and the second mask is the second mask as described above.
  • the cathode structure of the OLED panel includes a display area with an imaging area, a first cathode with a first thickness, which is fully arranged on the display area; and a second cathode with a second thickness, which is arranged in addition to the imaging area. On all of the display areas. Through the embodiments of the present disclosure, the transmittance of the imaging area can be improved.
  • FIG. 1 shows a schematic diagram of the structure of an OLED panel according to an embodiment of the present disclosure.
  • FIG. 2 shows a schematic structural diagram of a mask set of an OLED panel according to an embodiment of the present disclosure.
  • FIG. 3 shows a schematic structural diagram of a second mask according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic structural diagram of a second mask according to an embodiment of the present disclosure.
  • FIG. 5 shows a schematic structural diagram of a second mask substrate according to an embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of the structure of a third mask according to an embodiment of the present disclosure.
  • FIG. 7 shows a schematic structural diagram of a third mask according to an embodiment of the present disclosure.
  • FIG. 8 shows a schematic structural diagram of a third mask according to an embodiment of the present disclosure.
  • FIG. 9 shows a schematic structural diagram of a mask set of an OLED panel according to an embodiment of the present disclosure.
  • FIG. 10 shows a schematic structural diagram of a mask set of an OLED panel according to an embodiment of the present disclosure.
  • FIG. 11 shows a schematic structural diagram of a mask set of an OLED panel according to an embodiment of the present disclosure.
  • FIG. 12 shows a schematic flowchart of an evaporation method of an OLED panel according to an embodiment of the present disclosure.
  • FIG. 13 shows a schematic structural diagram of a cathode structure of an OLED panel according to an embodiment of the present disclosure.
  • FIG. 1 shows a schematic structural diagram of an OLED panel according to an embodiment of the present disclosure.
  • FIG. 2 shows a schematic structural diagram of a mask set of an OLED panel according to an embodiment of the present disclosure.
  • the OLED panel 100 includes a display area 110 having a camera area 112, such as an active area (AA).
  • the mask set 200 includes a first mask 210 and a second mask 220.
  • the first mask 210 includes a common mask opening area 212.
  • the size of the common mask opening area 212 covers the entire display area 110.
  • the second mask 220 includes a special-shaped mask opening area 222.
  • the size of the opening area 222 of the special-shaped mask covers all the display area 110 except for the imaging area 112.
  • the transmittance of the imaging area 112 can be improved.
  • the mask set 200 further includes a third mask 230, and the third mask 230 includes a precision mask area 232, the size of the precision mask area 232 Covering the entire imaging area 112, the opening of the precision mask area 232 corresponds to the pixel opening of the imaging area 112.
  • the first mask 210 further includes a first mask shielding area 214 and a first mask frame 216, the common mask opening area 212 and the The first mask masking areas 214 are arranged alternately, the first mask frame 216 carries the first mask masking areas 214, and the area of the common mask opening area 212 is larger than that of the entire display area 110 .
  • the size of the common mask opening area 212 extends to all boundaries of the display area 110 by 5 to 500 ⁇ m.
  • the first mask mask area 214 is fixed on the first mask frame 216 by laser spot welding, and the size of the first mask frame 216 is determined by the size of the first mask mask area 214 .
  • the second mask 220 further includes a second mask shielding area 224 and a second mask frame 226, the special-shaped mask opening area 222 and the The second mask masking areas 224 are alternately arranged, the second mask frame 226 carries the second mask masking areas 224, and the three boundaries of the special-shaped mask opening area 222 are larger than those of the display area 110 Three boundaries.
  • the three boundaries of the special-shaped mask opening area 222 extend to the three boundaries of the display area 110 by 5 ⁇ 500 ⁇ m.
  • the second mask mask area 224 is fixed to the second mask frame 226 by laser spot welding, and the size of the second mask frame 226 is determined by the size of the second mask mask area 224 .
  • the shielding scheme of the second mask 220 is determined according to a specific design, and the size and position of the opening area 222 of the special-shaped mask are determined by the screen of the display area 110.
  • the special-shaped mask opening area 222 can be completely covered, but not limited to the top notch, the notch at the corner of the panel, and the bridging circular shielding area, as shown in Figures 3, 4 and 4 Shown in Figure 5.
  • the third mask 230 further includes a third mask shielding area 234 and a third mask frame 236, the precision mask area 232 and the second mask
  • the three mask mask areas 234 are alternately arranged, the third mask frame 236 carries the third mask mask area 234, and the boundary of the precision mask area 232 is larger than the boundary of the display area 110.
  • the boundary of the precision mask area 232 extends to the boundary of the display area 110 by 5 ⁇ 500 ⁇ m.
  • the third mask mask area 234 is fixed on the third mask frame 236 by laser spot welding, and the size of the third mask frame 236 is determined by the size of the third mask mask area 234 .
  • the precision mask scheme of the third mask 230 is determined according to the specific design, and the size, position, and opening scheme of the precision mask area 232 are determined by the panel
  • the size, position and pixel design of the module opening under the screen of the AA area can be determined, but it can be but not limited to the design of precision metal mask schemes set at the top of the panel, the corners of the panel and the middle of the panel, as shown in Figure 6, Figure 7 and Figure 8. Show.
  • the thickness of the first mask 210, the thickness of the second mask 220, and the thickness of the third mask 230 are all 0.01 ⁇ 0.2 mm.
  • the embodiments of the present disclosure provide a metal mask set for vapor deposition of a flexible OLED panel supporting under-screen modules and a method of use thereof.
  • the selective thinning of the thickness of the cathode in the imaging area under the screen can be realized.
  • the set of metal mask set consists of at least two sets of metal masks, and one of the metal masks (the first mask 210) can cover the entire display area (active area, AA), another metal mask (the second mask 220) can cover all the AA area except the imaging area under the screen.
  • the transmittance of the OLED panel in the camera area under the screen can be improved through simple metal mask design and combination.
  • the embodiment of the present disclosure provides a set of metal mask set, which is composed of at least 3 masks, a first mask 210 (Mask 1), a second mask 220, and a third mask 230 (Mask 3) It is used in conjunction with the cathode evaporation process.
  • the metal mask set includes a metal frame that carries the mask, and the mask is designed on the distribution area of the panel according to the substrate design used. With the corresponding number and arrangement of masks, the vapor deposition corresponding area of the set of metal mask sets can cover the entire display area of the AA area of the panel, and the thickness of the cathode in different areas of the same panel is different.
  • Mask 1 and Mask 2 The designed special-shaped mask area vapor deposition overlay pattern can cover all areas of the panel AA area, and the cathode vapor deposition area through the Mask 1 opening is the entire panel AA area, the cathode evaporation area using Mask 2 is except for panel All areas outside the under-screen camera design area in the AA area; the cathode evaporation range of Mask 3 can and only covers all pixel openings in the under-screen camera design area in the panel AA area, as shown in Figure 9, Figure 10 and Figure 11.
  • Mask 1, Mask 2 points and Mask 3 form the corresponding complete and continuous cathode film on the same substrate, which can realize the panel
  • the thickness of the cathode in the imaging area under the screen is reduced in the AA area, and the thickness of the cathode in the non-under-screen imaging area is unchanged.
  • the microcavity effect can be compensated for the OLED devices in the imaging area under the screen to achieve selective thinning of the panel AA area.
  • the thickness of the cathode film in some areas increases the transmittance of the substrate in the imaging area under the screen and at the same time greatly affects the display performance and effect of the entire Panel, as shown in Figure 2.
  • Mask 1 and Mask 2 The opening boundary of the overlap is generally located at the panel PDL gap, and the opening edge design will be designed according to the pixel arrangement, which can be designed with the PDL Different gaps produce different opening edge designs, which are not necessarily smooth and straight edges; the mask 3 opening size can cover one or more sub-pixels according to the design, and extend 0-20 ⁇ m outside the sub-pixels.
  • the mask set 200 can be constructed by methods such as electroforming, etching, metal drawing, or laser ablation.
  • the size of the mask set 200 is determined by the size of the substrate to be used, and the corresponding size of the substrate uses the corresponding size of the mask set 200.
  • FIG. 12 shows a schematic flowchart of an evaporation method of an OLED panel according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides an evaporation method S100 of an OLED panel.
  • the cathode vapor deposition method S100 of the OLED panel includes: Step S110: Perform a first vapor deposition process and a second vapor deposition of the cathode of the OLED panel on the same substrate using a first mask and a second mask in different orders In the manufacturing process, the first mask is the first mask as described above, and the second mask is the second mask as described above.
  • the transmittance of the imaging area can be improved.
  • the cathode evaporation method S100 of the OLED panel further includes: Step S120: After performing the first evaporation process and the second evaporation process, use a third mask A third vapor deposition process of the cathode of the OLED panel is performed, and the third mask is the third mask as described above.
  • the first vapor deposition process includes using the first mask to evaporate the entire display area of the OLED panel having the imaging area with a first thickness.
  • the second vapor deposition process includes using the second mask to vaporize all the display areas of the OLED panel except the imaging area with a second cathode having a second thickness, so that the The thickness of the cathode in the imaging area is smaller than the thickness of the cathode in all the display areas except the imaging area;
  • the third vapor deposition process includes using the third mask to make the pixels of the imaging area of the OLED panel open A third cathode having a third thickness is vapor-deposited.
  • the sequence of the first vapor deposition process is earlier than the second vapor deposition process.
  • the sequence of the second vapor deposition process is earlier than the first vapor deposition process.
