WO2021139038A1 - 有机发光二极管器件结构及其制造方法 - Google Patents

有机发光二极管器件结构及其制造方法 Download PDF

Info

Publication number
WO2021139038A1
WO2021139038A1 PCT/CN2020/086019 CN2020086019W WO2021139038A1 WO 2021139038 A1 WO2021139038 A1 WO 2021139038A1 CN 2020086019 W CN2020086019 W CN 2020086019W WO 2021139038 A1 WO2021139038 A1 WO 2021139038A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite material
organic light
device structure
boron nitride
Prior art date
Application number
PCT/CN2020/086019
Other languages
English (en)
French (fr)
Inventor
孙佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/958,764 priority Critical patent/US11793056B2/en
Publication of WO2021139038A1 publication Critical patent/WO2021139038A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the technical field of organic light emitting diodes, in particular to an organic light emitting diode device structure and a manufacturing method thereof.
  • OLED organic light-emitting diode
  • Figure 1a shows the basic structure of the current OLED panel 10, including a foamed copper foil 11, a back plate 12 (used to protect the OLED display panel), a flexible substrate layer 2, an array segment film layer 3, an organic light emitting layer 4, and a thin film encapsulation layer 5. , Touch control layer 6, polarizer 7 and glass cover 8.
  • the commonly used backplane 12 has poor light transmittance (average transmittance below 60%), which cannot meet the high light transmittance requirements of future under-screen cameras (Figure 1b) for OLED devices;
  • the backplane 12 is made of polymer material, and its thermal conductivity is poor.
  • the thermal conductivity is about 0.1 ⁇ 0.2 W/mK. It cannot conduct the heat generated by the circuit in the OLED panel from below the OLED device, which is easy to cause the OLED device. Overall failure.
  • the current OLED panels have the following problems:
  • the commonly used backplane 12 has poor light transmittance (average transmittance below 60%), which cannot meet the high light transmittance requirements of future under-screen cameras (Figure 1b) for OLED devices;
  • the backplane 12 is made of polymer material, and its thermal conductivity is poor.
  • the thermal conductivity is about 0.1 ⁇ 0.2 W/mK. It cannot conduct the heat generated by the circuit in the OLED panel from below the OLED device, which is easy to cause the OLED device. Overall failure.
  • an object of the present disclosure is to provide an organic light emitting diode (OLED) device structure and a manufacturing method thereof, which can solve the problem of low transmittance, poor heat dissipation, and easy buffer layer in the existing OLED panel. Problems such as peeling and easy breakage.
  • OLED organic light emitting diode
  • an organic light-emitting diode device structure which includes: a base layer, an array segment film layer, an organic light-emitting layer, and a thin-film encapsulation layer sequentially arranged from bottom to top; a touch layer, a polarizer, and a cover
  • the plate glass is sequentially arranged above the film encapsulation layer; the composite material layer is arranged below the base layer; and the foamed copper foil layer is arranged below the composite material layer.
  • the base layer is a flexible base layer.
  • the composite material layer includes a boron nitride nanosheet-nanocellulose composite material.
  • the boron nitride nanosheet content of the boron nitride nanosheet-nanocellulose composite material is greater than 0.1 wt% and less than 7 wt%.
  • the material of the composite material layer is formed by processes such as spray coating, spin coating, and inkjet printing.
  • the present disclosure also provides a manufacturing method of an organic light emitting diode device structure, which includes the following steps:
  • a foamed copper foil layer is formed under the composite material layer, and a cover glass is formed above the polarizer.
  • the base layer is a flexible base layer.
  • the composite material layer includes a boron nitride nanosheet-nanocellulose composite material.
  • the content of the boron nitride nanosheets of the boron nitride nanosheet-nanocellulose composite material is greater than 0.1 wt% and less than 7 wt%.
  • the material of the composite material layer is formed by processes such as spray coating, spin coating, and inkjet printing.
  • the present disclosure provides an organic light emitting diode (OLED) device structure and a manufacturing method thereof, which can solve the problems of low transmittance of the backplane layer, poor heat dissipation, easy peeling of the buffer layer, easy breakage, and the like in the existing OLED panel.
  • OLED organic light emitting diode
  • FIG. 1a is a schematic diagram of the structure of an existing organic light emitting diode (OLED) panel
  • Figure 1b is a schematic diagram of an existing OLED panel used to install an under-screen camera
  • FIG. 2 is a schematic diagram of the structure of the OLED device of the present invention.
  • FIG. 3 is a step diagram of the manufacturing method of the OLED device structure of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of the OLED device structure of the present invention.
  • the purpose of the present disclosure is to provide an organic light emitting diode device structure 20, which includes: a base layer 21, an array segment film layer 22, an organic light emitting layer 23, and a thin film encapsulation layer 24 arranged in sequence from bottom to top
  • the touch layer 25, the polarizer 26 and the cover glass 27 are sequentially disposed above the film encapsulation layer 24; the composite material layer 28 is disposed below the base layer 21; and the foamed copper foil layer 29 is disposed on the composite material layer 28 Below.
  • the base layer 21 is a flexible base layer
  • the composite material layer 28 includes boron nitride nanosheets-nanocellulose composite material, and the content of the boron nitride nanosheets of the boron nitride nanosheet-nanocellulose composite material is greater than 0.1 wt% And less than 7 wt%, and most preferably less than 5 wt%.
