WO2021136195A1 - 电池组均衡方法和装置、电子设备、计算机可读存储介质 - Google Patents
电池组均衡方法和装置、电子设备、计算机可读存储介质 Download PDFInfo
- Publication number
- WO2021136195A1 WO2021136195A1 PCT/CN2020/140256 CN2020140256W WO2021136195A1 WO 2021136195 A1 WO2021136195 A1 WO 2021136195A1 CN 2020140256 W CN2020140256 W CN 2020140256W WO 2021136195 A1 WO2021136195 A1 WO 2021136195A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- open circuit
- target
- circuit voltage
- discharge
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This application relates to rechargeable battery technology, in particular to a battery pack balancing method and device, electronic equipment, and computer-readable storage media.
- lithium-ion power batteries are used as key core components of terminals, such as mobile phones and electric vehicles.
- terminals such as mobile phones and electric vehicles.
- inconsistencies often occur between the single cells, which will cause the overall failure of the battery pack, seriously affect the safety and service life of the battery pack, and threaten the normal use of the terminal.
- the existing method for balancing the battery pack is determined by detecting the inconsistency of the working voltage.
- the internal resistance of the battery is different.
- the voltage displayed by the battery is also inconsistent under different current usage.
- the way to determine the single battery to be balanced by detecting the working voltage can easily lead to misjudgment.
- a battery pack balancing method and device for balancing a battery pack balancing method and device, electronic equipment, and computer-readable storage medium.
- a target equalization time is obtained according to the open circuit voltage of the target battery, and equalization processing is performed on the target battery according to the target equalization time.
- a battery pack equalization device the battery pack includes a plurality of single cells, and the device includes:
- the acquiring module is configured to acquire the open circuit voltage corresponding to each single battery according to the depth of discharge of each single battery and the corresponding first mapping relationship, where the first mapping relationship represents the relationship between the open circuit voltage and the depth of discharge ;
- a determining module configured to determine a target battery from a plurality of single batteries according to the open circuit voltage of each single battery
- the equalization module is configured to obtain a target equalization time according to the open circuit voltage of the target battery, and perform equalization processing on the target battery according to the target equalization time.
- An electronic device includes a memory and a processor.
- the memory stores a computer program.
- the processor executes the steps of the battery pack balancing method.
- a computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the steps of the method are realized.
- the battery pack includes a plurality of single cells, and the method obtains according to the discharge depth of each of the single cells and the corresponding first mapping relationship
- the open circuit voltage corresponding to each single battery, the first mapping relationship represents the relationship between the open circuit voltage and the depth of discharge;
- the target battery is determined from the multiple single batteries according to the open circuit voltage of each single battery ;
- the battery equalization method provided in the present application can obtain the open circuit voltage by using the depth of discharge and the corresponding first mapping relationship in the charge and discharge state, without obtaining the open circuit voltage of each single cell in the static state of the battery pack, and simplify the step of obtaining the open circuit voltage. At the same time, the accuracy of the obtained open circuit voltage is ensured.
- the open circuit voltage is used to perform equalization processing on the target battery to be equalized, which avoids the inconsistency caused by the different internal resistance values or different current values of the individual cells in the battery pack.
- the battery pack balancing method provided by the present application can accurately determine the target battery to be balanced, which improves the efficiency of balancing the battery pack.
- FIG. 1 is a diagram of an application environment of a battery pack balancing method in an embodiment
- FIG. 2 is a flowchart of a method for balancing a battery pack in an embodiment
- FIG. 3 is a flowchart of obtaining the first mapping relationship corresponding to each single battery in steps in an embodiment
- FIG. 4 is a flowchart of a method for balancing a battery pack in another embodiment
- FIG. 5 is a flowchart of a step of determining a target battery from a plurality of single batteries according to the open circuit voltage of each single battery in an embodiment
- FIG. 6 is a flowchart of the steps of performing equalization processing on the target battery according to the target equalization time in an embodiment
- FIG. 7 is a structural block diagram of a battery pack balancing device according to an embodiment
- Fig. 8 is a schematic diagram of the internal structure of an electronic device in an embodiment.
- first, second, etc. used in this application can be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish the first element from another element.
- first voltage may be referred to as the second voltage
- second voltage may be referred to as the first voltage. Both the first voltage and the second voltage are voltages, but they are not the same voltage.
- FIG. 1 is an application environment diagram of a battery pack balancing method in an embodiment.
- the battery pack balancing method provided in this application can be applied to electronic devices.
- the application environment includes an electronic device 10.
- the electronic device 10 includes a battery pack 110.
- the battery pack 110 includes at least two single cells.
- the battery pack 110 may also include at least two cells.
- the single cells and cells are consistent during charging or discharging. problem. Taking the single battery as an example, the consistency of the single battery is a continuous accumulation process. The longer the application time, the greater the difference between the single batteries. Due to the difference between the single cells, a single cell in the battery pack fails first, which will cause the entire battery pack to fail as a whole.
- the electronic device 10 can obtain the open circuit voltage corresponding to each single battery according to the depth of discharge of each single battery and the corresponding first mapping relationship.
- the first mapping relationship represents the relationship between the open circuit voltage and the depth of discharge;
- the open circuit voltage of the single battery determines the target battery from multiple single batteries;
- the target equalization time is obtained according to the open circuit voltage of the target battery, and the target battery is equalized according to the target equalization time.
- the above-mentioned electronic device 10 may not be limited to various mobile phones, computers, portable devices, electric tools, bicycles, scooters, miners’ lamps, medical equipment, etc.
- Fig. 2 is a flowchart of a battery pack balancing method in an embodiment. As shown in FIG. 2, the battery pack balancing method includes step 202 to step 206.
- Step 202 Obtain the open circuit voltage corresponding to each single battery according to the depth of discharge of each single battery and the corresponding first mapping relationship, where the first mapping relationship represents the relationship between the open circuit voltage and the depth of discharge.
- the depth of discharge refers to the percentage of the discharged power from the battery to the rated capacity.
- the rated power can be the design capacity of the battery or the maximum capacity of the battery.
- the open circuit voltage of a single battery refers to the terminal voltage of the single battery in an open state.
- the open circuit voltage of a single battery is equal to the difference between the positive electrode potential and the negative electrode potential of the battery when the battery is open.
- the battery pack includes at least two single cells, and the depth of discharge of each single cell and the first mapping relationship are acquired. Obtaining the depth of discharge of each single battery can be directly detected by the instrument, and the design capacity, initial depth of discharge and work accumulation of each single battery can also be used.
- the first mapping relationship corresponding to each single battery represents the relationship between the depth of discharge of the single battery and the open circuit voltage.
- the process of obtaining the open circuit voltage corresponding to each single battery according to the depth of discharge of each single battery and the corresponding first mapping relationship is as follows: For the first single battery, enter the depth of discharge D1 of the first single battery into the first The first mapping relationship F1 (D1, V1) corresponding to each single battery obtains the open circuit voltage V1 of the first single battery, and so on, for the nth (n ⁇ positive integer greater than or equal to 2) single battery, the The discharge depth Dn of the nth single battery is input into the first mapping relationship Fn(Dn, Vn) corresponding to the nth single battery to obtain the open circuit voltage Vn of the nth single battery.
- the first mapping relationship corresponding to each single battery may be the same, or may be partially the same, or different from one another.
- the function F1 (D1, V1) represents the relationship between the depth of discharge D1 of the first single battery and the open circuit voltage V1
- the function F2 (D2, V2) represents the relationship between the depth of discharge D2 of the second single battery and The relationship between the open circuit voltage V2; ...
- the function Fn (Dn, Vn) characterizes the relationship between the depth of discharge Dn of the nth single cell and the open circuit voltage Vn, where F1 (D1, V1) , F2 (D2, V2), ..., Fn (Dn, Vn) can be the same function, F1 (D1, V1), F2 (D2, V2), ..., Fn ( Dn, Vn) can be any two or more of the same functions, F1 (D1, V1), F2 (D2, V2),..., Fn (Dn, Vn) can also be different The same function is not limited here
- Step 204 Determine the target battery from the multiple single batteries according to the open circuit voltage of each single battery.
- the target battery refers to the single battery that needs to be equalized.
- the process of determining at least one target battery from the multiple single batteries in the battery pack is as follows: It may be that each single battery is performed according to the open circuit voltage value. Sort, select a single battery with a greater difference in open circuit voltage from the open circuit voltage of most single batteries from a plurality of single batteries in the battery pack as the target battery. It should be supplemented that the number of target batteries can be one or more, and the number of target batteries should be less than the number of single cells in the battery pack that do not need to be balanced.