  • three different first masks, second masks, and third masks are used in the display area at least three times.
  • Vapor deposition is performed on different regions, and the first thickness of the first cathode in the first vapor deposition process is 50 ⁇ 120 ⁇ , the second thickness of the second cathode of the second vapor deposition process is 20 to 130 ⁇ , and the third thickness of the third cathode of the third vapor deposition process is 20 to 130 ⁇ , the cathode thickness of all the display areas except the imaging area is 70 ⁇ 250 ⁇ , the thickness of the cathode of the non-pixel opening area of the imaging area of the display area is 50-120 ⁇ , and the thickness of the cathode of the pixel opening of the imaging area is 70-250 ⁇ .
  • FIG. 13 shows a schematic structural diagram of a cathode structure of an OLED panel according to an embodiment of the present disclosure.
  • the cathode structure 300 of the OLED panel includes a display area 110 having a camera area 112, a first cathode 310 having a first thickness, and is entirely disposed on the display area 110;
  • the second cathode 320 with a thickness is arranged on all the display area 110 except for the imaging area 112.
  • the transmittance of the imaging area 112 can be improved.
  • the cathode structure 300 of the OLED panel further includes a third cathode 330 having a third thickness, which is disposed on the pixel opening 1122 of the imaging area 112.
  • the first thickness of the first cathode 310 is 50 ⁇ 120 ⁇
  • the second thickness of the second cathode 320 is 20 ⁇ 130 ⁇
  • the third thickness of the third cathode 330 is 20 ⁇ 130 ⁇ .
  • the cathode thickness of all the display areas 110 except the imaging area 112 is 70-250 ⁇
  • the non-pixel openings of the imaging area 112 of the display area 110 The thickness of the cathode of the area 1124 is 50-120 ⁇
  • the thickness of the cathode of the pixel opening 1122 of the imaging area 112 is 70-250 ⁇ .
  • the material of the cathode structure 300 may be, but not limited to, composed of Ag/Mg alloys in different proportions, and the ratio of the Mg content to the Ag/Mg alloy is 0% to 95 %.
  • the embodiments of the present disclosure provide a new type of metal mask and cathode process method for the evaporation of flexible OLED panels.
  • Cathode evaporation is performed on the same substrate, and the imaging area under the screen can be completely shielded during the second evaporation, thereby reducing the thickness of the cathode in the area where the camera is located, increasing the transmittance of the area, and not affecting the normal AA area of the panel.
  • the thickness is affected, and then a precision metal mask is used in the third evaporation to compensate for the thickness of the cathode film on the pixel opening in the imaging design area under the screen.
  • the cathode evaporation process uses matching Mask1 and Mask2, respectively, the cathode evaporation process is performed on the same substrate successively, and the mask can be used according to the first use of Mask1 to make the panel AA area fully evaporate a part of the thickness
  • the cathode then use Mask2 to vapor-deposit the special-shaped area, so that the thickness of the cathode in the camera design area under the screen is thinner than the normal area of the Panel AA area, and finally use Mask 3
  • the method of compensating the thickness of the cathode on the pixel opening in the imaging area under the screen it is also possible to first use Mask 2 to vaporize the opposite pattern, then use Mask1 to fully vaporize the panel AA area, and finally use Mask 3 to compensate for the pixel opening in the imaging area under the screen
  • the order of cathode thickness is also possible to first use Mask 2 to vaporize the opposite pattern, then use Mask1 to fully vaporize the panel AA area, and finally use Mask 3 to compensate for
  • the cathode evaporation process uses three different masks at least three times to evaporate different areas in the Panel AA area, and the cathode thickness of the first evaporation is 50 ⁇ 120 ⁇ , the thickness of the cathode for the second evaporation is 20 ⁇ 130 ⁇ , and the thickness of the cathode for the third evaporation is 20 ⁇ 130 ⁇ , namely Panel The thickness of the cathode in the normal area of AA area is 70 ⁇ 250 ⁇ , Panel The thickness of the cathode in the non-pixel opening area of the under-screen imaging area in the AA area is 50-120 ⁇ , and the thickness of the cathode in the pixel opening area of the under-screen imaging area is 70-250 ⁇ .
  • the embodiments of the present disclosure provide a cathode evaporation method that can improve the light transmittance of the imaging area under the full-screen OLED screen, which is used in the production of cathodes for full-screen OLED light-emitting components.
  • the specific operation and use of the method are The equipment is as follows:
  • Step 1 Pass the metal mask Mask 1 used for the vapor deposition cathode into the corresponding cavity of the machine.
  • Step 2 The substrate completes the pre-cathode vapor deposition process and is transported into the cathode vapor deposition chamber MC1.
  • Step 3 Adjust the alignment of Mask 1 and the substrate and the alignment deviation of the substrate and complete the alignment by CCD.
  • the metal mask and the substrate are closely attached to each other in the cavity.
  • Step 4 The substrate completes the first OLED cathode evaporation process, and the cathode is formed into a film through the opening area of Mask 1. At this time, the cathode film covers all positions of the panel AA area, and the coating thickness is 50 ⁇ 120 ⁇ , then transfer to another cathode evaporation chamber MC 2 (multi-chamber design), or replace Mask 1 with Mask 2 (Single cavity design).
  • Step 5 Adjust the alignment of Mask 2 and the substrate and the alignment deviation of the substrate and complete the alignment by CCD.
  • the metal mask in the cavity is closely attached to the substrate, and the second OLED cathode evaporation process is started.
  • Step 6 The substrate completes the second OLED cathode evaporation process, the cathode is formed through the opening area of Mask 2. During the second cathode evaporation, there is no cathode film formation in the imaging area under the Panel AA area, and the second evaporation cathode The thickness is 20 ⁇ 130 ⁇ , and then sent to the next process. After the second evaporation is completed, the thickness of the cathode in the normal area of Panel AA area is 70 ⁇ 250 ⁇ , Panel The thickness of the cathode in the imaging area under the screen in the AA zone is 50 ⁇ 120 ⁇ .
  • Step 7 After the substrate completes the second OLED cathode evaporation process, it is transferred to the third cathode evaporation chamber MC 3 (multi-cavity design), or Mask 2 is replaced with Mask 3 (Single cavity design), Mask 3 is aligned with the substrate on which the second cathode evaporation has been completed, and the cathode thickness of the pixel opening area of the under-screen imaging area is compensated.
  • the third evaporation cathode thickness is 20 ⁇ 130 ⁇ , that is, the thickness of the cathode in the normal area of the Panel AA area is 70 ⁇ 250 ⁇ , the thickness of the cathode in the non-pixel aperture area of the imaging area under the screen in the Panel AA area is 50 ⁇ 120 ⁇ , the thickness of the cathode in the pixel aperture area of the camera area under the screen is 70 ⁇ 250 ⁇ .
  • the set of metal mask material is usually Invar alloy, but can also be made of SUS alloy or other types of alloys.
  • This set of metal masks are used for cathode evaporation in the evaporation process of manufacturing full-screen OLED display devices.
  • CCD alignment the alignment of the metal mask 1 and the substrate is completed, so that the opening area of Mask1 is coated with the corresponding panel. Align the position of the zone to complete the first cathode coating; in the same cavity, set the Mask 1 Change to Mask 2, and go through CCD alignment again to align the opening area of Mask 2 with the corresponding panel coating area to complete the second coating; then replace Mask 2 to Mask in the same cavity 3.
  • the third evaporation is carried out.
  • the cathode pattern of the third coating is superimposed on the instrument in the panel AA area.
  • the Panel The thickness of the cathode in the normal area of AA area is 70 ⁇ 250 ⁇
  • Panel The thickness of the cathode in the non-pixel opening area of the under-screen imaging area in the AA area is 50-120 ⁇
  • the thickness of the cathode in the pixel opening area of the under-screen imaging area is 70-250 ⁇ .
  • the substrate can be transferred to the TFE process machine for the thin film packaging process.
  • the steps actually used in the cathode evaporation process are as follows:
  • the substrate transferred into the machine platform is placed on the lifting claw of the supporting substrate to ensure that the substrate is stably placed on the lifting claw of the substrate carrying device of the machine platform.
  • the substrate lifting device is lowered, and the PIN (applicable for small-size Mask) or CCD and Mask 1 on the edge of the substrate carrying device are used to complete the alignment, so that the opening area of the mask corresponds to the position of the panel to be coated.
  • the substrate lifting device slowly lifts the substrate and separates it from the mask.
  • the specified area on the substrate is coated with the film, and then transferred to the next stage of the process.
  • the embodiments of the present disclosure provide at least one of the following beneficial effects.
  • the existing production line does not need to add equipment and change the structure of the production line to complete the production of a full screen that supports the under-screen camera, which can reduce equipment procurement and maintenance costs.
  • the embodiments of the present disclosure provide a new type of metal mask for the evaporation of flexible OLED panels and a cathode manufacturing method.
  • a new type of metal mask for the evaporation of flexible OLED panels and a cathode manufacturing method By designing a set of special-shaped metal mask masks, and combining them in the evaporation cathode manufacturing process, Overcome the problem of reduced light transmittance of OLED panels caused by vapor-deposited cathodes.
  • the cathode in the designated area of the camera design area under the screen is reduced, and the light transmission of the designated area of the OLED panel is improved in the existing technology. rate.
  • the mask set includes a first mask and a second mask.
  • the first mask includes a common mask opening area.
  • the size of the opening area of the common mask covers the entire display area.
  • the second mask includes a special-shaped mask opening area.
  • the size of the opening area of the special-shaped mask covers all the display area except the imaging area.
  • the cathode evaporation method of the OLED panel includes: performing a first evaporation process and a second evaporation process of the cathode of the OLED panel on the same substrate using a first mask and a second mask in different sequences.
  • the first mask is the first mask as described above
  • the second mask is the second mask as described above.
  • the cathode structure of the OLED panel includes a display area with an imaging area, a first cathode with a first thickness, which is fully arranged on the display area; and a second cathode with a second thickness, which is arranged in addition to the imaging area. On all of the display areas. Through the embodiments of the present disclosure, the transmittance of the imaging area can be improved.