  • the penetration of the composite material layer 28 can reach more than 80%, so the penetration of the composite material layer 28 will be more than 33.3% higher than that of the traditional backplane material ( The transmittance of the backplane material is below 60%), which can greatly increase the overall light transmittance of the OLED device, making it more suitable for the development trend of under-screen cameras.
  • the traditional backplane material is in the blue wave band (400 nm ⁇ 450
  • the light transmittance of nm) is basically 0, which cannot meet the requirements of the under-screen camera for full-wavelength light, that is, the under-screen camera cannot perceive blue light, and then cannot image normally.
  • the boron nitride nanosheet-nanocellulose composite material of the composite material layer 28 of the present invention has a relatively high transmittance (over 60%) in the blue wavelength band, so the normal imaging of the under-screen camera can be ensured.
  • the base layer 21 is an organic substance, and the surface is rich in hydrophilic groups.
  • the nanocellulose surface of the boron nitride nanosheet-nanocellulose composite material of the composite material layer 28 is also rich in a large number of hydrophilic group hydroxyl groups, which can greatly improve the adhesion between the two at the interface of the film layer. Binding force, thereby effectively avoiding the peeling problem of flexible substrate and backplane material in the prior art;
  • the boron nitride nanosheets contained in the composite material layer 28-the boron nitride nanosheets contained in the nanocellulose composite material have high thermal conductivity characteristics.
  • the content of the boron nitride nanosheets is 5%, the boron nitride nanosheets
  • the thermal conductivity of nanosheet-nanocellulose can reach 26.2W/mK, which is much higher than the thermal conductivity of the backplane material (about 0.1 ⁇ 0.2 W/mK), which can effectively solve the heat dissipation problem of OLED devices.
  • FIGS. 3 to 4 are respectively a step diagram of the manufacturing method of the organic light emitting diode (OLED) device structure 20 of the present invention and a schematic diagram of the manufacturing process of the OLED device structure of the present invention.
  • the manufacturing method of the OLED device structure of the present invention includes the following steps:
  • a foamed copper foil layer 29 is formed below the composite material layer 28, and a cover glass 27 is formed above the polarizer 26.
  • the base layer 21 is a flexible base layer
  • the composite material layer 28 includes a boron nitride nanosheet-nanocellulose composite material
  • the boron nitride nanosheet content of the boron nitride nanosheet-nanocellulose composite material is greater than 0.1 wt% and less than 7 wt%, and most preferably less than 5 wt%.
  • the processes used include, but are not limited to, spray coating, spin coating, inkjet printing, and the like.
  • the touch layer 25, the polarizer 26, the foamed copper foil layer 29, and the cover glass 27 can all be prepared according to existing procedures, so the present invention can be introduced into the existing manufacturing process in the most economical way .
  • the base layer 21 can be further adopted as a double-layer flexible base layer and a single-layer buffer layer; that is, the base layer 21 is distinguished as the first flexible base layer.
  • the layer 211, the buffer layer 212 and the second flexible base layer 213 can also be introduced into the existing manufacturing process in the most economical manner.
  • the penetration of the composite material layer 28 can reach more than 80%, so the penetration of the composite material layer 28 will be more than 33.3% higher than that of the traditional backplane material ( The transmittance of the backplane material is below 60%), which can greatly increase the overall light transmittance of the OLED device, making it more suitable for the development trend of under-screen cameras.
  • the traditional backplane material is in the blue wave band (400 nm ⁇ 450
  • the light transmittance of nm) is basically 0, which cannot meet the requirements of the under-screen camera for full-wavelength light, that is, the under-screen camera cannot perceive blue light, and then cannot image normally.
  • the boron nitride nanosheet-nanocellulose composite material of the composite material layer 28 of the present invention has a relatively high transmittance (over 60%) in the blue wavelength band, so the normal imaging of the under-screen camera can be ensured.
  • the base layer 21 is an organic substance, and the surface is rich in hydrophilic groups.
  • the nanocellulose surface of the boron nitride nanosheet-nanocellulose composite material of the composite material layer 28 is also rich in a large number of hydrophilic group hydroxyl groups, which can greatly improve the adhesion between the two at the interface of the film layer. Binding force, thereby effectively avoiding the peeling problem of flexible substrate and backplane material in the prior art;
  • the boron nitride nanosheets contained in the composite material layer 28-the boron nitride nanosheets contained in the nanocellulose composite material have high thermal conductivity characteristics.
  • the content of the boron nitride nanosheets is 5%, the boron nitride nanosheets
  • the thermal conductivity of nanosheet-nanocellulose can reach 26.2W/mK, which is much higher than the thermal conductivity of the backplane material (about 0.1 ⁇ 0.2 W/mK), which can effectively solve the heat dissipation problem of OLED devices.
  • the OLED device structure and the manufacturing method thereof of the present invention can solve the problems of low transmittance of the backplane layer, poor heat dissipation, easy peeling of the buffer layer, and easy breakage in the existing OLED panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本揭示提供了一种有机发光二极管器件结构及其制造方法。有机发光二极管器件结构包括:基体层、阵列段膜层、有机发光层、薄膜封装层、触控层、偏光片、盖板玻璃、复合材料层以及泡沫铜箔层。有机发光二极管器件结构能够解决现有有机发光二极管面板中背板层穿透率低、散热差、易于缓冲层剥离、易断裂等问题。