- the open circuit voltage V1 of the first single cell For example, the open circuit voltage V1 of the first single cell,..., the open circuit voltage Vi of the i-th single cell,..., the open circuit voltage Vj of the j-th single cell, .. ., the open circuit voltage Vn of the nth single cell, where i is a positive integer and 1 ⁇ i ⁇ j ⁇ n.
- Vi is significantly greater or significantly less than V1,...,Vi-1, Vi+1,...,Vn, Vi is used as the target battery; when Vi and Vj are significantly greater or significantly less than V1,...,Vi -1, Vi+1,...,Vj-1, Vj+1,...,Vn, use Vi and Vj as the target battery.
- Step 206 Obtain the target equalization time according to the open circuit voltage of the target battery, and perform equalization processing on the target battery according to the target equalization time.
- the target equalization time is calculated according to the numerical relationship between the open circuit voltage of the target battery and the target equalization time. If the target battery is single, the target battery charging or discharging target equalization time is controlled according to the open circuit voltage of the target battery; if there are multiple target batteries, the target equalization time corresponding to each target battery is obtained, such as the target corresponding to the first target battery
- the equalization time is t1,..., the target equalization time corresponding to the mth target battery is tm, m is a positive integer and m ⁇ n, then the first target battery is controlled to charge or discharge according to the open circuit voltage of the first target battery t1 time,..., control the charging or discharging tm time of the mth target battery according to the open circuit voltage of the mth target battery.
- the open circuit voltage corresponding to each single battery is obtained according to the depth of discharge of each single battery and the corresponding first mapping relationship.
- the first mapping relationship represents the relationship between the open circuit voltage and the depth of discharge.
- the target battery is determined from a plurality of single cells according to the open circuit voltage of each single cell.
- the target equalization time is obtained according to the open circuit voltage of the target battery, and the target battery is equalized according to the target equalization time.
- the battery equalization method provided in the present application can obtain the open circuit voltage by using the depth of discharge and the corresponding first mapping relationship in the charge and discharge state, and does not need to obtain the open circuit voltage of each single cell in the static state of the battery pack, which simplifies obtaining the open circuit voltage The process ensures the accuracy of the obtained open circuit voltage.
- the open circuit voltage is used to balance the target battery, which avoids the inconsistency caused by the different internal resistance values or different current values of the individual cells in the battery pack.
- the battery pack balancing method provided in the present application can accurately determine the target battery, which improves the efficiency of balancing the battery pack.
- the battery pack balancing method before obtaining the respective open circuit voltage of each single battery according to the depth of discharge corresponding to each single battery and the first mapping relationship, the battery pack balancing method further includes: obtaining the first mapping corresponding to each single battery relationship.
- the first mapping relationship corresponding to each single battery is acquired, and the first mapping relationship corresponding to each single battery represents the relationship between the depth of discharge of the single battery and the open circuit voltage.
- the process of obtaining the first mapping relationship corresponding to each single battery is: obtain the data pairs composed of the different depths of discharge of each single battery and its corresponding open circuit voltage, and perform function fitting according to multiple data pairs corresponding to each single battery The first mapping relationship corresponding to each single battery.
- This solution obtains the functional relationship that characterizes the open circuit voltage and the depth of discharge.
- the corresponding open circuit voltage can be obtained simply and quickly, and then the open circuit voltage is used to balance the target battery. In order to improve the efficiency of balancing the battery pack.
- FIG. 3 is a flowchart of obtaining the first mapping relationship corresponding to each single battery in one embodiment. As shown in FIG. 3, the step obtaining the first mapping relationship corresponding to each single battery includes step 302 to step 306.
- Step 302 Control each single battery to discharge at a preset current so that the operating voltage of each single battery drops from the first voltage value to the second voltage value.
- each single battery is controlled to discharge at a preset current, and the current rate of the preset current is relatively small, such as 0.01c, 0.02c, 0.05c, etc., which is not specifically limited.
- Control each single battery to discharge with a small preset current such as 0.01c so that the discharge voltage of the single battery gradually drops from the initial first voltage to the cut-off second voltage, for example: it can be reduced from 4.4V to 3.0 V. That is, control each single battery to slowly discharge from the voltage saturation state until the voltage reaches the cut-off state, and the discharge rate is small and uniform during the discharge process.
- Step 304 Obtain the mapping relationship between the open circuit voltage and the discharged power of each single battery during the discharge process of each single battery.
- Each single battery corresponds to a mapping relationship between open circuit voltage and discharged power, which is recorded as the second mapping relationship.
- the second mapping relationship corresponding to each single battery may be the same, or partially the same, or different.
- Step 306 Obtain a first mapping relationship corresponding to the target battery according to the mapping relationship between the open circuit voltage and the discharged power of each single battery and the relationship between the discharged power and the depth of discharge of each single battery.
- the discharge power of each single battery is proportional to the depth of discharge, and the ratio of the discharge power of the single battery to the design capacity or the maximum capacity value is the depth of discharge of the single battery. Knowing the mapping relationship between the open circuit voltage and the discharge capacity of each single battery, the relationship between the discharge capacity and the depth of discharge of each single battery is known, and the open circuit voltage and the depth of discharge of each single battery can be obtained. The mapping relationship between the two, that is, the first mapping relationship can be obtained.
- each single battery is controlled to discharge at a small current rate, and the mapping relationship between the open circuit voltage of each single battery and the discharged power is further obtained, and the first mapping relationship of each single battery can be obtained.
- the process of obtaining the first mapping relationship is simple, and the open circuit voltage of each single battery can be obtained without controlling the single battery in a static state.
- FIG. 4 is a flowchart of a battery pack balancing method in another embodiment. As shown in FIG. 4, before the step obtains the open circuit voltage corresponding to each single battery according to the depth of discharge of each single battery and the corresponding first mapping relationship, the battery The group equalization method further includes: step 402 and step 404.
- Step 402 Read the design capacity of each single battery and the initial depth of discharge corresponding to the initial voltage, and obtain the working cumulative power of each single battery.
- the design capacity and initial depth of discharge of each single battery are read, where the design capacity and initial depth of discharge are based on the material of the single battery and the power parameters of the manufacturing process.
- Step 404 Calculate the depth of discharge of each single battery according to the design capacity, initial depth of discharge and accumulated power of work of each single battery.
- Qmax can be the charge and discharge capacity value in the initial state, corresponding to the step of reading the charge and discharge capacity value of each cell in the initial state before calculating the depth of discharge of each cell instead of reading the design capacity of each cell That's it.
- the method further includes: determining whether the operating parameters of the first single cell in the battery pack meet a preset condition, so as to determine the method for obtaining the open circuit voltage according to the determination result.
- the preset condition is not met, the open circuit voltage corresponding to each single battery is obtained according to the depth of discharge of each single battery and the corresponding first mapping relationship.
- the battery pack balancing method further includes: When the operating parameters of the first single battery meet the preset conditions, the operating voltage of the first single battery is taken as the open circuit voltage of the first single battery.
- the operating parameters include: resting time, working voltage change rate, and working current. At least one of.
- the working parameters of the first single cell in the battery pack satisfying the preset condition means that the first single cell in the battery pack is in a resting state and the resting time exceeds a time threshold such as 10mins, 12mins, 15mins. Or 20mins; or, the change rate of the working voltage of the first single cell in the battery pack is lower than the preset value of the change rate, such as 8uV/s, 5uV/s, 3uV/s or 1uV/s; or, the first single cell
- the charging current or discharging current is less than the current threshold value such as 20mA, 15mA, 12mA, 10mA or 8mA.
- the operating voltage of the first single battery is used as the open circuit voltage of the first single battery.
- the first single cell may be one or more single cells in the battery pack, or even all the single cells.
- the operating voltage of the first single battery is used as the open circuit voltage of the first single battery, which can eliminate the cumulative error due to the continuous current integration process. .
- Fig. 5 is a flow chart of determining a target battery from a plurality of single batteries according to the open circuit voltage of each single battery in an embodiment. As shown in FIG. 5, the step of determining a target battery from a plurality of single batteries according to the open circuit voltage of each single battery includes: step 502 and step 504.
- Step 502 Compare the open circuit voltages of a plurality of single cells in pairs to obtain the open circuit voltage difference of any two single cells.
- the open circuit voltages of the single cells are compared in pairs to obtain the open circuit voltage difference between the first single battery and the second single battery, the third single battery,..., the nth single battery ; Obtain the open circuit voltage difference between the second single battery and the third single battery, the fourth single battery,..., the nth single battery; ...; Obtain the n-1th single battery and The difference in open circuit voltage between the nth single cells.
- Step 504 Determine the target battery from the multiple single batteries according to the open circuit voltage difference of any two single batteries.