Abstract

本揭示提供一种OLED面板的掩膜版组、其阴极蒸镀方法和OLED面板。OLED面板包括具有摄像区的显示区。所述掩膜版组包括第一掩膜版以及第二掩膜版。所述第一掩膜版包括共通掩膜开口区。所述共通掩膜开口区的大小覆盖整个所述显示区。所述第二掩膜版包括异型掩膜开口区。所述异型掩膜开口区的大小覆盖除所述摄像区的所有所述显示区。

Description

OLED面板、其蒸镀方法和其掩膜版组 技术领域
本揭示涉及一种显示技术领域,特别涉及一种OLED面板、其蒸镀方法和其掩膜版组。
背景技术
近年来,移动终端市场发展刺激新型显示技术进步,为配合移动终端大屏显示和高屏占比的需求,手机行业引入全面屏概念,意在提高手机屏幕的屏占比。为实现理想的全面屏显示状态,世界各地的相关从业者进行了很多理论和实际上的探索,其中屏下指纹识别系统已有产品量产,屏下摄像头和屏下通话功能仍在开发中。现有技术中,由于组装手机通话模块和摄像头模块需在手机屏一面预留相应的位置,所以很多新款全面屏手机均在屏幕顶端设置了缺口部分(notch)放置通话和摄像头模块,如IPHONE XS,华为P20系列等。也有在摄像头区域设计开口,如三星S10系列,由于其制程为激光切除显示区,例如主动区(active area, AA)的部分区域,故开口边界(border)需求宽度较宽,防止激光切割使显示区截面外露影响面板的性能。虽然该设计产出的面板可增大终端产品的屏占比,但缺口部分(notch)和打孔区域对于产品外观而言仍较为突兀,虽然此类设计仍占用了相当大的显示区域,但是与真正的全面屏幕的设想相差仍较大。
为实现相对真实的屏下摄像设计,终端设计者尝试从手机模组设计上改善,如OPPO FIND X,VIVO NEX手机等,但此类设计增大了手机制造复杂程度和易损坏风险。现显示业界结合透明显示相关经验,设计透明面板,以实现显示和屏下模组共存的设计。
与以往已开发的透明显示器不同的是,应用于手机面板的OLED 面板均为顶发射OLED器件,对于顶发射器件,其透过率影响最大的因素为聚酰亚胺(Polyimide, PI)基板、薄膜晶体管(thin film transistor, TFT)金属走线和发射层阴极(emissive layer cathode, EL cathode)。然而PI基板可更换为透明聚醯亞胺(colorless polyimide,CPI)基板提升透过,TFT金属走线可进行堆叠设计,提升发射层阴极透过率的方法只能尝试减薄部分区域厚度。然而顶发射器件中阳极由ITO/Ag/ITO组成,其与EL层最上层的阴极膜层可形成微腔效应增强EL器件出光效率,故对像素(pixel)发光区域阴极减薄不能提升该部分的透过率,反而会对OLED器件效率造成较大的影响。
故,有需要提供一种OLED面板、其蒸镀方法和其掩膜版组,以解决现有技术存在的问题。
技术问题
为解决上述技术问题,本揭示的目的在于提供OLED面板、其蒸镀方法和其掩膜版组,其能提升所述摄像区的透过率。
技术解决方案
为达成上述目的,本揭示提供一种OLED面板的掩膜版组。所述OLED面板包括具有摄像区的显示区。所述掩膜版组包括第一掩膜版以及第二掩膜版。所述第一掩膜版包括共通掩膜开口区。所述共通掩膜开口区的大小覆盖整个所述显示区。所述第二掩膜版包括异型掩膜开口区。所述异型掩膜开口区的大小覆盖除所述摄像区的所有所述显示区。
于本揭示其中的一实施例中,所述掩膜版组还包括第三掩膜版,所述第三掩膜版包括精密掩膜区,所述精密掩膜区的大小覆盖整个所述摄像区,所述精密掩膜区的开口与所述摄像区的像素开口相对应。
于本揭示其中的一实施例中,所述第三掩膜版还包括第三掩膜版遮蔽区和第三掩膜框架,所述精密掩膜区和所述第三掩膜版遮蔽区交替排列,所述第三掩膜框架承载所述第三掩膜版遮蔽区,所述精密掩膜区的边界大于所述显示区的边界。
于本揭示其中的一实施例中,所述精密掩膜区的所述边界向所述显示区的所述边界扩展5~500 μm。
于本揭示其中的一实施例中,所述第一掩膜版的厚度、所述第二掩膜版的厚度和所述第三掩膜版的厚度均为0.01~0.2 mm。
于本揭示其中的一实施例中,所述第一掩膜版还包括第一掩膜版遮蔽区和第一掩膜框架,所述共通掩膜开口区和所述第一掩膜版遮蔽区交替排列,所述第一掩膜框架承载所述第一掩膜版遮蔽区,所述共通掩膜开口区的面积大于整个所述显示区的面积。
于本揭示其中的一实施例中,所述共通掩膜开口区的大小向所述显示区的所有边界扩展5~500 μm。
于本揭示其中的一实施例中,所述第二掩膜版还包括第二掩膜版遮蔽区和第二掩膜框架,所述异型掩膜开口区和所述第二掩膜版遮蔽区交替排列,所述第二掩膜框架承载所述第二掩膜版遮蔽区,所述异型掩膜开口区的三个边界大于所述显示区的三个边界。
于本揭示其中的一实施例中,所述异型掩膜开口区的所述三个边界向所述显示区的所述三个边界扩展5~500 μm。
为达成上述目的,本揭示还提供一种OLED面板的蒸镀方法。所述OLED面板的蒸镀方法包括:在同一基板上依照不同顺序使用第一掩膜版和第二掩膜版进行OLED面板的阴极的第一蒸镀制程和第二蒸镀制程,所述第一掩膜版包括共通掩膜开口区,所述共通掩膜开口区的大小覆盖整个所述显示区,所述第二掩膜版包括异型掩膜开口区,所述异型掩膜开口区的大小覆盖除所述摄像区的所有所述显示区。
于本揭示其中的一实施例中,所述OLED面板的阴极蒸镀方法还包括:进行所述第一蒸镀制程和所述第二蒸镀制程后,使用第三掩膜版进行所述OLED面板的所述阴极的第三蒸镀制程,所述第三掩膜版包括精密掩膜区,所述精密掩膜区的大小覆盖整个所述摄像区,所述精密掩膜区的开口与所述摄像区的像素开口相对应。
于本揭示其中的一实施例中,所述第一蒸镀制程包括使用所述第一掩膜版使所述OLED面板的具有摄像区的显示区全面蒸镀具有第一厚度的第一阴极;所述第二蒸镀制程包括使用所述第二掩膜版使所述OLED面板的除所述摄像区的所有所述显示区蒸镀具有第二厚度的第二阴极,使所述摄像区的阴极厚度小于除所述摄像区的所有所述显示区的阴极厚度;所述第三蒸镀制程包括使用所述第三掩膜版使所述OLED面板的所述摄像区的像素开口蒸镀具有第三厚度的第三阴极。
于本揭示其中的一实施例中,所述第一蒸镀制程的顺序早于所述第二蒸镀制程。
于本揭示其中的一实施例中,所述第二蒸镀制程的顺序早于所述第一蒸镀制程。
于本揭示其中的一实施例中,至少分三次使用三张不同的所述第一掩膜版、所述第二掩膜版和所述第三掩膜版对所述显示区内不同的区域进行蒸镀,所述第一蒸镀制程的所述第一阴极的所述第一厚度为50~120 Å,所述第二蒸镀制程的所述第二阴极的所述第二厚度为20~130 Å,所述第三蒸镀制程的所述第三阴极的所述第三厚度为20~130 Å,除所述摄像区的所有所述显示区的阴极厚度为70~250 Å,所述显示区的所述摄像区的非像素开口区的阴极厚度为50~120 Å,所述摄像区的像素开口的阴极厚度为70~250 Å。
为达成上述目的,本揭示还提供一种OLED面板。所述OLED面板包括阴极结构。所述阴极结构包括具有摄像区的显示区、具有第一厚度的第一阴极,全面设置在所述显示区上;以及具有第二厚度的第二阴极,设置在除所述摄像区的所有所述显示区上。
