WO2021135738A1 - 电机控制系统及电机控制装置 - Google Patents

电机控制系统及电机控制装置 Download PDF

Info

Publication number
WO2021135738A1
WO2021135738A1 PCT/CN2020/131440 CN2020131440W WO2021135738A1 WO 2021135738 A1 WO2021135738 A1 WO 2021135738A1 CN 2020131440 W CN2020131440 W CN 2020131440W WO 2021135738 A1 WO2021135738 A1 WO 2021135738A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
bridge arm
drive unit
voltage
Prior art date
Application number
PCT/CN2020/131440
Other languages
English (en)
French (fr)
Inventor
杜智勇
徐鲁辉
喻轶龙
齐阿喜
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP20909749.2A priority Critical patent/EP4087117A4/en
Priority to US17/787,731 priority patent/US11811350B2/en
Priority to JP2022540434A priority patent/JP2023508552A/ja
Publication of WO2021135738A1 publication Critical patent/WO2021135738A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Definitions

  • the present disclosure relates to the field of motor control, and in particular to a motor control system and a motor control device.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • an embodiment of the first aspect of the present disclosure provides a motor control system, including a drive unit, a backup control unit, and a power unit, wherein the drive unit is electrically connected to the power unit for driving the received low voltage
  • the signal is converted into a high-voltage drive signal and output to the power unit.
  • the power unit outputs a power drive signal provided by a high-voltage battery according to the high-voltage drive signal, and the power drive signal is used to drive the power unit connected to the power unit.
  • the motor rotates; the backup control unit is electrically connected to the drive unit, and the drive unit is used to output a diagnostic signal representing the operating state of the drive unit to the backup control unit, if the backup control unit receives The diagnostic signal indicates that the drive unit is in a fault state, and the backup control unit controls the drive unit to stop working, so that the drive unit stops outputting the high-voltage drive signal to the power unit to control the motor Stop turning.
  • An embodiment of the second aspect of the present disclosure provides a motor control device including the aforementioned motor control system.
  • the motor control system by adding a switching unit to the power supply unit, the first DC voltage output by the battery unit and the third DC voltage output by the first transformation unit are switched and output, so that when one signal fails Switching to another signal in time improves the power supply safety of the electric device applying the motor control system during operation.
  • the motor control system has also added a backup control unit, which can form a redundant fault control structure with the control unit when the drive unit encounters a failure. That is, when the control unit cannot stop the drive unit, the backup control unit can also be used Control the drive unit to stop working. It can be seen that in the motor control system, through the improvement of the power supply unit and the addition of the standby control unit, the safety level of the electric device applying the motor control system is improved.
  • FIG. 1 is a schematic structural diagram of a motor control system according to an embodiment of the disclosure
  • Fig. 2 is a schematic diagram of the specific structure of the motor control system shown in Fig. 1.
  • connection should be understood in a broad sense.
  • they can be fixed or detachable.
  • a high-level safety motor control system can improve the safety and stability of electric vehicles during operation.
  • FIG. 1 is a schematic structural diagram of a motor control system according to an embodiment of the disclosure.
  • the motor control system 100 includes a power supply unit 101, a control unit 102, a drive unit 103, a backup control unit 104 and a power unit 105.
  • the power supply unit 101 is electrically connected to the control unit 102 and the drive unit 103, and is used to provide the control unit 102 with a first power signal.
  • the control unit 102 controls the drive unit 103 under the driving action of the first power signal. It is used to provide the first power signal and the second power signal to the driving unit 103, and the driving unit 103 performs work under the simultaneous driving action of the first power signal and the second power signal.
  • the control unit 102 is electrically connected to the driving unit 103 for outputting an enable signal and a low-voltage driving signal to the driving unit 103 when performing work under the driving action of the first power signal.
  • the driving unit 103 is electrically connected to the power unit 105 for receiving the enable signal and the low-voltage driving signal when performing work under the simultaneous driving action of the first power signal and the second power signal, and according to the first potential of the enable signal
  • the conversion of the low-voltage driving signal into the high-voltage driving signal is started, and the high-voltage driving signal is output to the power unit 105, and the conversion of the low-voltage driving signal into the high-voltage driving signal is stopped according to the second potential of the enable signal.
  • the drive unit 103 is also used to output a fault signal to the control unit 102 when a fault occurs, and the control unit 102 converts the enable signal from the first potential to the second potential according to the received fault signal, and stops outputting the low-voltage drive The signal is sent to the driving unit 103.
  • the power unit 105 is electrically connected to the high-voltage battery 300 and the motor 200, and is used to output the power driving signal provided by the high-voltage battery 300 to the motor 200 under the control of the high-voltage driving signal output by the driving unit 103, and the power driving signal is used for driving The motor 200 rotates.
  • the drive unit 103 is electrically connected to the backup control unit 104, and is used to output a diagnostic signal representing the operating status of the drive unit 103 to the backup control unit 104.
  • the operating status includes fault and non-fault, so that the backup control unit 104 can respond to the potential of the diagnostic signal
  • the potential of the standby control signal output to the driving unit 103 is adjusted to make the driving unit 103 output or stop outputting the high-voltage driving signal to the power unit 105.
  • the diagnostic signal output to the backup control unit 104 is at the first potential, and the backup control signal output by the backup control unit 104 is at the first potential, so that the drive unit 103 continues to output high voltage.
  • the drive signal is sent to the power unit 105; if the drive unit 103 is in a fault state, the diagnostic signal output to the backup control unit 104 is changed from the first potential to the second potential, and the backup control signal output by the backup control unit 104 is the second potential. So that the driving unit 103 stops outputting the high-voltage driving signal to the power unit 105.
  • the driving unit 103 contains a detection circuit for detecting its own operating state, so that the driving unit 103 can output a fault signal to the control unit 102 when a fault occurs, and convert the diagnostic signal from a first potential to a second potential. Potential.
  • the backup control unit 104 monitors the operating status of the drive unit 103 in real time, and can control the drive unit 103 to stop working when it fails; the other is that the control unit 102 can stop working when the drive unit 103 fails. After receiving the fault signal output by the driving unit 103, according to the fault signal, it stops outputting the enable signal and the low-voltage driving signal to the driving unit 103, so that the driving unit 103 stops working.
  • a redundant control structure is formed in the fault handling of the drive unit 103, so that when the control unit 102 cannot control the drive unit 103 to stop working in time due to power supply and other reasons, it can also make the drive unit stop working through the backup control unit 104 103 stops working, so that the motor control system 100 has a higher level of safety.
  • the enable signal includes the upper bridge arm enable signal, the lower bridge arm enable signal, and the safety enable signal;
  • the low-voltage drive signal includes the upper bridge arm low-voltage drive signal and the lower bridge arm low-voltage drive signal;
  • the high-voltage drive signal Including the upper bridge arm high voltage drive signal and the lower bridge arm high voltage drive signal;
  • the fault signal includes the upper bridge arm fault signal and the lower bridge arm fault signal;
  • the diagnostic signal includes the upper bridge arm diagnostic signal, the lower bridge arm diagnostic signal, and the first power source diagnostic signal And a second power supply diagnostic signal;
  • the standby control signal includes a first standby control signal and a second standby control signal.
  • the power supply unit 101 includes a battery unit 1011, a high-voltage unit 1012, a first transformation unit 1013, a second transformation unit 1014, and a switching unit 1015.
  • the battery unit 1011 is electrically connected to the switching unit 1015 for outputting the first DC voltage to the switching unit 1015.
  • the high-voltage unit 1012 is electrically connected to the first transformation unit 1013 for outputting the second DC voltage to the first transformation unit 1013.
  • the first transformation unit 1013 is electrically connected to the switching unit 1015 for receiving the second direct current voltage output by the high-voltage unit 1012, performing transformation processing on the second direct current voltage, and outputting the third direct current voltage to the switching unit 1015.
  • the switching unit 1015 is electrically connected to the control unit 102 and the driving unit 103, and is used for outputting the first direct current voltage as a first power signal to the control unit 102 and the driving unit 103 when the first direct current voltage is in the threshold range, and is also used for When the first DC voltage exceeds the threshold range, the third DC voltage is used as the first power signal to output the control unit 102 and the driving unit 103.
  • the high-voltage unit 1012 is also electrically connected to the second transformation unit 1014 for outputting the second DC voltage to the second transformation unit 1014.
  • the second transformation unit 1014 is also electrically connected to the driving unit 103 for receiving the second direct current voltage output by the high voltage unit 1012, performing transformation processing on the second direct current voltage, and outputting a second power signal to the driving unit 103.
  • the threshold value range is a range of values. As long as the value of the first DC voltage is within this range, the switching unit 1015 will output the first DC voltage as the first power signal; otherwise, it will output the first DC voltage as the first power signal. The three DC voltages are output as the first power signal.
  • the switching unit 1015 preferentially outputs the first DC voltage output by the battery unit 2011 to the control unit 102 and the driving unit 103 as the first power signal.
  • the switching unit 1015 may also preferentially output the third DC voltage output by the first transformation unit 1013 as the first power signal to the control unit 102 and the driving unit 103.
  • the threshold range is 9.5V to 10.5V
  • the first DC voltage and the third DC voltage output by the battery unit 1011 and the first transformation unit 1013 are both limited to 10V
  • the switching unit 1015 will A DC voltage is output as the first power signal.
  • the switching unit 1015 will output the third DC voltage as the first power signal.
  • the switching unit 1015 realizes the switching between the first DC voltage and the third DC voltage in this way.
  • the first DC voltage, the third DC voltage, and the threshold range can also be set to other values according to actual requirements, which are not specifically limited in the embodiment of the present disclosure.
  • the control unit 102 includes a power supply unit 1021, a safety logic unit 1022, an information collection unit 1023, and a main control unit 1024.
  • the power supply unit 1021 is electrically connected to the main control unit 1024 and the switching unit 1015 in the power supply unit 101, and is used to receive the first power signal output by the switching unit 1015, and output the main control power signal to the first power signal after processing the first power signal.