Description

有机发光二极管器件结构及其制造方法 技术领域
本揭示涉及有机发光二极管的技术领域,特别涉及一种有机发光二级管器件结构及其制造方法。
背景技术
有机发光二级管(OLED)器件因其较传统液晶显示(LCD)相比具有重量轻巧,广视角,响应时间快,耐低温,发光效率高等优点,因此在显示行业一直被视其为下一代新型显示技术。特别是OLED可以在柔性基板上做成能弯曲的柔性显示屏,这更是OLED显示面板的巨大优势。
图1a为当前的OLED面板10的基本结构,包括泡沫铜箔11、背板12(用于保护OLED显示面板)、柔性基板层2、阵列段膜层3、有机发光层4、薄膜封装层5、触控层6、偏光片7及玻璃盖板8。
然而,在制程过程中,当前的OLED面板存在如下问题:
1、常用的背板12光穿透性差(平均穿透率为60%以下),无法满足未来屏下摄像头(图1b)对OLED器件的高光穿透率要求;
2、背板12和柔性基板2的粘结性较差,导致OLED面板在模组制程后易发生剥离;
3、背板12为高分子材料,其热传导性能较差,热导率约为0.1~0.2 W/mK,无法将OLED面板内电路工作时产生的热量从OLED器件下方传导出去,易造成OLED器件整体失效。
4、在和玻璃盖板8贴合时(如双曲面或四曲面),由于背板材料机械强度低,容易在弯折处发生断裂。
因此,有必要解决以上问题,提升OLED器件的竞争力和良率。
技术问题
当前的OLED面板存在如下问题:
1、常用的背板12光穿透性差(平均穿透率为60%以下),无法满足未来屏下摄像头(图1b)对OLED器件的高光穿透率要求;
2、背板12和柔性基板2的粘结性较差,导致OLED面板在模组制程后易发生剥离;
3、背板12为高分子材料,其热传导性能较差,热导率约为0.1~0.2 W/mK,无法将OLED面板内电路工作时产生的热量从OLED器件下方传导出去,易造成OLED器件整体失效。
4、在和玻璃盖板8贴合时(如双曲面或四曲面),由于背板材料机械强度低,容易在弯折处发生断裂。
因此,有必要解决以上问题,提升OLED器件的竞争力和良率。
技术解决方案
为解决上述技术问题,本揭示的一目的在于提供一种有机发光二极管(OLED)器件结构及其制造方法,其能够解决现有OLED面板中背板层穿透率低、散热差、易于缓冲层剥离、易断裂等问题。
为达成上述目的,本揭示提供一种有机发光二极管器件结构,其包括:由下至上依序设置的基体层、阵列段膜层、有机发光层及薄膜封装层;触控层、偏光片及盖板玻璃,依序设置于所述薄膜封装层上方;复合材料层,设置于所述基体层下方;以及泡沫铜箔层,设置于所述复合材料层下方。
于本揭示的实施例中,所述基体层为柔性基体层。
于本揭示的实施例中,所述复合材料层包括氮化硼纳米片-纳米纤维素复合材料。
于本揭示的实施例中,所述氮化硼纳米片-纳米纤维素复合材料的氮化硼纳米片含量大于0.1 wt%且小于7 wt%。
于本揭示的实施例中,所述复合材料层的材料由喷涂、旋涂、喷墨打印等工艺所形成。
为达成上述目的,本揭示亦提供一种有机发光二极管器件结构的制造方法,包含下列步骤:
提供基体层;
于所述基体层上依序形成阵列段膜层、有机发光层及薄膜封装层;
于所述薄膜封装层上依序形成触控层及偏光片;
于所述基体层下方形成复合材料层;以及
于所述复合材料层下方形成泡沫铜箔层,且于所述偏光片上方形成盖板玻璃。