于本揭示其中的一实施例中,所述OLED面板的阴极结构还包括具有第三厚度的第三阴极,设置在所述摄像区的像素开口上。
于本揭示其中的一实施例中,所述第一阴极的所述第一厚度为50~120 Å,所述第二阴极的所述第二厚度为20~130 Å,所述第三阴极的所述第三厚度为20~130 Å。
于本揭示其中的一实施例中,除所述摄像区的所有所述显示区的阴极厚度为70~250 Å,所述显示区的所述摄像区的非像素开口区的阴极厚度为50~120 Å,所述摄像区的像素开口的阴极厚度为70~250 Å。
于本揭示其中的一实施例中,所述阴极结构的材料由不同比例的Ag/Mg合金组成,Mg含量与所述Ag/Mg合金的比值为0%~95%。
有益效果
本揭示的有益效果为:由于本揭示的实施例中的OLED面板、其蒸镀方法和其掩膜版组中,所述掩膜版组包括第一掩膜版以及第二掩膜版。所述第一掩膜版包括共通掩膜开口区。所述共通掩膜开口区的大小覆盖整个所述显示区。所述第二掩膜版包括异型掩膜开口区。所述异型掩膜开口区的大小覆盖除所述摄像区的所有所述显示区。所述OLED面板的阴极蒸镀方法包括:在同一基板上依照不同顺序使用第一掩膜版和第二掩膜版进行OLED面板的阴极的第一蒸镀制程和第二蒸镀制程,所述第一掩膜版如上所述的第一掩膜版,所述第二掩膜版如上所述的第二掩膜版。所述OLED面板的阴极结构包括具有摄像区的显示区、具有第一厚度的第一阴极,全面设置在所述显示区上;以及具有第二厚度的第二阴极,设置在除所述摄像区的所有所述显示区上。通过本揭示的实施例能提升所述摄像区的透过率。
为让本揭示的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1显示根据本揭示的一实施例的OLED面板的结构示意图。
图2显示根据本揭示的一实施例的OLED面板的掩膜版组的结构示意图。
图3显示根据本揭示的一实施例的第二掩膜版的结构示意图。
图4显示根据本揭示的一实施例的第二掩膜版的结构示意图。
图5显示根据本揭示的一实施例的第二掩膜版基板的结构示意图。
图6显示根据本揭示的一实施例的第三掩膜版的结构示意图。
图7显示根据本揭示的一实施例的第三掩膜版的结构示意图。
图8显示根据本揭示的一实施例的第三掩膜版的结构示意图。
图9显示根据本揭示的一实施例的OLED面板的掩膜版组的结构示意图。
图10显示根据本揭示的一实施例的OLED面板的掩膜版组的结构示意图。
图11显示根据本揭示的一实施例的OLED面板的掩膜版组的结构示意图。
图12显示根据本揭示的一实施例的OLED面板的蒸镀方法的流程示意图。
图13显示根据本揭示的一实施例的OLED面板的阴极结构的结构示意图。
本发明的实施方式
为了让本揭示的上述及其他目的、特征、优点能更明显易懂,下文将特举本揭示优选实施例,并配合所附图式,作详细说明如下。再者,本揭示所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧层、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。
在图中,结构相似的单元是以相同标号表示。
参照图1和图2,图1显示根据本揭示的一实施例的OLED面板的结构示意图。图2显示根据本揭示的一实施例的OLED面板的掩膜版组的结构示意图。于本揭示其中的一实施例中,OLED面板100包括具有摄像区112的显示区110,例如主动区(active area, AA)。掩膜版组200包括第一掩膜版210以及第二掩膜版220。所述第一掩膜版210包括共通掩膜开口区212。所述共通掩膜开口区212的大小覆盖整个所述显示区110。所述第二掩膜版220包括异型掩膜开口区222。所述异型掩膜开口区222的大小覆盖除所述摄像区112的所有所述显示区110。通过本揭示的实施例能提升所述摄像区112的透过率。
于本揭示其中的一实施例中,所述掩膜版组200还包括第三掩膜版230,所述第三掩膜版230包括精密掩膜区232,所述精密掩膜区232的大小覆盖整个所述摄像区112,所述精密掩膜区232的开口与所述摄像区112的像素开口相对应。
具体地,于本揭示其中的一实施例中,所述第一掩膜版210还包括第一掩膜版遮蔽区214和第一掩膜框架216,所述共通掩膜开口区212和所述第一掩膜版遮蔽区214交替排列,所述第一掩膜框架216承载所述第一掩膜版遮蔽区214,所述共通掩膜开口区212的面积大于整个所述显示区110的面积。具体地,于本揭示其中的一实施例中,所述共通掩膜开口区212的大小向所述显示区110的所有边界扩展5~500 μm。所述第一掩膜版遮蔽区214通过激光点焊固定在所述第一掩膜框架216上,所述第一掩膜框架216的大小由所述第一掩膜版遮蔽区214的大小决定。
具体地,于本揭示其中的一实施例中,所述第二掩膜版220还包括第二掩膜版遮蔽区224和第二掩膜框架226,所述异型掩膜开口区222和所述第二掩膜版遮蔽区224交替排列,所述第二掩膜框架226承载所述第二掩膜版遮蔽区224,所述异型掩膜开口区222的三个边界大于所述显示区110的三个边界。具体地,于本揭示其中的一实施例中,所述异型掩膜开口区222的所述三个边界向所述显示区110的所述三个边界扩展5~500 μm。所述第二掩膜版遮蔽区224通过激光点焊固定在所述第二掩膜框架226上,所述第二掩膜框架226的大小由所述第二掩膜版遮蔽区224的大小决定。具体地,于本揭示其中的一实施例中,所述第二掩膜版220的遮蔽方案依照具体设计而定,所述异型掩膜开口区222的大小和位置由所述显示区110的屏下模组开口而定,所述异型掩膜开口区222可完全覆盖,可以但不仅限于采用顶部notch、面板(panel)角处notch及桥接圆形遮蔽区等设计,如图3、图4和图5所示。
具体地,于本揭示其中的一实施例中,所述第三掩膜版230还包括第三掩膜版遮蔽区234和第三掩膜框架236,所述精密掩膜区232和所述第三掩膜版遮蔽区234交替排列,所述第三掩膜框架236承载所述第三掩膜版遮蔽区234,所述精密掩膜区232的边界大于所述显示区110的边界。具体地,于本揭示其中的一实施例中,所述精密掩膜区232的所述边界向所述显示区110的所述边界扩展5~500 μm。所述第三掩膜版遮蔽区234通过激光点焊固定在所述第三掩膜框架236上,所述第三掩膜框架236的大小由所述第三掩膜版遮蔽区234的大小决定。具体地,于本揭示其中的一实施例中,所述第三掩膜版230的精密掩膜方案依照具体设计而定,所述精密掩膜区232的大小、位置及开口方案由panel AA区屏下模组开口大小、位置和像素设计而定,可以但不仅限于在panel顶部、panel角处及panel中间设置的精密金属掩膜方案等设计,如图6、图7和图8所示。
于本揭示其中的一实施例中,所述第一掩膜版210的厚度、所述第二掩膜版220的厚度和所述第三掩膜版230的厚度均为0.01~0.2 mm。