- the open circuit voltage difference between the first single battery and the second single battery, the third single battery,..., the nth single battery; the second single battery and the third single battery The difference in open circuit voltage between the battery, the fourth single battery,..., the nth single battery; ...; the difference in open circuit voltage between the n-1th single battery and the nth single battery.
- the above n(n-1)/2 differences can be sorted according to the magnitude of the numerical value, and the target battery can be selected from the corresponding single battery with a larger difference or a smaller one.
- the target battery is determined from the multiple single cells according to the open circuit voltage difference of any two single cells, including: when there is any two single battery open circuit voltage difference greater than the difference threshold At the time, one of any two single cells is determined as the target battery.
- the above n(n-1)/2 differences can be compared with the difference threshold, and the two single batteries corresponding to the difference greater than the difference threshold can be selected, and the selected single battery can be determined Target battery.
- the specific process is as follows. When the difference between the i-th single battery and the j-th single battery is greater than the difference threshold, one of the i-th single battery and the j-th single battery is determined as the target battery.
- Fig. 6 is a flow chart of the steps of performing equalization processing on the target battery according to the target equalization time in an embodiment. As shown in FIG. 6, the step of performing equalization processing on the target battery according to the target equalization time includes: step 602 and step 604.
- Step 602 When it is determined that the single battery corresponding to the larger voltage is the target battery, control the discharge of the target battery according to the target equalization time.
- the equalization processing of the target battery refers to discharging the i-th single battery.
- Step 604 When it is determined that the single battery corresponding to the smaller voltage is the target battery, control the charging of the target battery according to the target equalization time.
- the open circuit voltage of the i-th single battery is greater than the open circuit voltage of the j-th single battery. If the j-th single battery is used as the target battery, the equalization processing for the j-th single battery refers to charging the j-th single battery.
- the step of obtaining the target equalization time according to the open circuit voltage of the target battery includes: obtaining the voltage difference between the open circuit voltage of the target battery and the voltage threshold.
- the target equalization time is calculated based on the voltage difference and the current threshold.
- the ratio of the difference between the open circuit voltage of the target battery and the voltage threshold to the current threshold is taken as the target equilibrium time.
- Fig. 7 is a structural block diagram of a battery pack balancing device according to an embodiment.
- the battery pack equalization device includes: an acquisition module 702, a determination module 704, and an equalization module 706.
- the obtaining module 702 is configured to obtain the open circuit voltage corresponding to each single battery according to the depth of discharge of each single battery and the corresponding first mapping relationship.
- the first mapping relationship represents the relationship between the open circuit voltage and the depth of discharge.
- the depth of discharge refers to the percentage of the discharged power from the battery to the rated capacity.
- the rated power can be the design capacity of the battery or the maximum capacity of the battery.
- the open circuit voltage of a single battery refers to the terminal voltage of the single battery in an open state.
- the open circuit voltage of a single battery is equal to the difference between the positive electrode potential and the negative electrode potential of the battery when the battery is open.
- the battery pack includes at least two single cells, and the depth of discharge of each single cell and the first mapping relationship are acquired.
- the acquisition module 702 acquires the depth of discharge of each single battery, which can be directly detected by an instrument, and the design capacity, initial depth of discharge and work accumulation of each single battery can be used.
- the first mapping relationship corresponding to each single battery represents the relationship between the depth of discharge of the single battery and the open circuit voltage.
- the process of obtaining the open circuit voltage corresponding to each single battery according to the depth of discharge of each single battery and the corresponding first mapping relationship is as follows: For the first single battery, enter the depth of discharge D1 of the first single battery into the first The first mapping relationship F1 (D1, V1) corresponding to each single battery obtains the open circuit voltage V1 of the first single battery, and so on, for the nth (n ⁇ positive integer) single battery, the nth single The depth of discharge Dn of the body battery is input into the first mapping relationship Fn(Dn, Vn) corresponding to the nth single battery to obtain the open circuit voltage Vn of the nth single battery.
- the first mapping relationship corresponding to each single battery may be the same, or may be partially the same, or different from one another.
- the determining module 704 is configured to determine the target battery from a plurality of single batteries according to the open circuit voltage of each single battery.
- the target battery refers to a single battery that needs to be equalized.
- the determination module 704 determines at least one target battery from a plurality of single cells in the battery pack as follows: It may be that each single battery is adjusted according to the open circuit voltage. The values are sorted, and a single battery with a greater difference in open circuit voltage from the open circuit voltage of most single batteries is selected as the target battery from a plurality of single cells in the battery pack. It should be supplemented that the number of target batteries can be one or more, and the number of target batteries should be less than the number of single cells in the battery pack that do not need to be balanced.
- the open circuit voltage V1 of the first single cell For example, the open circuit voltage V1 of the first single cell,..., the open circuit voltage Vi of the i-th single cell,..., the open circuit voltage Vj of the j-th single cell, .. ., the open circuit voltage Vn of the nth single cell, where i is a positive integer and 1 ⁇ i ⁇ j ⁇ n.
- Vi is significantly greater or significantly less than V1,...,Vi-1, Vi+1,..., Vn is large, Vi is used as the target battery; when Vi and Vj are significantly greater or significantly less than V1,..., When Vi-1, Vi+1,..., Vj-1, Vj+1,..., Vn is large, Vi and Vj are used as target batteries.
- the equalization module 706 is configured to obtain the target equalization time according to the open circuit voltage of the target battery, and perform equalization processing on the target battery according to the target equalization time.
- the equalization module 706 calculates the target equalization time according to the numerical relationship between the open circuit voltage of the target battery and the target equalization time. If the target battery is single, the target battery charging or discharging target equalization time is controlled according to the open circuit voltage of the target battery; if there are multiple target batteries, the target equalization time corresponding to each target battery is obtained, such as the target corresponding to the first target battery The equalization time is t1,..., the target equalization time corresponding to the m-th target battery is tm, and the first target battery is charged or discharged according to the open circuit voltage of the first target battery. The open circuit voltage of the m target batteries controls the charging or discharging tm time of the m-th target battery.
- the above battery pack equalization device uses the acquisition module 702 to acquire the open circuit voltage corresponding to each single battery according to the discharge depth of each single battery and the corresponding first mapping relationship.
- the first mapping relationship represents the relationship between the open circuit voltage and the discharge depth.
- the determination module 704 is used to determine the target battery from a plurality of single cells according to the open circuit voltage of each single cell.
- the equalization module 706 is used to obtain the target equalization time according to the open circuit voltage of the target battery, and the target battery is equalized according to the target equalization time.
- the battery equalization method provided in the present application can obtain the open circuit voltage by using the depth of discharge and the corresponding first mapping relationship in the charge and discharge state, without obtaining the open circuit voltage of each single cell in the static state of the battery pack, and simplify the step of obtaining the open circuit voltage. At the same time, the accuracy of the obtained open circuit voltage is ensured.
- the open circuit voltage is used to balance the target battery, which avoids the inconsistency caused by the different internal resistance values or different current values of the individual cells in the battery pack.
- the battery pack balancing method provided in the present application can accurately determine the target battery, which improves the efficiency of balancing the battery pack.
- the battery pack balancing device further includes a second acquisition module, and the second acquisition module is configured to acquire the first mapping relationship corresponding to each single battery.
- the second acquisition module is also used to control each single battery to discharge at a preset current so that the operating voltage of each single battery drops from the first voltage value to the second voltage value.
- the first mapping relationship corresponding to the target battery is obtained according to the mapping relationship between the open circuit voltage and the discharge power of each single battery and the relationship between the discharge power and the depth of discharge of each single battery.
- the battery pack balancing device further includes a third acquisition module, the third acquisition module is used to read the design capacity of each single battery and the initial depth of discharge corresponding to the initial voltage, and obtain the work of each single battery Accumulated power.
- the depth of discharge of each single battery is calculated according to the design capacity, initial depth of discharge and accumulated power of work of each single battery.
- the battery pack equalization device further includes a fourth acquisition module, and the fourth acquisition module is used for when the operating parameters of the first single cell in the battery pack meet a preset condition,
- the operating voltage is used as the open circuit voltage of the first single battery, and the operating parameters include at least one of the standing time, the rate of change of the operating voltage, and the operating current.
- the determining module is also used to compare the open circuit voltages of a plurality of single cells in pairs to obtain the open circuit voltage difference of any two single cells. According to the open circuit voltage difference of any two single cells, the target battery is determined from a plurality of single cells.
- the determining module is further configured to determine one of any two single cells as the target battery when the open circuit voltage difference of any two single cells is greater than the difference threshold.
- the equalization module is further used to control the discharge of the target battery according to the target equalization time when the single battery corresponding to the larger voltage is determined as the target battery.