  • the main control unit 1024 enables the main control unit 1024 to perform work under the driving action of the main control power signal.
  • the power supply unit 1021 is also used to receive the main control diagnosis signal output by the main control unit 1024, and output or stop outputting the main control power signal to the main control unit 1024 according to the main control diagnosis signal.
  • the main control diagnostic signal is used to characterize the working state of the main control unit 1024, and its working state includes fault and non-fault. If in the non-fault state, the main control unit 1024 outputs the first potential in the main control diagnostic signal so that the power supply unit 1021 continues to output the main control power signal; if it is in a fault state, the main control unit 1024 outputs the second potential in the main control diagnostic signal, so that the power supply unit 1021 stops outputting the main control power signal.
  • the main control unit 1024 is electrically connected to the three-phase upper bridge arm drive unit 1033 and the three-phase lower bridge arm drive unit 1036 in the drive unit 103, and is used to output the upper bridge arm when performing work under the driving action of the main control power signal
  • the enable signal and the upper bridge arm low voltage drive signal are sent to the three-phase upper bridge arm drive unit 1033, and the lower bridge arm enable signal and the lower bridge arm low voltage drive signal are output to the three-phase lower bridge arm drive unit 1036.
  • the main control unit 1024 is also used to receive the upper bridge arm failure signal output by the three-phase upper bridge arm drive unit 1033 and the lower bridge arm failure signal output by the three-phase lower bridge arm drive unit 1036, and under the action of the upper bridge arm failure signal , Stop outputting the upper bridge arm low voltage drive signal and turn the upper bridge arm enable signal from the first potential to the second potential, so that the three-phase upper bridge arm drive unit 1033 stops working, and under the action of the lower bridge arm fault signal, Stop outputting the lower bridge arm low-voltage drive signal and turn the lower bridge arm enable signal from the first potential to the second potential, so that the three-phase lower bridge arm drive unit 1036 stops working.
  • the main control unit 1024 is also electrically connected to the information acquisition unit 1023, and is used to receive the acquisition signals output by the information acquisition unit 1023, including important parameters such as the current, voltage, and speed of the motor 200 during operation, and according to the acquisition signals Adjust the output upper bridge arm enable signal, upper bridge arm low voltage drive signal, lower bridge arm enable signal and lower bridge arm low voltage drive signal.
  • the safety logic unit 1022 is electrically connected to the power supply unit 1021 and the main control unit 1024, and is used to receive the power diagnosis signal output by the power supply unit 1021 and the main control diagnosis signal output by the main control unit 1024, and provide the power supply diagnosis signal and the main control diagnosis signal.
  • the first potential in the safety enable signal is output to the three-phase upper bridge arm drive unit 1033 and the three-phase lower bridge arm drive unit 1036, so that the three-phase upper bridge arm drive unit 1033 and the three-phase lower bridge arm drive unit 1033
  • the bridge arm drive unit 1036 performs work; and when any unit of the power supply unit 1021 and the main control unit 1024 changes their diagnostic signals from the first potential to the second potential due to a failure, output the second of the safety enable signals
  • the electric potential is applied to the three-phase upper bridge arm drive unit 1033 and the three-phase lower bridge arm drive unit 1036, so that the three-phase upper bridge arm drive unit 1033 and the three-phase lower bridge arm drive unit 1036 stop working.
  • the power supply unit 1021 processes the first power signal output by the switching unit 1015 and then outputs the main control power signal to the main control unit 1024, so that the main control unit 1024 drives the internal The components work, and output the upper bridge arm enable signal and the upper bridge arm low-voltage drive signal to the three-phase upper bridge arm drive unit 1033, and output the lower bridge arm enable signal and the lower bridge arm low-voltage drive signal to the three-phase lower bridge arm Drive unit 1036.
  • the power supply unit 1021 when the power supply unit 1021 encounters a fault, the power supply unit 1021 outputs a power failure signal to the safety logic unit 1022, so that the safety logic unit 1022 converts the safety enable signal from the first potential to the second potential, so that The three-phase upper bridge arm drive unit 1033 and the three-phase lower bridge arm drive unit 1036 in the drive unit 103 stop working.
  • the main control unit 1024 when the main control unit 1024 encounters a failure, the main control unit 1024 will convert the main control diagnostic signal input to the power supply unit 1021 and the safety logic unit 1022 from the first potential to the second potential, so that the power supply unit 1021 Stop outputting the main control power signal, and make the safety logic unit 1022 convert the safety enable signal from the first potential to the second potential, so that the three-phase upper bridge arm drive unit 1033 and the three-phase lower bridge arm drive unit in the drive unit 103 1036 stopped working.
  • the driving unit 103 includes a first primary side power supply 1031, a first secondary side power supply 1032, a three-phase upper side power supply 1033, a second primary side power supply 1034, a second secondary side power supply 1035, and a three-phase lower side power supply 1036.
  • the first primary power supply 1031 is electrically connected to the three-phase upper arm drive unit 1033 and the switching unit 1015 in the power supply unit 101, and is used to receive the first power signal output by the switching unit 1015, and according to the first power signal Function to output the first primary power signal to the three-phase upper bridge arm drive unit 1033.
  • the first secondary side power supply 1032 is electrically connected to the three-phase upper bridge arm drive unit 1033 and the switching unit 1015 in the power supply unit 101, and is used to receive the first power signal output by the switching unit 1015 and output according to the function of the first power signal
  • the first secondary side power signal is sent to the three-phase upper bridge arm driving unit 1033.
  • the first secondary power supply 1032 is also electrically connected to the first backup control unit 1041 in the backup control unit 104, and is used to detect the first power signal output from the switching unit 1015 and output the first power diagnostic signal to the first Standby control unit 1041.
  • the first power source diagnostic signal is used to characterize the working state of the first power source signal output by the switching unit 1015.
  • the first power source diagnostic signal includes a first potential and a second potential. The first potential indicates a non-fault state, and the second potential indicates a fault state. , Faults include no signal, overvoltage, overcurrent, and undervoltage conditions.
  • the three-phase upper bridge arm drive unit 1033 is used to receive the first primary side power signal output by the first primary side power supply 1031, and drive the primary side of the three-phase upper bridge arm drive unit 1033 according to the function of the first primary side power signal The components in the perform work.
  • the three-phase upper bridge arm drive unit 1033 is also used to receive the first secondary side power signal output by the first secondary side power supply 1032, and drive the secondary side of the three-phase upper bridge arm drive unit 1033 according to the function of the first secondary side power signal.
  • the components in the side perform work.
  • the three-phase upper bridge arm drive unit 1033 is also electrically connected to the power unit 105 for receiving the upper bridge arm enable signal and the upper bridge arm low-voltage drive signal output by the main control unit 1024 in the control unit 102, and receives the safety logic unit
  • the safety enable signal output by 1022 is driven by the first primary side power signal and the first secondary side power signal at the same time, the first potential in the upper bridge arm enable signal is received to start the upper bridge arm low voltage
  • the driving signal is converted into a high-voltage driving signal of the upper bridge arm, and the high-voltage driving signal of the upper bridge arm is output to the power unit 105, and when the first primary side power signal and the first secondary side power signal are simultaneously driven, the upper bridge is received
  • the second potential in the arm enable signal is used to stop converting the upper bridge arm low-voltage drive signal into the upper bridge arm high-voltage drive signal.
  • the three-phase upper bridge arm drive unit 1033 is also electrically connected to the first standby control unit 1041 in the standby control unit 104, and is used to output an upper bridge arm diagnostic signal that characterizes the working state of the three-phase upper bridge arm drive unit 1033.
  • the arm diagnostic signal includes a first potential and a second potential. The first potential indicates a non-fault state, and the second potential indicates a fault state.
  • the three-phase upper bridge arm drive unit 1033 is also configured to receive the first standby control signal output from the first standby control unit 1041, and perform work according to the first potential of the first standby control signal, and according to the first standby control signal of the first standby control signal.
  • the second potential stops performing work.
  • the three-phase upper bridge arm drive unit 1033 is also used to output an upper bridge arm failure signal to the first primary side power supply 1031, so that the first primary side power supply 1031 stops outputting the first primary side power signal when receiving the upper bridge arm failure signal To the primary side of the three-phase upper bridge arm drive unit 1033.
  • the three-phase upper bridge arm drive unit 1033 is also used to output the upper bridge arm diagnostic signal to the first secondary side power supply 1032, so that the upper bridge arm diagnostic signal received by the first secondary side power supply 1032 changes from the first potential that represents a non-fault state. In order to indicate the second potential of the fault state, the output of the first secondary side power signal to the secondary side of the three-phase upper bridge arm driving unit 1033 is stopped.
  • the three-phase upper bridge arm drive unit 1033 is composed of the primary side of the upper bridge arm (not shown), the iron core (not shown), and the secondary side of the upper bridge arm (not shown).
  • the primary side of the upper bridge arm is used to receive the first primary power signal, the upper bridge arm enable signal, the upper bridge arm low-voltage drive signal, and the safety enable signal, and it is also used to output the upper bridge arm fault signal to the main control unit. 1024.
  • the secondary side of the upper bridge arm is used to receive the first secondary side power signal and the first standby control signal, and is also used to output the upper bridge arm diagnostic signal to the first standby control unit 1041 and output the upper bridge arm high-voltage drive signal to the power unit 105 .
  • the second primary power supply 1034 is electrically connected to the three-phase lower bridge arm drive unit 1036 and the switching unit 1015 in the power supply unit 101, and is used to receive the first power signal output by the switching unit 1015, and according to the function of the first power signal, The second primary power signal is output to the three-phase lower bridge arm driving unit 1036.
  • the second secondary power supply 1035 is electrically connected to the three-phase lower bridge arm drive unit 1036 and the second transformation unit 1014 in the power supply unit 101, and is used to receive the second power signal output by the second transformation unit 1014, and according to the first The function of the second power signal is to output the second secondary side power signal to the three-phase lower bridge arm drive unit 1036.