综上所述,本揭示的实施例提供支持屏下模块的柔性OLED面板蒸镀用金属掩膜版组及其使用方法。本揭示的实施例将掩膜版组进行配套设计后,可实现屏下摄像区域阴极厚度的选择性减薄。该套金属掩模版组至少由两套金属掩膜板构成,其中一块金属掩膜板(所述第一掩膜版210)可覆盖整个显示区(active area, AA),另一块金属掩膜板(所述第二掩膜版220)可覆盖除屏下摄像区域的所有AA区区域。利用此类设计,可通过简单的金属掩膜版设计和组合,提升屏下摄像区域OLED面板的透过率。本揭示的实施例提供一套金属掩膜版组,至少由3张掩膜板(Mask)构成,第一掩膜版210(Mask 1)、第二掩膜版220和第三掩膜版230(Mask 3)配套使用,用于阴极蒸镀工艺,所述金属掩膜版组包括承载掩膜版的金属框架,所述掩膜版上根据所用基板设计,在面板(panel)分布区域上存在相应数量和排列的掩模版,该套金属掩膜版组叠加的蒸镀对应区域可覆盖panel整个AA区的显示区域,且同一块panel内不同区域阴极厚度有所不同。
于本揭示其中的一实施例中,Mask 1和Mask 2设计的异型掩膜区域蒸镀叠加图形可覆盖panel AA区的所有区域,其中通过Mask 1开口的阴极蒸镀区域为整个panel AA区,使用Mask 2的阴极蒸镀区域为除panel AA区内屏下摄像设计区域外所有区域;使用Mask 3的阴极蒸镀范围可以且仅覆盖panel AA区内屏下摄像设计区域内所有像素开口,如图9、图10和图11所示。
于本揭示其中的一实施例中,在阴极蒸镀制程中,Mask 1、Mask 2分和Mask 3别在同一基板上形成相应完整连续的阴极膜层,可实现panel AA区屏下摄像区域阴极厚度减薄,非屏下摄像区域阴极厚度不变的设计,同时也可对屏下摄像区域的OLED器件进行微腔效应补偿,实现可选择性的减薄panel AA区部分区域阴极膜厚,提升屏下摄像区域基板的透过率的同时对整片Panel的显示性能和效果造成太大影响,如图2所示。
于本揭示其中的一实施例中,Mask 1和Mask 2的搭接处开口边界一般位于panel PDL gap处,且开口边缘设计会依照pixel排布做出相对应的设计,可随设计的PDL gap不同制作出不同的开口边缘设计,不一定为光滑直边边缘;Mask 3开口大小可依照设计覆盖一个或多个子像素,并向子像素外延伸0~20μm。
于本揭示其中的一实施例中,所述掩膜版组200可由电铸、蚀刻、金属拉丝或激光烧蚀等方法构筑。所述掩膜版组200的大小由所投入使用基板大小决定,相应大小的基板使用相应大小的所述掩膜版组200。
参照图12,图12显示根据本揭示的一实施例的OLED面板的蒸镀方法的流程示意图。本揭示的实施例提供OLED面板的蒸镀方法S100。所述OLED面板的阴极蒸镀方法S100包括:步骤S110:在同一基板上依照不同顺序使用第一掩膜版和第二掩膜版进行OLED面板的阴极的第一蒸镀制程和第二蒸镀制程,所述第一掩膜版如上所述的第一掩膜版,所述第二掩膜版如上所述的第二掩膜版。通过本揭示的实施例能提升所述摄像区的透过率。
于本揭示其中的一实施例中,所述OLED面板的阴极蒸镀方法S100还包括:步骤S120:进行所述第一蒸镀制程和所述第二蒸镀制程后,使用第三掩膜版进行所述OLED面板的所述阴极的第三蒸镀制程,所述第三掩膜版如上所述的第三掩膜版。
具体地,于本揭示其中的一实施例中,所述第一蒸镀制程包括使用所述第一掩膜版使所述OLED面板的具有摄像区的显示区全面蒸镀具有第一厚度的第一阴极;所述第二蒸镀制程包括使用所述第二掩膜版使所述OLED面板的除所述摄像区的所有所述显示区蒸镀具有第二厚度的第二阴极,使所述摄像区的阴极厚度小于除所述摄像区的所有所述显示区的阴极厚度;所述第三蒸镀制程包括使用所述第三掩膜版使所述OLED面板的所述摄像区的像素开口蒸镀具有第三厚度的第三阴极。
具体地,于本揭示其中的一实施例中,所述第一蒸镀制程的顺序早于所述第二蒸镀制程。具体地,于本揭示其中的另一实施例中,所述第二蒸镀制程的顺序早于所述第一蒸镀制程。具体地,于本揭示其中的一实施例中,至少分三次使用三张不同的所述第一掩膜版、所述第二掩膜版和所述第三掩膜版对所述显示区内不同的区域进行蒸镀,所述第一蒸镀制程的所述第一阴极的所述第一厚度为50~120 Å,所述第二蒸镀制程的所述第二阴极的所述第二厚度为20~130 Å,所述第三蒸镀制程的所述第三阴极的所述第三厚度为20~130 Å,除所述摄像区的所有所述显示区的阴极厚度为70~250 Å,所述显示区的所述摄像区的非像素开口区的阴极厚度为50~120 Å,所述摄像区的像素开口的阴极厚度为70~250 Å。
参照图13,图13显示根据本揭示的一实施例的OLED面板的阴极结构的结构示意图。于本揭示其中的一实施例中,OLED面板的阴极结构300包括具有摄像区112的显示区110、具有第一厚度的第一阴极310,全面设置在所述显示区110上;以及具有第二厚度的第二阴极320,设置在除所述摄像区112的所有所述显示区110上。通过本揭示的实施例能提升所述摄像区112的透过率。
具体地,于本揭示其中的一实施例中,所述OLED面板的阴极结构300还包括具有第三厚度的第三阴极330,设置在所述摄像区112的像素开口1122上。
具体地,于本揭示其中的一实施例中,所述第一阴极310的所述第一厚度为50~120 Å,所述第二阴极320的所述第二厚度为20~130 Å,所述第三阴极330的所述第三厚度为20~130 Å。具体地,于本揭示其中的一实施例中,除所述摄像区112的所有所述显示区110的阴极厚度为70~250 Å,所述显示区110的所述摄像区112的非像素开口区1124的阴极厚度为50~120 Å,所述摄像区112的像素开口1122的阴极厚度为70~250 Å。
具体地,于本揭示其中的一实施例中,所述阴极结构300的材料可以但不仅限于由不同比例的Ag/Mg合金组成,Mg含量与所述Ag/Mg合金的比值为0%~95%。
综上所述,本揭示的实施例提供一种新型柔性OLED面板蒸镀用金属掩膜版及阴极制程方法,通过设计相配套的若干块具有不同遮蔽区域的金属掩膜板,分先后顺序在同一块基板上进行阴极蒸镀,屏下摄像区域可在第二次蒸镀时被整体遮蔽,进而减薄摄像头所在区域的阴极厚度,提高该区域的透过率,又不对panel正常AA区阴极厚度造成影响,然后在第三次蒸镀时使用精密金属掩模版,对屏下摄像设计区域的像素开口上的阴极膜厚进行补偿。使用该设计的金属掩膜板可克服panel AA区中间遮蔽困难的问题,通过简单的设计和改进,实现屏中摄像头或通话模块开口处阴极被遮蔽的蒸镀制程方法,并最终实现真正的屏下摄像设计。
于本揭示其中的一实施例中,阴极蒸镀制程使用配套的Mask1和Mask2,分别在同一基板上先后进行阴极蒸镀制程,Mask使用可依照先使用Mask1使panel AA区全面蒸镀部分厚度的阴极,再使用Mask2蒸镀异型区域,使屏下摄像设计区阴极厚度薄于Panel AA区正常区域,最后使用Mask 3补偿屏下摄像区域像素开口上阴极厚度的方法;也可先使用Mask 2蒸镀异性图形,再用Mask1对panel AA区进行全面蒸镀,最后再使用Mask 3补偿屏下摄像区域像素开口上阴极厚度的顺序。