- the target battery is controlled to charge according to the target equalization time.
- the equalization module is also used to obtain the voltage difference between the open circuit voltage of the target battery and the voltage threshold.
- the target equalization time is calculated based on the voltage difference and the current threshold.
- the battery pack equalization device can be divided into different modules as required to complete all or part of the functions of the above-mentioned battery pack equalization device.
- Each module in the above-mentioned battery pack balancing device can be implemented in whole or in part by software, hardware, and a combination thereof.
- the above modules can be embedded in the form of hardware or independent of the processor in the computer device, or can be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
- Fig. 8 is a schematic diagram of the internal structure of an electronic device in an embodiment.
- the electronic device includes a processor and a memory connected through a system bus.
- the processor is used to provide computing and control capabilities to support the operation of the entire electronic device.
- the memory may include a non-volatile storage medium and internal memory.
- the non-volatile storage medium stores an operating system and a computer program.
- the computer program can be executed by the processor to implement a battery pack balancing method provided in the following embodiments.
- the internal memory provides a cached operating environment for the operating system computer program in the non-volatile storage medium.
- the electronic device can be a mobile phone, a tablet computer, or a personal digital assistant or a wearable device.
- the electronic equipment can also be electric tools, bicycles, scooters, miner's lamps, medical equipment, etc.
- each module in the battery pack balancing device may be in the form of a computer program.
- the computer program can be run on a terminal or a server.
- the program module composed of the computer program can be stored in the memory of the terminal or the server.
- the embodiment of the present application also provides a computer-readable storage medium.
- One or more non-volatile computer-readable storage media containing computer-executable instructions, when the computer-executable instructions are executed by one or more processors, cause the processors to perform the steps of the battery pack balancing method.
- a computer program product containing instructions that, when run on a computer, causes the computer to perform a battery pack balancing method.
- Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
- Volatile memory may include random access memory (RAM), which acts as external cache memory.
- RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
- SRAM static RAM
- DRAM dynamic RAM
- SDRAM synchronous DRAM
- DDR SDRAM double data rate SDRAM
- ESDRAM enhanced SDRAM
- SLDRAM synchronous Link (Synchlink) DRAM
- Rambus direct RAM
- DRAM direct memory bus dynamic RAM
- RDRAM memory bus dynamic RAM
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
一种电池组均衡方法,所述电池组包括多个单体电池,所述方法包括:根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述单体电池对应的开路电压,所述第一映射关系表征开路电压和放电深度之间的关系;根据各个所述单体电池的开路电压从多个所述单体电池中确定目标电池;根据所述目标电池的开路电压获取目标均衡时间,根据所述目标均衡时间对所述目标电池进行均衡处理。
Description
相关申请的交叉引用
本申请要求于2019年12月31日提交中国专利局、申请号为2019114195262、发明名称为“电池组均衡方法和装置、电子设备、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及可充电电池技术,特别是涉及一种电池组均衡方法和装置、电子设备、计算机可读存储介质。
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着可充电电池技术的发展,锂离子动力电池作为终端,比如移动电话、电动汽车的关键核心部件。然而多个单体电池联合使用的电池组中,单体电池间往往出现不一致的问题,将导致电池组整体失效,严重影响电池组的安全和使用寿命,并威胁终端的正常使用。
现有的通过检测工作电压的不一致来确定对电池组进行均衡的方式。但是由于电池老化、工作温度不一致等场景问题,导致的电池内阻值不一样,同时不同电流使用下同样也会导致电池所表现出来的电压不一致。通过检测工作电压确定待均衡单体电池的方式,容易导致误判。
发明内容
根据本申请的各种实施例,提供一种电池组均衡方法和装置、电子设备、 计算机可读存储介质。
一种电池组均衡方法,所述电池组包括多个单体电池,所述方法包括:
根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述单体电池对应的开路电压,所述第一映射关系表征开路电压和放电深度之间的关系;
根据各个所述单体电池的开路电压从多个所述单体电池中确定目标电池;
根据所述目标电池的开路电压获取目标均衡时间,根据所述目标均衡时间对所述目标电池进行均衡处理。
一种电池组均衡装置,所述电池组包括多个单体电池,所述装置包括:
获取模块,用于根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述单体电池对应的开路电压,所述第一映射关系表征开路电压和放电深度之间的关系;
确定模块,用于根据各个所述单体电池的开路电压从多个所述单体电池中确定目标电池;
均衡模块,用于根据所述目标电池的开路电压获取目标均衡时间,根据所述目标均衡时间对所述目标电池进行均衡处理。
一种电子设备,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如所述的电池组均衡方法的步骤。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如所述的方法的步骤。