  • the second secondary power supply 1035 is also electrically connected to the second backup control unit 1042 in the backup control unit 104 for detecting the second power signal output from the second transformer unit 1014 and outputting the second power diagnostic signal To the second standby control unit 1042.
  • the second power diagnostic signal is used to characterize the working status of the second power signal output by the second transformer unit 1014.
  • the second power diagnostic signal includes a first potential and a second potential. The first potential indicates a non-fault state, and the second potential Indicates fault status, faults include no signal, over voltage, over current, and low voltage.
  • the three-phase lower bridge arm drive unit 1036 is used to receive the second primary side power signal output by the second primary side power supply 1034, and drive the primary side of the three-phase lower bridge arm drive unit 1036 according to the function of the second primary side power signal The components in the perform work.
  • the three-phase lower bridge arm drive unit 1036 is also used to receive the second secondary side power signal output by the second secondary side power supply 1035, and drive the secondary side of the three-phase lower bridge arm drive unit 1036 according to the function of the second secondary side power signal The components in the side perform work.
  • the three-phase lower bridge arm drive unit 1036 is also electrically connected to the power unit 105 for receiving the lower bridge arm enable signal and the lower bridge arm low-voltage drive signal output by the main control unit 1024 in the control unit 102, and receives the safety logic unit
  • the safety enable signal output by 1022 is driven by the second primary side power signal and the second secondary side power signal at the same time
  • the first potential in the lower bridge arm enable signal is received to start the lower bridge arm low voltage
  • the driving signal is converted into a high-voltage driving signal of the lower bridge arm, and the high-voltage driving signal of the lower bridge arm is output to the power unit 105, and when the second primary power signal and the second secondary power signal are simultaneously driven, the lower bridge is received
  • the second potential in the arm enable signal is used to stop the conversion of the low-voltage drive signal of the low-side arm into the high-voltage drive signal of the low-side arm.
  • the three-phase lower bridge arm drive unit 1036 is also electrically connected to the second standby control unit 1042 in the standby control unit 104, and is used to output a lower bridge arm diagnostic signal that characterizes the working state of the three-phase lower bridge arm drive unit 1036.
  • the arm diagnostic signal includes a first potential and a second potential. The first potential indicates a non-fault state, and the second potential indicates a fault state.
  • the three-phase lower bridge arm driving unit 1036 is also configured to receive the second standby control signal output from the second standby control unit 1042, and perform work according to the first potential of the second standby control signal, and the second standby control signal according to the second standby control signal. The second potential stops performing work.
  • the three-phase lower bridge arm drive unit 1036 is also used to output a lower bridge arm failure signal to the second primary side power supply 1034, so that the second primary side power supply 1034 stops outputting the second primary side power signal when receiving the lower bridge arm failure signal To the primary side of the three-phase lower bridge arm drive unit 1036.
  • the three-phase lower bridge arm drive unit 1036 is also used to output the lower bridge arm diagnostic signal to the second secondary side power supply 1035, so that when the lower bridge arm diagnostic signal received by the second secondary side power supply 1035 changes from the first potential to the second potential , Stop outputting the second secondary side power signal to the secondary side of the three-phase lower bridge arm drive unit 1036.
  • the three-phase lower bridge arm drive unit 1036 is composed of the primary side of the lower bridge arm (not shown), the iron core (not shown), and the secondary side of the lower bridge arm (not shown).
  • the primary side of the lower bridge arm is used to receive the second primary side power signal, the lower bridge arm enable signal, the lower bridge arm low-voltage drive signal and the safety enable signal, and it is also used to output the lower bridge arm fault signal to the main control unit. 1024.
  • the secondary side of the lower bridge arm is used to receive the second secondary side power signal and the second standby control signal, and is also used to output the lower bridge arm diagnostic signal to the second standby control unit 1042 and output the lower bridge arm high voltage drive signal to the power unit 105 .
  • the backup control unit 104 includes a first backup control unit 1041 and a second backup control unit 1042.
  • the first backup control unit 1041 is electrically connected to the first secondary side power supply 1032, the three-phase upper bridge arm drive unit 1033, and the second secondary side power supply 1035 in the driving unit 103 for receiving from the first secondary side power supply 1032
  • the output first power diagnostic signal, the upper bridge arm diagnostic signal output by the three-phase upper bridge arm drive unit 1033, and the second power diagnostic signal output by the second secondary side power supply 1035 are based on the first power source diagnostic signal and the upper bridge arm diagnostic signal.
  • the potential of the signal and the second power diagnostic signal adjust the potential of the first standby control signal output to the three-phase upper arm drive unit 1033.
  • the first backup control unit 1041 outputs the first potential in the first backup control signal, so that the three-phase upper bridge arm driving unit 1033 continues to perform work.
  • the first backup control unit 1041 outputs the first backup control The second potential in the signal, so that the three-phase upper bridge arm driving unit 1033 stops working.
  • the second backup control unit 1042 is electrically connected to the first secondary side power supply 1032, the three-phase lower bridge arm drive unit 1036, and the second secondary side power supply 1035 in the driving unit 103, and is configured to receive the output from the first secondary side power supply 1032
  • the first power source diagnostic signal, the lower bridge arm diagnostic signal output by the three-phase lower bridge arm drive unit 1036, and the second power source diagnostic signal output by the second secondary side power supply 1035 are based on the first power source diagnostic signal, the lower bridge arm diagnostic signal and
  • the potential of the second power diagnostic signal adjusts the potential of the second standby control signal output to the three-phase lower arm drive unit 1036.
  • the second backup control unit 1042 outputs the first potential in the second backup control signal, so that the three-phase lower bridge arm drive unit 1036 continues to perform work.
  • the second backup control unit 1042 outputs the second backup control The second potential in the signal, so that the three-phase upper bridge arm drive unit 1036 stops working.
  • the standby control unit 104 receives the diagnostic signal output from the driving unit 103 to perform the control of the first power signal, the second power signal, the three-phase upper bridge arm drive unit 1033 and the three-phase lower bridge arm drive unit 1036.
  • Real-time monitoring of the working status can control the drive unit 103 to stop working when any unit or signal transmission fails, and together with the control unit 102 form a redundant structure for fault handling of the drive unit 103, which improves the motor control system 100 The anti-risk ability and safety level.
  • the power unit 105 is electrically connected to the driving unit 103 for being controlled by the high-voltage driving signal output from the driving unit 103, and outputting the power driving signal provided by the high-voltage battery 300 to the motor 200, and the power driving signal is used to drive the motor 200 to rotate.
  • the first primary side power supply 1031 is the primary side of the three-phase upper bridge arm driving unit 1033 which outputs the first primary power signal
  • the first secondary side power supply 1032 is three-phase
  • the secondary side of the upper bridge arm drive unit 1033 outputs the first secondary side power signal, so that the three-phase upper bridge arm drive unit 1033 can simultaneously receive the first potential and the first potential of the upper bridge arm enable signal output by the control unit 102
  • start the transformation process on the low-voltage drive signal of the upper bridge arm and then output the high-voltage drive signal of the upper bridge arm to the power unit 105, so that the power unit 105 can convert it to enable the motor to perform rotation The power drive signal.
  • the three-phase upper bridge arm drive unit 1033 in the drive unit encounters a failure, the three-phase upper bridge arm drive unit 1033 will output an upper bridge arm failure signal to the main control unit 1024, so that the main control unit 1024 converts the upper bridge arm enable signal from the first potential to the second potential, and stops outputting the upper bridge arm low-voltage drive signal, so that the three-phase upper bridge arm drive unit 1033 stops working.
  • the three-phase upper bridge arm drive unit 1033 also converts the upper bridge arm diagnostic signal output to the first standby control unit 1034 from the first potential to the second potential, so that the first standby control unit 1041 controls the first standby The signal is converted from the first potential to the second potential, so that the three-phase upper bridge arm driving unit 1033 stops working.
  • This redundant fault handling method can control the drive unit 103 to stop working by the backup control unit 104 when the main control unit 1024 cannot stop the drive unit 103 in time due to power supply or other failures, so that the motor control system 100 is applied.
  • the motor device has a higher level of safety.
  • the three-phase upper bridge arm drive unit 1033 and the three-phase lower bridge arm drive unit 1036 in the drive unit 103 are symmetrically arranged, and the three-phase lower bridge arm drive unit 1036 is similar to the three-phase upper arm drive unit 1036 in normal operation and encounters a failure.
  • the bridge arm driving unit 1033 has a similar manner, so it will not be described in detail.
  • the motor control system 100 is working normally, only the three-phase upper bridge arm drive unit 1033 or the three-phase lower bridge arm drive unit 1037 is working at the same time, and the two units will not work at the same time. If the three-phase upper bridge arm drive unit 1033 stops working due to a fault, the drive unit 103 will start the three-phase lower bridge arm drive unit 1037 to ensure that the electric device can be in a relatively safe operating state.
  • a motor control device is also provided, including the aforementioned motor control system 200.
  • the motor control system 100 by adding a switching unit 1015 to the power supply unit 101, the first DC voltage output by the battery unit 1011 and the third DC voltage output by the first transformation unit 1013 can be switched and output. When one signal fails, it is switched to another signal in time, which improves the power supply safety of the electric device applying the motor control system 100 during operation.
  • the motor control system 100 also adds a backup control unit 104, which can form a redundant fault control structure with the control unit 102 when the drive unit 103 encounters a failure, that is, when the control unit 102 cannot stop the drive unit 103 from working, The backup control unit 104 can also control the drive unit 103 to stop working. It can be seen that in the motor control system 100, through the improvement of the power supply unit 101 and the addition of the backup control unit 104, the safety level of the electric device to which the motor control system 100 is applied is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Electric Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种电机控制系统及电机控制装置,其中,系统包括驱动单元、备控单元和功率单元,驱动单元电性连接于功率单元,用于将接收的低压驱动信号转换为高压驱动信号并输出至功率单元,功率单元根据高压驱动信号将高压电池提供的电源驱动信号进行输出,电源驱动信号用于驱动连接于功率单元的电机转动;备控单元电性连接于驱动单元,驱动单元用于输出表征驱动单元运行状态的诊断信号至备控单元,若备控单元接收到的诊断信号表征驱动单元处于故障状态,备控单元控制驱动单元停止工作,以使驱动单元停止输出高压驱动信号至功率单元,以控制电机停止转动。