于本揭示其中的一实施例中,所述的阴极蒸镀制程至少分三次使用三张不同的Mask对Panel AA区内不同的区域进行蒸镀,第一次蒸镀的阴极厚度为50~120 Å,第二次蒸镀的阴极厚度为20~130 Å,第三次蒸镀阴极厚度为20~130 Å,即Panel AA区正常区域阴极厚度为70~250 Å,Panel AA区中屏下摄像区域非像素开口区阴极厚度为50~120 Å,屏下摄像区域像素开口区阴极厚度为70~250 Å。
综上所述,本揭示的实施例提供一种可提升OLED全面屏屏下摄像区域光线穿透率的阴极蒸镀方法,其用于全面屏OLED发光元器件阴极制作,该方法具体操作和使用设备如下:
步骤一、将蒸镀阴极使用的金属掩膜版Mask 1传入所对应的机台腔体内部。
步骤二、基板完成阴极前蒸镀制程,传送入阴极蒸镀腔 MC 1。
步骤三、调整Mask 1和基板的对位和对位偏差基板并通过CCD完成对位,在腔体内金属掩膜版与基板紧贴在一起。
步骤四、基板完成第一次OLED阴极蒸镀制程,阴极透过Mask 1开口区成膜,此时阴极膜层覆盖panel AA区全部位置,镀膜厚度为50~120 Å,然后传送至另一阴极蒸镀腔体 MC 2(多腔体设计),或将Mask 1替换为Mask 2(单腔体设计)。
步骤五、调整Mask 2和基板的对位和对位偏差基板并通过CCD完成对位,在腔体内金属掩膜版与基板紧贴在一起,开始第二次OLED阴极蒸镀制程。
步骤六、基板完成第二次OLED阴极蒸镀制程,阴极透过Mask 2开口区成膜,第二次阴极蒸镀时Panel AA区屏下摄像区域无阴极成膜,第二次蒸镀的阴极厚度为20~130 Å,然后传送至下一步制程。二次蒸镀完成后Panel AA区正常区域阴极厚度为70~250 Å,Panel AA区中屏下摄像区域阴极厚度为50~120 Å。
步骤七、基板完成第二次OLED阴极蒸镀制程后,传送至第三个阴极蒸镀腔体 MC 3(多腔体设计),或将Mask 2替换为Mask 3(单腔体设计),Mask 3与已完成第二次阴极蒸镀的基板进行对位,并对屏下摄像区域像素开口区阴极厚度进行补偿,第三次蒸镀阴极厚度为20~130 Å,即Panel AA区正常区域阴极厚度为70~250 Å,Panel AA区中屏下摄像区域非像素开口区阴极厚度为50~120 Å,屏下摄像区域像素开口区阴极厚度为70~250 Å。
于本揭示其中的一实施例中,此套金属掩膜版材料通常为Invar合金,也可用SUS合金或其他种类合金制作。此套金属掩膜版用于全面屏OLED显示装置制造蒸镀制程中的阴极蒸镀,经CCD对位作用,完成该金属掩膜版Mask 1和基板对位,使Mask1开口区与相应panel镀膜区位置对准,完成第一次阴极镀膜;在同一腔体内,将Mask 1更换为Mask 2,再次经过CCD对位,使Mask 2开口区与相应panel镀膜区位置对准,完成第二次镀膜;随后在同一腔体内将Mask 2更换为Mask 3,经过CCD对位后,进行第三次蒸镀,三次镀膜的阴极pattern在panel AA区内叠加在仪器,经第三次阴极蒸镀后Panel AA区正常区域阴极厚度为70~250 Å,Panel AA区中屏下摄像区域非像素开口区阴极厚度为50~120 Å,屏下摄像区域像素开口区阴极厚度为70~250 Å。
完成阴极制备后,基板可传入TFE制程机台内进行薄膜封装制程。
于本揭示其中的一实施例中,实际用于阴极蒸镀制程步骤如下:
1、首先将金属掩膜版Mask 1用机械手臂从Mask Stock中调出,放置在对应蒸镀阴极的腔室Mask托举装置上。
2、传送进机台的基板放置在承载基板的托举爪上,保证基板平稳放置在机台基板承载装置的托举爪上。
3、基板托举装置下降,利用基板承载装置边缘的PIN(小尺寸Mask适用)或CCD和掩模版Mask 1完成对位,使掩膜版开口区和panel需镀膜区域位置对应。
4、利用基板自身重力、平台施加的压力和机台磁板吸引使Mask与基板紧密贴合,然后开始进行OLED蒸镀制程,完成第一次阴极在panel表面沉积。
5、将Mask 1更换为Mask 2,重复上述1~4步骤。
6、将Mask 2更换为Mask 3,重复1~4步骤,即完成阴极蒸镀制程。
7、该腔体内两次阴极蒸镀制程结束后,基板托举装置将基板慢慢升起,与掩模版分离,基板上指定区域完成镀膜,并传送至下一段制程。
综上所述,本揭示的实施例提供以下至少其中一的有益效果。
1、可通过变更蒸镀阴极掩模版设计,解决现有的支持屏下摄像头的全面屏OLED面板制程中,阴极在相应屏下摄像设计区光透过率过低的问题。
2、从蒸镀制程上实现指定区域阴极减薄,省去现有制作工艺中后续激光烧蚀的工序,避免激光烧蚀对面板良率损失带来的风险。
3、利用FMM将像素开口处的阴极厚度进行补正,使不降低屏下摄像设计区透过率的同时可保证OLED device的微腔效应不会减弱,因此可在不大幅降低OLED器件效率的情况下提升屏下摄像设计区的透过率
4、现有产线无需追加设备和变更产线结构即可完成支持屏下摄像头的全面屏的制作,可降低设备采购及维护成本。
综上所述,本揭示的实施例提供一种新型柔性OLED面板蒸镀用金属掩膜版及阴极制程方法,通过设计一套异型金属掩膜掩模版,并在蒸镀阴极制程中组合应用,克服克服蒸镀阴极导致OLED面板透光率降低的问题,通过简单的设计和改进,实现屏中屏下摄像设计区指定区域阴极减薄,在现有技术上提高OLED面板指定区域的光透过率。
由于本揭示的实施例中的OLED面板、其蒸镀方法和其掩膜版组中,所述掩膜版组包括第一掩膜版以及第二掩膜版。所述第一掩膜版包括共通掩膜开口区。所述共通掩膜开口区的大小覆盖整个所述显示区。所述第二掩膜版包括异型掩膜开口区。所述异型掩膜开口区的大小覆盖除所述摄像区的所有所述显示区。所述OLED面板的阴极蒸镀方法包括:在同一基板上依照不同顺序使用第一掩膜版和第二掩膜版进行OLED面板的阴极的第一蒸镀制程和第二蒸镀制程,所述第一掩膜版如上所述的第一掩膜版,所述第二掩膜版如上所述的第二掩膜版。所述OLED面板的阴极结构包括具有摄像区的显示区、具有第一厚度的第一阴极,全面设置在所述显示区上;以及具有第二厚度的第二阴极,设置在除所述摄像区的所有所述显示区上。通过本揭示的实施例能提升所述摄像区的透过率。
尽管已经相对于一个或多个实现方式示出并描述了本揭示,但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本揭示包括所有这样的修改和变型,并且仅由所附权利要求的范围限制。特别地关于由上述组件执行的各种功能,用于描述这样的组件的术语旨在对应于执行所述组件的指定功能(例如其在功能上是等价的)的任意组件(除非另外指示),即使在结构上与执行本文所示的本说明书的示范性实现方式中的功能的公开结构不等同。此外,尽管本说明书的特定特征已经相对于若干实现方式中的仅一个被公开,但是这种特征可以与如可以对给定或特定应用而言是期望和有利的其他实现方式的一个或多个其他特征组合。而且,就术语“包括”、“具有”、“含有”或其变形被用在具体实施方式或权利要求中而言,这样的术语旨在以与术语“包含”相似的方式包括。
以上仅是本揭示的优选实施方式,应当指出,对于本领域普通技术人员,在不脱离本揭示原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本揭示的保护范围。