于本揭示的实施例中,所述基体层为柔性基体层。
于本揭示的实施例中,所述复合材料层包括氮化硼纳米片-纳米纤维素复合材料。
于本揭示的实施例中,所述氮化硼纳米片-纳米纤维素复合材料的氮化硼纳米片含量大于0.1 wt%且小于7 wt%。
于本揭示的实施例中,所述复合材料层的材料由喷涂、旋涂、喷墨打印等工艺所形成。
为让本揭示的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下。
有益效果
本揭示提供一种有机发光二极管(OLED)器件结构及其制造方法,其能够解决现有OLED面板中背板层穿透率低、散热差、易于缓冲层剥离、易断裂等问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为现有有机发光二级管(OLED)面板的结构示意图;
图1b为现有OLED面板用于安装屏下摄像头的示意图;
图2为本发明的OLED器件结构的示意图;
图3为本发明的OLED器件结构的制造方法步骤图;
图4为本发明的OLED器件结构制备过程示意图;以及
图5为本发明的OLED器件结构的另一实施例示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在图中,结构相似的单元是以相同标号表示。
如图2所示,本揭示的目的在于提供一种机发光二极管器件结构20,其包括:由下至上依序设置的基体层21、阵列段膜层22、有机发光层23及薄膜封装层24;触控层25、偏光片26及盖板玻璃27,依序设置于薄膜封装层24上方;复合材料层28,设置于基体层21下方;以及泡沫铜箔层29,设置于复合材料层28下方。
其中,基体层21为柔性基体层,复合材料层28包括氮化硼纳米片-纳米纤维素复合材料,且氮化硼纳米片-纳米纤维素复合材料的氮化硼纳米片含量大于0.1 wt%且小于7 wt%,且最佳为小于5 wt%。
详细而言,将现有技术所使用的背板12以本发明的复合材料层28替代,将具有以下优点:
1、当氮化硼纳米片的含量为5%时,复合材料层28的穿透度可达80%以上,因此复合材料层28的穿透度将比传统背板材料高出33.3%以上(背板材料穿透度为60%以下),其可大幅提升OLED器件的整体光透过率,使其更加适用屏下摄像头的发展趋势。
另外,传统背板材料在蓝光波段(400 nm~450 nm)的光透过率基本为0,无法满足屏下摄像头对全波段光线的要求,即所述屏下摄像头无法感知蓝光,继而无法正常成像。而本發明的复合材料层28所具有的氮化硼纳米片-纳米纤维素复合材料在蓝光波段具有较高的穿透率(60%以上),故得以保证所述屏下摄像头的正常成像。
2、基体层21属于有机物,表面富含亲水基团。而复合材料层28所具有的氮化硼纳米片-纳米纤维素复合材料中的纳米纤维素表面也富含大量的亲水基团羟基,其可以大大地提高二者在膜层界面处的粘结力,从而有效避免现有技术中柔性基板和背板材料的剥离问题;
3、复合材料层28所具有的氮化硼纳米片-纳米纤维素复合材料内所含有的氮化硼纳米片具有高导热特性,当氮化硼纳米片的含量为5%时,氮化硼纳米片-纳米纤维素的热导率可达26.2W/mK,远远高于背板材料的热导率(约为0.1~0.2 W/mK),可以有效解决OLED器件的散热问题。
4、复合材料层28所具有的氮化硼纳米片-纳米纤维素的氮化硼纳米片含量为5%时,仍然保持超高的机械性能,其拉伸应力接近200 MPa,使得其在弯折贴合时不会发生断裂。