Description

电机控制系统及电机控制装置
相关申请的交叉引用
本公开要求于2019年12月31日提交的申请号为201911417122.X,名称为“电机控制系统及电机控制装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电机控制领域,尤其涉及一种电机控制系统及电机控制装置。
背景技术
随着电动汽车的快速发展,对于电动汽车中核心器件之一的电机的驱动控制也越来越受到重视。
当前的电机控制系统中,更多的是对电机的功能和性能进行设计,缺少对电机的安全性考虑,导致传统的电机控制系统在应用到电动汽车上时,难以达到更高的安全等级。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开第一方面实施例提供一种电机控制系统,包括驱动单元、备控单元和功率单元,其中,所述驱动单元电性连接于所述功率单元,用于将接收的低压驱动信号转换为高压驱动信号并输出至所述功率单元,所述功率单元根据所述高压驱动信号将高压电池提供的电源驱动信号进行输出,所述电源驱动信号用于驱动连接于所述功率单元的电机转动;所述备控单元电性连接于所述驱动单元,所述驱动单元用于输出表征所述驱动单元运行状态的诊断信号至所述备控单元,若所述备控单元接收到的所述诊断信号表征所述驱动单元处于故障状态,所述备控单元控制所述驱动单元停止工作,以使所述驱动单元停止输出所述高压驱动信号至所述功率单元,以控制所述电机停止转动。
本公开第二方面实施例提供一种电机控制装置,包括前述电机控制系统。
本公开实施例的电机控制系统,通过在供电单元中加入切换单元,对电池单元输出的第一直流电压和第一变压单元输出的第三直流电压进行切换输出,能够在一路信号出现故障时及时切换到另一路信号,提升了应用该电机控制系统的电动装置在运行过程中的供电安全性。此外,电机控制系统还加入了备控单元,能够在驱动单元遭遇故障时,与控制单元构成一个冗余的故障控制结构,即在控制单元无法使驱动单元停止工作时,也能由备控单元控制驱动单元停止工作。可见,在电机控制系统中,通过对供电单元的改进和备控单元的添加,提升了应用该电机控制系统的电动装置的安全等级。
附图说明
为了更清楚地说明本公开实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通 技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的一种电机控制系统的结构示意图;
图2为图1所示电机控制系统的具体结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
以下各实施例的说明是参考附加的图示,用以例示本公开可用以实施的特定实施例。本公开中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本公开,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸地连接,或者一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
本公开中“的(英文:of)”,“相应的(英文corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。另外,为了便于清楚描述本公开实施例的技术方案,在本公开的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
与传统燃油汽车相比,电动汽车的移动是通过纯电力支持的电动机来实现的,电动机在运行过程中的转速、电流以及电压等重要参数,都需要由电机控制系统来监测和控制,所以,一个高安全等级的电机控制系统,更能提升电动汽车在运行过程中的安全性和稳定性。
请参阅图1,其为本公开实施例的一种电机控制系统的结构示意图。如图1所示,电机控制系统100包括供电单元101、控制单元102、驱动单元103、备控单元104和功率单元105。
其中,供电单元101电性连接于控制单元102和驱动单元103,用于为控制单元102提供第一电源信号,控制单元102在第一电源信号的驱动作用下,对驱动单元103进行控制,还用于为驱动单元103提供第一电源信号和第二电源信号,驱动单元103在第一电源信号和第二电源信号的同时驱动作用下执行工作。
控制单元102与驱动单元103电性连接,用于在第一电源信号的驱动作用下执行工作时,输出使能信号和低压驱动信号至驱动单元103。
驱动单元103电性连接于功率单元105,用于在第一电源信号和第二电源信号的同时驱动作用下执行工作时,接收使能信号和低压驱动信号,并根据使能信号的第一电位启动将低压驱动信号转换为高压驱动信号,并输出高压驱动信号至功率单元105,以及根据使能信号的第二电位停止将低压驱动信号转换为高压驱动信号。
驱动单元103还用于在发生故障时,将故障信号输出至控制单元102,控制单元102则根据接收到的故障信号,将使能信号由第一电位转为第二电位,以及停止输出低压驱动信号至驱动单元103。
功率单元105电性连接于高压电池300和电机200,用于在驱动单元103输出的高压驱动信号的控制作用下,将高压电池300提供的电源驱动信号输出至电机200,电源驱动信号用于驱动电机200转动。
驱动单元103电性连接于备控单元104,用于输出表征驱动单元103的运行状态的诊断信号至备控单元104,运行状态包括故障和非故障,以使备控单元104根据诊断信号的电位变化,对输出至驱动单元103的备用控制信号的电位进行调整,以使驱动单元103输出或停止输出高压驱动信号至功率单元105。
进一步的,若驱动单元103处于非故障状态,其输出至备控单元104的诊断信号则为第一电位,备控单元104输出的备用控制信号为第一电位,以使驱动单元103继续输出高压驱动信号至功率单元105;若驱动单元103处于故障状态,其输出至备控单元104的诊断信号则由第一电位转为第二电位,备控单元104输出的备用控制信号为第二电位,以使驱动单元103停止输出高压驱动信号至功率单元105。
本公开实施例中,驱动单元103内含有用于检测自身运行状态的检测电路,使得驱动单元103在发生故障时能输出故障信号至控制单元102,以及将诊断信号由第一电位转为第二电位。
本公开实施例中,存在至少两种使驱动单元103停止工作的方式。其中一种为备用控制单元104通过对驱动单元103的运行状态进行实时监测,能够在驱动单元103发生故障时,控制其停止工作;另一种为控制单元102在驱动单元103发生故障时,能够接收到驱动单元103输出的故障信号,根据该故障信号停止输出使能信号和低压驱动信号至驱动单元103,使驱动单元103停止工作。通过这两种方式在驱动单元103的故障处理上构成一个冗余的控制结构,使得控制单元102因供电等原因而无法及时控制驱动单元103停止工作时,还能够通过备控单元104使驱动单元103停止工作,从而使电机控制系统100具有更高的安全等级。
本公开实施例中,使能信号包括上桥臂使能信号、下桥臂使能信号和安全使能信号;低压驱动信号包括上桥臂低压驱动信号和下桥臂低压驱动信号;高压驱动信号包括上桥臂高压驱动信号和下桥臂高压驱动信号;故障信号包括上桥臂故障信号和下桥臂故障信号;诊断信号包括上桥臂诊断信号、下桥臂诊断信号、第一电源诊断信号和第二电源诊断信号; 备用控制信号包括第一备用控制信号和第二备用控制信号。
具体的,请参阅图2,其为图1所示电机控制系统的一种具体结构示意图。如图2所示,供电单元101包括电池单元1011、高压单元1012、第一变压单元1013、第二变压单元1014和切换单元1015。
其中,电池单元1011电性连接于切换单元1015,用于输出第一直流电压至切换单元1015。
高压单元1012电性连接于第一变压单元1013,用于向第一变压单元1013输出第二直流电压。
第一变压单元1013电性连接于切换单元1015,用于接收高压单元1012输出的第二直流电压,并对第二直流电压执行变压处理后输出第三直流电压至切换单元1015。
切换单元1015电性连接于控制单元102和驱动单元103,用于在第一直流电压位于阈值范围时,将第一直流电压作为第一电源信号输出至控制单元102和驱动单元103,还用于在第一直流电压超过阈值范围时,将第三直流电压作为第一电源信号输出控制单元102和驱动单元103。
高压单元1012还电性连接于第二变压单元1014,用于输出第二直流电压至第二变压单元1014。
第二变压单元1014还电性连接于驱动单元103,用于接收高压单元1012输出的第二直流电压,并对第二直流电压执行变压处理后输出第二电源信号至驱动单元103。