上述电池组均衡方法和装置、电子设备、计算机可读存储介质,所述电池组包括多个单体电池,所述方法通过根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述单体电池对应的开路电压,所述第一映射关系表征开路电压和放电深度之间的关系;根据各个所述单体电池的开路电压从多个所述单体电池中确定目标电池;根据所述目标电池的开路电压获取 目标均衡时间,根据所述目标均衡时间对所述目标电池进行均衡处理。本申请提供的电池均衡方法能够在充放电状态下,利用放电深度和对应的第一映射关系获取开路电压,无需在电池组静置状态下获取各个单体电池的开路电压,简化获取开路电压步骤的同时,保证了获取的开路电压的准确性。利用开路电压来对待均衡的目标电池进行均衡处理,避免了由于电池组内各个单体电池的内阻值不同或电流值不同造成不一致问题。本申请提供的电池组均衡方法能够准确地确定出待均衡的目标电池,提高了对电池组进行均衡处理的效率。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中电池组均衡方法的应用环境图;
图2为一个实施例中电池组均衡方法的流程图;
图3为一个实施例中步骤获取各个单体电池对应的第一映射关系的流程图;
图4为又一个实施例中电池组均衡方法的流程图;
图5为一个实施例中步骤根据各个单体电池的开路电压从多个单体电池中确定目标电池的流程图;
图6为一个实施例中步骤根据目标均衡时间对目标电池进行均衡处理的流程图;
图7为一个实施例的电池组均衡装置的结构框图;
图8为一个实施例中电子设备的内部结构示意图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一电压称为第二电压,且类似地,可将第二电压称为第一电压。第一电压和第二电压两者都是电压,但其不是同一电压。
图1为一个实施例中电池组均衡方法的应用环境图,如图1所示,本申请提供电池组均衡方法可以应用于电子设备。如图1所示,该应用环境包括电子设备10。电子设备10包括电池组110,电池组110包括至少两个单体电池,也可以是电池组110包括至少两个电芯,单体电池和电芯在在充电或者放电过程中均存在一致性的问题。以单体电池为例,单体电池一致性的变化是一个不断积累的过程,应用时间越长,单体电池间产生的差异就越大。因单体电池之间的差异,电池组中的某一单体电池率先失效,将致使整个电池组整体失效。本申请以单体电池进行描述,以下任一实施例中的单体电池均可替换成电芯,此处不再赘述。本申请中,电子设备10可以根据各个单体电池的放电深度和对应的第一映射关系获取各个单体电池对应的开路电压,第一映射关系表征开路电压和放电深度之间的关系;根据各个单体电池的开路电压从多个单体电池中确定目标电池;根据目标电池的开路电压获取目标均衡时间,根据目标均衡时间对目标电池进行均衡处理。可以理解的是,上述电子设备10可以不限于是各种手机、电脑、可携带设备、电动工具、自行车、滑板车、矿灯、医疗器械等。
图2为一个实施例中电池组均衡方法的流程图。如图2所示,电池组均衡方法包括步骤202至步骤206。
步骤202、根据各个单体电池的放电深度和对应的第一映射关系获取各个单体电池对应的开路电压,第一映射关系表征开路电压和放电深度之间的关系。
其中,放电深度(Depth of discharge,DOD)指的是从电池中放电电量占额定容量的百分比。额定电量可以是电池的设计容量或者是电池的最大容量。单体电池的开路电压指的是单体电池在开路状态下的端电压,单体电池的开路电压等于电池在断路时电池的正极电极电势与负极的电极电势之差。
具体的,电池组包括至少两个单体电池,获取每个单体电池的放电深度和第一映射关系。获取每个单体电池的放电深度可以通过仪器直接检测,还可以利用各个单体电池的设计容量、初始放电深度和工作累计。每个单体电池对应的第一映射关系表征该单体电池的放电深度与开路电压的关系。根据各个单体电池的放电深度和对应的第一映射关系获取各个单体电池对应的开路电压的过程如下:对于第一个单体电池,将第一个单体电池的放电深度D1输入第一个单体电池对应的第一映射关系F1(D1,V1)得到第一个单体电池的开路电压V1,依次类推,对于第n(n∈大于等于2的正整数)个单体电池,将第n个单体电池的放电深度Dn输入第n个单体电池对应的第一映射关系Fn(Dn,Vn)得到第n个单体电池的开路电压Vn。其中,各个单体电池对应的第一映射关系可以是相同的,也可以是部分相同,或者各不相同。举例来说,函数F1(D1,V1)表征第一个单体电池的放电深度D1与开路电压V1之间的关系;函数F2(D2,V2)表征第二个单体电池的放电深度D2与开路电压V2之间的关系;......;函数Fn(Dn,Vn)表征第n个单体电池的放电深度Dn与开路电压Vn之间的关系,其中,F1(D1,V1),F2(D2,V2),......,Fn(Dn,Vn)可以是相同的函数,F1(D1,V1),F2(D2,V2),......,Fn(Dn,Vn)可以是其中存在任意两个或多个相同的函数,F1(D1,V1),F2(D2,V2),......,Fn(Dn,Vn)还可以是各不相同的函数,此处不作限定。
步骤204、根据各个单体电池的开路电压从多个单体电池中确定目标电 池。
具体的,目标电池指的是需要被均衡处理的单体电池,从电池组的多个单体电池中确定至少一个目标电池的过程如下:可以是将各个单体电池按照开路电压值的大小进行排序,从电池组多个单体电池中选择出开路电压与大多数单体电池的开路电压差异性较大的单体电池作为目标电池。需要补充说明的是,目标电池的数量可以是一个也可以是多个,目标电池的数量应少于电池组中无需均衡处理的单体电池的数量。举例来说,第一个单体电池的开路电压V1,......,第i个单体电池的开路电压Vi,...,第j个单体电池的开路电压Vj,...,第n个单体电池的开路电压Vn,其中,i为正整数且1<i<j<n。当Vi明显大于或者明显小于V1,...,Vi-1,Vi+1,...,Vn时,将Vi作为目标电池;当Vi和Vj明显大于或者明显小于V1,...,Vi-1,Vi+1,...,Vj-1,Vj+1,...,Vn时,将Vi和Vj作为目标电池。
步骤206、根据目标电池的开路电压获取目标均衡时间,根据目标均衡时间对目标电池进行均衡处理。
具体的,根据目标电池的开路电压与目标均衡时间的数值关系计算的目标均衡时间。若目标电池为单个,则根据目标电池的开路电压控制目标电池充电或放电目标均衡时间;若目标电池为多个,则获取各个目标电池对应的目标均衡时间,如第一个目标电池对应的目标均衡时间为t1,...,第m个目标电池对应的目标均衡时间为tm,m为正整数且m<n,则根据第一个目标电池的开路电压控制第一个目标电池充电或放电t1时间,...,根据第m个目标电池的开路电压控制第m个目标电池充电或放电tm时间。
上述电池组均衡方法,通过根据各个单体电池的放电深度和对应的第一映射关系获取各个单体电池对应的开路电压,第一映射关系表征开路电压和放电深度之间的关系。根据各个单体电池的开路电压从多个单体电池中确定目标电池。根据目标电池的开路电压获取目标均衡时间,根据目标均衡时间对目标电池进行均衡处理。本申请提供的电池均衡方法能够在充放电状态下,利用放电深度和对应的第一映射关系获取开路电压,无需在电池组静置状态 下获取各个单体电池的开路电压,简化了获取开路电压过程,保证了获取的开路电压的准确性。利用开路电压来对目标电池进行均衡处理,避免了由于电池组内各个单体电池的内阻值不同或电流值不同造成不一致问题。本申请提供的电池组均衡方法能够准确地确定出目标电池,提高了对电池组进行均衡处理的效率。
在其中一个实施例中,根据各个单体电池对应的放电深度和第一映射关系获取各个单体电池各自对应的开路电压之前,电池组均衡方法还包括:获取各个单体电池对应的第一映射关系。
具体的,获取每个单体电池对应的第一映射关系,每个单体电池对应的第一映射关系表征该单体电池的放电深度与开路电压的关系。获取各个单体电池对应的第一映射关系的过程是:获取各个单体电池的不同放电深度及其对应的开路电压组成的数据对,根据各个单体电池对应多个数据对进行函数拟合得到各个单体电池对应的第一映射关系。该方案得到表征开路电压与放电深度之间的函数关系,利用第一映射关系在已知放电深度的情况下,可以简单快捷得到对应的开路电压,进而利用开路电压来对目标电池进行均衡处理,以提高对电池组进行均衡处理的效率。
图3为一个实施例中步骤获取各个单体电池对应的第一映射关系的流程图,如图3所示,步骤获取各个单体电池对应的第一映射关系,包括步骤302至步骤306。
步骤302、控制各个单体电池以预设电流进行放电以使各个单体电池的工作电压由第一电压值下降至第二电压值。
具体的,控制各个单体电池以预设电流进行放电,预设电流的电流速率较小,如0.01c、0.02c、0.05c等,具体不作限定。控制各个单体电池以较小的预设电流如0.01c放电,使得单体电池的放电电压从起始的第一电压逐步下降为截止的第二电压,如:可以是从4.4V下降至3.0V。即控制各个单体电池从电压饱和状态缓速放电直至电压到达截止状态,放电过程中放电速率较小且匀速。
步骤304、获取各个单体电池放电过程各个单体电池的开路电压与放电电量之间映射关系。
具体的,记录每个单体电池在放电过程中的多组开路电压及其对应的放电电量的数据对,根据每个单体电池的多组开路电压及其对应的放电电量的数据对拟合出开路电压与放电电量之间映射关系。每个单体电池对应一个开路电压与放电电量之间映射关系,记为第二映射关系,各个单体电池对应的第二映射关系可以是相同的,也可以是部分相同,或者各不相同。
步骤306、根据各个单体电池的开路电压与放出电量之间映射关系及各个单体电池的放电电量与放电深度之间的关系获取目标电池对应的第一映射关系。
具体的,每个单体电池的放电电量与放电深度成比例关系,单体电池的放电电量与设计容量或者最大容量值的比值为单体电池的放电深度。在已知各个单体电池的开路电压与放电电量之间映射关系的情况下,已知各个单体电池的放电电量与放电深度之间的关系,可以得到各个单体电池的开路电压与放电深度之间映射关系,即可以得到第一映射关系。本申请实施例中控制各个单体电池以小电流速率进行放电,各个单体电池的开路电压与放出电量之间映射关系,进一步的能够得到各个单体电池的第一映射关系。获取第一映射关系的过程简单,无需控制单体电池在静置状态,即可获取各个单体电池的开路电压。
图4为又一个实施例中电池组均衡方法的流程图,如图4所示,步骤根据各个单体电池的放电深度和对应的第一映射关系获取各个单体电池对应的开路电压之前,电池组均衡方法还包括:步骤402和步骤404。
步骤402、读取各个单体电池的设计容量和初始电压对应的初始放电深度,并获取各个单体电池的工作累计电量。
具体的,读取各个单体电池的设计容量和初始放电深度,其中,设计容量和初始放电深度是基于单体电池的材质及制造过程的电量参数。充电过程中,持续对充电电流进行积分,利用公式△Q=∫idt计算得到工作累计电量△ Q。
步骤404、根据各个单体电池的设计容量、初始放电深度和工作累计电量计算得到各个单体电池的放电深度。