如图3-图4所示,其分别为本发明的有机发光二极管(OLED)器件结构20的制造方法步骤图及本发明的OLED器件结构制备过程示意图。本发明的OLED器件结构的制造方法包含下列步骤:
S1:提供基体层21;
S2:于基体层21上依序形成阵列段膜层22、有机发光层23及薄膜封装层24;
S3:于薄膜封装层24上依序形成触控层25及偏光片26;
S4:于基体层21下方形成复合材料层28;以及
S5:于复合材料层28下方形成泡沫铜箔层29,且于偏光片26上方形成盖板玻璃27。
其中,基体层21为柔性基体层,复合材料层28包括氮化硼纳米片-纳米纤维素复合材料,且所述氮化硼纳米片-纳米纤维素复合材料的氮化硼纳米片含量大于0.1 wt%且小于7 wt%,且最佳为小于5 wt%。
当于基体层21下方形成复合材料层28时,其所采用的工艺包括但不限于喷涂、旋涂、喷墨打印等。
另一方面,触控层25、偏光片26、泡沫铜箔层29及盖板玻璃27等结构皆可依据现有程序进行制备,故能够以最经济的方式将本发明导入至现有制程当中。
如图5所示,于本发明的另一实施例中,可进一步将基体层21采取为双层柔性基底层和单层缓冲层的设置;亦即,将基体层21区别为第一柔性基体层211、缓冲层212及第二柔性基体层213,而同样能够以最经济的方式将本发明导入至现有制程当中。
将现有技术所使用的背板12以本发明的复合材料层28替代,将具有以下优点:
1、当氮化硼纳米片的含量为5%时,复合材料层28的穿透度可达80%以上,因此复合材料层28的穿透度将比传统背板材料高出33.3%以上(背板材料穿透度为60%以下),其可大幅提升OLED器件的整体光透过率,使其更加适用屏下摄像头的发展趋势。
另外,传统背板材料在蓝光波段(400 nm~450 nm)的光透过率基本为0,无法满足屏下摄像头对全波段光线的要求,即所述屏下摄像头无法感知蓝光,继而无法正常成像。而本發明的复合材料层28所具有的氮化硼纳米片-纳米纤维素复合材料在蓝光波段具有较高的穿透率(60%以上),故得以保证所述屏下摄像头的正常成像。
2、基体层21属于有机物,表面富含亲水基团。而复合材料层28所具有的氮化硼纳米片-纳米纤维素复合材料中的纳米纤维素表面也富含大量的亲水基团羟基,其可以大大地提高二者在膜层界面处的粘结力,从而有效避免现有技术中柔性基板和背板材料的剥离问题;
3、复合材料层28所具有的氮化硼纳米片-纳米纤维素复合材料内所含有的氮化硼纳米片具有高导热特性,当氮化硼纳米片的含量为5%时,氮化硼纳米片-纳米纤维素的热导率可达26.2W/mK,远远高于背板材料的热导率(约为0.1~0.2 W/mK),可以有效解决OLED器件的散热问题。
4、复合材料层28所具有的氮化硼纳米片-纳米纤维素的氮化硼纳米片含量为5%时,仍然保持超高的机械性能,其拉伸应力接近200 MPa,使得其在弯折贴合时不会发生断裂。
如此一来,本发明的OLED器件结构及其制造方法,其能够解决现有OLED面板中背板层穿透率低、散热差、易于缓冲层剥离、易断裂等问题。
以上仅是本揭示的优选实施方式,应当指出,对于本领域普通技术人员,在不脱离本揭示原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本揭示的保护范围。