本公开实施例中,阈值范围为一个数值范围,只要第一直流电压的数值处于这一范围内,切换单元1015就会将第一直流电压作为第一电源信号进行输出;反之,则会将第三直流电压作为第一电源信号进行输出。
本公开实施例中,切换单元1015优先将电池单元2011输出的第一直流电压作为第一电源信号输出至控制单元102和驱动单元103。可选的,切换单元1015也可以优先将第一变压单元1013输出的第三直流电压作为第一电源信号输出至控制单元102和驱动单元103。
例如,在正常状态下,阈值范围为9.5V~10.5V,电池单元1011和第一变压单元1013输出的第一直流电压和第三直流电压均被限定为10V,切换单元1015就会将第一直流电压作为第一电源信号进行输出。但是,若第一直流电压突变为9V,切换单元1015就会将第三直流电压作为第一电源信号进行输出。切换单元1015就是通过这种方式实现第一直流电压和第三直流电压的切换。第一直流电压、第三直流电压以及阈值范围还可以根据实际需求设定为其他数值,本公开实施例对此不做具体限定。
控制单元102包括电源单元1021、安全逻辑单元1022、信息采集单元1023和主控单元1024。
其中,电源单元1021电性连接于主控单元1024和供电单元101中的切换单元1015,用于接收切换单元1015输出的第一电源信号,并对第一电源信号处理后输出主控电源信号至主控单元1024,以使主控单元1024在主控电源信号的驱动作用下执行工作。
电源单元1021还用于接收主控单元1024输出的主控诊断信号,并根据主控诊断信号 输出或停止输出主控电源信号至主控单元1024。主控诊断信号用于表征主控单元1024的工作状态,其工作状态包括故障和非故障,若在非故障状态下,主控单元1024输出主控诊断信号中的第一电位,以使电源单元1021继续输出主控电源信号;若为故障状态,主控单元1024输出主控诊断信号中的第二电位,以使电源单元1021停止输出主控电源信号。
主控单元1024电性连接于驱动单元103中的三相上桥臂驱动单元1033和三相下桥臂驱动单元1036,用于在主控电源信号的驱动作用下执行工作时,输出上桥臂使能信号和上桥臂低压驱动信号至三相上桥臂驱动单元1033,以及输出下桥臂使能信号和下桥臂低压驱动信号至三相下桥臂驱动单元1036。
主控单元1024还用于接收三相上桥臂驱动单元1033输出的上桥臂故障信号和三相下桥臂驱动单元1036输出的下桥臂故障信号,并在上桥臂故障信号的作用下,停止输出上桥臂低压驱动信号和将上桥臂使能信号由第一电位转为第二电位,以使三相上桥臂驱动单元1033停止工作,以及在下桥臂故障信号的作用下,停止输出下桥臂低压驱动信号和将下桥臂使能信号由第一电位转为第二电位,以使三相下桥臂驱动单元1036停止工作。
主控单元1024还电性连接于信息采集单元1023,用于接收由信息采集单元1023输出的包括电机200在运行过程中的电流、电压以及转速等重要参数在内的采集信号,并根据采集信号对输出的上桥臂使能信号、上桥臂低压驱动信号、下桥臂使能信号和下桥臂低压驱动信号进行调整。
安全逻辑单元1022电性连接于电源单元1021和主控单元1024,用于接收电源单元1021输出的电源诊断信号和主控单元1024输出的主控诊断信号,并在电源诊断信号和主控诊断信号均处于第一电位时,输出安全使能信号中的第一电位至三相上桥臂驱动单元1033和三相下桥臂驱动单元1036,以使三相上桥臂驱动单元1033和三相下桥臂驱动单元1036执行工作;以及在电源单元1021和主控单元1024任一单元由于发生故障而将各自的诊断信号由第一电位转为第二电位时,输出安全使能信号中的第二电位至三相上桥臂驱动单元1033和三相下桥臂驱动单元1036,以使三相上桥臂驱动单元1033和三相下桥臂驱动单元1036停止工作。
本公开实施例中,控制单元102在正常执行工作时,由电源单元1021对切换单元1015输出的第一电源信号处理后输出主控电源信号至主控单元1024,以使主控单元1024驱动内部元器件工作,并输出上桥臂使能信号和上桥臂低压驱动信号至三相上桥臂驱动单元1033,以及输出下桥臂使能信号和下桥臂低压驱动信号至三相下桥臂驱动单元1036。
本公开实施例中,当电源单元1021遭遇故障时,电源单元1021会输出电源故障信号至安全逻辑单元1022,以使安全逻辑单元1022将安全使能信号由第一电位转为第二电位,使驱动单元103中的三相上桥臂驱动单元1033和三相下桥臂驱动单元1036停止工作。
本公开实施例中,当主控单元1024遭遇故障时,主控单元1024会将输入至电源单元1021和安全逻辑单元1022的主控诊断信号由第一电位转为第二电位,使电源单元1021停止输出主控电源信号,以及使安全逻辑单元1022将安全使能信号由第一电位转为第二电位,使驱动单元103中的三相上桥臂驱动单元1033和三相下桥臂驱动单元1036停止工作。
驱动单元103包括第一原边电源1031、第一副边电源1032、三相上桥臂驱动单元1033、第二原边电源1034、第二副边电源1035和三相下桥臂驱动单元1036。
其中,第一原边电源1031电性连接于三相上桥臂驱动单元1033以及供电单元101中的切换单元1015,用于接收切换单元1015输出的第一电源信号,并根据第一电源信号的作用,输出第一原边电源信号至三相上桥臂驱动单元1033。
第一副边电源1032电性连接于三相上桥臂驱动单元1033以及供电单元101中的切换单元1015,用于接收切换单元1015输出的第一电源信号,并根据第一电源信号的作用输出第一副边电源信号至三相上桥臂驱动单元1033。
第一副边电源1032还电性连接于备控单元104中的第一备用控制单元1041,用于对自切换单元1015输出的第一电源信号进行检测后,输出第一电源诊断信号至第一备用控制单元1041。第一电源诊断信号用于表征由切换单元1015输出的第一电源信号的工作状态,第一电源诊断信号包括第一电位和第二电位,第一电位表示非故障状态,第二电位表示故障状态,故障包括无信号、过压、过流以及低压等状况。
三相上桥臂驱动单元1033用于接收第一原边电源1031输出的第一原边电源信号,并根据第一原边电源信号的作用,驱动三相上桥臂驱动单元1033的原边侧中的元器件执行工作。
三相上桥臂驱动单元1033还用于接收第一副边电源1032输出的第一副边电源信号,并根据第一副边电源信号的作用,驱动三相上桥臂驱动单元1033的副边侧中的元器件执行工作。
三相上桥臂驱动单元1033还电性连接于功率单元105,用于接收控制单元102中的主控单元1024输出的上桥臂使能信号和上桥臂低压驱动信号,以及接收安全逻辑单元1022输出的安全使能信号,并在第一原边电源信号和第一副边电源信号的同时驱动作用下时,接收上桥臂使能信号中的第一电位,以启动将上桥臂低压驱动信号转换为上桥臂高压驱动信号,并将上桥臂高压驱动信号输出至功率单元105,以及在第一原边电源信号和第一副边电源信号的同时驱动作用下时,接收上桥臂使能信号中的第二电位,以停止将上桥臂低压驱动信号转换为上桥臂高压驱动信号。
三相上桥臂驱动单元1033还电性连接于备控单元104中的第一备用控制单元1041,用于输出表征三相上桥臂驱动单元1033的工作状态的上桥臂诊断信号,上桥臂诊断信号包括第一电位和第二电位,第一电位表示非故障状态,第二电位表示故障状态。
三相上桥臂驱动单元1033还用于接收自第一备控单元1041输出的第一备用控制信号,并根据第一备用控制信号的第一电位执行工作,以及根据第一备用控制信号的第二电位停止执行工作。
三相上桥臂驱动单元1033还用于输出上桥臂故障信号至第一原边电源1031,使第一原边电源1031在接收到上桥臂故障信号时,停止输出第一原边电源信号至三相上桥臂驱动单元1033的原边侧。
三相上桥臂驱动单元1033还用于输出上桥臂诊断信号至第一副边电源1032,使第一副 边电源1032接收到的上桥臂诊断信号由表征非故障状态的第一电位突变为表征故障状态的第二电位时,停止输出第一副边电源信号至三相上桥臂驱动单元1033的副边侧。
本公开实施例中,三相上桥臂驱动单元1033由上桥臂原边侧(图未示)、铁芯(图未示)以及上桥臂副边侧(图未示)构成。其中,上桥臂原边侧用以接收第一原边电源信号、上桥臂使能信号、上桥臂低压驱动信号以及安全使能信号,还用以输出上桥臂故障信号至主控单元1024。上桥臂副边侧用以接收第一副边电源信号和第一备用控制信号,还用以输出上桥臂诊断信号至第一备用控制单元1041和输出上桥臂高压驱动信号至功率单元105。
第二原边电源1034电性连接于三相下桥臂驱动单元1036以及供电单元101中的切换单元1015,用于接收切换单元1015输出的第一电源信号,并根据第一电源信号的作用,输出第二原边电源信号至三相下桥臂驱动单元1036。