具体的,放电深度可以由公式DOD=DOD0-△Q/Qmax计算得到,其中,DOD0标识实时的放电深度值,△Q标识实时的工作累计电量,Qmax为电池的设计容量,在一个实施例中Qmax可以是初始状态下的充放电容量值,对应的在计算各个单体电池的放电深度之前读取各个单体电池的初始状态下的充放电容量值步骤代替读取各个单体电池的设计容量即可。
在其中一个实施例中,在实施步骤202前,还包括:判定电池组中的第一单体电池的工作参数是否满足预设条件,以根据判定结果确定开路电压的获取方法。当所述不满足预设条件时,根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述单体电池对应的开路电压,电池组均衡方法还包括:当电池组中的第一单体电池的工作参数满足预设条件时,将第一单体电池的工作电压作为第一单体电池的开路电压,工作参数包括:静置时间、工作电压变化率、工作电流中的至少一种。
具体的,电池组中的第一单体电池的工作参数满足预设条件指的是:电池组内的第一单体电池处于静置状态下且静置时间超过时间阈值如10mins、12mins、15mins或20mins;或,电池组内的第一单体电池的工作电压变化率低于变化率预设值如8uV/s、5uV/s、3uV/s或1uV/s;或,第一单体电池的充电电流或者放电电流小于电流阈值如20mA、15mA、12mA、10mA或8mA。当第一单体电池满足上述预设条件至少一种,则将第一单体电池的工作电压作为第一单体电池的开路电压。其中,第一单体电池可以是电池组中的一个或多个单体电池,甚至可以是全部单体电池。本实施例中,当第一单体电池的工作参数满足预设条件时,将第一单体电池的工作电压作为第一单体电池的开路电压,可以消除由于持续电流积分过程中的累积误差。
图5为一个实施例中步骤根据各个单体电池的开路电压从多个单体电池中确定目标电池的流程图。如图5所示,步骤根据各个单体电池的开路电压 从多个单体电池中确定目标电池包括:步骤502和步骤504。
步骤502、将多个单体电池的开路电压进行两两比较,获取任意两个单体电池的开路电压差值。
具体的,将单体电池的开路电压进行两两比较,获取第一单体电池与第二单体电池、第三单体电池、...、第n单体电池之间开路电压的差值;获取第二单体电池与第三单体电池、第四单体电池、...、第n单体电池之间开路电压的差值;...;获取第n-1单体电池与第n单体电池之间开路电压的差值。
步骤504、根据任意两个单体电池的开路电压差值从多个单体电池中确定出目标电池。
具体的,已知第一单体电池与第二单体电池、第三单体电池、...、第n单体电池之间开路电压的差值;第二单体电池与第三单体电池、第四单体电池、...、第n单体电池之间开路电压的差值;...;第n-1单体电池与第n单体电池之间开路电压的差值。可以将上述n(n-1)/2个差值根据数值大小进行排序,从中选择较大差值或者较小对应单体电池中选择出目标电池。
在其中一个实施例中,根据任意两个单体电池的开路电压差值从多个单体电池中确定出目标电池,包括:当存在任意两个单体电池的开路电压差值大于差值阈值时,从任意两个单体电池中确定出一个作为目标电池。
具体的,可以将上述n(n-1)/2个差值与差值阈值进行比较,将差值大于差值阈值对应的两个单体电池选择出来,从选择出来的单体电池中确定目标电池。具体过程如下,第i个单体电池与第j个单体电池的差值大于差值阈值时,从第i个单体电池与第j个单体电池中确定一个作为目标电池。
图6为一个实施例中步骤根据目标均衡时间对目标电池进行均衡处理的流程图。如图6所示,步骤根据目标均衡时间对目标电池进行均衡处理,包括:步骤602和步骤604。
步骤602、当确定较大电压对应的单体电池作为目标电池时,根据目标均衡时间控制目标电池放电。
具体的,当第i个单体电池与第j个单体电池的差值大于差值阈值时, 从第i个单体电池与第j个单体电池中确定一个作为目标电池,其中,第i个单体电池的开路电压大于第j个单体电池的开路电压。若将第i个单体电池作为目标电池时,对目标电池的均衡处理指的是对第i个单体电池进行放电。
步骤604、当确定较小电压对应的单体电池作为目标电池时,根据目标均衡时间控制目标电池充电。
具体的,第i个单体电池的开路电压大于第j个单体电池的开路电压。若将第j个单体电池作为目标电池时,对第j个单体电池的均衡处理指的是对第j个单体电池进行充电。
在其中一个实施例中,步骤根据目标电池的开路电压获取目标均衡时间,包括:获取目标电池的开路电压与电压阈值的电压差值。根据电压差值和电流阈值计算出目标均衡时间。
具体的,目标均衡时间的计算方式为t=△OCV/I,其中△OCV为目标电池的开路电压与电压阈值的电压差值,电流阈值可以为低于单体电池最大放电倍率的任意电流值,优选为最大额定倍率。将目标电池的开路电压与电压阈值的差值和电流阈值的比值作为目标均衡时间。
应该理解的是,虽然图2-6的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-6中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
图7为一个实施例的电池组均衡装置的结构框图。如图7所示,电池组均衡装置包括:获取模块702、确定模块704和均衡模块706。
获取模块702,用于根据各个单体电池的放电深度和对应的第一映射关 系获取各个单体电池对应的开路电压,第一映射关系表征开路电压和放电深度之间的关系。
其中,放电深度(Depth of discharge,DOD)指的是从电池中放电电量占额定容量的百分比。额定电量可以是电池的设计容量或者是电池的最大容量。单体电池的开路电压指的是单体电池在开路状态下的端电压,单体电池的开路电压等于电池在断路时电池的正极电极电势与负极的电极电势之差。
具体的,电池组包括至少两个单体电池,获取每个单体电池的放电深度和第一映射关系。获取模块702获取每个单体电池的放电深度可以通过仪器直接检测,可以利用各个单体电池的设计容量、初始放电深度和工作累计。每个单体电池对应的第一映射关系表征该单体电池的放电深度与开路电压的关系。根据各个单体电池的放电深度和对应的第一映射关系获取各个单体电池对应的开路电压的过程如下:对于第一个单体电池,将第一个单体电池的放电深度D1输入第一个单体电池对应的第一映射关系F1(D1,V1)得到第一个单体电池的开路电压V1,依次类推,对于第n(n∈正整数)个单体电池,将第n个单体电池的放电深度Dn输入第n个单体电池对应的第一映射关系Fn(Dn,Vn)得到第n个单体电池的开路电压Vn。其中,各个单体电池对应的第一映射关系可以是相同的,也可以是部分相同,或者各不相同。
确定模块704,用于根据各个单体电池的开路电压从多个单体电池中确定目标电池。
具体的,目标电池指的是需要被均衡处理的单体电池,确定模块704从电池组的多个单体电池中确定出至少一个目标电池的过程如下:可以是将各个单体电池按照开路电压值的大小进行排序,从电池组多个单体电池中选择出开路电压与大多数单体电池的开路电压差异性较大的单体电池作为目标电池。需要补充说明的是,目标电池的数量可以是一个也可以是多个,目标电池的数量应少于电池组中无需均衡处理的单体电池的数量。举例来说,第一个单体电池的开路电压V1,......,第i个单体电池的开路电压Vi,...,第j个单体电池的开路电压Vj,...,第n个单体电池的开路电压Vn,其中,i为 正整数且1<i<j<n。当Vi明显大于或者明显小于V1,...,Vi-1,Vi+1,...,Vn大时,将Vi作为目标电池;当Vi和Vj明显大于或者明显小于V1,...,Vi-1,Vi+1,...,Vj-1,Vj+1,...,Vn大时,将Vi和Vj作为目标电池。
均衡模块706,用于根据目标电池的开路电压获取目标均衡时间,根据目标均衡时间对目标电池进行均衡处理。
具体的,均衡模块706根据目标电池的开路电压与目标均衡时间的数值关系计算的目标均衡时间。若目标电池为单个,则根据目标电池的开路电压控制目标电池充电或放电目标均衡时间;若目标电池为多个,则获取各个目标电池对应的目标均衡时间,如第一个目标电池对应的目标均衡时间为t1,...,第m个目标电池对应的目标均衡时间为tm,则根据第一个目标电池的开路电压控制第一个目标电池充电或放电t1时间,...,根据第m个目标电池的开路电压控制第m个目标电池充电或放电tm时间。
上述电池组均衡装置,利用获取模块702根据各个单体电池的放电深度和对应的第一映射关系获取各个单体电池对应的开路电压,第一映射关系表征开路电压和放电深度之间的关系。利用确定模块704根据各个单体电池的开路电压从多个单体电池中确定目标电池。利用均衡模块706根据目标电池的开路电压获取目标均衡时间,根据目标均衡时间对目标电池进行均衡处理。本申请提供的电池均衡方法能够在充放电状态下,利用放电深度和对应的第一映射关系获取开路电压,无需在电池组静置状态下获取各个单体电池的开路电压,简化获取开路电压步骤的同时,保证了获取的开路电压的准确性。利用开路电压来对目标电池进行均衡处理,避免了由于电池组内各个单体电池的内阻值不同或电流值不同造成不一致问题。本申请提供的电池组均衡方法能够准确地确定出目标电池,提高了对电池组进行均衡处理的效率。
在其中一个实施例中,电池组均衡装置还包括第二获取模块,第二获取模块用于获取各个单体电池对应的第一映射关系。
在其中一个实施例中,第二获取模块还用于控制各个单体电池以预设电流进行放电以使各个单体电池的工作电压由第一电压值下降至第二电压值。 获取各个单体电池放电过程各个单体电池的开路电压与放电电量之间映射关系。根据各个单体电池的开路电压与放电电量之间映射关系及各个单体电池的放电电量与放电深度之间的关系获取目标电池对应的第一映射关系。
在其中一个实施例中,电池组均衡装置还包括第三获取模块,第三获取模块用于读取各个单体电池的设计容量和初始电压对应的初始放电深度,并获取各个单体电池的工作累计电量。根据各个单体电池的设计容量、初始放电深度和工作累计电量计算得到各个单体电池的放电深度。
在其中一个实施例中,电池组均衡装置还包括第四获取模块,第四获取模块用于当电池组中的第一单体电池的工作参数满足预设条件时,将第一单体电池的工作电压作为第一单体电池的开路电压,工作参数包括:静置时间、工作电压变化率、工作电流中的至少一种。
在其中一个实施例中,确定模块还用于将多个单体电池的开路电压进行两两比较,获取任意两个单体电池的开路电压差值。根据任意两个单体电池的开路电压差值从多个单体电池中确定出目标电池。
在其中一个实施例中,确定模块还用于当存在任意两个单体电池的开路电压差值大于差值阈值时,从任意两个单体电池中确定出一个作为目标电池。
在其中一个实施例中,均衡模块还用于当确定较大电压对应的单体电池作为目标电池时,根据目标均衡时间控制目标电池放电。当确定较小电压对应的单体电池作为目标电池时,根据目标均衡时间控制目标电池充电。
在其中一个实施例中,均衡模块还用于获取目标电池的开路电压与电压阈值的电压差值。根据电压差值和电流阈值计算出目标均衡时间。