Claims (10)

  1. 一种有机发光二极管器件结构,包括:
    由下至上依序设置的基体层、阵列段膜层、有机发光层及薄膜封装层;
    触控层、偏光片及盖板玻璃,依序设置于所述薄膜封装层上方;
    复合材料层,设置于所述基体层下方;以及
    泡沫铜箔层,设置于所述复合材料层下方。
  2. 如权利要求1所述的有机发光二极管器件结构,其中,所述基体层为柔性基体层。
  3. 如权利要求2所述的有机发光二极管器件结构,其中,所述复合材料层包括氮化硼纳米片-纳米纤维素复合材料。
  4. 如权利要求3所述的有机发光二极管器件结构,其中,所述氮化硼纳米片-纳米纤维素复合材料的氮化硼纳米片含量大于0.1 wt%且小于7wt%。
  5. 如权利要求1所述的有机发光二极管器件结构,其中,所述复合材料层的材料由喷涂、旋涂、喷墨打印等工艺所形成。
  6. 一种有机发光二极管器件结构的制造方法,包括下列步骤:
    提供基体层;
    于所述基体层上依序形成阵列段膜层、有机发光层及薄膜封装层;
    于所述薄膜封装层上依序形成触控层及偏光片;
    于所述基体层下方形成复合材料层;以及
    于所述复合材料层下方形成泡沫铜箔层,且于所述偏光片上方形成盖板玻璃。
  7. 如权利要求6所述的制造方法,其中,所述基体层为柔性基体层。
  8. 如权利要求7所述的制造方法,其中,所述复合材料层包括氮化硼纳米片-纳米纤维素复合材料。
  9. 如权利要求8所述的制造方法,其中,所述氮化硼纳米片-纳米纤维素复合材料的氮化硼纳米片含量大于0.1wt%小于7 wt%。
  10. 如权利要求6所述的制造方法,其中,所述复合材料层的材料由喷涂、旋涂、喷墨打印等工艺所形成。
PCT/CN2020/086019 2020-01-06 2020-04-22 有机发光二极管器件结构及其制造方法 WO2021139038A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/958,764 US11793056B2 (en) 2020-01-06 2020-04-22 OLED device structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010008368.8 2020-01-06
CN202010008368.8A CN111180600B (zh) 2020-01-06 2020-01-06 有机发光二极管器件结构及其制造方法

Publications (1)

Publication Number Publication Date
WO2021139038A1 true WO2021139038A1 (zh) 2021-07-15

Family

ID=70657829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086019 WO2021139038A1 (zh) 2020-01-06 2020-04-22 有机发光二极管器件结构及其制造方法

Country Status (3)