第二副边电源1035电性连接于三相下桥臂驱动单元1036以及供电单元101中的第二变压单元1014,用于接收第二变压单元1014输出的第二电源信号,并根据第二电源信号的作用,输出第二副边电源信号至三相下桥臂驱动单元1036。
第二副边电源1035还电性连接于备控单元104中的第二备用控制单元1042,用于对自第二变压单元1014输出的第二电源信号进行检测后,输出第二电源诊断信号至第二备用控制单元1042。第二电源诊断信号用于表征由第二变压单元1014输出的第二电源信号的工作状态,第二电源诊断信号包括第一电位和第二电位,第一电位表示非故障状态,第二电位表示故障状态,故障包括无信号、过压、过流以及低压等状况。
三相下桥臂驱动单元1036用于接收第二原边电源1034输出的第二原边电源信号,并根据第二原边电源信号的作用,驱动三相下桥臂驱动单元1036的原边侧中的元器件执行工作。
三相下桥臂驱动单元1036还用于接收第二副边电源1035输出的第二副边电源信号,并根据第二副边电源信号的作用,驱动三相下桥臂驱动单元1036的副边侧中的元器件执行工作。
三相下桥臂驱动单元1036还电性连接于功率单元105,用于接收控制单元102中的主控单元1024输出的下桥臂使能信号和下桥臂低压驱动信号,以及接收安全逻辑单元1022输出的安全使能信号,并在第二原边电源信号和第二副边电源信号的同时驱动作用下时,接收下桥臂使能信号中的第一电位,以启动将下桥臂低压驱动信号转换为下桥臂高压驱动信号,并将下桥臂高压驱动信号输出至功率单元105,以及在第二原边电源信号和第二副边电源信号的同时驱动作用下时,接收下桥臂使能信号中的第二电位,以停止将下桥臂低压驱动信号转换为下桥臂高压驱动信号。
三相下桥臂驱动单元1036还电性连接于备控单元104中的第二备用控制单元1042,用于输出表征三相下桥臂驱动单元1036的工作状态的下桥臂诊断信号,下桥臂诊断信号包括第一电位和第二电位,第一电位表示非故障状态,第二电位表示故障状态。
三相下桥臂驱动单元1036还用于接收自第二备用控制单元1042输出的第二备用控制信号,并根据第二备用控制信号的第一电位执行工作,以及根据第二备用控制信号的第二 电位停止执行工作。
三相下桥臂驱动单元1036还用于输出下桥臂故障信号至第二原边电源1034,使第二原边电源1034在接收到下桥臂故障信号时,停止输出第二原边电源信号至三相下桥臂驱动单元1036的原边侧。
三相下桥臂驱动单元1036还用于输出下桥臂诊断信号至第二副边电源1035,使第二副边电源1035接收到的下桥臂诊断信号由第一电位突变为第二电位时,停止输出第二副边电源信号至三相下桥臂驱动单元1036的副边侧。
本公开实施例中,三相下桥臂驱动单元1036由下桥臂原边侧(图未示)、铁芯(图未示)以及下桥臂副边侧(图未示)构成。其中,下桥臂原边侧用以接收第二原边电源信号、下桥臂使能信号、下桥臂低压驱动信号和安全使能信号,还用以输出下桥臂故障信号至主控单元1024。下桥臂副边侧用以接收第二副边电源信号和第二备用控制信号,还用以输出下桥臂诊断信号至第二备用控制单元1042和输出下桥臂高压驱动信号至功率单元105。
备控单元104包括第一备用控制单元1041和第二备用控制单元1042。
其中,第一备用控制单元1041电性连接于驱动单元103中的第一副边电源1032、三相上桥臂驱动单元1033和第二副边电源1035,用于接收自第一副边电源1032输出的第一电源诊断信号、三相上桥臂驱动单元1033输出的上桥臂诊断信号和第二副边电源1035输出的第二电源诊断信号,并根据第一电源诊断信号、上桥臂诊断信号和第二电源诊断信号的电位,对输出至三相上桥臂驱动单元1033的第一备用控制信号的电位进行调整。
进一步的,若第一电源诊断信号、上桥臂诊断信号和第二电源诊断信号均处于第一电位,以表征第一电源信号、三相上桥臂驱动单元1033和第二电源信号均处于非故障状态,则第一备用控制单元1041输出第一备用控制信号中的第一电位,以使三相上桥臂驱动单元1033继续执行工作。
进一步的,若第一电源诊断信号或上桥臂诊断信号或第二电源诊断信号的电位由第一电位突变至第二电位,则表征其出现故障,第一备用控制单元1041输出第一备用控制信号中的第二电位,以使三相上桥臂驱动单元1033停止工作。
第二备用控制单元1042电性连接于驱动单元103中的第一副边电源1032、三相下桥臂驱动单元1036和第二副边电源1035,用于接收自第一副边电源1032输出的第一电源诊断信号、三相下桥臂驱动单元1036输出的下桥臂诊断信号和第二副边电源1035输出的第二电源诊断信号,并根据第一电源诊断信号、下桥臂诊断信号和第二电源诊断信号的电位,对输出至三相下桥臂驱动单元1036的第二备用控制信号的电位进行调整。
进一步的,若第一电源诊断信号、下桥臂诊断信号和第二电源诊断信号均处于第一电位,以表征第一电源信号、三相下桥臂驱动单元1036和第二电源信号均处于非故障状态,则第二备用控制单元1042输出第二备用控制信号中的第一电位,以使三相下桥臂驱动单元1036继续执行工作。
进一步的,若第一电源诊断信号或下桥臂诊断信号或第二电源诊断信号的电位突变由第一电位至第二电位,则表征其出现故障,第二备用控制单元1042输出第二备用控制信号 中的第二电位,以使三相上桥臂驱动单元1036停止工作。
本公开实施例中,备控单元104通过接收自驱动单元103输出的诊断信号以对第一电源信号、第二电源信号、三相上桥臂驱动单元1033以及三相下桥臂驱动单元1036的工作状态进行实时监测,能够在其中任一单元或信号传输出现故障时,控制驱动单元103停止工作,与控制单元102共同构成对于驱动单元103的故障处理的冗余结构,提升了电机控制系统100的抗风险能力和安全等级。
功率单元105电性连接于驱动单元103,用于受自驱动单元103输出的高压驱动信号的控制,将高压电池300提供的电源驱动信号输出至电机200,电源驱动信号用于驱动电机200转动。
本公开实施例中,驱动单元103在正常工作时,第一原边电源1031为三相上桥臂驱动单元1033的原边侧输出第一原边电源信号,第一副边电源1032为三相上桥臂驱动单元1033的副边侧输出第一副边电源信号,以使三相上桥臂驱动单元1033能够在同时接收到由控制单元102输出的上桥臂使能信号的第一电位和安全使能信号的第一电位时,启动对上桥臂低压驱动信号执行变压处理后输出上桥臂高压驱动信号至功率单元105,以使功率单元105能够将其转换为能够使电机执行转动的电源驱动信号。
本公开实施例中,若驱动单元中的三相上桥臂驱动单元1033遭遇故障时,三相上桥臂驱动单元1033就会输出上桥臂故障信号至主控单元1024,以使主控单元1024将上桥臂使能信号由第一电位转为第二电位,并停止输出上桥臂低压驱动信号,使三相上桥臂驱动单元1033停止工作。同时,三相上桥臂驱动单元1033还会将输出至第一备用控制单元1034的上桥臂诊断信号由第一电位转为第二电位,以使第一备用控制单元1041将第一备用控制信号由第一电位转为第二电位,使三相上桥臂驱动单元1033停止工作。这种冗余的故障处理方式能在主控单元1024由于供电或其他故障而无法及时使驱动单元103停止工作时,由备控单元104控制驱动单元103停止工作,使得应用了电机控制系统100的电机装置有着更高的安全等级。
本公开实施例中,驱动单元103中的三相上桥臂驱动单元1033与三相下桥臂驱动单元1036对称设置,三相下桥臂驱动单元1036在正常工作和遭遇故障时与三相上桥臂驱动单元1033的方式类似,故不再赘述。此外,电机控制系统100在正常工作时,同一时间仅有三相上桥臂驱动单元1033或三相下桥臂驱动单元1037在工作,两个单元不会同时工作。若三相上桥臂驱动单元1033因故障而停止工作时,驱动单元103会使三相下桥臂驱动单元1037开始工作,以保证电动装置能够处于一个相对安全的运行状态中。
本公开实施例中,还提供一种电机控制装置,包括前述电机控制系统200。
本公开实施例的电机控制系统100,通过在供电单元101中加入切换单元1015,对电池单元1011输出的第一直流电压和第一变压单元1013输出的第三直流电压进行切换输出,能够在一路信号出现故障时及时切换到另一路信号,提升了应用该电机控制系统100的电动装置在运行过程中的供电安全性。此外,电机控制系统100还加入了备控单元104,能够在驱动单元103遭遇故障时,与控制单元102构成一个冗余的故障控制结构,即在控制单 元102无法使驱动单元103停止工作时,也能由备控单元104控制驱动单元103停止工作。可见,在电机控制系统100中,通过对供电单元101的改进和备控单元104的添加,提升了应用该电机控制系统100的电动装置的安全等级。
以上对本公开实施例提供的一种电机控制系统及电机控制装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本公开的限制。