上述电池组均衡装置中各个模块的划分仅用于举例说明,在其他实施例中,可将电池组均衡装置按照需要划分为不同的模块,以完成上述电池组均衡装置的全部或部分功能。
关于电池组均衡装置的具体限定可以参见上文中对于电池组均衡方法的限定,在此不再赘述。上述电池组均衡装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算 机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图8为一个实施例中电子设备的内部结构示意图。如图8所示,该电子设备包括通过系统总线连接的处理器和存储器。其中,该处理器用于提供计算和控制能力,支撑整个电子设备的运行。存储器可包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统和计算机程序。该计算机程序可被处理器所执行,以用于实现以下各个实施例所提供的一种电池组均衡方法。内存储器为非易失性存储介质中的操作系统计算机程序提供高速缓存的运行环境。该电子设备可以是手机、平板电脑或者个人数字助理或穿戴式设备等。该电子设备还可以是电动工具、自行车、滑板车、矿灯、医疗器械等。
本申请实施例中提供的电池组均衡装置中的各个模块的实现可为计算机程序的形式。该计算机程序可在终端或服务器上运行。该计算机程序构成的程序模块可存储在终端或服务器的存储器上。该计算机程序被处理器执行时,实现本申请实施例中所描述方法的步骤。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行电池组均衡方法的步骤。一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行电池组均衡方法。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路 (Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (20)
- 一种电池组均衡方法,所述电池组包括多个单体电池,所述方法包括:根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述单体电池对应的开路电压,所述第一映射关系表征开路电压和放电深度之间的关系;根据各个所述单体电池的开路电压从多个所述单体电池中确定目标电池;根据所述目标电池的开路电压获取目标均衡时间,根据所述目标均衡时间对所述目标电池进行均衡处理。
- 根据权利要求1所述的方法,所述根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述单体电池对应的开路电压之前,所述方法还包括:获取各个所述单体电池对应的第一映射关系。
- 根据权利要求2所述的方法,所述获取各个所述单体电池对应的第一映射关系,包括:控制各个所述单体电池以预设电流进行放电以使各个所述单体电池的工作电压由第一电压值下降至第二电压值;获取各个所述单体电池放电过程各个所述单体电池的开路电压与放电电量之间映射关系;根据各个所述单体电池的开路电压与放电电量之间映射关系及各个所述单体电池的放电电量与放电深度之间的关系获取所述目标电池对应的第一映射关系。
- 根据权利要求2所述的方法,所述获取各个所述单体电池对应的第一映射关系,包括:获取各个单体电池的不同放电深度及放电深度对应的开路电压组成的数据对;根据各个单体电池对应多个数据对进行函数拟合得到各个单体电池对应 的第一映射关系。
- 根据权利要求1所述的方法,所述根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述单体电池对应的开路电压之前,所述方法还包括:读取各个所述单体电池的设计容量和初始放电深度,并获取各个所述单体电池的工作累计电量;根据各个所述单体电池的设计容量、初始放电深度和工作累计电量计算得到各个所述单体电池的放电深度。
- 根据权利要求1所述的方法,所述根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述单体电池对应的开路电压之前,所述方法还包括:读取各个所述单体电池的初始状态下的充放电容量值和初始放电深度,并获取各个所述单体电池的工作累计电量;根据各个所述单体电池的初始状态下的充放电容量值、初始放电深度和工作累计电量计算得到各个所述单体电池的放电深度。
- 根据权利要求1所述的方法,当所述电池组中的第一单体电池的工作参数不满足预设条件时,根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述单体电池对应的开路电压,所述方法还包括:当所述电池组中的第一单体电池的工作参数满足预设条件时,将所述第一单体电池的工作电压作为所述第一单体电池的开路电压,所述工作参数包括:静置时间、工作电压变化率、工作电流中的至少一种。
- 根据权利要求7所述的方法,所述当所述电池组中的第一单体电池的工作参数满足预设条件时,将所述第一单体电池的工作电压作为所述第一单体电池的开路电压,包括:当电池组内的第一单体电池处于静置状态下且静置时间超过时间阈值时,将第一单体电池的工作电压作为第一单体电池的开路电压。
- 根据权利要求7所述的方法,所述当所述电池组中的第一单体电池的 工作参数满足预设条件时,将所述第一单体电池的工作电压作为所述第一单体电池的开路电压,包括:当电池组内的第一单体电池的工作电压变化率低于变化率预设值时,将第一单体电池的工作电压作为第一单体电池的开路电压。
- 根据权利要求7所述的方法,所述当所述电池组中的第一单体电池的工作参数满足预设条件时,将所述第一单体电池的工作电压作为所述第一单体电池的开路电压,包括:当第一单体电池的充电电流或者放电电流小于电流阈值时,将第一单体电池的工作电压作为第一单体电池的开路电压。
- 根据权利要求1所述的方法,所述根据各个所述单体电池的开路电压从多个所述单体电池中确定目标电池,包括:将多个所述单体电池的开路电压进行两两比较,获取任意两个所述单体电池的开路电压差值;根据任意两个所述单体电池的开路电压差值从多个所述单体电池中确定出所述目标电池。
- 根据权利要求11所述的方法,所述根据任意两个所述单体电池的开路电压差值从多个所述单体电池中确定出所述目标电池,包括:当存在任意两个所述单体电池的开路电压差值大于差值阈值时,从所述任意两个单体电池中确定出一个作为所述目标电池。
- 根据权利要求12所述的方法,所述根据所述目标均衡时间对所述目标电池进行均衡处理,包括:当确定较大电压对应的单体电池作为所述目标电池时,根据所述目标均衡时间控制所述目标电池放电;当确定较小电压对应的单体电池作为所述目标电池时,根据所述目标均衡时间控制所述目标电池充电。
- 根据权利要求1所述的方法,所述根据所述目标电池的开路电压获取目标均衡时间,包括:获取所述目标电池的开路电压与电压阈值的电压差值;根据所述电压差值和电流阈值计算出所述目标均衡时间。
- 根据权利要求14所述的方法,所述根据所述电压差值和电流阈值计算出所述目标均衡时间,包括:将所述目标电池的开路电压与电压阈值的差值和所述电流阈值的比值作为目标均衡时间。
- 根据权利要求1所述的方法,所述根据所述目标电池的开路电压获取目标均衡时间,包括:若目标电池为单个,则根据所述目标电池的开路电压控制目标电池充电或放电的所述目标均衡时间;若目标电池为多个,则分别根据各个所述目标电池的开路电压获取对应的所述目标均衡时间。
- 一种电池组均衡装置,所述电池组包括多个单体电池,所述装置包括:获取模块,用于根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述单体电池对应的开路电压,所述第一映射关系表征开路电压和放电深度之间的关系;确定模块,用于根据各个所述单体电池的开路电压从多个所述单体电池中确定目标电池;均衡模块,用于根据所述目标电池的开路电压获取目标均衡时间,根据所述目标均衡时间对所述目标电池进行均衡处理。
- 一种电子设备,包括:电池组,包括多个单体电池;存储器,所述存储器中储存有计算机程序;处理器,与所述存储器连接,所述计算机程序被所述处理器执行时,所述处理器被配置为:根据各个所述单体电池的放电深度和对应的第一映射关系获取各个所述 单体电池对应的开路电压,所述第一映射关系表征开路电压和放电深度之间的关系;根据各个所述单体电池的开路电压从多个所述单体电池中确定目标电池;根据所述目标电池的开路电压获取目标均衡时间,根据所述目标均衡时间对所述目标电池进行均衡处理。
- 根据权利要求18所述的电子设备,其特征在于,所述处理器还被配置为:控制各个所述单体电池以预设电流进行放电以使各个所述单体电池的工作电压由第一电压值下降至第二电压值;获取各个所述单体电池放电过程各个所述单体电池的开路电压与放电电量之间映射关系;根据各个所述单体电池的开路电压与放电电量之间映射关系及各个所述单体电池的放电电量与放电深度之间的关系获取所述目标电池对应的第一映射关系。
- 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至16中任一项所述的方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911419526.2A CN111180817B (zh) | 2019-12-31 | 2019-12-31 | 电池组均衡方法和装置、电子设备、计算机可读存储介质 |
CN201911419526.2 | 2019-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021136195A1 true WO2021136195A1 (zh) | 2021-07-08 |
Family
ID=70652431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/140256 WO2021136195A1 (zh) | 2019-12-31 | 2020-12-28 | 电池组均衡方法和装置、电子设备、计算机可读存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111180817B (zh) |
WO (1) | WO2021136195A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111180817B (zh) * | 2019-12-31 | 2021-04-23 | Oppo广东移动通信有限公司 | 电池组均衡方法和装置、电子设备、计算机可读存储介质 |
CN112834935A (zh) * | 2020-12-31 | 2021-05-25 | 东软睿驰汽车技术(沈阳)有限公司 | 一种获得电池电芯开路电压的方法及装置 |