Country Link
US (1) US11793056B2 (zh)
CN (1) CN111180600B (zh)
WO (1) WO2021139038A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130470B (zh) * 2021-04-21 2022-08-16 深圳市芯视佳半导体科技有限公司 一种微显示器结构及其制作方法
CN116618275B (zh) * 2023-06-08 2024-04-05 南昌航空大学 一种复合泡沫铜吸液芯、其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977773A (zh) * 2017-04-21 2017-07-25 深圳先进技术研究院 一种氮化硼纳米管‑纳米纤维素纤维复合材料及其制备方法
CN107099045A (zh) * 2017-06-13 2017-08-29 南京林业大学 一种高导热纳米纤维素基电气绝缘复合膜的制备方法
CN109627471A (zh) * 2018-12-04 2019-04-16 中科院广州化学有限公司南雄材料生产基地 一种高导热柔性膜的制备方法及其应用
CN109817829A (zh) * 2019-01-31 2019-05-28 武汉华星光电半导体显示技术有限公司 散热膜及显示面板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090302295A1 (en) * 2003-08-25 2009-12-10 Peter Schwartz Structures & Methods for Combining Carbon Nanotube Array and Organic Materials as a Variable Gap Interposer for Removing Heat from Solid-State Devices
CN104966790B (zh) * 2015-05-14 2018-03-09 信利(惠州)智能显示有限公司 集成触控amoled显示器件及其制备方法
CN106531902B (zh) * 2016-11-16 2020-12-29 广州宏庆电子有限公司 一种极薄柔性散热膜及其制作方法
CN107611161B (zh) * 2017-09-11 2021-04-27 上海天马有机发光显示技术有限公司 柔性显示面板及显示装置
CN109980127B (zh) * 2017-12-27 2021-05-18 Tcl科技集团股份有限公司 一种基底及其制备方法、发光器件和显示屏
CN108447886B (zh) * 2018-01-19 2020-08-25 广州国显科技有限公司 柔性显示屏及其制作方法与具有该柔性显示屏的显示器
CN109637363B (zh) * 2019-01-31 2020-05-22 武汉华星光电半导体显示技术有限公司 双面显示面板的背板结构、双面显示面板及其制作方法
US20200251677A1 (en) * 2019-01-31 2020-08-06 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Heat dissipation film and display panel
US11275460B2 (en) * 2019-04-26 2022-03-15 Samsung Display Co., Ltd. Display device
CN110164323A (zh) * 2019-05-23 2019-08-23 武汉华星光电半导体显示技术有限公司 一种显示屏及电子装置
CN110176550B (zh) * 2019-06-18 2021-12-07 京东方科技集团股份有限公司 封装盖板的制备方法、封装盖板、显示面板及显示装置
CN110491914A (zh) * 2019-08-01 2019-11-22 武汉华星光电半导体显示技术有限公司 柔性发光面板、柔性发光面板的制备方法及显示设备
WO2021022405A1 (zh) * 2019-08-02 2021-02-11 京东方科技集团股份有限公司 显示装置和显示装置的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977773A (zh) * 2017-04-21 2017-07-25 深圳先进技术研究院 一种氮化硼纳米管‑纳米纤维素纤维复合材料及其制备方法
CN107099045A (zh) * 2017-06-13 2017-08-29 南京林业大学 一种高导热纳米纤维素基电气绝缘复合膜的制备方法
CN109627471A (zh) * 2018-12-04 2019-04-16 中科院广州化学有限公司南雄材料生产基地 一种高导热柔性膜的制备方法及其应用
CN109817829A (zh) * 2019-01-31 2019-05-28 武汉华星光电半导体显示技术有限公司 散热膜及显示面板

Also Published As

Publication number Publication date
US11793056B2 (en) 2023-10-17
US20230157140A1 (en) 2023-05-18
CN111180600B (zh) 2021-09-03
CN111180600A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
US11411189B2 (en) Flexible OLED module stacked structure and manufacturing method thereof
WO2018072502A1 (zh) 显示面板和显示装置
US20210349341A1 (en) Display device
WO2020124700A1 (zh) 柔性显示装置的制作方法及柔性显示装置
CN105470407A (zh) 柔性有机发光显示装置
WO2015043165A1 (zh) 一种柔性基板及其制作方法、以及显示装置
CN109461839B (zh) Oled显示基板及其制作方法、显示装置
KR20160016267A (ko) 플렉서블 표시장치 및 이의 제조방법
CN109360901B (zh) 一种显示装置、柔性oled显示面板及其制作方法
WO2021139038A1 (zh) 有机发光二极管器件结构及其制造方法
WO2017020372A1 (zh) 柔性显示屏的制作方法、柔性玻璃基板及柔性显示屏
WO2021035835A1 (zh) 柔性oled显示面板的制备方法及柔性oled显示面板
WO2021147675A1 (zh) 柔性显示屏、柔性显示装置及柔性显示屏的制作方法
CN110034158A (zh) 显示装置
WO2020232913A1 (zh) 显示面板及制作方法
WO2020124805A1 (zh) 显示屏及显示装置
CN111276052A (zh) 柔性显示面板及其制备方法
WO2020191859A1 (zh) 一种有机发光二极管显示面板、显示模组及电子装置
KR101845440B1 (ko) 플렉서블 표시장치의 제조 방법
WO2020192292A1 (zh) 柔性显示装置及其制备方法
CN109166890A (zh) 柔性显示面板及其制备方法及柔性显示装置
CN108767127A (zh) 一种显示面板的制作方法、显示面板及显示装置
US10804342B1 (en) Display panel and preparation method therefor, and display device
WO2022165947A1 (zh) 柔性显示模组
US10978679B2 (en) Method of manufacturing composite film layer and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911870

Country of ref document: EP

Kind code of ref document: A1