Claims (12)

  1. 一种电机控制系统,其特征在于,包括驱动单元、备控单元和功率单元,其中,
    所述驱动单元电性连接于所述功率单元,用于将接收的低压驱动信号转换为高压驱动信号并输出至所述功率单元,所述功率单元根据所述高压驱动信号将高压电池提供的电源驱动信号进行输出,所述电源驱动信号用于驱动连接于所述功率单元的电机转动;
    所述备控单元电性连接于所述驱动单元,所述驱动单元用于输出表征所述驱动单元运行状态的诊断信号至所述备控单元,若所述备控单元接收到的所述诊断信号表征所述驱动单元处于故障状态,所述备控单元控制所述驱动单元停止工作,以使所述驱动单元停止输出所述高压驱动信号至所述功率单元,以控制所述电机停止转动。
  2. 根据权利要求1所述的电机控制系统,其特征在于,所述电机控制系统还包括控制单元,
    所述控制单元电性连接于所述驱动单元,用于输出使能信号和所述低压驱动信号至所述驱动单元,所述使能信号用于控制所述驱动单元启动或停止将所述低压驱动信号转换为所述高压驱动信号;
    所述驱动单元发生故障时会输出故障信号至所述控制单元,所述故障信号用于表征所述驱动单元处于故障状态,所述控制单元根据所述故障信号停止输出所述低压驱动信号,并调整所述使能信号的电位,以控制所述驱动单元停止输出所述高压驱动信号。
  3. 根据权利要求2所述的电机控制系统,其特征在于,所述驱动单元包括第一原边电源、第一副边电源和三相上桥臂驱动单元,其中,
    所述第一原边电源电性连接于所述三相上桥臂驱动单元,用于将接收的第一电源信号进行处理后,输出第一原边电源信号至所述三相上桥臂驱动单元,还用于在接收自所述三相上桥臂驱动单元输出的所述故障信号中的上桥臂故障信号时,停止输出所述第一原边电源信号至所述三相上桥臂驱动单元;
    所述第一副边电源电性连接于所述三相上桥臂驱动单元,用于将接收的第一电源信号进行处理后,输出第一副边电源信号至所述三相上桥臂驱动单元,还用于接收自所述三相上桥臂驱动单元输出的所述诊断信号中的上桥臂诊断信号,并在所述上桥臂诊断信号表征所述三相上桥臂驱动单元处于故障状态时,停止输出所述第一副边电源信号至所述三相上桥臂驱动单元,所述上桥臂诊断信号用于表征所述三相上桥臂驱动单元的故障状态和非故障状态。
  4. 根据权利要求3所述的电机控制系统,其特征在于,所述三相上桥臂驱动单元用于在所述第一原边电源信号和所述第一副边电源信号的驱动作用下,接收自所述控制单元输出的使能信号和所述低压驱动信号中的上桥臂低压驱动信号,并将所述上桥臂低压驱动信号转换为所述高压驱动信号中的上桥臂高压驱动信号;
    所述三相上桥臂驱动单元还用于输出所述上桥臂故障信号至所述第一原边电源,使所 述第一原边电源在接收到表征所述三相上桥臂驱动单元发生故障的上桥臂故障信号时,停止输出所述第一原边电源信号至所述三相上桥臂驱动单元,所述三相上桥臂驱动单元停止接收自所述控制单元输出的使能信号和上桥臂低压驱动信号;
    所述三相上桥臂驱动单元还用于输出所述上桥臂诊断信号至所述第一副边电源,使所述第一副边电源在接收到表征所述三相上桥臂驱动单元的故障状态的上桥臂诊断信号时,停止输出所述第一副边电源信号至所述三相上桥臂驱动单元,所述三相上桥臂驱动单元停止将所述上桥臂低压驱动信号转换为上桥臂高压驱动信号。
  5. 根据权利要求3所述的电机控制系统,其特征在于,所述驱动单元还包括第二原边电源、第二副边电源和三相下桥臂驱动单元,其中,
    所述第二原边电源电性连接于所述三相下桥臂驱动单元,用于将接收的第一电源信号进行处理后,输出第二原边电源信号至所述三相下桥臂驱动单元,还用于在接收到自所述三相下桥臂驱动单元输出的所述故障信号中的下桥臂故障信号时,停止输出所述第二原边电源信号至所述三相下桥臂驱动单元;
    所述第二副边电源电性连接于所述三相下桥臂驱动单元,用于将接收的第二电源信号进行处理后,输出第二副边电源信号至所述三相下桥臂驱动单元,还用于接收自所述三相下桥臂驱动单元输出的所述诊断信号中的下桥臂诊断信号,并在所述下桥臂诊断信号表征所述三相下桥臂驱动单元处于故障状态时,停止输出所述第二副边电源信号至所述三相下桥臂驱动单元,所述下桥臂诊断信号用于表征所述三相下桥臂驱动单元的故障状态和非故障状态。
  6. 根据权利要求5所述的电机控制系统,其特征在于,所述三相下桥臂驱动单元用于在所述第二原边电源信号和所述第二副边电源信号的驱动作用下,接收自所述控制单元输出的使能信号和所述低压驱动信号中的下桥臂低压驱动信号,并将所述下桥臂低压驱动信号转换为所述高压驱动信号中的下桥臂高压驱动信号;
    所述三相下桥臂驱动单元还用于输出所述下桥臂故障信号至所述第二原边电源,使所述第二原边电源在接收到表征所述三相下桥臂驱动单元发生故障的下桥臂故障信号时,停止输出所述第二原边电源信号至所述三相下桥臂驱动单元,所述三相下桥臂驱动单元停止接收自所述控制单元输出的使能信号和下桥臂低压驱动信号;
    所述三相下桥臂驱动单元还用于输出所述下桥臂诊断信号至所述第二副边电源,使所述第二副边电源在接收到表征所述三相下桥臂驱动单元的故障状态的下桥臂诊断信号时,停止输出所述第二副边电源信号至所述三相下桥臂驱动单元,所述三相下桥臂驱动单元停止将自所述下桥臂低压驱动信号转换为所述下桥臂高压驱动信号。
  7. 根据权利要求5所述的电机控制系统,其特征在于,所述备控单元包括第一备用控制单元,其中,
    所述第一副边电源电性连接于所述第一备用控制单元,用于对所述第一电源信号进行检测后输出所述诊断信号中的第一电源诊断信号至所述备控单元,所述第一电源诊断信号用于表征所述第一电源信号的工作状态,所述第一电源信号的工作状态包括故障和非故障 状态;
    所述第二副边电源电性连接于所述第一备用控制单元,用于对所述第二电源信号进行检测后输出所述诊断信号中的第二电源诊断信号至所述备控单元,所述第二电源诊断信号用于表征所述第二电源信号的工作状态,所述第二电源信号的工作状态包括故障和非故障状态;
    所述第一备用控制单元还电性连接于所述三相上桥臂驱动单元,用于接收自所述三相上桥臂驱动单元输出的所述上桥臂诊断信号,若所述上桥臂诊断信号或所述第一电源诊断信号或所述第二电源诊断信号由非故障状态突变为故障状态,所述第一备用控制单元输出第一备用控制信号,控制所述三相上桥臂驱动单元停止将所述上桥臂低压驱动信号转换为所述上桥臂高压驱动信号。
  8. 根据权利要求7所述的电机控制系统,其特征在于,所述备控单元还包括第二备用控制单元,其中,
    所述第一副边电源电性连接于所述第二备用控制单元,用于对所述第一电源信号进行检测后输出所述诊断信号中的第一电源诊断信号至所述备控单元,所述第一电源诊断信号用于表征所述第一电源信号的工作状态,所述第一电源信号的工作状态包括故障和非故障状态;
    所述第二副边电源电性连接于所述第二备用控制单元,用于对所述第二电源信号进行检测后输出所述诊断信号中的第二电源诊断信号至所述备控单元,所述第二电源诊断信号用于表征所述第二电源信号的工作状态,所述第二电源信号的工作状态包括故障和非故障状态;
    所述第二备用控制单元还电性连接于所述三相下桥臂驱动单元,用于接收自所述三相下桥臂驱动单元输出的所述下桥臂诊断信号,若所述下桥臂诊断信号或所述第一电源诊断信号或所述第二电源诊断信号由非故障状态突变为故障状态,所述第二备用控制单元输出第二备用控制信号,控制所述三相下桥臂驱动单元停止将所述下桥臂低压驱动信号转换为下桥臂高压驱动信号。
  9. 根据权利要求5所述的电机控制系统,其特征在于,所述电机控制系统还包括供电单元,
    所述供电单元电性连接于所述控制单元和所述驱动单元,用于输出所述第一电源信号至所述控制单元,所述控制单元在所述第一电源信号的驱动作用下,对所述驱动单元的运行进行控制,以及用于输出所述第一电源信号和所述第二电源信号至所述驱动单元,所述驱动单元在所述第一电源信号和所述第二电源信号的驱动作用下,输出所述高压驱动信号至所述功率单元。
  10. 根据权利要求9所述的电机控制系统,其特征在于,所述供电单元包括电池单元、高压单元、第一变压单元和切换单元,其中,
    所述电池单元电性连接于所述切换单元,用于输出第一直流电压至所述切换单元;
    所述高压单元电性连接于所述第一变压单元,用于输出第二直流电压至所述第一变压 单元,以使所述第一变压单元对所述第二直流电压执行变压处理后,输出第三直流电压至与所述第一变压单元电连接的切换单元;
    所述切换单元电性连接于所述控制单元和所述驱动单元,用于在所述第一直流电压位于阈值范围时,将所述第一直流电压作为所述第一电源信号输出至所述控制单元和所述驱动单元,还用于在所述第一直流电压超过阈值范围时,将所述第三直流电压作为所述第一电源信号输出至所述控制单元和所述驱动单元。
  11. 根据权利要求10所述的电机控制系统,其特征在于,所述供电单元还包括第二变压单元,
    所述第二变压单元电性连接于所述高压单元,用于接收所述高压单元输出的所述第二直流电压;
    所述第二变压单元还电性连接于所述驱动单元,用于对所述第二直流电压执行变压处理后,输出所述第二电源信号至所述驱动单元,所述第二电源信号与所述第一电源信号共同驱动所述驱动单元输出所述高压驱动信号至所述功率单元。
  12. 一种电机控制装置,其特征在于,包括权利要求1-11任意一项所述的电机控制系统。
PCT/CN2020/131440 2019-12-31 2020-11-25 电机控制系统及电机控制装置 WO2021135738A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20909749.2A EP4087117A4 (en) 2019-12-31 2020-11-25 ENGINE CONTROL SYSTEM AND ENGINE CONTROL DEVICE
US17/787,731 US11811350B2 (en) 2019-12-31 2020-11-25 Motor control system and motor control apparatus
JP2022540434A JP2023508552A (ja) 2019-12-31 2020-11-25 モータ制御システム及びモータ制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911417122.X 2019-12-31
CN201911417122.XA CN113131833B (zh) 2019-12-31 2019-12-31 电机控制系统及电机控制装置