CN115483721A (zh) * | 2021-05-31 | 2022-12-16 | 北京小米移动软件有限公司 | 电池均衡控制方法、电池均衡控制装置及存储介质 |
CN114706004B (zh) * | 2022-04-07 | 2024-04-16 | 爱驰汽车有限公司 | 电池包内电芯剩余电量的确定方法、装置、设备及介质 |
CN115882554B (zh) * | 2022-11-29 | 2023-12-26 | 厦门海辰储能科技股份有限公司 | 储能系统的管理方法及相关装置 |
CN116526639B (zh) * | 2023-07-05 | 2023-09-05 | 昆明理工恒达科技股份有限公司 | 一种储能电池均衡控制方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110193518A1 (en) * | 2010-02-10 | 2011-08-11 | James Wright | Battery override |
CN103208809A (zh) * | 2013-03-22 | 2013-07-17 | 华北电力大学 | 需求侧电池组均衡性调节装置及控制方法 |
CN107492917A (zh) * | 2016-09-28 | 2017-12-19 | 宝沃汽车(中国)有限公司 | 动力电池的电量均衡方法、电池管理系统及动力电车 |
CN109921111A (zh) * | 2019-03-14 | 2019-06-21 | 上海大学 | 一种锂离子电池内部温度估测方法及系统 |
CN110061531A (zh) * | 2018-01-19 | 2019-07-26 | 丰郅(上海)新能源科技有限公司 | 储能电池的均衡方法 |
CN111180817A (zh) * | 2019-12-31 | 2020-05-19 | Oppo广东移动通信有限公司 | 电池组均衡方法和装置、电子设备、计算机可读存储介质 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003308817A (ja) * | 2002-04-17 | 2003-10-31 | Nissan Motor Co Ltd | 組電池 |
US6832171B2 (en) * | 2002-12-29 | 2004-12-14 | Texas Instruments Incorporated | Circuit and method for determining battery impedance increase with aging |
US20130073236A1 (en) * | 2011-09-15 | 2013-03-21 | Mediatek Inc. | Systems and methods for determining a remaining battery capacity of a battery device |
WO2013141100A1 (ja) * | 2012-03-21 | 2013-09-26 | 三洋電機株式会社 | 電池状態推定装置 |
JP2015033665A (ja) * | 2013-08-08 | 2015-02-19 | 株式会社リソースクリエイト | 凝集剤添加後濁水の沈降分離装置 |
CN105612652B (zh) * | 2013-09-06 | 2018-01-16 | 日产自动车株式会社 | 二次电池的控制装置和控制方法 |
CN104242393A (zh) * | 2014-09-12 | 2014-12-24 | 安徽启光能源科技研究院有限公司 | 基于动态soc估算系统的电池管理系统 |
CN204424402U (zh) * | 2014-12-25 | 2015-06-24 | 宁德时代新能源科技有限公司 | 磷酸铁锂电池组的被动均衡系统 |
CN107819336A (zh) * | 2016-09-13 | 2018-03-20 | 成都天府新区光启未来技术研究院 | 锂电池的均衡方法、装置和系统 |
CN106646256B (zh) * | 2016-12-21 | 2020-05-29 | 惠州亿纬创能电池有限公司 | 电池容量计算方法 |
JP7116886B2 (ja) * | 2017-02-20 | 2022-08-12 | 株式会社Gsユアサ | 状態推定装置 |
CN108124498B (zh) * | 2017-02-24 | 2020-07-24 | Oppo广东移动通信有限公司 | 均衡电路、待充电设备和充电控制方法 |
CN110015181B (zh) * | 2017-08-24 | 2021-01-12 | 宝沃汽车(中国)有限公司 | 电池均衡方法、装置及车辆 |
-
2019
- 2019-12-31 CN CN201911419526.2A patent/CN111180817B/zh active Active
-
2020
- 2020-12-28 WO PCT/CN2020/140256 patent/WO2021136195A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110193518A1 (en) * | 2010-02-10 | 2011-08-11 | James Wright | Battery override |
CN103208809A (zh) * | 2013-03-22 | 2013-07-17 | 华北电力大学 | 需求侧电池组均衡性调节装置及控制方法 |
CN107492917A (zh) * | 2016-09-28 | 2017-12-19 | 宝沃汽车(中国)有限公司 | 动力电池的电量均衡方法、电池管理系统及动力电车 |
CN110061531A (zh) * | 2018-01-19 | 2019-07-26 | 丰郅(上海)新能源科技有限公司 | 储能电池的均衡方法 |
CN109921111A (zh) * | 2019-03-14 | 2019-06-21 | 上海大学 | 一种锂离子电池内部温度估测方法及系统 |
CN111180817A (zh) * | 2019-12-31 | 2020-05-19 | Oppo广东移动通信有限公司 | 电池组均衡方法和装置、电子设备、计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN111180817A (zh) | 2020-05-19 |
CN111180817B (zh) | 2021-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021136195A1 (zh) | 电池组均衡方法和装置、电子设备、计算机可读存储介质 | |
US11408942B2 (en) | Method for predicting service life of retired power battery | |
US10718814B2 (en) | Battery testing apparatus and method | |
BRPI0912595B1 (pt) | aparelho e método para estimar característica de resistência para estimar uma resistência de uma bateria | |
US20210119464A1 (en) | Method and apparatus controlling charging of battery based on diffusion characteristics of material included in the battery | |
TWI687701B (zh) | 判斷電量狀態的方法及其電子裝置 | |
CN112108400B (zh) | 一种预测软包电池循环性能的测试方法 | |
CN115808624A (zh) | 一种电池的健康度检测方法、设备和存储介质 | |
CN115792627A (zh) | 锂电池soh分析预测方法、装置、电子设备及存储介质 | |
CN114189013B (zh) | 一种充电装置、充电方法及计算机可读存储介质 | |
CN114970734A (zh) | 异常电池确定方法、装置、计算机设备和存储介质 | |
CN110824375A (zh) | 一种退役蓄电池实际容量计算方法 | |
EP4270714A1 (en) | Charging method, electronic device, and storage medium | |
CN112557905B (zh) | 电池组及其数据处理方法、计算机设备、介质和车辆 | |
CN112240952A (zh) | 功率测试方法、系统、计算机设备和存储介质 | |
US12078682B2 (en) | Method and apparatus for estimating state of battery | |
CN110531281A (zh) | 用于估计动力蓄电池单元的健康状态的方法及系统 | |
CN116299006A (zh) | 电池包的健康状况预测方法、装置、设备和存储介质 | |
CN113009353B (zh) | 电池一致性的检测方法、装置、电子设备和存储介质 | |
CN115754774A (zh) | 锂电池混联系统的soc电量预测方法、装置及计算机设备 | |
KR102554505B1 (ko) | 배터리 진단 장치 및 방법 | |
CN112240987A (zh) | 功率测试方法、系统、计算机设备和存储介质 | |
JP2024534776A (ja) | 充電プロトコル検査装置およびその動作方法 | |
US20230268753A1 (en) | Intelligent battery charging based on history | |
TWI757673B (zh) | 平衡充電方法與充電裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20908876 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20908876 Country of ref document: EP Kind code of ref document: A1 |