Claims (20)

  1. 一种OLED面板的掩膜版组,其中所述OLED面板包括具有摄像区的显示区,所述掩膜版组包括:
    第一掩膜版,包括共通掩膜开口区,所述共通掩膜开口区的大小覆盖整个所述显示区;以及
    第二掩膜版,包括异型掩膜开口区,所述异型掩膜开口区的大小覆盖除所述摄像区的所有所述显示区。
  2. 根据权利要求1所述的OLED面板的掩膜版组,其中所述掩膜版组还包括第三掩膜版,所述第三掩膜版包括精密掩膜区,所述精密掩膜区的大小覆盖整个所述摄像区,所述精密掩膜区的开口与所述摄像区的像素开口相对应。
  3. 根据权利要求2所述的OLED面板的掩膜版组,其中所述第三掩膜版还包括第三掩膜版遮蔽区和第三掩膜框架,所述精密掩膜区和所述第三掩膜版遮蔽区交替排列,所述第三掩膜框架承载所述第三掩膜版遮蔽区,所述精密掩膜区的边界大于所述显示区的边界。
  4. 根据权利要求3所述的OLED面板的掩膜版组,其中所述精密掩膜区的所述边界向所述显示区的所述边界扩展5~500 μm。
  5. 根据权利要求2所述的OLED面板的掩膜版组,其中所述第一掩膜版的厚度、所述第二掩膜版的厚度和所述第三掩膜版的厚度均为0.01~0.2 mm。
  6. 根据权利要求1所述的OLED面板的掩膜版组,其中所述第一掩膜版还包括第一掩膜版遮蔽区和第一掩膜框架,所述共通掩膜开口区和所述第一掩膜版遮蔽区交替排列,所述第一掩膜框架承载所述第一掩膜版遮蔽区,所述共通掩膜开口区的面积大于整个所述显示区的面积。
  7. 根据权利要求6所述的OLED面板的掩膜版组,其中所述共通掩膜开口区的大小向所述显示区的所有边界扩展5~500 μm。
  8. 根据权利要求1所述的OLED面板的掩膜版组,其中所述第二掩膜版还包括第二掩膜版遮蔽区和第二掩膜框架,所述异型掩膜开口区和所述第二掩膜版遮蔽区交替排列,所述第二掩膜框架承载所述第二掩膜版遮蔽区,所述异型掩膜开口区的三个边界大于所述显示区的三个边界。
  9. 根据权利要求8所述的OLED面板的掩膜版组,其中所述异型掩膜开口区的所述三个边界向所述显示区的所述三个边界扩展5~500 μm。
  10. 一种OLED面板的蒸镀方法,包括:
    在同一基板上依照不同顺序使用第一掩膜版和第二掩膜版进行OLED面板的阴极的第一蒸镀制程和第二蒸镀制程,所述第一掩膜版包括共通掩膜开口区,所述共通掩膜开口区的大小覆盖整个所述显示区,所述第二掩膜版包括异型掩膜开口区,所述异型掩膜开口区的大小覆盖除所述摄像区的所有所述显示区。
  11. 根据权利要求10所述的OLED面板的蒸镀方法,还包括:进行所述第一蒸镀制程和所述第二蒸镀制程后,使用第三掩膜版进行所述OLED面板的所述阴极的第三蒸镀制程,所述第三掩膜版包括精密掩膜区,所述精密掩膜区的大小覆盖整个所述摄像区,所述精密掩膜区的开口与所述摄像区的像素开口相对应。
  12. 根据权利要求11所述的OLED面板的蒸镀方法,其中所述第一蒸镀制程包括使用所述第一掩膜版使所述OLED面板的具有摄像区的显示区全面蒸镀具有第一厚度的第一阴极;所述第二蒸镀制程包括使用所述第二掩膜版使所述OLED面板的除所述摄像区的所有所述显示区蒸镀具有第二厚度的第二阴极,使所述摄像区的阴极厚度小于除所述摄像区的所有所述显示区的阴极厚度;所述第三蒸镀制程包括使用所述第三掩膜版使所述OLED面板的所述摄像区的像素开口蒸镀具有第三厚度的第三阴极。
  13. 根据权利要求12所述的OLED面板的蒸镀方法,其中所述第一蒸镀制程的顺序早于所述第二蒸镀制程。
  14. 根据权利要求12所述的OLED面板的蒸镀方法,其中所述第二蒸镀制程的顺序早于所述第一蒸镀制程。
  15. 根据权利要求12所述的OLED面板的蒸镀方法,其中至少分三次使用三张不同的所述第一掩膜版、所述第二掩膜版和所述第三掩膜版对所述显示区内不同的区域进行蒸镀,所述第一蒸镀制程的所述第一阴极的所述第一厚度为50~120 Å,所述第二蒸镀制程的所述第二阴极的所述第二厚度为20~130 Å,所述第三蒸镀制程的所述第三阴极的所述第三厚度为20~130 Å,除所述摄像区的所有所述显示区的阴极厚度为70~250 Å,所述显示区的所述摄像区的非像素开口区的阴极厚度为50~120 Å,所述摄像区的像素开口的阴极厚度为70~250 Å。
  16. 一种OLED面板,包括:
    阴极结构,所述阴极结构包括:
    具有摄像区的显示区;
    具有第一厚度的第一阴极,全面设置在所述显示区上;以及
    具有第二厚度的第二阴极,设置在除所述摄像区的所有所述显示区上。
  17. 根据权利要求16所述的OLED面板,还包括:具有第三厚度的第三阴极,设置在所述摄像区的像素开口上。
  18. 根据权利要求17所述的OLED面板,其中所述第一阴极的所述第一厚度为50~120 Å,所述第二阴极的所述第二厚度为20~130 Å,所述第三阴极的所述第三厚度为20~130 Å。
  19. 根据权利要求17所述的OLED面板,其中除所述摄像区的所有所述显示区的阴极厚度为70~250 Å,所述显示区的所述摄像区的非像素开口区的阴极厚度为50~120 Å,所述摄像区的像素开口的阴极厚度为70~250 Å。
  20. 根据权利要求16所述的OLED面板,其中所述阴极结构的材料由不同比例的Ag/Mg合金组成,Mg含量与所述Ag/Mg合金的比值为0%~95%。
PCT/CN2020/095124 2020-01-06 2020-06-09 Oled 面板、其蒸镀方法和其掩膜版组 WO2021139085A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20736241.9A EP3875632A4 (en) 2020-01-06 2020-06-09 OLED PANEL AND EVAPORATION METHOD AND MASK KIT THEREOF
US16/982,263 US20220020928A1 (en) 2020-01-06 2020-06-09 Oled panel, evaporation method thereof, and mask plate group thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010008432.2A CN111155055A (zh) 2020-01-06 2020-01-06 Oled面板、其蒸镀方法和其掩膜版组
CN202010008432.2 2020-01-06

Publications (1)

Publication Number Publication Date
WO2021139085A1 true WO2021139085A1 (zh) 2021-07-15