Publications (1)

Publication Number Publication Date
WO2021135738A1 true WO2021135738A1 (zh) 2021-07-08

Family

ID=76687297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131440 WO2021135738A1 (zh) 2019-12-31 2020-11-25 电机控制系统及电机控制装置

Country Status (5)

Country Link
US (1) US11811350B2 (zh)
EP (1) EP4087117A4 (zh)
JP (1) JP2023508552A (zh)
CN (1) CN113131833B (zh)
WO (1) WO2021135738A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201256376Y (zh) * 2008-09-12 2009-06-10 南京天擎汽车电子有限公司 一种用于汽车电动助力转向系统的电机驱动器
JP2009219174A (ja) * 2008-03-07 2009-09-24 Fuji Electric Systems Co Ltd モータ駆動装置
CN102859859A (zh) * 2010-04-28 2013-01-02 本田技研工业株式会社 开关电路
CN205647308U (zh) * 2016-04-19 2016-10-12 北京新能源汽车股份有限公司 汽车、汽车空调器以及汽车空调鼓风机的控制装置
CN208401757U (zh) * 2018-07-12 2019-01-18 上海英恒电子有限公司 一种驱动电路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550736A (en) * 1993-04-27 1996-08-27 Honeywell Inc. Fail-operational fault tolerant flight critical computer architecture and monitoring method
DE10146523A1 (de) * 2001-09-21 2003-04-24 Siemens Ag Antriebssteuereinrichtung für einen stromrichtergespeisten, mehrphasigen Motor
JP2003322042A (ja) * 2002-05-01 2003-11-14 Shinko Electric Co Ltd エンジン発電機
FI119136B (fi) * 2006-06-06 2008-07-31 Abb Oy Sähkökäyttöjärjestelmä
JP5434381B2 (ja) * 2009-08-31 2014-03-05 株式会社デンソー 車載電動機の駆動装置
US8976551B2 (en) 2010-12-07 2015-03-10 Hitachi Automotive Systems, Ltd. Power converter
JP5433608B2 (ja) * 2011-03-03 2014-03-05 日立オートモティブシステムズ株式会社 電力変換装置
CN202043071U (zh) * 2011-04-21 2011-11-16 比亚迪股份有限公司 一种功率模块
WO2014010225A1 (ja) * 2012-07-09 2014-01-16 パナソニック株式会社 密閉型電動圧縮機の制御装置及び密閉型電動圧縮装置、並びにそれらを備えた家電製品
CN104283485B (zh) * 2013-07-09 2017-10-31 比亚迪股份有限公司 电动汽车及其电机控制系统和控制方法
JP6177034B2 (ja) 2013-07-10 2017-08-09 株式会社日立製作所 エレベータ装置
US9948219B2 (en) * 2014-12-25 2018-04-17 Aisin Aw Co., Ltd. Rotating electrical machine control device
CN107124124B (zh) * 2017-04-01 2019-12-17 苏州汇川联合动力系统有限公司 一种电机三相定子绕组主动短路系统以及方法
CN107786150B (zh) 2017-11-28 2024-05-03 北京索德电气工业有限公司 一种电动汽车驱动电源控制系统及其控制方法
CN208479500U (zh) * 2018-07-24 2019-02-05 广东美的制冷设备有限公司 智能功率模块的驱动ic电路、智能功率模块及空调器
CN110266245A (zh) * 2019-06-04 2019-09-20 苏州汇川联合动力系统有限公司 电机驱动系统、方法、电机驱动器及电动汽车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219174A (ja) * 2008-03-07 2009-09-24 Fuji Electric Systems Co Ltd モータ駆動装置
CN201256376Y (zh) * 2008-09-12 2009-06-10 南京天擎汽车电子有限公司 一种用于汽车电动助力转向系统的电机驱动器
CN102859859A (zh) * 2010-04-28 2013-01-02 本田技研工业株式会社 开关电路
CN205647308U (zh) * 2016-04-19 2016-10-12 北京新能源汽车股份有限公司 汽车、汽车空调器以及汽车空调鼓风机的控制装置
CN208401757U (zh) * 2018-07-12 2019-01-18 上海英恒电子有限公司 一种驱动电路

Also Published As

Publication number Publication date
EP4087117A1 (en) 2022-11-09
US20230076368A1 (en) 2023-03-09
CN113131833A (zh) 2021-07-16
EP4087117A4 (en) 2023-06-07
CN113131833B (zh) 2023-03-14
JP2023508552A (ja) 2023-03-02
US11811350B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
CN102006007B (zh) 一种电动汽车电机控制系统
TWI415384B (zh) 具有超速保護之風力發電系統及其操作方法
CN109747423B (zh) 一种电动汽车安全关断系统和方法
JP2012130087A (ja) 回転機の制御装置,回転機系,車両,電気自動車または発電システム
CN110829949A (zh) 一种电驱动系统故障保护方法、装置、车辆及存储介质
CN210898512U (zh) 电动汽车电机系统三相主动短路的控制电路
CN205509478U (zh) 电动汽车逆变器保护装置
JP4431519B2 (ja) 原子炉冷却材の再循環ポンプ電源装置
CN108649843A (zh) 一种具有开路容错能力的永磁起动发电系统及其控制方法
CN103545804A (zh) 一种直流输入端防反接保护电路和方法、直流输入设备
CN111038261B (zh) 拖车保护方法
CN110768213A (zh) 电动汽车电机系统三相主动短路的控制电路及控制方法
CN111913129A (zh) 上电自检检测电路和方法
CN111942177A (zh) 一种asc控制装置及电机控制器
CN102459886B (zh) 用于风力发电机的叶片角度调节驱动器
CN102501771B (zh) 用于客车高压电安全保护的控制方法
CN105591362A (zh) 一种纯电动汽车电机的安全保护电路
WO2021135738A1 (zh) 电机控制系统及电机控制装置
CN106597974A (zh) 电能表外置断路器的控制装置及其控制方法
JP2014135827A (ja) 回転電機制御装置
CN207538974U (zh) 一种直流变桨控制系统安全控制装置
CN114172120A (zh) 一种主动短路控制电路及方法
CN113131439B (zh) 电机控制系统及电机控制装置
CN114928299A (zh) 一种异构电机控制装置及方法
WO2021164636A1 (zh) 欠压保护设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020909749

Country of ref document: EP

Effective date: 20220801