Family

ID=70561356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095124 WO2021139085A1 (zh) 2020-01-06 2020-06-09 Oled 面板、其蒸镀方法和其掩膜版组

Country Status (4)

Country Link
US (1) US20220020928A1 (zh)
EP (1) EP3875632A4 (zh)
CN (1) CN111155055A (zh)
WO (1) WO2021139085A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496260B (zh) 2015-10-26 2020-05-19 Oti照明公司 用于图案化表面上覆层的方法和包括图案化覆层的装置
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
KR20200006569A (ko) 2017-05-17 2020-01-20 오티아이 루미오닉스 인크. 패턴화 코팅 위에 전도성 코팅을 선택적으로 증착시키는 방법 및 전도성 코팅을 포함하는 디바이스
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
CN113785411B (zh) 2019-03-07 2023-04-11 Oti照明公司 用于形成成核抑制涂层的材料和结合所述成核抑制涂层的装置
KR20220046551A (ko) 2019-06-26 2022-04-14 오티아이 루미오닉스 인크. 광 회절 특성을 갖는 광 투과 영역을 포함하는 광전자 디바이스
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
CN114342068A (zh) 2019-08-09 2022-04-12 Oti照明公司 包含辅助电极和分区的光电子装置
CN111155055A (zh) * 2020-01-06 2020-05-15 武汉华星光电半导体显示技术有限公司 Oled面板、其蒸镀方法和其掩膜版组
CN113088875B (zh) * 2021-04-02 2022-12-13 京东方科技集团股份有限公司 掩膜版及其制备方法
CN115394203A (zh) * 2022-09-13 2022-11-25 友达光电(昆山)有限公司 显示面板、显示装置及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103098A (ja) * 2005-09-30 2007-04-19 Seiko Epson Corp 有機el装置の製造方法、有機el装置及び電子機器
CN109786582A (zh) * 2019-03-08 2019-05-21 京东方科技集团股份有限公司 一种掩膜板、显示背板、显示面板和显示装置
CN109920931A (zh) * 2019-03-04 2019-06-21 华为技术有限公司 显示终端、掩膜组件、蒸镀系统及其控制方法
CN110518034A (zh) * 2019-07-24 2019-11-29 武汉华星光电半导体显示技术有限公司 Oled显示屏及其制作方法、oled显示装置
CN111155055A (zh) * 2020-01-06 2020-05-15 武汉华星光电半导体显示技术有限公司 Oled面板、其蒸镀方法和其掩膜版组

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062171B2 (ja) * 2003-05-28 2008-03-19 ソニー株式会社 積層構造の製造方法
KR100692865B1 (ko) * 2004-10-29 2007-03-09 엘지전자 주식회사 유기 전계발광표시소자 및 그 제조방법
KR101354296B1 (ko) * 2010-11-24 2014-01-23 엘지디스플레이 주식회사 패턴드 리타더 제조 방법
JPWO2012073269A1 (ja) * 2010-11-29 2014-05-19 パナソニック株式会社 有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置
KR101971102B1 (ko) * 2011-04-20 2019-04-23 삼성디스플레이 주식회사 유기 전계 발광 장치
CN103187432A (zh) * 2013-03-20 2013-07-03 北京京东方光电科技有限公司 一种掩膜板、oled透明显示面板及其制造方法
CN103715372B (zh) * 2013-12-26 2017-08-25 京东方科技集团股份有限公司 Oled显示面板及其制作方法
CN104134681B (zh) * 2014-06-17 2018-01-23 京东方科技集团股份有限公司 一种有机发光二极管显示面板及其制备方法、掩膜板
US20180040855A1 (en) * 2016-08-04 2018-02-08 Hon Hai Precision Industry Co., Ltd. Deposition mask for making oled display panel
KR20180041294A (ko) * 2016-10-13 2018-04-24 삼성디스플레이 주식회사 마스크 조립체, 표시 장치의 제조장치 및 표시 장치의 제조방법
KR102439873B1 (ko) * 2017-03-10 2022-09-05 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CN107385391A (zh) * 2017-07-14 2017-11-24 京东方科技集团股份有限公司 掩膜板、oled显示基板及其制作方法、显示装置
JP2019046599A (ja) * 2017-08-31 2019-03-22 株式会社ジャパンディスプレイ 表示装置
US20190131585A1 (en) * 2017-11-01 2019-05-02 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Apparatus of pecvd and manufacturing method of oled panel
CN108517490A (zh) * 2018-05-11 2018-09-11 云谷(固安)科技有限公司 掩膜板及其制造方法
CN109306448A (zh) * 2018-11-12 2019-02-05 上海天马有机发光显示技术有限公司 掩膜组件、蒸镀装置、蒸镀方法、阵列基板及显示面板
CN109371361A (zh) * 2018-12-15 2019-02-22 武汉华星光电半导体显示技术有限公司 掩膜板组件和显示面板及其制作方法
CN109957754B (zh) * 2019-04-09 2021-04-23 京东方科技集团股份有限公司 掩膜板组件、oled显示面板及其制作方法、显示装置
CN110444125B (zh) * 2019-06-25 2022-03-08 荣耀终端有限公司 显示屏、终端
CN110473988B (zh) * 2019-08-02 2020-11-10 武汉华星光电半导体显示技术有限公司 一种显示面板制程用掩模版及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103098A (ja) * 2005-09-30 2007-04-19 Seiko Epson Corp 有機el装置の製造方法、有機el装置及び電子機器
CN109920931A (zh) * 2019-03-04 2019-06-21 华为技术有限公司 显示终端、掩膜组件、蒸镀系统及其控制方法
CN109786582A (zh) * 2019-03-08 2019-05-21 京东方科技集团股份有限公司 一种掩膜板、显示背板、显示面板和显示装置
CN110518034A (zh) * 2019-07-24 2019-11-29 武汉华星光电半导体显示技术有限公司 Oled显示屏及其制作方法、oled显示装置
CN111155055A (zh) * 2020-01-06 2020-05-15 武汉华星光电半导体显示技术有限公司 Oled面板、其蒸镀方法和其掩膜版组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3875632A4 *

Also Published As

Publication number Publication date
EP3875632A1 (en) 2021-09-08
CN111155055A (zh) 2020-05-15
EP3875632A4 (en) 2022-09-14
US20220020928A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
WO2021139085A1 (zh) Oled 面板、其蒸镀方法和其掩膜版组
US11552271B2 (en) Mask plate for fabricating display panel and application thereof
JP4170179B2 (ja) 有機elパネルの製造方法および有機elパネル
CN111524460B (zh) 显示面板、掩膜板和显示面板的制作方法
CN113097409B (zh) 显示面板、显示装置及显示面板的制作方法
WO2017117999A1 (zh) 金属掩模板及其制作方法
US9660000B2 (en) Organic light emitting diode (OLED) array substrate and fabricating method thereof, display device
CN110867524B (zh) 显示面板及其制作方法、显示装置
CN111020489A (zh) 蒸镀装置、蒸镀方法以及显示装置
WO2020118949A1 (zh) 掩膜版及采用该掩膜版的掩膜装置
CN113113456B (zh) 一种oled显示面板及其制备方法、显示装置
CN109950285A (zh) 一种阵列基板及其制作方法、掩膜版、显示装置
US11917893B2 (en) Mask plate, method for manufacturing mask plate, and organic light-emitting device
CN110634933A (zh) 一种oled显示面板、显示装置及制备方法
US11424293B2 (en) Method for manufacturing display panel
US11588128B2 (en) Electrode exhaust structure, electrode, display panel and manufacturing method therefor, and display apparatus
US20230422561A1 (en) Flexible Display Device and Method of Manufacturing the Same
WO2023197356A1 (zh) 显示面板及其制作方法、显示装置
KR20130046302A (ko) 유기전계 발광 표시장치 및 그 제조방법
CN111584553A (zh) Oled像素排布结构、oled显示面板及显示面板的制作方法
US7652421B2 (en) Organic EL display
US20210351246A1 (en) Pixel layout structure of oled, oled display panel, and manufacturing method thereof
CN111341933B (zh) 一种显示面板及其制备方法、显示装置
CN113013207B (zh) 一种显示基板及其制备方法、显示装置
CN117396047A (zh) 显示面板的制备方法、显示面板和显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020736241

Country of ref document: EP

Effective date: 20200713

NENP Non-entry into the national phase

Ref country code: DE